WO2020056951A1 - 多层金属焊接装置及其焊接方法 - Google Patents

多层金属焊接装置及其焊接方法 Download PDF

Info

Publication number
WO2020056951A1
WO2020056951A1 PCT/CN2018/121500 CN2018121500W WO2020056951A1 WO 2020056951 A1 WO2020056951 A1 WO 2020056951A1 CN 2018121500 W CN2018121500 W CN 2018121500W WO 2020056951 A1 WO2020056951 A1 WO 2020056951A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
controller
electric cylinder
axis
workpiece
Prior art date
Application number
PCT/CN2018/121500
Other languages
English (en)
French (fr)
Inventor
木下勲
Original Assignee
优尼恩电机(大连)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 优尼恩电机(大连)有限公司 filed Critical 优尼恩电机(大连)有限公司
Priority to JP2019502244A priority Critical patent/JP7016346B2/ja
Publication of WO2020056951A1 publication Critical patent/WO2020056951A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/002Resistance welding; Severing by resistance heating specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/36Auxiliary equipment

Definitions

  • the invention relates to a welding device, in particular to a resistance welding device for multilayer metal and a welding method thereof.
  • the welding methods of high-power lithium batteries, hydrogen batteries, and fuel cells are basically ultrasonic welding, and ultrasonic welding is a type of friction welding; therefore, there are dozens or hundreds of layers of aluminum foil or copper.
  • ultrasonic welding is a type of friction welding; therefore, there are dozens or hundreds of layers of aluminum foil or copper.
  • fine metal powder or welding slag is hidden in the multilayer metal foil interlayer due to the mutual friction of metal materials, and the interlayer metal powder or welding slag cannot be cleaned directly. Clean and directly applied to battery products; therefore, when a battery with an electrolyte is in the process of charging and discharging, the liquid will generate air bubbles inside the battery to impact the flow, washing out the metal powder or welding slag in the metal foil interlayer.
  • the metal powder or the welding slag in the electrolyte reaches a certain concentration, the battery will have a short circuit or an electric leakage, which will affect the battery life.
  • Japanese patent CN104981316A provides a method for manufacturing a laminated metal foil, a method for manufacturing a sealed battery including the method for manufacturing a laminated metal foil, and a sealed battery, which belong to the category of resistance welding and mainly include the following steps: a first step, The laminated metal foil welding part passes through a linear slit in the direction of lamination by means of a cutter, and then closes.
  • the electrode of the resistance welding is pressed to the close welding position, and then the electric welding is performed; the method of the patent It mainly solves the problem that laminated aluminum foil or copper foil and other laminated metals do not generate welding slag or metal powder and welding sparks during the welding process; therefore, the device has a large volume, heavy weight, many processes, The nugget is small, the nugget at the knife edge is bridging and unstable, and the cycle time is long.
  • the object of the present invention is to provide a welding device and a welding method for multilayer metal, which ensure small volume, light weight, strong function, high efficiency, and large nugget. Low cost and good product consistency.
  • it can also take into account non-polluting electrolyte, good on-site environment, compact structure, fully automatic, intelligent welding device, and maintenance-free during operation. Long life, precision resistance welding device without manual operation.
  • the multilayer metal welding device includes a frame, an electric cylinder group, a pressure follower mechanism, a stretching mechanism, a robot component, a welding component, a power source component, and a workpiece; the frame is separately from an electric cylinder group, a stretching mechanism, a robot component, Welding components, power components;
  • the electric cylinder group further includes an upper electric cylinder and a lower electric cylinder; the upper electric cylinder is connected to the frame and the pressure follower mechanism; the lower electric cylinder is connected to the frame and the stretching mechanism; The pressure follower mechanism is connected to the upper electric cylinder and the welding component respectively; the stretching mechanism is connected to the frame, the lower electric cylinder and the workpiece; the manipulator component is connected to the frame; the welding component is connected to the frame and pressure respectively.
  • Servo mechanism and workpiece connection; the power supply components are connected to the frame, welding component, electric cylinder group, and robot component respectively;
  • the frame includes a table, a column, a guide rod, and a support rod; the table is connected to the column, a guide rod, a support rod, a stretching mechanism, a welding component, and a power source component; the column and the table are connected;
  • the guide rods are respectively connected to the table surface and the electric cylinder group;
  • the supporting rods are respectively connected to the table surface and the electric cylinder group;
  • the pressure follow-up mechanism includes an upper pressure plate, an adjusting nut, a lower pressure plate, a lower self-locking nut, a top rod, and a spring; and the upper pressure plate is respectively a pressure rod, a self-locking nut, an adjusting nut, a spring, Ejector rod connection; the adjusting nut is connected with the upper pressure plate and ejector rod respectively; the lower pressure plate is connected with the upper insulation plate, lower self-locking nut, ejector rod and spring respectively; the lower self-locking nut Respectively connected to the upper lever, the lower lever; the upper lever is connected to the upper lever, the adjusting nut, the lower lever, the lower self-locking nut, and the spring; the spring is respectively connected to the upper lever, the upper lever, and the lower lever ;
  • the stretching mechanism includes an L upper nut, an L upper plate, a tie rod, an L lower nut, an L lower plate, an L sliding bearing, an L lower gland, and an L upper gland; the L upper nut and the L upper plate and tie rod are connected; the L upper plate is connected with workpiece, L upper nut and tie rod respectively; the draw rod is respectively connected with L upper nut, L upper plate, L lower nut, L lower plate, L The sliding bearing, the L lower gland, and the L upper gland are connected; the L lower nut is connected to the tie rod and the L lower plate respectively; the L lower plate is respectively connected to the lower rod of the electric cylinder and the lower cylinder of the G Self-locking nut, tie rod, and L lower nut are connected; the L sliding bearing is connected to the table, L upper gland, and L lower gland respectively; the L lower gland is respectively connected to the table, rod and L sliding bearing Connection; the L upper gland is connected to the table, the draw rod, and the L sliding bearing respectively;
  • the manipulator assembly includes a cross slide table, a rotary shaft, a Y axis, and a clamping component; the cross slide table is connected to a table surface, a rotary shaft, and a power supply component respectively; and the rotary shaft is connected to the cross slide table and Y axis, respectively.
  • the power supply component is connected; the clamping component is connected to the Y axis; the cross slide table also includes the X axis and the Z axis; the X axis is connected to the table surface and the Z axis respectively; the Z axis and the X axis, rotary axis connection;
  • the welding assembly includes an upper insulating plate, a positive pole of a power source, an extension rod, a positive electrode, a negative electrode, a negative pole of a power source, and a lower insulating plate; the upper insulating plate is respectively connected to the positive pole of the power source and the lower pressing plate; and the positive pole of the power source is respectively It is connected to the upper insulation plate and the extension rod; the extension rod is connected to the positive pole and the positive electrode of the power supply respectively; the positive electrode is connected to the extension pole and the work piece; the negative electrode is connected to the work piece and the power supply negative pole respectively; The negative electrode of the power supply is connected to the negative electrode and the lower insulating plate; the lower insulating plate is connected to the negative electrode of the power supply and the table; the workpiece is connected to the positive electrode, the negative electrode, and the upper plate;
  • the power supply component further includes a human-machine interface, an execution component, a controller, a welding power source, and a driver; the human-machine interface is connected to the controller; the execution component is connected to the controller; and the controller is respectively Human machine interface, executive component, trigger, welding power source, driver connection; the welding power source is connected to the executive component and controller respectively; the driver and controller are connected;
  • the man-machine interface includes a touch screen, a transmission line, and a power interface; the touch screen is connected to a transmission line and a power interface respectively; the transmission line is connected to a touch screen and a transistor controller; the power interface is separately isolated from the mains power supply Touch screen connection;
  • the execution component is composed of 10 to 30 relays.
  • the relays have the same structure, principle, performance, parameters, and dimensions, and the same assembly and connection methods.
  • the relay coils are connected to a DC power supply and a relay controller.
  • the relay contact part is respectively connected with the main control power source, driver, welding power source, power source negative electrode, and power source positive electrode;
  • the controller also includes a transistor controller, a relay controller, an AD module, and a DA module;
  • the transistor controller is connected to a human-machine interface, a relay controller, a driver, and a welding power source;
  • the relay controllers are respectively Connected to the executive component, welding power source, transistor controller, and AD module;
  • the AD module is connected to the welding power source, relay controller, and DA module;
  • the DA module is connected to the welding power source, driver, and AD module;
  • the driver includes a power source, a position servo drive component, and a torque servo drive component; the power supply is connected to the position servo drive component and the torque servo drive component; the position servo drive component is connected to a power source and a robot component respectively;
  • the torque servo drive assembly described above is connected to the power supply and electric cylinder respectively;
  • the position servo drive assembly consists of 4 sets of position servo drive components, which are respectively connected to the X-axis motor, Y-axis motor, and rotary axis motor of the cross slide and Y
  • the motor of the shaft is connected;
  • the position driving component includes a position driver and a position servo motor; the position driver is respectively connected with a transistor controller and a position servo motor, and the position servo motor is respectively connected with a position driver, an X-axis motor or It is a Y-axis motor or a rotary axis motor or a Y-axis motor connection;
  • the welding power source includes a grid circuit, a welding circuit group, and a correction circuit group; the main circuits of the curtain circuit, the welding circuit group, and the correction circuit group are connected in parallel with the power source positive pole, the power source negative pole, and ZK1 in the relay, respectively. Normally closed contacts are connected, and the trigger of the trigger circuit is connected to the transistor controller and thyristor respectively.
  • the curtain grid circuit includes LM-1 in the trigger, KT1 in the thyristor, freewheeling diode, inductor, diode, CN1 in the energy storage component, and high voltage energy storage;
  • LM- in the trigger 1 is connected to KT1 in the transistor controller and thyristor respectively;
  • the KT1 in the thyristor is connected in parallel with the freewheeling diode and ZK1 in the positive pole of the power supply and the relay;
  • the freewheeling diode is connected to KT1 in the thyristor is connected in parallel to the positive pole of the power supply and ZK1 in the relay, respectively;
  • the inductor is connected to KT1 in the thyristor, freewheeling diode, diode, and high-voltage energy storage;
  • the diodes are respectively connected Connected to CN1 in the inductor, high voltage energy storage, and energy storage components;
  • CN1 in the energy storage component is connected to the negative pole of the
  • the welding circuit group is composed of 1 to 10 welding branches with the same structure, principle and parameters.
  • the welding branch includes LM-2 in the trigger, KT2 in the thyristor, and energy storage components.
  • LM-2 in the trigger is connected to the transistor controller and KT2 in the thyristor;
  • KT2 in the thyristor is connected to LM-2 and the energy storage component in the trigger respectively CN2 in the connection;
  • CN2 in the energy storage component is connected to KT2 in the thyristor and the negative pole of the power supply respectively;
  • the correction circuit group is composed of 1 to 10 correction branches having the same structure, principle, and parameters.
  • the correction branches include LM-3 in a trigger, KT3 in a thyristor, and energy storage components.
  • CN3 of the trigger; LM-3 in the trigger is connected to the transistor controller and KT3 in the thyristor; KT3 in the thyristor is connected to LM-3 in the trigger and the energy storage component CN3 connection;
  • CN3 in the energy storage component is connected to KT3 in the thyristor and the negative pole of the power supply respectively;
  • the energy storage component further includes a capacitor, a feedback resistor, a charging power source, a FD3 in a power-off resistor, a ZK3 in a safety switch, a RG3 in a power tube, and a power-off control; after the capacitor, the feedback resistor, and the charging power source are connected in parallel, Connected separately to FD3 in the discharge resistor, safety switch, KT3 in the thyristor, and ZK3 in the negative pole of the power supply; FD3 in the described discharge resistor is connected to KT3 in the thyristor, capacitor, feedback resistor, charging The power supply, ZK3 in the safety switch, and RG3 in the power tube; the ZK3 in the safety switch, and RG3 in the power tube are connected in parallel with the FD3 in the discharge resistor and the negative pole of the power supply; Connect with DA module, power tube, DC power supply, power supply negative pole;
  • the positive electrode and the negative electrode have the same principle, structure, and dimensional chain, and are assembled on the same axis and placed in a mirror image, that is, the outer circle M of the positive electrode and the negative electrode is coaxial, and the N of the spherical surface SR is coaxial;
  • the size of the rounded corner C of the positive electrode is 10 to 30 times the size of H; the height of the spherical SR of the positive electrode is 0.2 times the thickness of the workpiece; the diameter of the spherical SR of the positive electrode is 10 to 100 times the thickness of the workpiece;
  • the size range of the contour line ⁇ R of the positive electrode is between one-half and three-quarters of the diameter ⁇ D of the positive electrode.
  • the contour line ⁇ R is 1 to 5;
  • the spherical surface SR of the positive electrode is 1 to 100. When the spherical surface SR is one, the axis of the spherical surface SR is coaxial with the outer circle M.
  • the spherical surface SR is The center line is placed on the contour line ⁇ R and uniformly distributed on the contour line ⁇ R, and the outer circle X of one spherical surface SR and the outer circle X of an adjacent spherical surface SR must not intersect, and the distance between X and X must not be less than 2mm; when one contour line cannot place multiple spherical SRs as required, the contour lines can be evenly distributed between one-half and three-quarters of the diameter ⁇ D of the positive electrode, and then the spherical SRs can be evenly distributed on each contour line.
  • the positive electrode and the negative electrode may be circular or square, but whether it is circular or square, the welding surface of the positive electrode and the negative electrode has a discharge boss H, and the connection between the boss H and the plane is Smooth surface connection.
  • the structure, principle, dimensional chain, performance and parameters of the upper electric cylinder and the lower electric cylinder are completely the same.
  • the pressure of the upper electric cylinder is 10-15000 kg, and the upper electric cylinder is a torque motor with a brake.
  • the motor power is 1 To 10 kilowatts.
  • the curtain grid circuit, the welding circuit group, and the correction circuit group adopt a parallel circuit structure and a tree discharge method, that is, the voltage resistance and capacity of the capacitance of each circuit are different, and can be selected according to the current required by the welding workpiece. Any circuit discharge can be used alone or in combination. It can also be intermittently or intermittently discharged according to the sequence.
  • the curtain grid circuit is a superimposed power supply of high and low voltage combination. The high and low voltage power switching is automatically switched by a diode.
  • the welding circuit group and the correction circuit group are interchangeable and universal, that is, the welding circuit group and the correction circuit group can be used as a welding module or as a correction module.
  • the high-voltage energy storage charging voltage and discharging voltage are greater than 500 volts.
  • the energy storage components are 1 to 20 circuits; each circuit can be used independently, in parallel, or intermittently.
  • the energy storage components can be charged separately or simultaneously.
  • the workpiece refers to aluminum foil, copper foil, aluminum strip, copper strip or aluminum substrate surface treatment material or copper substrate surface treatment material between 2 and 500 layers, and the thickness of the substrate is between 0.006mm and 1mm. between.
  • the upper electric cylinder and the lower electric cylinder have the same structure and principle, and are arranged in mirror and coaxial.
  • the welding method of a multilayer metal welding device includes the following steps:
  • Preparation steps According to the technical requirements of the workpiece, select the electrode shape of the positive electrode and the negative electrode, and calculate the material resistance of the workpiece, the number of layers to be welded and the total resistance, and the resistance of the oxide film of different layers. Through welding; then select the ⁇ D size of the positive and negative electrodes according to the required welding area, and calculate the number of spherical SR and contour lines ⁇ R and the number of uniform distributions, and the number of nuggets formed by welding nuggets; finally according to the different materials and colored Metal cold work hardening characteristics. Calculate the torque of the electric cylinder group and the yield point and hardness reduction of the workpiece due to high heat.
  • step B Self-test step: After the preparation step of step A is completed, the multi-layer metal welding device enters self-check step B. First, check whether the emergency stop and alarm are valid. If it is valid, the controller sends an audible and visual alarm signal to the execution component. At the same time, the fault location and troubleshooting method are sent to the touch screen through the transmission line. Secondly, check whether the axis motion pair is at the origin position. If it is not at the origin position, the touch screen displays which axis is not at the origin position and displays "Whether to return according to the specified path and axis motion order "Go to the origin position"; Finally, when the controller is initialized and the self-test passes, "Please select the welding workpiece number" is displayed on the touch screen.
