WO2020057538A1 - 钢轨在线热处理平直度控制方法 - Google Patents

钢轨在线热处理平直度控制方法 Download PDF

Info

Publication number
WO2020057538A1
WO2020057538A1 PCT/CN2019/106399 CN2019106399W WO2020057538A1 WO 2020057538 A1 WO2020057538 A1 WO 2020057538A1 CN 2019106399 W CN2019106399 W CN 2019106399W WO 2020057538 A1 WO2020057538 A1 WO 2020057538A1
Authority
WO
WIPO (PCT)
Prior art keywords
rail
heat treatment
head
cooling
cooling medium
Prior art date
Application number
PCT/CN2019/106399
Other languages
English (en)
French (fr)
Inventor
周剑华
费俊杰
董茂松
苏尚飞
郑建国
刘芳鸣
徐志东
朱敏
王瑞敏
欧阳珉路
Original Assignee
武汉钢铁有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉钢铁有限公司 filed Critical 武汉钢铁有限公司
Priority to BR112021005147-3A priority Critical patent/BR112021005147B1/pt
Publication of WO2020057538A1 publication Critical patent/WO2020057538A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/04Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rails
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments

Definitions

  • the invention relates to the technical field of heat treatment of steel materials, in particular to a method for controlling the straightness of on-line heat treatment of steel rails.
  • Rail manufacturers at home and abroad basically use on-line heat treatment technology to improve the strength and hardness of the rail to increase the wear resistance and fatigue resistance of the rail.
  • the rail online heat treatment process can be divided into running type and fixed type.
  • On-line heat treatment of rails generally adopts walking type heat treatment.
  • Traveling type means that the hot rails after rolling pass through the cooling unit at an appropriate speed.
  • the cooling unit accelerates the cooling of the rail head by spraying cooling medium (water or mist or air) to achieve strengthening.
  • a certain cooling intensity is applied to the bottom of the rail to balance the bending of the rail head during accelerated cooling.
  • the cooling intensity distribution of the rail head and the bottom of the rail is unreasonable.
  • the cooling strength applied to the rail head is much greater than the cooling strength at the bottom of the rail, so it will cause a large bend.
  • the bending to the rail head does not specifically involve how the cooling strength of the rail bottom and the rail head is distributed, which can minimize the deformation caused by uneven cooling.
  • the application number is 96117733.0, which is a Chinese invention patent application file for a heat treatment method and device for producing high-strength rails by using rolling waste heat, and discloses a method that uses a combination of a mechanical restraint method and a rail bottom control cooling method to reduce The deflection along the length of the rail during the heat treatment process, the specific feature is that the cooling of the bottom of the rail is the cooling segment corresponding to the cooling section of the rail head, with separate electrical, water, and gas control; each cooling segment is directly opposite Dozens of nozzles are evenly distributed on one side of the bottom of the rail; the distance between the satin surface of the nozzle and the bottom of the rail is 10-100mm.
  • the invention provides a heat treatment equipment arrangement to control deformation caused by uneven cooling, but does not specifically relate to a specific control process method.
  • the application number is 98112070.9, which is a Chinese patent application for a method and a device for restraining deformation of a rail during heat treatment, and discloses a method and a device for restraining deformation of a rail during heat treatment.
  • the flatness control process is not mentioned. The disadvantage is that if the bending process is not controlled properly, it will cause excessive restraining force, which will easily cause surface defects of stuck steel or rails, and the rail will have a large amount of bending during the air cooling process, which is not conducive to subsequent flatness and residual stress control at the bottom of the rail.
  • the application number is 200610021821.9, which is a Chinese patent application for rail heat treatment methods and rail heat treatment units. It discloses a method for deformation control during rail heat treatment. Before the hot rails enter the heat treatment unit, the rails are processed by a heat straightener. Straightening; followed by two heat treatments, after the second heat treatment, the rail head and rail bottom temperature are equal.
  • the disadvantage is that the temperature of the rail head and the rail bottom is the same after the rail out heat treatment unit.
  • the rail bottom is cooled to room temperature first, and the rail head is cooled later, which will cause a larger bend to the rail Bend of the head.
  • the application number is 85109735
  • the Chinese invention patent application for the method and equipment for rail heat treatment discloses a heat treatment deformation control method by spraying a gas cooling medium to the bottom surface of the rail to reduce the flexibility of the rail along the length method. song.
  • the ratio of the total area of the nozzles in the lower cooling device of the rail to the total area of the nozzles in the cooling device of the rail head is between 1/2 and 1/5.
  • no specific cooling strength and cooling time allocation are given, and the temperature distribution of the rail head and the bottom of the rail after heat treatment is required, resulting in poor actual deflection control.
  • an object of the present invention is to provide a method for controlling the straightness of a rail on-line heat treatment, which can better control the straightness of the rail.
  • the method for controlling the straightness of the on-line heat treatment of the rail designed by the present invention includes the steps:
  • the rails After the rails are rolled, they are transported to the bending machine through a conveying roller table, and the bending of the hot rails to the bottom of the rail is controlled by the bending machine by 0.4 ⁇ 1.0mm / 1.5m;
  • the accelerated cooling during the heat treatment is divided into two stages.
  • the first stage of the accelerated cooling time is 60 to 100 seconds, which is applied to the rail head.
  • the ratio of the flow rate of the cooling medium to the bottom of the rail is 4 to 7: 1; the accelerated cooling in the second stage starts immediately after the accelerated cooling in the first stage, and the accelerated cooling time in the second stage is 25 to 50 seconds, which is applied to the rail head and
  • the ratio of the flow rate of the cooling medium at the bottom of the rail is 1: 3 to 6; the temperature of the rail head at the end of the heat treatment is 60 to 120 ° C lower than the temperature at the bottom of the rail.
  • the method for controlling the straightness of the on-line heat treatment of the rail of the present invention first controls the hot state of the rail to have a bend of 0.4 to 1.0 mm / 1.5 m to the bottom of the rail before the heat treatment. This is because during the heat treatment of the rail, To ensure the performance of the rail head, the cooling medium flow applied to the rail head is much larger than the bottom of the rail, so there will be a large bend to the rail head, and the hot steel rail maintains a certain degree of bending to the bottom of the rail for heat treatment.
