WO2020059734A1 - 電気装置 - Google Patents

電気装置 Download PDF

Info

Publication number
WO2020059734A1
WO2020059734A1 PCT/JP2019/036488 JP2019036488W WO2020059734A1 WO 2020059734 A1 WO2020059734 A1 WO 2020059734A1 JP 2019036488 W JP2019036488 W JP 2019036488W WO 2020059734 A1 WO2020059734 A1 WO 2020059734A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
internal
heat conduction
heat
units
Prior art date
Application number
PCT/JP2019/036488
Other languages
English (en)
French (fr)
Inventor
晋吾 亀田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to CN201980061843.3A priority Critical patent/CN112740842A/zh
Priority to US17/277,202 priority patent/US20210410322A1/en
Priority to JP2020548536A priority patent/JP7140199B2/ja
Priority to EP19863175.6A priority patent/EP3855874A4/en
Publication of WO2020059734A1 publication Critical patent/WO2020059734A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4427Pressure resistant cables, e.g. undersea cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1434Housings for electronics exposed to high gravitational force; Cylindrical housings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • G02B6/4269Cooling with heat sinks or radiation fins
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/08Cable junctions
    • H02G15/10Cable junctions protected by boxes, e.g. by distribution, connection or junction boxes
    • H02G15/12Cable junctions protected by boxes, e.g. by distribution, connection or junction boxes for incorporating transformers, loading coils or amplifiers
    • H02G15/14Cable junctions protected by boxes, e.g. by distribution, connection or junction boxes for incorporating transformers, loading coils or amplifiers specially adapted for submarine cables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G9/00Installations of electric cables or lines in or on the ground or water
    • H02G9/02Installations of electric cables or lines in or on the ground or water laid directly in or on the ground, river-bed or sea-bottom; Coverings therefor, e.g. tile