  • the controller automatically jumps to the automatic step E to start Automatic cycle welding operation; if a new workpiece is selected, the controller automatically jumps to the jog control / parameter setting menu page; at this time, the self-test step B is completed, and it enters the setting step C or the automatic step E;
  • step B After processing in step B, the controller automatically jumps to setting step C, and switches the screen of the touch screen to the jog control / parameter setting menu; then according to the data calculated in preparation step A, set the parameters Enter the manipulator part, preload part, pretension part, discharge part, charging part, and unloading part respectively; among them: the manipulator part is taken out of the feeding rack and placed in the welding coordinates between the positive electrode and the negative electrode Wait for welding, when the welding is completed, move the workpiece to the discharge rack; during this period, the working speed of the electric cylinder and the electric cylinder of the robot X axis, Y axis, Z axis, and rotary axis can be adjusted and set parameters online The adjusted and set parameters can be manually jogged to test the X-axis, Y-axis, Z-axis, rotary axis upper and lower electric cylinders' operating speed, linkage interpolation, and soft interruption tests until the process requirements are met At the same time, the manipulator can also automatically determine
  • the pre-pressing part is the above electric cylinder as the power source. Drag the upper electric cylinder, the pressure follower mechanism, the upper insulating plate of the welding assembly, the positive pole of the power supply, the extension rod, the positive electrode to move toward the workpiece, and use the negative electrode as a fixed reference. Apply pressure to the workpiece. The magnitude of the pressure can be modified online on the touch screen, and it automatically triggers and adjusts the pressure value in real time.
  • the feedback signal is fed back to the transistor controller, and then the transistor controller and the pressure value entered by the touch screen perform In comparison, if the feedback value is equal to the input pressure value, the electric cylinder brake is turned off and the electric cylinder stops working; when the feedback value is greater than the input pressure value, the electric cylinder moves in the opposite direction of the workpiece until the feedback value is equal to the input pressure.
  • the pre-tension part is the lower electric cylinder dragging the stretching mechanism to move toward the workpiece, and the workpiece is used as a fixed reference basis to apply pressure to the workpiece.
  • the size can be modified online on the touch screen, and the pressure value is automatically triggered and adjusted in real time; at this time, the movement
  • the parameter setting and adjustment of each axis are completed, and the energy storage and discharge parameter settings are entered; that is, the curtain grid circuit is first set, that is, the breakdown voltage of the oxide film is calculated according to the thickness and number of layers of the oxide film of the workpiece to be welded.
  • the voltage is the high-voltage energy storage charging voltage.
  • the charging voltage selection range is 500 to 5000 volts, and then the CN1 charging voltage in the energy storage component is set.
  • the charging voltage selection range is 20 to 100 volts.
  • the calculation method is the workpiece preheating time and preheating.
  • the second is to set the welding circuit group, that is, select the welding power of the workpiece, that is, calculate the welding power and welding current according to the thickness, number of layers, and welding area of each workpiece, and then Select the number of welding branches according to the welding power and welding current, and determine the charging voltage of the CN2 group in the energy storage component, and determine whether the welding branches are discharged at the same time or intermittently or sequentially; then input to the controller through the touch screen ,
  • the input charging voltage range is 0 to 50 volts;
  • the last is to set the correction circuit group, the correction branch charging voltage value is The voltage value is divided by the number of correction branches to charge each correction branch, and it is entered into the controller on the touch screen.
  • the input charging voltage range is 0 to 50 volts; at this time; the setting step B is completed, and the automatic step D is entered. ;
  • step D After the processing of the setting step in step C is completed, the controller automatically jumps to the automatic step D and waits for an automatic operation command issued manually.
  • the device automatically runs; first, When the controller receives the automatic operation command of the touch screen, the controller will issue X axis, Y axis, Z axis, rotary axis, upper electric cylinder and lower electric cylinder to return to zero point automatically. After that, the clamps of the clamping assembly are opened, the L upper plate is opened, and the discharge relay is attracted, and at the same time, it is judged whether the feeding rack has material and which rack has material. If there is no material, the robot automatically enters the waiting program.
  • the controller When the material is loaded, the controller will send a command to which rack to pick and move order. At this time, the X axis, Y axis, Z axis, and rotary axis will follow the running distance and speed of the position data control table to the specified coordinates.
  • the positioning fixture After the workpiece is placed in the positioning fixture, the positioning fixture sends a workpiece positioning instruction to the controller.
  • the controller sends a release command to the clamping assembly, and retracts the Z axis of the arm to the origin position to wait; when the controller receives the Z axis reaches the origin command, it issues a pressing command for the electric cylinder, and drags L by the electric cylinder.
  • the discharge sequence of the correction circuit group is: when the controller detects the discharge completion signal of the welding circuit group, it immediately averages and analyzes the welding circuit group to determine whether the power, resistance, voltage, and current meet the set requirements; if not, the controller Will calculate the error value generated by the welding circuit group, and then the parallel value of the correction branch or the correction branches in the correction circuit group is close to or equal to the error value, and then the secondary discharge, Used to supplement the lack of welding energy;
  • the controller When the controller detects the completion signal of the secondary discharge; the controller first issues the relay power-off command, and then issues the power-up and power-down instructions. When the controller detects the power-down and power-on signals, it again Extend the arm of the Z axis and reach the coordinates of the workpiece. Then, the clamping assembly clamps the workpiece to the empty position of the discharge port; then the robot returns to the original position. At this time, the first work cycle is completed. If the work continues, the equipment will Repeated work; if a manual intervention is issued to end the command, at this time, automatic step D is completed and the process proceeds to power off step E;
  • step D After the automatic step processing in step D is completed, the controller sends a servo enable shutdown command to detect whether the relay is disconnected and the capacitor is discharged, and then the power is automatically turned off. When the controller automatically turns off the power, it also Cut off the power supply to the controller itself.
  • the present invention has the following beneficial effects:
  • the present invention uses a multi-network tree-shaped discharge structure of high and low voltage power supplies; therefore, the welding device is changed from 3 processes to 1 process, and it is formed at one time; therefore, the welding device has a small size and light weight. , Strong function, high efficiency, low cost, compact structure.
  • the welding nugget has excellent physical and mechanical properties and chemical stability. Good use effect, long life and large nugget.
  • the surface of the product welded by the present invention does not require any treatment, and no particles or powder or welding slag is generated during the welding process; therefore, the products manufactured by this device do not pollute the electrolyte and have good site environment.
  • the device adopts a fully automatic intelligent control technology; therefore, the device does not need human intervention and operation during the operation process, and product quality problems do not occur due to human factors; therefore, the products produced by the device are stable and reliable Good consistency.
  • the present invention has a total of 9 drawings. among them:
  • FIG. 1 is a flowchart of a multilayer metal welding apparatus.
  • FIG. 2 is a schematic plan view of a multilayer metal welding device.
  • FIG. 3 is a schematic cross-sectional view taken along AA in FIG. 2.
  • FIG. 4 is a schematic right side view of FIG. 3.
  • FIG. 5 is a schematic diagram of a tree discharge waveform.
  • Fig. 6 is a schematic front view of an electrode of a multilayer metal welding device.
  • FIG. 7 is a schematic top view of FIG. 6.
  • FIG. 8 is an enlarged view of B in FIG. 3.
  • Fig. 9 is a schematic diagram of the electrical part of the multilayer metal welding apparatus.
  • Multi-layer metal welding device including frame, electric cylinder group, pressure follower mechanism, stretching mechanism, manipulator component, welding component, power supply component 3, and workpiece 62;
  • the frame is separately from electric cylinder group, stretching mechanism, and robot arm Assembly, welding assembly, power supply assembly 3;
  • the electric cylinder group further includes an upper electric cylinder 4 and a lower electric cylinder 5;
  • the upper electric cylinder 4 is respectively connected with a frame and a pressure follower mechanism;
  • the lower electric cylinder 5 are respectively connected to the frame and the stretching mechanism;
  • the pressure follower mechanism is connected to the upper electric cylinder 4 and the welding component;
  • the stretching mechanism is connected to the frame, the lower electric cylinder 5, and the workpiece 62;
  • the robot component is connected to the frame;
  • the welding component is connected to the frame, the pressure follower mechanism, and the workpiece 62;
  • the power supply component 3 is connected to the frame, the welding component, the electric cylinder group, and the robot component respectively;
  • the frame includes a table 1, a column 2, a guide rod 10, and a support rod 17; the table 1 is connected to a column 2, a guide rod 10, a support rod 17, a stretching mechanism, a welding component, and a power source component 3;
  • the upright column 2 is connected to the table surface 1;
  • the guide rod 10 is connected to the table surface 1 and the electric cylinder group;
  • the support rod 17 is connected to the table surface 1 and the electric cylinder group;
  • the pressure follow-up mechanism includes an upper pressure plate 48, an adjustment nut 49, a lower pressure plate 52, a lower self-locking nut 54, a top rod 40, and a spring 51.
  • the upper pressure plate 48 and the pressure rod and the self-locking nut are respectively The adjusting nut 49, the spring 51 and the ejector pin 40 are connected; the adjusting nut 49 is respectively connected to the upper pressing plate 48 and the ejector pin 40; the lower pressing plate 52 is respectively connected to the upper insulating plate 53 and the lower self-locking nut 54.
  • the ejector lever 40 and the spring 51 are connected; the lower self-locking nut 54 is connected to the ejector lever 40 and the lower pressure plate 52 respectively; the ejector lever 40 is connected to the upper anchor plate 48, the adjusting nut 49 and the lower anchor plate 52, respectively.
  • the lower self-locking nut 54 and the spring 51 are connected; the spring 51 is connected to the ejector lever 40, the upper pressure plate 48, and the lower pressure plate 52, respectively;
  • the stretching mechanism includes an L upper nut 58, an L upper plate 59, a tie rod 60, an L lower nut 61, an L lower plate 66, an L sliding bearing 67, an L lower gland 68, and an L upper gland 69;
  • the L upper nut 58 is connected to the L upper plate 59 and the tie rod 60;
  • the L upper plate 59 is connected to the workpiece 62, the L upper nut 58 and the tie rod 60;
  • the pull rod 60 is respectively connected to the L upper nut Cap 58, L upper plate 59, L lower nut 61, L lower plate 66, L sliding bearing 67, L lower gland 68, L upper gland 69 are connected;
  • the L lower nut 61 is respectively connected with the lever 60,
  • the L lower plate 66 is connected;
  • the L lower plate 66 is respectively connected to the pressure rod of the lower electric cylinder, the G self-locking nut of the lower electric cylinder, the tie rod 60, and the L lower nut 61;
  • the manipulator assembly includes a cross slide table 6, a rotary shaft 7, a Y axis 8, and a clamping component 9;
  • the cross slide table 6 is respectively connected to the table surface 1, the rotary shaft 7, and the power supply component 3;
  • the rotary shaft 7 is connected to the cross slide 6, Y axis 8, and power module 3 respectively;
  • the clamping assembly 9 is connected to the Y axis 8;
  • the cross slide 6 also includes an X axis and a Z axis; and the X axis Respectively connected to the table surface 1 and the Z axis;
  • the Z axis is connected to the X axis and the rotation axis 7 respectively;
  • the welding assembly includes an upper insulating plate 53, a power source positive electrode 55, an extension rod 56, a positive electrode 57, a negative electrode 63, a power source negative electrode 64, and a lower insulating plate 65.
  • the pressure plate 52 is connected; the positive pole 55 of the power supply is connected to the upper insulation plate 53 and the extension rod 56 respectively; the extended pole 56 is connected to the positive power supply 55 and the positive electrode 57 respectively; the positive electrode 57 is respectively connected to the extension rod 56
  • the work piece 62 is connected; the negative electrode 63 is connected to the work piece 62 and the power supply negative electrode 64 respectively; the power supply negative electrode 64 is connected to the negative electrode 63 and the lower insulation plate 65 respectively; the lower insulation plate 65 is connected to the power supply negative electrode respectively 64.
  • the workpiece 62 is connected to the positive electrode 57, the negative electrode 63, and the upper plate 59 respectively;
  • the power supply assembly 3 further includes a human-machine interface 124, an execution component 125, a controller 128, a welding power source 126, and a driver 127;
  • the human-machine interface 124 is connected to the controller 128; the execution component 125 and the controller 128 connection; the controller 128 is connected to the human-machine interface 124, the execution component 125, the trigger 136, the welding power source 126, and the driver 127;
  • the welding power source 126 is connected to the execution component 125 and the controller 128;
  • the driver 127 and the controller 128 described above are connected;
  • the human-machine interface 124 includes a touch screen 130, a transmission line 129, and a power interface; the touch screen 130 is connected to the transmission line 129 and a power interface respectively; the transmission line 129 is connected to the touch screen 130 and the transistor controller 131; The power interface is respectively connected to the mains isolated power supply and the touch screen 130;
  • the execution component 125 is composed of 10-30 relays 135.
  • the structure, principle, performance, parameters, and dimensions of the relay 135 are the same, and the assembly and connection methods are the same.
  • the relay controller 132 is connected, and the contact portions of the relay 135 are respectively connected to the main control power supply, the driver 127, the welding power supply 126, the power supply negative 64, and the power supply positive 55;
  • the controller 128 further includes a transistor controller 131, a relay controller 132, an AD module 133, and a DA module 134; the transistor controller 131 and the human-machine interface 124, the relay controller 132, the driver 127, and the welding power source are respectively 126 connection; the relay controller 132 is connected to the execution component 125, welding power source 126, transistor controller 131, and AD module 133; the AD module 133 is connected to the welding power source 126, relay controller 132, and DA module 134, respectively Connection; the DA module 134 is connected to the welding power source 126, the driver 127, and the AD module 133, respectively;
  • the driver 127 includes a power source, a position servo drive component, and a torque servo drive component; the power supply is connected to the position servo drive component and the torque servo drive component; the position servo drive component is connected to a power source and a robot component, respectively;
  • the torque servo drive assembly is respectively connected to a power source and an electric cylinder group;
  • the position servo drive assembly is composed of 4 sets of position servo drive components, which are respectively connected to the X-axis motor, Y-axis motor and rotary shaft 7 of the cross slide table 6
  • the motor is connected to the motor of the Y axis 8;
  • the position driving member includes a position driver 139 and a position servo motor 73; the position driver 139 is respectively connected to the transistor controller 131 and the position servo motor 73, and the position servo motor 73 is connected to the position driver 139, the X-axis motor or the Y-axis motor or the rotary axi
  • the torque servo component includes a torque driver 141 and a torque motor 11;
  • the torque of the drive transistor 141 respectively, and a controller 131, DA module 134, connected to the torque motor 11;
  • the torque and the torque of the drive motor 11, respectively 141, the power cylinder 4 or the motor is electrically connected to the motor cylinder 5;
  • the welding power source 126 includes a grid circuit 154, a welding circuit group 155, and a correction circuit group 156; the main circuits of the curtain circuit 154, the welding circuit group 155, and the correction circuit group 156 are connected in parallel with the power source positive electrode 55, The negative pole 64 of the power supply and the normally closed contact of ZK1 in the relay 135 are connected, and the trigger 136 of the trigger circuit is correspondingly connected to the transistor controller 131 and the thyristor 137 respectively;
  • the grid circuit 154 includes LM-1 in the trigger 136, KT1 in the thyristor 137, freewheeling diode 157, inductor 143, diode 151, CN1 in the energy storage component 138, and high-voltage energy storage 98;
  • the LM-1 in the flip-flop 136 is connected to the KT1 in the transistor controller 131 and the thyristor 137, respectively;
  • the KT1 in the thyristor 137 is connected in parallel with the freewheeling diode 157, and is connected to the positive electrode 55 and the relay respectively ZK1 and inductor 143 in 135 are connected;
  • the freewheeling diode 157 is connected in parallel with KT1 in thyristor 137 and connected to positive pole 55 and ZK1 and inductor 143 in relay 135 respectively;
  • the welding circuit group 155 is composed of 1-10 welding branches with the same structure, principle and parameters; the welding branch includes LM-2 in the trigger 136, KT2 in the thyristor 137, CN2 in the energy storage component 138; LM-2 in the flip-flop 136 is connected to the transistor controller 131 and KT2 in the thyristor 137; KT2 in the thyristor 137 is connected to the trigger 136 respectively LM-2 and CN2 in the energy storage component 138 are connected; CN2 in the energy storage component 138 is connected to KT2 and thyristor 64 in the thyristor 137 respectively;