  • the temperature of the rail head at the end of the heat treatment is controlled to be 60-120 ° C lower than the temperature of the rail bottom through the reasonable distribution of the two-stage accelerated cooling time and the cooling medium flow rate. Since the rail needs to be air-cooled after the heat treatment is completed, the rail generally bends to the slower cooling end during the air-cooling process, and the rail bottom cools faster during the air-cooling process. Therefore, after the heat treatment is finished, the temperature of the rail head is controlled to be lower than the temperature of the rail bottom by 60 to 120 ° C, and the temperature difference between the rail bottom and the rail head is minimized during air cooling, thereby ensuring flatness.
  • step 1) the hot steel rail is controlled by a bending machine to have a bending degree of 0.4 to 0.6 mm / 1.5 m bent toward the bottom of the rail.
  • the first stage accelerated cooling time in step 2) is 60 to 65 seconds, and the ratio of the flow rate of the cooling medium applied to the rail head and the bottom of the rail is 4.75 to 7: 1; the second stage accelerated cooling time is 35 For 50 seconds, the ratio of the flow rate of the cooling medium applied to the rail head and the bottom of the rail is 1: 3 to 5; after the heat treatment is completed, the temperature of the rail head is 60 to 65 ° C lower than the temperature of the bottom of the rail.
  • the flow rate of the cooling medium applied to the rail head is 3200 to 5600 m 3 / m, and the flow rate of the cooling medium applied to the bottom of the rail is 800 m 3 / m; the second stage accelerates the cooling process.
  • the flow rate of the cooling medium applied to the rail head is 120 to 200 m 3 / m, and the flow rate of the cooling medium applied to the rail bottom is 600 to 900 m 3 / m.
  • the cooling medium is compressed air or aerosol.
  • the advantage of the present invention is that the present invention provides a method for controlling the straightness of the on-line heat treatment of the rail.
  • the flow of the bottom cooling medium further controls the temperature of the rail head to be 60 to 120 ° C lower than the temperature of the bottom of the rail, thereby reducing the temperature difference between the bottom of the rail and the head during the air cooling process.
  • the flatness of the rail obtained by the method for controlling the straightness of the on-line heat treatment of the rail of the present invention is 0.9 to 1.2 mm / 1.5 m.
  • the present invention provides a rail straightness control method for online heat treatment.
  • the rail is controlled to maintain a certain bending direction before the rail enters the online heat treatment.
  • the curvature of the rail bottom is controlled by the flow rate of the cooling medium of the rail head and the bottom of the rail during the on-line heat treatment, thereby controlling the temperature of the rail head to be 60 to 120 ° C lower than the temperature of the rail bottom.
  • the 60kg / m U75V rail After the 60kg / m U75V rail is rolled, it is transported to the bending machine through a conveying roller table, and the hot state rail is controlled by the bending machine to have a curvature of 0.8mm / 1.5m to the bottom of the rail.
  • Rails with a curvature of 0.8mm / 1.5m to the bottom of the rail enter the heat treatment unit.
  • a cooling medium of 3600m 3 / m is applied to the rail head, and a cooling medium of 800m 3 / m is applied to the bottom of the rail.
  • the flow ratio between the rail head and the rail bottom is controlled at 4.5: 1.
  • 200m 3 / m is applied to the rail head and 800m 3 / m cooling medium is applied to the bottom of the rail.
  • the flow rate ratio between the head and bottom is controlled at 1: 4.
  • the surface temperature of the rail head is lower than the surface temperature of the rail bottom by 80 ° C. After being naturally cooled to room temperature, the rail straightness is measured to reach 1.1mm / 1.5m.
  • the 60kg / m U71Mn steel rail is rolled and conveyed to the bending machine through a conveying roller table, and the hot state rail is controlled by the bending machine to have a bending degree of 0.7mm / 1.5m to the bottom of the rail.
  • Rails with a bend of 0.7mm / 1.5m to the bottom of the rail enter the heat treatment unit.
  • a 4000m 3 / m cooling medium is applied to the rail head and 800m 3 / m cooling medium is applied to the bottom of the rail.
  • the flow ratio between the rail head and the rail bottom is controlled at 5: 1.
  • 150m 3 / m is applied to the rail head and 900m 3 / m cooling medium is applied to the bottom of the rail.
  • the flow rate ratio between the head and bottom is controlled at 1: 6.
  • the surface temperature of the rail head is lower than the surface temperature of the rail bottom by 80 ° C. After being naturally cooled to room temperature, the rail straightness is measured to reach 1.2mm / 1.5m.
  • the 50kg / m U71Mn steel rail is rolled and conveyed to the bending machine through a conveying roller table, and the hot state rail is controlled by the bending machine to have a bending degree of 0.6mm / 1.5m to the bottom of the rail.
  • the rail with a curvature of 0.6mm / 1.5m bent to the bottom of the rail enters the heat treatment unit.
  • a cooling medium of 3800m 3 / m is applied to the rail head, and a cooling medium of 800m 3 / m is applied to the bottom of the rail.
  • the flow ratio between the rail head and the rail bottom is controlled at 4.75: 1.
  • 120m 3 / m is applied to the rail head, and 600m 3 / m cooling medium is applied to the bottom of the rail.
  • the flow ratio between the head and the bottom is controlled at 1: 5.
  • the surface temperature of the rail head is 60 ° C lower than the surface temperature of the bottom of the rail. After being naturally cooled to room temperature, the rail straightness is measured to reach 1.0mm / 1.5m.
  • Rails with a curvature of 0.4mm / 1.5m to the bottom of the rail enter the heat treatment unit.
  • a cooling medium of 5600m 3 / m is applied to the rail head and a cooling medium of 800m 3 / m is applied to the bottom of the rail.
  • the cooling medium flow ratio of the rail head and the bottom of the rail is controlled within 7: 1; within 61 ⁇ 110s, 200m 3 / m is applied to the rail head and the cooling medium is 600m 3 / m at the bottom of the rail. Controlled at 1: 3.
  • the surface temperature of the rail head is 65 ° C lower than the surface temperature of the bottom of the rail.
  • the rail straightness is measured to reach 0.9mm / 1.5m.
  • the 60kg / m U75V rail is rolled to a bending machine through a conveying roller after rolling, and the hot state rail is controlled by the bending machine to have a bending degree of 1.0mm / 1.5m to the bottom of the rail.
  • the steel rail with a curvature of 1.0mm / 1.5m bent to the bottom of the rail enters the heat treatment unit.
  • a cooling medium of 3200m 3 / m is applied to the rail head and 800m 3 / m of cooling medium is applied to the bottom of the rail.
  • the cooling medium flow ratio of the rail head and the bottom of the rail is controlled within 4: 1; within 101 ⁇ 140s, 120m 3 / m is applied to the rail head and the cooling medium is 720m 3 / m at the bottom of the rail. Controlled at 1: 6.
  • the surface temperature of the rail head is lower than the surface temperature of the rail bottom by 120 ° C. After being naturally cooled to room temperature, the rail straightness is measured to reach 1.0mm / 1.5m.
  • the rails are not subjected to rail bending treatment before the on-line heat treatment, and the surface temperature of the rail head after the heat treatment is 150-220 ° C lower than the surface temperature of the rail bottom.
  • the straightness of the rail especially the bend at the end 2 to 3 m (curved towards the bottom of the rail), reaches 3 to 5 mm / 1.5 m, which seriously affects the subsequent flatness and residual stress at the bottom of the rail. control.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

