WO2020057116A1 - 一种燃料电池系统及其停机启动时吹扫和排水的方法 - Google Patents

一种燃料电池系统及其停机启动时吹扫和排水的方法 Download PDF

Info

Publication number
WO2020057116A1
WO2020057116A1 PCT/CN2019/082998 CN2019082998W WO2020057116A1 WO 2020057116 A1 WO2020057116 A1 WO 2020057116A1 CN 2019082998 W CN2019082998 W CN 2019082998W WO 2020057116 A1 WO2020057116 A1 WO 2020057116A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
hydrogen
air
solenoid valve
cell stack
Prior art date
Application number
PCT/CN2019/082998
Other languages
English (en)
French (fr)
Inventor
高勇
亚努士布拉什奇克
Original Assignee
上海恒劲动力科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海恒劲动力科技有限公司 filed Critical 上海恒劲动力科技有限公司
Priority to JP2021514612A priority Critical patent/JP7132662B2/ja
Priority to EP19862491.8A priority patent/EP3751651A4/en
Priority to US17/040,030 priority patent/US20210202965A1/en
Publication of WO2020057116A1 publication Critical patent/WO2020057116A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04179Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by purging or increasing flow or pressure of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04447Concentration; Density of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04462Concentration; Density of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04791Concentration; Density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04791Concentration; Density
    • H01M8/04798Concentration; Density of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • H01M8/04843Humidity; Water content of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell, and in particular to a fuel cell system and a method for purging and draining the fuel cell when it is stopped and started.
  • a fuel cell is a power generation device that directly converts the chemical energy of fuel into electrical energy. Its working principle is to convert the chemical energy in the substance into electrical energy through electrochemical reactions, and the materials required for the chemical reaction of the fuel cell are provided from the outside. As long as the fuel and oxidant are continuously supplied, the fuel cell continuously outputs electrical energy and thermal energy. . In short, a fuel cell is an energy conversion device.
  • Proton exchange membrane fuel cells use hydrogen as fuel and oxygen as oxidant in electrochemical power generation devices. Hydrogen and air are passed into the anode and cathode respectively. The gas reacts under the action of the catalyst to produce water, and at the same time, a large amount of heat is generated. Because of its environmental friendliness, high energy conversion efficiency, and adjustable power, it is considered to be one of the cleanest and most efficient new energy power generation devices, which can be widely used in automobiles.
  • the fuel cell When the fuel cell is stopped and the fuel gas and oxidant gas supply is stopped, fuel gas and oxidant gas still remain in the fuel flow path and the oxidant flow path in the stack. Therefore, the downtime of the fuel cell is long, and in particular, the remaining fuel gas and oxidant gas can permeate the damaged electrode catalyst and catalyst support of the electrolyte membrane, thereby shortening the service life of the fuel cell.
  • the fuel gas is generally flammable and explosive hydrogen. After the fuel cell is shut down, the residual hydrogen in the stack can easily cause safety accidents such as fire or explosion. Therefore, after the shutdown, the stack needs to be purged and conventionally purged.
  • the method is to use high-purity nitrogen for purging after shutdown. This method wastes energy and occupies additional N 2 resources.
  • the purpose of the present invention is to provide a fuel cell system that is energy-saving, safe, and long-lived, and a method for purging and draining water during shutdown and start-up in order to overcome the defects in the prior art.
  • the first fuel cell system includes a fuel cell stack (1), an air supply system connected to a cathode of the fuel cell stack, and a hydrogen supply system connected to an anode of the fuel cell stack.
  • the air supply system includes an air compressor (2), and an air intake pipe.
  • Circuit (3), air exhaust pipe (4), the hydrogen supply system includes a hydrogen storage tank, a hydrogen intake pipe (5), and a hydrogen exhaust pipe, and is characterized in that the air exhaust pipe A branch line (6) is connected to the low oxygen concentration gas storage tank (7) on the road (4), and the low oxygen concentration gas storage tank (7) is returned to the hydrogen gas inlet line (5) through the circulation line (8).
  • the hydrogen remaining in the anode side of the fuel cell stack (1) consumes or reduces the concentration of oxygen in the air on the cathode side.
  • the low-oxygen concentration gas generated is used to purge and dilute the fuel cell stack.
  • the remaining part is stored in the low-oxygen-concentration gas storage tank (7), and the anode side of the fuel cell stack is purged when the power is turned on.
  • the air exhaust pipe (4) is provided with a solenoid valve b (11).
  • the branch pipe (6) is provided with a solenoid valve c (12).
  • the circulating pipeline (8) is provided with a solenoid valve d (13) and a check valve (14).
  • the hydrogen gas inlet pipe (5) is provided with a solenoid valve e (15).
  • the hydrogen exhaust pipeline is provided with a sensor for measuring the hydrogen content.
  • the above fuel cell system is used to make a low oxygen content gas, and the anode side fluid channel is purged during shutdown, and the hydrogen therein is diluted and blown out, at least the hydrogen concentration is reduced below the explosion limit, preventing combustion or explosion, improving the safety factor and eliminating the need for Additional low oxygen concentration gas or other inerts are purged, which saves energy and improves the service life of the fuel cell.
  • the low-oxygen-concentration gas is used to purge the anode-side fluid channel to blow out H 2 , which can force the electrochemical reaction in the stack to stop in time to protect the stack.
  • the anode side The specific method of oxygen gas includes the following steps:
  • the valve (14) uses the hydrogen remaining in the anode side of the fuel cell stack (1) or retained as needed to continuously generate electricity and consume the oxygen in the air on the cathode side to obtain a low oxygen concentration gas, which passes through the branch
  • the pipeline (6) is stored in the low oxygen concentration gas storage tank (7), and is transported to the anode side of the fuel cell stack (1) through the circulation pipeline (8), and the remaining hydrogen in the anode side flow channel is purged to make the hydrogen concentration Reduced below 4%;