  • the correction circuit group 156 is composed of 1-10 correction branches having the same structure, principle, and parameters.
  • the correction branch includes LM-3 in the trigger 136, KT3 in the thyristor 137, and storage.
  • LM-3 in flip-flop 136 is connected to KT3 in transistor controller 131 and thyristor 137;
  • KT3 in thyristor 137 is connected to flip-flop 136 LM-3 and CN3 in the energy storage component 138 are connected;
  • CN3 in the energy storage component 138 is respectively connected to KT3 in the thyristor 137 and the negative pole 64 of the power supply;
  • the energy storage component 138 further includes a capacitor 149, a feedback resistor 148, a charging power source 147, an FD3 in the power-off resistor 150, a ZK3 in the safety switch 146, an RG3 in the power tube 145, and a power-off control 144; the capacitor 149.
  • the feedback resistor 148 and the charging power source 147 are connected in parallel with the FD3, the safety switch 146, the thyristor 137 in the thyristor 137, and the ZK3 in the negative power supply 64 of the power-off resistor 150; FD3 and KT3 in capacitor 137, capacitor 149, feedback resistor 148, charging power source 147, ZK3 in safety switch 146, and RG3 in power tube 145; ZK3 in safety switch 146, and power tube 145, respectively RG3 is connected in parallel to FD3 and power supply negative 64 in the power-discharging resistor 150; the power-discharge control 144 is connected to the DA module 134, power tube 145, DC power supply, and power negative 64 respectively;
  • the positive electrode 57 and the negative electrode 63 have the same principle, structure, and dimensional chain, and are assembled on the same axis and placed in a mirror image, that is, the outer circle M of the positive electrode 57 and the negative electrode 63 is coaxial, and the spherical surface SR has the same N axis;
  • the size of the fillet C of the positive electrode 57 is 10 to 30 times the H size; the height of the spherical SR of the positive electrode 57 is 0.2 times the thickness of the workpiece 62; the diameter of the spherical SR of the positive electrode 57 is 10 times the thickness of the workpiece To 100 times; the size of the outline ⁇ R of the positive electrode 57 is between one-half and three-quarters of the diameter ⁇ D of the positive electrode 57, and the outline ⁇ R is 1 to 5; that is, the outer contour V of the spherical surface SR The diameter dimension is smaller than the diameter of the inner contour line W of the fillet C; the spherical surface SR of the positive electrode 57 is 1 to 100.
  • the axis of the spherical surface SR is coaxial with the outer circle M.
  • the spherical surface SR is 2
  • the center line of the spherical surface SR is placed on the contour line ⁇ R and uniformly distributed on the contour line ⁇ R, and the outer circle X of one spherical surface SR and the outer circle X of an adjacent spherical surface SR must not intersect, X and X
  • the distance between the electrodes must not be less than 2mm; when one contour line cannot place multiple spherical SRs as required, the contour lines can be evenly distributed between one-half and three-quarters of the diameter ⁇ D of the positive electrode 57, and then each contour Spherical SR is evenly distributed on the line.
  • the positive electrode 57 and the negative electrode 63 may be circular or square, but whether they are circular or square, the welding surface of the positive electrode 57 and the negative electrode 63 has a discharge boss H, and the boss H and the Planar connections are smooth surface connections.
  • the structure, principle, dimensional chain, performance and parameters of the upper electric cylinder 4 and the lower electric cylinder 5 are completely the same.
  • the pressure of the upper electric cylinder 4 is 10-15000 kg, and the upper electric cylinder 4 is a torque motor with a brake.
  • the motor power is between 1 and 10 kilowatts.
  • the grid circuit 154, the welding circuit group 155, and the correction circuit group 156 adopt a parallel circuit structure and a tree discharge method, that is, the withstand voltage and capacity of the capacitor 149 of each circuit are different. With different currents, any circuit discharge can be selected, which can be used alone or in combination. It can also be intermittently or intermittently discharged according to the sequence.
  • the curtain grid circuit 154 is a superimposed power supply of high and low voltage combination. It is automatically switched by the diode 151; the welding circuit group 155 and the correction circuit group 156 are interchangeable and universal, that is, the welding circuit group 155 and the correction circuit group 156 can be used as a welding module or as a correction module.
  • the charging voltage and discharging voltage of the high-voltage energy storage 98 are greater than 500 volts.
  • the energy storage component 138 is from 1 to 20 circuits; each circuit can be used independently or in parallel or intermittently. The energy storage component 138 can be charged separately or simultaneously.
  • the workpiece 62 refers to an aluminum foil, a copper foil, an aluminum strip, a copper strip, or an aluminum substrate surface treatment material or a copper substrate surface treatment material between 2 and 500 layers.
  • the thickness of the substrate is 0.006 mm to 1 mm. between.
  • the upper electric cylinder 4 and the lower electric cylinder 5 have the same structure and principle, and are mirror-imaged and coaxially placed.
  • the welding method of a multilayer metal welding device includes the following steps:
  • Preparation steps According to the technical requirements of the workpiece 62, select the electrode shape of the positive electrode 57 and the negative electrode 63, and calculate the material resistance of the workpiece 62, the number of layers to be welded and the total resistance, and the oxide resistance of the different layers. Center-point welding or penetration welding; then select the ⁇ D size of the positive electrode 57 and the negative electrode 63 according to the required welding area, and calculate the number and uniform distribution of the spherical SR and the contour line ⁇ R, and the number of nuggets formed by the welding nugget; According to the different materials and the non-ferrous metal cold hardening characteristics, calculate the torque of the electric cylinder group and the yield point and hardness reduction of the workpiece 62 due to high heat.
  • step B Self-testing steps: After the preparation step in step A is completed, the multilayer metal welding device enters self-checking step B. First, check whether the emergency stop and alarm are valid. If it is valid, the controller 128 issues an audible and visual alarm to the execution component 125.
  • Signal at the same time, send the fault location and fault handling method to the touch screen 130 through the transmission line 129; secondly, check whether the motion pair of each axis is at the origin position; if it is not at the origin position, the touch screen 130 displays which axis is not at the origin position, and displays "Whether it follows the prescribed path And the axis movement sequence returns to the origin position "; Finally, when the controller 128 is initialized and passed the self-test," Please select the welding workpiece number "is displayed on the touch screen 130.
  • the controller 128 Automatically jump to the automatic step E to start the automatic cycle welding operation; if the new workpiece is selected, the controller 128 automatically jumps to the jog control / parameter setting menu page; at this time, the self-test step B processing is completed and it enters the setting step C or automatic step E;
  • step B After processing the self-check step in step B, the controller 128 automatically jumps to the setting step C, and switches the screen of the touch screen 130 to the jog control / parameter setting menu; then according to the data calculated in step A, Enter the parameters into the robot part, pre-press part, pre-pulling part, discharge part, charging part, and discharging part respectively.
  • the robot part is taken out of the workpiece 62 from the feeding rack and put into the positive electrode 57 and the negative electrode 63 Wait for welding at the middle welding coordinate.
  • the robot X axis, Y axis, Z axis, and rotary axis 7 are connected to the electric cylinder 4 and the lower electric cylinder 5
  • the working speed can be adjusted and set parameters online.
  • the adjusted and set parameters can be manually jogged to test the X-axis, Y-axis, Z-axis, and rotary axis. Coordinated interpolation and soft interruption testing until the process requirements are met.
  • the manipulator can also automatically determine whether there is material in the feeding rack and the discharging rack, and the order of reclaiming and unloading;
  • the pre-compression part is the above electric cylinder 4 as the power source. Drag the upper electric cylinder, the pressure follower mechanism, the upper insulating plate 53 of the welding assembly, the positive pole 55 of the power supply, the extension rod 56, and the positive electrode 57 to move toward the workpiece 62.
  • the negative electrode 63 is a fixed reference, and applies pressure to the workpiece 62.
  • the pressure can be modified online on the touch screen 130, and the pressure value is automatically triggered and adjusted in real time. At the same time, the feedback signal is fed back to the transistor controller 131, and then The transistor controller 131 is then compared with the pressure value entered by the touch screen 130.
  • the electric cylinder 4 If the feedback value is equal to the entered pressure value, the electric cylinder 4 is braked off and the electric cylinder 4 stops working; when the feedback value is greater than the entered pressure value, the upper The electric cylinder 4 moves in the opposite direction of the workpiece 62, until the feedback value is equal to the input pressure value, the upper electric cylinder 4 is braked off, and the upper electric cylinder 4 stops working; otherwise, the opposite is done; the pre-tension part is the lower electric cylinder 5 drag and stretch
  • the mechanism moves in the direction of the workpiece 62 and uses the workpiece 62 as a fixed reference to apply pressure to the workpiece 62.
  • the magnitude of the pressure can be modified online on the touch screen 130 and automatically triggered in real time Adjust the magnitude of the pressure value; at this time, the parameter settings and adjustments of the axes of the motion pair are completed, and the energy storage and discharge parameter settings are entered; that is, firstly set the curtain grid circuit 154, that is, according to the thickness and layer of the oxide film 62 of the workpiece to be welded Different numbers, calculate the breakdown voltage of the oxide film.
  • the breakdown voltage is the high-voltage energy storage 98 charging voltage.
  • the charging voltage selection range is 500 to 5000 volts, and then the CN1 charging voltage in the energy storage component 138 is set.
  • the charging voltage selection range is 20 to 100 volts
  • the calculation method is the preheating time and preheating temperature of the workpiece 62, the higher the voltage, the longer the preheating time;
  • the welding circuit group 155 is set, that is, the welding power of the workpiece 62 is selected, that is, according to the workpiece 62 Calculate the welding power and welding current for each layer thickness, number of layers, and welding area, and then select the number of welding branches according to the welding power and welding current, and determine the charging voltage of the CN2 group in the energy storage component 138, and determine the welding support
  • the circuit is discharged at the same time or intermittently or sequentially; then it is entered into the controller 128 through the touch screen 130, and the input charging voltage range is 0 to 50
  • the last is to set the correction circuit group 156.
  • the voltage of the correction branch is divided by the voltage value divided by the number of correction branches to charge each correction branch. It is entered into the controller 128 on the touch screen 130.
  • the charging voltage range entered is 0 to 50 volts; at this time; the processing of setting step B is completed and the process proceeds to automatic step D;
  • step D After the processing of the setting step in step C is completed, the controller 128 automatically jumps to the automatic step D and waits for an automatic operation command issued manually.
  • the device automatically runs; First, when the controller 128 receives the automatic operation command of the touch screen 130, the controller 128 will issue the X-axis, Y-axis, Z-axis of the robot part, the rotation axis 7, the upper electric cylinder 4, and the lower electric cylinder 5 to return to zero automatically.
  • the positioning fixture faces the controller 1 28 issued a workpiece 62 in-position instruction, at this time, the controller 128 issued a release command to the clamping assembly, and retracted the arm Z axis to the origin position to wait; when the controller 128 received the Z axis reach origin command, it issued a power down cylinder 5 hold down the command, and drag the upper plate 59 to press the workpiece 62 by the lower electric cylinder 5, where: the pressure of the upper plate 59 is the torque signal set on the touch screen 130; the controller 128 also sends the curtain
  • the grid circuit 154, the welding circuit group 155, and the correction circuit group 156 charge commands, and compare in real time whether the charging voltage of the capacitor 149 is consistent with the charging data entered by the touch screen 130.
  • a charging completion command is sent to the controller 128, and L is detected at the same time.
  • the controller 128 issues a welding instruction; then, the discharge is performed sequentially according to the discharge sequence set by the touch screen 130; that is, the high-voltage energy storage of the curtain grid circuit 154 98 is first discharged.
  • the storage voltage of the high-voltage energy storage 98 is lower than the CN1 storage voltage of the energy storage component 138, the diode 151 is turned on. At this time, the high-voltage energy storage 98 and CN1 in the energy storage component 138 are discharged at the same time;
  • the discharge sequence of the correction circuit group 156 is: when the controller 128 detects the discharge completion signal of the welding circuit group 155, immediately perform an average analysis on the welding circuit group 155 to determine whether the power, resistance, voltage, and current meet the set requirements; if not, If it is satisfied, the controller 128 calculates the error value generated by the welding circuit group 155, and then the parallel value of the correction branch or the correction branches in the correction circuit group 156 is close to or equal to the error value. , And then perform a secondary discharge to supplement the lack of welding energy;
  • the controller 128 When the controller 128 detects the secondary discharge completion signal; the controller 128 first issues the relay 135 power-off command, and then issues the upper electric cylinder 4 and lower electric cylinder 5 open instructions. When the controller 128 detects the lower electric cylinder 5 and upper After the electric cylinder 4 reaches the signal, the Z-axis arm is extended again. After reaching the coordinates of the workpiece 62, the clamping assembly clamps the workpiece 62 to the empty position of the discharge port; then the robot returns to the original position. At this time, the first The work cycle is completed. If the work is continued, the equipment will work repeatedly. If manual intervention is given to end the command, at this time, the automatic step D is completed and the process proceeds to the power-off step E;
  • step D After the automatic step processing in step D is completed, the controller 128 issues a servo enable shutdown command to detect whether the relay 135 is turned off and the capacitor 149 is discharged, and then the power is automatically turned off; the controller 128 automatically turns off the power At the same time, the power supply of the controller 128 itself is also cut off.
  • Working principle of multi-layer metal welding device and welding method Take 120 layers of aluminum foil as an example to explain its working principle; and curtain grid energy storage 153, high voltage energy storage setting range is 500 to 5000 volts, mainly based on workpiece 62 oxide film The thickness and the number of layers are different. The breakdown voltage of the oxide film is calculated to establish a low-resistance channel for the welding surface of the workpiece 62.
  • the setting range of the grid energy storage 153 is 20 to 50 volts, which is mainly determined by the discharge time. The higher the voltage, the longer the discharge time.
  • the charging voltage value can be manually entered and set on the touch screen 130.
  • the measured value can be verified by manual jog discharge to monitor the actual discharge voltage, current and time; welding parameter settings and the jog control module's
  • the charging voltage is the welding energy of the workpiece 62. The higher the voltage, the greater the welding energy.
  • the voltage setting range is 10 to 50 volts.
  • the voltage setting and adjustment and manual testing are also achieved through the touch screen 130; correction parameter settings and jog
  • the data adjustment and testing of the control module is the same as the welding parameter setting and the jog control module, that is, after the pre-pressure of the electric cylinder is completed and braked,
  • the grid circuit 154 sends a trigger signal, KT1 in the thyristor 137 is turned on, and the high-voltage energy storage 98 starts to discharge to the workpiece 62 through the inductor 143. Because of the existence of the inductor 143, the voltage is advanced by 90 degrees and the purpose is to penetrate the workpiece.
  • the component 138 starts to discharge at the same time as the high-voltage energy storage 98.
  • the inductor 143 starts to supply constant current to the workpiece 62 for a long time until the capacitors 149 of the welding circuit group 155 and the correction circuit group 156 are completely discharged.
  • the AD module 133 When the grid energy storage 153 is detected to start discharging, the timer is started.
  • the workpiece 62 is preheated, and the transistor controller 131 sends the welding circuit to the welding circuit.
  • Group 155 issues a single extremely narrow pulse trigger command, KT2 in thyristor 137 is turned on, and energy storage component 138 starts to discharge to workpiece 62. Because there is no inductor 143 in welding circuit group 155, the discharge speed is Very soon, when the voltage or current of the energy storage component 138 of the welding circuit group 155 is close to the voltage or current of the grid circuit 154, the current in KT2 in the thyristor 137 of the welding circuit group 155 is insufficient to maintain continued conduction.
  • KT2 When it is on, KT2 is automatically cut off.
  • the charging part is when the relay controller 132 is turned on, the charging power source 147 starts to charge the capacitor 149.
  • the charging voltage is determined by the input voltage of the touch screen 130.
  • the feedback resistor 148 transmits the feedback signal to the AD module 133 in a proportional manner.
  • the relay controller 132 When the charging voltage of the capacitor 149 reaches the voltage set by the touch screen 130, the relay controller 132 is turned off and the charging of the capacitor 149 is stopped.
  • the DA module 134 will send a voltage signal to the power off control 144, and then the power off control 144 will give the power tube 145 a switching signal to make the power tube 145 conductive. At this time, the capacitor 149 passes The power-off resistor 150 and the power tube 145 are powered off.
  • the AD module 133 detects that the feedback voltage is equal to the modified voltage value of the touch screen 130, the DA module 134 turns off and stops.