Definitions

  • the present invention relates to a technique for improving heat dissipation in an electric device.
  • Patent Document 1 discloses an example of a technique for improving heat dissipation in a submarine installation device.
  • a plurality of circuit units are accommodated in a cylindrical heat dissipation buffer.
  • the heat dissipation buffer is housed in the pressure-resistant housing in a state of being pressed against the inner surface of the cylindrical pressure-resistant housing.
  • the heat generated in the circuit unit is efficiently transferred to the pressure-resistant housing via the heat-release buffer.
  • heat generated in the circuit unit is efficiently radiated to the outside of the submarine-installed equipment.
  • Patent Document 2 Another example of the technology for improving the heat radiation property of the undersea equipment is disclosed in Patent Document 2.
  • a plurality of circuit units are stored in a cylindrical metal mesh spring.
  • the metal mesh spring is housed in a pressure-resistant casing having a cylindrical shape.
  • the pressure-resistant housing is filled with an insulating liquid (for example, a fluorine-based inert liquid) having a higher heat transfer coefficient than nitrogen gas.
  • the heat generated in the circuit unit is transferred to the pressure-resistant housing via the insulating liquid and the metal mesh spring.
  • Patent Literature 1 or Patent Literature 2 when the calorific value in the submarine installation device changes due to the design change of the submarine installation device, it may be necessary to change the outer shape of the submarine installation device.
  • a plurality of internal units having a predetermined cross-sectional shape (for example, a circuit unit in Patent Literature 1 or Patent Literature 2) are stored in a housing of a submarine installation device in a state where they are stacked on each other in a direction perpendicular to a predetermined cross section. An example will be described.
  • FIG. 8 is a schematic diagram (cross-sectional view) showing a configuration of related submarine equipment.
  • the device housing 230 stores n (n is an integer of 2 or more) internal units 211, 212,.
  • Each of the internal units 211, 212, ... includes a heating element 261, 262, ... (for example, a laser diode (hereinafter, also referred to as an LD)) and heat sinks 271, 272, ....
  • a heating element 261, 262, ... for example, a laser diode (hereinafter, also referred to as an LD)
  • a case (sealed case) of a submarine installation device since air does not enter or exit the housing, it is difficult to perform cooling using a fan widely used in land installation devices. Then, the heat generated in the heating elements 261, 262,...
  • the heat generation amount in the internal unit 211 has increased as a result of the design change in the internal unit 211.
  • the length direction of the submarine cable and the adjacent directions of the internal units 211, 212,... Are both X directions in FIG.
  • the outer shape of the submarine installation device 200 (a cross-sectional area in a cross section perpendicular to the submarine cable, a length in a direction parallel to the submarine cable, and the like).
  • a design change involving a change in heat generation in the internal unit 211 requires a design change in another internal unit 212,... That did not require a particular design change, or a design change in the entire undersea installation equipment 200.
  • Patent Document 1 or Patent Document 2 has a problem that the number of man-hours required to cope with a design change accompanying a change in heat generation in a certain internal unit is large.
  • the man-hours required to respond to the design change include, for example, the design and manufacturing man-hours of submarine installation equipment, or the design and manufacturing man-hours of related equipment (submarine cable laying facilities, etc.) that handles the redesigned submarine installation equipment. It is.
  • the present invention has been made in view of the above problems, and has as its main object to reduce the number of steps required to cope with a design change accompanying a change in heat generation in an internal unit housed in an electric device.
  • the electric device includes one or more internal units that are heating elements having a predetermined cross-sectional shape, one or more heat conduction units that are good heat conductors having a predetermined cross-sectional shape, A device housing in which two or more units or heat conduction units can be stored in a state where predetermined cross-sectional shapes are adjacent to each other in an overlapping direction, and are thermally connected to the stored internal unit or the stored heat conduction unit. Body.
  • FIG. 4 is a perspective view illustrating an operation of the electric device according to the first embodiment of the present invention. It is a perspective view showing a modification of the composition of the electric device in a 1st embodiment of the present invention.
  • FIG. 1 is a perspective view showing an example of a configuration of an electric device according to the first embodiment of the present invention.
  • the direction in which the electric device is installed is an example, and the direction in which the electric device is actually installed may be any direction.
  • the width direction of the electric device is indicated by “X”
  • the depth direction is indicated by “Y”
  • the height (thickness) direction is indicated by “Z”. It will be shown. That is, the X, Y, and Z directions are orthogonal to each other.
  • the right direction, the front direction, and the upward direction are referred to as “positive sides”, and the left direction, the back direction, and the downward direction are referred to as “negative sides”.
  • the positive side in the X direction is the “X +” side
  • the negative side in the X direction is the “X ⁇ ” side
  • the positive side in the Y direction is the “Y +” side
  • the negative side in the Y direction is the The “Y ⁇ ” side
  • the positive side in the Z direction is also referred to as “Z +” side
  • the negative side in the Z direction is also referred to as “Z ⁇ ” side.
  • FIG. 1 the inside of the electric device is shown in a see-through manner.
  • the electric device 100 provides a predetermined function, and dissipates heat generated internally when providing the predetermined function to the outside.
  • the electric device 100 is, for example, an optical submarine cable repeater.
  • the electric device 100 includes one or more internal units 110, one or more heat conduction units 120, and a device housing 130.
  • the internal unit 110 is a heating element having a predetermined cross section (YZ plane in FIG. 1). However, the external shapes of the internal units 110 in a direction perpendicular to a predetermined cross section (X direction in FIG. 1) may be different from each other.
  • the internal unit 110 provides a partial function necessary for realizing a predetermined function provided by the electric device 100. Then, the internal unit 110 radiates heat generated internally when providing the partial function to the outside.
  • the internal unit 110 may be connected to a signal cable 140 (described later).
  • the predetermined cross-sectional shape is, for example, a circle, an ellipse, or a polygon. In the example shown in FIG. 1, the predetermined cross-sectional shape is circular, and the internal unit 110 has a disk shape.
  • the heat conduction unit 120 is a good heat conductor having the same predetermined cross-sectional shape as the internal unit 110. However, the outer shapes of the heat conduction units 120 in the direction perpendicular to the predetermined cross section may be different from each other.
  • the heat conduction unit 120 radiates heat conducted from the adjacent internal unit 110 to the device housing 130 or the adjacent heat conduction unit 120.
  • the heat conduction unit 120 is made of, for example, metal (copper, aluminum, or the like) or carbon (graphite, carbon nanotube, diamond, or the like), and has a plate-like outer shape (the interior may be hollow). In the example shown in FIG. 1, the heat conduction unit 120 has the outer shape of a disk.
  • the device housing 130 holds two internal units 110 or heat conduction units 120 (hereinafter, also simply referred to as “units”) in a state in which predetermined cross-sectional shapes are adjacent to each other in the overlapping direction (X direction in FIG. 1).
  • the above can be stored.
  • the device housing 130 thermally connects adjacent units.
  • the device housing 130 may thermally connect the adjacent units, for example, by storing the adjacent units so as to overlap each other in the X direction so as to be in contact with each other.
  • the device housing 130 is thermally connected to the stored unit.
  • the device housing 130 is thermally connected to the stored unit by, for example, the stored unit being in contact with the inner surface of the device housing 130.
  • the device housing 130 has a cylindrical shape having both bottom surfaces.
  • the device housing 130 stores one or more internal units 110 and one or more heat conducting units 120 in a state where the outer surface is in contact with the inner surface of the device housing 130.
  • the device housing 130 may be thermally connected to the stored unit via, for example, a heat conductive sheet, a metal member, a carbon member, a refrigerant (a fluorine-based inert liquid or the like), or the like.
  • the internal unit 110 is thermally connected to the heat conduction unit 120, and the internal unit 110 and the heat conduction unit 120 are thermally connected to the device housing 130.
  • the heat generated in the internal unit 110 is conducted to the device housing 130 directly or via the heat conducting unit 120.
  • the device housing 130 radiates heat conducted to the device housing 130 to the outside of the device housing 130. That is, a heat dissipation path is formed starting from the internal unit 110, directly or via the heat conduction unit 120, via the device housing 130, and ending at the outside of the electric device 100 (seawater, outside air, etc.).
  • FIG. 1 an example of the heat radiation path is indicated by a thick arrow.
  • a heat radiation path via the heat conduction unit 120 is added as compared with the heat radiation path in the electric device 100 and the heat radiation path in the related submarine equipment shown in FIG.
  • FIG. 2 is a perspective view showing the operation of the electric device according to the first embodiment of the present invention.
  • the internal unit 111 is a heating element having the same predetermined cross-sectional shape as the internal unit 110 (a circular shape having the same radius on the YZ plane in FIGS. 1 and 2).
  • the outer dimensions of the internal unit 111 for example, the width in the X direction in FIG. 2 have changed from the outer dimensions of the internal unit 110 (for example, the width in the X direction in FIG. 1).
  • the heat value of the internal unit 111 has changed from the heat value of the internal unit 110.
  • the heat conduction unit 121 is a good heat conductor having the same predetermined cross-sectional shape as the heat conduction unit 120 (same as the internal unit 110).
  • the outer dimensions of the heat conduction unit 121 for example, the width in the X direction in FIG. 2 have changed from the outer dimensions of the heat conduction unit 120 (for example, the width in the X direction in FIG. 1).
  • the outer dimensions for example, the width in the X direction and the cross-sectional outer shape in the YZ plane in FIG.
  • the external dimensions of the heat conduction unit 121 are determined to be the same as the external dimensions (for example, the width in the X direction and the cross-sectional external shape in the YZ plane in FIG. 1) together with the conduction unit 120.
  • the thermal resistance of the heat conduction unit 121 may be changed from the thermal resistance of the heat conduction unit 120. That is, for example, when the calorific value of the internal unit 111 becomes larger than the calorific value of the internal unit 110, the heat conductive unit 121 is replaced with a heat conductive unit having a lower thermal resistance (having better heat dissipation) than the heat conductive unit 120. Is also good.
  • each of the heat conduction units 120, 121,... May have a different structure or material.
  • FIG. 2 an example of a heat radiation path is indicated by a thick arrow.
  • a heat radiation path is formed starting from the internal unit 111, directly or via the heat conduction unit 121, via the device housing 130, and ending at the outside of the electric device 100 (seawater, outside air, etc.). I have. (When designing for the worst case)
  • the electric device 100 may be designed to be operable both before and after the unit design change.
  • the electric device 100 is configured such that a set of one internal unit 110 and one heat conductive unit 120 is a set of one internal unit 111 and one heat conductive unit 121.
  • This condition is, for example, the worst case (a set of the internal unit 110 having the largest heat generation and the heat conduction unit 120 having the largest thermal resistance) within the range of the assumed design change. Are set by setting the thermal resistance of the heat conduction units 120,... So that the temperature of the internal units 110,. (When replacing with a heat conduction unit that compensates for the increase in heat generation in the internal unit) When one internal unit 110 is replaced with one internal unit 111 having a larger calorific value due to a design change of one internal unit 110, the heat conduction unit 120 can cope with an increase in the calorific value of the internal unit 111.
  • the heat conduction unit 121 may have a smaller thermal resistance (for example, a material having a high heat dissipation capability may be used).
  • one internal unit 110 and one heat conduction unit 120 are replaced by one internal unit 111 and one heat conduction unit 121 .
  • the replacement of the unit in the present embodiment is not limited to the above-described example. That is, one internal unit 110 may be replaced with a plurality of internal units 111. Further, one heat conduction unit 120 may be replaced by a plurality of heat conduction units 121 or may be removed from the electric device 100. Further, the plurality of internal units 110 may be replaced with one internal unit 111. Further, the plurality of heat conduction units 120 may be replaced with one heat conduction unit 121 or may be removed from the electric device 100.
  • the internal units 110, 111,... And the heat conduction units 120, 121 undergoes a design change accompanied by a change in heat generation.
  • the internal unit 110 is replaced with the internal unit 111.