  • the second fuel cell system includes a fuel cell stack (1), an air supply system connected to the cathode of the fuel cell stack, and a hydrogen supply system connected to the anode of the fuel cell stack.
  • the air supply system includes an air compressor (2), and an air intake pipe.
  • Circuit (3), air exhaust pipe (4), the hydrogen supply system includes a hydrogen storage tank, a hydrogen intake pipe (5), and a hydrogen exhaust pipe, and is characterized in that the air exhaust pipe A branch line (6) is connected to the low oxygen concentration gas storage tank (7) on the road (4), and the low oxygen concentration gas storage tank (7) is returned to the hydrogen gas inlet line (5) through the circulation line (8).
  • a connection pipe (9) is provided between the air inlet pipe (3) and the hydrogen inlet pipe (5), and a solenoid valve a (10) is provided on the connection pipe.
  • the excess hydrogen on the anode side in the fuel cell stack (1) consumes the oxygen in the air remaining on the cathode side.
  • the low-oxygen concentration gas generated blows out the residual hydrogen in the anode side of the fuel cell stack, and the air compressor then sends the fuel cell stack Air is supplied on both sides of the anode and cathode to blow out the accumulated water in the fuel cell stack.
  • the air exhaust pipe (4) is provided with a solenoid valve b (11); the branch pipe (6) is provided with a solenoid valve c (12); and the circulation pipe (8) A solenoid valve d (13) and a one-way valve (14) are provided; the hydrogen gas inlet pipe (5) is provided with a solenoid valve e (15); and the hydrogen exhaust pipe is provided with a hydrogen measuring device sensor.
  • the above-mentioned second method for purging and draining the fuel cell system during shutdown is adopted, which is characterized in that the fuel cell system is used to produce low oxygen content gas and air provided by the air compressor, and the fuel cell system is safely discharged during shutdown.
  • Water including the following steps:
  • the valve (14) uses the hydrogen remaining in the anode side of the fuel cell stack (1) or retained as needed to continuously generate electricity and consume the oxygen in the air on the cathode side to obtain a low oxygen concentration gas, which passes through the branch
  • the pipeline (6) is stored in the low oxygen concentration gas storage tank (7), and is transported to the anode side of the fuel cell stack (1) through the circulation pipeline (8), and the anode side flow channel is purged to reduce the hydrogen concentration to 4 %the following;
  • the present invention has the following beneficial effects:
  • FIG. 1 is a schematic diagram of a state of purging hydrogen and air of a fuel cell system according to the present invention
  • FIG. 2 is a schematic diagram of a drainage state of a fuel cell system according to the present invention.
  • a fuel cell system includes a fuel cell stack 1, an air supply system connected to a cathode of the fuel cell stack, and a hydrogen supply system connected to an anode of the fuel cell stack, wherein the air supply system includes an air compressor 2 Air line 3, air exhaust line 4, the hydrogen supply system includes a hydrogen storage tank, a hydrogen inlet line 5 and a hydrogen exhaust line, characterized in that the air exhaust line 4 passes a
  • the branch pipe 6 is connected to a low-oxygen-concentration gas storage tank 7, and the low-oxygen-concentration gas storage tank 7 is connected to the hydrogen gas inlet pipe 5 through a circulation pipe 8.
  • the air exhaust pipe 4 is provided with a solenoid valve b11.
  • the branch pipe 6 is provided with a solenoid valve c12.
  • the circulating pipeline 8 is provided with a solenoid valve d13 and a check valve 14.
  • the hydrogen gas inlet pipe 5 is provided with a solenoid valve e15.
  • the hydrogen exhaust pipeline is provided with a sensor for measuring the hydrogen
  • the method for purging when the fuel cell system is stopped and started includes the following steps:
  • the oxygen content is 21%
  • the fuel gas input to the anode side is high-purity hydrogen. Therefore, when the shutdown is performed, the residual hydrogen content on the anode side is high, which can almost exhaust the cathode side air.
  • the oxygen in the medium is completely consumed, and the obtained gas mainly contains low-oxygen concentration gas and rare gas, so it can be used to purge the residual hydrogen in the reactor, and at the same time, it can also store a part of it, and purge the anode-side oxygen when it is turned on.
  • a fuel cell system includes a fuel cell stack 1, an air supply system connected to a cathode of the fuel cell stack, and a hydrogen supply system connected to an anode of the fuel cell stack.
  • the air supply system includes an air compressor 2.
  • Air line 3, air exhaust line 4, the hydrogen supply system includes a hydrogen storage tank, a hydrogen inlet line 5 and a hydrogen exhaust line, characterized in that the air exhaust line 4 passes a
  • the branch line 6 is connected to a low-oxygen-concentration gas storage tank 7, and the low-oxygen-concentration gas storage tank 7 is connected back to the hydrogen gas inlet line 5 through a circulation line 8, between the air gas inlet line 3 and the hydrogen gas inlet line 5.
  • a connecting pipe 9 is provided, and the connecting pipe is provided with a solenoid valve a10, the air exhaust pipe 4 is provided with a solenoid valve b11, the branch pipe 6 is provided with a solenoid valve c12, and the circulation
  • the pipeline 8 is provided with a solenoid valve d13 and a check valve 14; the hydrogen gas inlet pipeline 5 is provided with a solenoid valve e15; and the hydrogen exhaust pipeline is provided with a sensor for measuring the hydrogen content.
  • the accumulated water in the system can be safely discharged during shutdown, as follows:
  • Valve 14 using the hydrogen remaining in the anode side of the fuel cell stack 1 or retained as needed, to continuously generate electricity to consume the oxygen in the air on the cathode side to obtain a low oxygen concentration gas (usually the oxygen content is less than 15% or lower) ),
  • the low-oxygen-concentration gas is stored in the low-oxygen-concentration gas storage tank 7 through the branch line 6 and is transported to the anode side of the fuel cell stack 1 through the circulation line 8 and the anode-side flow channel is purged to reduce the hydrogen concentration to Less than 4%;