Abstract

多层金属焊接装置及其焊接方法,所述的装置包括框架、电缸组、压力随动机构、拉伸机构、机械手组件、焊接组件、电源组件(3)、工件(62);所述的电源组件(3)还包括人机界面(124)、执行组件(125)、控制器(128)、焊接电源(126)、驱动器(127);所述的焊接电源(126)包括帘栅回路(154)、焊接回路组(155)、补正回路组(156);所述的帘栅回路(154)、焊接回路组(155)、补正回路组(156)的主回路并联后分别和电源正极(55)、电源负极(64)、继电器(135)中的ZK1的常闭触点连接,触发回路的触发器(136)分别和晶体管控制器(131)、可控硅(137)对应连接;所述的帘栅回路(154)、焊接回路组(155)、补正回路组(156)采用的是并联电路结构、树形放电方式,具有体积小、重量轻、功能强、效率高、成本低、结构紧凑、焊接熔核物理、化学性能稳定的特点。

Description

多层金属焊接装置及其焊接方法 技术领域
本发明涉及一种焊接装置,特别是一种多层金属的电阻焊焊接装置及其焊接方法。
背景技术
目前,大功率的锂电池、水素电池和燃料电池的焊接方法基本上都是采用超声波焊接,而超声波焊接属于摩擦焊接的一种;因此,在几十层或者是上百层的铝箔或者是铜箔等多层金属的摩擦焊接过程中,会因金属材料的相互摩擦会产生细微的金属粉末或者是焊渣藏在多层的金属箔夹层中,而夹层的金属粉末或者是焊渣无法直接清理干净而被直接应用到电池产品中;所以,当带有电解液的电池在充放电过程中,液体会在电池内部产生气泡冲击流动,将金属箔夹层中的金属粉末或者是焊渣冲洗出来,当电解液中的金属粉末或者是焊渣达到一定浓度时,电池就会产生极板短路或者是漏电现象,影响电池寿命。
日本专利CN104981316A提供了一种叠层金属箔的制造方法、包含叠层金属箔的制造方法的密封型电池的制造方法以及密封型电池,隶属电阻焊接范畴,主要包括以下步骤:第1工序,在叠层的金属箔焊接部位,借助刀具沿叠层方向贯通线状切缝,然后密合;第2工序,将电阻焊的电极压在密合的焊接位置上,然后通电焊接;该专利的方法主要是解决了叠层铝箔或者是铜箔等叠层金属在焊接过程中不产生焊渣或者是金属粉末以及焊接打火等不稳定的问题;因此,该装置体积大、重量重、工序多、熔核小、刀口处的熔核弥合不稳定,工序节拍时间长等缺陷。
发明内容
为了避免上述技术中存在的缺陷和不足之处,本发明的目的是要提供一种多层金属的焊接装置及其焊接方法,在保证体积小、重量轻、功能强、效率高、熔核大、成本低和产品一致性好、一次焊接成型的同时,又可兼顾不污染电解液、现场环境好、结构紧凑的、全自动的、智能型的焊接装置,并在运行过程中免维护,长寿命、无需人工操作的精密电阻焊接装置。
为了实现上述目的,本发明的技术方案如下:
多层金属焊接装置,包括框架、电缸组、压力随动机构、拉伸机构、机械手组件、焊接组件、电源组件、工件;所述的框架分别和电缸组、拉伸机构、机械手组件、焊接组件、电源组件;
所述的电缸组还包括上电缸和下电缸;所述的上电缸分别和框架、压力随动机构连接;所述的下电缸分别和框架、拉伸机构连接;所述的压力随动机构分别和上电缸、焊接组件连接;所述的拉伸机构分别和框架、下电缸、工件连接;所述的机械手组件和框架连接;所述的焊接组件分别和框架、压力随动机构、工件连接;所述的电源组件分别和框架、焊接组件、电缸组、机械手组件连接;
所述的框架包括台面、立柱、导向杆、支撑杆;所述的台面分别和立柱、导向杆、支撑杆、拉伸机构、焊接组件、电源组件连接;所述的立柱和台面连接;所述的导向杆分别和台面、电缸组连接;所述的支撑杆分别和台面、电缸组连接;
所述的压力随动机构包括上压板、调整螺帽、下压板、下自锁螺帽、顶杆、弹簧;所述的上压板分别和压杆、自锁螺帽、调整螺帽、弹簧、顶杆连接;所述的调整螺帽分别和上压板、顶杆连接;所述的下压板分别和上绝缘板、下自锁螺帽、顶杆、弹簧连接;所述的下自锁螺帽分别和顶杆、下压板连接;所述的顶杆分别和上压板、调整螺帽、下压板、下自锁螺帽、弹簧连接;所述的弹簧分别和顶杆、上压板、下压板连接;
所述的拉伸机构包括L上螺帽、L上板、拉杆、L下螺帽、L下板、L滑动轴承、L下压盖、L上压盖;所述的L上螺帽分别和L上板、拉杆连接;所述的L上板分别和工件、L上螺帽、拉杆连接;所述的拉杆分别和L上螺帽、 L上板、L下螺帽、L下板、L滑动轴承、L下压盖、L上压盖连接;所述的L下螺帽分别和拉杆、L下板连接;所述的L下板分别和下电缸的压杆、下电缸的G自锁螺帽、拉杆、L下螺帽连接;所述的L滑动轴承分别和台面、L上压盖、L下压盖连接;所述的L下压盖分别和台面、拉杆、L滑动轴承连接;所述的L上压盖分别和台面、拉杆、L滑动轴承连接;
所述的机械手组件包括十字滑台、回转轴、Y轴、夹持组件;所述的十字滑台分别和台面、回转轴、电源组件连接;所述的回转轴分别和十字滑台、Y轴、电源组件连接;所述的夹持组件和Y轴连接;所述的十字滑台还包括X轴和Z轴;所述的X轴分别和台面、Z轴连接;所述的Z轴分别和X轴、回转轴连接;
所述的焊接组件包括上绝缘板、电源正极、加长杆、正电极、负电极、电源负极、下绝缘板;所述的上绝缘板分别和电源正极、下压板连接;所述的电源正极分别和上绝缘板、加长杆连接;所述的加长杆分别和电源正极、正电极连接;所述的正电极分别和加长杆、工件连接;所述的负电极分别和工件、电源负极连接;所述的电源负极分别和负电极、下绝缘板连接;所述的下绝缘板分别和电源负极、台面连接;所述的工件分别和正电极、负电极、L上板连接;
所述的电源组件还包括人机界面、执行组件、控制器、焊接电源、驱动器;所述的人机界面和控制器连接;所述的执行组件和控制器连接;所述的控制器分别和人机界面、执行组件、触发器、焊接电源、驱动器连接;所述的焊接电源分别和执行组件、控制器连接;所述的驱动器和控制器连接;
所述的人机界面包括触摸屏、传输线、电源接口;所述的触摸屏分别和传输线、电源接口连接;所述的传输线分别和触摸屏、晶体管控制器连接;所述的电源接口分别和市电隔离电源、触摸屏连接;
所述的执行组件由10~30个继电器组成,所述的继电器的结构、原理、性能、参数、尺寸相同,装配、连接方法一致;所述的继电器线圈分别和直流电源、继电器控制器连接,所述的继电器触点部分分别和主控电源、驱动器、焊接电源、电源负极、电源正极连接;
所述的控制器还包括晶体管控制器、继电器控制器、AD模块、DA模块;所述的晶体管控制器分别和人机界面、继电器控制器、驱动器、焊接电源连接;所述的继电器控制器分别和执行组件、焊接电源、晶体管控制器、AD模块连接;所述的AD模块分别和焊接电源、继电器控制器、DA模块连接;所述的DA模块分别和焊接电源、驱动器、AD模块连接;
所述的驱动器包括电源、位置伺服驱动组件、扭矩伺服驱动组件;所述的电源分别和位置伺服驱动组件、扭矩伺服驱动组件连接;所述的位置伺服驱动组件分别和电源、机械手组件连接;所述的扭矩伺服驱动组件分别和电源、电缸组连接;所述的位置伺服驱动组件由4套位置伺服驱动构件组成,分别和十字滑台的X轴电机、Y轴电机以及回转轴电机与Y轴的电机连接;所述的位置驱动构件包括位置驱动器和位置伺服电机;所述的位置驱动器分别和晶体管控制器、位置伺服电机连接,所述的位置伺服电机分别和位置驱动器、X轴电机或者是Y轴电机或者是回转轴电机或者是Y轴的电机连接;所述的扭矩伺服驱动组件由2套扭矩伺服构件组成,分别和上电缸的电机与下电缸的电机连接;所述的扭矩伺服构件包括扭矩驱动器、扭矩电机;所述的扭矩驱动器分别和晶体管控制器、DA模块、扭矩电机连接;所述的扭矩电机分别和扭矩驱动器、上电缸电机或者是下电缸电机连接;
所述的焊接电源包括帘栅回路、焊接回路组、补正回路组;所述的帘栅回路、焊接回路组、补正回路组的主回路并联后分别和电源正极、电源负极、继电器中的ZK1的常闭触点连接,触发回路的触发器分别和晶体管控制器、可控硅对应连接;
所述的帘栅回路包括触发器中的LM-1、可控硅中的KT1、续流二极管、电感、二极管、储能组件中的CN1、高压储能;所述的触发器中的LM-1分别和晶体管控制器、可控硅中的KT1连接;所述的可控硅中的KT1与续流二极管并联后分别和电源正极、继电器中的ZK1、电感连接;所述的续流二极管与可控硅中的KT1并联后分别和电源正极、继电器中的ZK1、电感连接;所述的电感分别和可控硅中的KT1、续流二极管、二极管、高压储能连接;所述的二极管分别和电感、高压储能、储能组件中的CN1连接;所述的储能组件中的CN1分别和电源负极、继电器中的 ZK1、二极管连接;所述的高压储能分别和电感、二极管、电源负极连接;
所述的焊接回路组是由1~10条结构、原理、参数完全相同的焊接支路组成;所述的焊接支路包括触发器中的LM-2、可控硅中的KT2、储能组件中的CN2;所述的触发器中的LM-2分别和晶体管控制器、可控硅中的KT2连接;所述的可控硅中的KT2分别和触发器中的LM-2、储能组件中的CN2连接;所述的储能组件中的CN2分别和可控硅中的KT2、电源负极连接;
所述的补正回路组由1~10条结构、原理、参数完全相同的补正支路组成;所述的补正支路包括触发器中的LM-3、可控硅中的KT3、储能组件中的CN3;所述的触发器中的LM-3分别和晶体管控制器、可控硅中的KT3连接;所述的可控硅中的KT3分别和触发器中的LM-3、储能组件中的CN3连接;所述的储能组件中的CN3分别和可控硅中的KT3、电源负极连接;
所述的储能组件还包括电容、反馈电阻、充电电源、卸电电阻中的FD3、保险开关中的ZK3、功率管的RG3、卸电控制;所述的电容、反馈电阻、充电电源并联后分别和卸电电阻中的FD3、保险开关、可控硅中的KT3、电源负极中的ZK3连接;所述的卸电电阻中的FD3分别和可控硅中的KT3、电容、反馈电阻、充电电源、保险开关中的ZK3、功率管中的RG3;所述的保险开关中的ZK3、功率管中的RG3并联后分别和卸电电阻中的FD3、电源负极连接;所述的卸电控制分别和DA模块、功率管、直流电源、电源负极连接;
所述的正电极和负电极的原理、结构、尺寸链相同,并且装配在同一轴线上,镜像放置,即:正电极和负电极的外圆M同轴,球面SR的N同轴;
所述的正电极的圆角C的尺寸是H尺寸的10至30倍;正电极的球面SR高度是工件压紧厚度的0.2倍;正电极的球面SR直径是工件厚度的10至100倍;正电极的轮廓线ΦR尺寸范围是正电极直径ΦD的二分之一至四分之三之间,轮廓线ΦR是1至5个;即:球面SR的外轮廓线V的直径尺寸小于圆角C的内轮廓线W直径尺寸;正电极的球面SR是1至100个,当球面SR是1个时,球面SR的轴线和外圆M同轴,当球面SR是2个以上时,球面SR的中心线放置在轮廓线ΦR上,并在轮廓线ΦR上均布,并且一个球面SR的外圆X和相邻的一个球面SR的外圆X不得相交,X和X的间距不得小于2mm;当一个轮廓线不能按照要求放置多个球面SR时,可在正电极的直径ΦD的二分之一至四分之三之间均布轮廓线,然后在每一条轮廓线上均布球面SR。
所述的正电极和负电极可以是圆形,也可以是方形,但无论是圆形还是方形,正电极和负电极的焊接面都有放电凸台H,并且凸台H与平面连接都是平滑的曲面连接。
所述的上电缸和下电缸的结构、原理、尺寸链、性能、参数完全一致,上电缸的压力是10-15000公斤,上电缸是带有制动器的扭矩电机,电机功率在1至10千瓦。
所述的帘栅回路、焊接回路组、补正回路组采用的是并联电路结构、树形放电方式,即:每一回路的电容的耐压和容量不同,根据焊接工件需求的电流不同,可选择任意回路放电,可单独使用,也可组合使用,还可按照时序间歇放电或者是间隔放电;所述的帘栅回路是高低压组合的叠加电源,高低压的电源切换是通过二极管自动切换的;所述的焊接回路组和补正回路组可互换通用,即:焊接回路组和补正回路组即可作为焊接模块使用,也可作补正模块使用。
所述的高压储能充电电压和放电电压大于500伏特。
所述的储能组件是1至20个回路;每个回路可单独使用,也可并联使用,也可间歇放电使用;所述的储能组件可单独充电也可同时充电。
所述的工件是指2层至500层之间的铝箔、铜箔、铝带、铜带或者是铝基材表面处理材料或者是铜基材表面处理材料,基材厚度在0.006mm至1mm之间。
所述的上电缸和下电缸的结构、原理一致,镜像、同轴放置。
多层金属焊接装置的焊接方法,包括以下步骤:
A、准备步骤:按照工件的技术要求,选择正电极和负电极的电极形状,并计算工件的材质电阻、需要焊接的 层数及总电阻、不同层的氧化膜电阻,确定是中心点焊接还是贯通焊接;然后根据技术要求的焊接面积选择正电极和负电极的ΦD尺寸,同时计算球面SR和轮廓线ΦR数量与均布数量,焊接熔核形成的熔核数量;最后根据材质的不同和有色金属冷作硬化特性,计算电缸组的扭矩以及工件因受高热而产生的屈服点和硬度降低数值,调整压力随动机构弹簧的压力后,安装焊接使用的正电极和负电极,之后调整负电极的轴线断面坐标,使正电极和负电极同轴后,固定负电极,随后旋转负电极的旋转角度,使负电极的N轴线和正电极的N轴线同轴,并紧固负电极的旋转螺栓,使负电极不能上、下、左、右、前、后窜动;这时,准备步骤A完成,进入到下一步骤,自检步骤B;
B、自检步骤:经步骤A准备步骤完成后,多层金属焊接装置进入到自检步骤B;首先检查急停和报警是否有效,如果有效,则控制器向执行组件发出声光报警信号,同时通过传输线向触摸屏发出故障位置和故障处理方法;其次检查各轴运动副是否在原点位置,如果不在原点位置,则触摸屏显示哪个轴不在原点位置,并显示“是否按照规定路径和轴运动顺序返回到原点位置”;最后,当控制器初始化完成,自检通过后,在触摸屏上显示“请选择焊接工件序号”,如果选择是已经焊接过的工件,则控制器自动跳转到自动步骤E开始自动循环焊接操作;如果选择是新工件,则控制器自动跳转到点动控制/参数设置菜单页面;这时,自检步骤B处理完成,进入到设置步骤C或者是自动步骤E;
C、设置步骤:经步骤B自检步骤处理后,控制器自动跳转到设置步骤C,并将触摸屏的画面切换到点动控制/参数设置菜单;然后按照准备步骤A计算的数据,将参数分别录入到机械手部分、预压部分、预拉部分、放电部分、充电部分、卸电部分;其中:机械手部分是从进料架中取出工件后放入到正电极和负电极中间的焊接坐标处等待焊接,当焊接完成后,再将工件移送到出料架上;在此期间,机械手X轴、Y轴、Z轴、回转轴上电缸、下电缸的工作速度可在线调整和设置参数,经调整和设置好的参数可进行人工反复的点动测试X轴、Y轴、Z轴、回转轴上电缸、下电缸的运行速度、联动插补、软中断测试,直至达到工艺要求为止,同时机械手还可自动判断进料架和出料架是否有料以及取料和放料顺序;