一种钢轨在线热处理平直度控制方法,该方法包括步骤:1)弯曲处理:钢轨轧制后通过弯曲机控制热态钢轨具有0.4~1.0mm/1.5m弯向轨底的弯曲度;2)热处理:钢轨热处理过程中的加速冷却分为两个阶段,第一阶段加速冷却时间为60~100秒,施加在钢轨轨头和轨底的冷却介质的流量之比为4~7∶1;第二阶段加速冷却时间为25~50秒,施加在钢轨轨头和轨底的冷却介质的流量之比为1∶3~6;热处理结束后钢轨轨头的温度比轨底温度低60~120℃。通过该钢轨在线热处理平直度控制方法得到的钢轨的平直度为0.9~1.2mm/1.5m。

Description

钢轨在线热处理平直度控制方法 技术领域
本发明涉及钢材热处理技术领域,尤其涉及一种钢轨在线热处理平直度控制方法。
背景技术
国内外钢轨生产厂家基本都采用在线热处理技术来提高钢轨强度和硬度,以增加钢轨的耐磨性能和抗疲劳性能。钢轨在线热处理工艺可分为走行式和固定式。钢轨在线热处理一般采用走行式热处理方式,走行式是指轧后热态钢轨按适当的速度通过冷却机组,冷却机组通过喷射冷却介质(水或雾或空气)对钢轨轨头进行加速冷却,达到强化的目的,同时在轨底施加一定的冷却强度,以平衡对轨头进行加速冷却时的弯曲,对钢轨轨头进行加速冷却过程中,钢轨轨头和轨底部位的冷却强度分配不合理,会向轨头产生较大弯曲,行进中的钢轨会对热处理设备造成破坏,同时钢轨也会被卡在热处理机组中造成生产事故。而且,如果热处理后钢轨轨头和轨底的温差分布不合理,从热处理结束后自然冷却到室温过程,钢轨也会产生较大的弯向轨头或弯向轨底的弯曲,从而影响后续的矫直工艺,造成平直度、轨底残余应力超标。
为解决热处理过程中钢轨易弯曲的问题,如2000年北京科技大学硕士论文《钢轨在线热处理技术开发-钢轨变形控制研究》中记载一种钢轨在线热处理变形控制方法,包括:(1)通过热矫直机对热态钢轨进行矫直,保证钢轨平直进入在线热处理机组;(2)在满足钢轨热处理工艺的基础上,充分利用调整钢轨轨底的冷却能力,最大限度地降低钢轨因冷却不均而引起的变形。(3)增设机械约束、速度控制机构,保证钢轨在热处理机组中按规定的轨迹运行。其缺点是热态钢轨以平直状态进入热处理机组,为了保证热处理后轨头性能达到标准要求,施加在轨头部位的冷却强度比轨底的冷却强度大很多,因此会产生很大的弯向轨头的弯曲,同时没有具体涉及轨底和轨头的冷却强度如何分配,可以最大限度的降低因冷却不均而引起的变形。
又如申请号为96117733.0,名称为利用轧制余热生产高强度钢轨的热处理方法及其装置的中国发明专利申请文件,公开了一种采用机械约束法和轨底控制冷却法相结合的方式,减少在钢轨热处理过程中沿长度方向的挠曲,具体特征是对钢轨底部的冷却是与 钢轨头部的冷却段相对应的冷却段,有单独的电、水、气路控制;每个冷却段正对钢轨底部的一侧均匀分布有数十个喷嘴;喷嘴缎面和钢轨底部的间距为10-100mm。该发明提供了一种热处理设备布置来控制不均冷却引起的变形,但未具体涉及具体控制工艺方法。
又如申请号为98112070.9,名称为约束钢轨热处理时变形的方法和装置的中国发明专利申请文件,公开了一种钢轨热处理时变形的约束方法和装置,但未提及平直度控制工艺,其缺点是如果弯曲工艺控制不当,会造成约束力过大,容易产生卡钢或钢轨表面缺陷,而且热处理后钢轨空冷却过程弯曲量大,对后续平直度和轨底残余应力控制不利。
又如申请号为200610021821.9,名称为钢轨热处理方法及钢轨热处理机组的中国发明专利申请文件,公开了一种钢轨热处理时变形控制方法,热态钢轨进入热处理机组之前,用热矫直机将钢轨进行矫直;之后进行两次热处理,第二次热处理后,钢轨轨头与轨底温度相当。其缺点是钢轨出热处理机组后轨头和轨底温度相当,自然冷却过程中,由于轨底金属量比轨头少,轨底先冷却至室温,轨头后冷,会产生较大弯向轨头的弯曲。
又如申请号为85109735,名称为钢轨热处理的方法和设备的中国发明专利申请文件,公开了一种热处理变形控制方法,是将气体冷却介质喷向钢轨底面,以减小钢轨沿长度方法的挠曲。钢轨的下冷却装置中喷嘴的总面积与钢轨头部冷却装置中喷嘴总面积之比在1/2和1/5之间。但未给出具体冷却强度和冷却时间分配,同时热处理后钢轨轨头和轨底温度分布做要求,造成实际挠曲控制不佳。