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及一种燃料电池系统及其停机启动时吹扫和排水的方法,包括燃料电池堆(1),空压机(2),空气进气管路(3),空气排气管路(4),所述的氢气供应系统包括储氢罐,氢气进气管路(5)和氢气排气管路,所述的空气排气管路(4)上通过一分支管路(6)连接低氧浓度气体储存罐(7),该低氧浓度气体储存罐(7)通过循环管路(8)返回连接氢气进气管路(5),燃料电池停机后继续发电,残余在燃料电池堆(1)内的氢气将阴极侧空气中的氧气消耗掉,生成的低氧浓度气体,用来吹扫燃料电池堆阳极内残余氢气,在开机时吹扫阳极侧含氧气体,提高安全性,还可以在关机时安全高效地排出阳极侧流道内的水。

Description

一种燃料电池系统及其停机启动时吹扫和排水的方法 技术领域
本发明涉及燃料电池,尤其是涉及一种燃料电池系统及其其停机启动时吹扫和排水的方法。
背景技术
燃料电池是一种直接将燃料的化学能转化为电能的发电装置。其工作原理是通过电化学反应把物质中的化学能转化为电能,并且燃料电池进行化学反应所需的物质由外部提供,只要不断供应燃料和氧化剂,燃料电池就能源源不断地输出电能和热能。简而言之,燃料电池就是一种能量转换装置。
质子交换膜燃料电池是以氢气为燃料,以氧气为氧化剂的电化学发电装置,把氢气和空气分别通入阳极和阴极,气体在催化剂的作用下反应产生水,同时会有大量的热量产生。由于其环境友好、能量转换效率高、功率可调节等优点,被认为时最清洁和高效的新能源发电装置之一,可被广泛应用于汽车上。
燃料电池停停机,燃料气体和氧化剂气体供给停止时,电堆中燃料流道和氧化剂流道内仍残余有燃料气体和氧化剂气体。因此,燃料电池的停机时间长,特别地,剩余燃料气体和氧化剂气体可以透过该电解质膜的损害电极催化剂和催化剂支架上,从而缩短了燃料电池的使用寿命。而且燃料气体一般为易燃易爆的氢气,燃料电池停机后,电堆中残余的氢气,容易造成着火或爆炸等安全事故,因此,一般停机后需要对电堆进行吹扫,常规的吹扫方法是在停机后采用高纯氮进行吹扫,该方法浪费能源,占用额外N 2资源。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种节能、安全、提高寿命的燃料电池系统及其停机启动时吹扫和排水的方法。
本发明的目的可以通过以下技术方案来实现:
第一种燃料电池系统,包括燃料电池堆(1),连接燃料电池堆阴极的空气供应系统,连接燃料电池堆阳极的氢气供应系统,其中空气供应系统包括空压 机(2),空气进气管路(3),空气排气管路(4),所述的氢气供应系统包括储氢罐,氢气进气管路(5)和氢气排气管路,其特征在于,所述的空气排气管路(4)上通过一分支管路(6)连接低氧浓度气体储存罐(7),该低氧浓度气体储存罐(7)通过循环管路(8)返回连接氢气进气管路(5),燃料电池停机过程中,残余在燃料电池堆(1)阳极侧内的氢气将阴极侧的空气中的氧气消耗掉或降低浓度,生成的低氧浓度气体用来吹扫和稀释燃料电池堆,剩余部分存储在低氧浓度气体储存罐(7)内,在开机时吹扫燃料电池堆的阳极侧。
所述的空气排气管路(4)上设有电磁阀b(11)。
所述的分支管路(6)上设有电磁阀c(12)。
所述的循环管路(8)上设有电磁阀d(13)和单向阀(14)。
所述的氢气进气管路(5)上设有电磁阀e(15)。
所述的氢气排气管路上设有测量氢气含量的传感器。
采用上述燃料电池系统制作低氧含量气体,在停机时吹扫阳极侧流体通道,将其中的氢气稀释和吹出,至少氢气浓度降低至爆炸极限以下,防止燃烧或爆炸,提高了安全系数,而且无需额外低氧浓度气体或其他惰性其他进行吹扫,节省了能源,同时提高了燃料电池的使用寿命。同时,采用低氧浓度气体吹扫阳极侧流体通道,将H 2吹出,可以迫使电堆中的电化学反应及时停止,保护电堆,另外,在启动时,稀释和排出燃料电池系统阳极侧含氧气体,具体方法包括以下步骤:
(1)停机过程中或有制作低氧含量气体需要时,关停空压机(2),关闭电磁阀b(11),打开电磁阀c(12)、电磁阀d(13)和单向阀(14),使用在燃料电池堆(1)阳极侧中残留或按需保留的氢气,持续发电,将阴极侧空气中的氧气消耗掉,得到低氧浓度气体,该低氧浓度气体通过分支管路(6)存于低氧浓度气体储存罐(7),以及通过循环管路(8)输送到燃料电池堆(1)的阳极侧,吹扫阳极侧流道中的剩余氢气,使氢气浓度降低至4%以下;
(2)开机前,先打开电磁阀d(13)和单向阀(14),将低氧浓度气体储存罐(7)储存的低氧浓度气体充填和吹扫燃料电池堆(1)阳极侧,排出其中可能存留的氧气或降低阳极侧的氧含量到安全充氢的程度然后打开电磁阀e(15)输入氢气。
第二种燃料电池系统,包括燃料电池堆(1),连接燃料电池堆阴极的空气供应系统,连接燃料电池堆阳极的氢气供应系统,其中空气供应系统包括空压机(2),空气进气管路(3),空气排气管路(4),所述的氢气供应系统包括储氢罐,氢气进气管路(5)和氢气排气管路,其特征在于,所述的空气排气管路(4)上通过一分支管路(6)连接低氧浓度气体储存罐(7),该低氧浓度气体储存罐(7)通过循环管路(8)返回连接氢气进气管路(5),所述的空气进气管路(3)和氢气进气管路(5)之间设有连接管(9),该连接管上设有电磁阀a(10),燃料电池停机过程中,将利用在燃料电池堆(1)内阳极侧的富余氢气将阴极侧存留空气中的氧气消耗掉,生成的低氧浓度气体将燃料电池堆阳极侧内残余氢气吹出,然后空压机向燃料电池电堆阳极阴极两侧供气,将燃料电池堆内的积水吹出。
所述的空气排气管路(4)上设有电磁阀b(11);所述的分支管路(6)上设有电磁阀c(12);所述的循环管路(8)上设有电磁阀d(13)和单向阀(14);所述的氢气进气管路(5)上设有电磁阀e(15);所述的氢气排气管路上设有测量氢气含量的传感器。
采用上述第二种燃料电池系统停机启动时吹扫和排水的方法,其特征在于,采用燃料电池系统制作低氧含量气体和空压机提供的空气,在停机时,安全排出燃料电池系统内的水,具体包括以下步骤:
(1)停机过程中或有制作低氧含量气体需要时,关停空压机(2),关闭电磁阀b(11),打开电磁阀c(12)、电磁阀d(13)和单向阀(14),使用在燃料电池堆(1)阳极侧中残留或按需保留的氢气,持续发电,将阴极侧空气中的氧气消耗掉,得到低氧浓度气体,该低氧浓度气体通过分支管路(6)存于低氧浓度气体储存罐(7),以及通过循环管路(8)输送到燃料电池堆(1)的阳极侧,吹扫阳极侧流道,使氢气浓度降低至4%以下;
(2)关闭电磁阀d(13),剩余低氧浓度气体存储在低氧浓度气体储存罐(7),打开电磁阀a(10),空压机(2)同时向燃料电池堆(1)的阳极侧和阴极侧输送高压空气,吹扫燃料电池堆中的生成水。
采用上述燃料电池系统,还可以用低氧浓度气体将阳极侧流体通道内的氢气吹扫完成后,通过空压机持续向阳极侧流体通道内输入空气,将其中的积水 排掉,能进一步保护电堆。具体方法包括以下步骤:
1)停机过程中或有制作低氧含量气体需要时,关停空压机(2)或降低空压机转速和减少供气量,关闭电磁阀b(11),打开电磁阀c(12)、电磁阀d(13)和单向阀(14),使用在燃料电池堆(1)阳极侧中残留或按需保留的氢气,持续发电,将阴极侧空气中的氧气消耗掉,得到低氧浓度气体(通常氧含量低于15%或更低),该低氧浓度气体通过分支管路(6)存于低氧浓度气体储存罐(7),以及通过循环管路(8)输送到燃料电池堆(1)的阳极侧,吹扫阳极侧流道,使氢气浓度降低至4%以下;
2)关闭电磁阀d(13),剩余低氧浓度气体存储在低氧浓度气体储存罐(7),打开电磁阀a(10),空压机(2)同时向燃料电池堆(1)的阳极侧和阴极侧输送高压大流量空气,有效吹扫燃料电池堆中存留的反应生成水。
与现有技术相比,本发明具有以下有益效果:
(1)利用燃料电池关机时或有制作低氧含量气体需要时,使用在燃料电池堆阳极侧中剩余或按需保留的氢气,持续发电,将阴极侧空气中的氧气消耗掉或降低浓度,得到低氧浓度气体,利用该低氧浓度气体可以实现以下目的:
a.在停机时吹扫阳极侧流体通道,将其中的氢气稀释和吹出,至少至氢气浓度降低至爆炸极限以下,防止燃烧或爆炸,提高了安全系数,而且无需额外低氧浓度气体或其他惰性其他进行吹扫,节省了能源,同时提高了燃料电池的使用寿命。