预压部分是以上电缸为动力源,拖动上电缸、压力随动机构、焊接组件的上绝缘板、电源正极、加长杆、正电极向工件方向移动,并以负电极为固定参照基准,对工件施加压力,压力的大小可在触摸屏上进行在线修改,并自动实时触发和调整压力值的大小,同时将反馈信号反馈到晶体管控制器中,然后晶体管控制器再和触摸屏录入的压力值进行比较,如果反馈数值和录入压力值相等,则上电缸制动关闭,上电缸停止工作;当反馈数值大于录入压力值,则上电缸向工件相反的方向运动,直至反馈数值等于录入压力值时,上电缸制动关闭,上电缸停止工作;否则相反;预拉部分是下电缸拖动拉伸机构向工件方向移动,并以工件为固定参照基准,对工件施加压力,压力的大小可在触摸屏上进行在线修改,并自动实时触发和调整压力值的大小;此时,运动副各轴参数设置、调整完成,进入到储能和放电参数设置;即:首先设置帘栅回路,也就是:根据待焊工件氧化膜厚度和层数不同,计算氧化膜的击穿电压,击穿电压就是高压储能充电电压,充电电压选择范围是500至5000伏特,然后再设置储能组件中的CN1充电电压,充电电压选择范围是20至100伏特,计算方法是工件预热时间和预热温度,电压越高,预热时间越长;其次是设置焊接回路组,即:选择工件的焊接功率,也就是:根据工件每层厚度、层数、焊接面积计算焊接功率和焊接电流,然后再根据焊接功率和焊接电流选择焊接支路的数量,并确定储能组件中的CN2组的充电电压,并确定焊接支路是同时放电还是间歇放电或者是时序放电;然后通过触摸屏录入到控制器中,录入的充电电压范围是0至50伏特;最后是设置补正回路组,补正支路充电电压值按照电压值除以补正支路数量给每个补正支路充电,并在触摸屏录入到控制器中,录入的充电电压范围是0至50伏特;这时;设置步骤B处理完成,进入到自动步骤D;
D、自动步骤:经步骤C设置步骤处理完成后,控制器自动跳转到自动步骤D等待人工发出自动运行命令,当操作者在触摸屏上按下自动运行按钮时,设备便自动运行;首先,当控制器接收到触摸屏的自动运行命令时,控制器就会发出机械手部分的X轴、Y轴、Z轴、回转轴、上电缸、下电缸自动回零点操作,当各轴回零点完成后,夹持组件的卡抓张开、L上板开启、卸电继电器吸合,并同时判断进料架是否有料,哪个料架有料,如果没有料,机械手自动进入等待程序,如果进料架上有料,控制器就会发出到哪个取料架取料和动作顺序命令,此时,X轴、Y轴、Z轴、回转轴会按照位置数据控制表的运行距离、运行速度到指定的坐标去抓取工件,然后将工件送到焊接工位的负 电极的定位夹具中,工件放到定位夹具后,定位夹具向控制器发出工件到位指令,这时,控制器向夹持组件发出松开命令,并缩回手臂Z轴到原点位置等待;当控制器接收到Z轴到达原点命令后,发出下电缸压紧命令,并由下电缸拖动L上板压住工件,其中:L上板的压力是在触摸屏上设定完成的扭矩信号;控制器也同时发出对帘栅回路、焊接回路组、补正回路组充电命令,并实时比较电容的充电电压是否和触摸屏录入的充电数据一致,如果一致,便向控制器发出充电完成指令,同时检测L上板和上电缸的压力值已经达到设定压力值时,控制器发出焊接指令;然后,按照触摸屏设定的放电时序进行顺序放电;即:帘栅回路的高压储能首先放电,当高压储能的存储电压低于储能组件中的CN1存储电压时,二极管导通,这时,高压储能和储能组件中的CN1同时放电;
其中补正回路组的放电时序是:当控制器检测到焊接回路组放电完成信号时,马上对焊接回路组进行平均化分析功率、电阻、电压、电流是否满足设定要求;如果不满足,控制器就会计算焊接回路组产生的误差值是多少,然后与补正回路组中的那条补正支路或者是哪几条补正支路的并联值与误差值接近或者是相等,然后进行二次放电,用于补充焊接能量的不足;
当控制器检测到二次放电完成信号时;控制器首先发出继电器卸电命令,随后发出上电缸、下电缸开启指令,当控制器检测到下电缸和上电缸到达信号后,再次将Z轴的手臂伸出,到达工件的坐标后,夹持组件夹住工件送到出料口的空位;然后机械手返回原位,这时,第一个工作循环完成,如果继续工作,设备便周而复始的工作;如果人工干预发出结束命令,这时,自动步骤D完成,进入到卸电步骤E;
E、卸电步骤:经步骤D自动步骤处理完成后,控制器发出伺服使能关闭命令,检测继电器是否断开,电容是否放电完成后,自动关闭电源;控制器在自动关闭电源的同时,也切断控制器本身的供电电源。
与现有技术相比,本发明具有以下有益效果:
1、由于本发明采用了高低压电源的多网络的树形放电结构;因此,本焊接装置由3道工序变为1道工序,而且是一次成型;所以,本焊接装置具有体积小、重量轻、功能强、效率高、成本低、结构紧凑的特点。
2、由于本发明采用了大吨位的电缸压延、拉伸和本体焊接技术以及高低压电源的多网络树形放电原理和结构;因此,焊接熔核具有优异的物理力学性能和化学稳定性,使用效果好、寿命长、熔核大。
3、由于本发明所焊接的产品表面不需要任何处理,而且焊接过程中也没有颗粒或者是粉末以及焊渣产生;因此,本装置制造的产品不污染电解液、现场环境好等特点。
4、由于本发明采用了全自动智能控制技术;因此,本装置在运行过程中无需人为干预和操作,也不因人的因素而出现产品质量问题;所以,经本装置生产的产品稳定、可靠、一致性好。
附图说明
本发明共有9幅附图。其中:
图1是多层金属焊接装置流程图。
图2是多层金属焊接装置俯视示意图。
图3是图2的A—A剖面示意图。
图4是图3的右视示意图。
图5是树形放电波形示意图。
图6是多层金属焊接装置电极主视示意图。
图7是图6的俯视示意图。
图8是图3的B放大图。
图9是多层金属焊接装置电气部分的示意图。
图中:1、台面,2、立柱,3、电源组件,4、上电缸,5、下电缸,6、十字滑台,7、回转轴,8、Y轴,9、夹 持组件,10、导向杆,11、扭矩电机,17、支撑杆,40、顶杆,48、上压板,49、调整螺帽,51、弹簧,52、下压板,53、上绝缘板,54、下自锁螺帽,55、电源正极,56、加长杆,57、正电极,58、L上螺帽,59、L上板,60、拉杆,61、L下螺帽,62、工件,63、负电极,64、电源负极,65、下绝缘板,66、L下板,67、L滑动轴承,68、L下压盖,69、L上压盖,73、位置伺服电机,98、高压储能,124、人机界面,125、执行组件,126、焊接电源,127、驱动器,128、控制器,129、传输线,130、触摸屏,131、晶体管控制器,132、继电器控制器,133、AD模块,134、DA模块,135、继电器,136、触发器,137、可控硅,138、储能组件,139、位置驱动器,141、扭矩驱动器,143、电感,144、卸电控制,145、功率管,146、保险开关,147、充电电源,148、反馈电阻,149、电容,150、卸电电阻,151、二极管,154、帘栅回路,155、焊接回路组,156、补正回路组,157、续流二极管。
具体实施方式
下面结合附图对本发明作进一步说明。
多层金属焊接装置,包括框架、电缸组、压力随动机构、拉伸机构、机械手组件、焊接组件、电源组件3、工件62;所述的框架分别和电缸组、拉伸机构、机械手组件、焊接组件、电源组件3;所述的电缸组还包括上电缸4和下电缸5;所述的上电缸4分别和框架、压力随动机构连接;所述的下电缸5分别和框架、拉伸机构连接;所述的压力随动机构分别和上电缸4、焊接组件连接;所述的拉伸机构分别和框架、下电缸5、工件62连接;所述的机械手组件和框架连接;所述的焊接组件分别和框架、压力随动机构、工件62连接;所述的电源组件3分别和框架、焊接组件、电缸组、机械手组件连接;
所述的框架包括台面1、立柱2、导向杆10、支撑杆17;所述的台面1分别和立柱2、导向杆10、支撑杆17、拉伸机构、焊接组件、电源组件3连接;所述的立柱2和台面1连接;所述的导向杆10分别和台面1、电缸组连接;所述的支撑杆17分别和台面1、电缸组连接;
所述的压力随动机构包括上压板48、调整螺帽49、下压板52、下自锁螺帽54、顶杆40、弹簧51;所述的上压板48分别和压杆、自锁螺帽、调整螺帽49、弹簧51、顶杆40连接;所述的调整螺帽49分别和上压板48、顶杆40连接;所述的下压板52分别和上绝缘板53、下自锁螺帽54、顶杆40、弹簧51连接;所述的下自锁螺帽54分别和顶杆40、下压板52连接;所述的顶杆40分别和上压板48、调整螺帽49、下压板52、下自锁螺帽54、弹簧51连接;所述的弹簧51分别和顶杆40、上压板48、下压板52连接;
所述的拉伸机构包括L上螺帽58、L上板59、拉杆60、L下螺帽61、L下板66、L滑动轴承67、L下压盖68、L上压盖69;所述的L上螺帽58分别和L上板59、拉杆60连接;所述的L上板59分别和工件62、L上螺帽58、拉杆60连接;所述的拉杆60分别和L上螺帽58、L上板59、L下螺帽61、L下板66、L滑动轴承67、L下压盖68、L上压盖69连接;所述的L下螺帽61分别和拉杆60、L下板66连接;所述的L下板66分别和下电缸的压杆、下电缸的G自锁螺帽、拉杆60、L下螺帽61连接;所述的L滑动轴承67分别和台面1、L上压盖69、L下压盖68连接;所述的L下压盖68分别和台面1、拉杆60、L滑动轴承67连接;所述的L上压盖69分别和台面1、拉杆60、L滑动轴承67连接;
所述的机械手组件包括十字滑台6、回转轴7、Y轴8、夹持组件9;所述的十字滑台6分别和台面1、回转轴7、电源组件3连接;所述的回转轴7分别和十字滑台6、Y轴8、电源组件3连接;所述的夹持组件9和Y轴8连接;所述的十字滑台6还包括X轴和Z轴;所述的X轴分别和台面1、Z轴连接;所述的Z轴分别和X轴、回转轴7连接;
所述的焊接组件包括上绝缘板53、电源正极55、加长杆56、正电极57、负电极63、电源负极64、下绝缘板65;所述的上绝缘板53分别和电源正极55、下压板52连接;所述的电源正极55分别和上绝缘板53、加长杆56连接;所述的加长杆56分别和电源正极55、正电极57连接;所述的正电极57分别和加长杆56、工件62连接;所述的负电极63分别和工件62、电源负极64连接;所述的电源负极64分别和负电极63、下绝缘板65连接;所述的下绝缘 板65分别和电源负极64、台面1连接;
所述的工件62分别和正电极57、负电极63、L上板59连接;
所述的电源组件3还包括人机界面124、执行组件125、控制器128、焊接电源126、驱动器127;所述的人机界面124和控制器128连接;所述的执行组件125和控制器128连接;所述的控制器128分别和人机界面124、执行组件125、触发器136、焊接电源126、驱动器127连接;所述的焊接电源126分别和执行组件125、控制器128连接;所述的驱动器127和控制器128连接;
所述的人机界面124包括触摸屏130、传输线129、电源接口;所述的触摸屏130分别和传输线129、电源接口连接;所述的传输线129分别和触摸屏130、晶体管控制器131连接;所述的电源接口分别和市电隔离电源、触摸屏130连接;
所述的执行组件125由10--30个继电器135组成,所述的继电器135的结构、原理、性能、参数、尺寸相同,装配、连接方法一致;所述的继电器135线圈分别和直流电源、继电器控制器132连接,所述的继电器135触点部分分别和主控电源、驱动器127、焊接电源126、电源负极64、电源正极55连接;
所述的控制器128还包括晶体管控制器131、继电器控制器132、AD模块133、DA模块134;所述的晶体管控制器131分别和人机界面124、继电器控制器132、驱动器127、焊接电源126连接;所述的继电器控制器132分别和执行组件125、焊接电源126、晶体管控制器131、AD模块133连接;所述的AD模块133分别和焊接电源126、继电器控制器132、DA模块134连接;所述的DA模块134分别和焊接电源126、驱动器127、AD模块133连接;
所述的驱动器127包括电源、位置伺服驱动组件、扭矩伺服驱动组件;所述的电源分别和位置伺服驱动组件、扭矩伺服驱动组件连接;所述的位置伺服驱动组件分别和电源、机械手组件连接;所述的扭矩伺服驱动组件分别和电源、电缸组连接;所述的位置伺服驱动组件由4套位置伺服驱动构件组成,分别和十字滑台6的X轴电机、Y轴电机以及回转轴7电机与Y轴8的电机连接;所述的位置驱动构件包括位置驱动器139和位置伺服电机73;所述的位置驱动器139分别和晶体管控制器131、位置伺服电机73连接,所述的位置伺服电机73分别和位置驱动器139、X轴电机或者是Y轴电机或者是回转轴7电机或者是Y轴8的电机连接;所述的扭矩伺服驱动组件由2套扭矩伺服构件组成,分别和上电缸4的电机与下电缸5的电机连接;所述的扭矩伺服构件包括扭矩驱动器141、扭矩电机11;所述的扭矩驱动器141分别和晶体管控制器131、DA模块134、扭矩电机11连接;所述的扭矩电机11分别和扭矩驱动器141、上电缸4电机或者是下电缸5电机连接;
所述的焊接电源126包括帘栅回路154、焊接回路组155、补正回路组156;所述的帘栅回路154、焊接回路组155、补正回路组156的主回路并联后分别和电源正极55、电源负极64、继电器135中的ZK1的常闭触点连接,触发回路的触发器136分别和晶体管控制器131、可控硅137对应连接;
所述的帘栅回路154包括触发器136中的LM-1、可控硅137中的KT1、续流二极管157、电感143、二极管151、储能组件138中的CN1、高压储能98;所述的触发器136中的LM-1分别和晶体管控制器131、可控硅137中的KT1连接;所述的可控硅137中的KT1与续流二极管157并联后分别和电源正极55、继电器135中的ZK1、电感143连接;所述的续流二极管157与可控硅137中的KT1并联后分别和电源正极55、继电器135中的ZK1、电感143连接;所述的电感143分别和可控硅137中的KT1、续流二极管157、二极管151、高压储能98连接;所述的二极管151分别和电感143、高压储能98、储能组件138中的CN1连接;所述的储能组件138中的CN1分别和电源负极64、继电器135中的ZK1、二极管151连接;所述的高压储能98分别和电感143、二极管151、电源负极64连接;