  • the outer shape of the heat conduction unit 121 is determined so that the outer shape of the combined internal unit 111 and heat conduction unit 121 is the same as the outer shape of the combined internal unit 110 and heat conduction unit 120.
  • the change from the external shape of the internal unit 110 to the external shape of the internal unit 111 for example, the change in the width in the X direction in FIGS.
  • the unit is designed to be operable both before and after the design change, or the heat conduction unit can cope with an increase in the amount of heat generated in the internal unit after the design change. That is, in the electric device 100, with the design change of one internal unit 110, the design change for the other components (the device housing 130, the internal unit 110 which did not require the design change) except the heat conduction unit 120 and the like. And no production is required.
  • the electric device 100 when there is a related device for installing the electric device 100 (such as a facility for laying the electric device 100), it is not necessary to change the design and manufacture of the related device. Therefore, the electric device 100 according to the present embodiment has an effect that the number of man-hours required to cope with a design change accompanying a change in heat generation in the internal unit stored in the electric device can be suppressed.
  • FIG. 3 is a perspective view showing a modification of the configuration of the electric device according to the first embodiment of the present invention.
  • a part of the heat conduction unit 120 in the above-described embodiment is replaced with a heat conduction unit 122.
  • the two internal units 110 stored in the device housing 130 are connected to each other via a signal cable 140.
  • the heat conduction unit 122 has a slot 150 through which the signal cable 140 can pass.
  • the slot 150 is a groove or a through hole through which the signal cable 140 can pass in the X direction.
  • the groove 150 is a groove formed at a predetermined position on the outer periphery of the heat conduction unit 122 in the X direction.
  • the slot 150 formed in the heat conduction unit 122 allows the signal cable 140 to pass between the two internal units 110 connected to each other via the signal cable 140.
  • FIG. 4 is a cross-sectional view showing an example of the configuration of the submarine installation equipment according to the second embodiment of the present invention. More specifically, FIG. 4 shows a cross-sectional view in the XZ plane.
  • the submarine equipment 105 (electric device) in the present embodiment provides a predetermined function, and radiates heat generated internally when providing the predetermined function to the outside.
  • the submarine installation equipment 105 is, for example, an optical submarine cable repeater.
  • the undersea installation equipment 105 includes one or more internal units 115,..., One or more heat conduction units 125,.
  • the internal units 115,... Are heating elements having a predetermined cross section (YZ plane in FIG. 4).
  • the internal units 115,... include, for example, a laser diode.
  • the outer shapes of the internal units 115,... In a direction perpendicular to a predetermined cross section (X direction in FIG. 4) may be different from each other.
  • the internal units 115,... Provide partial functions necessary for realizing predetermined functions provided by the submarine installation equipment 105.
  • the internal units 115,... Dissipate heat generated internally when providing the partial function to the outside.
  • the internal units 115,... May be connected to a signal cable.
  • the predetermined cross-sectional shape is, for example, a circle, an ellipse, or a polygon.
  • Each of the internal units 115 includes a heating element 165, 166,... And a heat sink 175, 176,.
  • the heating elements 165, 166,... Are heating elements (heating elements) in the undersea equipment 105.
  • the heating elements 165, 166,... are, for example, LDs.
  • the heat sinks 175, 176, ... conduct the heat generated in the heating elements 165, 166, ... to the outside of the device housing 135.
  • the heat sinks 175, 176, ... are, for example, metal blocks.
  • the heat conduction units 125 Radiate the heat conducted from the adjacent internal units 115,... To the device housing 135 or the adjacent heat conduction units 125,.
  • the heat conduction units 125 are made of, for example, metal (copper, aluminum, etc.) or carbon (graphite, carbon nanotube, diamond, etc.), and have a plate-like outer shape (the interior may be hollow).
  • the device housing 135 is configured such that the internal units 115,... Or the heat conductive units 125,... (Hereinafter, also simply referred to as “units”) are oriented such that predetermined cross-sectional shapes overlap each other (X direction in FIG. 4). , Two or more can be stored.
  • the device housing 135 thermally connects adjacent units.
  • the device housing 135 may, for example, thermally connect the adjacent units by storing the adjacent units so as to overlap in the X direction so as to be in contact with each other.
  • the device housing 135 is thermally connected to the stored unit.
  • the device housing 135 is thermally connected to the stored unit by, for example, the stored unit being in contact with the inner surface of the device housing 135. In the example shown in FIG.
  • the device housing 135 has a cylindrical shape or a rectangular tube shape having both bottom surfaces.
  • the device housing 135 connects the one or more internal units 115,... And the one or more heat conduction units 125,.
  • the device housing 135 may be thermally connected to the stored unit via, for example, a heat conductive sheet, a metal member, a carbon member, a refrigerant (eg, a fluorine-based inert liquid), or the like.
  • the heat generated in the internal units 115,... Is conducted to the device housing 135 directly or via the heat conducting units 125,. Then, the device housing 135 radiates the heat conducted to the device housing 135 to the outside of the device housing 135. That is, a heat radiation path starting from the internal units 115,..., Directly or via the heat conduction units 125,..., Via the device housing 135, and ending at the outside (seawater) of the submarine equipment 105. Is formed.
  • FIG. 4 an example of the heat radiation path is indicated by a thick arrow.
  • a heat radiation path via the heat conduction units 125,... Is added to the heat radiation path in the submarine equipment 105 and the heat radiation path in the related submarine equipment shown in FIG.
  • FIG. 5 is a cross-sectional view showing the operation of the submarine installation equipment according to the second embodiment of the present invention.
  • the internal unit 119 is a heating element having the same predetermined cross-sectional shape as the internal unit 115 (the same shape in the YZ plane in FIGS. 4 and 5). However, it is assumed that the outer dimensions of the internal unit 119 (for example, the width in the X direction in FIG. 5) have changed from the outer dimensions of the internal unit 115 (for example, the width in the X direction in FIG. 4). Also, it is assumed that the heat value of the internal unit 119 has changed from the heat value of the internal unit 115.
  • the heat conduction unit 125 is replaced by the heat conduction unit 129 when the internal unit 115 is replaced by the internal unit 119.
  • the heat conduction unit 129 is a good heat conductor having the same predetermined cross-sectional shape as the heat conduction unit 125 (same as the internal unit 115).
  • the external dimensions of the heat conduction unit 129 for example, the width in the X direction in FIG. 5
  • the outer dimensions for example, the width in the X direction and the cross-sectional outer shape in the YZ plane in FIG.
  • the internal unit 119 and the heat conductive unit 129 are the same as the external size of the internal unit 115 and the heat conductive unit 125.
  • the outer dimensions of the heat conduction unit 129 are determined to be the same as the dimensions (for example, the width in the X direction and the cross-sectional outline in the YZ plane in FIG. 4).
  • the thermal resistance of the thermal conductive unit 129 may be changed from the thermal resistance of the thermal conductive unit 125. That is, for example, when the calorific value of the internal unit 119 becomes larger than the calorific value of the internal unit 115, the heat conductive unit 129 is replaced with a device having a lower thermal resistance than the heat conductive unit 125 (having better heat dissipation). Is also good.
  • the heat conduction units 125,..., 129 may have different structures or materials.
  • an example of the heat radiation path is indicated by a thick arrow.
  • a heat radiation path is formed starting from the internal unit 119, directly or via the heat conduction unit 129, via the device housing 135, and ending at the outside (seawater) of the submarine equipment 105.
  • the submarine equipment 105 may be designed to be operable both before and after the unit design change.
  • the submarine installation equipment 105 is configured such that a set of the internal units 115,... And the heat conductive units 125,.
  • the heat conduction unit 129 may be replaced with a small heat conduction unit 129 (for example, a material having a high heat dissipation capability is used).
  • the internal unit 115 and the heat conduction unit 125 are replaced with the internal unit 119 and the heat conduction unit 129 .
  • the replacement of the unit in the present embodiment is not limited to the above-described example. That is, the internal unit 115 may be replaced with a plurality of internal units 119,. Also, one heat conduction unit 125,... May be replaced by a plurality of heat conduction units 129,. Further, the plurality of internal units 115,... May be replaced with one internal unit 119. Further, the plurality of heat conduction units 125,... May be replaced with one heat conduction unit 129, or may be removed from the submarine installation equipment 105.
  • the internal units 115,... And the heat conduction units 125 undergoes a design change accompanied by a change in heat generation.
  • the internal unit 115 is replaced with the internal unit 119.
  • the outer shape of the heat conduction unit 129 is determined such that the outer shape obtained by combining the internal unit 119 and the heat conductive unit 129 is the same as the outer shape obtained by combining the inner unit 115 and the heat conductive unit 125.
  • the change from the external shape of the internal unit 115 to the external shape of the internal unit 119 for example, the change in the width in the X direction in FIGS.
  • the unit is designed to be operable both before and after the design change, or the heat conduction unit can cope with an increase in the amount of heat generated in the internal unit after the design change. That is, in the submarine installation equipment 105, other components except the heat conduction unit 125 and the like (e.g., the apparatus housing 135, the internal unit 116 that did not require a design change, and the like) in accordance with the design change of the internal unit 115. No design changes and manufacturing are required.
  • the submarine equipment 105 when there is a related device for installing the submarine installation device 105 (e.g., a facility for laying the submarine installation device 105), it is not necessary to change the design and manufacture of the relevant device. Accordingly, the submarine equipment 105 according to the present embodiment has an effect that the number of man-hours required to cope with a design change accompanying a change in heat generation in the internal unit stored in the electric device can be suppressed.
  • FIG. 6 is a cross-sectional view showing a modification of the configuration of the submarine installation equipment according to the second embodiment of the present invention. More specifically, FIG. 6 shows a cross-sectional view in the XZ plane.
  • the space (region 180) of the housing is filled with a refrigerant.
  • the refrigerant is, for example, a fluorine-based inert liquid.
  • the heat conduction units 125 can be realized lighter and cheaper than in the case where the heat conduction units 125,. effective.
  • the refrigerant is a fluorine-based inert liquid
  • the submarine equipment 105 is not hindered.
  • FIG. 7 is a cross-sectional view showing another modification of the configuration of the submarine installation equipment according to the second embodiment of the present invention. More specifically, FIG. 7 shows a cross-sectional view in the XZ plane.
  • the gap (region 190) of the device housing 135 according to the above-described embodiment is filled with the refrigerant.
  • the refrigerant is, for example, a fluorine-based inert liquid.
  • the present modification has an effect that the heat radiation of the submarine equipment 105 can be further improved.
  • the refrigerant is a fluorine-based inert liquid
  • the refrigerant leaks into the internal units 115,...
  • the internal units 115 There is an effect that the internal units 115,.
  • Appendix 1 One or more internal units that are heating elements having a predetermined cross-sectional outer shape; One or more heat conduction units that are good conductors of heat having the predetermined cross-sectional profile; The internal unit or the heat conduction unit can store two or more in a state where the predetermined cross-sectional shapes are adjacent to each other in a direction in which they overlap with each other,
  • An electric device comprising: a device housing thermally connected to the stored internal unit or the stored heat conduction unit.
  • a thermal resistance of the one or more heat conducting units is set so as not to reach a predetermined temperature or higher.
  • Appendix 4 When the original internal unit is replaced with another internal unit having a larger calorific value in accordance with a design change of the original internal unit, the another heat conduction unit generates heat in the original internal unit. 3.
  • the electric device according to appendix 1 or 2 wherein the another heat conduction unit is replaced with the heat conduction unit having a smaller thermal resistance by an amount corresponding to the increase in the amount.
  • the electric device according to any one of supplementary notes 1 to 4, further comprising: (Appendix 6) The electric device according to any one of supplementary notes 1 to 5, wherein the heat conduction unit is a metal or carbon plate. (Appendix 7) The electric device according to any one of supplementary notes 1 to 5, wherein the heat conduction unit is a metal or carbon case filled with a first refrigerant.
  • the present invention can be used in electric devices for realizing efficient heat radiation.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Casings For Electric Apparatus (AREA)
  • Cable Accessories (AREA)