综上所述,国内外的钢轨热处理工艺中钢轨容易发生弯曲,因此,亟需一种在线热处理钢轨过程中有效控制钢轨平直度的方法。
发明内容
为解决以上问题,本发明的目的是提供一种能较好控制钢轨平直度的钢轨在线热处理平直度控制方法。
为实现上述目的,本发明所设计的钢轨在线热处理平直度控制方法包括步骤:
1)弯曲处理
钢轨轧制后通过传送辊道输送至弯曲机,通过弯曲机控制热态钢轨具有0.4~1.0mm/1.5m弯向轨底的弯曲度;
2)热处理
具有0.4~1.0mm/1.5m弯向轨底的弯曲度的钢轨进入热处理机组,热处理过程中的加速冷却分为两个阶段,第一阶段加速冷却时间为60~100秒,施加在钢轨轨头和轨底的冷却介质的流量之比为4~7:1;第一阶段加速冷却后立即开始第二阶段的加速冷却,第二阶段加速冷却时间为25~50秒,施加在钢轨轨头和轨底的冷却介质的流量之比为1:3~6;热处理结束后钢轨轨头的温度比轨底温度低60~120℃。
与现有技术相比,本发明的钢轨在线热处理平直度控制方法首先在热处理前控制热态钢轨具有0.4~1.0mm/1.5m弯向轨底的弯曲度,这是因为钢轨热处理中,为了保证轨头部位的性能,施加在轨头部位的冷却介质流量比轨底大很多,因此会产生很大弯向轨头的弯曲,热态钢轨保持一定弯向轨底的弯曲度进行热处理,可达到平衡钢轨轨头冷却强度比轨底大而引起的弯向轨头方向的弯曲,保证热处理过程钢轨基本保持平直状态,进一步可以减小钢轨与热处理机组的限位装置、约束装置等辅助设备的接触,避免钢轨产生刮伤、压痕等表面缺陷。
其次,通过两个阶段加速冷却时间和冷却介质流量的合理分配,控制热处理结束后钢轨轨头的温度比轨底温度低60~120℃。由于热处理结束后钢轨需要进行空冷工序,钢轨在空冷过程中一般弯向了冷却慢一端,而且空冷过程中轨底冷却的快。因此本发明在热处理结束后控制钢轨轨头的温度比轨底温度低60~120℃,保持轨底与轨头在空冷过程中温度差达到最小进而保证平直度。
作为优选方案,步骤1)中通过弯曲机控制热态钢轨具有0.4~0.6mm/1.5m弯向轨底的弯曲度。
作为优选方案,步骤2)中第一阶段加速冷却时间为60~65秒,施加在钢轨轨头和轨底的冷却介质的流量之比为4.75~7:1;第二阶段加速冷却时间为35~50秒,施加在钢轨轨头和轨底的冷却介质的流量之比为1:3~5;热处理结束后钢轨轨头的温度比轨底温度低60~65℃。
作为优选方案,第一阶段加速冷却过程中,施加在钢轨轨头冷却介质的流量为3200~5600m 3/m,施加在钢轨轨底冷却介质的流量为800m 3/m;第二阶段加速冷却过程中,施加在钢轨轨头冷却介质的流量为120~200m 3/m,施加在钢轨轨底冷却介质的流量为600~900m 3/m。
作为优选方案,冷却介质为压缩空气或气雾。
本发明的优点在于:本发明提供一种钢轨在线热处理平直度控制方法,首先通过控制钢轨进入在线热处理前保持一定弯向轨底的弯曲度,其次在线热处理过程中通过控制钢轨轨头和轨底冷却介质流量进而控制钢轨轨头的温度比轨底温度低60~120℃,减小空冷过程轨底与轨头在空冷过程中温度差。通过本发明钢轨在线热处理平直度控制方法得到的钢轨的平直度为0.9~1.2mm/1.5m。
具体实施方式
为更好地理解本发明,以下将结合具体实例对发明进行详细的说明。
为解决现有钢轨在线热处理方法技术中存在钢轨平直度控制不佳的问题,本发明提供一种钢轨在线热处理平直度控制方法,具体地说,钢轨进入在线热处理前控制钢轨保持一定弯向轨底的弯曲度,在线热处理过程中通过控制钢轨轨头和轨底冷却介质流量进而控制钢轨轨头的温度比轨底温度低60~120℃。以下将通过具体的实施例来对本发明的钢轨在线热处理方法的优选方式进行详细地说明。
实施例1
60kg/m U75V钢轨在线热处理平直度控制方法,具体过程为,
1)弯曲处理
60kg/m U75V钢轨轧制后通过传送辊道输送至弯曲机,通过弯曲机控制热态钢轨具有0.8mm/1.5m弯向轨底的弯曲度。
2)热处理