所述的焊接回路组155是由1—10条结构、原理、参数完全相同的焊接支路组成;所述的焊接支路包括触发器136中的LM-2、可控硅137中的KT2、储能组件138中的CN2;所述的触发器136中的LM-2分别和晶体管控制器131、可控硅137中的KT2连接;所述的可控硅137中的KT2分别和触发器136中的LM-2、储能组件138中的CN2连接;所述的储能组件138中的CN2分别和可控硅137中的KT2、电源负极64连接;
所述的补正回路组156由1—10条结构、原理、参数完全相同的补正支路组成;所述的补正支路包括触发器136 中的LM-3、可控硅137中的KT3、储能组件138中的CN3;所述的触发器136中的LM-3分别和晶体管控制器131、可控硅137中的KT3连接;所述的可控硅137中的KT3分别和触发器136中的LM-3、储能组件138中的CN3连接;所述的储能组件138中的CN3分别和可控硅137中的KT3、电源负极64连接;
所述的储能组件138还包括电容149、反馈电阻148、充电电源147、卸电电阻150中的FD3、保险开关146中的ZK3、功率管145的RG3、卸电控制144;所述的电容149、反馈电阻148、充电电源147并联后分别和卸电电阻150中的FD3、保险开关146、可控硅137中的KT3、电源负极64中的ZK3连接;所述的卸电电阻150中的FD3分别和可控硅137中的KT3、电容149、反馈电阻148、充电电源147、保险开关146中的ZK3、功率管145中的RG3;所述的保险开关146中的ZK3、功率管145中的RG3并联后分别和卸电电阻150中的FD3、电源负极64连接;所述的卸电控制144分别和DA模块134、功率管145、直流电源、电源负极64连接;
所述的正电极57和负电极63的原理、结构、尺寸链相同,并且装配在同一轴线上,镜像放置,即:正电极57和负电极63的外圆M同轴,球面SR的N同轴;
所述的正电极57的圆角C的尺寸是H尺寸的10至30倍;正电极57的球面SR高度是工件62压紧厚度的0.2倍;正电极57的球面SR直径是工件厚度的10至100倍;正电极57的轮廓线ΦR尺寸范围是正电极57直径ΦD的二分之一至四分之三之间,轮廓线ΦR是1至5个;即:球面SR的外轮廓线V的直径尺寸小于圆角C的内轮廓线W直径尺寸;正电极57的球面SR是1至100个,当球面SR是1个时,球面SR的轴线和外圆M同轴,当球面SR是2个以上时,球面SR的中心线放置在轮廓线ΦR上,并在轮廓线ΦR上均布,并且一个球面SR的外圆X和相邻的一个球面SR的外圆X不得相交,X和X的间距不得小于2mm;当一个轮廓线不能按照要求放置多个球面SR时,可在正电极57的直径ΦD的二分之一至四分之三之间均布轮廓线,然后在每一条轮廓线上均布球面SR。
所述的正电极57和负电极63可以是圆形,也可以是方形,但无论是圆形还是方形,正电极57和负电极63的焊接面都有放电凸台H,并且凸台H与平面连接都是平滑的曲面连接。
所述的上电缸4和下电缸5的结构、原理、尺寸链、性能、参数完全一致,上电缸4的压力是10-15000公斤,上电缸4是带有制动器的扭矩电机,电机功率在1至10千瓦。
所述的帘栅回路154、焊接回路组155、补正回路组156采用的是并联电路结构、树形放电方式,即:每一回路的电容149的耐压和容量不同,根据焊接工件62需求的电流不同,可选择任意回路放电,可单独使用,也可组合使用,还可按照时序间歇放电或者是间隔放电;所述的帘栅回路154是高低压组合的叠加电源,高低压的电源切换是通过二极管151自动切换的;所述的焊接回路组155和补正回路组156可互换通用,即:焊接回路组155和补正回路组156即可作为焊接模块使用,也可作补正模块使用。
所述的高压储能98充电电压和放电电压大于500伏特。
所述的储能组件138是1至20个回路;每个回路可单独使用,也可并联使用,也可间歇放电使用;所述的储能组件138可单独充电也可同时充电。
所述的工件62是指2层至500层之间的铝箔、铜箔、铝带、铜带或者是铝基材表面处理材料或者是铜基材表面处理材料,基材厚度在0.006mm至1mm之间。
所述的上电缸4和下电缸5的结构、原理一致,镜像、同轴放置。
多层金属焊接装置的焊接方法,包括以下步骤:
A、准备步骤:按照工件62的技术要求,选择正电极57和负电极63的电极形状,并计算工件62的材质电阻、需要焊接的层数及总电阻、不同层的氧化膜电阻,确定是中心点焊接还是贯通焊接;然后根据技术要求的焊接面积选择正电极57和负电极63的ΦD尺寸,同时计算球面SR和轮廓线ΦR数量与均布数量,焊接熔核形成的熔核数量;最后根据材质的不同和有色金属冷作硬化特性,计算电缸组的扭矩以及工件62因受高热而产生的屈服点和硬度降低数值,调整压力随动机构弹簧51的压力后,安装焊接使用的正电极57和负电极63,之后调整负电极63的轴线断面坐标,使正电极57和负电极63同轴后,固定负电极63,随后旋转负电极63的旋转角度,使负电极63的N轴线和 正电极57的N轴线同轴,并紧固负电极63的旋转螺栓,使负电极63不能上、下、左、右、前、后窜动;这时,准备步骤A完成,进入到下一步骤,自检步骤B;
B、自检步骤:经步骤A准备步骤完成后,多层金属焊接装置进入到自检步骤B;首先检查急停和报警是否有效,如果有效,则控制器128向执行组件125发出声光报警信号,同时通过传输线129向触摸屏130发出故障位置和故障处理方法;其次检查各轴运动副是否在原点位置,如果不在原点位置,则触摸屏130显示哪个轴不在原点位置,并显示“是否按照规定路径和轴运动顺序返回到原点位置”;最后,当控制器128初始化完成,自检通过后,在触摸屏130上显示“请选择焊接工件序号”,如果选择是已经焊接过的工件,则控制器128自动跳转到自动步骤E开始自动循环焊接操作;如果选择是新工件,则控制器128自动跳转到点动控制/参数设置菜单页面;这时,自检步骤B处理完成,进入到设置步骤C或者是自动步骤E;
C、设置步骤:经步骤B自检步骤处理后,控制器128自动跳转到设置步骤C,并将触摸屏130的画面切换到点动控制/参数设置菜单;然后按照准备步骤A计算的数据,将参数分别录入到机械手部分、预压部分、预拉部分、放电部分、充电部分、卸电部分;其中:机械手部分是从进料架中取出工件62后放入到正电极57和负电极63中间的焊接坐标处等待焊接,当焊接完成后,再将工件62移送到出料架上;在此期间,机械手X轴、Y轴、Z轴、回转轴7上电缸4、下电缸5的工作速度可在线调整和设置参数,经调整和设置好的参数可进行人工反复的点动测试X轴、Y轴、Z轴、回转轴7上电缸4、下电缸5的运行速度、联动插补、软中断测试,直至达到工艺要求为止,同时机械手还可自动判断进料架和出料架是否有料以及取料和放料顺序;
预压部分是以上电缸4为动力源,拖动上电缸、压力随动机构、焊接组件的上绝缘板53、电源正极55、加长杆56、正电极57向工件62方向移动,并以负电极63为固定参照基准,对工件62施加压力,压力的大小可在触摸屏130上进行在线修改,并自动实时触发和调整压力值的大小,同时将反馈信号反馈到晶体管控制器131中,然后晶体管控制器131再和触摸屏130录入的压力值进行比较,如果反馈数值和录入压力值相等,则上电缸4制动关闭,上电缸4停止工作;当反馈数值大于录入压力值,则上电缸4向工件62相反的方向运动,直至反馈数值等于录入压力值时,上电缸4制动关闭,上电缸4停止工作;否则相反;预拉部分是下电缸5拖动拉伸机构向工件62方向移动,并以工件62为固定参照基准,对工件62施加压力,压力的大小可在触摸屏130上进行在线修改,并自动实时触发和调整压力值的大小;此时,运动副各轴参数设置、调整完成,进入到储能和放电参数设置;即:首先设置帘栅回路154,也就是:根据待焊工件62氧化膜厚度和层数不同,计算氧化膜的击穿电压,击穿电压就是高压储能98充电电压,充电电压选择范围是500至5000伏特,然后再设置储能组件138中的CN1充电电压,充电电压选择范围是20至100伏特,计算方法是工件62预热时间和预热温度,电压越高,预热时间越长;其次是设置焊接回路组155,即:选择工件62的焊接功率,也就是:根据工件62每层厚度、层数、焊接面积计算焊接功率和焊接电流,然后再根据焊接功率和焊接电流选择焊接支路的数量,并确定储能组件138中的CN2组的充电电压,并确定焊接支路是同时放电还是间歇放电或者是时序放电;然后通过触摸屏130录入到控制器128中,录入的充电电压范围是0至50伏特;最后是设置补正回路组156,补正支路充电电压值按照电压值除以补正支路数量给每个补正支路充电,并在触摸屏130录入到控制器128中,录入的充电电压范围是0至50伏特;这时;设置步骤B处理完成,进入到自动步骤D;
D、自动步骤:经步骤C设置步骤处理完成后,控制器128自动跳转到自动步骤D等待人工发出自动运行命令,当操作者在触摸屏130上按下自动运行按钮时,设备便自动运行;首先,当控制器128接收到触摸屏130的自动运行命令时,控制器128就会发出机械手部分的X轴、Y轴、Z轴、回转轴7、上电缸4、下电缸5自动回零点操作,当各轴回零点完成后,夹持组件的卡抓张开、L上板59开启、卸电继电器135吸合,并同时判断进料架是否有料,哪个料架有料,如果没有料,机械手自动进入等待程序,如果进料架上有料,控制器128就会发出到哪个取料架取料和动作顺序命令,此时,X轴、Y轴、Z轴、回转轴7会按照位置数据控制表的运行距离、运行速度到指定的坐标去抓取工件62,然后将工件62送到焊接工位的负电极63的定位夹具中,工件62放到定位夹具后,定位夹具向控制器128发出工件62到位指令,这时,控制器128向夹持组件发出松开命令,并缩回手臂Z轴到原点位置等待;当控 制器128接收到Z轴到达原点命令后,发出下电缸5压紧命令,并由下电缸5拖动L上板59压住工件62,其中:L上板59的压力是在触摸屏130上设定完成的扭矩信号;控制器128也同时发出对帘栅回路154、焊接回路组155、补正回路组156充电命令,并实时比较电容149的充电电压是否和触摸屏130录入的充电数据一致,如果一致,便向控制器128发出充电完成指令,同时检测L上板59和上电缸4的压力值已经达到设定压力值时,控制器128发出焊接指令;然后,按照触摸屏130设定的放电时序进行顺序放电;即:帘栅回路154的高压储能98首先放电,当高压储能98的存储电压低于储能组件138中的CN1存储电压时,二极管151导通,这时,高压储能98和储能组件138中的CN1同时放电;
其中补正回路组156的放电时序是:当控制器128检测到焊接回路组155放电完成信号时,马上对焊接回路组155进行平均化分析功率、电阻、电压、电流是否满足设定要求;如果不满足,控制器128就会计算焊接回路组155产生的误差值是多少,然后与补正回路组156中的那条补正支路或者是哪几条补正支路的并联值与误差值接近或者是相等,然后进行二次放电,用于补充焊接能量的不足;
当控制器128检测到二次放电完成信号时;控制器128首先发出继电器135卸电命令,随后发出上电缸4、下电缸5开启指令,当控制器128检测到下电缸5和上电缸4到达信号后,再次将Z轴的手臂伸出,到达工件62的坐标后,夹持组件夹住工件62送到出料口的空位;然后机械手返回原位,这时,第一个工作循环完成,如果继续工作,设备便周而复始的工作;如果人工干预发出结束命令,这时,自动步骤D完成,进入到卸电步骤E;
E、卸电步骤:经步骤D自动步骤处理完成后,控制器128发出伺服使能关闭命令,检测继电器135是否断开,电容149是否放电完成后,自动关闭电源;控制器128在自动关闭电源的同时,也切断控制器128本身的供电电源。
多层金属焊接装置及其焊接方法的工作原理:以120层铝箔为例说明其工作原理;和帘栅储能153,高压储能设定范围是500至5000伏特,主要是根据工件62氧化膜厚度和层数不同,计算氧化膜的击穿电压,使工件62的焊接面建立起一条低电阻通道;帘栅储能153设定范围是20至50伏特,主要是由放电时间决定充电电压数值,电压越高,放电时间越长,充电电压数值可在触摸屏130上人工录入并设置,验证测算值可通过人工点动放电监测实际放电电压、电流和时间;焊接参数设置和点动控制模块的充电电压是工件62的焊接能量,电压越高,焊接能量越大,电压设定范围是10至50伏特,其电压设置与调整以及人工测试也是通过触摸屏130来实现的;补正参数设置和点动控制模块的数据调整及测试与焊接参数设置和点动控制模块同理,也就是:当电缸预压完成并制动后,向帘栅回路154发出触发信号,可控硅137中的KT1导通,高压储能98开始通过电感143向工件62放电,由于电感143的存在,所以电压超前电流90度,目的是击穿工件的氧化膜电阻和消除高压电打火及限制电流波动,即:高电压,小电流,当高压储能98电压低于帘栅储能153的电压时,二极管151便自动导通,使储能组件138开始和高压储能98同时放电,这时电感143开始恒流向工件62长时间供电,直至焊接回路组155和补正回路组156的电容149全部放完电为止,在此期间,当AD模块133检测到帘栅储能153开始放电时,开始计时,当帘栅储能153放电时间等于或者是小于触摸屏130设定的焊接时间时,说明工件62预热完成,晶体管控制器131向焊接回路组155发出单个的极窄脉冲触发命令,可控硅137中的KT2导通,储能组件138开始向工件62放电,因焊接回路组155中没有电感143,所以放电速度很快,当焊接回路组155的储能组件138的电压或者是电流接近帘栅回路154的电压或者是电流时,焊接回路组155的可控硅137中的KT2中的电流不足以维持继续导通时,KT2自动截止,当;充电部分是当继电器控制器132开启时,充电电源147开始对电容149充电,充电电压的高低,由触摸屏130的录入电压决定,在给电容149充电的同时,反馈电阻148通过比例将反馈信号传送到AD模块133,当电容149的充电电压达到触摸屏130设定的电压时,继电器控制器132关闭,停止对电容149的充电,如果触摸屏130录入的电压过高,不满足焊接要求时,DA模块134就会发出一个电压信号给卸电控制144,再由卸电控制144给功率管145一个开关量信号,使功率管145导通,这时,电容149通过卸电电阻150和功率管145卸电,当AD模块133检测到反馈电压等于触摸屏130修改后的电压值使,DA模块134关闭,停止电容149的放电,当修改的电压值大于电容149的电压值,继电器控制器132开启,继续给电容149充电,直至电容149的电压值和修改后的电压值相等时,继电器控制器132关闭。