Abstract

(課題)電気装置内に格納される内部ユニットにおける発熱の変化を伴う設計変更に対応するために必要な工数を抑制する。 (解決手段)所定の断面外形を成す発熱体である1つ以上の内部ユニットと、所定の断面外形を成す熱の良導体である1つ以上の熱伝導ユニットと、内部ユニット又は熱伝導ユニットを、所定の断面外形が互いに重なり合う向きで隣接した状態において、2つ以上格納可能であり、格納された内部ユニット又は格納された熱伝導ユニットと熱的に接続される装置筐体とを備える。

Description

電気装置
 本発明は、電気装置における放熱性を向上する技術に関する。
 通信インフラの需要拡大により、海底設置機器における大容量化及び高出力化が要求されている。大容量化及び高出力化の要求に伴い、海底設置機器における消費電力の増加による、海底設置機器の筐体内部における温度上昇が問題となっている。そこで、海底設置機器の筐体内部における放熱性の改善が課題である。
 海底設置機器における放熱性を改善する技術の一例が、特許文献1に開示されている。特許文献1の光海底中継器では、複数の回路ユニットが、円筒形状を成す放熱緩衝体に収容されている。放熱緩衝体は、円筒形状を成す耐圧筐体の内面に圧接した状態で、耐圧筐体に収容されている。回路ユニットにおいて発生した熱は、放熱緩衝体を介して高効率的に耐圧筐体へ伝熱される。上記構成の結果、特許文献1の光海底中継器では、回路ユニットにおいて発生した熱が、効率的に海底設置機器の外へ放熱される。
 海底設置機器における放熱性を改善する技術の別の一例が、特許文献2に開示されている。特許文献2の光回路収納用海底機材では、複数の回路ユニットが、円筒形状を成す金属メッシュスプリングに収容されている。金属メッシュスプリングは、円筒形状を成す耐圧筐体に収容されている。耐圧筐体には、窒素ガスに比べて熱伝達係数が高い絶縁性液体(例えば、フッ素系不活性液体)が充填されている。回路ユニットにおいて発生した熱は、絶縁性液体及び金属メッシュスプリングを介して耐圧筐体へ伝熱される。上記構成の結果、特許文献2の光回路収納用海底機材では、回路ユニットにおいて発生した熱が、効率的に光回路収納用海底機材の外へ放熱される。
特開平09-218320号公報 特開2001-327061号公報
 しかしながら、特許文献1又は特許文献2の技術では、海底設置機器の設計変更に伴い海底設置機器内における発熱量が変化すると、海底設置機器の外形を変更することが必要になることがある。
 所定の断面形状を成す複数の内部ユニット(例えば、特許文献1又は特許文献2における回路ユニット)が、所定の断面に垂直な向きに互いに重ねあわされた状態において、海底設置機器の筐体に格納される例について説明する。
 図8は、関連する海底設置機器における構成を示す模式図(断面図)である。本例における海底設置機器200(例えば、光海底中継器)において、装置筐体230は、n台(nは2以上の整数)の内部ユニット211、212、・・・を格納する。各内部ユニット211、212、・・・はそれぞれ、発熱体261、262、・・・(例えば、レーザーダイオード(以下、LDとも称す))と、ヒートシンク271、272、・・・とを含む。一般的に海底設置機器における筐体(密閉筐体)では、空気が筐体を出入りしないので、陸上設置機器において広く見られるファンを用いた冷却を行うことは難しい。そこで、発熱体261、262、・・・において発生した熱は、順に、各内部ユニット211、212、・・・における、ヒートシンク271、272、・・・又は筐体、海底設置機器200の装置筐体230、海底設置機器200外の海水に伝導される。そのため、ある内部ユニット211、212、・・・おける発熱量が設計時の想定を超えて増加すると、十分な放熱を行うことができなくなる。図8において、放熱経路の一例を太矢印で示す。
 例えば、内部ユニット211おける設計変更の結果、内部ユニット211おける発熱量が増加したこととする。十分な放熱を行うために、例えば、内部ユニット211の海底ケーブルに垂直な面における断面積を増加させたり、又は内部ユニット211と内部ユニット212との間の距離を増加させたりすることが必要になることがある。ここで、海底ケーブルの長さ方向、及び内部ユニット211、212、・・・の隣接方向は、共に図8におけるX方向であることとする。その結果、海底設置機器200の外形(海底ケーブルに垂直な断面における断面積、又は海底ケーブルに平行な向きにおける長さ等)を変更することが必要になる。つまり、内部ユニット211における発熱の変化を伴う設計変更によって、特に設計変更の必要が無かった別の内部ユニット212、・・・における設計変更、又は海底設置機器200全体における設計変更が必要になる。
 このように、特許文献1又は特許文献2の技術には、ある内部ユニットにおける発熱の変化を伴う設計変更に対応するために必要な工数が大きいという問題点がある。設計変更に対応するために必要な工数とは、例えば、海底設置機器の設計及び製造工数、又は設計変更された海底設置機器を取り扱う関連装置(海底ケーブルの敷設設備等)の設計及び製造工数等である。
 本発明は、上記の課題に鑑みてなされたもので、電気装置内に格納される内部ユニットにおける発熱の変化を伴う設計変更に対応するために必要な工数を抑制することを主たる目的とする。
 本発明の一態様において、電気装置は、所定の断面外形を成す発熱体である1つ以上の内部ユニットと、所定の断面外形を成す熱の良導体である1つ以上の熱伝導ユニットと、内部ユニット又は熱伝導ユニットを、所定の断面外形が互いに重なり合う向きで隣接した状態において、2つ以上格納可能であり、格納された内部ユニット又は格納された熱伝導ユニットと熱的に接続される装置筐体とを備える。
 本発明によれば、電気装置内に格納される内部ユニットにおける発熱の変化を伴う設計変更に対応するために必要な工数を抑制できるという効果がある。
本発明の第1の実施形態における電気装置の構成の一例を示す斜視図である。 本発明の第1の実施形態における電気装置の動作を示す斜視図である。 本発明の第1の実施形態における電気装置の構成の変形例を示す斜視図である。 本発明の第2の実施形態における海底設置機器の構成の一例を示す断面図である。 本発明の第2の実施形態における海底設置機器の動作を示す断面図である。 本発明の第2の実施形態における海底設置機器の構成の変形例を示す断面図である。 本発明の第2の実施形態における海底設置機器の構成の別の変形例を示す断面図である。 関連する海底設置機器における構成を示す模式図である。
 以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、すべての図面において、同等の構成要素には同じ符号を付し、適宜説明を省略する。
(第1の実施形態)
 本発明の各実施形態の基本である、本発明の第1の実施形態について説明する。
 本実施形態における構成について説明する。
 図1は、本発明の第1の実施形態における電気装置の構成の一例を示す斜視図である。図1以降の図及び以降の説明において、電気装置が設置される向きは一例であり、実際に電気装置が設置される向きは、任意の向きであってよい。図1以降の図及び以降の説明において、ある方向から見て、電気装置の、幅方向を「X」で示し、奥行き方向を「Y」で示し、高さ(厚み)方向を「Z」で示すこととする。即ち、X方向、Y方向、Z方向は互いに直交する方向である。X方向、Y方向、Z方向それぞれにおいて、右方向、手前方向、上方向を「正側」と称し、左方向、奥方向、下方向を「負側」と称することとする。又、以降の説明において、X方向における正側を「X+」側と、X方向における負側を「X-」側と、Y方向における正側を「Y+」側と、Y方向における負側を「Y-」側と、Z方向における正側を「Z+」側と、Z方向における負側を「Z-」側とも称することとする。尚、図1では、電気装置の内部を透視して図示している。
 本実施形態における電気装置100は、所定の機能を提供し、所定の機能を提供する際に内部で発生した熱を外部へ放熱する。電気装置100は、例えば、光海底ケーブル中継器である。電気装置100は、1つ以上の内部ユニット110と、1つ以上の熱伝導ユニット120と、装置筐体130とを含む。
 内部ユニット110は、所定の断面(図1におけるY-Z平面)外形を成す発熱体である。但し、各内部ユニット110の所定の断面と垂直な向き(図1におけるX方向)における外形は、互いに異なっていてもよい。内部ユニット110は、電気装置100によって提供される所定の機能を実現するために必要な部分的機能を提供する。そして、内部ユニット110は、部分的機能を提供する際に内部で発生した熱を外部へ放熱する。内部ユニット110は、信号ケーブル140(後述)に接続されていてもよい。所定の断面外形は、例えば、円形、楕円形、又は多角形である。図1に示した例では、所定の断面外形は円形であり、内部ユニット110は円板の外形形状を成す。