b.采用低氧浓度气体吹扫阳极侧流体通道,将H 2吹出,可以迫使电堆中的电化学反应及时停止,保护电堆。
C.将制得的低氧浓度气体存储起来,在开机时,利用该低氧浓度气体吹扫阳极侧,排出其中可能存留的氧气或降低阳极侧的氧含量到安全充氢的程度,然后再输入氢气,提高了安全性能,节能了能源。。
(2)停机过程中,用低氧浓度气体将阳极侧流体通道内的氢气稀释和吹扫完成后,通过空压机持续向燃料电池电堆阳极阴极两侧供气将燃料电池堆内的积水吹出,能进一步保护电堆。
附图说明
图1为本发明燃料电池系统吹扫氢气和空气状态的示意图;
图2为本发明燃料电池系统排水状态的示意图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
如图1所示,一种燃料电池系统,包括燃料电池堆1,连接燃料电池堆阴极的空气供应系统,连接燃料电池堆阳极的氢气供应系统,其中空气供应系统包括空压机2,空气进气管路3,空气排气管路4,所述的氢气供应系统包括储氢罐,氢气进气管路5和氢气排气管路,其特征在于,所述的空气排气管路4上通过一分支管路6连接低氧浓度气体储存罐7,该低氧浓度气体储存罐7通过循环管路8返回连接氢气进气管路5,所述的空气排气管路4上设有电磁阀b11。所述的分支管路6上设有电磁阀c12。所述的循环管路8上设有电磁阀d13和单向阀14。所述的氢气进气管路5上设有电磁阀e15。所述的氢气排气管路上设有测量氢气含量的传感器。
采用上述燃料电池系统停机和启动时吹扫的方法,包括以下步骤:
1、停机时或有制作低氧含量气体需要时,关闭电磁阀b11,打开电磁阀c12、电磁阀d13和单向阀14,使用在在燃料电池堆1阳极侧中残留或按需保留的氢气,持续发电,将阴极侧空气中的氧气消耗掉,得到低氧浓度气体,该低氧浓度气体通过分支管路6存于低氧浓度气体储存罐7,以及通过循环管路8输送到燃料电池堆1的阳极侧,吹扫阳极侧流道中的剩余氢气,使氢气浓度降低至4%以下;
2、开机前,先打开电磁阀d13和单向阀14,将低氧浓度气体储存罐7储存的低氧浓度气体充填和吹扫燃料电池堆1阳极侧,排出其中可能存留的氧气或降低阳极侧的氧含量到安全充氢的程度,然后打开电磁阀e15输入氢气。
由于燃料电池堆阴极侧输入的氧化剂气体为空气,其中氧气含量为21%,而阳极侧输入的燃料气体为高纯氢气,因此停机时,阳极侧残余氢气含量较高,几乎能将阴极侧空气中的氧气完全消耗掉,得到的气体主要含低氧浓度气体和稀有气体等,因此可以用来吹扫电堆中残余氢气,同时还能存储一部分,在开 机时吹扫阳极侧氧气。
实施例2
如图2所述,一种燃料电池系统,包括燃料电池堆1,连接燃料电池堆阴极的空气供应系统,连接燃料电池堆阳极的氢气供应系统,其中空气供应系统包括空压机2,空气进气管路3,空气排气管路4,所述的氢气供应系统包括储氢罐,氢气进气管路5和氢气排气管路,其特征在于,所述的空气排气管路4上通过一分支管路6连接低氧浓度气体储存罐7,该低氧浓度气体储存罐7通过循环管路8返回连接氢气进气管路5,所述的空气进气管路3和氢气进气管路5之间设有连接管9,该连接管上设有电磁阀a10,所述的空气排气管路4上设有电磁阀b11;所述的分支管路6上设有电磁阀c12;所述的循环管路8上设有电磁阀d13和单向阀14;所述的氢气进气管路5上设有电磁阀e15;所述的氢气排气管路上设有测量氢气含量的传感器。
利用上述系统除了具有如实施例1所述吹扫氢气和氧气的功能,还可以在停机时将系统内的积水安全排出,方法如下:
1、停机时或有制作低氧含量气体需要时,关停空压机(2)或降低空压机转速和减少供气量,关闭电磁阀b11,打开电磁阀c12、电磁阀d13和单向阀14,使用在在燃料电池堆1阳极侧中残留或按需保留的氢气,持续发电,将阴极侧空气中的氧气消耗掉,得到低氧浓度气体(通常氧含量低于15%或更低),该低氧浓度气体通过分支管路6存于低氧浓度气体储存罐7,以及通过循环管路8输送到燃料电池堆1的阳极侧,吹扫阳极侧流道,使氢气浓度降低至4%以下;
2、关闭电磁阀d13,剩余低氧浓度气体存储在低氧浓度气体储存罐7,打开电磁阀a10,空压机2同时向燃料电池堆1的阳极侧和阴极侧输送高压大流量空气,有效吹扫燃料电池堆中存留的反应生成水。