Claims (9)

  1. 多层金属焊接装置,其特征在于:包括框架、电缸组、压力随动机构、拉伸机构、机械手组件、焊接组件、电源组件(3)、工件(62);所述的框架分别和电缸组、拉伸机构、机械手组件、焊接组件、电源组件(3);所述的电缸组还包括上电缸(4)和下电缸(5);所述的上电缸(4)分别和框架、压力随动机构连接;所述的下电缸(5)分别和框架、拉伸机构连接;所述的压力随动机构分别和上电缸(4)、焊接组件连接;所述的拉伸机构分别和框架、下电缸(5)、工件(62)连接;所述的机械手组件和框架连接;所述的焊接组件分别和框架、压力随动机构、工件(62)连接;所述的电源组件(3)分别和框架、焊接组件、电缸组、机械手组件连接;
    所述的框架包括台面(1)、立柱(2)、导向杆(10)、支撑杆(17);所述的台面(1)分别和立柱(2)、导向杆(10)、支撑杆(17)、拉伸机构、焊接组件、电源组件(3)连接;所述的立柱(2)和台面(1)连接;所述的导向杆(10)分别和台面(1)、电缸组连接;所述的支撑杆(17)分别和台面(1)、电缸组连接;
    所述的压力随动机构包括上压板(48)、调整螺帽(49)、下压板(52)、下自锁螺帽(54)、顶杆(40)、弹簧51;所述的上压板(48)分别和压杆、自锁螺帽、调整螺帽(49)、弹簧51、顶杆(40)连接;所述的调整螺帽(49)分别和上压板(48)、顶杆(40)连接;所述的下压板(52)分别和上绝缘板(53)、下自锁螺帽(54)、顶杆(40)、弹簧51连接;所述的下自锁螺帽(54)分别和顶杆(40)、下压板(52)连接;所述的顶杆(40)分别和上压板(48)、调整螺帽(49)、下压板(52)、下自锁螺帽(54)、弹簧51连接;所述的弹簧51分别和顶杆(40)、上压板(48)、下压板(52)连接;
    所述的拉伸机构包括L上螺帽(58)、L上板(59)、拉杆(60)、L下螺帽(61)、L下板(66)、L滑动轴承(67)、L下压盖(68)、L上压盖(69);所述的L上螺帽(58)分别和L上板(59)、拉杆(60)连接;所述的L上板(59)分别和工件(62)、L上螺帽(58)、拉杆(60)连接;所述的拉杆(60)分别和L上螺帽(58)、L上板(59)、L下螺帽(61)、L下板(66)、L滑动轴承(67)、L下压盖(68)、L上压盖(69)连接;所述的L下螺帽(61)分别和拉杆(60)、L下板(66)连接;所述的L下板(66)分别和下电缸的压杆、下电缸的G自锁螺帽、拉杆(60)、L下螺帽(61)连接;所述的L滑动轴承(67)分别和台面(1)、L上压盖(69)、L下压盖(68)连接;所述的L下压盖(68)分别和台面(1)、拉杆(60)、L滑动轴承(67)连接;所述的L上压盖(69)分别和台面(1)、拉杆(60)、L滑动轴承(67)连接;
    所述的机械手组件包括十字滑台(6)、回转轴(7)、Y轴(8)、夹持组件(9);所述的十字滑台(6)分别和台面(1)、回转轴(7)、电源组件(3)连接;所述的回转轴(7)分别和十字滑台(6)、Y轴(8)、电源组件(3)连接;所述的夹持组件(9)和Y轴(8)连接;所述的十字滑台(6)还包括X轴和Z轴;所述的X轴分别和台面(1)、Z轴连接;所述的Z轴分别和X轴、回转轴(7)连接;
    所述的焊接组件包括上绝缘板(53)、电源正极(55)、加长杆(56)、正电极(57)、负电极(63)、电源负极(64)、下绝缘板(65);所述的上绝缘板(53)分别和电源正极(55)、下压板(52)连接;所述的电源正极(55)分别和上绝缘板(53)、加长杆(56)连接;所述的加长杆(56)分别和电源正极(55)、正电极(57)连接;所述的正电极(57)分别和加长杆(56)、工件(62)连接;所述的负电极(63)分别和工件(62)、电源负极(64)连接;所述的电源负极(64)分别和负电极(63)、下绝缘板(65)连接;所述的下绝缘板(65)分别和电源负极(64)、台面(1)连接;
    所述的工件(62)分别和正电极(57)、负电极(63)、L上板(59)连接;
    所述的电源组件(3)还包括人机界面(124)、执行组件(125)、控制器(128)、焊接电源(126)、驱动器(127);所述的人机界面(124)和控制器(128)连接;所述的执行组件(125)和控制器(128)连接;所述的控制器(128)分别和人机界面(124)、执行组件(125)、触发器(136)、焊接电源(126)、驱动器(127)连接;所述的焊接电源(126)分别和执行组件(125)、控制器(128)连接;所述的驱动器(127)和控制器(128)连接;
    所述的人机界面(124)包括触摸屏(130)、传输线(129)、电源接口;所述的触摸屏(130)分别和传输线(129)、电源接口连接;所述的传输线(129)分别和触摸屏(130)、晶体管控制器(131)连接;所述的电源接口分别和市电隔离电源、触摸屏(130)连接;
    所述的执行组件(125)由10--30个继电器(135)组成,所述的继电器(135)的结构、原理、性能、参数、尺寸相同,装配、连接方法一致;所述的继电器(135)线圈分别和直流电源、继电器控制器(132)连接,所述的继电器(135)触点部分分别和主控电源、驱动器(127)、焊接电源(126)、电源负极(64)、电源正极(55)连接;
    所述的控制器(128)还包括晶体管控制器(131)、继电器控制器(132)、AD模块(133)、DA模块(134);所述的晶体管控制器(131)分别和人机界面(124)、继电器控制器(132)、驱动器(127)、焊接电源(126)连接;所述的继电器控制器(132)分别和执行组件(125)、焊接电源(126)、晶体管控制器(131)、AD模块(133)连接;所述的AD模块(133)分别和焊接电源(126)、继电器控制器(132)、DA模块(134)连接;所述的DA模块(134)分别和焊接电源(126)、驱动器(127)、AD模块(133)连接;
    所述的驱动器(127)包括电源、位置伺服驱动组件、扭矩伺服驱动组件;所述的电源分别和位置伺服驱动组件、扭矩伺服驱动组件连接;所述的位置伺服驱动组件分别和电源、机械手组件连接;所述的扭矩伺服驱动组件分别和电源、电缸组连接;所述的位置伺服驱动组件由4套位置伺服驱动构件组成,分别和十字滑台(6)的X轴电机、Y轴电机以及回转轴(7)电机与Y轴(8)的电机连接;所述的位置驱动构件包括位置驱动器(139)和位置伺服电机(73);所述的位置驱动器(139)分别和晶体管控制器(131)、位置伺服电机(73)连接,所述的位置伺服电机(73)分别和位置驱动器(139)、X轴电机或者是Y轴电机或者是回转轴(7)电机或者是Y轴(8)的电机连接;所述的扭矩伺服驱动组件由2套扭矩伺服构件组成,分别和上电缸(4)的电机与下电缸(5)的电机连接;所述的扭矩伺服构件包括扭矩驱动器(141)、扭矩电机(11);所述的扭矩驱动器(141)分别和晶体管控制器(131)、DA模块(134)、扭矩电机(11)连接;所述的扭矩电机(11)分别和扭矩驱动器(141)、上电缸(4)电机或者是下电缸(5)电机连接;
    所述的焊接电源(126)包括帘栅回路(154)、焊接回路组(155)、补正回路组(156);所述的帘栅回路(154)、焊接回路组(155)、补正回路组(156)的主回路并联后分别和电源正极(55)、电源负极(64)、继电器(135)中的ZK1的常闭触点连接,触发回路的触发器(136)分别和晶体管控制器(131)、可控硅(137)对应连接;
    所述的帘栅回路(154)包括触发器(136)中的LM-1、可控硅(137)中的KT1、续流二极管(157)、电感(143)、二极管(151)、储能组件(138)中的CN1、高压储能(98);所述的触发器(136)中的LM-1分别和晶体管控制器(131)、可控硅(137)中的KT1连接;所述的可控硅(137)中的KT1与续流二极管(157)并联后分别和电源正极(55)、继电器(135)中的ZK1、电感(143)连接;所述的续流二极管(157)与可控硅(137)中的KT1并联后分别和电源正极(55)、继电器(135)中的ZK1、电感(143)连接;所述的电感(143)分别和可控硅(137)中的KT1、续流二极管(157)、二极管(151)、高压储能(98)连接;所述的二极管(151)分别和电感(143)、高压储能(98)、储能组件(138)中的CN1连接;所述的储能组件(138)中的CN1分别和电源负极(64)、继电器(135)中的ZK1、二极管(151)连接;所述的高压储能(98)分别和电感(143)、二极管(151)、电源负极(64)连接;
    所述的焊接回路组(155)是由1~10条结构、原理、参数完全相同的焊接支路组成;所述的焊接支路包括触发器(136)中的LM-2、可控硅(137)中的KT2、储能组件(138)中的CN2;所述的触发器(136)中的LM-2分别和晶体管控制器(131)、可控硅(137)中的KT2连接;所述的可控硅(137)中的KT2分别和触发器(136)中的LM-2、储能组件(138)中的CN2连接;所述的储能组件(138)中的CN2分别和可控硅(137)中的KT2、电源负极(64)连接;
    所述的补正回路组(156)由1~10条结构、原理、参数完全相同的补正支路组成;所述的补正支路包括触发器(136)中的LM-3、可控硅(137)中的KT3、储能组件(138)中的CN3;所述的触发器(136)中的LM-3分别和晶体管控制器(131)、可控硅(137)中的KT3连接;所述的可控硅(137)中的KT3分别和触发器(136)中的LM-3、 储能组件(138)中的CN3连接;所述的储能组件(138)中的CN3分别和可控硅(137)中的KT3、电源负极(64)连接;
    所述的储能组件(138)还包括电容(149)、反馈电阻(148)、充电电源(147)、卸电电阻(150)中的FD3、保险开关(146)中的ZK3、功率管(145)的RG3、卸电控制(144);所述的电容(149)、反馈电阻(148)、充电电源(147)并联后分别和卸电电阻(150)中的FD3、保险开关(146)、可控硅(137)中的KT3、电源负极(64)中的ZK3连接;所述的卸电电阻(150)中的FD3分别和可控硅(137)中的KT3、电容(149)、反馈电阻(148)、充电电源(147)、保险开关(146)中的ZK3、功率管(145)中的RG3;所述的保险开关(146)中的ZK3、功率管(145)中的RG3并联后分别和卸电电阻(150)中的FD3、电源负极(64)连接;所述的卸电控制(144)分别和DA模块(134)、功率管(145)、直流电源、电源负极(64)连接。
  2. 根据权利要求1所述的多层金属焊接装置,其特征在于:正电极(57)和负电极(63)的原理、结构、尺寸链相同,并且装配在同一轴线上,镜像放置,即:正电极(57)和负电极(63)的外圆M同轴,球面SR的N同轴;正电极(57)的圆角C的尺寸是H尺寸的10至30倍;正电极(57)的球面SR高度是工件(62)压紧厚度的0.2倍;正电极(57)的球面SR直径是工件厚度的10至100倍;正电极(57)的轮廓线ΦR尺寸范围是正电极(57)直径ΦD的二分之一至四分之三之间,轮廓线ΦR是1至5个;即:球面SR的外轮廓线V的直径尺寸小于圆角C的内轮廓线W直径尺寸;正电极(57)的球面SR是1至100个,当球面SR是1个时,球面SR的轴线和外圆M同轴,当球面SR是2个以上时,球面SR的中心线放置在轮廓线ΦR上,并在轮廓线ΦR上均布,并且一个球面SR的外圆X和相邻的一个球面SR的外圆X不得相交,X和X的间距不得小于2mm;当一个轮廓线不能按照要求放置多个球面SR时,可在正电极(57)的直径ΦD的二分之一至四分之三之间均布轮廓线,然后在每一条轮廓线上均布球面SR;正电极(57)和负电极(63)可以是圆形,也可以是方形,但无论是圆形还是方形,正电极(57)和负电极(63)的焊接面都有放电凸台H,并且凸台H与平面连接都是平滑的曲面连接。
  3. 根据权利要求1所述的多层金属焊接装置,其特征在于:上电缸(4)和下电缸(5)的结构、原理、尺寸链、性能、参数完全一致,上电缸(4)的压力是10~15000公斤,上电缸(4)是带有制动器的扭矩电机,电机功率在1至10千瓦。
  4. 根据权利要求1所述的多层金属焊接装置,其特征在于:帘栅回路(154)、焊接回路组(155)、补正回路组(156)采用的是并联电路结构、树形放电方式,即:每一回路的电容(149)的耐压和容量不同,根据焊接工件(62)需求的电流不同,可选择任意回路放电,可单独使用,也可组合使用,还可按照时序间歇放电或者是间隔放电;所述的帘栅回路(154)是高低压组合的叠加电源,高低压的电源切换是通过二极管(151)自动切换的;所述的焊接回路组(155)和补正回路组(156)可互换通用,即:焊接回路组(155)和补正回路组(156)即可作为焊接模块使用,也可作补正模块使用。
  5. 根据权利要求1所述的多层金属焊接装置,其特征在于:高压储能(98)充电电压和放电电压大于500伏特。
  6. 根据权利要求1所述的多层金属焊接装置,其特征在于:储能组件(138)是1至20个回路;每个回路可单独使用,也可并联使用,也可间歇放电使用;所述的储能组件(138)可单独充电也可同时充电。
  7. 根据权利要求1所述的多层金属焊接装置,其特征在于:工件(62)是指2层至500层之间的铝箔、铜箔、铝带、铜带或者是铝基材表面处理材料或者是铜基材表面处理材料,基材厚度在0.006mm至1mm之间。
  8. 根据权利要求1所述的多层金属焊接装置,其特征在于:上电缸(4)和下电缸(5)的结构、原理一致,镜像、同轴放置。
  9. 多层金属焊接装置的焊接方法,包括以下步骤:
    A、准备步骤:按照工件(62)的技术要求,选择正电极(57)和负电极(63)的电极形状,并计算工件(62)的材质电阻、需要焊接的层数及总电阻、不同层的氧化膜电阻,确定是中心点焊接还是贯通焊接;然后根据技术要求的焊接面积选择正电极(57)和负电极(63)的ΦD尺寸,同时计算球面SR和轮廓线ΦR数量与均布数量,焊接熔核形成的熔核数量;最后根据材质的不同和有色金属冷作硬化特性,计算电缸组的扭矩以及工件(62)因受高热而产生的屈服点和硬度降低数值,调整压力随动机构弹簧51的压力后,安装焊接使用的正电极(57)和负电极(63),之后调整负电极(63)的轴线断面坐标,使正电极(57)和负电极(63)同轴后,固定负电极(63),随后旋转负电极(63)的旋转角度,使负电极(63)的N轴线和正电极(57)的N轴线同轴,并紧固负电极(63)的旋转螺栓,使负电极(63)不能上、下、左、右、前、后窜动;这时,准备步骤A完成,进入到下一步骤,自检步骤B;
    B、自检步骤:经步骤A准备步骤完成后,多层金属焊接装置进入到自检步骤B;首先检查急停和报警是否有效,如果有效,则控制器(128)向执行组件(125)发出声光报警信号,同时通过传输线(129)向触摸屏(130)发出故障位置和故障处理方法;其次检查各轴运动副是否在原点位置,如果不在原点位置,则触摸屏(130)显示哪个轴不在原点位置,并显示“是否按照规定路径和轴运动顺序返回到原点位置”;最后,当控制器(128)初始化完成,自检通过后,在触摸屏(130)上显示“请选择焊接工件序号”,如果选择是已经焊接过的工件,则控制器(128)自动跳转到自动步骤E开始自动循环焊接操作;如果选择是新工件,则控制器(128)自动跳转到点动控制/参数设置菜单页面;这时,自检步骤B处理完成,进入到设置步骤C或者是自动步骤E;
    C、设置步骤:经步骤B自检步骤处理后,控制器(128)自动跳转到设置步骤C,并将触摸屏(130)的画面切换到点动控制/参数设置菜单;然后按照准备步骤A计算的数据,将参数分别录入到机械手部分、预压部分、预拉部分、放电部分、充电部分、卸电部分;其中:机械手部分是从进料架中取出工件(62)后放入到正电极(57)和负电极(63)中间的焊接坐标处等待焊接,当焊接完成后,再将工件(62)移送到出料架上;在此期间,机械手X轴、Y轴、Z轴、回转轴(7)上电缸(4)、下电缸(5)的工作速度可在线调整和设置参数,经调整和设置好的参数可进行人工反复的点动测试X轴、Y轴、Z轴、回转轴(7)上电缸(4)、下电缸(5)的运行速度、联动插补、软中断测试,直至达到工艺要求为止,同时机械手还可自动判断进料架和出料架是否有料以及取料和放料顺序;
    预压部分是以上电缸(4)为动力源,拖动上电缸、压力随动机构、焊接组件的上绝缘板(53)、电源正极(55)、加长杆(56)、正电极(57)向工件(62)方向移动,并以负电极(63)为固定参照基准,对工件(62)施加压力,压力的大小可在触摸屏(130)上进行在线修改,并自动实时触发和调整压力值的大小,同时将反馈信号反馈到晶体管控制器(131)中,然后晶体管控制器(131)再和触摸屏(130)录入的压力值进行比较,如果反馈数值和录入压力值相等,则上电缸(4)制动关闭,上电缸(4)停止工作;当反馈数值大于录入压力值,则上电缸(4)向工件(62)相反的方向运动,直至反馈数值等于录入压力值时,上电缸(4)制动关闭,上电缸(4)停止工作;否则相反;预拉部分是下电缸(5)拖动拉伸机构向工件(62)方向移动,并以工件(62)为固定参照基准,对工件(62)施加压力,压力的大小可在触摸屏(130)上进行在线修改,并自动实时触发和调整压力值的大小;此时,运动副各轴参数设置、调整完成,进入到储能和放电参数设置;即:首先设置帘栅回路(154),也就是:根据待焊工件(62)氧化膜厚度和层数不同,计算氧化膜的击穿电压,击穿电压就是高压储能(98)充电电压,充电电压选择范围是500至5000伏特,然后再设置储能组件(138)中的CN1充电电压,充电电压选择范围是20至100伏特,计算方法是工件(62)预热时间和预热温度,电压越高,预热时间越长;其次是设置焊接回路组(155),即:选择工件(62)的焊接功率,也就是:根据工件(62)每层厚度、层数、焊接面积计算焊接功率和焊接电流,然后再根据焊接功率和焊 接电流选择焊接支路的数量,并确定储能组件(138)中的CN2组的充电电压,并确定焊接支路是同时放电还是间歇放电或者是时序放电;然后通过触摸屏(130)录入到控制器(128)中,录入的充电电压范围是0至50伏特;最后是设置补正回路组(156),补正支路充电电压值按照电压值除以补正支路数量给每个补正支路充电,并在触摸屏(130)录入到控制器(128)中,录入的充电电压范围是0至50伏特;这时;设置步骤B处理完成,进入到自动步骤D;
    D、自动步骤:经步骤C设置步骤处理完成后,控制器(128)自动跳转到自动步骤D等待人工发出自动运行命令,当操作者在触摸屏(130)上按下自动运行按钮时,设备便自动运行;首先,当控制器(128)接收到触摸屏(130)的自动运行命令时,控制器(128)就会发出机械手部分的X轴、Y轴、Z轴、回转轴(7)、上电缸(4)、下电缸(5)自动回零点操作,当各轴回零点完成后,夹持组件的卡抓张开、L上板(59)开启、卸电继电器(135)吸合,并同时判断进料架是否有料,哪个料架有料,如果没有料,机械手自动进入等待程序,如果进料架上有料,控制器(128)就会发出到哪个取料架取料和动作顺序命令,此时,X轴、Y轴、Z轴、回转轴(7)会按照位置数据控制表的运行距离、运行速度到指定的坐标去抓取工件(62),然后将工件(62)送到焊接工位的负电极(63)的定位夹具中,工件(62)放到定位夹具后,定位夹具向控制器(128)发出工件(62)到位指令,这时,控制器(128)向夹持组件发出松开命令,并缩回手臂Z轴到原点位置等待;当控制器(128)接收到Z轴到达原点命令后,发出下电缸(5)压紧命令,并由下电缸(5)拖动L上板(59)压住工件(62),其中:L上板(59)的压力是在触摸屏(130)上设定完成的扭矩信号;控制器(128)也同时发出对帘栅回路(154)、焊接回路组(155)、补正回路组(156)充电命令,并实时比较电容(149)的充电电压是否和触摸屏(130)录入的充电数据一致,如果一致,便向控制器(128)发出充电完成指令,同时检测L上板(59)和上电缸(4)的压力值已经达到设定压力值时,控制器(128)发出焊接指令;然后,按照触摸屏(130)设定的放电时序进行顺序放电;即:帘栅回路(154)的高压储能(98)首先放电,当高压储能(98)的存储电压低于储能组件(138)中的CN1存储电压时,二极管(151)导通,这时,高压储能(98)和储能组件(138)中的CN1同时放电;
    其中补正回路组(156)的放电时序是:当控制器(128)检测到焊接回路组(155)放电完成信号时,马上对焊接回路组(155)进行平均化分析功率、电阻、电压、电流是否满足设定要求;如果不满足,控制器(128)就会计算焊接回路组(155)产生的误差值是多少,然后与补正回路组(156)中的那条补正支路或者是哪几条补正支路的并联值与误差值接近或者是相等,然后进行二次放电,用于补充焊接能量的不足;
    当控制器(128)检测到二次放电完成信号时;控制器(128)首先发出继电器(135)卸电命令,随后发出上电缸(4)、下电缸(5)开启指令,当控制器(128)检测到下电缸(5)和上电缸(4)到达信号后,再次将Z轴的手臂伸出,到达工件(62)的坐标后,夹持组件夹住工件(62)送到出料口的空位;然后机械手返回原位,这时,第一个工作循环完成,如果继续工作,设备便周而复始的工作;如果人工干预发出结束命令,这时,自动步骤D完成,进入到卸电步骤E;
    E、卸电步骤:经步骤D自动步骤处理完成后,控制器(128)发出伺服使能关闭命令,检测继电器(135)是否断开,电容(149)是否放电完成后,自动关闭电源;控制器(128)在自动关闭电源的同时,也切断控制器(128)本身的供电电源。
PCT/CN2018/121500 2018-09-18 2018-12-17 多层金属焊接装置及其焊接方法 WO2020056951A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019502244A JP7016346B2 (ja) 2018-09-18 2018-12-17 多層金属溶接装置及びその溶接方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811085567.8A CN108907427A (zh) 2018-09-18 2018-09-18 多层金属焊接装置及其焊接方法
CN201811085567.8 2018-09-18