 熱伝導ユニット120は、内部ユニット110と同じ所定の断面外形を成す、熱の良導体である。但し、各熱伝導ユニット120の所定の断面と垂直な向きにおける外形は、互いに異なっていてもよい。熱伝導ユニット120は、隣接する内部ユニット110から伝導してきた熱を、装置筐体130又は隣接する熱伝導ユニット120へ放熱する。熱伝導ユニット120は、例えば、金属(銅、アルミニウム等)製、又は炭素(グラファイト、カーボンナノチューブ、ダイヤモンド等)製で、板状の外形形状(内部は空洞であってもよい)を成す。図1に示した例では、熱伝導ユニット120は円板の外形形状を成す。
 装置筐体130は、内部ユニット110又は熱伝導ユニット120(以下、単に「ユニット」とも総称する)を、所定の断面外形が互いに重なり合う向き(図1におけるX方向)に隣接した状態において、2つ以上格納可能である。ここで、装置筐体130は、隣接するユニット同士を熱的に接続する。装置筐体130は、例えば、隣接するユニット同士をX方向に重なって互いに接触するように格納することによって、隣接するユニット同士を熱的に接続してもよい。又、装置筐体130は、格納されたユニットと熱的に接続される。装置筐体130は、例えば、格納されたユニットが装置筐体130の内側面に接することによって、格納されたユニットと熱的に接続される。図1に示した例では、装置筐体130は、両底面を有する円筒形状を成す。そして、装置筐体130は、1つ以上の内部ユニット110と1つ以上の熱伝導ユニット120とを、外側面が装置筐体130の内側面に接した状態で格納する。装置筐体130は、例えば、熱伝導シート、金属製部材、炭素製部材、冷媒(フッ素系不活性液体等)等を介して、格納されたユニットと熱的に接続されてもよい。
 本実施形態における動作について説明する。
 内部ユニット110は熱伝導ユニット120と熱的に接続され、内部ユニット110及び熱伝導ユニット120は装置筐体130と熱的に接続される。その結果、内部ユニット110において発生した熱は、直接又は熱伝導ユニット120を経由して、装置筐体130へ伝導される。そして、装置筐体130は、装置筐体130へ伝導されてきた熱を、装置筐体130の外部へ放熱する。即ち、内部ユニット110を始点とし、直接又は熱伝導ユニット120を経由し、装置筐体130を経由し、電気装置100の外部(海水、外気等)を終点とする放熱経路が形成される。図1において、放熱経路の一例を太矢印で示す。ここで、電気装置100における放熱経路、図8に示した関連する海底設置機器における放熱経路に比べて、熱伝導ユニット120を経由する放熱経路が追加されている。
 図2は、本発明の第1の実施形態における電気装置の動作を示す斜視図である。
 図1に示した電気装置100に含まれる1つの内部ユニット110が、ユニットの設計変更の結果、図2に示すように内部ユニット111に置き換えられたこととする。内部ユニット111は、内部ユニット110と同じ所定の断面外形(図1及び図2ではY-Z平面における同じ半径の円形)を成す発熱体である。但し、内部ユニット111の外形寸法(例えば、図2におけるX方向の幅)は、内部ユニット110の外形寸法(例えば、図1におけるX方向の幅)から変化したこととする。又、内部ユニット111における発熱量は、内部ユニット110における発熱量から変化したこととする。
 同様に、図2に示すように、1つの内部ユニット110が内部ユニット111に置き換えられたことに伴い、1つの熱伝導ユニット120が熱伝導ユニット121に置き換えられることとする。熱伝導ユニット121は、熱伝導ユニット120と同じ(内部ユニット110と同じ)所定の断面外形を成す熱の良導体である。但し、熱伝導ユニット121の外形寸法(例えば、図2におけるX方向の幅)は、熱伝導ユニット120の外形寸法(例えば、図1におけるX方向の幅)から変化したこととする。但し、1つの内部ユニット111と1つの熱伝導ユニット121とを合わせた外形寸法(例えば、図2におけるX方向の幅及びY-Z平面における断面外形)が、1つの内部ユニット110と1つの熱伝導ユニット120とを合わせた外形寸法(例えば、図1におけるX方向の幅及びY-Z平面における断面外形)と同じになるように、熱伝導ユニット121の外形寸法が決定されることとする。ここで、熱伝導ユニット121の熱抵抗は、熱伝導ユニット120の熱抵抗から変えられてもよい。即ち、例えば、内部ユニット111の発熱量が内部ユニット110の発熱量より大きくなった場合、それに合わせて熱伝導ユニット121を熱伝導ユニット120より熱抵抗が低い(放熱性が良い)ものに置き換えてもよい。ここで、各熱伝導ユニット120、121、・・・は、構造又は材質等が互いに異なっていてよい。図2において、放熱経路の一例を太矢印で示す。図2では、内部ユニット111を始点とし、直接又は熱伝導ユニット121を経由し、装置筐体130を経由し、電気装置100の外部(海水、外気等)を終点とする放熱経路が形成されている。
(最悪ケースを想定した設計をする場合)
 電気装置100は、ユニットの設計変更の前後の両方において動作可能に設計されていてもよい。例えば、図1及び図2に示した例において、電気装置100は、1つの内部ユニット110と1つの熱伝導ユニット120との組が、1つの内部ユニット111と1つの熱伝導ユニット121との組に置き換えられても、機能的及び熱的に正常に動作可能に設計されていてもよい。本条件は、例えば、想定される設計変更の範囲内で、最悪ケース(最も発熱量が大きい内部ユニット110、・・・と、最も熱抵抗が大きい熱伝導ユニット120、・・・との組)において、内部ユニット110、・・・が所定以上の温度にならないように、熱伝導ユニット120、・・・の熱抵抗を設定することによって、実現される。
(内部ユニットにおける発熱量の増加を補償する熱伝導ユニットへ置き換える場合)
 1つの内部ユニット110の設計変更に伴い、1つの内部ユニット110がより発熱量の多い1つの内部ユニット111に置き換えられた場合に、熱伝導ユニット120を内部ユニット111における発熱量の増加に対応可能な分だけ熱抵抗が小さい熱伝導ユニット121(例えば、放熱能力の高い素材を用いる等)に置き換えてもよい。
 上述した2つの場合には、電気装置100において、1つの内部ユニット110の設計変更に伴い、熱伝導ユニット120を除く他の構成要素(装置筐体130、設計変更の必要がなかった内部ユニット110等)に対する設計変更及び製造は不要である。又、電気装置100を設置するための関連装置(電気装置100の敷設設備等)がある場合であっても、関連装置に対する設計変更及び製造は不要である。
 上述の説明では、1つの内部ユニット110と1つの熱伝導ユニット120とが、1つの内部ユニット111と1つの熱伝導ユニット121とに置き換えられる例について説明した。しかしながら、本実施形態におけるユニットの置き換えは、上述した例に限定されない。即ち、1つの内部ユニット110は、複数の内部ユニット111に置き換えられてもよい。又、1つの熱伝導ユニット120は、複数の熱伝導ユニット121に置き換えられてもよいし、電気装置100から除去されてもよい。又、複数の内部ユニット110は、1つの内部ユニット111に置き換えられてもよい。又、複数の熱伝導ユニット120は、1つの熱伝導ユニット121に置き換えられてもよいし、電気装置100から除去されてもよい。
 以上説明したように、本実施形態における電気装置100では、内部ユニット110、111、・・・、及び熱伝導ユニット120、121、・・・は、同じ所定の断面外形を成す。そして、内部ユニット110について発熱の変化を伴う設計変更が行われる。設計変更の結果、内部ユニット110は、内部ユニット111に置き換えられる。ここで、内部ユニット111と熱伝導ユニット121とを合わせた外形形状が、内部ユニット110と熱伝導ユニット120とを合わせた外形形状と同じになるように、熱伝導ユニット121の外形形状が決定される。即ち、内部ユニット110おける外形形状から内部ユニット111における外形形状への変化(例えば、図1及び2におけるX方向の幅の変化)は、熱伝導ユニット120における外形形状から熱伝導ユニット121における外形形状への変化(例えば、図1及び2におけるX方向の幅の変化)によって相殺される。一方、ユニットは設計変更の前後の両方において動作可能に設計されているか、又は、設計変更後に熱伝導ユニットは内部ユニットにおける発熱量の増加に対応可能である。即ち、電気装置100において、1つの内部ユニット110の設計変更に伴い、熱伝導ユニット120等を除く他の構成要素(装置筐体130、設計変更の必要がなかった内部ユニット110等)に対する設計変更及び製造は不要である。又、電気装置100を設置するための関連装置(電気装置100の敷設設備等)がある場合には、関連装置に対する設計変更及び製造は不要である。従って、本実施形態における電気装置100には、電気装置内に格納される内部ユニットにおける発熱の変化を伴う設計変更に対応するために必要な工数を抑制できるという効果がある。
 本実施形態における変形例について説明する。
 図3は、本発明の第1の実施形態における電気装置の構成の変形例を示す斜視図である。