具有0.8mm/1.5m弯向轨底的弯曲度的钢轨进入热处理机组,在加速冷却的前85s内,在钢轨轨头施加3600m 3/m的冷却介质,轨底施加800m 3/m冷却介质,轨头和轨底的流量比控制在4.5:1。在加速冷却的86s~115s内,向钢轨轨头施加200m 3/m,钢轨轨底施加800m 3/m冷却介质,轨头和轨底流量比控制在1:4。钢轨出热处理机组后,轨头表面温度比轨底表面温度低80℃,自然冷却到室温后,通过测量钢轨平直度达到1.1mm/1.5m。
实施例2
60kg/m U71Mn钢轨在线热处理平直度控制方法,包括步骤:
1)弯曲处理
60kg/m U71Mn钢轨轧制后通过传送辊道输送至弯曲机,通过弯曲机控制热态钢轨具有0.7mm/1.5m弯向轨底的弯曲度。
2)热处理
具有0.7mm/1.5m弯向轨底的弯曲度的钢轨进入热处理机组,在加速冷却的前80s内,在钢轨轨头施加4000m 3/m的冷却介质,轨底施加800m 3/m冷却介质,轨头和轨底的流量比控制在5:1。在加速冷却的81s~105s内,向钢轨轨头施加150m 3/m,钢轨轨底施加900m 3/m冷却介质,轨头和轨底流量比控制在1:6。钢轨出热处理机组后,轨头表面温度比轨底表面温度低80℃,自然冷却到室温后,通过测量钢轨平直度达到1.2mm/1.5m。
实施例3
50kg/m U71Mn钢轨在线热处理平直度控制方法,包括步骤:
1)弯曲处理
50kg/m U71Mn钢轨轧制后通过传送辊道输送至弯曲机,通过弯曲机控制热态钢轨具有0.6mm/1.5m弯向轨底的弯曲度。
2)热处理
具有0.6mm/1.5m弯向轨底的弯曲度的钢轨进入热处理机组,在加速冷却的前65s内,在钢轨轨头施加3800m 3/m的冷却介质,轨底施加800m 3/m冷却介质,轨头和轨底的流量比控制在4.75:1。在加速冷却的66s~100s内,向钢轨轨头施加120m 3/m,钢轨轨底施加600m 3/m冷却介质,轨头和轨底流量比控制在1:5。钢轨出热处理机组后,轨头表面温度比轨底表面温度低60℃,自然冷却到室温后,通过测量钢轨平直度达到1.0mm/1.5m。
实施例4
75kg/m U75V钢轨在线热处理平直度控制方法,包括步骤:
1)弯曲处理
75kg/m U75V钢轨轧制后通过传送辊道输送至弯曲机,通过弯曲机控制热态钢轨具有0.4mm/1.5m弯向轨底的弯曲度。
2)热处理
具有0.4mm/1.5m弯向轨底的弯曲度的钢轨进入热处理机组,在在加速冷却的前60s内,在钢轨轨头施加5600m 3/m的冷却介质,轨底施加800m 3/m冷却介质,轨头和轨底的冷却介质流量比控制在7:1;61~110s内,向钢轨轨头施加200m 3/m,钢轨轨底施加600m 3/m冷却介质,轨头和轨底流量比控制在1:3。钢轨出热处理机组后,轨头表面温度比轨底表面温度低65℃,自然冷却到室温后,通过测量钢轨平直度达到0.9mm/1.5m。
实施例5
60kg/m U75V钢轨在线热处理平直度控制方法,具体过程为,
1)弯曲处理
60kg/m U75V钢轨轧制后通过传送辊道输送至弯曲机,通过弯曲机控制热态钢轨具有1.0mm/1.5m弯向轨底的弯曲度。
2)热处理
具有1.0mm/1.5m弯向轨底的弯曲度的钢轨进入热处理机组,在在加速冷却的前100s内,在钢轨轨头施加3200m 3/m的冷却介质,轨底施加800m 3/m冷却介质,轨头和轨底的冷却介质流量比控制在4:1;101~140s内,向钢轨轨头施加120m 3/m,钢轨轨底施加720m 3/m冷却介质,轨头和轨底流量比控制在1:6。钢轨出热处理机组后,轨头表面温度比轨底表面温度低120℃,自然冷却到室温后,通过测量钢轨平直度达到1.0mm/1.5m。
对比例
目前钢轨在线热处理前不作钢轨弯曲处理,而且热处理结束后钢轨轨头表面温度比轨底表面温度低150~220℃。自然冷却到室温后,钢轨平直度尤其是端部2~3m处的下弯(弯向轨底)的弯曲度达到3~5mm/1.5m,严重影响后续平直度和轨底残余应力的控制。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (5)