Publications (1)

Publication Number Publication Date
WO2020056951A1 true WO2020056951A1 (zh) 2020-03-26

Family

ID=64408988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121500 WO2020056951A1 (zh) 2018-09-18 2018-12-17 多层金属焊接装置及其焊接方法

Country Status (3)

Country Link
JP (1) JP7016346B2 (zh)
CN (1) CN108907427A (zh)
WO (1) WO2020056951A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113319390A (zh) * 2021-06-03 2021-08-31 江文建 一种用于新能源汽车生产用的锂电池串联焊接设备
CN114406587A (zh) * 2022-03-14 2022-04-29 上海道简机电科技有限公司 一种使折弯成型的矩形钢筋头尾部搭接的自动焊接台及校正方法
CN114770528A (zh) * 2022-03-29 2022-07-22 广东三向智能科技股份有限公司 一种基于5g的工业机器人焊接工作站及其焊接方法
CN117497266A (zh) * 2023-11-30 2024-02-02 东莞市台易电子科技有限公司 一种ntc一体化加工设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108907427A (zh) * 2018-09-18 2018-11-30 优尼恩电机(大连)有限公司 多层金属焊接装置及其焊接方法
CN110116264A (zh) * 2019-05-09 2019-08-13 四川九州光电子技术有限公司 封焊机用的下电极水平调整装置
CN111014812B (zh) * 2019-12-18 2021-08-31 长沙思胜智能设备有限公司 一种大吨位拉床控制系统
JP6810820B1 (ja) * 2020-05-01 2021-01-06 株式会社向洋技研 抵抗溶接装置
TWI779894B (zh) * 2021-10-21 2022-10-01 中國鋼鐵股份有限公司 緊固件之銲接方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1708374A (zh) * 2002-11-23 2005-12-14 青山好高 对多层钢板的轴状零件焊接方法
CN101885104A (zh) * 2010-07-14 2010-11-17 天津市科华焊接设备有限公司 焊网机的变压器与电极随动机构
CN102513671A (zh) * 2011-11-22 2012-06-27 胜利油田康贝石油工程装备有限公司 多层复合金属滤网超长自动焊接设备及方法
WO2013191218A1 (ja) * 2012-06-20 2013-12-27 トヨタ自動車株式会社 積層アルミニウム材の製造方法及びそれを含む密閉型電池の製造方法、並びに、密閉型電池
WO2018043739A1 (ja) * 2016-09-05 2018-03-08 ナグシステム株式会社 積層金属箔の製造方法
CN107838540A (zh) * 2017-12-07 2018-03-27 广州强强电子科技有限公司 一种电阻焊设备
CN108907427A (zh) * 2018-09-18 2018-11-30 优尼恩电机(大连)有限公司 多层金属焊接装置及其焊接方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53103951A (en) * 1977-02-18 1978-09-09 Vni Pk I Chiefunorogiichiesuki Battery type welding machine that control welding current pulse
KR200225497Y1 (ko) * 1998-11-11 2001-06-01 손철정 스터드용 스폿트용접 회로
CN1172766C (zh) * 2002-04-22 2004-10-27 俞岳皋 无变压器储能式焊机
JP5529690B2 (ja) 2010-09-10 2014-06-25 本田技研工業株式会社 スポット溶接方法
CN101992343B (zh) * 2010-09-20 2013-11-13 北京宏浩晶电科技发展有限公司 封焊用直线机械手
CN102267003A (zh) * 2011-07-29 2011-12-07 华南理工大学 一种电阻点焊伺服加压系统
CN108372354A (zh) * 2018-02-05 2018-08-07 广州双穗电气设备有限公司 一种新型脉冲直流焊接电源
CN209647825U (zh) * 2018-09-18 2019-11-19 优尼恩电机(大连)有限公司 多层金属焊接装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1708374A (zh) * 2002-11-23 2005-12-14 青山好高 对多层钢板的轴状零件焊接方法
CN101885104A (zh) * 2010-07-14 2010-11-17 天津市科华焊接设备有限公司 焊网机的变压器与电极随动机构
CN102513671A (zh) * 2011-11-22 2012-06-27 胜利油田康贝石油工程装备有限公司 多层复合金属滤网超长自动焊接设备及方法
WO2013191218A1 (ja) * 2012-06-20 2013-12-27 トヨタ自動車株式会社 積層アルミニウム材の製造方法及びそれを含む密閉型電池の製造方法、並びに、密閉型電池
WO2018043739A1 (ja) * 2016-09-05 2018-03-08 ナグシステム株式会社 積層金属箔の製造方法
CN107838540A (zh) * 2017-12-07 2018-03-27 广州强强电子科技有限公司 一种电阻焊设备
CN108907427A (zh) * 2018-09-18 2018-11-30 优尼恩电机(大连)有限公司 多层金属焊接装置及其焊接方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113319390A (zh) * 2021-06-03 2021-08-31 江文建 一种用于新能源汽车生产用的锂电池串联焊接设备
CN114406587A (zh) * 2022-03-14 2022-04-29 上海道简机电科技有限公司 一种使折弯成型的矩形钢筋头尾部搭接的自动焊接台及校正方法
CN114406587B (zh) * 2022-03-14 2024-01-26 上海道简机电科技有限公司 一种使折弯成型的矩形钢筋头尾部搭接的自动焊接台及校正方法
CN114770528A (zh) * 2022-03-29 2022-07-22 广东三向智能科技股份有限公司 一种基于5g的工业机器人焊接工作站及其焊接方法
CN117497266A (zh) * 2023-11-30 2024-02-02 东莞市台易电子科技有限公司 一种ntc一体化加工设备

Also Published As

Publication number Publication date
JP7016346B2 (ja) 2022-02-04
CN108907427A (zh) 2018-11-30
JP2021501690A (ja) 2021-01-21

Similar Documents

Publication Publication Date Title
WO2020056951A1 (zh) 多层金属焊接装置及其焊接方法
CN207459080U (zh) 一种电池模组装配焊接机
CN202894573U (zh) 全自动银点点焊机
CN107507996A (zh) 一种电池模组装配焊接机
CN207077091U (zh) 一种基于plc精准定位的自动点焊机
CN102328151B (zh) 一种接线盒自动点焊设备及其点焊方法
CN110732794A (zh) 一种超声波与电磁脉冲复合焊接装置及复合焊接方法
CN201002171Y (zh) 一种多焊点连续点焊装置
CN111266871A (zh) 一种新型摩擦焊设备及生产线
CN104191117B (zh) 一种自动焊接压力容器夹套的工装系统
CN202291798U (zh) 自动碰焊机
CN107775192A (zh) 一种基于导线焊接设备的焊接方法
CN204430554U (zh) 超声波焊接机
CN204712041U (zh) 双钳式微夹持器
CN209647825U (zh) 多层金属焊接装置
CN201009046Y (zh) 铁线回收对焊机
CN213998187U (zh) 一种电容储能式点凸焊机
CN110434424B (zh) 一种油箱背缝机器人焊接工作站系统
CN204954236U (zh) 冷却器铝制品焊接机系统
CN107262881A (zh) 钢筋预埋件t形接头埋弧压力焊焊接装置及其焊接方法
CN113787720A (zh) 一种转盘式高周波塑胶熔接机
CN211966623U (zh) 一种新型摩擦焊设备及生产线
CN103831522A (zh) 一种小径管挤压焊封装置
CN208713379U (zh) 一种定子焊接弯圆烧焊自动装置
CN110181162B (zh) 一种双零铝箔接头随动焊接装置及使用方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019502244

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934000

Country of ref document: EP

Kind code of ref document: A1