 本変形例における電気装置102では、上述した本実施形態における一部の熱伝導ユニット120が熱伝導ユニット122に置き換えられている。又、装置筐体130に格納された、2つの内部ユニット110は、信号ケーブル140を介して互いに接続されている。
 熱伝導ユニット122は、信号ケーブル140を通すことが可能な溝穴部150を有する。溝穴部150は、X方向について信号ケーブル140を通すことが可能な、溝又は貫通孔である。図3に示した例では、溝穴部150は、熱伝導ユニット122の外周における所定の位置にX方向に形成された溝である。熱伝導ユニット122に形成された溝穴部150は、信号ケーブル140を介して互いに接続された2つの内部ユニット110間において、信号ケーブル140を通過させる。
 上記構成の結果、本変形例には、2つの内部ユニット110が信号ケーブル140を介して互いに接続されている場合に、電気装置内に格納される内部ユニットにおける発熱の変化を伴う設計変更への対応を容易にすることができるという効果がある。
(第2の実施形態)
 次に、本発明の第1の実施形態を基本とする、本発明の第2の実施形態について説明する。本実施形態における電気装置は、海底設置機器である。又、本実施形態では、電気装置の構成についてより詳細に説明する。
 本実施形態における構成について説明する。
 図4は、本発明の第2の実施形態における海底設置機器の構成の一例を示す断面図である。より具体的には、図4はX-Z平面における断面図を示す。
 本実施形態における海底設置機器105(電気装置)は、所定の機能を提供し、所定の機能を提供する際に内部で発生した熱を外部へ放熱する。海底設置機器105は、例えば、光海底ケーブル中継器である。海底設置機器105は、1つ以上の内部ユニット115、・・・と、1つ以上の熱伝導ユニット125、・・・と、装置筐体135とを含む。
 内部ユニット115、・・・は、所定の断面(図4におけるY-Z平面)外形を成す発熱体である。内部ユニット115、・・・は、例えば、レーザーダイオードを含む。但し、各内部ユニット115、・・・の所定の断面と垂直な向き(図4におけるX方向)における外形は、互いに異なっていてもよい。内部ユニット115、・・・は、海底設置機器105によって提供される所定の機能を実現するために必要な部分的機能を提供する。そして、内部ユニット115、・・・は、部分的機能を提供する際に内部で発生した熱を外部へ放熱する。内部ユニット115、・・・は、信号ケーブルに接続されていてもよい。所定の断面外形は、例えば、円形、楕円形、又は多角形である。各内部ユニット115、・・・は、発熱体165、166、・・・と、ヒートシンク175、176、・・・とを含む。
 発熱体165、166、・・・は、海底設置機器105における発熱体(発熱素子)である。発熱体165、166、・・・は、例えば、LDである。
 ヒートシンク175、176、・・・は、発熱体165、166、・・・において発生した熱を、装置筐体135外へ伝導する。ヒートシンク175、176、・・・は、例えば、金属製のブロックである。
 熱伝導ユニット125、・・・は、内部ユニット115、・・・と同じ所定の断面外形を成す、熱の良導体である。但し、各熱伝導ユニット125、・・・の所定の断面と垂直な向きにおける外形は、互いに異なっていてもよい。熱伝導ユニット125、・・・は、隣接する内部ユニット115、・・・から伝導してきた熱を、装置筐体135又は隣接する熱伝導ユニット125、・・・へ放熱する。熱伝導ユニット125、・・・は、例えば、金属(銅、アルミニウム等)製、又は炭素(グラファイト、カーボンナノチューブ、ダイヤモンド等)製で、板状の外形形状(内部は空洞であってもよい)を成す。
 装置筐体135は、内部ユニット115、・・・又は熱伝導ユニット125、・・・(以下、単に「ユニット」とも総称する)を、所定の断面外形が互いに重なり合う向き(図4におけるX方向)に隣接した状態において、2つ以上格納可能である。ここで、装置筐体135は、隣接するユニット同士を熱的に接続する。装置筐体135は、例えば、隣接するユニット同士をX方向に重なって互いに接触するように格納することによって、隣接するユニット同士を熱的に接続してもよい。又、装置筐体135は、格納されたユニットと熱的に接続される。装置筐体135は、例えば、格納されたユニットが装置筐体135の内側面に接することによって、格納されたユニットと熱的に接続される。図1に示した例では、装置筐体135は、両底面を有する、円筒形状又は角筒形状を成す。そして、装置筐体135は、1つ以上の内部ユニット115、・・・と1つ以上の熱伝導ユニット125、・・・とを、外側面が装置筐体135の内側面に接した状態で格納する。装置筐体135は、例えば、熱伝導シート、金属製部材、炭素製部材、冷媒(フッ素系不活性液体等)等を介して、格納されたユニットと熱的に接続されてもよい。
 本実施形態における他の構成は、第1の実施形態における構成と同じである。
 本実施形態における動作について説明する。
 内部ユニット115、・・・は熱伝導ユニット125、・・・と熱的に接続され、内部ユニット115、・・・及び熱伝導ユニット125、・・・は装置筐体135と熱的に接続される。その結果、内部ユニット115、・・・において発生した熱は、直接又は熱伝導ユニット125、・・・を経由して、装置筐体135へ伝導される。そして、装置筐体135は、装置筐体135へ伝導されてきた熱を、装置筐体135の外部へ放熱する。即ち、内部ユニット115、・・・を始点とし、直接又は熱伝導ユニット125、・・・を経由し、装置筐体135を経由し、海底設置機器105の外部(海水)を終点とする放熱経路が形成される。図4において、放熱経路の一例を太矢印で示す。ここで、海底設置機器105における放熱経路、図8に示した関連する海底設置機器における放熱経路に比べて、熱伝導ユニット125、・・・を経由する放熱経路が追加されている。
 図5は、本発明の第2の実施形態における海底設置機器の動作を示す断面図である。
 図4に示した海底設置機器105に含まれる内部ユニット115が、ユニットの設計変更の結果、図5に示すように内部ユニット119に置き換えられたこととする。内部ユニット119は、内部ユニット115と同じ所定の断面外形(図4及び図5ではY-Z平面における同じ形状)を成す発熱体である。但し、内部ユニット119の外形寸法(例えば、図5におけるX方向の幅)は、内部ユニット115の外形寸法(例えば、図4におけるX方向の幅)から変化したこととする。又、内部ユニット119における発熱量は、内部ユニット115における発熱量から変化したこととする。
 同様に、図5に示すように、内部ユニット115が内部ユニット119に置き換えられたことに伴い、熱伝導ユニット125が熱伝導ユニット129に置き換えられることとする。熱伝導ユニット129は、熱伝導ユニット125と同じ(内部ユニット115と同じ)所定の断面外形を成す熱の良導体である。但し、熱伝導ユニット129の外形寸法(例えば、図5におけるX方向の幅)は、熱伝導ユニット125の外形寸法(例えば、図4におけるX方向の幅)から変化したこととする。但し、内部ユニット119と熱伝導ユニット129とを合わせた外形寸法(例えば、図5におけるX方向の幅及びY-Z平面における断面外形)が、内部ユニット115と熱伝導ユニット125とを合わせた外形寸法(例えば、図4におけるX方向の幅及びY-Z平面における断面外形)と同じになるように、熱伝導ユニット129の外形寸法が決定されることとする。ここで、熱伝導ユニット129の熱抵抗は、熱伝導ユニット125の熱抵抗から変えられてもよい。即ち、例えば、内部ユニット119の発熱量が内部ユニット115の発熱量より大きくなった場合、それに合わせて熱伝導ユニット129を熱伝導ユニット125より熱抵抗が低い(放熱性が良い)ものに置き換えてもよい。ここで、各熱伝導ユニット125、・・・、129は、構造又は材質等が互いに異なっていてよい。図5において、放熱経路の一例を太矢印で示す。図5では、内部ユニット119を始点とし、直接又は熱伝導ユニット129を経由し、装置筐体135を経由し、海底設置機器105の外部(海水)を終点とする放熱経路が形成されている。
(最悪ケースを想定した設計をする場合)
 海底設置機器105は、ユニットの設計変更の前後の両方において動作可能に設計されていてもよい。例えば、図4及び図5に示した例において、海底設置機器105は、内部ユニット115、・・・と熱伝導ユニット125、・・・との組が、内部ユニット119と熱伝導ユニット129との組に置き換えられても、機能的及び熱的に正常に動作可能に設計されていてもよい。本条件は、例えば、想定される設計変更の範囲内で、最悪ケース(最も発熱量が大きい内部ユニット115、・・・と、最も熱抵抗が大きい熱伝導ユニット125、・・・との組)において、内部ユニット115、・・・が所定以上の温度にならないように、熱伝導ユニット125、・・・の熱抵抗を設定することによって、実現される。
(内部ユニットにおける発熱量の増加を補償する熱伝導ユニットへ置き換える場合)