  1. 一种钢轨在线热处理平直度控制方法,包括步骤:
    1)弯曲处理
    钢轨轧制后通过传送辊道输送至弯曲机,通过弯曲机控制热态钢轨具有0.4~1.0mm/1.5m弯向轨底的弯曲度;
    2)热处理
    具有0.4~1.0mm/1.5m弯向轨底的弯曲度的钢轨进入热处理机组,热处理过程中的加速冷却分为两个阶段,第一阶段加速冷却时间为60~100秒,施加在钢轨轨头和轨底的冷却介质的流量之比为4~7:1;第二阶段加速冷却时间为25~50秒,施加在钢轨轨头和轨底的冷却介质的流量之比为1:3~6;热处理结束后钢轨轨头的温度比轨底温度低60~120℃。
  2. 根据权利要求1所述的钢轨在线热处理平直度控制方法,其特征在于,所述步骤1)中通过弯曲机控制热态钢轨具有0.4~0.6mm/1.5m弯向轨底的弯曲度。
  3. 根据权利要求1所述的钢轨在线热处理平直度控制方法,其特征在于,所述步骤2)中第一阶段加速冷却时间为60~65秒,施加在钢轨轨头和轨底的冷却介质的流量之比为4.75~7:1;第二阶段加速冷却时间为35~50秒,施加在钢轨轨头和轨底的冷却介质的流量之比为1:3~5;热处理结束后钢轨轨头的温度比轨底温度低60~65℃。
  4. 根据权利要求1所述的钢轨在线热处理平直度控制方法,其特征在于,所述第一阶段加速冷却过程中,施加在钢轨轨头冷却介质的流量为3200~5600m 3/m,施加在钢轨轨底冷却介质的流量为800m 3/m;第二阶段加速冷却过程中,施加在钢轨轨头冷却介质的流量为120~200m 3/m,施加在钢轨轨底冷却介质的流量为600~900m 3/m。
  5. 根据权利要求1所述的钢轨在线热处理平直度控制方法,其特征在于,所述冷却介质为压缩空气或气雾。
PCT/CN2019/106399 2018-09-19 2019-09-18 钢轨在线热处理平直度控制方法 WO2020057538A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR112021005147-3A BR112021005147B1 (pt) 2018-09-19 2019-09-18 Método de controle de planeza em tratamento térmico em linha de trilho de aço

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811093074.9 2018-09-19
CN201811093074.9A CN109182715B (zh) 2018-09-19 2018-09-19 钢轨在线热处理平直度控制方法

Publications (1)

Publication Number Publication Date
WO2020057538A1 true WO2020057538A1 (zh) 2020-03-26

Family

ID=64908402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106399 WO2020057538A1 (zh) 2018-09-19 2019-09-18 钢轨在线热处理平直度控制方法

Country Status (2)

Country Link
CN (1) CN109182715B (zh)
WO (1) WO2020057538A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109182715B (zh) * 2018-09-19 2020-04-07 武汉钢铁有限公司 钢轨在线热处理平直度控制方法
CN110358904B (zh) * 2019-05-30 2020-11-03 邯郸钢铁集团有限责任公司 钢轨在线热处理后轨形的控制方法
CN111635987B (zh) * 2020-05-18 2022-02-01 武汉钢铁有限公司 一种提高f型轨全断面残余应力均匀性的生产方法
CN111621631B (zh) * 2020-05-29 2022-03-15 武汉钢铁有限公司 钢轨高效热处理生产方法及由该方法制得的钢轨
CN112877531B (zh) * 2021-01-12 2023-01-24 包头钢铁(集团)有限责任公司 一种提高在线热处理钢轨淬火后平直度的生产控制方法
CN115369229A (zh) * 2022-09-13 2022-11-22 包头钢铁(集团)有限责任公司 一种提高在线热处理道岔钢轨淬火后平直度的生产控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4201602A (en) * 1977-07-07 1980-05-06 Canron Corporation Rail hardening machine and method
SU800215A1 (ru) * 1975-09-03 1981-01-30 Украинский Ордена Трудового Крас-Ного Знамени Научно-Исследова-Тельский Институт Металлов Способ термической обработкиРЕльСОВ
CN1034583A (zh) * 1988-01-26 1989-08-09 冶金工业部攀枝花钢铁公司 生产高强度钢轨的热处理方法和装置
CN1102216A (zh) * 1993-10-26 1995-05-03 冶金工业部重庆钢铁设计研究院 道岔尖轨热处理方法
CN101148736A (zh) * 2007-11-14 2008-03-26 攀枝花钢铁(集团)公司 钢轨及其生产方法
CN102059528A (zh) * 2009-11-17 2011-05-18 攀钢集团攀枝花钢铁研究院有限公司 一种钢轨的制造方法
CN102284503A (zh) * 2011-04-28 2011-12-21 内蒙古科技大学 百米重轨残余应力控制方法
WO2013118242A1 (ja) * 2012-02-06 2013-08-15 Jfeスチール株式会社 レールの拘束方法およびレールの拘束装置
CN103551437A (zh) * 2013-10-31 2014-02-05 武汉钢铁(集团)公司 一种微应力百米高速重轨生产方法
CN109182715A (zh) * 2018-09-19 2019-01-11 武汉钢铁有限公司 钢轨在线热处理平直度控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1193176A (en) * 1982-07-06 1985-09-10 Robert J. Ackert Method for the production of improved railway rails by accelerated colling in line with the production rolling mill
EP0186373B1 (en) * 1984-12-24 1990-09-12 Nippon Steel Corporation Method of and apparatus for heat treating rails
JPS63114923A (ja) * 1986-11-04 1988-05-19 Nippon Steel Corp 高温レ−ルの無変形冷却法
CN1081237C (zh) * 1998-06-13 2002-03-20 攀枝花钢铁(集团)公司钢铁研究院 约束钢轨热处理时变形的方法和装置
RU2484148C1 (ru) * 2011-10-27 2013-06-10 Общество С Ограниченной Ответственностью Научно-Производственное Предприятие "Томская Электронная Компания" Способ и установка термической обработки рельсов
WO2013118235A1 (ja) * 2012-02-06 2013-08-15 Jfeスチール株式会社 レールの冷却方法
CN106498143B (zh) * 2016-10-20 2018-10-02 武汉钢铁有限公司 一种用于钢轨的在线热处理方法和在线热处理系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU800215A1 (ru) * 1975-09-03 1981-01-30 Украинский Ордена Трудового Крас-Ного Знамени Научно-Исследова-Тельский Институт Металлов Способ термической обработкиРЕльСОВ
US4201602A (en) * 1977-07-07 1980-05-06 Canron Corporation Rail hardening machine and method
CN1034583A (zh) * 1988-01-26 1989-08-09 冶金工业部攀枝花钢铁公司 生产高强度钢轨的热处理方法和装置
CN1102216A (zh) * 1993-10-26 1995-05-03 冶金工业部重庆钢铁设计研究院 道岔尖轨热处理方法
CN101148736A (zh) * 2007-11-14 2008-03-26 攀枝花钢铁(集团)公司 钢轨及其生产方法
CN102059528A (zh) * 2009-11-17 2011-05-18 攀钢集团攀枝花钢铁研究院有限公司 一种钢轨的制造方法
CN102284503A (zh) * 2011-04-28 2011-12-21 内蒙古科技大学 百米重轨残余应力控制方法
WO2013118242A1 (ja) * 2012-02-06 2013-08-15 Jfeスチール株式会社 レールの拘束方法およびレールの拘束装置
CN103551437A (zh) * 2013-10-31 2014-02-05 武汉钢铁(集团)公司 一种微应力百米高速重轨生产方法
CN109182715A (zh) * 2018-09-19 2019-01-11 武汉钢铁有限公司 钢轨在线热处理平直度控制方法

Also Published As

Publication number Publication date
CN109182715A (zh) 2019-01-11
BR112021005147A2 (pt) 2021-06-15
CN109182715B (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
WO2020057538A1 (zh) 钢轨在线热处理平直度控制方法
KR100496607B1 (ko) 열연코일의 제조방법 및 그 장치
CN107002164B (zh) 金属板的制造方法及骤冷淬火装置
JP6023563B2 (ja) ロール成形方法およびロール成形装置
CN109280760B (zh) 珠光体钢轨处理方法
CN109338076B (zh) 珠光体钢轨生产方法
JP2007504007A5 (zh)
CN110157891A (zh) 超薄不锈钢带ta退火工艺
CN110358904B (zh) 钢轨在线热处理后轨形的控制方法
CN108796204B (zh) 超特深冲级钢的生产方法
CN102430578A (zh) 一种冷轧带钢平整装置及冷轧带钢横折印消除方法
CN114433638A (zh) 一种控制厚度规格≤50mm热轧钢板横向不平度的方法
CN110355213B (zh) 短流程生产中碳钢50Mn2V的卷取错层控制方法
WO2024093182A1 (zh) 一种提高过共析钢轨接头再奥氏体化区硬度的方法及装置
CN106513448A (zh) 带钢精轧除鳞方法
US9828651B2 (en) Method and apparatus of manufacturing high strength cold rolled steel sheet
KR20040059267A (ko) 전기강판제조용 열연소둔강판의 산화막 제거방법,전기강판제조용 열연소둔강판의 제조방법 및 장치
EP3943619B1 (en) Quenching apparatus and method for manufacturing metal sheet
JP4712149B2 (ja) ストリップを変形する方法および設備
JP5609407B2 (ja) 熱延鋼板の製造方法および製造設備
CN104511478A (zh) 一种防止铝镇静钢划冷轧划伤缺陷产生的方法
CN203569155U (zh) 一种带钢在连续退火炉内热拉伸的装置
CN109174982B (zh) 一种防高温构件变形起皱的边部冷却工艺及装置
KR101289181B1 (ko) 선재코일 냉각장치
BR112021005147B1 (pt) Método de controle de planeza em tratamento térmico em linha de trilho de aço

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021005147

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112021005147

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210318

122 Ep: pct application non-entry in european phase

Ref document number: 19863771

Country of ref document: EP

Kind code of ref document: A1