Claims (10)

  1. 一种燃料电池系统,包括燃料电池堆(1),连接燃料电池堆阴极的空气供应系统,连接燃料电池堆阳极的氢气供应系统,其中空气供应系统包括空压机(2),空气进气管路(3),空气排气管路(4),所述的氢气供应系统包括储氢罐,氢气进气管路(5)和氢气排气管路,其特征在于,所述的空气排气管路(4)上通过一分支管路(6)连接低氧浓度气体储存罐(7),该低氧浓度气体储存罐(7)通过循环管路(8)返回连接氢气进气管路(5),燃料电池停机过程中,残余在燃料电池堆(1)阳极侧内的氢气将阴极侧的空气中的氧气消耗掉或降低浓度,生成的低氧浓度气体用来吹扫和稀释燃料电池堆,剩余部分存储在低氧浓度气体储存罐(7)内,在开机时吹扫燃料电池堆的阳极侧。
  2. 根据权利要求1所述的一种燃料电池系统,其特征在于,所述的空气排气管路(4)上设有电磁阀b(11)。
  3. 根据权利要求1所述的一种燃料电池系统,其特征在于,所述的分支管路(6)上设有电磁阀c(12)。
  4. 根据权利要求1所述的一种燃料电池系统,其特征在于,所述的循环管路(8)上设有电磁阀d(13)和单向阀(14)。
  5. 根据权利要求1所述的一种燃料电池系统,其特征在于,所述的氢气进气管路(5)上设有电磁阀e(15)。
  6. 根据权利要求1所述的一种燃料电池系统,其特征在于,所述的氢气排气管路上设有测量氢气含量的传感器。
  7. 一种采用权利要求1-6中任一所述的燃料电池系统停机启动时吹扫的方法,其特征在于,采用燃料电池系统制作低氧含量气体,在停机时,稀释和排出燃料电池系统阳极侧剩余氢气,在启动时,稀释和排出燃料电池系统阳极侧含氧气体,具体包括以下步骤:
    (1)停机过程中或有制作低氧含量气体需要时,关停空压机(2),关闭电磁阀b(11),打开电磁阀c(12)、电磁阀d(13)和单向阀(14),使用在燃料电池堆(1)阳极侧中残留或按需保留的氢气,持续发电,将阴极侧空气中的 氧气消耗掉,得到低氧浓度气体,该低氧浓度气体通过分支管路(6)存于低氧浓度气体储存罐(7),以及通过循环管路(8)输送到燃料电池堆(1)的阳极侧,吹扫阳极侧流道中的剩余氢气,使氢气浓度降低至4%以下;
    (2)开机前,先打开电磁阀d(13)和单向阀(14),将低氧浓度气体储存罐(7)储存的低氧浓度气体充填和吹扫燃料电池堆(1)阳极侧,排出其中可能存留的氧气或降低阳极侧的氧含量到安全充氢的程度,然后打开电磁阀e(15)输入氢气。
  8. 一种燃料电池系统,其特征在于,包括燃料电池堆(1),连接燃料电池堆阴极的空气供应系统,连接燃料电池堆阳极的氢气供应系统,其中空气供应系统包括空压机(2),空气进气管路(3),空气排气管路(4),所述的氢气供应系统包括储氢罐,氢气进气管路(5)和氢气排气管路,其特征在于,所述的空气排气管路(4)上通过一分支管路(6)连接低氧浓度气体储存罐(7),该低氧浓度气体储存罐(7)通过循环管路(8)返回连接氢气进气管路(5),所述的空气进气管路(3)和氢气进气管路(5)之间设有连接管(9),该连接管上设有电磁阀a(10),燃料电池停机过程中,将利用在燃料电池堆(1)内阳极侧的富余氢气将阴极侧存留空气中的氧气消耗掉,生成的低氧浓度气体将燃料电池堆阳极侧内残余氢气吹出,然后空压机向燃料电池电堆阳极阴极两侧供气将燃料电池堆内的积水吹出。
  9. 根据权利要求8所述的一种燃料电池系统,其特征在于,所述的空气排气管路(4)上设有电磁阀b(11);所述的分支管路(6)上设有电磁阀c(12);所述的循环管路(8)上设有电磁阀d(13)和单向阀(14);所述的氢气进气管路(5)上设有电磁阀e(15);所述的氢气排气管路上设有测量氢气含量的传感器。
  10. 一种采用权利要求8或9所述的燃料电池系统停机启动时吹扫和排水的方法,其特征在于,采用燃料电池系统制作低氧含量气体和空压机提供的空气,在停机时,安全排出燃料电池系统内的水,具体包括以下步骤:
    1)停机过程中或有制作低氧含量气体需要时,关停空压机(2)或降低空压机转速和减少供气量,关闭电磁阀b(11),打开电磁阀c(12)、电磁阀d(13)和单向阀(14),使用在燃料电池堆(1)阳极侧中残留或按需保留的氢气持续 发电,将阴极侧空气中的氧气消耗掉,得到低氧浓度气体(通常氧含量低于15%或更低),该低氧浓度气体通过分支管路(6)存于低氧浓度气体储存罐(7),以及通过循环管路(8)输送到燃料电池堆(1)的阳极侧,吹扫阳极侧流道,使氢气浓度降低至4%以下;
    2)关闭电磁阀d(13),剩余低氧浓度气体存储在低氧浓度气体储存罐(7),打开电磁阀a(10),空压机(2)同时向燃料电池堆(1)的阳极侧和阴极侧输送高压大流量空气,有效吹扫燃料电池堆中存留的反应生成水。
PCT/CN2019/082998 2018-09-18 2019-04-17 一种燃料电池系统及其停机启动时吹扫和排水的方法 WO2020057116A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021514612A JP7132662B2 (ja) 2018-09-18 2019-04-17 燃料電池システム、及びそのシャットダウン時と起動時にパージ及び排水を行う方法
EP19862491.8A EP3751651A4 (en) 2018-09-18 2019-04-17 FUEL CELL SYSTEM AND FLUSHING AND DRAINAGE PROCEDURES WHEN SWITCHING OFF / STARTING THE SYSTEM
US17/040,030 US20210202965A1 (en) 2018-09-18 2019-04-17 Fuel cell system and method for purging and removing water during start and stop process thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811089463.4 2018-09-18
CN201811089463.4A CN110911712B (zh) 2018-09-18 2018-09-18 一种燃料电池系统及其停机和启动时吹扫和排水的方法

Publications (1)

Publication Number Publication Date
WO2020057116A1 true WO2020057116A1 (zh) 2020-03-26

Family

ID=69812888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082998 WO2020057116A1 (zh) 2018-09-18 2019-04-17 一种燃料电池系统及其停机启动时吹扫和排水的方法

Country Status (5)