 内部ユニット115の設計変更に伴い、内部ユニット115がより発熱量の多い内部ユニット119に置き換えられた場合に、熱伝導ユニット125を内部ユニット119における発熱量の増加に対応可能な分だけ熱抵抗が小さい熱伝導ユニット129(例えば、放熱能力の高い素材を用いる等)に置き換えてもよい。
 上述した2つの場合には、海底設置機器105において、1つの内部ユニット115の設計変更に伴い、熱伝導ユニット125を除く他の構成要素(装置筐体135、設計変更の必要がなかった内部ユニット116、・・・等)に対する設計変更及び製造は不要である。又、海底設置機器105を設置するための関連装置(海底設置機器105の敷設設備等)がある場合であっても、関連装置に対する設計変更及び製造は不要である。
 上述の説明では、内部ユニット115と熱伝導ユニット125とが、内部ユニット119と熱伝導ユニット129とに置き換えられる例について説明した。しかしながら、本実施形態におけるユニットの置き換えは、上述した例に限定されない。即ち、内部ユニット115は、複数の内部ユニット119、・・・に置き換えられてもよい。又、1つの熱伝導ユニット125、・・・は、複数の熱伝導ユニット129、・・・に置き換えられてもよいし、海底設置機器105から除去されてもよい。又、複数の内部ユニット115、・・・は、1つの内部ユニット119に置き換えられてもよい。又、複数の熱伝導ユニット125、・・・は、1つの熱伝導ユニット129に置き換えられてもよいし、海底設置機器105から除去されてもよい。
 本実施形態における他の動作は、第1の実施形態における動作と同じである。
 以上説明したように、本実施形態における海底設置機器105では、内部ユニット115、・・・、及び熱伝導ユニット125、・・・は、同じ所定の断面外形を成す。そして、内部ユニット115について発熱の変化を伴う設計変更が行われる。設計変更の結果、内部ユニット115は、内部ユニット119に置き換えられる。ここで、内部ユニット119と熱伝導ユニット129とを合わせた外形形状が、内部ユニット115と熱伝導ユニット125とを合わせた外形形状と同じになるように、熱伝導ユニット129の外形形状が決定される。即ち、内部ユニット115おける外形形状から内部ユニット119における外形形状への変化(例えば、図4及び5におけるX方向の幅の変化)は、熱伝導ユニット125における外形形状から熱伝導ユニット129における外形形状への変化(例えば、図4及び5におけるX方向の幅の変化)によって相殺される。一方、ユニットは設計変更の前後の両方において動作可能に設計されているか、又は、設計変更後に熱伝導ユニットは内部ユニットにおける発熱量の増加に対応可能である。即ち、海底設置機器105において、内部ユニット115の設計変更に伴い、熱伝導ユニット125等を除く他の構成要素(装置筐体135、設計変更の必要がなかった内部ユニット116、・・・等)に対する設計変更及び製造は不要である。又、海底設置機器105を設置するための関連装置(海底設置機器105の敷設設備等)がある場合には、関連装置に対する設計変更及び製造は不要である。従って、本実施形態における海底設置機器105には、電気装置内に格納される内部ユニットにおける発熱の変化を伴う設計変更に対応するために必要な工数を抑制できるという効果がある。
 本実施形態における変形例について説明する。
 図6は、本発明の第2の実施形態における海底設置機器の構成の変形例を示す断面図である。より具体的には、図6はX-Z平面における断面図を示す。
 本変形例における海底設置機器105では、上述した本実施形態における熱伝導ユニット125、・・・は、金属製又は炭素製の筐体である。筐体の空隙(領域180)には、冷媒が充填されている。冷媒は、例えば、フッ素系不活性液体である。
 上記構成の結果、本変形例には、熱伝導ユニット125、・・・が金属製又は炭素製の板である場合に比べて、熱伝導ユニット125、・・・を軽量且つ安価に実現できるという効果がある。特に、冷媒がフッ素系不活性液体である場合には、熱伝導ユニット125から冷媒が漏れたとしても、海底設置機器105に障害を与えないという効果がある。
 本実施形態における別の変形例について説明する。
 図7は、本発明の第2の実施形態における海底設置機器の構成の別の変形例を示す断面図である。より具体的には、図7はX-Z平面における断面図を示す。
 本変形例における海底設置機器105では、上述した本実施形態における装置筐体135の空隙(領域190)には、冷媒が充填されている。冷媒は、例えば、フッ素系不活性液体である。
 上記構成の結果、本変形例には、海底設置機器105における放熱性を更に高めることができるという効果がある。特に、冷媒がフッ素系不活性液体である場合には、内部ユニット115、・・・内へ冷媒が漏れたとしても、内部ユニット115、・・・に障害を与えないという効果がある。
 以上、本発明を、上述した各実施形態およびその変形例によって例示的に説明した。しかしながら、本発明の技術的範囲は、上述した各実施形態およびその変形例に記載した範囲に限定されない。当業者には、係る実施形態に対して多様な変更又は改良を加えることが可能であることは明らかである。そのような場合、係る変更又は改良を加えた新たな実施形態も、本発明の技術的範囲に含まれ得る。そしてこのことは、請求の範囲に記載した事項から明らかである。
 この出願は、2018年9月21日に出願された日本出願特願2018-177616を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
 所定の断面外形を成す発熱体である1つ以上の内部ユニットと、
 前記所定の断面外形を成す熱の良導体である1つ以上の熱伝導ユニットと、
  前記内部ユニット又は前記熱伝導ユニットを、前記所定の断面外形が互いに重なり合う向きで隣接した状態において、2つ以上格納可能であり、
  格納された前記内部ユニット又は格納された前記熱伝導ユニットと熱的に接続される
 装置筐体と
を備えた電気装置。
(付記2)
 元の前記内部ユニットの設計変更に伴い、該元の前記内部ユニットを別の前記内部ユニットに置き換えると共に、元の前記熱伝導ユニットを別の前記熱伝導ユニットに置き換える場合に、該別の前記内部ユニットと該別の前記熱伝導ユニットとを合わせた前記所定の断面外形に垂直な向きにおける幅が、該元の前記内部ユニットと該元の前記熱伝導ユニットとを合わせた前記所定の断面外形に垂直な向きにおける幅に等しい
付記1に記載の電気装置。
(付記3)
 想定される設計変更の範囲内で、最も発熱量が大きい前記1つ以上の内部ユニットと、最も熱抵抗が大きい前記1つ以上の熱伝導ユニットとの組において、前記1つ以上の内部ユニットが所定以上の温度にならないように前記1つ以上の熱伝導ユニットの熱抵抗が設定されている
付記1又は2に記載の電気装置。
(付記4)
 元の前記内部ユニットの設計変更に伴い、該元の前記内部ユニットをより発熱量の多い別の前記内部ユニットに置き換える場合に、該別の前記熱伝導ユニットが、該元の前記内部ユニットにおける発熱量の増加に対応可能な分だけ熱抵抗が小さい該別の前記熱伝導ユニットに置き換えられる
付記1又は2に記載の電気装置。
(付記5)
 前記装置筐体に格納された、ある前記内部ユニット及び別の前記内部ユニットは、信号ケーブルを介して互いに接続され、
 前記信号ケーブルを介して互いに接続された2つの前記内部ユニットの間において、前記装置筐体に格納された1つ以上の前記熱伝導ユニットは、該前記信号ケーブルを通すことが可能な溝穴部を有する
付記1乃至4の何れか1項に記載の電気装置。
(付記6)
 前記熱伝導ユニットは、金属製又は炭素製の板である
付記1乃至5の何れか1項に記載の電気装置。
(付記7)
 前記熱伝導ユニットは、第1の冷媒が充填された、金属製又は炭素製の筐体である
付記1乃至5の何れか1項に記載の電気装置。
(付記8)
 前記第1の冷媒は、フッ素系不活性液体である
付記7に記載の電気装置。
(付記9)
 前記装置筐体内に第2の冷媒が充填された
付記1乃至8の何れか1項に記載の電気装置。
(付記10)
 前記第2の冷媒は、フッ素系不活性液体である
付記9に記載の電気装置。
(付記11)
 少なくとも1つの前記内部ユニットは、レーザーダイオードを含む
付記1乃至10の何れか1項に記載の電気装置。
(付記12)
 前記電気装置は、海底に設置される光海底ケーブル中継器である
付記1乃至11の何れか1項に記載の電気装置。
 本発明は、電気装置において、効率的な放熱を実現する用途において利用できる。
 100、102 電気装置
 105 海底設置機器
 110、111、115、116、119 内部ユニット
 120、121、122、125、129 熱伝導ユニット
 130、135 装置筐体
 140 信号ケーブル
 150 溝穴部
 165、166、169 発熱体
 175、176、179 ヒートシンク
 180 領域
 190 領域
 200 海底設置機器
 211、212 内部ユニット
 230 装置筐体
 261、262 発熱体
 271、272 ヒートシンク

Claims (12)

  1.  所定の断面外形を成す発熱体である1つ以上の内部ユニットと、
     前記所定の断面外形を成す熱の良導体である1つ以上の熱伝導ユニットと、
      前記内部ユニット又は前記熱伝導ユニットを、前記所定の断面外形が互いに重なり合う向きで隣接した状態において、2つ以上格納可能であり、
      格納された前記内部ユニット又は格納された前記熱伝導ユニットと熱的に接続される
     装置筐体と
    を備えた電気装置。
  2.  元の前記内部ユニットの設計変更に伴い、該元の前記内部ユニットを別の前記内部ユニットに置き換えると共に、元の前記熱伝導ユニットを別の前記熱伝導ユニットに置き換える場合に、該別の前記内部ユニットと該別の前記熱伝導ユニットとを合わせた前記所定の断面外形に垂直な向きにおける幅が、該元の前記内部ユニットと該元の前記熱伝導ユニットとを合わせた前記所定の断面外形に垂直な向きにおける幅に等しい
    請求項1に記載の電気装置。
  3.  想定される設計変更の範囲内で、最も発熱量が大きい前記1つ以上の内部ユニットと、最も熱抵抗が大きい前記1つ以上の熱伝導ユニットとの組において、前記1つ以上の内部ユニットが所定以上の温度にならないように前記1つ以上の熱伝導ユニットの熱抵抗が設定されている
    請求項1又は2に記載の電気装置。
  4.  元の前記内部ユニットの設計変更に伴い、該元の前記内部ユニットをより発熱量の多い別の前記内部ユニットに置き換える場合に、該別の前記熱伝導ユニットが、該元の前記内部ユニットにおける発熱量の増加に対応可能な分だけ熱抵抗が小さい該別の前記熱伝導ユニットに置き換えられる
    請求項1又は2に記載の電気装置。
  5.  前記装置筐体に格納された、ある前記内部ユニット及び別の前記内部ユニットは、信号ケーブルを介して互いに接続され、
     前記信号ケーブルを介して互いに接続された2つの前記内部ユニットの間において、前記装置筐体に格納された1つ以上の前記熱伝導ユニットは、該前記信号ケーブルを通すことが可能な溝穴部を有する
    請求項1乃至4の何れか1項に記載の電気装置。
  6.  前記熱伝導ユニットは、金属製又は炭素製の板である
    請求項1乃至5の何れか1項に記載の電気装置。
  7.  前記熱伝導ユニットは、第1の冷媒が充填された、金属製又は炭素製の筐体である
    請求項1乃至5の何れか1項に記載の電気装置。
  8.  前記第1の冷媒は、フッ素系不活性液体である
    請求項7に記載の電気装置。
  9.  前記装置筐体内に第2の冷媒が充填された
    請求項1乃至8の何れか1項に記載の電気装置。
  10.  前記第2の冷媒は、フッ素系不活性液体である
    請求項9に記載の電気装置。
  11.  少なくとも1つの前記内部ユニットは、レーザーダイオードを含む
    請求項1乃至10の何れか1項に記載の電気装置。
  12.  前記電気装置は、海底に設置される光海底ケーブル中継器である
    請求項1乃至11の何れか1項に記載の電気装置。
PCT/JP2019/036488 2018-09-21 2019-09-18 電気装置 WO2020059734A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980061843.3A CN112740842A (zh) 2018-09-21 2019-09-18 电气装置
US17/277,202 US20210410322A1 (en) 2018-09-21 2019-09-18 Electric device
JP2020548536A JP7140199B2 (ja) 2018-09-21 2019-09-18 電気装置
EP19863175.6A EP3855874A4 (en) 2018-09-21 2019-09-18 ELECTRICAL DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-177616 2018-09-21
JP2018177616 2018-09-21

Publications (1)

Publication Number Publication Date
WO2020059734A1 true WO2020059734A1 (ja) 2020-03-26

Family

ID=69887214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036488 WO2020059734A1 (ja) 2018-09-21 2019-09-18 電気装置

Country Status (5)

Country Link
US (1) US20210410322A1 (ja)
EP (1) EP3855874A4 (ja)
JP (1) JP7140199B2 (ja)
CN (1) CN112740842A (ja)
WO (1) WO2020059734A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09218320A (ja) 1996-02-14 1997-08-19 Fujitsu Ltd 光海底中継器
JPH10246819A (ja) * 1997-03-05 1998-09-14 Nec Eng Ltd 海底中継器の放熱緩衝構造
JPH11289175A (ja) * 1998-03-31 1999-10-19 Nec Eng Ltd 海底機器のユニット実装構造
JP2001320824A (ja) * 2000-05-09 2001-11-16 Mitsubishi Electric Corp 光海底中継器
JP2001327061A (ja) 2000-05-12 2001-11-22 Mitsubishi Electric Corp 光回路収納用海底機材
JP2002291146A (ja) * 2001-03-28 2002-10-04 Mitsubishi Electric Corp 光海底中継器及び光海底中継器の組立方法
JP2018177616A (ja) 2017-04-20 2018-11-15 住友電気工業株式会社 炭化珪素エピタキシャル基板の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6151341A (en) * 1997-05-30 2000-11-21 Excel/Quantronix, Inc. Stackable integrated diode packaging
WO2003075483A1 (fr) * 2002-03-04 2003-09-12 Mitsubishi Denki Kabushiki Kaisha Repeteur sous-marin
US20050200943A1 (en) * 2004-03-12 2005-09-15 Devincentis David S. Thermal management of an optical amplifier module housed in a universal cable joint
CN101749979B (zh) * 2008-12-22 2012-11-21 富准精密工业(深圳)有限公司 散热鳍片、散热器及电子装置
EP2467005A1 (en) * 2010-12-20 2012-06-20 Vetco Gray Controls Limited Cooling component of an electronic unit
JP6651967B2 (ja) * 2016-04-19 2020-02-19 富士通株式会社 液冷サーバ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09218320A (ja) 1996-02-14 1997-08-19 Fujitsu Ltd 光海底中継器
JPH10246819A (ja) * 1997-03-05 1998-09-14 Nec Eng Ltd 海底中継器の放熱緩衝構造
JPH11289175A (ja) * 1998-03-31 1999-10-19 Nec Eng Ltd 海底機器のユニット実装構造
JP2001320824A (ja) * 2000-05-09 2001-11-16 Mitsubishi Electric Corp 光海底中継器
JP2001327061A (ja) 2000-05-12 2001-11-22 Mitsubishi Electric Corp 光回路収納用海底機材
JP2002291146A (ja) * 2001-03-28 2002-10-04 Mitsubishi Electric Corp 光海底中継器及び光海底中継器の組立方法
JP2018177616A (ja) 2017-04-20 2018-11-15 住友電気工業株式会社 炭化珪素エピタキシャル基板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3855874A4

Also Published As

Publication number Publication date
US20210410322A1 (en) 2021-12-30
CN112740842A (zh) 2021-04-30
JPWO2020059734A1 (ja) 2021-09-30
JP7140199B2 (ja) 2022-09-21
EP3855874A4 (en) 2021-11-03
EP3855874A1 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
EP2543923B1 (en) Illumination appliance
JP2017188601A (ja) 電子機器
US20140202666A1 (en) Thermal module
JP2019067911A (ja) 電子装置
JP2006286757A (ja) 電子機器の放熱構造
WO2020059734A1 (ja) 電気装置
CN107318236B (zh) 可携式电子产品以及用于可携式电子产品的散热式外壳结构
CN112262334B (zh) 光收发器
US9414527B2 (en) Thermal spreading for an externally pluggable electronic module
JP2015177066A (ja) 電子機器
JP2020120375A (ja) 車両用通信装置
JP7283041B2 (ja) 放熱部品及び電気装置
JP2010232391A (ja) 電気回路装置
JP2015173526A (ja) 太陽光発電用接続箱
JP5072522B2 (ja) 接続構造
JP6354469B2 (ja) 電源装置の冷却機構
JP2019220654A (ja) 熱電発電装置、及び冷却装置
JP2005300092A (ja) 冷蔵庫制御基板の収納装置
JP2019220291A (ja) 電池ユニット
WO2023221682A1 (zh) 一种电路板模组及通信设备
JP2010021387A (ja) ヒートシンク
WO2015121953A1 (ja) データ通信用電子機器
JP2021131683A (ja) プログラマブルロジックコントローラ、電子装置および接触面の選択方法
JP2023127615A (ja) 電子機器
JP2022002189A (ja) 電池モジュール及びバッテリシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548536

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019863175

Country of ref document: EP

Effective date: 20210421