Country Link
US (1) US20210202965A1 (zh)
EP (1) EP3751651A4 (zh)
JP (1) JP7132662B2 (zh)
CN (1) CN110911712B (zh)
WO (1) WO2020057116A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911712A (zh) * 2018-09-18 2020-03-24 上海恒劲动力科技有限公司 一种燃料电池系统及其停机启动时吹扫和排水的方法
CN112856233A (zh) * 2020-12-31 2021-05-28 海卓动力(青岛)能源科技有限公司 一种质子交换膜燃料电池的脉冲氢气供应系统
CN114094140A (zh) * 2021-09-28 2022-02-25 东风汽车集团股份有限公司 氢燃料电池车辆及其供氢系统和供氢方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107086317B (zh) * 2017-06-27 2023-12-12 南通百应能源有限公司 一种燃料电池电堆的储存系统及方法
CN113497258B (zh) * 2020-04-03 2022-09-09 北京亿华通科技股份有限公司 燃料电池系统的停机控制方法、装置
CN111332124B (zh) * 2020-04-04 2021-09-10 东风汽车集团有限公司 基于两级保护的燃料电池系统泄放电路
CN111785995B (zh) * 2020-06-16 2023-05-23 国鸿氢能科技(嘉兴)股份有限公司 导水双极板燃料电池吹扫管路系统
CN111668520B (zh) * 2020-06-18 2023-08-08 上海电气集团股份有限公司 燃料电池系统及其关机控制方法
CN112242545B (zh) * 2020-09-18 2022-02-01 北京国家新能源汽车技术创新中心有限公司 一种车用燃料电池尾气制氮系统及其吹扫方法
CN112234228B (zh) * 2020-10-15 2022-06-21 北京理工大学重庆创新中心 一种车载燃料电池氢气管道吹扫系统及方法
CN114566680A (zh) * 2020-11-27 2022-05-31 上海汽车集团股份有限公司 一种燃料电池阴极吹扫系统、吹扫方法和车辆
CN112952154B (zh) * 2021-01-29 2022-06-10 上海捷氢科技股份有限公司 燃料电池的氢腔气体置换控制方法及其氢腔置换系统
CN112928307B (zh) * 2021-03-24 2022-08-02 苏州弗尔赛能源科技股份有限公司 一种燃料电池发动机的空气供气系统及控制方法
DE112022003401T5 (de) 2021-07-05 2024-04-18 Blue World Technologies Holding ApS Elektrisches Kraftfahrzeug mit einem Brennstoffzeliensystem und Verfahren zur Brandrisikobegrenzung
CN113629277B (zh) * 2021-07-28 2022-09-16 同济大学 一种燃料电池系统及其停机吹扫方法
CN113675441B (zh) * 2021-08-09 2022-11-04 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种用于燃料电池的吹扫保护装置
CN113506898B (zh) * 2021-09-09 2021-12-21 潍柴动力股份有限公司 一种氢燃料电池发动机用安全保护检修装置及方法
CN113793951B (zh) * 2021-09-10 2023-04-28 中国第一汽车股份有限公司 一种燃料电池系统及停机控制方法
CN113782787B (zh) * 2021-09-13 2023-09-08 华能国际电力股份有限公司 一种熔融碳酸盐燃料电池进气系统的控制方法
WO2023070311A1 (zh) * 2021-10-26 2023-05-04 罗伯特•博世有限公司 用于对燃料电池进行吹扫的装置和方法
CN114300715B (zh) * 2021-12-31 2024-05-24 国家电投集团氢能科技发展有限公司 燃料电池系统及其控制方法
CN114361517B (zh) * 2022-01-13 2024-04-12 浙江高成绿能科技有限公司 一种燃料电池电堆阳极水管理控制系统及控制方法
CN114583216A (zh) * 2022-03-10 2022-06-03 山东国创燃料电池技术创新中心有限公司 一种燃料电池快速停机吹扫方法、系统及存储介质
DE102022204149A1 (de) * 2022-04-28 2023-11-02 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Unterschreiten einer unteren Wasserstoff-Explosionsgrenze in einem Auspuff eines Brennstoffzellenaggregats
DE102022213898A1 (de) 2022-12-19 2024-06-20 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Regeneration eines Elektrolyseurs
CN116247244A (zh) * 2023-02-08 2023-06-09 上海氢晨新能源科技有限公司 一种质子交换膜燃料电池的停机控制方法及系统
CN115954508B (zh) * 2023-02-08 2024-06-04 上海氢晨新能源科技有限公司 一种燃料电池的停机控制方法及系统
JP7477005B1 (ja) 2023-03-07 2024-05-01 富士電機株式会社 燃料電池発電装置及び燃料電池発電システム
CN116864733B (zh) * 2023-05-05 2024-02-27 武汉雄韬氢雄燃料电池科技有限公司 一种用于大功率燃料电池的富氧装置及大功率燃料电池系统
CN117154153B (zh) * 2023-09-20 2024-04-30 江苏核电有限公司 一种氢能燃料电池备用系统及其使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005100846A (ja) * 2003-09-25 2005-04-14 Nissan Motor Co Ltd 燃料電池システム
WO2007044971A1 (en) * 2005-10-12 2007-04-19 Ballard Power Systems Inc. System and method of controlling fuel cell shutdown
CN101227009A (zh) * 2006-08-10 2008-07-23 通用汽车环球科技运作公司 减轻由于启动和关闭而导致电池性能发生劣化的方法
US20090286116A1 (en) * 2008-05-19 2009-11-19 Honda Motor Co., Ltd. Fuel cell system and control method thereof
US20160322657A1 (en) * 2014-02-13 2016-11-03 Brother Kogyo Kabushiki Kaisha Fuel cell system and control method

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10110419A1 (de) * 2000-03-08 2003-10-23 Honda Motor Co Ltd Brennstoffzellensystem
US6635370B2 (en) * 2001-06-01 2003-10-21 Utc Fuel Cells, Llc Shut-down procedure for hydrogen-air fuel cell system
US6939633B2 (en) * 2003-09-17 2005-09-06 General Motors Corporation Fuel cell shutdown and startup using a cathode recycle loop
JP4513119B2 (ja) * 2003-12-25 2010-07-28 トヨタ自動車株式会社 燃料電池システム
DE102004051751B4 (de) * 2004-10-23 2015-11-05 Robert Bosch Gmbh Fahrzeug mit einer Brennstoffzellenanlage mit einem wasserhaltigen Fluidstrom
CA2622400C (en) * 2005-10-21 2011-08-02 Toyota Jidosha Kabushiki Kaisha Fuel cell system, estimation device of amount of anode gas to be generated and estimation method of amount of anode gas to be generated
JP5101057B2 (ja) 2006-07-13 2012-12-19 三菱重工業株式会社 燃料電池発電システム
US20090023040A1 (en) * 2007-07-19 2009-01-22 Ford Motor Company Oxygen removal systems during fuel cell shutdown
US20110143241A1 (en) * 2009-12-11 2011-06-16 Gm Global Technology Operations, Inc. Fuel cell operational methods for oxygen depletion at shutdown
US8802305B2 (en) * 2010-09-29 2014-08-12 GM Global Technology Operations LLC Fuel cell system and processes
CN103050723B (zh) * 2012-12-28 2014-12-24 清华大学 一种用于质子交换膜燃料电池的阴极排气再循环系统
JP2013101962A (ja) 2013-01-21 2013-05-23 Mitsubishi Heavy Ind Ltd 燃料電池およびその運転方法
CN205211851U (zh) * 2015-10-10 2016-05-04 上海恒劲动力科技有限公司 一种燃料电池氢气吹扫系统
DE102015223039A1 (de) * 2015-11-23 2017-05-24 Robert Bosch Gmbh Brennstoffzelle
JP7029630B2 (ja) * 2016-12-15 2022-03-04 パナソニックIpマネジメント株式会社 燃料電池システム
CN207381488U (zh) * 2018-01-31 2018-05-18 安徽明天氢能科技股份有限公司 一种燃料电池并联式停机吹扫系统
CN110911712B (zh) * 2018-09-18 2021-11-02 上海恒劲动力科技有限公司 一种燃料电池系统及其停机和启动时吹扫和排水的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005100846A (ja) * 2003-09-25 2005-04-14 Nissan Motor Co Ltd 燃料電池システム
WO2007044971A1 (en) * 2005-10-12 2007-04-19 Ballard Power Systems Inc. System and method of controlling fuel cell shutdown
CN101227009A (zh) * 2006-08-10 2008-07-23 通用汽车环球科技运作公司 减轻由于启动和关闭而导致电池性能发生劣化的方法
US20090286116A1 (en) * 2008-05-19 2009-11-19 Honda Motor Co., Ltd. Fuel cell system and control method thereof
US20160322657A1 (en) * 2014-02-13 2016-11-03 Brother Kogyo Kabushiki Kaisha Fuel cell system and control method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3751651A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911712A (zh) * 2018-09-18 2020-03-24 上海恒劲动力科技有限公司 一种燃料电池系统及其停机启动时吹扫和排水的方法
CN110911712B (zh) * 2018-09-18 2021-11-02 上海恒劲动力科技有限公司 一种燃料电池系统及其停机和启动时吹扫和排水的方法
CN112856233A (zh) * 2020-12-31 2021-05-28 海卓动力(青岛)能源科技有限公司 一种质子交换膜燃料电池的脉冲氢气供应系统
CN112856233B (zh) * 2020-12-31 2021-09-03 海卓动力(青岛)能源科技有限公司 一种质子交换膜燃料电池的脉冲氢气供应系统
CN114094140A (zh) * 2021-09-28 2022-02-25 东风汽车集团股份有限公司 氢燃料电池车辆及其供氢系统和供氢方法
CN114094140B (zh) * 2021-09-28 2024-04-16 东风汽车集团股份有限公司 氢燃料电池车辆及其供氢系统和供氢方法

Also Published As

Publication number Publication date
CN110911712A (zh) 2020-03-24
JP2022501771A (ja) 2022-01-06
EP3751651A4 (en) 2021-12-01
CN110911712B (zh) 2021-11-02
JP7132662B2 (ja) 2022-09-07
EP3751651A1 (en) 2020-12-16
US20210202965A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
WO2020057116A1 (zh) 一种燃料电池系统及其停机启动时吹扫和排水的方法
CN111029620B (zh) 一种带有尾排集氮装置的燃料电池系统及停机吹扫方法
CN112366336B (zh) 一种用于质子交换膜燃料电池的吹扫方法及系统
CN109216734B (zh) 一种有助于燃料电池增湿和低温启动的辅助系统
CN111082098A (zh) 一种燃料电池系统停机方法
CN111082106B (zh) 一种燃料电池启停机控制方法
CN115036540B (zh) 一种燃料电池系统停机方法
KR100962382B1 (ko) 수소 재순환 장치를 구비한 연료전지 시스템
JP2005032652A (ja) 燃料電池システム
JP2005100820A (ja) 燃料電池システム
CN113497256A (zh) 一种燃料电池系统及氮气吹扫系统
JP2008181768A (ja) 燃料電池システム
JP4352462B2 (ja) 液体燃料形燃料電池システムとその運転方法
US11843145B2 (en) Apparatus for reducing exhaust hydrogen concentration in a fuel cell system and a method thereof
WO2013099097A1 (ja) 直接酸化型燃料電池システム
CN210489740U (zh) 一种质子交换膜燃料电池吹扫装置
CN117239179B (zh) 燃料电池系统限制高电位的启动方法及高电压放电系统
JP2007018837A (ja) 燃料電池の水素ガス希釈装置
CN115360384B (zh) 一种延长车用氢燃料电池系统使用寿命的方法
US20230261217A1 (en) Anode recovery system of fuel cell
JP7512338B2 (ja) 燃料電池システム
JP2004134227A (ja) 燃料電池発電設備とその運転停止方法
JP2006156283A (ja) 燃料電池システム
JP2024042153A (ja) 燃料電池システム
CN116247233A (zh) 燃料电池车辆及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862491

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019862491

Country of ref document: EP

Effective date: 20200907

ENP Entry into the national phase

Ref document number: 2021514612

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE