WO2020054414A1 - 回路基板、半導体装置、および、電子機器 - Google Patents

回路基板、半導体装置、および、電子機器 Download PDF

Info

Publication number
WO2020054414A1
WO2020054414A1 PCT/JP2019/033637 JP2019033637W WO2020054414A1 WO 2020054414 A1 WO2020054414 A1 WO 2020054414A1 JP 2019033637 W JP2019033637 W JP 2019033637W WO 2020054414 A1 WO2020054414 A1 WO 2020054414A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
width
mesh
configuration example
wiring
Prior art date
Application number
PCT/JP2019/033637
Other languages
English (en)
French (fr)
Inventor
宗 宮本
誠 早淵
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US17/250,765 priority Critical patent/US20210352801A1/en
Publication of WO2020054414A1 publication Critical patent/WO2020054414A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • H05K1/0219Printed shielding conductors for shielding around or between signal conductors, e.g. coplanar or coaxial printed shielding conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • H05K1/0224Patterned shielding planes, ground planes or power planes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • H05K1/0224Patterned shielding planes, ground planes or power planes
    • H05K1/0225Single or multiple openings in a shielding, ground or power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09218Conductive traces
    • H05K2201/09236Parallel layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09672Superposed layout, i.e. in different planes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09681Mesh conductors, e.g. as a ground plane

Definitions

  • the present technology relates to a circuit board, a semiconductor device, and an electronic device, and more particularly, to a circuit board, a semiconductor device, and an electronic device that can more effectively suppress generation of noise in a signal.
  • noise may occur in a pixel signal generated by each pixel due to an internal configuration of the solid-state imaging device.
  • CMOS complementary metal-oxide semiconductor
  • some active elements such as transistors and diodes that exist inside the solid-state imaging device generate fine hot carrier emission, and when this hot carrier emission leaks into the photoelectric conversion unit formed in the pixel, Noise will be generated in the signal.
  • Patent Document 1 As a method of suppressing noise caused by hot carrier emission generated from an active element, a technique of providing a wiring formed between an active element and a photoelectric conversion unit with a light-shielding structure is known (for example, Patent Document 1). 1).
  • noise inductive noise
  • noise may be generated in a pixel signal due to induced electromotive force due to a magnetic field generated due to an internal configuration of the solid-state imaging device.
  • a control line for transmitting a control signal for selecting a pixel from which the pixel signal is to be read is transmitted, and a pixel signal read from the selected pixel is transmitted.
  • a conductor loop is formed on the pixel array from the signal line.
  • a change in current flowing in the wiring generates a magnetic flux passing through the conductor loop, thereby generating an induced electromotive force in the conductor loop and causing a pixel signal to be generated. May cause inductive noise.
  • a conductor loop in which a magnetic flux is generated due to a change in current flowing in a nearby wiring and thereby an induced electromotive force is generated is referred to as a Victim conductor loop.
  • the present technology has been made in view of such a situation, and is intended to more effectively suppress the occurrence of noise in a signal.
  • the circuit board includes a first conductor group including two or more conductors having a first conductor width arranged in a first direction at a first periodic width; A second conductor group composed of two or more conductors having a second conductor width arranged at a second periodic width in a second direction orthogonal to the first direction, and at least one of the second conductor group; A part is located at a position where it is moved by one time the first cycle width in the first direction and one time by a third cycle width in the second direction.
  • a semiconductor device includes a first conductor group including two or more conductors having a first conductor width arranged at a first periodic width in a first direction; A second conductor group composed of two or more conductors having a second conductor width arranged at a second periodic width in a second direction orthogonal to the first direction, and at least one of the second conductor group; A part is disposed at a position moved by one time of the first period width in the first direction and by one time of a third period width in the second direction. And a circuit board having a mesh conductor including one moving conductor group and having a different third cycle width from the second cycle width.
  • An electronic device includes a first conductor group including two or more conductors having a first conductor width arranged in a first direction at a first periodic width; A second conductor group composed of two or more conductors having a second conductor width arranged at a second periodic width in a second direction orthogonal to the first direction, and at least one of the second conductor group; A part is located at a position where it is moved by one time the first cycle width in the first direction and one time by a third cycle width in the second direction.
  • a semiconductor device comprising a meshed conductor including one moving conductor group and a circuit board having a different third cycle width and a different second cycle width.
  • a first conductor group including two or more conductors having a first conductor width arranged in a first direction at a first periodic width;
  • a second conductor group composed of two or more conductors having a second conductor width arranged at a second periodic width in a second direction orthogonal to the first direction; At least a portion is arranged at a position moved by one time of the first cycle width in the first direction and by one time of a third cycle width in the second direction.
  • a mesh conductor including a first moving conductor group is provided, and the third periodic width and the second periodic width are different from each other.
  • the circuit board, the semiconductor device, and the electronic device may be independent devices, or may be a module incorporated in another device.
  • FIG. 21 is a block diagram illustrating a configuration example of a solid-state imaging device to which the present technology is applied.
  • FIG. 3 is a block diagram illustrating an example of main components of a pixel / analog processing unit.
  • FIG. 3 is a diagram illustrating a detailed configuration example of a pixel array.
  • FIG. 3 is a circuit diagram illustrating a configuration example of a pixel.
  • FIG. 2 is a block diagram illustrating an example of a cross-sectional structure of a solid-state imaging device.
  • FIG. 3 is a schematic configuration diagram illustrating an example of a planar arrangement of a circuit block including a region in which an active element group is formed.
  • FIG. 4 is a diagram illustrating an example of a positional relationship between a light-shielding target area by a light-shielding structure, an active element group area, and a buffer area.
  • FIG. 6 is a diagram illustrating a first comparative example of conductor layers A and B.
  • FIG. 7 is a diagram illustrating conditions of current flowing in a first comparative example.
  • FIG. 9 is a diagram illustrating a simulation result of inductive noise corresponding to the first comparative example.
  • FIG. 3 is a diagram illustrating a first configuration example of conductor layers A and B.
  • FIG. 4 is a diagram illustrating a condition of a current flowing in the first configuration example.
  • FIG. 9 is a diagram illustrating a simulation result of inductive noise corresponding to the first configuration example.
  • FIG. 6 is a diagram illustrating a first comparative example of conductor layers A and B.
  • FIG. 7 is a diagram illustrating conditions of current flowing in a first comparative example.
  • FIG. 4 is a diagram illustrating a second configuration example of conductor layers A and B.
  • FIG. 9 is a diagram illustrating a condition of a current flowing in a second configuration example. It is a figure showing the simulation result of the inductive noise corresponding to the 2nd example of composition.
  • FIG. 9 is a diagram illustrating a second comparative example of conductor layers A and B.
  • FIG. 14 is a diagram illustrating a simulation result of inductive noise corresponding to a second comparative example.
  • FIG. 9 is a diagram illustrating a third comparative example of conductor layers A and B. It is a figure showing the simulation result of inductive noise corresponding to the 3rd comparative example.
  • FIG. 9 is a diagram illustrating a third configuration example of conductor layers A and B.
  • FIG. 9 is a diagram illustrating a condition of a current flowing in a third configuration example. It is a figure showing the simulation result of the inductive noise corresponding to the 3rd example of composition.
  • FIG. 9 is a diagram illustrating a fourth configuration example of the conductor layers A and B. It is a figure showing the 5th example of composition of conductor layers A and B.
  • FIG. 9 is a diagram illustrating a sixth configuration example of the conductor layers A and B. It is a figure showing the simulation result of the inductive noise corresponding to the 4th thru / or the 6th example of composition. It is a figure showing the 7th example of composition of conductor layers A and B.
  • FIG. 14 is a diagram illustrating a condition of a current flowing in a seventh configuration example.
  • FIG. 21 is a diagram showing conditions of current flowing in an eleventh configuration example. It is a figure showing the simulation result of the inductive noise corresponding to the 11th example of composition.
  • FIG. 4 is a plan view illustrating a first arrangement example of pads on a semiconductor substrate.
  • FIG. 6 is a plan view illustrating a second example of the arrangement of pads on a semiconductor substrate.
  • FIG. 11 is a plan view illustrating a third example of arrangement of pads on a semiconductor substrate.
  • FIG. 3 is a diagram illustrating an example of a conductor having different resistance values in an X direction and a Y direction.
  • FIG. 9 is a diagram illustrating a modification in which the conductor period in the X direction of the second configuration example of the conductor layers A and B is modified by a factor of 2 and the effect thereof. It is a figure which shows the modification which changed the conductor period of the X direction of the 5th structural example of the conductor layer A and B by 1/2, and its effect. It is a figure which shows the modification which changed the conductor period of the X direction of the 6th structural example of the conductor layer A and B by 1/2, and its effect.
  • FIG. 9 is a diagram illustrating a modification in which the conductor period in the Y direction of the second configuration example of the conductor layers A and B is modified by a factor of 2 and the effect thereof.
  • FIG. 9 is a diagram illustrating a modification in which the conductor width in the X direction of the second configuration example of the conductor layers A and B is doubled, and the effect thereof. It is a figure which shows the modification which changed the conductor width of the X direction of the 5th structural example of the conductor layer A and B twice, and its effect.
  • FIG. 9 is a diagram illustrating a modification of the second configuration example of the conductor layers A and B in which the conductor width in the Y direction is doubled, and the effect thereof. It is a figure which shows the modification which changed the conductor width of Y direction of the 5th structural example of the conductor layer A and B twice, and its effect. It is a figure which shows the modification which changed the conductor width
  • FIG. 9 is a diagram for describing an improvement in layout flexibility.
  • FIG. 4 is a diagram for explaining reduction of a voltage drop (IR-Drop).
  • FIG. 4 is a diagram for explaining reduction of a voltage drop (IR-Drop).
  • FIG. 4 is a diagram for explaining reduction of capacitive noise. It is a figure explaining a main conductor part and a lead conductor part of a conductor layer. It is a figure showing the 11th example of composition of conductor layers A and B. It is a figure showing the 14th example of composition of conductor layer A and B.
  • FIG. 39 is a diagram illustrating another configuration example of the conductor layer B in the twenty-second configuration example. It is a figure showing the 23rd example of composition of conductor layers A and B. It is a figure showing the 24th example of composition of conductor layers A and B. It is a figure showing the 25th example of composition of conductor layers A and B. It is a figure showing the 26th example of composition of conductor layers A and B. It is a figure showing the 27th example of composition of conductor layers A and B.
  • FIG. 39 is a diagram illustrating another configuration example of the conductor layer B in the twenty-second configuration example. It is a figure showing the 23rd example of composition of conductor layers A and B. It is a figure showing the 24th example of composition of conductor layers A and B. It is a figure showing the 25th example of composition of conductor layers A and B. It is a figure showing the 26th example of composition of conductor layers A and B. It is a figure showing the 27th example of composition of conductor layers A and
  • FIG. 39 is a diagram illustrating a twenty-eighth configuration example of the conductor layers A and B.
  • FIG. 39 is a diagram illustrating another configuration example of the conductor layer A in the twenty-eighth configuration example.
  • FIG. 3 is a plan view showing the entirety of a conductor layer A formed on a substrate. It is a top view showing the 4th example of arrangement of a pad. It is a top view showing the 5th example of arrangement of a pad. It is a top view showing the 6th example of arrangement of a pad. It is a top view showing the example of the 7th arrangement of a pad. It is a top view showing the 8th example of arrangement of a pad. It is a top view showing the 9th example of arrangement of a pad.
  • FIG. 2 is a diagram illustrating an example of package stacking of a first semiconductor substrate and a second semiconductor substrate that form a solid-state imaging device.
  • FIG. 4 is a diagram illustrating a first configuration example of an arrangement of a conductive shield with respect to a signal line and a planar shape.
  • FIG. 9 is a diagram illustrating a second configuration example of an arrangement of a conductive shield with respect to a signal line and a planar shape. It is a figure showing arrangement of a conductive shield to a signal line, and the 3rd example of composition of plane shape. It is a figure showing arrangement of a conductive shield to a signal line, and the 4th example of composition of plane shape.
  • FIG. 3 is a diagram illustrating a first configuration example of a three-layer conductor layer. It is a figure showing the 2nd example of composition of a three-layer conductor layer. It is a figure showing the 1st modification of the 2nd example of composition of a 3rd conductor layer. It is a figure showing the 2nd modification of the 2nd example of composition of a 3rd conductor layer. It is a figure showing the 3rd example of composition of three conductor layers. It is a figure showing the modification of the 3rd example of composition of a 3rd conductor layer.
  • FIG. 4 is a diagram illustrating a conductor width and a gap width of a first shifted configuration example of the mesh conductor. It is a top view of the 1st shift configuration example of a mesh conductor. It is a top view of the 1st shift configuration example of a mesh conductor.
  • FIG. 9 is a diagram illustrating theoretical values of capacitive noise in a first shifted configuration example.
  • FIG. 9 is a diagram illustrating theoretical values of capacitive noise in a first shifted configuration example. It is a figure explaining the definition of a mesh conductor. It is a figure explaining the definition of a mesh conductor. It is a top view which shows the 1st and 2nd modification of a 1st shift configuration example. It is a top view which shows the 3rd and 4th modification of a 1st shift configuration example. It is a top view which shows the 5th and 6th modification of a 1st offset constitution example. It is a top view which shows the 7th and 8th modification of a 1st shift configuration example.
  • FIG. 2 is a block diagram illustrating a configuration example of an imaging device. It is a block diagram which shows an example of a schematic structure of an in-vivo information acquisition system. It is a figure showing an example of the schematic structure of an endoscope operation system.
  • FIG. 3 is a block diagram illustrating an example of a functional configuration of a camera head and a CCU. It is a block diagram showing an example of a schematic structure of a vehicle control system. It is explanatory drawing which shows an example of the installation position of a vehicle exterior information detection part and an imaging part.
  • Victim conductor loop and magnetic flux For example, in a solid-state imaging device (semiconductor device) such as a CMOS image sensor, if there is a circuit in which a Victim conductor loop is formed near a power supply wiring, when the magnetic flux passing through the loop plane of the Victim conductor loop changes, the Victim conductor In some cases, the induced electromotive force generated in the loop changes and noise is generated in the pixel signal.
  • the Victim conductor loop may be formed so as to include a conductor at least in part. Further, the whole Victim conductor loop may be formed of a conductor.
  • the Victim conductor loop (first conductor loop) refers to a conductor loop on the side that is affected by a change in the magnetic field intensity generated in the vicinity.
  • a conductor loop that is present near the Victim conductor loop, causes a change in the magnetic field intensity due to a change in flowing current, and has an influence on the Victim conductor loop is referred to as an Aggressor conductor loop (second conductor loop). .
  • FIG. 1 is a diagram illustrating a change in induced electromotive force due to a change in the Victim conductor loop.
  • a solid-state imaging device such as a CMOS image sensor shown in FIG. 1 is configured by stacking a pixel substrate 10 and a logic substrate 20 in this order from the top.
  • the solid-state imaging device of FIG. 1 at least a part of the Victim conductor loop 11 (11A, 11B) is formed in the pixel region of the pixel substrate 10, and the Victim conductor loop 11 of the logic substrate 20 laminated on the pixel substrate 10 is formed.
  • a power supply wiring 21 for supplying (digital) power is formed near 11.
  • indicates a magnetic flux
  • H indicates a magnetic field strength
  • indicates a magnetic permeability
  • S indicates an area of the Victim conductor loop 11.
  • the loop path of the Victim conductor loop 11 formed in the pixel region of the pixel substrate 10 varies depending on the position of a pixel selected as a pixel to be read from which a pixel signal is read.
  • the loop path of the Victim conductor loop 11A formed when the pixel A is selected is the loop of the Victim conductor loop 11B formed when the pixel B at a position different from the pixel A is selected. Different from the route. In other words, the effective shape of the conductor loop changes depending on the position of the selected pixel.
  • the present disclosure proposes a technique for suppressing generation of inductive noise due to induced electromotive force in a Victim conductor loop.
  • FIG. 2 is a block diagram illustrating a main configuration example of a solid-state imaging device according to an embodiment of the present technology.
  • the solid-state imaging device 100 shown in FIG. 2 is a device that photoelectrically converts light from a subject and outputs it as image data.
  • the solid-state imaging device 100 is configured as a back-illuminated CMOS image sensor using CMOS or the like.
  • the solid-state imaging device 100 is configured by stacking a first semiconductor substrate 101 and a second semiconductor substrate 102.
  • a pixel / analog processing unit 111 having pixels, analog circuits, and the like is formed.
  • a digital processing unit 112 having a digital circuit and the like is formed on the second semiconductor substrate 102.
  • the first semiconductor substrate 101 and the second semiconductor substrate 102 are superimposed on each other while being insulated from each other. That is, the configuration of the pixel / analog processing unit 111 and the configuration of the second semiconductor substrate 102 are basically insulated from each other. Although illustration is omitted, the configuration formed in the pixel / analog processing unit 111 and the configuration formed in the digital processing unit 112 may be, for example, a conductor via (VIA), through silicon via (TSV), Cu-Cu bonding, Au-Au bonding, or similar metal bonding such as Al-Al bonding, Cu-Au bonding, Cu-Al bonding, Au- Al bonding, etc. Are electrically connected to each other via a dissimilar metal bonding or a bonding wire.
  • VIP conductor via
  • TSV through silicon via
  • Cu-Cu bonding Cu-Cu bonding
  • Au-Au bonding or similar metal bonding such as Al-Al bonding, Cu-Au bonding, Cu-Al bonding, Au- Al bonding, etc.
  • the solid-state imaging device 100 including two stacked substrates has been described as an example, but the number of stacked substrates constituting the solid-state imaging device 100 is arbitrary. For example, it may be a single layer or three or more layers. In the following, a case will be described in which the substrate is formed of a two-layer substrate as in the example of FIG.
  • FIG. 3 is a block diagram showing an example of main components formed in the pixel / analog processing unit 111.
  • the pixel / analog processing unit 111 includes a pixel array 121, an A / D conversion unit 122, a vertical scanning unit 123, and the like.
  • a plurality of pixels 131 (FIG. 4) each having a photoelectric conversion element such as a photodiode are arranged vertically and horizontally.
  • the A / D conversion unit 122 A / D converts an analog signal or the like read from each pixel 131 of the pixel array 121 and outputs a digital pixel signal obtained as a result.
  • the vertical scanning unit 123 controls the operation of the transistor (the transfer transistor 142 and the like in FIG. 5) of each pixel 131 of the pixel array 121.
  • the electric charge accumulated in each pixel 131 of the pixel array 121 is read out under the control of the vertical scanning unit 123, and is converted into a pixel signal through the signal line 132 (FIG. 4) for each unit pixel column.
  • the data is supplied to the D conversion unit 122 and A / D converted.
  • the A / D conversion unit 122 supplies the A / D conversion result (digital pixel signal) to a logic circuit (not shown) formed in the digital processing unit 112 for each column of the pixel 131.
  • FIG. 4 is a diagram showing a detailed configuration example of the pixel array 121.
  • Pixels 131-11 to 131-MN are formed in the pixel array 121 (M and N are arbitrary natural numbers). That is, in the pixel array 121, the pixels 131 of M rows and N columns are arranged in a matrix (array).
  • the pixels 131-11 to 131-MN are referred to as pixels 131 when it is not necessary to individually distinguish them.
  • Signal lines 132-1 to 132-N and control lines 133-1 to 133-M are formed in the pixel array 121.
  • signal lines 132 when it is not necessary to individually distinguish the signal lines 132-1 to 132-N, they are referred to as signal lines 132, and when it is not necessary to individually distinguish the control lines 133-1 to 133-M, they are referred to as control lines 133. Name.
  • the pixel 131 is connected to a signal line 132 corresponding to each column (column).
  • the pixels 131 are connected to a control line 133 corresponding to each row for each row.
  • a control signal from the vertical scanning unit 123 is transmitted to the pixel 131 via the control line 133.
  • an analog pixel signal is output to the A / D conversion unit 122 via the signal line 132.
  • FIG. 5 is a circuit diagram illustrating a configuration example of the pixel 131.
  • the pixel 131 includes a photodiode 141 as a photoelectric conversion element, a transfer transistor 142, a reset transistor 143, an amplification transistor 144, and a select transistor 145.
  • the photodiode 141 photoelectrically converts the received light into photocharges (here, photoelectrons) of a charge amount corresponding to the light amount, and accumulates the photocharges.
  • the anode electrode of the photodiode 141 is connected to GND, and the cathode electrode is connected to the floating diffusion (FD) via the transfer transistor 142. It is needless to say that the cathode electrode of the photodiode 141 may be connected to a power supply, the anode electrode may be connected to the floating diffusion via the transfer transistor 142, and the photoelectric charge may be read as a light hole.
  • the transfer transistor 142 controls reading of a photoelectric charge from the photodiode 141.
  • the transfer transistor 142 has a drain electrode connected to the floating diffusion and a source electrode connected to the cathode electrode of the photodiode 141.
  • a transfer control line for transmitting a transfer control signal TRG supplied from the vertical scanning unit 123 (FIG. 3) is connected to the gate electrode of the transfer transistor 142.
  • the reset transistor 143 resets the potential of the floating diffusion.
  • the reset transistor 143 has a drain electrode connected to the power supply potential and a source electrode connected to the floating diffusion.
  • a reset control line for transmitting a reset control signal RST supplied from the vertical scanning unit 123 is connected to a gate electrode of the reset transistor 143.
  • the reset control signal RST that is, the gate potential of the reset transistor 143
  • the reset control signal RST that is, the gate potential of the reset transistor 143
  • the reset control signal RST that is, the gate potential of the reset transistor 143
  • the charge of the floating diffusion is discharged to the power supply potential, and the floating diffusion is reset.
  • the amplification transistor 144 outputs an electric signal (analog signal) corresponding to the voltage of the floating diffusion (flows a current).
  • the amplification transistor 144 has a gate electrode connected to the floating diffusion, a drain electrode connected to a (source follower) power supply voltage, and a source electrode connected to the drain electrode of the select transistor 145.
  • the amplification transistor 144 outputs a reset signal (reset level) as an electric signal corresponding to the voltage of the floating diffusion reset by the reset transistor 143 to the select transistor 145 as a pixel signal.
  • the amplification transistor 144 outputs a light accumulation signal (signal level) as an electric signal corresponding to the voltage of the floating diffusion to which the photocharge has been transferred by the transfer transistor 142 to the select transistor 145 as a pixel signal.
  • the select transistor 145 controls the output of the electric signal supplied from the amplification transistor 144 to the signal line (VSL) 132 (that is, the A / D converter 122).
  • the select transistor 145 has a drain electrode connected to the source electrode of the amplification transistor 144 and a source electrode connected to the signal line 132.
  • a select control line for transmitting a select control signal SEL supplied from the vertical scanning unit 123 is connected to a gate electrode of the select transistor 145.
  • the select control signal SEL that is, the gate potential of the select transistor 145
  • the amplifier transistor 144 and the signal line 132 are electrically disconnected. Therefore, in this state, the pixel 131 does not output a reset signal or a light accumulation signal as a pixel signal.
  • the pixel 131 When the select control signal SEL (that is, the gate potential of the select transistor 145) is on, the pixel 131 is in a selected state. That is, the amplification transistor 144 is electrically connected to the signal line 132, and a reset signal or a light accumulation signal as a pixel signal output from the amplification transistor 144 is supplied to the A / D conversion unit 122 via the signal line 132. You. That is, a reset signal or a light accumulation signal as a pixel signal is read from the pixel 131.
  • the configuration of the pixel 131 is arbitrary, and is not limited to the example in FIG.
  • the control line 133 for controlling the various transistors described above and the signal line 132 Various Victim conductor loops (loop-shaped (annular) conductors) are formed by power supply wiring (analog power supply wiring, digital power supply wiring) and the like. An induced electromotive force is generated when a magnetic flux generated from a nearby wiring or the like passes through the loop plane of the Victim conductor loop.
  • the Victim conductor loop only needs to include a part of at least one of the control line 133 and the signal line 132. Further, the Victim conductor loop including a part of the control line 133 and the Victim conductor loop including a part of the signal line 132 may exist as independent Victim conductor loops. Further, the Victim conductor loop may be partially or entirely included in the second semiconductor substrate 102. Further, the Victim conductor loop may have a variable or fixed loop path.
  • the wiring directions of the control line 133 and the signal line 132 forming the icVictim conductor loop are desirably substantially orthogonal to each other, but may be substantially parallel to each other.
  • a conductor loop existing near another conductor loop can be a Victim conductor loop.
  • a conductor loop that is not affected can be a Victim conductor loop.
  • the Victim conductor loop when a high-frequency signal flows through the wiring (Aggressor conductor loop) existing in the vicinity and the magnetic field intensity around the Aggressor conductor loop changes, an induced electromotive force is generated in the Victim conductor loop due to the effect, and the Victim conductor Noise sometimes occurred in the loop.
  • the change in magnetic field intensity increases, and the induced electromotive force (ie, noise) generated in the Victim conductor loop also increases.
  • the direction of the magnetic flux generated from the loop surface of the Aggressor conductor loop is adjusted so that the magnetic field does not pass through the Aggressor conductor loop.
  • FIG. 6 is a diagram illustrating an example of a cross-sectional structure of the solid-state imaging device 100.
  • the solid-state imaging device 100 is configured by stacking the first semiconductor substrate 101 and the second semiconductor substrate 102.
  • a plurality of pixel units including a photodiode 141 serving as a photoelectric conversion unit and a plurality of pixel transistors are two-dimensionally arranged.
  • a pixel array is formed.
  • the photodiode 141 is formed having, for example, an n-type semiconductor region and a p-type semiconductor region on the substrate surface side (the lower side in the figure) in a well region formed in the semiconductor substrate 152.
  • a plurality of pixel transistors are formed on the semiconductor substrate 152.
  • a multilayer wiring layer 153 in which a plurality of wiring layers are arranged via an interlayer insulating film is formed.
  • the wiring is formed, for example, of a copper wiring.
  • the vertical scanning unit 123, and the like wirings of different wiring layers are connected at required places by connection conductors penetrating between the wiring layers.
  • an anti-reflection film, a light-shielding film for shielding a predetermined area, and a color filter or a micro lens provided at a position corresponding to each photodiode 141 Is formed On the back surface (upper surface in the figure) of the semiconductor substrate 152, for example, an anti-reflection film, a light-shielding film for shielding a predetermined area, and a color filter or a micro lens provided at a position corresponding to each photodiode 141 Is formed.
  • a logic circuit as the digital processing unit 112 is formed on the second semiconductor substrate 102.
  • the logic circuit includes, for example, a plurality of MOS transistors 164 formed in a p-type semiconductor well region of the semiconductor substrate 162.
  • FIG. 6 shows two wiring layers (wiring layers 165A and 165B) among a plurality of wiring layers forming the multilayer wiring layer 163.
  • the light-shielding structure 151 is formed by the wiring layer 165A and the wiring layer 165B.
  • an active element group 167 a region in the second semiconductor substrate 102 where active elements such as the MOS transistor 164 are formed is referred to as an active element group 167.
  • a circuit for realizing one function is configured by combining active elements such as a plurality of nMOS transistors and pMOS transistors.
  • the area where the active element group 167 is formed is defined as a circuit block (corresponding to the circuit blocks 202 to 204 in FIG. 7).
  • a diode or the like may be present in addition to the MOS transistor 164.
  • the light-shielding structure 151 including the wiring layer 165A and the wiring layer 165B exists between the active element group 167 and the photodiode 141. This prevents leakage of hot carrier emission generated from the photodiode 141 into the photodiode 141 (details will be described later).
  • the wiring layer 165A closer to the first semiconductor substrate 101 on which the photodiode 141 and the like are formed is referred to as a conductor layer A (first conductor layer). I will call it.
  • the wiring layer 165B closer to the active element group 167 will be referred to as a conductor layer B (second conductor layer).
  • the wiring layer 165A closer to the first semiconductor substrate 101 on which the photodiode 141 and the like are formed may be the conductor layer B, and the wiring layer 165B closer to the active element group 167 may be the conductor layer A.
  • any one of an insulating layer, a semiconductor layer, another conductive layer, and the like may be provided between the conductive layers A and B.
  • any one of an insulating layer, a semiconductor layer, another conductor layer, and the like may be provided in addition to between the conductor layers A and B.
  • the conductor layer A and the conductor layer B are desirably the conductor layers through which current flows most easily in a circuit board, a semiconductor substrate, and an electronic device, but are not limited thereto.
  • One of the conductor layer A and the conductor layer B is the first conductor layer through which a current easily flows in a circuit board, a semiconductor substrate, and an electronic device, and the other is the second conductor layer in a circuit board, a semiconductor substrate, and an electronic device. It is desirable that the conductor layer be easy to flow current, but this is not a limitation.
  • one of the conductor layer A and the conductor layer B is not the conductor layer through which current hardly flows in a circuit board, a semiconductor substrate, or an electronic device, but this is not a limitation. It is desirable that both the conductor layer A and the conductor layer B are not the conductor layers through which current hardly flows in a circuit board, a semiconductor substrate, or an electronic device, but this is not a limitation.
  • one of the conductive layers A and B is the first conductive layer in the first semiconductor substrate 101 through which current flows easily, and the other is the second conductive layer in the first semiconductor substrate 101.
  • the conductor layer may easily flow.
  • one of the conductive layers A and B is the first conductive layer in the second semiconductor substrate 102 through which current flows easily, and the other is the second conductive layer in the second semiconductor substrate 102.
  • the conductor layer may easily flow.
  • one of the conductive layers A and B is the first conductive layer in the first semiconductor substrate 101 through which a current easily flows, and the other is the first conductive layer in the second semiconductor substrate 102.
  • the conductor layer may easily flow.
  • one of the conductive layers A and B is the first conductive layer in the first semiconductor substrate 101 through which a current easily flows, and the other is the second conductive layer in the second semiconductor substrate 102.
  • the conductor layer may easily flow.
  • one of the conductor layers A and B is the second most conductive layer in the first semiconductor substrate 101, and the other is the first conductor layer in the second semiconductor substrate 102.
  • the conductor layer may easily flow.
  • one of the conductive layers A and B is the second conductive layer in the first semiconductor substrate 101 through which a current easily flows, and the other is the second conductive layer in the second semiconductor substrate 102.
  • the conductor layer may easily flow.
  • one of the conductor layers A and B may not be the conductor layer in the first semiconductor substrate 101 or the second semiconductor substrate 102 through which current hardly flows.
  • both the conductor layer A and the conductor layer B may not be the conductor layers in the first semiconductor substrate 101 or the second semiconductor substrate 102 through which the current hardly flows.
  • the above-described conductor layer in which electric current easily flows in a circuit board, a semiconductor substrate, or an electronic device is a conductor layer in which electric current easily flows in a circuit board, a conductive layer in which electric current easily flows in a semiconductor substrate, or an electronic device. It may be considered as any one of the conductor layers through which current flows easily.
  • a conductor layer in which current does not easily flow in a circuit board, a semiconductor substrate, or an electronic device described above is a conductor layer in which current does not easily flow in a circuit board, a conductor layer in which current does not easily flow in a semiconductor substrate, or a layer of an electronic device. It may be considered as any one of the conductor layers in which current does not easily flow.
  • the above-described conductor layer through which current easily flows may be replaced by a conductor layer having low sheet resistance, and the conductor layer through which current does not easily flow may be replaced by a conductor layer having high sheet resistance.
  • the conductor material used for the conductor layers A and B may be a metal such as copper, aluminum, tungsten, chromium, nickel, tantalum, molybdenum, titanium, gold, silver, iron, or a mixture containing at least any of these.
  • Compounds, or alloys are mainly used.
  • a semiconductor such as silicon, germanium, a compound semiconductor, or an organic semiconductor may be included.
  • insulators such as cotton, paper, polyethylene, polyvinyl chloride, natural rubber, polyester, epoxy resin, melamine resin, phenol resin, polyurethane, synthetic resin, mica, asbestos, glass fiber, and porcelain may be included. .
  • the conductor layers A and B forming the light shielding structure 151 can form an Aggressor conductor loop when a current is passed.
  • FIG. 7 is a schematic configuration diagram showing an example of a planar arrangement of a circuit block including a region in which the active element group 167 is formed in the semiconductor base 162.
  • FIG. 7A shows an example in which a plurality of circuit blocks 202 to 204 are collectively defined as a light-shielding target area by the light-shielding structure 151, and an area 205 including all of the circuit blocks 202, 203, and 204 is defined as a light-shielding target area.
  • FIG. 7B illustrates an example in which a plurality of circuit blocks 202 to 204 are individually set as light-shielding target areas by the light-shielding structure 151, and areas 206 and 207 including the circuit blocks 202, 203 and 204, respectively, and 208 is a light-shielding target area individually, and an area 209 other than the areas 206 to 208 is a light-shielding non-target area.
  • the present disclosure proposes a structure of the conductor layers A and B that allows the layout to be easily designed while preventing the degree of freedom of the layout of the conductor layers A and B from being limited.
  • the light-shielding target area includes, in addition to the circuit block representing the area of the active element group 167 serving as a light emitting source of hot carrier emission, a buffer area around the circuit block so as to be a light-shielding target area. Is provided. By providing the buffer region around the circuit block, it is possible to prevent the hot carrier emission emitted from the circuit block in an oblique direction from leaking into the photodiode 141.
  • FIG. 8 is a diagram showing an example of the positional relationship between the light-shielding target area by the light-shielding structure 151, the area of the active element group, and the buffer area.
  • the region where the active element group 167 is formed and the buffer region 191 around the active element group 167 are the light shielding target region 194, and the light shielding structure 151 is opposed to the light shielding target region 194. It is formed.
  • the length from the active element group 167 to the light shielding structure 151 is defined as an interlayer distance 192.
  • the length from the end of the active element group 167 to the end of the light-shielding structure 151 by wiring is defined as a buffer region width 193.
  • the light shielding structure 151 is formed such that the buffer region width 193 is larger than the interlayer distance 192. Thereby, it is possible to shield the oblique component of hot carrier emission generated as a point light source.
  • the appropriate value of the buffer region width 193 changes depending on the interlayer distance 192 between the light shielding structure 151 and the active element group 167. For example, when the interlayer distance 192 is long, it is necessary to provide a large buffer region 191 so that the oblique component of the hot carrier emission from the active element group 167 can be sufficiently shielded. On the other hand, when the interlayer distance 192 is short, hot carrier emission from the active element group 167 can be sufficiently shielded without providing a large buffer region 191. Therefore, if the light-shielding structure 151 is formed using a wiring layer close to the active element group 167 among a plurality of wiring layers forming the multilayer wiring layer 163, the layout flexibility of the conductor layers A and B is improved. Can be done.
  • a description will be given of a configuration example of the conductor layer A (wiring layer 165A) and the conductor layer B (wiring layer 165B) forming the light shielding structure 151, which can be an Aggressor conductor loop in the solid-state imaging device 100 to which the present technology is applied.
  • a comparative example to be compared with the configuration example will be described.
  • FIG. 9 is a plan view showing a first comparative example for comparing conductor layers A and B forming the light shielding structure 151 with a plurality of configuration examples described later.
  • 9A shows the conductor layer A
  • FIG. 9B shows the conductor layer B.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • linear conductors 211 long in the Y direction are periodically arranged in the X direction with a conductor period FXA.
  • the conductor period FXA the conductor width WXA in the X direction + the gap width GXA in the X direction.
  • Each linear conductor 211 is, for example, a wiring (Vss wiring) connected to GND or a minus power supply.
  • linear conductors 212 long in the Y direction are periodically arranged in the X direction with a conductor period FXB.
  • the conductor period FXB conductor width WXB in the X direction + gap width GXB in the X direction.
  • Each linear conductor 212 is, for example, a wiring (Vdd wiring) connected to a positive power supply.
  • conductor period FXB conductor period FXA.
  • connection destinations of the conductor layers A and B may be switched so that each linear conductor 211 is a Vdd wiring and each linear conductor 212 is a Vss wiring.
  • FIG. 9 shows a state where the conductor layers A and B shown in FIGS. 9A and 9B are viewed from the photodiode 141 side (back side).
  • the linear conductor 211 constituting the conductor layer A and the linear conductor 212 constituting the conductor layer B are arranged in a superposed manner, Since the linear conductors 211 and 212 are formed so that overlapping portions occur, the hot carrier emission from the active element group 167 can be sufficiently shielded.
  • the width of the overlapping portion is also referred to as an overlapping width.
  • FIG. 10 is a diagram showing the conditions of the current flowing in the first comparative example (FIG. 9).
  • a Victim conductor loop consisting of the control line 133 is formed on the XY plane.
  • the induced electromotive force is easily generated by the magnetic flux in the Z direction, and the larger the change in the induced electromotive force, the worse the image output from the solid-state imaging device 100 becomes (the more inductive noise increases).
  • the induced electromotive force is proportional to the dimension of the Victim conductor loop. Therefore, by moving the selected pixel in the pixel array 121, the Victim conductor loop including the signal line 132 and the control line 133 is moved. When the effective dimensions are changed, the induced electromotive force changes significantly.
  • the direction of the magnetic flux (substantially Z direction) generated from the loop surface of the Aggressor conductor loop of the light-shielding structure 151 including the conductor layers A and B, and the magnetic flux that tends to generate an induced electromotive force in the Victim conductor loop. Since the direction (Z direction) substantially matches, deterioration of an image output from the solid-state imaging device 100 (generation of inductive noise) is expected.
  • FIG. 11 shows a simulation result of inductive noise generated when the first comparative example is applied to the solid-state imaging device 100.
  • FIG. 11 illustrates an image output from the solid-state imaging device 100 and in which inductive noise has occurred.
  • FIG. 11B illustrates a change in pixel signal in the line segment X1-X2 of the image illustrated in FIG. 11A.
  • FIG. 11C shows a solid line L1 representing an induced electromotive force that causes inductive noise in an image.
  • the horizontal axis of C in FIG. 11 indicates the X-axis coordinate of the image, and the vertical axis indicates the magnitude of the induced electromotive force.
  • the solid line L1 shown in FIG. 11C is used for comparison with a simulation result of inductive noise generated when the configuration example of the conductor layers A and B forming the light shielding structure 151 is applied to the solid-state imaging device 100. I do.
  • FIG. 12 shows a first configuration example of the conductor layers A and B.
  • 12A shows the conductor layer A
  • FIG. 12B shows the conductor layer B.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • the conductor layer A in the first configuration example is composed of the planar conductor 213.
  • the planar conductor 213 is, for example, a wiring (Vss wiring) connected to GND or a negative power supply.
  • the conductor layer B in the first comparative example is composed of the planar conductor 214.
  • the planar conductor 214 is, for example, a wiring (Vdd wiring) connected to a positive power supply.
  • connection destinations of the conductor layers A and B may be switched so that the planar conductor 213 is a Vdd wiring and the planar conductor 214 is a Vss wiring. The same applies to each configuration example described below.
  • CC of FIG. 12 shows a state in which the conductor layers A and B shown in FIGS. 12A and 12B are viewed from the photodiode 141 side (back side).
  • the hatched region 215 where the oblique lines intersect in FIG. 12C indicates a region where the planar conductor 213 of the conductor layer A and the planar conductor 214 of the conductor layer B overlap. Therefore, the case of C in FIG. 12 indicates that the entire surface of the planar conductor 213 of the conductor layer A and the entire surface of the planar conductor 214 of the conductor layer B overlap.
  • the entire surface of the planar conductor 213 of the conductor layer A and the planar conductor 214 of the conductor layer B overlap, so that the hot carrier emission from the active element group 167 can be reliably blocked. .
  • FIG. 13 is a diagram showing conditions of current flowing in the first configuration example (FIG. 12).
  • the AC current flows evenly at the ends of the planar conductor 213 constituting the conductor layer A and the planar conductor 214 constituting the conductor layer B.
  • the current direction changes with time. For example, when a current flows from the upper side to the lower side of the drawing in the planar conductor 214 as the Vdd wiring, the current flows in the planar conductor 213 as the Vss wiring in the drawing. Flow from the lower side to the upper side.
  • the planar conductors 213 and 214 are provided between the planar conductor 213 that is a Vss wiring and the planar conductor 214 that is a Vdd wiring.
  • the conductor loop whose loop surface is substantially perpendicular to the X-axis and the conductor loop whose loop surface is substantially perpendicular to the Y-axis are formed including (in cross section of) the planar conductors 213 and 214.
  • the magnetic flux in the direction and the substantially Y direction is easily generated.
  • a Victim conductor loop consisting of the control line 133 is formed on the XY plane.
  • the induced electromotive force is easily generated by the magnetic flux in the Z-axis direction, and the greater the change in the induced electromotive force, the worse the image output from the solid-state imaging device 100 (the inductive noise is reduced). Increase).
  • the induced electromotive force is generated in the direction of the magnetic flux (substantially X direction or substantially Y direction) generated from the loop surface of the Aggressor conductor loop of the light shielding structure 151 including the conductor layers A and B, and the Victim conductor loop.
  • the direction (Z direction) of the magnetic flux to be applied is substantially orthogonal and differs by about 90 degrees.
  • the direction of the loop surface where the magnetic flux is generated from the Aggressor conductor loop and the direction of the loop surface where the induced electromotive force is generated in the Victim conductor loop are different from each other by approximately 90 degrees. Therefore, it is expected that deterioration of the image output from the solid-state imaging device 100 (generation of inductive noise) is smaller than in the case of the first comparative example.
  • FIG. 14 shows simulation results of inductive noise generated when the first configuration example (FIG. 12) is applied to the solid-state imaging device 100.
  • FIG. 14 shows an image output from the solid-state imaging device 100 where inductive noise may occur.
  • FIG. 14B shows a change in pixel signal in the line segment X1-X2 of the image shown in FIG.
  • FIG. 14C shows a solid line L11 representing an induced electromotive force that causes inductive noise in an image.
  • the horizontal axis of C in FIG. 14 indicates the X-axis coordinate of the image, and the vertical axis indicates the magnitude of the induced electromotive force.
  • the dotted line L1 in FIG. 14C corresponds to the first comparative example (FIG. 9).
  • the first configuration example suppresses a change in the induced electromotive force generated in the Victim conductor loop as compared with the first comparative example. be able to. Therefore, generation of inductive noise in an image output from the solid-state imaging device 100 can be suppressed.
  • FIG. 15 shows a second configuration example of the conductor layers A and B.
  • 15A shows the conductor layer A
  • FIG. 15B shows the conductor layer B.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • the conductor layer A in the second configuration example is composed of a mesh conductor 216.
  • the conductor width in the X direction of the mesh conductor 216 is WXA
  • the gap width is GXA
  • the conductor width in the Y direction of the mesh conductor 216 is WYA
  • the gap width is GYA
  • the mesh conductor 216 is, for example, a wiring (Vss wiring) connected to GND or a negative power supply.
  • the conductor layer B in the second configuration example is made of a mesh conductor 217.
  • the conductor width in the X direction of the mesh conductor 217 is WXB
  • the gap width is GXB
  • the conductor width in the Y direction of the mesh conductor 217 is WYB
  • the gap width is GYB
  • the mesh conductor 217 is, for example, a wiring (Vdd wiring) connected to a positive power supply.
  • FIG. 15 shows a state where the conductor layers A and B shown in FIGS. 15A and 15B are viewed from the photodiode 141 side (back side).
  • the hatched area 218 where the oblique lines intersect in FIG. 15C indicates an area where the mesh conductor 216 of the conductor layer A and the mesh conductor 217 of the conductor layer B overlap.
  • the gap between the mesh-shaped conductors 216 forming the conductor layer A and the gap between the mesh-shaped conductors 217 forming the conductor layer B match, so that the hot carrier emission from the active element group 167 is sufficiently shielded. It is not possible. However, as described later, the generation of inductive noise can be suppressed.
  • FIG. 16 is a diagram showing a condition of a current flowing in the second configuration example (FIG. 15).
  • mesh conductors 216 and 217 are provided between a mesh conductor 216 that is a Vss wiring and a mesh conductor 217 that is a Vdd wiring.
  • the conductor loop whose loop surface is substantially perpendicular to the X axis and the conductor loop whose loop surface is substantially perpendicular to the Y axis, which are formed including (the cross section of) the mesh conductors 216 and 217, are substantially X-shaped. The magnetic flux in the direction and the substantially Y direction is easily generated.
  • a Victim conductor loop consisting of the control line 133 is formed on the XY plane.
  • the induced electromotive force is easily generated by the magnetic flux in the Z direction, and the larger the change in the induced electromotive force, the worse the image output from the solid-state imaging device 100 becomes (the more inductive noise increases).
  • the induced electromotive force is generated in the direction (generally X direction or approximately Y direction) of the magnetic flux generated from the loop surface of the Aggressor conductor loop of the light shielding structure 151 including the conductor layers A and B, and the Victim conductor loop.
  • the direction (Z direction) of the magnetic flux to be applied is substantially orthogonal and differs by about 90 degrees.
  • the direction of the loop surface where the magnetic flux is generated from the Aggressor conductor loop and the direction of the loop surface where the induced electromotive force is generated in the Victim conductor loop are different from each other by approximately 90 degrees. Therefore, it is expected that deterioration of the image output from the solid-state imaging device 100 (generation of inductive noise) is smaller than that in the first comparative example.
  • FIG. 17 shows a simulation result of inductive noise generated when the second configuration example (FIG. 15) is applied to the solid-state imaging device 100.
  • FIG. 17 shows an image output from the solid-state imaging device 100 where inductive noise may occur.
  • FIG. 17B illustrates a change in the pixel signal in the line segment X1-X2 of the image illustrated in FIG.
  • FIG. 17C shows a solid line L21 representing an induced electromotive force that causes inductive noise in an image.
  • the horizontal axis of C in FIG. 17 indicates the X-axis coordinates of the image, and the vertical axis indicates the magnitude of the induced electromotive force.
  • the dotted line L1 in FIG. 17C corresponds to the first comparative example (FIG. 9).
  • the second configuration example suppresses a change in the induced electromotive force generated in the Victim conductor loop as compared with the first comparative example. be able to. Therefore, generation of inductive noise in an image output from the solid-state imaging device 100 can be suppressed.
  • the conductor period FXA of the conductor layer A in the X direction the conductor period FYA of the conductor layer A in the Y direction, the conductor period FXB of the conductor layer B in the X direction, and the conductor period FXB of the conductor layer B in the X direction.
  • the generation of inductive noise can be suppressed.
  • FIGS. 18 and 19 are diagrams for explaining that generation of inductive noise can be suppressed by making all the conductor periods of the conductor layers A and B coincide.
  • FIG. 18A shows a second comparative example obtained by modifying the second structural example for comparison with the second structural example shown in FIG. 15.
  • the second comparative example is a second comparative example.
  • the gap width GXA in the X direction and the gap width GYA in the Y direction of the mesh-shaped conductor 216 forming the conductor layer A in the configuration example of the above are expanded, and the conductor cycle FXA in the X direction and the conductor cycle FYA in the Y direction are changed to the second configuration. This is five times the example.
  • the mesh conductor 217 forming the conductor layer B in the second comparative example is the same as that in the second configuration example.
  • BB of FIG. 18 shows the second configuration example shown in C of FIG. 15 at the same magnification as A of FIG.
  • FIG. 19 shows inductive noise in an image as a simulation result when the second comparative example (A in FIG. 18) and the second configuration example (B in FIG. 18) are applied to the solid-state imaging device 100.
  • 4 shows a change in induced electromotive force.
  • the conditions for the current flowing in the second comparative example are the same as those in the case shown in FIG.
  • the horizontal axis in FIG. 19 indicates the X-axis coordinate of the image, and the vertical axis indicates the magnitude of the induced electromotive force.
  • a solid line L21 in FIG. 19 corresponds to the second configuration example, and a dotted line L31 corresponds to the second comparative example.
  • the second configuration example can suppress the change of the induced electromotive force generated in the Victim conductor loop as compared with the second comparative example, and can reduce the inductive noise. It can be seen that can be suppressed.
  • FIGS. 20 and 21 are diagrams for explaining that generation of inductive noise can be suppressed by increasing the conductor width of the mesh-shaped conductor forming the conductor layer A.
  • FIG. 20 and 21 are diagrams for explaining that generation of inductive noise can be suppressed by increasing the conductor width of the mesh-shaped conductor forming the conductor layer A.
  • FIG. 20 is a reproduction of the second comparative example shown in FIG. 18A.
  • FIG. 20B shows a third comparative example in which the second configuration example is modified for comparison with the second comparative example.
  • the third comparative example is a conductor layer in the second configuration example.
  • the conductor widths WXA and WYA in the X direction and the Y direction of the mesh conductor 216 forming A are expanded five times as compared with the second configuration example.
  • the mesh conductor 217 forming the conductor layer B in the third comparative example is the same as that in the second configuration example.
  • FIG. 21 shows a change in induced electromotive force that causes inductive noise in an image as a simulation result when the third comparative example and the second comparative example are applied to the solid-state imaging device 100.
  • the conditions for the current flowing in the third comparative example are the same as those in the case shown in FIG.
  • the horizontal axis in FIG. 21 indicates the X-axis coordinate of the image, and the vertical axis indicates the magnitude of the induced electromotive force.
  • a solid line L41 in FIG. 21 corresponds to the third comparative example, and a dotted line L31 corresponds to the second comparative example.
  • the third comparative example can suppress the change in the induced electromotive force generated in the Victim conductor loop, as compared with the second comparative example. It can be seen that can be suppressed.
  • FIG. 22 shows a third configuration example of the conductor layers A and B.
  • 22A shows the conductor layer A
  • FIG. 22B shows the conductor layer B.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • the conductor layer A in the third configuration example is composed of the planar conductor 221.
  • the planar conductor 221 is, for example, a wiring (Vss wiring) connected to GND or a negative power supply.
  • the conductor layer B in the third configuration example is composed of a mesh conductor 222.
  • the conductor width in the X direction is WXB
  • the gap width is GXB
  • the conductor width in the Y direction of the mesh conductor 222 is WYB
  • the gap width is GYB
  • the end width is EYB.
  • the mesh conductor 222 is, for example, a wiring (Vdd wiring) connected to a positive power supply.
  • the conductor width, the conductor period, and the gap width uniform in the X direction and the Y direction as in the relationship described above, the wiring resistance and the wiring impedance in the X direction and the Y direction of the mesh conductor 222 become uniform. Magnetic field resistance and voltage drop can be equalized in the direction and the Y direction.
  • CC of FIG. 22 shows a state where the conductor layers A and B shown in FIGS. 22A and 22B are viewed from the photodiode 141 side (back side).
  • the hatched region 223 where the oblique lines intersect in C of FIG. 22 indicates a region where the planar conductor 221 of the conductor layer A and the mesh conductor 222 of the conductor layer B overlap.
  • the active element group 167 is covered with at least one of the conductor layer A and the conductor layer B, so that hot carrier emission from the active element group 167 can be shielded.
  • FIG. 23 is a diagram showing the current conditions flowing in the third configuration example (FIG. 22).
  • the planar conductor 221 and the mesh conductor are disposed between the planar conductor 221 that is the Vss interconnection and the mesh conductor 222 that is the Vdd interconnection.
  • a conductor loop having a loop surface substantially perpendicular to the X axis and a loop surface substantially perpendicular to the Y axis and formed including (the cross section of) the planar conductor 221 and the mesh conductor 222.
  • the conductor loop makes it easier to generate magnetic fluxes in substantially the X and Y directions.
  • the Victim conductor composed of the signal lines 132 and the control lines 133 Loops are formed in the XY plane.
  • the induced electromotive force is easily generated by the magnetic flux in the Z direction, and the larger the change in the induced electromotive force, the worse the image output from the solid-state imaging device 100 becomes (the more inductive noise increases).
  • an induced electromotive force is generated in the direction (generally X direction or approximately Y direction) of the magnetic flux generated from the loop surface of the Aggressor conductor loop of the light shielding structure 151 including the conductor layers A and B, and the Victim conductor loop.
  • the direction (Z direction) of the magnetic flux to be applied is substantially orthogonal and differs by about 90 degrees. In other words, the direction of the loop surface where the magnetic flux is generated from the Aggressor conductor loop and the direction of the loop surface where the induced electromotive force is generated in the Victim conductor loop are different from each other by approximately 90 degrees. Therefore, it is expected that deterioration of the image output from the solid-state imaging device 100 (generation of inductive noise) is smaller than that in the first comparative example.
  • FIG. 24 shows a simulation result of inductive noise generated when the third configuration example (FIG. 22) is applied to the solid-state imaging device 100.
  • FIG. 24 illustrates an image output from the solid-state imaging device 100 where inductive noise may occur.
  • FIG. 24B illustrates a change in the pixel signal in the line segment X1-X2 of the image illustrated in FIG.
  • FIG. 24C shows a solid line L51 representing an induced electromotive force that causes inductive noise in an image.
  • the horizontal axis of C in FIG. 24 indicates the X-axis coordinate of the image, and the vertical axis indicates the magnitude of the induced electromotive force.
  • the dotted line L1 of C in FIG. 24 corresponds to the first comparative example (FIG. 9).
  • the third configuration example suppresses a change in the induced electromotive force generated in the Victim conductor loop as compared with the first comparative example. be able to. Therefore, generation of inductive noise in an image output from the solid-state imaging device 100 can be suppressed.
  • FIG. 25 shows a fourth configuration example of the conductor layers A and B.
  • 25A shows the conductor layer A
  • FIG. 25B shows the conductor layer B.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • the conductor layer A in the fourth configuration example is composed of a mesh conductor 231.
  • the conductor width in the X direction of the mesh conductor 231 is WXA
  • the gap width is GXA
  • the conductor width in the Y direction is WYA
  • the gap width is GYA
  • the mesh conductor 231 is, for example, a wiring (Vss wiring) connected to GND or a negative power supply.
  • the conductor layer B in the fourth configuration example is composed of the mesh conductor 232.
  • the conductor width in the X direction is WXB
  • the gap width is GXB
  • the conductor width in the Y direction is WYB
  • the gap width is GYB
  • the mesh conductor 232 is, for example, a wiring (Vdd wiring) connected to a positive power supply.
  • the overlapping width is the width of the overlapping portion where the conductor portions overlap when the mesh-shaped conductor 231 of the conductor layer A and the mesh-shaped conductor 232 of the conductor layer B are overlapped.
  • the current distribution of the mesh-shaped conductor 231 and the current distribution of the mesh-shaped conductor 232 can be substantially reduced by aligning all the conductor periods in the X direction and the Y direction of the mesh-shaped conductor 231 and the mesh-shaped conductor 232. Since the characteristics can be made uniform and opposite, the magnetic field generated by the current distribution of the mesh conductor 231 and the magnetic field generated by the current distribution of the mesh conductor 232 can be effectively canceled.
  • wiring is performed in the X direction and the Y direction of the mesh conductor 231 and the mesh conductor 232. Since the resistance and the wiring impedance are uniform, the magnetic field resistance and the voltage drop can be equalized in the X direction and the Y direction.
  • the end width EXA of the mesh conductor 231 is set to half of the conductor width WXA, it is possible to suppress the induced electromotive force generated in the Victim conductor loop by the magnetic field generated around the end of the mesh conductor 231. it can. Further, by setting the end width EYB of the mesh conductor 232 to be 1/2 of the conductor width WYB, the induced electromotive force generated in the Victim conductor loop by the magnetic field generated around the end of the mesh conductor 231 can be suppressed. it can.
  • the end of the mesh-shaped conductor 232 of the conductor layer B in the X direction may be provided.
  • the end of the mesh conductor 231 of the conductor layer A in the Y direction may be provided.
  • CC of FIG. 25 shows a state in which the conductor layers A and B shown in FIGS. 25A and B respectively are viewed from the photodiode 141 side (back side).
  • the hatched area 233 where the oblique lines intersect in C of FIG. 25 indicates an area where the mesh conductor 231 of the conductor layer A and the mesh conductor 232 of the conductor layer B overlap.
  • the active element group 167 is covered by at least one of the conductor layer A and the conductor layer B, so that hot carrier emission from the active element group 167 can be shielded.
  • Conductor width WYA 2 x overlap width + gap width GYA
  • Conductor width WXA 2 x overlap width + gap width GXA
  • Conductor width WYB 2 x overlap width + gap width GYB
  • Conductor width WXB 2 x overlap width + gap width GXB
  • the mesh conductor 231 and the mesh conductor 232 which are Vdd wires are provided between the mesh conductor 231 which is the Vss wire.
  • the conductor loop whose loop surface is substantially perpendicular to the X-axis and the conductor loop whose loop surface is substantially perpendicular to the Y-axis are formed including (the cross-section of) the mesh conductors 231 and 232. Magnetic fluxes in substantially the X and Y directions are likely to be generated.
  • FIG. 26 shows a fifth configuration example of the conductor layers A and B.
  • 26A shows the conductor layer A
  • FIG. 26B shows the conductor layer B.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • the conductor layer A in the fifth configuration example is composed of a mesh conductor 241.
  • the mesh conductor 241 is obtained by moving the mesh conductor 231 forming the conductor layer A in the fourth configuration example (FIG. 25) by a conductor period FYA / 2 in the Y direction.
  • the mesh conductor 241 is, for example, a wiring (Vss wiring) connected to GND or a negative power supply.
  • the conductor layer B in the fifth configuration example is composed of the mesh conductor 242.
  • the reticulated conductor 242 has the same shape as the reticulated conductor 232 forming the conductor layer B in the fourth configuration example (FIG. 25), and a description thereof will be omitted.
  • the mesh conductor 242 is, for example, a wiring (Vdd wiring) connected to a positive power supply.
  • the overlapping width is the width of the overlapping portion where the conductor portions overlap when the mesh-shaped conductor 241 of the conductor layer A and the mesh-shaped conductor 242 of the conductor layer B are overlapped.
  • CC of FIG. 26 shows a state in which the conductor layers A and B shown in FIGS. 26A and 26B are viewed from the photodiode 141 side (back side).
  • the hatched area 243 where the oblique lines intersect in C of FIG. 26 indicates an area where the mesh conductor 241 of the conductor layer A and the mesh conductor 242 of the conductor layer B overlap.
  • the active element group 167 is covered by at least one of the conductor layer A and the conductor layer B, so that hot carrier emission from the active element group 167 can be shielded.
  • the overlapping region 243 of the mesh conductor 241 and the mesh conductor 242 continues in the X direction.
  • currents having different polarities flow through the mesh conductor 241 and the mesh conductor 242, so that the magnetic fields generated from the region 243 cancel each other. Therefore, generation of inductive noise near the region 243 can be suppressed.
  • a loop formed by including the mesh-shaped conductors 241 and 242 is formed by a conductor loop whose loop surface is substantially perpendicular to the X axis and a conductor loop whose loop surface is substantially perpendicular to the Y axis. Magnetic fluxes in substantially the X and Y directions are likely to be generated.
  • FIG. 27 shows a sixth configuration example of the conductor layers A and B.
  • 27A shows the conductor layer A
  • FIG. 27B shows the conductor layer B.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • the conductor layer A in the sixth configuration example is made of a mesh conductor 251.
  • the reticulated conductor 251 has the same shape as the reticulated conductor 231 forming the conductor layer A in the fourth configuration example (FIG. 25), and a description thereof will be omitted.
  • the mesh conductor 251 is, for example, a wiring (Vss wiring) connected to GND or a negative power supply.
  • the conductor layer B in the sixth configuration example is composed of a mesh conductor 252.
  • the mesh conductor 252 is obtained by moving the mesh conductor 232 forming the conductor layer B in the fourth configuration example (FIG. 25) by the conductor period FXB / 2 in the X direction.
  • the mesh conductor 252 is, for example, a wiring (Vdd wiring) connected to a positive power supply.
  • the overlapping width is the width of the overlapping portion where the conductor portions overlap when the mesh-shaped conductor 251 of the conductor layer A and the mesh-shaped conductor 252 of the conductor layer B are overlapped.
  • FIG. 27 shows a state in which the conductor layers A and B shown in A and B of FIG. 27 are viewed from the photodiode 141 side (back side).
  • the hatched area 253 where the oblique lines intersect in FIG. 27C indicates the area where the mesh conductor 251 of the conductor layer A and the mesh conductor 252 of the conductor layer B overlap.
  • the active element group 167 is covered by at least one of the conductor layer A and the conductor layer B, so that hot carrier emission from the active element group 167 can be shielded.
  • the mesh conductor 251 and the mesh conductor 251 which are Vss wires are provided between the mesh conductor 251 which is a Vss wire and the mesh conductor 252 which is a Vdd wire.
  • the conductor loop whose loop surface is substantially perpendicular to the X-axis and the conductor loop whose loop surface is substantially perpendicular to the Y-axis are formed including the mesh conductors 251 and 252 (cross-section). Magnetic fluxes in substantially the X and Y directions are likely to be generated.
  • the overlapping region 253 of the mesh conductor 251 and the mesh conductor 252 continues in the Y direction.
  • currents having different polarities flow through the mesh-shaped conductor 251 and the mesh-shaped conductor 252, so that the magnetic fields generated from the region 253 cancel each other. Therefore, generation of inductive noise near the region 253 can be suppressed.
  • FIG. 28 shows a change in induced electromotive force that causes inductive noise in an image as a simulation result when the fourth to sixth configuration examples (FIGS. 25 to 27) are applied to the solid-state imaging device 100.
  • the current conditions flowing in the fourth to sixth configuration examples are the same as in the case shown in FIG.
  • the horizontal axis in FIG. 28 indicates the X-axis coordinate of the image, and the vertical axis indicates the magnitude of the induced electromotive force.
  • a solid line L52 in FIG. 28A corresponds to the fourth configuration example (FIG. 25), and a dotted line L1 corresponds to the first comparative example (FIG. 9).
  • the fourth configuration example can suppress the change in the induced electromotive force generated in the Victim conductor loop as compared with the first comparative example, and can reduce the inductive noise. It can be seen that can be suppressed.
  • a solid line L53 in B of FIG. 28 corresponds to the fifth configuration example (FIG. 26), and a dotted line L1 corresponds to the first comparative example (FIG. 9).
  • the fifth configuration example can suppress the change in the induced electromotive force generated in the Victim conductor loop as compared with the first comparative example, and can reduce the inductive noise. It can be seen that can be suppressed.
  • a solid line L54 in C of FIG. 28 corresponds to the sixth configuration example (FIG. 27), and a dotted line L1 corresponds to the first comparative example (FIG. 9).
  • the sixth configuration example can suppress the change in the induced electromotive force generated in the Victim conductor loop as compared with the first comparative example, and can reduce the inductive noise. It can be seen that can be suppressed.
  • the sixth configuration example has a smaller change in the induced electromotive force generated in the Victim conductor loop than the fourth configuration example and the fifth configuration example. It can be seen that inductive noise can be further suppressed.
  • FIG. 29 shows a seventh configuration example of the conductor layers A and B.
  • 29A shows the conductor layer A
  • FIG. 29B shows the conductor layer B.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • the conductor layer A in the seventh configuration example is composed of the planar conductor 261.
  • the planar conductor 261 is, for example, a wiring (Vss wiring) connected to GND or a negative power supply.
  • the conductor layer B in the seventh configuration example includes the mesh conductor 262 and the relay conductor 301.
  • the mesh-shaped conductor 262 has the same shape as the mesh-shaped conductor 222 of the conductor layer B in the third configuration example (FIG. 22), and thus the description thereof is omitted.
  • the mesh conductor 262 is, for example, a wiring (Vdd wiring) connected to a positive power supply.
  • the relay conductor (other conductor) 301 is disposed in a gap region that is not a conductor of the mesh-shaped conductor 262 and is electrically insulated from the mesh-shaped conductor 262, and the Vss to which the planar conductor 261 of the conductor layer A is connected is connected. Connected to.
  • the shape of the relay conductor 301 is arbitrary, and a symmetrical circular or polygonal shape such as rotational symmetry or mirror symmetry is desirable.
  • the relay conductor 301 can be arranged at the center of the gap region of the mesh conductor 262 or any other position.
  • the relay conductor 301 may be connected to a conductor layer as a Vss wiring different from the conductor layer A.
  • the relay conductor 301 may be connected to a conductor layer as a Vss wiring closer to the active element group 167 than the conductor layer B.
  • the relay conductor 301 is to be connected to a conductor layer different from the conductor layer A or a conductor layer closer to the active element group 167 than the conductor layer B via a conductor via (VIA) extending in the Z direction. Can be.
  • VIP conductor via
  • CC of FIG. 29 shows a state where the conductor layers A and B shown in A and B of FIG. 29 are viewed from the photodiode 141 side (back side).
  • the hatched area 263 where the oblique lines intersect in C of FIG. 29 indicates an area where the planar conductor 261 of the conductor layer A and the mesh conductor 262 of the conductor layer B overlap.
  • the active element group 167 since the active element group 167 is covered by at least one of the conductor layer A and the conductor layer B, hot carrier emission from the active element group 167 can be shielded.
  • the provision of the relay conductor 301 allows the planar conductor 261 which is a Vss wiring to be connected to the active element group 167 at a substantially shortest distance or a short distance.
  • the planar conductor 261 and the active element group 167 can be connected at a substantially shortest distance or a short distance.
  • FIG. 30 is a diagram showing current conditions flowing in the seventh configuration example (FIG. 29).
  • a planar conductor 261 and a mesh conductor are provided between a planar conductor 261 which is a Vss interconnection and a mesh conductor 262 which is a Vdd interconnection.
  • a conductor loop whose loop surface is substantially perpendicular to the X-axis and whose loop surface is substantially perpendicular to the Y-axis are formed including (the cross section of) the planar conductor 261 and the mesh-shaped conductor 262.
  • the conductor loop makes it easier to generate magnetic fluxes in substantially the X and Y directions.
  • the Victim conductor composed of the signal lines 132 and the control lines 133 Loops are formed in the XY plane.
  • the induced electromotive force is easily generated by the magnetic flux in the Z direction, and the larger the change in the induced electromotive force, the worse the image output from the solid-state imaging device 100 becomes (the more inductive noise increases).
  • the induced electromotive force is generated in the direction (generally X direction or approximately Y direction) of the magnetic flux generated from the loop surface of the Aggressor conductor loop of the light shielding structure 151 including the conductor layers A and B, and the Victim conductor loop.
  • the direction (Z direction) of the magnetic flux to be applied is substantially orthogonal and differs by about 90 degrees.
  • the direction of the loop surface where the magnetic flux is generated from the Aggressor conductor loop and the direction of the loop surface where the induced electromotive force is generated in the Victim conductor loop are different from each other by approximately 90 degrees. Therefore, it is expected that deterioration of the image output from the solid-state imaging device 100 (generation of inductive noise) is smaller than that in the first comparative example.
  • FIG. 31 shows a simulation result of inductive noise generated when the seventh configuration example (FIG. 29) is applied to the solid-state imaging device 100.
  • FIG. 31 shows an image output from the solid-state imaging device 100 where inductive noise may occur.
  • FIG. 31B illustrates a change in the pixel signal in the line segment X1-X2 of the image illustrated in FIG.
  • FIG. 31C shows a solid line L61 representing an induced electromotive force that causes inductive noise in an image.
  • the horizontal axis of C in FIG. 31 indicates the X-axis coordinate of the image, and the vertical axis indicates the magnitude of the induced electromotive force.
  • the dotted line L51 of C in FIG. 31 corresponds to the third configuration example (FIG. 22).
  • the seventh configuration example exacerbates the change in the induced electromotive force generated in the Victim conductor loop, as compared with the third configuration example. You can see that it will not be done. That is, even in the seventh configuration example in which the relay conductor 301 is disposed in the gap between the mesh-shaped conductors 262 of the conductor layer B, generation of inductive noise in an image output from the solid-state imaging device 100 is different from that in the third configuration example. It can be suppressed to the same extent.
  • this simulation result is a simulation result in the case where the planar conductor 261 is not connected to the active element group 167 and the mesh conductor 262 is not connected to the active element group 167.
  • the planar conductor 261 and at least a part of the active element group 167 are connected to each other at a substantially shortest distance or a short distance via a conductor via or the like, or the mesh conductor 262 and at least a part of the active element group 167 are connected to each other.
  • the connection is made at the shortest distance or short distance via a conductor via or the like, the amount of current flowing through the planar conductor 261 or the mesh conductor 262 gradually decreases according to the position. In such a case, there is a condition that the provision of the relay conductor 301 significantly reduces the voltage drop, the energy loss and the inductive noise to less than half.
  • FIG. 32 shows an eighth configuration example of the conductor layers A and B.
  • 32A shows the conductor layer A
  • FIG. 32B shows the conductor layer B.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • the conductor layer A in the eighth configuration example is composed of a mesh conductor 271.
  • the reticulated conductor 271 has the same shape as the reticulated conductor 231 of the conductor layer A in the fourth configuration example (FIG. 25), and a description thereof will be omitted.
  • the mesh conductor 271 is, for example, a wiring (Vss wiring) connected to GND or a negative power supply.
  • the conductor layer B in the eighth configuration example includes the mesh conductor 272 and the relay conductor 302.
  • the reticulated conductor 272 has the same shape as the reticulated conductor 232 of the conductor layer B in the fourth configuration example (FIG. 25), and a description thereof will be omitted.
  • the mesh conductor 232 is, for example, a wiring (Vdd wiring) connected to a positive power supply.
  • the relay conductor (other conductor) 302 is arranged in a gap region that is not a conductor of the mesh conductor 272, is electrically insulated from the mesh conductor 272, and is connected to the mesh conductor 271 of the conductor layer A. Connected to Vss.
  • the shape of the relay conductor 302 is arbitrary, and a symmetric circular or polygonal shape such as rotational symmetry or mirror symmetry is desirable.
  • the relay conductor 302 can be arranged at the center of the gap region of the mesh conductor 272 or any other position.
  • the relay conductor 302 may be connected to a conductor layer as a Vss wiring different from the conductor layer A.
  • the relay conductor 302 may be connected to a conductor layer as a Vss wiring closer to the active element group 167 than the conductor layer B.
  • the relay conductor 302 is connected to a conductor layer different from the conductor layer A, a conductor layer closer to the active element group 167 than the conductor layer B, or the like via a conductor via (VIA) extending in the Z direction. Can be.
  • VIP conductor via
  • FIG. 32C shows a state where the conductor layers A and B shown in FIGS. 32A and 32B are viewed from the photodiode 141 side (back side).
  • the hatched region 273 where the oblique lines intersect in C of FIG. 32 indicates a region where the mesh conductor 271 of the conductor layer A and the mesh conductor 272 of the conductor layer B overlap.
  • the active element group 167 is covered by at least one of the conductor layer A and the conductor layer B, so that hot carrier emission from the active element group 167 can be shielded.
  • a conductor loop whose loop surface is substantially perpendicular to the X axis and a conductor loop whose loop surface is substantially perpendicular to the Y axis are formed by including the mesh conductors 271 and 272 (cross section). Magnetic fluxes in substantially the X and Y directions are likely to be generated.
  • the mesh-shaped conductor 271 which is a Vss wiring can be connected to the active element group 167 at a shortest distance or a short distance.
  • the mesh-shaped conductor 271 and the active element group 167 can be connected at a substantially shortest distance or a short distance.
  • FIG. 33 shows a ninth configuration example of the conductor layers A and B.
  • 33A shows the conductor layer A
  • FIG. 33B shows the conductor layer B.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • the conductor layer A in the ninth configuration example is composed of a mesh conductor 281.
  • the mesh-shaped conductor 281 has the same shape as the mesh-shaped conductor 241 of the conductor layer A in the fifth configuration example (FIG. 26), and a description thereof will be omitted.
  • the mesh conductor 281 is, for example, a wiring (Vss wiring) connected to GND or a negative power supply.
  • the conductor layer B in the ninth configuration example includes the mesh conductor 282 and the relay conductor 303.
  • the mesh conductor 282 has the same shape as the mesh conductor 242 of the conductor layer B in the fifth configuration example (FIG. 26), and a description thereof will be omitted.
  • the mesh conductor 282 is, for example, a wiring (Vdd wiring) connected to a positive power supply.
  • the relay conductor (other conductor) 303 is arranged in a gap region that is not a conductor of the mesh conductor 282, is electrically insulated from the mesh conductor 282, and is connected to the mesh conductor 281 of the conductor layer A. Connected to Vss.
  • the shape of the relay conductor 303 is arbitrary, and a symmetric circular or polygonal shape such as rotational symmetry or mirror symmetry is desirable.
  • the relay conductor 303 can be arranged at the center of the gap region of the mesh conductor 282 or any other position.
  • the relay conductor 303 may be connected to a conductor layer as a Vss wiring different from the conductor layer A.
  • the relay conductor 303 may be connected to a conductor layer as a Vss wiring closer to the active element group 167 than the conductor layer B.
  • the relay conductor 303 is connected to a conductor layer different from the conductor layer A, a conductor layer closer to the active element group 167 than the conductor layer B, or the like via a conductor via (VIA) extending in the Z direction. Can be.
  • VIP conductor via
  • CC in FIG. 33 shows a state in which the conductor layers A and B shown in FIGS. 33A and 33B are viewed from the photodiode 141 side (back side).
  • the hatched area 283 where the oblique lines intersect in C of FIG. 33 indicates an area where the mesh conductor 281 of the conductor layer A and the mesh conductor 282 of the conductor layer B overlap.
  • the active element group 167 is covered by at least one of the conductor layer A and the conductor layer B, so that hot carrier emission from the active element group 167 can be shielded.
  • a mesh conductor 281 and a mesh conductor 282 which are Vss wires, are provided between the mesh conductor 281, which is a Vss wire.
  • the conductor loop whose loop surface is substantially perpendicular to the X-axis and the conductor loop whose loop surface is substantially perpendicular to the Y-axis are formed including (the cross-section of) the mesh conductors 281 and 282. Magnetic fluxes in substantially the X and Y directions are likely to be generated.
  • the mesh-shaped conductor 281 which is a Vss wiring can be connected to the active element group 167 at a shortest distance or a short distance.
  • the mesh conductor 281 and the active element group 167 can be connected at substantially the shortest distance or the short distance.
  • FIG. 34 shows a tenth configuration example of the conductor layers A and B.
  • 34A shows the conductor layer A
  • FIG. 34B shows the conductor layer B.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • the conductor layer A in the tenth configuration example is formed of a mesh conductor 291.
  • the mesh-shaped conductor 291 has the same shape as the mesh-shaped conductor 251 of the conductor layer A in the sixth configuration example (FIG. 27), and a description thereof will be omitted.
  • the mesh conductor 291 is, for example, a wiring (Vss wiring) connected to GND or a negative power supply.
  • the conductor layer B in the tenth configuration example includes the mesh conductor 292 and the relay conductor 304.
  • the reticulated conductor 292 has the same shape as the reticulated conductor 252 of the conductor layer B in the sixth configuration example (FIG. 27), and thus the description thereof will be omitted.
  • the mesh conductor 292 is, for example, a wiring (Vdd wiring) connected to a positive power supply.
  • the relay conductor (other conductor) 304 is arranged in a gap region that is not a conductor of the mesh conductor 292, is electrically insulated from the mesh conductor 292, and is connected to the mesh conductor 291 of the conductor layer A. Connected to Vss.
  • the shape of the relay conductor 304 is arbitrary, and a symmetric circular or polygonal shape such as rotational symmetry or mirror symmetry is desirable.
  • the relay conductor 304 can be arranged at the center of the gap region of the mesh conductor 292 or any other position.
  • the relay conductor 304 may be connected to a conductor layer as a Vss wiring different from the conductor layer A.
  • the relay conductor 304 may be connected to a conductor layer as a Vss wiring closer to the active element group 167 than the conductor layer B.
  • the relay conductor 304 is connected to a conductor layer different from the conductor layer A, a conductor layer closer to the active element group 167 than the conductor layer B, or the like via a conductor via (VIA) extending in the Z direction. Can be.
  • VIP conductor via
  • CC of FIG. 34 shows a state in which the conductor layers A and B shown in FIGS. 34A and 34B are viewed from the photodiode 141 side (back side).
  • the hatched area 293 where the oblique lines intersect in C of FIG. 34 indicates an area where the mesh conductor 291 of the conductor layer A and the mesh conductor 292 of the conductor layer B overlap.
  • the active element group 167 is covered by at least one of the conductor layer A and the conductor layer B, so that hot carrier emission from the active element group 167 can be shielded.
  • a conductor loop whose loop surface is substantially perpendicular to the X-axis and a conductor loop whose loop surface is substantially perpendicular to the Y-axis are formed including (the cross-section of) the mesh conductors 291 and 292. Magnetic fluxes in substantially the X and Y directions are likely to be generated.
  • the provision of the relay conductor 304 makes it possible to connect the mesh-shaped conductor 291 which is a Vss wiring to the active element group 167 at a substantially shortest distance or a short distance.
  • the mesh conductor 291 and the active element group 167 can be connected at substantially the shortest distance or the short distance.
  • FIG. 35 shows a change in induced electromotive force that causes inductive noise in an image as a simulation result when the eighth to tenth configuration examples (FIGS. 32 to 34) are applied to the solid-state imaging device 100.
  • the horizontal axis in FIG. 35 indicates the X-axis coordinate of the image, and the vertical axis indicates the magnitude of the induced electromotive force.
  • a solid line L62 in FIG. 35A corresponds to the eighth configuration example (FIG. 32), and a dotted line L52 corresponds to the fourth configuration example (FIG. 25).
  • the eighth configuration example does not deteriorate the induced electromotive force generated in the Victim conductor loop, as compared with the fourth configuration example. That is, in the eighth configuration example in which the relay conductor 302 is arranged in the gap between the mesh-shaped conductors 272 of the conductor layer B, the generation of inductive noise in the image output from the solid-state imaging device 100 is the same as that in the fourth configuration example. To some extent.
  • this simulation result is a simulation result in the case where the mesh conductor 271 is not connected to the active element group 167 and the mesh conductor 272 is not connected to the active element group 167.
  • the mesh conductor 271 and at least a part of the active element group 167 are connected to each other at a substantially shortest distance or a short distance via a conductor via or the like.
  • the connection is made via the conductor via or the like at a shortest distance or a short distance
  • the amount of current flowing through the mesh conductor 271 or the mesh conductor 272 gradually decreases according to the position.
  • the provision of the relay conductor 302 significantly reduces the voltage drop, the energy loss and the inductive noise to less than half.
  • a solid line L63 in B of FIG. 35 corresponds to the ninth configuration example (FIG. 33), and a dotted line L53 corresponds to the fifth configuration example (FIG. 26).
  • the ninth configuration example does not deteriorate the induced electromotive force generated in the Victim conductor loop, as compared with the fifth configuration example. That is, even in the ninth configuration example in which the relay conductor 303 is arranged in the gap between the mesh conductors 282 of the conductor layer B, the generation of inductive noise in the image output from the solid-state imaging device 100 is the same as in the fifth configuration example. To some extent.
  • this simulation result is a simulation result when the mesh conductor 281 is not connected to the active element group 167 and the mesh conductor 282 is not connected to the active element group 167.
  • the mesh-shaped conductor 281 and at least a part of the active element group 167 are connected to each other at a substantially shortest distance or a short distance via a conductor via or the like, or at least a part of the mesh-shaped conductor 282 and the active element group 167 are connected.
  • the connection is made at a shortest distance or a short distance via a conductor via or the like, the amount of current flowing through the mesh conductor 281 or the mesh conductor 282 gradually decreases according to the position. In such a case, there is a condition that the provision of the relay conductor 303 significantly reduces the voltage drop, the energy loss and the inductive noise to less than half.
  • a solid line L64 in C of FIG. 35 corresponds to the tenth configuration example (FIG. 34), and a dotted line L54 corresponds to the sixth configuration example (FIG. 27).
  • the tenth configuration example does not deteriorate the induced electromotive force generated in the Victim conductor loop, as compared with the sixth configuration example. That is, in the tenth configuration example in which the relay conductor 304 is arranged in the gap between the mesh-shaped conductors 292 of the conductor layer B, the generation of inductive noise in the image output from the solid-state imaging device 100 is the same as that in the sixth configuration example. To some extent.
  • this simulation result is a simulation result in the case where the mesh conductor 291 is not connected to the active element group 167 and the mesh conductor 292 is not connected to the active element group 167.
  • the case where the mesh conductor 291 and at least a part of the active element group 167 are connected to each other at a substantially shortest distance or a short distance via a conductor via or the like, or the case where the mesh conductor 292 and at least a part of the active element group 167 are connected When the connection is made at a shortest distance or a short distance via a conductor via or the like, the amount of current flowing through the mesh conductor 291 or the mesh conductor 292 gradually decreases according to the position. In such a case, there is a condition that the provision of the relay conductor 304 significantly reduces the voltage drop, the energy loss and the inductive noise to less than half.
  • the tenth configuration example shows a smaller change in the induced electromotive force generated in the Victim conductor loop than the eighth configuration example and the ninth configuration example. It can be seen that inductive noise can be further suppressed.
  • FIG. 36 shows an eleventh configuration example of the conductor layers A and B.
  • 36A shows the conductor layer A
  • FIG. 36B shows the conductor layer B.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • the conductor layer A in the eleventh configuration example is made of a mesh conductor 311 having a different resistance value in the X direction (first direction) and different resistance value in the Y direction (second direction).
  • the mesh conductor 311 is, for example, a wiring (Vss wiring) connected to GND or a negative power supply.
  • the conductor width in the X direction of the mesh conductor 311 be WXA
  • the gap width be GXA
  • the conductor width in the Y direction is WYA
  • the gap width is GYA
  • the gap width GYA> the gap width GXA is satisfied.
  • the gap region of the mesh-shaped conductor 311 has a shape in which the Y direction is longer than the X direction, the resistance value differs between the X direction and the Y direction, and the resistance value in the Y direction is larger than the resistance value in the X direction. Is also smaller.
  • the conductor layer B in the eleventh configuration example is formed of a mesh conductor 312 having a different resistance value in the X direction and a different resistance value in the Y direction.
  • the mesh conductor 312 is, for example, a wiring (Vdd wiring) connected to a positive power supply.
  • the conductor width in the X direction is WXB
  • the gap width is GXB
  • the conductor width in the Y direction is WYB
  • the gap width is GYB
  • the gap width GYB> the gap width GXB is satisfied.
  • the gap region of the mesh-shaped conductor 312 has a shape in which the Y direction is longer than the X direction, the resistance value differs between the X direction and the Y direction, and the resistance value in the Y direction is larger than the resistance value in the X direction. Is also smaller.
  • the sheet resistance and the conductor width of the mesh conductors 311 and 312 satisfy the following relationship. (Sheet resistance of mesh conductor 311) / (Sheet resistance of mesh conductor 312) ⁇ Conductor width WYA / Conductor width WYB (Sheet resistance of mesh conductor 311) / (Sheet resistance of mesh conductor 312) ⁇ Conductor width WXA / Conductor width WXB
  • the limitation related to the dimensional relationship disclosed in the present specification is not essential, and the current distribution of the mesh conductor 311 and the current distribution of the mesh conductor 312 are substantially equal, substantially the same, or substantially similar. In addition, it is desirable that the current distribution be configured so as to have an inverse characteristic.
  • the ratio between the wiring resistance of the mesh conductor 311 in the X direction and the wiring resistance of the mesh conductor 311 in the Y direction, the wiring resistance of the mesh conductor 312 in the X direction and the wiring resistance of the mesh conductor 312 in the Y direction, and the like. are desirably configured to be substantially the same as each other.
  • the ratio between the wiring inductance of the mesh conductor 311 in the X direction and the wiring inductance of the mesh conductor 311 in the Y direction, the wiring inductance of the mesh conductor 312 in the X direction, and the wiring inductance of the mesh conductor 312 in the Y direction are calculated as follows. Are desirably configured to be substantially the same as each other.
  • the ratio of the wiring capacitance of the mesh conductor 311 in the X direction to the wiring capacitance of the mesh conductor 311 in the Y direction, the wiring capacitance of the mesh conductor 312 in the X direction, and the wiring capacitance of the mesh conductor 312 in the Y direction are calculated.
  • the ratio between the wiring impedance of the mesh conductor 311 in the X direction and the wiring impedance of the mesh conductor 311 in the Y direction, the wiring impedance of the mesh conductor 312 in the X direction and the wiring impedance of the mesh conductor 312 in the Y direction, and are desirably configured to be substantially the same as each other.
  • wiring resistance, wiring inductance, wiring capacitance, and wiring impedance can be replaced with conductor resistance, conductor inductance, conductor capacitance, and conductor impedance, respectively.
  • the relationship between these ratios may be satisfied as a whole of the mesh-shaped conductor 311 and the mesh-shaped conductor 312, or may be satisfied within a partial range of the mesh-shaped conductor 311 and the mesh-shaped conductor 312. It suffices if it is satisfied within an arbitrary range.
  • a circuit may be provided for adjusting the current distribution so as to be substantially equal or substantially the same or substantially similar, and to have opposite characteristics.
  • the current distribution of the mesh-shaped conductor 311 and the current distribution of the mesh-shaped conductor 312 can be made substantially uniform and have opposite characteristics, so that the magnetic field generated by the current distribution of the mesh-shaped conductor 311 and the mesh The magnetic field generated by the current distribution of the conductor 312 can be effectively canceled.
  • FIG. 36C shows a state where the conductor layers A and B shown in FIGS. 36A and 36B are viewed from the photodiode 141 side (back side).
  • the hatched area 313 where the oblique lines intersect in C of FIG. 36 indicates an area where the mesh conductor 311 of the conductor layer A and the mesh conductor 312 of the conductor layer B overlap.
  • the active element group 167 is covered by at least one of the conductor layer A and the conductor layer B, so that hot carrier emission from the active element group 167 can be shielded.
  • the overlapping region 313 of the mesh conductor 311 and the mesh conductor 312 continues in the X direction.
  • currents having different polarities flow through the mesh-shaped conductor 311 and the mesh-shaped conductor 312, so that the magnetic fields generated from the region 313 cancel each other. Therefore, generation of inductive noise near the region 313 can be suppressed.
  • the gap width GYA in the Y direction and the gap width GXA in the X direction of the mesh conductor 311 are formed to be different, and the gap width GYB and X in the Y direction of the mesh conductor 312 are formed.
  • the gap width GXB in the direction is formed to be different.
  • the mesh-shaped conductors 311 and 312 in a shape having a difference in the gap width between the X direction and the Y direction, the dimensions of the wiring region and the size of the void region when the conductor layer is actually designed and manufactured. Restrictions such as the dimensions and the occupancy of the wiring area in each conductor layer can be kept, and the degree of freedom in designing the wiring layout can be increased. Also, compared to the case where no difference is provided in the gap width, the wiring can be designed in a layout that is advantageous in terms of voltage drop (IR-Drop), inductive noise, and the like.
  • IR-Drop voltage drop
  • FIG. 37 is a diagram showing current conditions flowing in the eleventh configuration example (FIG. 36).
  • mesh conductors 311 and 312 are provided between a mesh conductor 311 serving as a Vss wiring and a mesh conductor 312 serving as a Vdd wiring.
  • the conductor loop whose loop surface is substantially perpendicular to the X-axis and the conductor loop whose loop surface is substantially perpendicular to the Y-axis are formed including the mesh-shaped conductors 311 and 312 (cross-section thereof). The magnetic flux in the direction and the substantially Y direction is easily generated.
  • the Victim conductor composed of the signal lines 132 and the control lines 133 Loops are formed in the XY plane.
  • the induced electromotive force is easily generated by the magnetic flux in the Z direction, and the larger the change in the induced electromotive force, the worse the image output from the solid-state imaging device 100 becomes (the more inductive noise increases).
  • the induced electromotive force is generated in the direction (generally X direction or approximately Y direction) of the magnetic flux generated from the loop surface of the Aggressor conductor loop of the light shielding structure 151 including the conductor layers A and B, and the Victim conductor loop.
  • the direction (Z direction) of the magnetic flux to be applied is substantially orthogonal and differs by about 90 degrees.
  • the direction of the loop surface where the magnetic flux is generated from the Aggressor conductor loop and the direction of the loop surface where the induced electromotive force is generated in the Victim conductor loop are different from each other by approximately 90 degrees. Therefore, it is expected that deterioration of the image output from the solid-state imaging device 100 (generation of inductive noise) is smaller than that in the first comparative example.
  • FIG. 38 shows a simulation result of inductive noise generated when the eleventh configuration example (FIG. 36) is applied to the solid-state imaging device 100.
  • FIG. 38A illustrates an image output from the solid-state imaging device 100 where inductive noise may occur.
  • FIG. 38B shows a change in the pixel signal in the line segment X1-X2 of the image shown in FIG.
  • FIG. 38C shows a solid line L71 representing an induced electromotive force that causes inductive noise in an image.
  • the horizontal axis of C in FIG. 38 indicates the X-axis coordinate of the image, and the vertical axis indicates the magnitude of the induced electromotive force.
  • a dotted line L1 of C in FIG. 38 corresponds to the first comparative example (FIG. 9).
  • the eleventh configuration example suppresses a change in the induced electromotive force generated in the Victim conductor loop, as compared with the first comparative example. It can be seen that inductive noise can be suppressed.
  • the eleventh configuration example may be used by rotating it 90 degrees in the XY plane. Further, it may be rotated at any angle, not limited to 90 degrees. For example, it may be configured obliquely with respect to the X axis or the Y axis.
  • FIG. 39 shows a twelfth configuration example of the conductor layers A and B.
  • 39A shows the conductor layer A
  • FIG. 39B shows the conductor layer B.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • the conductor layer A in the twelfth configuration example is composed of the mesh conductor 321.
  • the reticulated conductor 321 has the same shape as the reticulated conductor 311 of the conductor layer A in the eleventh configuration example (FIG. 36), and a description thereof will be omitted.
  • the mesh conductor 321 is, for example, a wiring (Vss wiring) connected to GND or a negative power supply.
  • the conductor layer B in the twelfth configuration example includes the mesh conductor 322 and the relay conductor 305.
  • the reticulated conductor 322 has the same shape as the reticulated conductor 312 of the conductor layer B in the eleventh configuration example (FIG. 36), and a description thereof will be omitted.
  • the mesh conductor 322 is, for example, a wiring (Vdd wiring) connected to a positive power supply.
  • the relay conductor (other conductor) 305 is arranged in a rectangular gap region that is not a conductor of the mesh conductor 322 and is long in the Y direction, is electrically insulated from the mesh conductor 322, and The conductor 321 is connected to the connected Vss.
  • the shape of the relay conductor 305 is arbitrary, and a symmetrical circular or polygonal shape such as rotational symmetry or mirror symmetry is desirable.
  • the relay conductor 305 can be arranged at the center of the gap region of the mesh conductor 322 or any other position.
  • the relay conductor 305 may be connected to a conductor layer as a Vss wiring different from the conductor layer A.
  • the relay conductor 305 may be connected to a conductor layer as a Vss wiring closer to the active element group 167 than the conductor layer B.
  • the relay conductor 305 is connected to a conductor layer different from the conductor layer A, a conductor layer closer to the active element group 167 than the conductor layer B, or the like, via a conductor via (VIA) extending in the Z direction. Can be.
  • VIP conductor via
  • CC of FIG. 39 shows a state where the conductor layers A and B shown in FIGS. 39A and 39B are viewed from the photodiode 141 side (back side).
  • the hatched area 323 where the oblique lines intersect in C of FIG. 39 indicates an area where the mesh conductor 321 of the conductor layer A and the mesh conductor 322 of the conductor layer B overlap.
  • the active element group 167 is covered by at least one of the conductor layer A and the conductor layer B, so that hot carrier emission from the active element group 167 can be shielded.
  • the mesh conductor 321 and the mesh conductor 322, which are Vss wires are connected between the mesh conductor 321, which is a Vss wire.
  • the conductor loop whose loop surface is substantially perpendicular to the X-axis and the conductor loop whose loop surface is substantially perpendicular to the Y-axis are formed including (the cross-section of) the mesh conductors 321 and 322. Magnetic fluxes in substantially the X and Y directions are likely to be generated.
  • the overlapping region 323 of the mesh-shaped conductor 321 and the mesh-shaped conductor 322 continues in the X direction.
  • currents having different polarities flow through the mesh conductor 321 and the mesh conductor 322, so that the magnetic fields generated from the region 323 cancel each other. Therefore, generation of inductive noise near the region 323 can be suppressed.
  • the mesh conductor 321 that is a Vss wiring can be connected to the active element group 167 at a substantially shortest distance or a short distance.
  • a voltage drop, energy loss, or inductive noise between the mesh conductor 321 and the active element group 167 can be reduced.
  • the twelfth configuration example may be used by rotating it 90 degrees in the XY plane. Further, it may be rotated at any angle, not limited to 90 degrees. For example, it may be configured obliquely with respect to the X axis or the Y axis.
  • FIG. 40 shows a thirteenth configuration example of the conductor layers A and B.
  • 40A shows the conductor layer A
  • FIG. 40B shows the conductor layer B.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • the conductor layer A in the thirteenth configuration example is composed of a mesh conductor 331.
  • the reticulated conductor 331 has the same shape as the reticulated conductor 311 of the conductor layer A in the eleventh configuration example (FIG. 36), and a description thereof will be omitted.
  • the mesh conductor 331 is, for example, a wiring (Vss wiring) connected to GND or a negative power supply.
  • the conductor layer B in the thirteenth configuration example includes the mesh conductor 332 and the relay conductor 306.
  • the reticulated conductor 332 has the same shape as the reticulated conductor 312 of the conductor layer B in the eleventh configuration example (FIG. 36), and a description thereof will be omitted.
  • the mesh conductor 332 is, for example, a wiring (Vdd wiring) connected to a positive power supply.
  • the relay conductor (other conductor) 306 is obtained by dividing the relay conductor 305 in the twelfth configuration example (FIG. 39) into a plurality (10 in FIG. 40) at intervals.
  • the relay conductor 306 is arranged in a rectangular gap region long in the Y direction of the mesh conductor 332, is electrically insulated from the mesh conductor 332, and is connected to Vss to which the mesh conductor 331 of the conductor layer A is connected. Connected.
  • the number of divisions of the relay conductor and the presence / absence of connection to Vss may be different depending on the region. In this case, since the current distribution can be finely adjusted at the time of design, it is possible to suppress inductive noise and reduce voltage drop (IR-Drop).
  • the shape of the relay conductor 306 is arbitrary, and a symmetric circular or polygonal shape such as rotational symmetry or mirror symmetry is desirable.
  • the number of divisions of the relay conductor 306 can be arbitrarily changed.
  • the relay conductor 306 can be arranged at the center of the gap region of the mesh conductor 332 or any other position.
  • the relay conductor 306 may be connected to a conductor layer as a Vss wiring different from the conductor layer A.
  • the relay conductor 306 may be connected to a conductor layer as a Vss wiring closer to the active element group 167 than the conductor layer B.
  • the relay conductor 306 is connected to a conductor layer different from the conductor layer A, a conductor layer closer to the active element group 167 than the conductor layer B, or the like via a conductor via (VIA) extending in the Z direction. Can be.
  • VIP conductor via
  • CC of FIG. 40 shows a state in which the conductor layers A and B shown in FIGS. 40A and 40B are viewed from the photodiode 141 side (back side).
  • the hatched region 333 where the oblique lines intersect in C of FIG. 40 indicates a region where the mesh conductor 331 of the conductor layer A and the mesh conductor 332 of the conductor layer B overlap.
  • the active element group 167 is covered by at least one of the conductor layer A and the conductor layer B, so that hot carrier emission from the active element group 167 can be shielded.
  • a loop formed by including the mesh-shaped conductors 331 and 332 (cross section thereof) is formed by a conductor loop having a loop surface substantially perpendicular to the X axis and a conductor loop having a loop surface substantially perpendicular to the Y axis. Magnetic fluxes in substantially the X and Y directions are likely to be generated.
  • the overlapping region 333 of the mesh-shaped conductor 331 and the mesh-shaped conductor 332 continues in the X direction.
  • currents having different polarities flow through the mesh conductor 331 and the mesh conductor 332, so that the magnetic fields generated from the region 333 cancel each other. Therefore, generation of inductive noise near the region 333 can be suppressed.
  • the provision of the relay conductor 306 allows the mesh conductor 331, which is a Vss wiring, to be connected to the active element group 167 at a shortest distance or a short distance.
  • the mesh conductor 331 and the active element group 167 can be connected at a substantially shortest distance or a short distance.
  • the relay conductor 306 is divided into a plurality of parts, the current distribution in the conductor layer A and the current distribution in the conductor layer B are made substantially uniform and have opposite polarities. Therefore, the magnetic field generated from the conductor layer A and the magnetic field generated from the conductor layer B can be canceled each other. Therefore, in the thirteenth configuration example, it is possible to make it difficult to cause a current distribution difference between the Vdd wiring and the Vss wiring due to an external factor. Therefore, the sixteenth configuration example is suitable when the current distribution on the XY plane is complicated or when the impedance of the conductor connected to the mesh conductors 331 and 332 is different between the Vdd wiring and the Vss wiring.
  • the thirteenth configuration example may be rotated 90 degrees in the XY plane. Further, it may be rotated at any angle, not limited to 90 degrees. For example, it may be configured obliquely with respect to the X axis or the Y axis.
  • FIG. 41 shows, as a simulation result when the twelfth configuration example (FIG. 39) and the thirteenth configuration example (FIG. 40) are applied to the solid-state imaging device 100, a change in induced electromotive force that causes inductive noise in an image. Is shown. Note that the current conditions flowing in the twelfth and thirteenth configuration examples are the same as in the case shown in FIG.
  • the horizontal axis of FIG. 41 indicates the X-axis coordinate of the image, and the vertical axis indicates the magnitude of the induced electromotive force.
  • a solid line L72 in FIG. 41A corresponds to the twelfth configuration example (FIG. 39), and a dotted line L1 corresponds to the first comparative example (FIG. 9).
  • the twelfth configuration example does not change the induced electromotive force generated in the Victim conductor loop as compared with the first comparative example. Therefore, the twelfth configuration example can suppress inductive noise in an image output from the solid-state imaging device 100, as compared with the first comparative example.
  • this simulation result is a simulation result when the mesh conductor 321 is not connected to the active element group 167 and the mesh conductor 322 is not connected to the active element group 167.
  • the mesh-shaped conductor 321 and at least a part of the active element group 167 are connected to each other at a substantially shortest distance or a short distance through a conductor via or the like, or at least a part of the mesh-shaped conductor 322 and the active element group 167 are connected.
  • the connection is made at a shortest distance or a short distance via a conductor via or the like, the amount of current flowing through the mesh conductor 321 or the mesh conductor 322 gradually decreases according to the position. In such a case, there is a condition that the provision of the relay conductor 305 significantly reduces the voltage drop, the energy loss and the inductive noise to less than half.
  • the solid line L73 in B of FIG. 41 corresponds to the thirteenth configuration example (FIG. 40), and the dotted line L1 corresponds to the first comparative example (FIG. 9).
  • the thirteenth configuration example does not change the induced electromotive force generated in the Victim conductor loop as compared with the first comparative example. Therefore, the thirteenth configuration example can suppress inductive noise in an image output from the solid-state imaging device 100, as compared with the first comparative example.
  • this simulation result is a simulation result in the case where the mesh conductor 331 is not connected to the active element group 167 and the mesh conductor 332 is not connected to the active element group 167.
  • the mesh-shaped conductor 331 and at least a part of the active element group 167 are connected to each other at a substantially shortest distance or a short distance via a conductor via or the like, or at least a part of the mesh-shaped conductor 332 and the active element group 167 are connected.
  • the connection is made at the shortest distance or short distance via a conductor via or the like, the amount of current flowing through the mesh conductor 331 or the mesh conductor 332 gradually decreases according to the position. In such a case, there is a condition that the provision of the relay conductor 306 significantly reduces the voltage drop, the energy loss, and the inductive noise to less than half.
  • a thirteenth configuration example (FIG. 40) including the conductor layers A and B including conductors (mesh conductors 331 and 332) having a resistance value in the Y direction smaller than the resistance value in the X direction is a semiconductor.
  • An example in which the substrate is formed on a substrate will be described. However, the same applies to the case where the eleventh and twelfth configuration examples of the conductor layers A and B including the conductor whose resistance value in the Y direction is smaller than the resistance value in the X direction are formed on the semiconductor substrate.
  • the resistance in the Y direction of the conductors is smaller than the resistance value in the X direction. Easy to flow. Therefore, in order to minimize the voltage drop (IR-Drop) in the conductor of the thirteenth configuration example of the conductor layers A and B, a plurality of pads (electrodes) arranged on the semiconductor substrate must be arranged in a direction in which the resistance value is small. It is desirable to arrange them densely in the X direction, which is a direction in which the resistance value is higher than a certain Y direction, but they may be arranged more densely in the Y direction than in the X direction.
  • FIG. 42 is a plan view showing a first arrangement example in which pads are more densely arranged in the X direction than in the Y direction on the semiconductor substrate.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • FIG. 42A shows a case where pads are arranged on one side of a wiring region 400 in which a plurality of thirteenth configuration examples (FIG. 40) including the conductor layers A and B are formed.
  • B in FIG. 42 shows a case where pads are arranged on two sides facing each other in the Y direction of a wiring region 400 in which a plurality of thirteenth configuration examples (FIG. 40) including the conductor layers A and B are formed.
  • the dotted arrow in the figure shows an example of the direction of the current flowing therethrough, and a current loop 411 is generated by the current shown by the dotted arrow. The direction of the current indicated by the dotted arrow changes from moment to moment.
  • FIG. 42C shows a case where pads are arranged on three sides of a wiring region 400 where a plurality of thirteenth configuration examples (FIG. 40) including the conductor layers A and B are formed.
  • FIG. 42D illustrates a case where pads are arranged on four sides of a wiring region 400 in which a plurality of thirteenth configuration examples (FIG. 40) including the conductor layers A and B are formed.
  • FIG. 42E shows the orientation of the thirteenth configuration example of the conductor layers A and B formed in the wiring region 400.
  • the pad 401 arranged in the wiring area 400 is connected to the Vdd wiring, and the pad 402 is, for example, a wiring (Vss wiring) connected to GND or a minus power supply.
  • the pads 401 and 402 each include one or a plurality of (two in FIG. 42) pads arranged adjacent to each other.
  • Pads 401 and 402 are arranged adjacent to each other.
  • the pad 401 composed of one pad and the pad 402 composed of one pad are arranged adjacent to each other, and the pad 401 composed of two pads and the pad 402 composed of two pads are arranged adjacent to each other.
  • the polarities of the pads 401 and 402 (the connection destination is the Vdd wiring or the Vss wiring) are reversed.
  • the number of pads 401 arranged in the wiring region 400 and the number of pads 402 are substantially the same.
  • the current distribution flowing through each of the conductor layers A and B formed in the wiring region 400 can be made substantially uniform and have opposite polarities, so that the magnetic field generated from each of the conductor layers A and B and the induced electromotive force based thereon can be reduced. It can be effectively offset.
  • FIG. 43 is a plan view showing a second arrangement example in which pads are densely arranged in the X direction rather than the Y direction on the semiconductor substrate.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • FIG. 43A shows a case where pads are arranged on two sides of the wiring region 400 where a plurality of thirteenth configuration examples (FIG. 40) including the conductor layers A and B are formed, which are opposed to each other in the Y direction.
  • the dotted arrow in the figure indicates the direction of the current flowing therethrough, and a current loop 412 is generated by the current indicated by the dotted arrow.
  • the direction of the current indicated by the dotted arrow changes from moment to moment.
  • FIG. 43B shows a case where pads are arranged on three sides of a wiring region 400 in which a plurality of thirteenth configuration examples (FIG. 40) including the conductor layers A and B are formed.
  • FIG. 43C shows a case where pads are arranged on four sides of a wiring region 400 in which a plurality of thirteenth configuration examples (FIG. 40) including the conductor layers A and B are formed.
  • FIG. 43D shows the orientation of the thirteenth configuration example of the conductor layers A and B formed in the wiring region 400.
  • the pad 401 arranged in the wiring area 400 is connected to the Vdd wiring, and the pad 402 is, for example, a wiring (Vss wiring) connected to GND or a minus power supply.
  • the pads 401 and 402 are composed of a plurality of pads (2 in FIG. 43) arranged adjacent to each other.
  • Pads 401 and 402 are arranged adjacent to each other.
  • the pad 401 composed of one pad and the pad 402 composed of one pad are arranged adjacent to each other, and the pad 401 composed of two pads and the pad 402 composed of two pads are arranged adjacent to each other.
  • the polarities of the pads 401 and 402 (the connection destination is the Vdd wiring or the Vss wiring) are reversed.
  • the number of pads 401 arranged in the wiring region 400 and the number of pads 402 are substantially the same.
  • the current distribution flowing through each of the conductor layers A and B formed in the wiring region 400 can be made substantially uniform and have opposite polarities, so that the magnetic field generated from each of the conductor layers A and B and the induced electromotive force based thereon can be reduced. It can be effectively offset.
  • the polarities of the pads facing each other on the opposite side are the same. However, some of the pads facing each other on the opposite side may have opposite polarities.
  • a current loop 412 smaller than the current loop 411 shown in FIG. The size of the current loop affects the distribution range of the magnetic field, and the smaller the electric field loop, the narrower the distribution range of the magnetic field. Therefore, in the second arrangement example, the distribution range of the magnetic field is narrower than in the first arrangement example. Therefore, in the second arrangement example, the generated induced electromotive force and the inductive noise based thereon can be reduced as compared with the first arrangement example.
  • FIG. 44 is a plan view showing a third arrangement example in which pads are densely arranged in the X direction rather than the Y direction on the semiconductor substrate.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • FIG. 44 shows a case where pads are arranged on one side of a wiring region 400 in which a plurality of thirteenth configuration examples (FIG. 40) including the conductor layers A and B are formed.
  • FIG. 44B shows a case where pads are arranged on two sides of the wiring region 400 where a plurality of thirteenth configuration examples (FIG. 40) including the conductor layers A and B are formed, which are opposed to each other in the Y direction.
  • the dotted arrow in the figure indicates the direction of the current flowing therethrough, and a current loop 413 is generated by the current indicated by the dotted arrow.
  • CC of FIG. 44 shows a case where pads are arranged on three sides of a wiring region 400 where a plurality of thirteenth configuration examples (FIG. 40) including the conductor layers A and B are formed.
  • FIG. 44D illustrates a case where pads are arranged on four sides of a wiring region 400 in which a plurality of thirteenth configuration examples (FIG. 40) including the conductor layers A and B are formed.
  • E of FIG. 44 shows the orientation of the thirteenth configuration example of the conductor layers A and B formed in the wiring region 400.
  • the pad 401 arranged in the wiring area 400 is connected to the Vdd wiring, and the pad 402 is, for example, a wiring (Vss wiring) connected to GND or a minus power supply.
  • the polarity (the connection destination is a Vdd wiring or Vss wiring) of each pad that forms a pad group composed of a plurality of (two in FIG. 44) pads arranged adjacent to each other is changed.
  • the polarity is reversed.
  • the number of pads 401 arranged on one side or all sides of the wiring region 400 and the number of pads 402 are substantially the same.
  • the pads facing each other on the opposite side have the same polarity.
  • some of the pads facing each other on opposite sides may have opposite polarities.
  • the third arrangement example can reduce the induced electromotive force generated and the inductive noise based on the induced electromotive force as compared with the second arrangement example.
  • FIG. 45 is a plan view showing another example of the conductor forming the conductor layers A and B.
  • FIG. 45 is a plan view illustrating an example of a conductor having different resistance values in the Y direction and the X direction.
  • a to C in FIG. 45 show examples in which the resistance value in the Y direction is smaller than the resistance value in the X direction
  • D to F in FIG. 45 show that the resistance value in the X direction is smaller than the resistance value in the Y direction.
  • An example is shown.
  • FIG. 45 shows a mesh-shaped conductor in which the conductor width WX in the X direction is equal to the conductor width WY in the Y direction, and the gap width GX in the X direction is smaller than the gap width GY in the Y direction.
  • FIG. 45B shows a mesh-shaped conductor in which the conductor width WX in the X direction is wider than the conductor width WY in the Y direction, and the gap width GX in the X direction is smaller than the gap width GY in the Y direction.
  • 45C shows a portion in the X direction having the conductor width WX in the X direction and the conductor width WY in the Y direction being equal, the gap width GX in the X direction being equal to the gap width GY in the Y direction, and having the conductor width WY.
  • the mesh conductor has a hole in a region that does not intersect with a long portion in the Y direction having a conductor width WX.
  • FIG. 45 shows a mesh-shaped conductor in which the conductor width WX in the X direction is equal to the conductor width WY in the Y direction, and the gap width GX in the X direction is wider than the gap width GY in the Y direction.
  • FIG. 45E shows a mesh-shaped conductor in which the conductor width WX in the X direction is smaller than the conductor width WY in the Y direction, and the gap width GX in the X direction is larger than the gap width GY in the Y direction.
  • the conductor width WX in the X direction and the conductor width WY in the Y direction are equal, the gap width GX in the X direction is equal to the gap width GY in the Y direction, and the long portion in the Y direction having the conductor width WX,
  • the mesh conductor has a hole in a region that does not intersect with a long portion in the X direction having a conductor width WY.
  • the resistance value in the Y direction as shown in A to C in FIG. 45 is smaller than the resistance value in the X direction.
  • the resistance value in the X direction as shown in D to F in FIG. When a conductor that is small and easily flows a current in the X direction is formed in the wiring region 400, the current is easily diffused in the X direction, and the magnetic field in the vicinity of the pad arranged on the side of the wiring region 400 is hardly concentrated. The effect of suppressing the generation of inductive noise can be expected.
  • FIG. 46 is a diagram showing a modification in which the conductor period in the X direction of the second configuration example (FIG. 15) of the conductor layers A and B is reduced by a factor of two and the effect thereof.
  • 46A shows a second configuration example of the conductor layers A and B
  • FIG. 46B shows a modification of the second configuration example of the conductor layers A and B.
  • CC of FIG. 46 shows a change in induced electromotive force that causes inductive noise in an image as a simulation result when the modification shown in FIG. 46B is applied to the solid-state imaging device 100. Note that the conditions of the current flowing in this modification are the same as those in the case shown in FIG.
  • the horizontal axis in FIG. 46 indicates the X-axis coordinate of the image, and the vertical axis indicates the magnitude of the induced electromotive force.
  • the solid line L81 in C of FIG. 46 corresponds to the modification shown in B of FIG. 46
  • the dotted line L21 corresponds to the second configuration example (FIG. 15).
  • the variation of the induced electromotive force generated in the Victim conductor loop is slightly smaller in the modified example than in the second configuration example. Therefore, it can be seen that this modification can slightly reduce inductive noise as compared with the second configuration example.
  • FIG. 47 is a diagram showing a modification example in which the conductor period in the X direction of the fifth configuration example of the conductor layers A and B (FIG. 26) is reduced by half, and the effect thereof.
  • 47A shows a fifth configuration example of the conductor layers A and B
  • FIG. 47B shows a modification example of the fifth configuration example of the conductor layers A and B.
  • CC of FIG. 47 illustrates a change in induced electromotive force that causes inductive noise in an image as a simulation result when the modification illustrated in FIG. 47B is applied to the solid-state imaging device 100. Note that the conditions of the current flowing in this modification are the same as those in the case shown in FIG.
  • the horizontal axis in FIG. 47 indicates the X-axis coordinate of the image, and the vertical axis indicates the magnitude of the induced electromotive force.
  • a solid line L82 in C of FIG. 47 corresponds to the modification shown in B of FIG. 47, and a dotted line L53 corresponds to the fifth configuration example (FIG. 26).
  • the variation of the induced electromotive force generated in the Victim conductor loop is very small in this modified example as compared with the fifth configuration example. Therefore, it can be seen that this modified example can further suppress inductive noise as compared with the fifth configuration example.
  • FIG. 48 is a diagram showing a modification in which the conductor period in the X direction of the sixth configuration example (FIG. 27) of the conductor layers A and B is modified by a factor of two and the effect thereof.
  • 48A shows a sixth configuration example of the conductor layers A and B
  • FIG. 48B shows a modification of the sixth configuration example of the conductor layers A and B.
  • CC of FIG. 48 illustrates a change in induced electromotive force that causes inductive noise in an image as a simulation result when the modification illustrated in FIG. 48B is applied to the solid-state imaging device 100. Note that the conditions of the current flowing in this modification are the same as those in the case shown in FIG.
  • the horizontal axis in FIG. 48 indicates the X-axis coordinate of the image, and the vertical axis indicates the magnitude of the induced electromotive force.
  • a solid line L83 in C of FIG. 48 corresponds to the modified example shown in B of FIG. 48, and a dotted line L54 corresponds to the sixth configuration example (FIG. 27).
  • this variation has less change in the induced electromotive force generated in the Victim conductor loop than the sixth configuration example. Therefore, it can be seen that this modification can further suppress inductive noise as compared with the sixth configuration example.
  • FIG. 49 is a diagram showing a modification of the second configuration example of the conductor layers A and B (FIG. 15) in which the conductor period in the Y direction is reduced by half, and the effect thereof.
  • 49A shows a second configuration example of the conductor layers A and B
  • FIG. 49B shows a modification of the second configuration example of the conductor layers A and B.
  • CC of FIG. 49 illustrates a change in the induced electromotive force that causes inductive noise in an image as a simulation result when the modification illustrated in FIG. 49B is applied to the solid-state imaging device 100. Note that the conditions of the current flowing in this modification are the same as those in the case shown in FIG.
  • the horizontal axis in FIG. 49 indicates the X-axis coordinate of the image, and the vertical axis indicates the magnitude of the induced electromotive force.
  • the solid line L111 in C of FIG. 49 corresponds to the modification shown in B of FIG. 49
  • the dotted line L21 corresponds to the second configuration example.
  • the change in the induced electromotive force generated in the Victim conductor loop is slightly smaller than in the second configuration example. Therefore, it can be seen that this modification can slightly reduce inductive noise as compared with the second configuration example.
  • FIG. 50 is a diagram showing a modification in which the conductor period in the Y direction of the fifth configuration example of the conductor layers A and B (FIG. 26) is reduced by a factor of two and the effect thereof.
  • 50A shows a fifth configuration example of the conductor layers A and B
  • FIG. 50B shows a modification of the fifth configuration example of the conductor layers A and B.
  • ⁇ Circle around (C) ⁇ in FIG. 50 shows, as a simulation result when the modification shown in FIG. 50 (B) is applied to the solid-state imaging device 100, a change in induced electromotive force that causes inductive noise in an image. Note that the conditions of the current flowing in this modification are the same as those in the case shown in FIG.
  • the horizontal axis in FIG. 50 indicates the X-axis coordinate of the image, and the vertical axis indicates the magnitude of the induced electromotive force.
  • the solid line L112 in C of FIG. 50 corresponds to the modification shown in B of FIG. 50
  • the dotted line L53 corresponds to the fifth configuration example.
  • the variation of the induced electromotive force generated in the Victim conductor loop is very small in this modified example as compared with the fifth configuration example. Therefore, it can be seen that this modified example can further suppress inductive noise as compared with the fifth configuration example.
  • FIG. 51 is a diagram showing a modification in which the conductor period in the Y direction of the sixth configuration example of the conductor layers A and B (FIG. 27) is modified by a factor of two, and the effect thereof.
  • 51A shows a sixth configuration example of the conductor layers A and B
  • FIG. 51B shows a modification of the sixth configuration example of the conductor layers A and B.
  • FIG. 51 shows a change in the induced electromotive force that causes inductive noise in an image as a simulation result when the modified example shown in FIG. 51B is applied to the solid-state imaging device 100. Note that the conditions of the current flowing in this modification are the same as those in the case shown in FIG.
  • the horizontal axis in FIG. 51 indicates the X-axis coordinate of the image, and the vertical axis indicates the magnitude of the induced electromotive force.
  • a solid line L113 in C of FIG. 51 corresponds to the modification shown in B of FIG. 51, and a dotted line L54 corresponds to the sixth configuration example.
  • this variation has less change in the induced electromotive force generated in the Victim conductor loop than the sixth configuration example. Therefore, it can be seen that this modification can further suppress inductive noise as compared with the sixth configuration example.
  • FIG. 52 is a diagram showing a modification in which the conductor width in the X direction of the second configuration example of the conductor layers A and B (FIG. 15) is doubled, and the effect thereof.
  • 52A shows a second configuration example of the conductor layers A and B
  • FIG. 52B shows a modification of the second configuration example of the conductor layers A and B.
  • FIG. 52C of FIG. 52 illustrates a change in the induced electromotive force that causes inductive noise in an image as a simulation result when the modification illustrated in FIG. 52B is applied to the solid-state imaging device 100. Note that the conditions of the current flowing in this modification are the same as those in the case shown in FIG.
  • the horizontal axis in FIG. 52 indicates the X-axis coordinate of the image, and the vertical axis indicates the magnitude of the induced electromotive force.
  • a solid line L121 in C of FIG. 52 corresponds to the modification shown in B of FIG. 52
  • a dotted line L21 corresponds to the second configuration example.
  • the change in the induced electromotive force generated in the Victim conductor loop is slightly smaller than in the second configuration example. Therefore, it can be seen that this modification can slightly reduce inductive noise as compared with the second configuration example.
  • FIG. 53 is a diagram showing a modification of the fifth configuration example of the conductor layers A and B (FIG. 26) in which the conductor width in the X direction is doubled and the effect thereof.
  • 53A shows a fifth configuration example of the conductor layers A and B
  • FIG. 53B shows a modification example of the fifth configuration example of the conductor layers A and B.
  • CC of FIG. 53 illustrates a change in induced electromotive force that causes inductive noise in an image as a simulation result when the modification illustrated in FIG. 53B is applied to the solid-state imaging device 100. Note that the conditions of the current flowing in this modification are the same as those in the case shown in FIG.
  • the horizontal axis in FIG. 53 indicates the X-axis coordinate of the image, and the vertical axis indicates the magnitude of the induced electromotive force.
  • the solid line L122 in C of FIG. 53 corresponds to the modification shown in B of FIG. 53
  • the dotted line L53 corresponds to the fifth configuration example.
  • the variation of the induced electromotive force generated in the Victim conductor loop is very small in this modified example as compared with the fifth configuration example. Therefore, it can be seen that this modified example can further suppress inductive noise as compared with the fifth configuration example.
  • FIG. 54 is a diagram showing a modification of the sixth configuration example of the conductor layers A and B (FIG. 27) in which the conductor width in the X direction is doubled, and the effect thereof.
  • 54A shows a sixth configuration example of the conductor layers A and B
  • FIG. 54B shows a modification of the sixth configuration example of the conductor layers A and B.
  • FIG. 54C illustrates a change in induced electromotive force that causes inductive noise in an image as a simulation result when the modification illustrated in FIG. 54B is applied to the solid-state imaging device 100. Note that the conditions of the current flowing in this modification are the same as those in the case shown in FIG.
  • the horizontal axis in FIG. 54 indicates the X-axis coordinate of the image, and the vertical axis indicates the magnitude of the induced electromotive force.
  • a solid line L123 in C of FIG. 54 corresponds to the modification shown in B of FIG. 54
  • a dotted line L54 corresponds to the sixth configuration example.
  • FIG. 55 is a diagram showing a modification in which the conductor width in the Y direction of the second configuration example of the conductor layers A and B (FIG. 15) is doubled, and the effect thereof.
  • 55A shows a second configuration example of the conductor layers A and B
  • FIG. 55B shows a modification of the second configuration example of the conductor layers A and B.
  • FIG. 55C of FIG. 55 illustrates a change in induced electromotive force that causes inductive noise in an image as a simulation result when the modification illustrated in FIG. 55B is applied to the solid-state imaging device 100. Note that the conditions of the current flowing in this modification are the same as those in the case shown in FIG.
  • the horizontal axis in FIG. 55 indicates the X-axis coordinate of the image, and the vertical axis indicates the magnitude of the induced electromotive force.
  • a solid line L131 in C of FIG. 55 corresponds to the modification shown in B of FIG. 55
  • a dotted line L21 corresponds to the second configuration example.
  • the change in the induced electromotive force generated in the Victim conductor loop is slightly smaller than in the second configuration example. Therefore, it can be seen that this modification can slightly reduce inductive noise as compared with the second configuration example.
  • FIG. 56 is a diagram showing a modification of the fifth configuration example of the conductor layers A and B (FIG. 26) in which the conductor width in the Y direction is doubled, and the effect thereof.
  • 56A shows a fifth configuration example of the conductor layers A and B
  • FIG. 56B shows a modification example of the fifth configuration example of the conductor layers A and B.
  • FIG. 56C of FIG. 56 illustrates a change in induced electromotive force that causes inductive noise in an image as a simulation result when the modification illustrated in FIG. 56B is applied to the solid-state imaging device 100. Note that the conditions of the current flowing in this modification are the same as those in the case shown in FIG.
  • the horizontal axis in FIG. 56 indicates the X-axis coordinate of the image, and the vertical axis indicates the magnitude of the induced electromotive force.
  • a solid line L132 in C of FIG. 56 corresponds to the modification shown in B of FIG. 56
  • a dotted line L53 corresponds to the fifth configuration example.
  • this variation has a very small change in the induced electromotive force generated in the Victim conductor loop as compared with the fifth configuration example. Therefore, it can be seen that this modified example can further suppress inductive noise as compared with the fifth configuration example.
  • FIG. 57 is a diagram showing a modification in which the conductor width in the Y direction of the sixth configuration example of the conductor layers A and B (FIG. 27) is doubled, and the effect thereof.
  • FIG. 57A shows a sixth configuration example of the conductor layers A and B
  • FIG. 57B shows a modification of the sixth configuration example of the conductor layers A and B.
  • ⁇ Circle around (C) ⁇ in FIG. 57 shows a change in the induced electromotive force that causes inductive noise in an image as a simulation result when the modification shown in FIG. 57 (B) is applied to the solid-state imaging device 100. Note that the conditions of the current flowing in this modification are the same as those in the case shown in FIG.
  • the horizontal axis in FIG. 57 indicates the X-axis coordinate of the image, and the vertical axis indicates the magnitude of the induced electromotive force.
  • a solid line L133 in C of FIG. 57 corresponds to the modification shown in B of FIG. 57
  • a dotted line L54 corresponds to the sixth configuration example.
  • this modified example has less change in the induced electromotive force generated in the Victim conductor loop than the sixth configuration example. Therefore, it can be seen that this modification can further suppress inductive noise as compared with the sixth configuration example.
  • FIG. 58 is a plan view showing a modified example of the mesh-shaped conductor applicable to each configuration example of the conductor layers A and B described above.
  • AA of FIG. 58 is a simplified illustration of the shape of the mesh-shaped conductor employed in each configuration example of the conductor layers A and B described above.
  • the gap region is rectangular, and each rectangular gap region is linearly arranged in the X direction and the Y direction.
  • BB of FIG. 58 shows a simplified first modified example of the mesh-shaped conductor.
  • the gap regions are rectangular, and the gap regions are linearly arranged in the X direction and are shifted from each other in the Y direction.
  • CC in FIG. 58 shows a simplified second modified example of the mesh conductor.
  • the gap regions are diamond-shaped, and each gap region is linearly arranged in an oblique direction.
  • D in FIG. 58 is a simplified illustration of a third modification of the mesh conductor.
  • the gap region is a circle or a polygon other than a rectangle (octagon in the case of D in FIG. 58), and each gap region is linearly arranged in the X direction and the Y direction. Is done.
  • EE of FIG. 58 shows a simplified fourth modified example of the mesh conductor.
  • the gap region is a circle or a polygon other than a rectangle (octagon in the case of E in FIG. 58), and each gap region is linearly arranged in the X direction. In the direction, they are displaced from one step to another.
  • F in FIG. 58 is a simplified illustration of a fifth modification of the mesh conductor.
  • the gap region is a circle or a polygon other than a rectangle (octagon in the case of F in FIG. 58), and each gap region is linearly arranged in an oblique direction.
  • the shape of the mesh conductor applicable to each configuration example of the conductor layers A and B is not limited to the modified example shown in FIG. 58, and may be any mesh shape.
  • a planar conductor or a mesh conductor is employed in each configuration example of the conductor layers A and B.
  • a mesh-shaped conductor (lattice-shaped conductor) has a periodic wiring structure in the X direction and the Y direction. Therefore, if a mesh-shaped conductor having a basic periodic structure that is a unit of the periodic structure (for one period) is designed, the basic periodic structure is repeatedly arranged in the X direction and the Y direction to use a linear conductor.
  • the wiring layout can be easily designed as compared with the above. In other words, when the mesh conductor is used, the layout flexibility is improved as compared with the case where the linear conductor is used. Therefore, the man-hour, time, and cost required for the layout design can be reduced.
  • FIG. 59 simulates a design man-hour when designing a circuit wiring layout satisfying a predetermined condition using a linear conductor and a design man-hour when designing using a mesh-shaped conductor (lattice-shaped conductor). It is a figure showing a result.
  • the design man-hour when designing using a linear conductor is 100%
  • the design man-hour when designing using a mesh conductor is about 40%. It can be seen that the man-hour can be reduced.
  • FIG. 60 is a diagram illustrating a voltage change when a DC current flows in the Y direction under the same conditions for conductors of the same material and different shapes arranged on the XY plane.
  • AA of FIG. 60 corresponds to a linear conductor
  • B of FIG. 60 corresponds to a mesh conductor
  • C of FIG. 60 corresponds to a planar conductor. Comparing A, B, and C in FIG. 60, it can be seen that the change in voltage is greatest for the linear conductor, then for the mesh conductor, and then for the planar conductor.
  • FIG. 61 is a graph showing the voltage drop of the mesh conductor and the sheet conductor relatively as a graph, with the voltage drop of the linear conductor shown in FIG.
  • the planar conductor and the mesh conductor can reduce the voltage drop (IR-Drop) that can be a fatal obstacle to driving of the semiconductor device, as compared with the linear conductor.
  • planar conductors cannot be manufactured in current semiconductor substrate processing processes. Therefore, it is practical to adopt a configuration example in which mesh conductors are used for both the conductor layers A and B. However, this is not the case when the semiconductor substrate processing process has evolved and a planar conductor can be manufactured.
  • the uppermost layer metal and the lowermost layer metal may be able to produce a planar conductor.
  • the conductors (plane conductors or mesh conductors) forming the conductor layers A and B may generate not only inductive noise but also capacitive noise with respect to the Victim conductor loop including the signal line 132 and the control line 133. Conceivable.
  • the capacitive noise means that when a voltage is applied to a conductor forming the conductor layers A and B, the signal line 132 or the control line 133 is formed by capacitive coupling between the conductor and the signal line 132 or the control line 133. This means that a voltage is generated on the line 133 and a change in the applied voltage causes voltage noise on the signal line 132 and the control line 133. This voltage noise becomes noise of the pixel signal.
  • the magnitude of the capacitive noise is considered to be substantially proportional to the capacitance and voltage between the conductors forming the conductor layers A and B and the wiring such as the signal line 132 and the control line 133.
  • the overlapping area of two conductors (one may be a conductor and the other may be a wiring) is S, the distance between the two conductors is d and they are arranged in parallel, and the dielectric constant ⁇ between the conductors
  • FIG. 62 is a diagram for explaining a difference in capacitance between conductors having the same material but different shapes arranged on the XY plane and other conductors (wirings).
  • 62A shows a linear conductor that is long in the Y direction and wirings 501 and 502 (in the signal line 132 and the control line 133) that are linearly formed in the Y direction at intervals from the linear conductor in the Z direction. (Corresponding). However, the wiring 501 entirely overlaps the conductor region of the linear conductor, but the wiring 502 entirely overlaps the gap region of the linear conductor and does not have an area overlapping the conductor region.
  • 62B shows a mesh-shaped conductor and wirings 501 and 502 formed linearly in the Y-direction at intervals from the mesh-shaped conductor in the Z-direction.
  • the wiring 501 entirely overlaps the conductor region of the mesh conductor, but the wiring 502 substantially overlaps the conductor region of the mesh conductor.
  • 62C shows a planar conductor and wirings 501 and 502 formed linearly in the Y direction at intervals from the planar conductor in the Z direction. However, the wirings 501 and 502 entirely overlap the conductive region of the planar conductor.
  • the conductors (straight conductor, mesh conductor, or planar conductor) and the capacitance of the wiring 501, and the conductors (straight conductor, mesh conductor, or planar conductor) and the wiring in A, B, and C of FIG.
  • the straight conductor is the largest, followed by the mesh conductor and the planar conductor.
  • mesh conductors and sheet conductors have smaller capacitance differences between conductors and wiring due to differences in wiring XY coordinates than linear conductors. Can be smaller. Therefore, noise of a pixel signal due to capacitive noise can be suppressed.
  • a mesh conductor is used.
  • the mesh conductor can be expected to have an effect of reducing radiated noise.
  • the radiated noise includes radiated noise (unnecessary radiation) from the inside to the outside of the solid-state imaging device 100 and radiated noise (transmitted noise) from the outside to the inside of the solid-state imaging device 100.
  • the conductor period of the mesh conductor affects the frequency band of radiated noise that can be reduced by the mesh conductor, the conductor layers A and B have different conductor periods. Radiated noise in a wider frequency band can be reduced as compared with the case where mesh conductors having the same conductor frequency are used.
  • Configuration example with different drawers> by the way, for example, when the wiring layer 165A that is the conductor layer A or the wiring layer 165B that is the conductor layer B is connected to the pad 401 or 402, as shown in FIGS. A wiring lead portion for connection is provided.
  • the wiring lead portion is usually formed with a narrow wiring width according to the size of the pad.
  • the wiring layer 165A (conductor layer A) is divided into a main conductor 165Aa and a lead conductor 165Ab.
  • the main conductor part 165Aa is a part whose main purpose is to shield hot carrier emission from the active element group 167 and to suppress generation of inductive noise, and has a larger area than the lead conductor part 165Ab.
  • the lead conductor portion 165Ab is a portion mainly connecting the main conductor portion 165Aa and the pad 402 and supplying a predetermined voltage such as GND or a negative power supply (Vss) to the main conductor portion 165Aa.
  • the length (width) of at least one of the lead conductor portion 165Ab in the X direction (first direction) or the Y direction (second direction) is shorter (narrower) than the length (width) of the main conductor portion 165Aa.
  • the connection portion between the main conductor portion 165Aa and the lead conductor portion 165Ab indicated by a dashed line in FIG. 63A is referred to as a joint portion.
  • the wiring layer 165B (conductor layer B) is divided into a main conductor portion 165Ba and a lead conductor portion 165Bb as shown in FIG.
  • the main conductor portion 165Ba is a portion whose main purpose is to shield hot carrier emission from the active element group 167 and to suppress generation of inductive noise, and has a larger area than the lead conductor portion 165Bb.
  • the lead conductor portion 165Bb is a portion whose main purpose is to connect the main conductor portion 165Ba and the pad 401 and supply a predetermined voltage such as a positive power supply (Vdd) to the main conductor portion 165Ba.
  • Vdd positive power supply
  • the length (width) of at least one of the lead conductor portion 165Bb in the X direction (first direction) or the Y direction (second direction) is shorter (narrower) than the length (width) of the main conductor portion 165Ba.
  • a connection portion between the main conductor portion 165Ba and the lead conductor portion 165Bb indicated by a dashed line in B of FIG. 63 is referred to as a joint portion.
  • main conductor portion 165Aa and the main conductor portion 165Ba are collectively referred to without distinguishing the wiring layer 165A (conductor layer A) and the wiring layer 165B (conductor layer B), and also, the lead conductor portion 165Ab and the lead conductor portion 165Bb.
  • a main conductor 165a and a lead conductor 165b are collectively referred to as a main conductor 165a and a lead conductor 165b, respectively.
  • FIG. 63 shows an example in which the pad 401 and the pad 402 have substantially the same shape and are arranged at substantially the same position, but the present invention is not limited to this.
  • the pad 401 and the pad 402 may have different shapes from each other, or may be arranged at different positions from each other.
  • the pad 401 and the pad 402 may be configured to have smaller dimensions than the example shown in FIG. 63, may be configured not to be in contact with each other in the wiring layer 165A, and may be configured to be not in contact with each other in the wiring layer 165B. It may be configured so as not to be provided, or may be provided in plurality.
  • FIG. 63 shows an example in which the end positions in the Y direction of the main conductor 165Aa and the lead conductor 165Ab are substantially the same, but this is not a limitation.
  • the main conductor portion 165Aa and the lead conductor portion 165Ab may be configured such that the end positions do not match.
  • FIG. 63 shows an example in which the end positions in the Y direction of the main conductor portion 165Ba and the lead conductor portion 165Bb are substantially the same, but this is not restrictive.
  • the main conductor portion 165Ba and the lead conductor portion 165Bb may be configured such that the end positions do not match.
  • the relationship between the shapes and positions of the main conductor portion 165a and the lead conductor portion 165b and the relationship between the pads 401 and 402 is the same for each configuration example described below.
  • both the main conductor portion 165Aa and the lead conductor portion 165Ab are made of a planar conductor without distinction between the main conductor portion 165Aa and the lead conductor portion 165Ab. And the same wiring pattern such as a mesh conductor.
  • both the main conductor 165Ba and the lead conductor 165Bb are formed of the same wiring pattern such as a planar conductor or a mesh conductor without distinction between the main conductor 165Ba and the lead conductor 165Bb. Had been formed.
  • FIG. 64 illustrates an example in which the eleventh configuration example illustrated in FIG. 36 is applied to the wiring layers 165A and 165B using different wiring patterns, as an example of the above-described first to thirteenth configuration examples. I have.
  • AA in FIG. 64 shows a conductor layer A (wiring layer 165A), and B in FIG. 64 shows a conductor layer B (wiring layer 165B).
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • the mesh-shaped conductor 311 of the conductor layer A shown in FIG. 36A is an example in which the conductor width WXA in the X direction is wider than the gap width GXA.
  • the mesh conductor 811 of the conductor layer A in FIG. 64A has a shape in which the conductor width WXA in the X direction is smaller than the gap width GXA.
  • the mesh conductor 311 shown in FIG. 36A has an example in which the conductor width WYA is smaller than the gap width GYA, but the mesh conductor of the conductor layer A in FIG. 811 is a shape in which the conductor width WYA is wider than the gap width GYA.
  • the mesh-like conductor 311 of the conductor layer A shown in FIG. 36A has an example in which the conductor width WYA and the conductor width WXA are substantially the same, but the mesh-like conductor 811 of the conductor layer A shown in FIG. Has a shape in which the conductor width WYA is wider than the conductor width WXA.
  • the same pattern is periodically arranged with the conductor period FXA in the X direction in both the main conductor portion 165Aa and the lead conductor portion 165Ab.
  • the same pattern is periodically arranged at the conductor period FYA.
  • the ratio of the gap width GXB to the conductor width WXB in the X direction of the mesh conductor 812 of the conductor layer B in FIG. 64B (gap width GXB / conductor width WXB) is shown in FIG.
  • the meshed conductor 312 of the conductor layer B has a shape larger than the ratio of the gap width GXB to the conductor width WXB in the X direction (gap width GXB / conductor width WXB).
  • the difference between the conductor width WXB and the gap width GXB is larger than that of the mesh conductor 312 of the conductor layer B shown in FIG. ing.
  • the ratio of the gap width GYB to the conductor width WYB of the mesh conductor 812 of the conductor layer B of FIG. 64B is the same as that of the conductor layer B shown in FIG.
  • the ratio is smaller than the ratio of the gap width GYB to the conductor width WYB of the mesh conductor 312 (gap width GYB / conductor width WYB).
  • the mesh conductor 312 of the conductor layer B shown in FIG. 36B has an example in which the conductor width WYB and the conductor width WXB are substantially the same, but the mesh conductor 812 of the conductor layer B in FIG.
  • FIG. 64 shows a state in which the conductor layers A and B shown in FIGS. 64A and 64B respectively are viewed from the conductor layer A side (photodiode 141 side).
  • FIG. 64C the region of the conductor layer B that is hidden by overlapping with the conductor layer A is not shown.
  • At least one of the conductor layer A and the conductor layer B covers the active element group 167, so that hot carrier emission from the active element group 167 is performed. Can be shielded, and generation of inductive noise can be suppressed.
  • the main conductor portion 165Aa and the lead conductor portion 165Ab are formed with the same wiring pattern without particularly distinguishing the wiring layer 165A (conductor layer A).
  • the wiring layer 165B (conductor layer B) is an example in which the main conductor 165Ba and the lead conductor 165Bb are formed with the same wiring pattern without distinction.
  • the lead conductor portion 165b is formed with a smaller area than the main conductor portion 165a, it is a portion where the current is concentrated, so that the wiring resistance is reduced or the current is easily diffused in the main conductor portion 165a. It is desirable.
  • the wiring pattern of the lead conductor portion 165Ab is changed to a wiring pattern different from that of the main conductor portion 165Aa, and the wiring layer 165B (conductor layer B) is also provided with the wiring pattern of the lead conductor portion 165Bb.
  • the wiring pattern is a wiring pattern different from that of the main conductor 165Ba will be described.
  • FIG. 65 shows a fourteenth configuration example of the conductor layers A and B.
  • 65A shows the conductor layer A
  • FIG. 65B shows the conductor layer B.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • the conductor layer A in the fourteenth configuration example is composed of a mesh conductor 821Aa of the main conductor portion 165Aa and a mesh conductor 821Ab of the lead conductor portion 165Ab, as shown in FIG.
  • the mesh conductors 821Aa and 821Ab are, for example, wires (Vss wires) connected to GND or a minus power supply.
  • the mesh-shaped conductor 821Aa of the main conductor portion 165Aa has a conductor width WXAa and a gap width GXAa in the X direction, and the same pattern is periodically arranged with a conductor period FXAa. It has a WYAa and a gap width GYAa, and is configured such that the same pattern is periodically arranged at a conductor period FYAa. Therefore, the mesh-shaped conductor 821Aa has a shape including a repetitive pattern in which a predetermined basic pattern is repeatedly arranged at a conductor cycle in at least one of the X direction and the Y direction.
  • the mesh-shaped conductor 821Ab of the lead conductor 165Ab has a conductor width WXAb and a gap width GXAb in the X direction, and the same pattern is periodically arranged with a conductor period FXAb. It has WYAb and gap width GYAb. Therefore, the mesh-shaped conductor 821Ab has a shape including a repetitive pattern in which a predetermined basic pattern is repeatedly arranged at a conductor cycle in at least one of the X direction and the Y direction.
  • the corresponding conductor width WXA, gap width GXA, conductor width WYA, and gap width GYA of the mesh conductor 821Aa of the main conductor portion 165Aa and the mesh conductor 821Ab of the lead conductor portion 165Ab are compared, at least one One of them has different values, and the repetition pattern of the reticulated conductor 821Ab of the lead conductor portion 165Ab is different from the repetition pattern of the reticulated conductor 821Aa of the main conductor portion 165Aa.
  • the total length LAa of the mesh conductor 821Aa of the main conductor 165Aa in the Y direction is equal to the mesh conductor 821Ab.
  • the mesh conductor 821Ab of the lead conductor portion 165Ab has a larger voltage drop (particularly, IR-Drop) because the current concentrates more locally than the mesh conductor 821Aa of the main conductor portion 165Aa.
  • the repetitive pattern of the mesh-shaped conductor 821Ab of the lead conductor 165Ab has a shape in which current flows at least in the first direction with the X direction toward the main conductor 165Aa as the first direction.
  • the conductor width (wiring width) WYAb in the orthogonal second direction (Y direction) is formed larger than the conductor width (wiring width) WYAa of the mesh-shaped conductor 821Aa of the main conductor portion 165Aa in the second direction.
  • the conductor width WYAb is larger than the conductor width WYAa.
  • the present invention is not limited thereto.
  • the conductor width WXAb may be formed larger than the conductor width WXAa. As a result, the wiring resistance of the mesh conductor 821Ab can be reduced, so that the voltage drop can be further improved.
  • At least a part of the mesh-shaped conductor 821Aa of the main conductor portion 165Aa has a pattern (shape) in which current easily flows in the Y direction (second direction) than in the X direction (first direction).
  • the wiring width (conductor width WXAa, conductor width WYAa) and the wiring interval (gap width GXAa, gap width GYAa) are different, so that the wiring resistance in the Y direction is smaller than in the X direction. I have.
  • the current is easily diffused in the Y direction, so that the electrode concentration around the junction between the main conductor 165Aa and the lead-out conductor 165Ab is increased. Can be reduced, and inductive noise can be further improved.
  • the conductor layer B in the fourteenth configuration example is composed of a mesh conductor 822Ba of the main conductor 165Ba and a mesh conductor 822Bb of the lead conductor 165Bb, as shown in FIG. 65B.
  • the mesh conductor 822Ba and the mesh conductor 822Bb are, for example, wires (Vdd wires) connected to a positive power supply.
  • the mesh-shaped conductor 822Ba of the main conductor portion 165Ba has a conductor width WXBa and a gap width GXBa in the X direction, and the same pattern is periodically arranged with a conductor period FXBa. It has WYBa and a gap width GYBa, and has the same pattern periodically arranged with a conductor period FYBa. Therefore, the mesh conductor 822Ba has a shape including a repetitive pattern in which a predetermined basic pattern is repeatedly arranged at a conductor cycle in at least one of the X direction and the Y direction.
  • the mesh-shaped conductor 822Bb of the lead conductor portion 165Bb has a conductor width WXBb and a gap width GXBb in the X direction, and is formed by periodically arranging the same pattern at a conductor period FXBb. It has WYBb and gap width GYBb. Therefore, the mesh conductor 822Bb has a shape including a repetitive pattern in which a predetermined basic pattern is repeatedly arranged at a conductor cycle in at least one of the X direction and the Y direction.
  • the corresponding conductor width WXB, gap width GXB, conductor width WYB, and gap width GYB of the mesh conductor 822Ba of the main conductor 165Ba and the mesh conductor 822Bb of the lead conductor 165Bb are compared, at least one One is a different value, and the repetition pattern of the reticulated conductor 822Bb of the lead conductor portion 165Bb is different from the repetition pattern of the reticulated conductor 822Ba of the main conductor portion 165Ba.
  • the total length LBa of the mesh conductor 822Ba of the main conductor 165Ba in the Y direction is equal to the mesh conductor 822Bb.
  • the mesh conductor 822Bb of the lead conductor portion 165Bb has a larger voltage drop (particularly, IR-Drop) because the current concentrates more locally than the mesh conductor 822Ba of the main conductor portion 165Ba.
  • the repetitive pattern of the reticulated conductor 822Bb of the lead conductor portion 165Bb has a shape in which current flows at least in the first direction with the X direction toward the main conductor portion 165Ba as the first direction.
  • the conductor width (wiring width) WYBb in the orthogonal second direction (Y direction) is formed larger than the conductor width (wiring width) WYBa of the mesh conductor 822Ba of the main conductor portion 165Ba in the second direction.
  • the conductor width WYBb is larger than the conductor width WYBa
  • the present invention is not limited thereto.
  • the conductor width WXBb may be formed larger than the conductor width WXBa.
  • the wiring resistance of the mesh conductor 822Bb can be reduced, so that the voltage drop can be further improved.
  • At least a part of the mesh-shaped conductor 822Ba of the main conductor portion 165Ba has a pattern (shape) in which current can flow more easily in the Y direction (second direction) than in the X direction (first direction).
  • the wiring width (conductor width WXBa, conductor width WYBa) and the wiring interval (gap width GXBa, gap width GYBa) are different, so that the wiring resistance in the Y direction is smaller than in the X direction. I have.
  • the current is easily diffused in the Y direction, so that the electrode concentration around the junction between the main conductor 165Ba and the lead-out conductor 165Bb is increased. Can be reduced, and inductive noise can be further improved.
  • the repetition pattern of the reticulated conductor 821Ab of the lead conductor portion 165Ab is replaced by the repetition pattern of the reticulated conductor 821Aa of the main conductor portion 165Aa.
  • the wiring resistance of the lead conductor 165Ab can be reduced, and the voltage drop can be further improved.
  • the repetition pattern of the mesh conductor 822Bb of the lead conductor portion 165Bb is formed with a pattern different from the repetition pattern of the mesh conductor 822Ba of the main conductor portion 165Ba.
  • FIGS. 66 to 68 show first to third modifications of the fourteenth configuration example. Note that A to C in FIGS. 66 to 68 correspond to A to C in FIG. 65, respectively, and are denoted by the same reference numerals. Therefore, description of common parts will be appropriately omitted, and different parts will be described.
  • the joint between the main conductor 165Aa and the lead conductor 165Ab is located on the rectangular side surrounding the outer periphery of the main conductor 165Aa. Although it was arranged, it is not limited to this.
  • the main conductor 165Aa and the lead conductor 165Ab are connected such that the mesh conductor 821Ab of the lead conductor 165Ab enters the inside of the rectangle surrounding the outer periphery of the main conductor 165Aa. May be done.
  • the main conductor 165Aa and the lead conductor 165Ab may be connected so that only the main conductor 165Aa enters the inside of the rectangle surrounding the outer periphery of the main conductor 165Aa.
  • the mesh-shaped conductor 821Ab of the lead conductor portion 165Ab of FIG. 67A extends so that the upper one of the two wires having the conductor width WYAb enters the rectangle surrounding the outer periphery of the main conductor portion 165Aa.
  • the mesh-shaped conductor 821Ab of the lead conductor portion 165Ab of FIG. 68A extends so that the lower wiring enters the inside of the rectangle surrounding the outer periphery of the main conductor portion 165Aa.
  • the main conductor 165Ba and the lead conductor 165Bb are connected such that the mesh conductor 822Bb of the lead conductor 165Bb enters the inside of the rectangle surrounding the outer periphery of the main conductor 165Ba. May be done.
  • some of the plurality of wires having a conductor width WYBb extending toward the main conductor portion 165Ba of the mesh conductor 822Bb of the lead conductor portion 165Bb.
  • the main conductor 165Ba and the lead conductor 165Bb may be connected so that only the main conductor 165Ba enters the inside of the rectangle surrounding the outer periphery of the main conductor 165Ba.
  • 67B extends so that the upper one of the two wires having the conductor width WYBb enters the inside of the rectangle surrounding the outer periphery of the main conductor portion 165Ba.
  • the mesh-shaped conductor 822Bb of the lead conductor portion 165Bb of FIG. 68B extends so that the lower wiring enters the inside of the rectangle surrounding the outer periphery of the main conductor portion 165Ba.
  • the shape of the portion where the main conductor 165a and the lead conductor 165b are connected may be complicated.
  • the mesh conductor 821Ab of the lead conductor 165Ab enters the inside of the rectangle surrounding the outer periphery of the main conductor 165Aa.
  • the mesh conductor 821Aa of the main conductor part 165Aa may extend outside the rectangle surrounding the outer periphery of the main conductor part 165Aa and enter the lead conductor part 165Ab.
  • the mesh-shaped conductor 822Ba of the main conductor 165Ba may extend outside the rectangle surrounding the outer periphery of the main conductor 165Ba, and may enter the lead conductor 165Bb.
  • FIG. 69 shows a fifteenth configuration example of the conductor layers A and B.
  • 69A shows the conductor layer A
  • FIG. 69B shows the conductor layer B.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • the conductor layer A in the fifteenth configuration example is composed of a mesh conductor 831Aa of the main conductor portion 165Aa and a mesh conductor 831Ab of the lead conductor portion 165Ab, as shown in FIG.
  • the mesh conductors 831Aa and 831Ab are, for example, wires (Vss wires) connected to GND or a minus power supply.
  • the mesh conductor 831Aa of the main conductor 165Aa is the same as the mesh conductor 821Aa of the main conductor 165Aa in the fourteenth configuration example shown in FIG.
  • the mesh conductor 831Ab of the lead conductor 165Ab is different from the mesh conductor 821Ab of the lead conductor 165Ab in the fourteenth configuration example shown in FIG.
  • the gap width GYAb of the mesh conductor 831Ab of the lead conductor 165Ab in the Y direction is smaller than the gap width GYAa of the mesh conductor 831Aa of the main conductor 165Aa in the Y direction.
  • the gap width GYAb in the Y direction of the mesh conductor 821Ab of the lead conductor portion 165Ab is the same as the gap width GYAa of the mesh conductor 821Aa of the main conductor portion 165Aa in the Y direction.
  • the gap width GYAb in the Y direction of the mesh conductor 831Ab of the lead conductor 165Ab smaller than the gap width GYAa of the mesh conductor 831Aa of the main conductor 165Aa in the Y direction, the current concentration point Since the wiring resistance of the mesh conductor 831Ab of a certain lead conductor 165Ab can be reduced, the voltage drop can be further improved.
  • the gap width GYAb is smaller than the gap width GYAa
  • the present invention is not limited thereto.
  • the gap width GXAb may be formed smaller than the gap width GXAa. As a result, the wiring resistance of the mesh conductor 831Ab can be reduced, so that the voltage drop can be further improved.
  • the conductor layer B in the fifteenth configuration example is composed of a mesh conductor 832Ba of the main conductor 165Ba and a mesh conductor 832Bb of the lead conductor 165Bb, as shown in FIG. 69B.
  • the mesh conductors 832Ba and 832Bb are, for example, wires (Vdd wires) connected to a positive power supply.
  • the mesh conductor 832Ba of the main conductor 165Ba is the same as the mesh conductor 822Ba of the main conductor 165Ba in the fourteenth configuration example shown in FIG.
  • the mesh conductor 832Bb of the lead conductor 165Bb is different from the mesh conductor 822Bb of the lead conductor 165Bb in the fourteenth configuration example shown in FIG.
  • the gap width GYBb of the mesh conductor 832Bb of the lead conductor portion 165Bb in the Y direction is formed smaller than the gap width GYBa of the mesh conductor 832Ba of the main conductor portion 165Ba in the Y direction.
  • the gap width GYBb in the Y direction of the mesh conductor 822Bb of the lead conductor portion 165Bb is the same as the gap width GYBa in the second direction of the mesh conductor 822Ba of the main conductor portion 165Ba. It is.
  • the gap width GYBb in the Y direction of the mesh conductor 832Bb of the lead conductor portion 165Bb smaller than the gap width GYBa of the mesh conductor 832Ba of the main conductor portion 165Ba in the current concentrated portion. Since the wiring resistance of the mesh conductor 832Bb of a certain lead conductor 165Bb can be reduced, the voltage drop can be further improved. Note that the description has been made using an example in which the gap width GYBb is smaller than the gap width GYBa. However, the present invention is not limited thereto. For example, the gap width GXBb may be formed smaller than the gap width GXBa. Thus, the wiring resistance of the mesh conductor 832Bb can be reduced, and the voltage drop can be further improved.
  • FIG. 70 shows a first modification of the fifteenth configuration example.
  • 70A shows the conductor layer A
  • FIG. 70B shows the conductor layer B
  • 70C shows a state in which the conductor layers A and B shown in FIGS. 70A and 70B respectively are viewed from the conductor layer A side.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • a first modification of the fifteenth configuration example is different from the fifteenth configuration example shown in FIG. 69 in that all the gap widths GYAb in the Y direction of the lead conductor portion 165Ab of the wiring layer 165A are not uniform.
  • the mesh-shaped conductor 831Ab of the lead conductor portion 165Ab of the wiring layer 165A has two types of gap widths GYAb1, a small gap width GYAb1 and a large gap width GYAb2.
  • a difference from the fifteenth configuration example shown in FIG. 69 is that all the gap widths GYBb in the Y direction of the lead conductor portion 165Bb of the wiring layer 165B are not uniform.
  • the mesh conductor 832Bb of the lead conductor portion 165Bb of the wiring layer 165B has two types of gap widths GYBb, a small gap width GYBb1 and a large gap width GYBb2.
  • the leader conductor 165Ab of the wiring layer 165A and the leader of the wiring layer 165B are drawn out.
  • the conductor 165Bb has a light shielding structure.
  • FIG. 71 shows a second modification of the fifteenth configuration example.
  • 71A shows the conductor layer A
  • FIG. 71B shows the conductor layer B.
  • FIG. 71C shows a state in which the conductor layers A and B shown in FIGS. 71A and B respectively are viewed from the conductor layer A side.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • a second modification of the fifteenth configuration example is different from the fifteenth configuration example shown in FIG. 69 in that all the conductor widths WYAb in the Y direction of the lead conductor portion 165Ab of the wiring layer 165A are not uniform.
  • the mesh conductor 831Ab of the lead conductor portion 165Ab of the wiring layer 165A has two types of conductor widths WYAb1, a small conductor width WYAb1 and a large conductor width WYAb2.
  • a difference from the fifteenth configuration example shown in FIG. 69 is that all the conductor widths WYBb in the Y direction of the lead conductor portion 165Bb of the wiring layer 165B are not uniform.
  • the mesh conductor 832Bb of the lead conductor portion 165Bb of the wiring layer 165B has two types of conductor widths WYBb, a small conductor width WYBb1 and a large conductor width WYBb2.
  • the leader conductor 165Ab of the wiring layer 165A and the leader of the wiring layer 165B are drawn out.
  • the conductor 165Bb has a light shielding structure.
  • the degree of freedom of wiring can be increased.
  • the wiring resistance of the lead conductors 165Ab and 165Bb is reduced to the maximum within the restriction of the occupancy. Therefore, the voltage drop can be further improved.
  • FIG. 72 shows a sixteenth configuration example of the conductor layers A and B.
  • 72A shows the conductor layer A
  • FIG. 72B shows the conductor layer B.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • the conductor layer A of the sixteenth configuration example shown in FIG. 72A is the same as the conductor layer A of the fourteenth configuration example shown in FIG.
  • the conductor layer B of the sixteenth configuration example shown in FIG. 72B has a configuration in which a relay conductor 841 is further added to the conductor layer B of the fourteenth configuration example shown in FIG. More specifically, the main conductor 165Ba is composed of a mesh conductor 822Ba and a plurality of relay conductors 841, and the lead conductor 165Bb is composed of a mesh conductor 822Bb similar to the fourteenth configuration example.
  • the relay conductor 841 is arranged in a rectangular gap region long in the Y direction, which is not a conductor of the mesh conductor 822Ba, and is electrically insulated from the mesh conductor 822Ba. Are connected to the connected Vss wiring.
  • One or a plurality of relay conductors 841 are arranged in the gap region of the mesh conductor 822Ba.
  • FIG. 72B shows an example in which a total of two relay conductors 841 are arranged in the gap region of the mesh conductor 822Ba in an arrangement of two rows and one column.
  • the relay conductor 841 is arranged only in a partial gap region of the mesh conductor 822Ba in the entire region of the main conductor portion 165Ba.
  • the relay conductor 841 may be arranged in the gap area of the entire area of the main conductor 165Ba. In the conductor layer B of the sixteenth configuration example, the relay conductor 841 is not disposed in the gap region between the mesh conductors 822Bb of the lead conductor portion 165Bb, but also in the gap region of the mesh conductor 822Bb. The relay conductor 841 may be provided.
  • FIG. 73 shows a first modification of the sixteenth configuration example.
  • the relay conductor 841 is arranged in the gap region of the entire main conductor portion 165Ba of the conductor layer B, and the mesh conductor 822Bb of the lead conductor portion 165Bb.
  • the relay conductor 841 is also arranged in the gap region of.
  • Other configurations in the first modification example of FIG. 73 are the same as those of the sixteenth configuration example shown in FIG.
  • FIG. 74 shows a second modification of the sixteenth configuration example.
  • the second modification of the sixteenth configuration example in FIG. 74 is the same as the first modification in that the relay conductor 841 is disposed in the gap region of the entire region of the main conductor portion 165Ba of the conductor layer B.
  • the second modified example of the sixteenth configuration example is different from the first modified example in that a relay conductor 842 different from the relay conductor 841 is arranged in a gap region between the mesh-shaped conductors 822Bb of the lead conductor portion 165Bb. different.
  • Other configurations in the second modification of FIG. 74 are the same as those of the sixteenth configuration example shown in FIG.
  • the number and the shape may be different from those of the relay conductor 842.
  • the wiring (mesh conductor 822Bb) is used.
  • Degree of freedom can be increased. In each conductor layer, there is generally a restriction on the occupation ratio of the conductor region. However, since the degree of freedom of wiring is increased, the wiring resistance of the lead conductor 165Bb can be reduced to the maximum within the restriction on the occupation ratio. , The voltage drop can be further improved.
  • the relay conductor 841 or the relay conductor 842 or the like is arranged in the gap region between the mesh-shaped conductors 822Bb of the lead conductor portion 165Bb, the relay conductor 841 or the relay conductor 842 or the like is located in the same plane position as the lead conductor portion 165Bb.
  • active elements such as MOS transistors and diodes are arranged in the upper and lower layers, the voltage drop can be further improved.
  • the occupation ratio of the conductor region of each conductor layer can be maximized between the main conductor portion 165Ba and the lead conductor portion 165Bb.
  • the voltage drop can be further improved.
  • the shape of the relay conductor 841 is arbitrary, but a symmetric circular or polygonal shape such as rotational symmetry or mirror symmetry is desirable.
  • the relay conductor 841 can be arranged at the center of the gap region of the mesh conductor 822Ba or any other position.
  • the relay conductor 841 may be connected to a conductor layer as a Vss wiring different from the conductor layer A.
  • the relay conductor 841 may be connected to a conductor layer as a Vss wiring closer to the active element group 167 than the conductor layer B.
  • the relay conductor 841 is connected to a conductor layer different from the conductor layer A, a conductor layer closer to the active element group 167 than the conductor layer B, or the like via a conductor via (VIA) extending in the Z direction. Can be. The same applies to the relay conductor 842.
  • FIG. 72 to FIG. 74 an example in which the relay conductor 841 or 842 is arranged in the gap region between the mesh conductors 822Ba and 822Bb of the conductor layer B, but the mesh conductor 821Aa of the conductor layer A is shown. And 821Ab, the same or different relay conductors may be arranged in the gap area.
  • FIG. 75 shows a seventeenth configuration example of the conductor layers A and B.
  • 75A shows the conductor layer A
  • FIG. 75B shows the conductor layer B.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • the shape of the mesh conductor 851Aa of the main conductor portion 165Aa is The shape of the mesh conductor 851Ab of the lead conductor 165Ab is different.
  • the gap region of the mesh-shaped conductor 821Aa in the fourteenth configuration example shown in FIG. 65A has a vertically long rectangular shape, whereas the seventeenth configuration example shown in FIG.
  • the gap region of the mesh-like conductor 851Aa in is a horizontally long rectangular shape.
  • the gap region of the mesh-shaped conductor 821Ab in FIG. 65A is a vertically long rectangular shape, whereas the gap region of the mesh-shaped conductor 851Ab in FIG. 75A is a horizontally long rectangular shape.
  • the mesh-like conductor 851Aa of the main conductor portion 165Aa of FIG. 75A has a shape in which current flows more easily in the X direction than in the Y direction
  • the mesh-shaped conductor 821Aa of the main conductor 165Aa has a shape in which current easily flows in the Y direction.
  • the conductor layer A in the seventeenth configuration example shown in FIG. 75A differs from the conductor layer A in the fourteenth configuration example in FIG.
  • the main conductor portion 165Aa of the conductor layer A in the seventeenth configuration example includes a reinforcing conductor 853 reinforced so that current can flow more easily in the Y direction than in the X direction.
  • the conductor width WXAc of the reinforcing conductor 853 is preferably formed to be larger than one or both of the conductor width WXAa in the X direction and the conductor width WYAa in the Y direction of the mesh conductor 851Aa.
  • the conductor width WXAc of the reinforcing conductor 853 is formed to be larger than the smaller one of the conductor width WXAa in the X direction and the conductor width WYAa in the Y direction of the mesh conductor 851Aa. In the example of FIG.
  • the position in the X direction where the reinforcing conductor 853 is formed is the position closest to the lead-out conductor portion 165Ab in the region of the main conductor portion 165Aa, but in the vicinity of the joint portion. Any location is acceptable.
  • the mesh-shaped conductor 851Aa of the main conductor portion 165Aa can be formed in a shape that allows current to easily flow in the X direction, a layout can be created with a minimum number of basic patterns repeated, thereby increasing the degree of freedom in designing the wiring layout. Further, depending on the arrangement of active elements such as MOS transistors and diodes, the voltage drop can be further improved.
  • the current can be easily diffused in the Y direction in the main conductor 165Aa, so that the junction between the main conductor 165Aa and the lead-out conductor 165Ab can be formed.
  • Current concentration in the periphery can be reduced. When the current is locally concentrated, the inductive noise is deteriorated due to the concentrated portion. However, since the current concentration can be reduced, the inductive noise can be further improved.
  • the shape of the mesh-shaped conductor 852Ba of the main conductor portion 165Ba is Also, the shape of the mesh conductor 852Bb of the lead conductor portion 165Bb is different.
  • the gap region of the mesh-shaped conductor 822Ba in the fourteenth configuration example shown in FIG. 65B has a vertically long rectangular shape
  • the gap region of the mesh-shaped conductor 852Ba is a horizontally long rectangular shape
  • the gap region of the mesh-shaped conductor 822Bb of B in FIG. 65 is a vertically long rectangular shape
  • the gap region of the mesh-shaped conductor 852Bb of B in FIG. 75 is a horizontally long rectangular shape.
  • the mesh-shaped conductor 852Ba of the main conductor portion 165Ba of FIG. 75B has a shape in which current flows more easily in the X direction than in the Y direction
  • the mesh-shaped conductor 822Ba of the main conductor 165Ba has a shape in which current easily flows in the Y direction.
  • the conductor layer B in the seventeenth configuration example shown in FIG. 75B differs from the conductor layer B of the fourteenth configuration example in FIG.
  • the main conductor portion 165Ba of the conductor layer B in the seventeenth configuration example includes a reinforcing conductor 854 reinforced so that current can flow more easily in the Y direction than in the X direction. It is preferable that the conductor width WXBc of the reinforcing conductor 854 is formed to be larger than one or both of the conductor width WXBa in the X direction and the conductor width WYBa in the Y direction of the mesh conductor 852Ba.
  • the conductor width WXBc of the reinforcing conductor 854 is formed larger than the smaller one of the conductor width WXBa in the X direction and the conductor width WYBa in the Y direction of the mesh conductor 852Ba. In the example of FIG.
  • the position in the X direction where the reinforcing conductor 854 is formed is the position closest to the lead-out conductor portion 165Bb in the region of the main conductor portion 165Ba, but in the position near the joint portion. I just need.
  • the reinforcing conductor 853 of the conductor layer A and the reinforcing conductor 854 of the conductor layer B are formed at overlapping positions.
  • the active element group 167 is covered by at least one of the conductor layers A and B. Therefore, also in the seventeenth configuration example, the hot carrier emission from the active element group 167 is performed. Can be shielded from light.
  • the reinforcing conductor 853 and the reinforcing conductor 854 may not be formed at overlapping positions. For example, depending on the current distribution of the main conductor 165a, at least one of the reinforcing conductor 853 and the reinforcing conductor 854 may not be provided.
  • the mesh-shaped conductor 852Ba of the main conductor portion 165Ba can be formed in a shape in which current can easily flow in the X direction, a layout can be created with a minimum number of basic patterns repeated, thereby increasing the degree of freedom in designing the wiring layout. Further, depending on the arrangement of active elements such as MOS transistors and diodes, the voltage drop can be further improved.
  • the current can be easily diffused in the second direction in the main conductor 165Ba, so that the connection between the main conductor 165Ba and the lead-out conductor 165Bb can occur.
  • the current concentration around the junction can be reduced.
  • the inductive noise is deteriorated due to the concentrated portion.
  • the inductive noise can be further improved.
  • the conductor layer B in the seventeenth configuration example shown in FIG. 75B is different from the conductor layer B in that at least a portion of the mesh conductor 852Ba of the main conductor portion 165Ba is provided with the relay conductor 855 in the gap region. It is different from the conductor layer B of the fourteenth configuration example in FIG. 65B. This relay conductor 855 may or may not be arranged.
  • FIG. 76 shows a first modification of the seventeenth configuration example.
  • the reinforcing conductor 853 of the conductor layer A shown in FIG. 76A is not formed over the entire length of the main conductor portion 165Aa in the Y direction, but is formed in the Y direction.
  • Other configurations of the conductor layer A in the first modified example are the same as those of the conductor layer A of the seventeenth configuration example shown in FIG.
  • the reinforcing conductor 854 of the conductor layer B shown in FIG. 76B is not formed over the entire length of the main conductor portion 165Ba in the Y direction, but is formed on a part of the Y direction. This is different from the conductor layer B of the seventeenth configuration example shown in FIG. 75B. More specifically, in the first modified example of FIG. 76, the reinforcing conductor 854 of the conductor layer B is formed at a position in the Y direction excluding the position of the joining portion in the Y direction. Other configurations of the conductor layer B in the first modification are the same as those of the conductor layer B of the seventeenth configuration example shown in FIG. 75A.
  • FIG. 77 shows a second modification of the seventeenth configuration example.
  • the reinforcing conductor 853 of the conductor layer A shown in FIG. 77A is not formed over the entire length of the main conductor portion 165Aa in the Y direction, but is formed in the Y direction.
  • Other configurations of the conductor layer A in the second modification are the same as those of the conductor layer A of the seventeenth configuration example shown in FIG.
  • the reinforcing conductor 854 of the conductor layer B shown in FIG. 77B is not formed over the entire length of the main conductor portion 165Ba in the Y direction, but is formed on a part of the Y direction. This is different from the conductor layer B of the seventeenth configuration example shown in FIG. 75B. More specifically, in the second modified example of FIG. 77, the reinforcing conductor 854 of the conductor layer B is formed only at the position of the joint in the Y direction. The other configuration of the conductor layer B in the second modification is the same as the conductor layer B of the seventeenth configuration example shown in FIG. 75A.
  • the reinforcing conductor 853 of the conductor layer A and the reinforcing conductor 854 of the conductor layer B are not necessarily formed over the entire length of the main conductor portion 165Aa in the Y direction. It does not need to be performed, and may be formed in a predetermined part of the Y-direction region.
  • FIG. 78 shows an eighteenth configuration example of the conductor layers A and B.
  • 78A shows the conductor layer A
  • FIG. 78B shows the conductor layer B.
  • FIG. 78C shows a state in which the conductor layers A and B shown in FIGS. 78A and 78B respectively are viewed from the conductor layer A side.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • the eighteenth configuration example shown in FIG. 78 has a configuration obtained by partially changing the seventeenth configuration example shown in FIG. In FIG. 78, the portions corresponding to those in FIG. 75 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the conductor layer A of the eighteenth configuration example shown in FIG. 78A includes a mesh-shaped conductor 851Aa having a shape in which current easily flows in the X direction, and a reinforcing conductor 853 reinforced so that current can easily flow in the Y direction. In this respect, this is common to the seventeenth configuration example shown in FIG.
  • the conductor layer A of the eighteenth configuration example is different from the seventeenth configuration example shown in FIG. 75 in that the conductor layer A further includes a reinforcing conductor 856 reinforced so that a current flows more easily in the X direction than in the Y direction. It is preferable that the conductor width WYAc of the reinforcing conductor 856 is formed to be larger than one or both of the conductor width WXAa in the X direction and the conductor width WYAa in the Y direction of the mesh conductor 851Aa.
  • the conductor width WYAc of the reinforcing conductor 856 is formed to be larger than the smaller one of the conductor width WXAa in the X direction and the conductor width WYAa in the Y direction of the mesh conductor 851Aa.
  • a plurality of reinforcing conductors 856 may be arranged at predetermined intervals in the Y direction within the area of the main conductor portion 165Aa, or may be one at a predetermined Y direction position.
  • the current can easily flow not only in the Y direction but also in the X direction by the reinforcing conductor 853, and the main conductor portion 165Aa and the lead conductor portion are provided.
  • the current concentration around the junction with 165 Ab can be reduced.
  • the inductive noise is deteriorated due to the concentrated portion.
  • the inductive noise can be further improved.
  • the conductor layer B of the eighteenth configuration example shown in FIG. 78B includes a mesh-shaped conductor 852Ba having a shape in which current easily flows in the X direction, and a reinforcing conductor 854 reinforced so that current easily flows in the Y direction. In this respect, this is common to the seventeenth configuration example shown in FIG.
  • the conductor layer B of the eighteenth configuration example is different from the seventeenth configuration example shown in FIG. 75 in that the conductor layer B further includes a reinforcing conductor 857 reinforced so that current can flow more easily in the X direction than in the Y direction. It is desirable that the conductor width WYBc of the reinforcing conductor 857 is formed to be larger than one or both of the conductor width WXBa in the X direction and the conductor width WYBa in the Y direction of the mesh conductor 852Ba.
  • the conductor width WYBc of the reinforcing conductor 857 is formed to be larger than the smaller one of the conductor width WXBa in the X direction and the conductor width WYBa in the Y direction of the mesh conductor 852Ba.
  • a plurality of reinforcing conductors 857 may be arranged at predetermined intervals in the Y direction in the region of the main conductor portion 165Ba, or may be one at a predetermined Y direction position.
  • the reinforcing conductor 856 of the conductor layer A and the reinforcing conductor 857 of the conductor layer B are formed at overlapping positions.
  • the active element group 167 is covered by at least one of the conductor layers A and B. Therefore, also in the eighteenth configuration example, the hot carrier emission from the active element group 167 is performed. Can be shielded from light. Note that, for example, when light shielding near the reinforcing conductor 856 or the reinforcing conductor 857 is not necessary, the reinforcing conductor 856 and the reinforcing conductor 857 may not be formed at overlapping positions. For example, depending on the current distribution of the main conductor 165a, at least one of the reinforcing conductor 856 and the reinforcing conductor 857 may not be provided.
  • the current can easily flow not only in the Y direction but also in the X direction by the reinforcing conductor 854, and the main conductor portion 165Ba and the lead conductor portion are provided.
  • the current concentration around the junction with 165Bb can be reduced.
  • the inductive noise is deteriorated due to the concentrated portion.
  • the inductive noise can be further improved.
  • the seventeenth configuration example in FIG. 75 shows a configuration including reinforcing conductors 853 and 854 reinforced so that current can easily flow in the Y direction.
  • the conductor layer A does not include the reinforcing conductor 853, but includes the reinforcing conductor 856, and the conductor layer B includes the reinforcing conductor 854.
  • a configuration including a reinforcing conductor 857 may be employed.
  • the reinforcing conductor may include only the reinforcing conductors 856 and 857.
  • the reinforcing conductor 856 reinforced so that current can easily flow in the X direction, even when the reinforcing conductor 853 is not provided, the current can be easily diffused in the Y direction depending on the relationship of wiring resistance.
  • current concentration around the junction between the main conductor 165Aa and the lead conductor 165Ab can be reduced.
  • the inductive noise is deteriorated due to the concentrated portion.
  • the inductive noise can be further improved.
  • the reinforcing conductor 857 reinforced so that current can easily flow in the X direction, even if the reinforcing conductor 854 is not provided, the current can be easily diffused in the Y direction depending on the relationship of wiring resistance.
  • current concentration around the junction between the main conductor 165Ba and the lead conductor 165Bb can be reduced.
  • the inductive noise is deteriorated due to the concentrated portion.
  • the inductive noise can be further improved.
  • FIG. 79 shows a nineteenth configuration example of the conductor layers A and B.
  • 79A shows the conductor layer A
  • FIG. 79B shows the conductor layer B.
  • FIG. 79C shows a state where the conductor layers A and B shown in FIGS. 79A and B, respectively, are viewed from the conductor layer A side.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • the nineteenth configuration example shown in FIG. 79 has a configuration obtained by partially changing the seventeenth configuration example shown in FIG.
  • portions corresponding to those in FIG. 75 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the conductor layer A of the nineteenth configuration example shown in FIG. 79A is different in that the reinforcing conductor 853 of the seventeenth configuration example shown in FIG. 75 is replaced with a reinforcing conductor 871, and in other respects.
  • the reinforcing conductor 871 is composed of a plurality of wires extending in the Y direction.
  • the respective wirings constituting the reinforcing conductor 871 are equally spaced in the X direction with a gap width GXAd.
  • the gap width GXAd is configured to be smaller than the gap width GXAa of the mesh conductor 851Aa of the main conductor portion 165Aa.
  • the conductor layer B of the nineteenth configuration example shown in FIG. 79B is different in that the reinforcing conductor 854 of the seventeenth configuration example shown in FIG. 75 is replaced with a reinforcing conductor 872, and in other respects.
  • the reinforcing conductor 872 is composed of a plurality of wires extending in the Y direction.
  • the respective wirings constituting the reinforcing conductor 872 are equally spaced in the X direction with a gap width GXBd.
  • the gap width GXBd is configured to be smaller than the gap width GXBa of the mesh conductor 852Ba of the main conductor portion 165Ba.
  • the reinforcing conductor 871 of the conductor layer A and the reinforcing conductor 872 of the conductor layer B are formed at overlapping positions.
  • the active element group 167 is covered by at least one of the conductor layers A and B. Therefore, also in the nineteenth configuration example, the hot carrier emission from the active element group 167 is performed. Can be shielded from light. Note that, for example, when light shielding near the reinforcing conductor 871 or the reinforcing conductor 872 is not necessary, the reinforcing conductor 871 and the reinforcing conductor 872 may not be formed at overlapping positions. For example, depending on the current distribution of the main conductor 165a, at least one of the reinforcing conductor 871 and the reinforcing conductor 872 may not be provided.
  • FIG. 80 shows a modification of the nineteenth configuration example.
  • the plurality of wirings forming the reinforcing conductor 871 of the conductor layer A are arranged at equal intervals GxAd in the X direction.
  • a plurality of wirings constituting the reinforcing conductor 872 of the conductor layer B were also arranged at equal intervals GXAd in the X direction.
  • FIG. 80 which is a modification of the nineteenth configuration example
  • the gap widths GXAd of adjacent wires are different from each other. I have. At least one of the gap widths GXAd is configured to be smaller than the gap width GXAa of the mesh conductor 851Aa of the main conductor portion 165Aa.
  • the gap width GXBd between adjacent wires is different from each other. At least one of the gap widths GXBd is configured to be smaller than the gap width GXBa of the mesh conductor 852Ba of the main conductor portion 165Ba.
  • the plurality of gap widths GXAd and the gap width GXBd are formed so as to be gradually shortened from the left side.
  • the invention is not limited to this. It may be good or a random width.
  • the modified example of the nineteenth configuration example in FIG. 80 is the same as the nineteenth configuration example shown in FIG. 79, except that the gap widths GXAd and GXBd are not uniform and are modulated. It is.
  • the reinforcing conductor 871 of the conductor layer A and the reinforcing conductor 872 of the conductor layer B are a plurality of reinforcing conductors arranged at a predetermined gap width GXAd or GXBd. Of wiring.
  • the nineteenth configuration example and its modification shown in FIGS. 79 and 80 include at least a gap width GXAa or GXBa smaller than the gap width GXAa or GXBa in the X direction, and are reinforced so that current can easily flow in the Y direction.
  • the configuration including the conductors 871 and 872 has been described, the configuration is not limited thereto.
  • the reinforcement includes at least a gap width smaller than the gap width GYAa or the gap width GYBa in the Y direction, and is reinforced so that current can easily flow in the X direction as in the eighteenth configuration example in FIG. 78. It may be configured to include a conductor.
  • a configuration with a reinforced conductor reinforced so that current flows easily in the X direction a configuration with a reinforced conductor reinforced so that current flows easily in the Y direction, and a reinforced conductor reinforced so that current flows easily in the X direction
  • Either of a configuration including both a reinforcing conductor reinforced so that a current easily flows in the Y direction may be used. Also in these cases, the current concentration can be reduced depending on the relationship of the wiring resistance, so that the inductive noise can be further improved.
  • FIG. 81 shows a twentieth configuration example of the conductor layers A and B.
  • 81A shows the conductor layer A
  • FIG. 81B shows the conductor layer B.
  • 81 shows a state where the conductor layers A and B shown in A and B of FIG. 81 are viewed from the conductor layer A side, respectively.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • the twentieth configuration example shown in FIG. 81 has a configuration obtained by partially changing the sixteenth configuration example shown in FIG. 81, parts corresponding to those in FIG. 72 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the conductor layer A of the twentieth configuration example shown in FIG. 81A is common to the conductor layer A of the sixteenth configuration example shown in FIG. 72 in that the main conductor portion 165Aa is formed of a mesh conductor 821Aa.
  • the conductor layer A of the twentieth configuration example is different from the conductor layer A of the sixteenth configuration example shown in FIG. 72 in that the lead conductor portion 165Ab is formed of a mesh conductor 881Ab different from the mesh conductor 821Ab. I do.
  • the conductor layer B of the twentieth configuration example shown in FIG. 81B is different from the conductor layer B shown in FIG. 72 in that the main conductor portion 165Ba has the mesh conductor 822Ba and the relay conductor 841 arranged in the gap region. It is common to the conductor layer B of the sixteenth configuration example.
  • the conductor layer B of the twentieth configuration example is different from the conductor layer B of the sixteenth configuration example shown in FIG. 72 in that the lead conductor portion 165Bb is formed of a mesh conductor 882Bb different from the mesh conductor 822Bb.
  • the twentieth configuration example is different from the sixteenth configuration example shown in FIG. 72 in the shape of the repeated pattern of the lead conductor 165b.
  • a partial region of the lead conductor portion 165b is an open region.
  • the twentieth configuration example in FIG. 81 has a configuration in which a part of the lead conductor portion 165b of the conductor layer A and the conductor layer B does not shield light.
  • the region of the section may be configured not to shield light.
  • the conductor layers of the lead conductor portion 165b connected to the main conductor portion 165a are all formed of mesh conductors.
  • the conductor layer of the lead conductor portion 165b is not limited to the mesh conductor, and may be formed of a planar conductor or a linear conductor similarly to the main conductor portion 165a.
  • FIG. 82 shows a twenty-first configuration example of the conductor layers A and B.
  • 82A shows the conductor layer A
  • FIG. 81B shows the conductor layer B.
  • FIG. 82C shows a state where the conductor layers A and B shown in A and B of FIG. 82 are viewed from the conductor layer A side, respectively.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • 21A twenty-first configuration example shown in FIG. 82 has a configuration in which the conductor layer of the lead-out conductor portion 165b of the sixteenth configuration example shown in FIG. 72 is changed.
  • parts corresponding to those in FIG. 72 are denoted by the same reference numerals, and descriptions of those parts will be omitted as appropriate.
  • a linear conductor 891Ab long in the X direction is provided.
  • a linear conductor 892Bb long in the X direction is provided.
  • the active element group 167 is covered by at least one of the conductor layers A and B.
  • the hot carrier emission from the active element group 167 can be shielded.
  • FIG. 83 shows a twenty-second configuration example of the conductor layers A and B.
  • 83A shows the conductor layer A
  • FIG. 83B shows the conductor layer B.
  • FIG. 83C shows a state where the conductor layers A and B shown in FIGS. 83A and B respectively are viewed from the conductor layer A side.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • the twenty-second configuration example shown in FIG. 83 has a configuration in which the conductor layer of the lead conductor portion 165b of the sixteenth configuration example shown in FIG. 72 is changed.
  • parts corresponding to those in FIG. 72 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • a planar conductor 901Ab is arranged in the lead conductor portion 165Ab of the conductor layer A of the twenty-second configuration example shown in FIG. 83A in place of the mesh conductor 821Ab of the sixteenth configuration example.
  • the planar conductor 901Ab has a conductor width WYAb in the Y direction.
  • a planar conductor 902Bb is arranged in the lead conductor portion 165Bb of the conductor layer B of the twenty-second configuration example shown in FIG. 83B instead of the mesh conductor 822Bb of the sixteenth configuration example.
  • the planar conductor 902Bb has a conductor width WYBb in the Y direction.
  • the active element group 167 is covered by at least one of the conductor layers A and B.
  • the hot carrier emission from the active element group 167 can be shielded.
  • the conductor layer B shown in FIG. 84A or B may be used instead of the conductor layer B shown in FIG. 83B.
  • the conductor layer B shown in FIGS. 84A and 84B differs from the conductor layer B shown in FIG. 83B only in the lead conductor portion 165b.
  • a linear conductor 903Bb long in the X direction is periodically arranged with a conductor period FYBb in the Y direction.
  • the conductor period FYBb conductor width WYBb in the Y direction + gap width GYBb in the Y direction.
  • the lead conductor portion 165Bb of the conductor layer B in FIG. 84B is provided with a mesh conductor 904Bb instead of the planar conductor 901Ab shown in FIG. 83B.
  • the mesh-shaped conductor 904Bb has a conductor width WXBb and a gap width GXBb in the X direction, and is configured by periodically arranging the same pattern at a conductor cycle FXBb, and in the Y direction, a conductor width WYBb and a gap width GYBb. And the same pattern is periodically arranged at the conductor period FYBb. Therefore, the mesh conductor 904Bb has a shape including a repetitive pattern in which a predetermined basic pattern is repeatedly arranged at a conductor cycle in at least one of the X direction and the Y direction.
  • FIG. 83C A plan view of a state in which the conductor layer B of A or B in FIG. 84 and the conductor layer A shown in A of FIG. 83 are overlapped is the same as FIG. 83C.
  • FIG. 85 shows a twenty-third configuration example of the conductor layers A and B.
  • 85A shows the conductor layer A
  • FIG. 85B shows the conductor layer B.
  • FIG. 85C shows a state in which the conductor layers A and B shown in FIGS. 85A and 85B respectively are viewed from the conductor layer A side.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • FIG. 85 twenty-third configuration example shown in FIG. 85 has a configuration in which the conductor layer of the lead conductor portion 165b of the sixteenth configuration example shown in FIG. 72 is changed.
  • portions corresponding to those in FIG. 72 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • a lead conductor 165Ab of the conductor layer A of the twenty-third configuration example shown in FIG. 85A includes a linear conductor 911Ab long in the X direction instead of the mesh conductor 821Ab of the sixteenth configuration example in the Y direction.
  • a linear conductor 912Ab long in the X direction is periodically arranged with a conductor period FYAb in the Y direction.
  • the linear conductor 911Ab is, for example, a wiring (Vdd wiring) connected to a positive power supply.
  • the linear conductor 912Ab is, for example, a wiring (Vss wiring) connected to GND or a negative power supply.
  • a linear conductor 913Bb long in the X direction is provided in the lead conductor portion 165Bb of the conductor layer B of the twenty-third configuration example shown in FIG. 85B.
  • the linear conductors 914Bb long in the X direction are periodically arranged with the conductor period FYBb in the Y direction.
  • the linear conductor 913Bb is, for example, a wiring (Vdd wiring) connected to a positive power supply.
  • the linear conductor 914Bb is, for example, a wiring (Vss wiring) connected to GND or a negative power supply.
  • the linear conductor 912Ab of the lead conductor portion 165Ab of the conductor layer A is electrically connected to the mesh conductor 821Aa of the main conductor portion 165Aa, and is connected to the linear conductor 914Bb of the lead conductor portion 165Bb of the conductor layer B by, for example, Z It is electrically connected via a conductive via (VIA) extending in the direction.
  • VIP conductive via
  • the linear conductor 913Bb of the lead conductor portion 165Bb of the conductor layer B is electrically connected to the mesh conductor 822Ba of the main conductor portion 165Ba, and is connected to the linear conductor 911Ab of the lead conductor portion 165Ab of the conductor layer A, for example, Z It is electrically connected via a conductive via (VIA) extending in the direction.
  • VIP conductive via
  • the active element group 167 is covered by at least one of the conductor layers A and B.
  • the hot carrier emission from the active element group 167 can be shielded.
  • the Vdd wiring and the Vss wiring having different polarities are arranged so as to overlap the same plane region. In this way, Vdd wiring and Vss wiring with different polarities are staggered so as to have different plane areas, and GND, negative power, and positive power are transmitted using both conductor layers A and B. You may.
  • the linear conductor 911Ab of the lead conductor portion 165Ab of the conductor layer A may be a dummy wiring without being electrically connected to the linear conductor 913Bb of the lead conductor portion 165Bb of the conductor layer B.
  • the linear conductor 914Bb of the lead conductor portion 165Bb of the conductor layer B may be a dummy wiring without being electrically connected to the linear conductor 912Ab of the lead conductor portion 165Ab of the conductor layer A.
  • FIG 85 shows an example in which one group of linear conductors 911Ab and one group of linear conductors 912Ab are arranged adjacent to each other, but the present invention is not limited thereto.
  • a plurality of groups of linear conductors 911Ab and a plurality of groups of linear conductors 912Ab are provided, and one group of linear conductors 911Ab and one group of linear conductors 912Ab may be arranged alternately. .
  • FIG. 85 shows an example in which the linear conductor 911Ab including a plurality of linear conductors and the linear conductor 912Ab including a plurality of linear conductors are arranged adjacent to each other, but the present invention is not limited thereto.
  • one linear conductor 911Ab and one linear conductor 912Ab may be alternately arranged.
  • FIG. 85 shows an example in which a group of linear conductors 913Bb and a group of linear conductors 914Bb are arranged adjacent to each other, but the present invention is not limited thereto.
  • a plurality of groups of linear conductors 913Bb and a plurality of groups of linear conductors 914Bb are provided, and one group of linear conductors 913Bb and one group of linear conductors 914Bb may be arranged alternately. .
  • FIG. 85 shows an example in which the linear conductor 913Bb including a plurality of linear conductors and the linear conductor 914Bb including a plurality of linear conductors are arranged adjacent to each other, but the present invention is not limited thereto.
  • one linear conductor 913Bb and one linear conductor 914Bb may be alternately arranged.
  • FIG. 86 shows a twenty-fourth configuration example of the conductor layers A and B.
  • 86A shows the conductor layer A
  • FIG. 86B shows the conductor layer B.
  • FIG. 86C shows a state in which the conductor layers A and B shown in FIGS. 86A and 86B, respectively, are viewed from the conductor layer A side.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • the twenty-fourth configuration example shown in FIG. 86 has a configuration in which the conductor layer of the lead-out conductor portion 165b of the sixteenth configuration example shown in FIG. 72 is changed.
  • portions corresponding to those in FIG. 72 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • a linear conductor 921Ab long in the Y direction is provided in the X direction.
  • the linear conductors 922Ab long in the Y direction are periodically arranged with the conductor period FXAb in the X direction.
  • the linear conductor 921Ab is, for example, a wiring (Vdd wiring) connected to a positive power supply.
  • the linear conductor 922Ab is, for example, a wiring (Vss wiring) connected to GND or a negative power supply.
  • a linear conductor 923Bb long in the Y direction is provided in the X direction.
  • the linear conductors 924Bb long in the Y direction are periodically arranged with the conductor period FXBb in the X direction.
  • the linear conductor 923Bb is, for example, a wiring (Vdd wiring) connected to a positive power supply.
  • the linear conductor 924Bb is, for example, a wiring (Vss wiring) connected to GND or a negative power supply.
  • the linear conductor 922Ab of the lead conductor portion 165Ab of the conductor layer A is electrically connected to the linear conductor 924Bb of the lead conductor portion 165Bb of the conductor layer B via, for example, a conductor via (VIA) extending in the Z direction. At the same time, it is electrically connected to the mesh conductor 821Aa of the main conductor 165Aa via the linear conductor 924Bb.
  • VIA conductor via
  • the GND and the minus power supply are transmitted alternately through the linear conductors 922Ab of the conductor layer A and the linear conductors 924Bb of the conductor layer B in the lead conductor portion 165b, and the mesh conductors 821Aa of the main conductor portion 165Aa. To reach.
  • the linear conductor 923Bb of the lead conductor portion 165Bb of the conductor layer B is electrically connected to the linear conductor 921Ab of the lead conductor portion 165Ab of the conductor layer A via, for example, a conductor via (VIA) extending in the Z direction. At the same time, it is electrically connected to the mesh conductor 822Ba of the main conductor 165Ba via the linear conductor 921Ab.
  • VIP conductor via
  • the positive power supply is transmitted alternately between the linear conductors 921Ab of the conductor layer A and the linear conductors 923Bb of the conductor layer B in the lead conductor portion 165b, and reaches the mesh conductor 822Ba of the main conductor portion 165Ba. I do.
  • the active element group 167 is covered by at least one of the conductor layers A and B.
  • the hot carrier emission from the active element group 167 can be shielded.
  • the Vdd wiring and the Vss wiring having different polarities are arranged so as to overlap in the same plane region in the lead-out conductor portion 165b. In this way, Vdd wiring and Vss wiring with different polarities are staggered so as to have different plane areas, and GND, negative power, and positive power are transmitted using both conductor layers A and B. You may.
  • the conductor layer of the lead conductor portion 165b is not limited to the mesh conductor, and may be formed of a planar conductor or a linear conductor. Is also good. Further, not only one layer of the conductor layers A or B but also two layers of the conductor layers A and B may be used.
  • FIG. 87 shows a twenty-fifth configuration example of the conductor layers A and B.
  • 87A shows the conductor layer A
  • FIG. 87B shows the conductor layer B.
  • FIG. 87C shows a state where the conductor layers A and B shown in FIGS. 87A and 87B respectively are viewed from the conductor layer A side.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • the twenty-fifth configuration example shown in FIG. 87 has a configuration in which a part is added to the sixteenth configuration example shown in FIG. In FIG. 86, portions corresponding to those in FIG. 72 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the conductor layer A of the twenty-fifth configuration example shown in FIG. 87A includes the mesh conductor 821Aa of the main conductor part 165Aa and the mesh conductor 821Ab of the lead conductor part 165Ab in the sixteenth configuration example shown in FIG. Between them, a conductor 941 having a shape optionally including a repeating pattern different from them is added.
  • the conductor 941 preferably has a shape including a repetitive pattern in order to efficiently design a wiring layout, but may have a shape including no repetitive pattern. Since the pattern of the conductor 941 can take an arbitrary shape, the conductor 941 in FIG.
  • the conductor 941 is electrically connected to both the mesh conductor 821Aa and the mesh conductor 821Ab. In other words, the reticulated conductor 821Aa of the main conductor 165Aa and the reticulated conductor 821Ab of the lead conductor 165Ab are electrically connected via the conductor 941.
  • the conductor layer B of the twenty-fifth configuration example shown in FIG. 87B includes the mesh conductor 822Ba of the main conductor part 165Ba and the mesh conductor 822Bb of the lead conductor part 165Bb in the sixteenth configuration example shown in FIG. Between them, a conductor 942 having a shape optionally including a repeating pattern different from them is added.
  • the conductor 942 preferably has a shape including a repetitive pattern in order to efficiently design a wiring layout, but may have a shape including no repetitive pattern. Since the pattern of the conductor 942 can take an arbitrary shape, the conductor 942 of FIG.
  • the conductor 942 is electrically connected to both the mesh conductor 822Ba and the mesh conductor 822Bb. In other words, the mesh conductor 822Ba of the main conductor 165Ba and the mesh conductor 822Bb of the lead conductor 165Bb are electrically connected via the conductor 942.
  • wiring is performed by connecting the mesh-shaped conductor 821Aa of the main conductor 165Aa and the mesh-shaped conductor 821Ab of the lead-out conductor 165Ab via the predetermined conductor 941 in the conductor layer A.
  • the freedom of layout design can be further improved, and the degree of freedom in the vicinity of the pad can be particularly improved.
  • the freedom of the wiring layout design is further improved by connecting the mesh conductor 822Ba of the main conductor 165Ba and the mesh conductor 822Bb of the lead conductor 165Bb via the predetermined conductor 942.
  • the degree of freedom in the vicinity of the pad can be particularly improved.
  • FIG. 88 shows a twenty-sixth configuration example of the conductor layers A and B.
  • 88A shows the conductor layer A
  • FIG. 88B shows the conductor layer B.
  • FIG. 88C shows a state in which the conductor layers A and B shown in FIGS. 88A and B respectively are viewed from the conductor layer A side.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • the twenty-sixth configuration example shown in FIG. 88 has a configuration in which a part of the twenty-fifth configuration example shown in FIG. 87 is modified.
  • parts corresponding to those in FIG. 87 are denoted by the same reference numerals, and descriptions of those parts will be omitted as appropriate.
  • the conductor layer A of the twenty-sixth configuration example shown in FIG. 88A has a mesh conductor 821Aa similar to the twenty-fifth configuration example shown in FIG. 87 for the main conductor portion 165Aa.
  • the conductor layer A of the twenty-sixth configuration example includes a plurality of mesh-shaped conductors 821Ab and conductors 941 at predetermined intervals in the Y direction, similar to the twenty-fifth configuration example.
  • 88A is configured such that the mesh-shaped conductor 821Ab and the conductor 941 of the lead-out conductor portion 165Ab of the twenty-fifth configuration example shown in FIG. This is a modified configuration in which a plurality of them are provided at intervals. Note that all of the plurality of conductors 941 may or may not be the same.
  • the conductor layer B of the twenty-sixth configuration example shown in B of FIG. 88 includes a mesh conductor 822Ba similar to that of the twenty-fifth configuration example shown in FIG. 87 for the main conductor portion 165Ba.
  • the conductor layer B of the twenty-sixth configuration example includes a plurality of mesh-shaped conductors 822Bb and conductors 942 similar to those of the twenty-fifth configuration example at predetermined intervals in the Y direction.
  • FIG. 89 shows a twenty-seventh configuration example of the conductor layers A and B.
  • 89A shows the conductor layer A
  • FIG. 89B shows the conductor layer B.
  • FIG. 89C shows a state where the conductor layers A and B shown in FIGS. 89A and B respectively are viewed from the conductor layer A side.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • the twenty-seventh configuration example shown in FIG. 89 has a configuration in which a part of the twenty-sixth configuration example shown in FIG. 88 is modified. 89, parts corresponding to those in FIG. 88 are denoted by the same reference numerals, and descriptions of those parts will be omitted as appropriate.
  • the main conductor portion 165Aa of the conductor layer A of the twenty-seventh configuration example shown in FIG. 89A includes a mesh-shaped conductor 821Aa similar to the twenty-sixth configuration example shown in FIG.
  • the lead conductor portion 165Ab of the conductor layer A of the twenty-seventh configuration example includes a mesh conductor 951Ab and a mesh conductor 952Ab.
  • Each of the shapes of the mesh conductors 951Ab and 952Ab includes a conductor width WXAb and a gap width GXAb in the X direction, and a conductor width WYAb and a gap width GYAb in the Y direction.
  • the mesh conductor 952Ab is, for example, a wiring (Vdd wiring) connected to a positive power supply
  • the mesh conductor 951Ab is, for example, a wiring (Vss wiring) connected to GND or a negative power supply.
  • a conductor 961 having a shape that optionally includes a repetitive pattern different from the mesh conductor 821Aa of the main conductor 165Aa and the mesh conductor 951Ab of the lead conductor 165Ab is arranged between the mesh conductor 821Aa and the mesh conductor 951Ab of the lead conductor 165Ab.
  • a conductor 962 having a shape that optionally includes a repetitive pattern different from them is disposed between the mesh conductor 821Aa of the main conductor 165Aa and the mesh conductor 952Ab of the lead conductor 165Ab.
  • the conductor 961 or 962 desirably has a shape that includes a repeated pattern in order to efficiently design a wiring layout, but may have a shape that does not include a repeated pattern. Since the pattern of the conductors 961 and 962 can take any shape, the conductors 961 and 962 in FIG. 89A are not particularly defined and are shown in a planar shape.
  • the main conductor portion 165Ba of the conductor layer B of the twenty-seventh configuration example shown in FIG. 89B includes a mesh-shaped conductor 822Ba similar to the twenty-sixth configuration example shown in FIG.
  • the lead conductor portion 165Bb of the conductor layer B of the twenty-seventh configuration example includes a mesh conductor 953Bb and a mesh conductor 954Bb.
  • Each of the mesh conductors 953Bb and 954Bb has a conductor width WXBb and a gap width GXBb in the X direction and a conductor width WYBb and a gap width GYBb in the Y direction.
  • the mesh conductor 954Bb is, for example, a wiring (Vdd wiring) connected to a positive power supply
  • the mesh conductor 953Bb is, for example, a wiring (Vss wiring) connected to GND or a negative power supply.
  • a conductor 963 having a shape that optionally includes a repetitive pattern different from them is arranged between the mesh-shaped conductor 822Ba of the main conductor 165Ba and the mesh-shaped conductor 953Bb of the lead-out conductor 165Bb.
  • a conductor 964 having a shape optionally including a repetitive pattern different from them is arranged between the mesh conductor 822Ba of the main conductor 165Ba and the mesh conductor 954Bb of the lead conductor 165Bb.
  • the conductor 963 or 964 preferably has a shape including a repeated pattern in order to efficiently design a wiring layout, but may have a shape not including a repeated pattern. Since the pattern of the conductors 963 and 964 can take an arbitrary shape, the conductors 963 and 964 of FIG.
  • the conductor 961 of the conductor layer A includes a mesh conductor 821Aa of the main conductor portion 165Aa, at least one of the mesh conductors 951Ab or 953Bb of the lead conductor portion 165b, and directly or, for example, at least a part of the conductor 963. They are electrically connected indirectly via conductors.
  • the mesh conductor 821Aa of the main conductor 165Aa and at least one of the mesh conductors 951Ab or 953Bb of the lead conductor 165b are electrically connected via the conductor 961.
  • the mesh conductor 951Ab of the lead conductor 165Ab is electrically connected to the mesh conductor 953Bb of the lead conductor 165Bb of the conductor layer B via, for example, a conductor via (VIA) extending in the Z direction. You may.
  • the conductor 961 and the conductor 963 may also be electrically connected, for example, via a conductor via (VIA) extending in the Z direction.
  • the conductor 964 of the conductor layer B includes a mesh conductor 822Ba of the main conductor portion 165Ba, at least one of the mesh conductors 952Ab or 954Bb of the lead conductor portion 165b, and directly or, for example, at least a part of the conductor 962. They are electrically connected indirectly via conductors.
  • the mesh conductor 822Ba of the main conductor 165Ba and at least one of the mesh conductors 952Ab or 954Bb of the lead conductor 165b are electrically connected via the conductor 964.
  • the mesh conductor 952Ab of the lead conductor portion 165Ab is electrically connected to the mesh conductor 954Bb of the lead conductor portion 165Bb of the conductor layer B via, for example, a conductor via (VIA) extending in the Z direction. You may.
  • the conductor 962 and the conductor 964 may also be electrically connected, for example, via a conductor via (VIA) extending in the Z direction.
  • the main conductor portion of the conductor layer A has different polarities between the Vss wire and the Vdd wire, and the lead conductor portion 165Ab of the conductor layer A and the lead conductor portion 165Bb of the conductor layer B also have different polarities. It has become.
  • any of the effects of satisfying the wiring layout constraint, further improving the degree of freedom in designing the wiring layout, further improving the inductive noise, and further improving the voltage drop can be achieved. Can play.
  • FIG. 90 shows a twenty-eighth configuration example of the conductor layers A and B.
  • 90A shows the conductor layer A
  • FIG. 90B shows the conductor layer B.
  • 90C shows a state in which the conductor layers A and B shown in FIGS. 90A and 90B respectively are viewed from the conductor layer A side.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • the twenty-eighth configuration example shown in FIG. 90 has a configuration in which a part of the twenty-seventh configuration example shown in FIG. 89 is modified.
  • portions corresponding to those in FIG. 89 are denoted by the same reference numerals, and description of those portions will be omitted as appropriate.
  • the twenty-eighth configuration example shown in FIG. 90 differs from the twenty-seventh configuration example in FIG. 89 only in the shape of the lead conductor portion 165Ab of the conductor layer A, and the other points are the same as those in the twenty-seventh configuration example in FIG. Common.
  • the lead conductor portion 165Ab of the conductor layer A in the twenty-seventh configuration example of FIG. 89 has a conductor width WXAb and a gap width GXAb in the X direction and a conductor width WYAb and a gap width GYAb in the Y direction.
  • a mesh conductor 951Ab and a mesh conductor 952Ab were formed.
  • the lead conductor portion 165Ab of the conductor layer A in the twenty-eighth configuration example of FIG. 90 includes a planar conductor 971Ab and a planar conductor 97a having a shape of the conductor width WXAb in the X direction and the conductor width WYAb in the Y direction. 972 Ab are formed.
  • a planar conductor 971Ab is provided instead of the mesh conductor 951Ab in the twenty-seventh configuration example of FIG.
  • a planar conductor 972Ab is provided instead of the planar conductor 952Ab.
  • the twenty-seventh configuration example shown in FIG. 89 is an example in which the shapes of the lead conductor portions 165b of the upper and lower conductor layers A and B are the same, but as in the twenty-eighth configuration example of FIG. Different shapes may be used.
  • the shape of the lead conductor portion 165Ab of the conductor layer A is planar, but the mesh conductor of the lead conductor portion 165Ab of the conductor layer A shown in FIG.
  • the light-shielding structure is formed by the meshed conductor 973Ab of the conductor layer A of FIG. 91A and the meshed conductor 953Bb of the conductor layer B of FIG.
  • the mesh conductor 974Ab of the conductor layer A in FIG. 91A and the mesh conductor 954Bb of the conductor layer B in FIG. 90B may form a light shielding structure.
  • the conductor width WXAb in the X direction or the gap width GXAb or the conductor width WYAb or the gap width GYAb in the Y direction is set to be substantially the same size as the mesh conductor 953Bb or the mesh conductor 954Bb of the lead conductor portion 165Bb of the conductor layer B. It may be shaped.
  • the conductor width WXAb in the X direction or the gap width GXAb in the X direction is changed to the conductor of FIG. 90B as in the mesh conductor 975Ab and the mesh conductor 976Ab of the lead conductor portion 165Ab of the conductor layer A shown in FIG.
  • the extraction conductor portion 165Bb of the layer B may have a shape smaller than the mesh-like conductor 953Bb or the mesh-like conductor 954Bb.
  • the mesh conductor 975Ab of the conductor layer A of FIG. 91B and the mesh conductor 953Bb of the conductor layer B of FIG. 90 form a light shielding structure, and the mesh conductor 976Ab of the conductor layer A of FIG.
  • the conductor width WYAb or the gap width GYAb of the lead conductor portion 165Ab of the conductor layer A in the Y direction is set to be smaller than the mesh conductor 953Bb or the mesh conductor 954Bb of the lead conductor portion 165Bb of the conductor layer B.
  • the conductor width WXAb or the gap width GXAb in the X direction of the lead conductor portion 165Ab of the conductor layer A, or the conductor width WYAb or the gap width GYAb in the Y direction of the conductor layer A may be formed in a mesh shape of the lead conductor portion 165Bb of the conductor layer B.
  • the shape may be larger than the conductor 953Bb or the mesh-shaped conductor 954Bb.
  • AA and B of FIG. 91 show other configuration examples of the conductor layer A in the twenty-eighth configuration example of FIG.
  • the conductor layer A is a conductor having a shape in which planar, linear, or mesh-like repetitive patterns (first basic patterns) are repeatedly arranged on the same plane in the X or Y direction.
  • a lead conductor portion 165Ab (fourth conductor portion).
  • the repetition pattern of the conductor of the main conductor portion 165Aa and the repetition pattern of the conductor of the extraction conductor portion 165Ab have different shapes, and these patterns are provided between the conductor of the main conductor portion 165Aa and the conductor of the extraction conductor portion 165Ab. And conductors having different patterns.
  • the conductor layer B is a conductor having a shape in which a planar, linear, or mesh-like repetitive pattern (second basic pattern) is repeatedly arranged on the same plane in the X or Y direction.
  • a lead conductor portion 165Bb (third conductor portion).
  • the repetition pattern of the conductor of the main conductor portion 165Ba and the repetition pattern of the conductor of the lead conductor portion 165Bb have different shapes, and the pattern between the conductor of the main conductor portion 165Ba and the conductor of the lead conductor portion 165Bb is different. And conductors having different patterns.
  • the conductor described as a wiring (Vss wiring) connected to, for example, GND or a negative power supply may be, for example, a wiring (Vdd wiring) connected to a positive power supply, for example, connected to a positive power supply.
  • the conductor described as the wiring (Vdd wiring) may be, for example, a wiring (Vss wiring) connected to GND or a negative power supply.
  • the overall length LAa of the conductor of the main conductor portion 165Aa in the Y direction is longer than the overall length LAb of the conductor of the lead conductor portion 165Ab in the Y direction. It may be substantially the same or may have a configuration in which the full length LAa is shorter than the full length LAb.
  • the total length LBa of the main conductor 165Ba in the Y direction is longer than the total length LBb of the lead conductor 165Bb in the Y direction, but the total length LBa and the full length LBb are the same or substantially the same, or the total length LBa is The configuration may be shorter than the full length LBb.
  • the conductor patterns of the main conductor 165Aa of the conductor layer A (wiring layer 165A) and the conductor of the main conductor 165Ba of the conductor layer B (wiring layer 165B) are the same as those of the first to thirteenth configuration examples. Any configuration of the patterns described above may be used.
  • the conductor period, the conductor width, and the gap width may be unequal, or the conductor period, the conductor width, and the gap width may be modulated depending on the position.
  • the Vdd wiring and the Vss wiring are described using an example in which the conductor period, the conductor width, the gap width, the wiring shape, the wiring position, the number of wirings, and the like are substantially the same. However, this is not the case.
  • the Vdd wiring and the Vss wiring may have different conductor periods, different conductor widths, different gap widths, different wiring shapes, different wiring positions. May be displaced or displaced in the wiring position, and the number of wirings may be different.
  • FIG. 92 is a plan view showing the entirety of the conductor layer A formed on the substrate.
  • the conductor layer A (wiring layer 165A) is composed of the main conductor 165Aa and the lead conductor 165Ab as described above.
  • the lead conductor 165Ab is provided at a position close to the pad 1001, and connects the main conductor 165Aa to the pad 1001.
  • the lead conductor portion 165Ab may constitute the pad 1001 in some cases.
  • the main conductor portion 165Aa is formed in a main region of the substrate 1000, for example, in a central region of the substrate, with an area larger than that of the lead conductor portion 165Ab, and in the Z direction perpendicular to the region of the main conductor portion 165Aa or its surface. Active elements such as MOMS transistors and diodes formed in the layer are shielded from light.
  • FIG. 92 shows an example of the arrangement and shape of the conductor layer A, and the arrangement and shape of the conductor layer A are not limited to this example. Therefore, the position and area in the substrate 1000 on which the main conductor 165Aa, the lead conductor 165Ab, and the pad 1001 are formed are arbitrary, and are perpendicular to the region of the main conductor 165Aa and the lead conductor 165Ab or the plane of the region. An active element may not be formed in another layer in the Z direction. The lead conductor 165Ab may not be provided at a position near the pad 1001.
  • the arrangement of the lead conductor portion 165Ab and the pad 1001 with respect to the main conductor portion 165Aa may be not the four sides of the main conductor portion 165Aa on the X direction side as shown in FIG. Both sides of the side and the Y direction side may be used. Further, the number of pads 1001 may be one or three or more instead of two on each side as shown in FIG.
  • FIG. 92 shows an example of the conductor layer A (wiring layer 165A), but the same applies to the conductor layer B (wiring layer 165B).
  • the pad 1001 is an electrode (Vdd electrode) connected to a positive power supply or an electrode (Vss electrode) connected to GND or a negative power supply.
  • Vdd electrode an electrode connected to a positive power supply
  • Vss electrode an electrode connected to GND or a negative power supply.
  • the arrangement of the pads 1001 in the case of distinguishing between is described below.
  • FIG. 93 shows a fourth arrangement example of the pads.
  • a in FIG. 93 is a plan view showing an example of the arrangement of the conductor layer A (wiring layer 165A) and the pads 1001s connected thereto.
  • BB in FIG. 93 is a plan view showing an example of the arrangement of the conductor layer B (wiring layer 165B) and the pads 1001d connected thereto.
  • 93C is a plan view showing a state in which the conductor layers A and B shown in FIGS. 93A and 93B and the pads 1001s and 1001d are stacked, respectively.
  • a pad 1001s represents a pad 1001 supplied with, for example, GND or a minus power supply (Vss)
  • a pad 1001d represents a pad 1001 supplied with, for example, a plus power supply (Vdd).
  • a plurality of pads 1001s are connected at predetermined intervals to a predetermined side of a rectangular main conductor portion 165Aa via a conductor 1011 having a shape optionally including a predetermined repetition pattern.
  • Each pad 1001s may be configured with the lead conductor 165Ab, for example, as in the twenty-seventh configuration example shown in FIG. 89, or the conductor 1011 may be configured with the lead conductor 165Ab.
  • the conductor 1011 may be omitted or may be provided.
  • a predetermined side of the rectangular main conductor portion 165Ba which is the same side as the side where the pad 1001s is arranged in the conductor layer A, optionally includes a predetermined repetition pattern.
  • a plurality of pads 1001d are connected at a predetermined interval through the conductor 1012 of FIG.
  • Each pad 1001d may be composed of a lead conductor 165Bb, for example, as in the twenty-seventh configuration example shown in FIG. 89, or the conductor 1012 may be composed of a lead conductor 165Bb.
  • the conductor 1012 may be omitted or may be provided.
  • the pads 1001 are not arranged symmetrically with respect to the Y direction, when the pads 1001 are arranged in a wide range, in other words, the main conductors 165Aa or 165Ba, the lead conductors 165Ab or 165Bb, or the conductors 1011 or 1012 are In the case where the length is longer in the arrangement direction of 1001 (the case where the Y direction is longer than the X direction in FIG. 93), there is a magnetic field which cannot be canceled out, and the magnetic field is accumulated as the Victim conductor loop becomes larger and the induced electromotive force increases. In addition, inductive noise may deteriorate.
  • FIG. 94 shows a fifth arrangement example of the pads.
  • 94A is a plan view showing an example of the arrangement of the conductor layer A (wiring layer 165A) and the pads 1001s connected thereto.
  • BB in FIG. 94 is a plan view showing an example of the arrangement of the conductor layer B (wiring layer 165B) and the pads 1001d connected thereto.
  • CC of FIG. 94 is a plan view showing a state where the conductor layers A and B shown in FIGS. 94A and B, respectively, and the pads 1001s and 1001d are stacked.
  • a pad 1001s represents, for example, a pad 1001 to which GND or minus power is supplied
  • a pad 1001d represents, for example, a pad 1001 to which plus power is supplied.
  • a plurality of pads 1001s are connected at predetermined intervals to a predetermined side of a rectangular main conductor portion 165Aa via a conductor 1011 having a shape optionally including a predetermined repetition pattern.
  • Each of the pads 1001s may be composed of the lead conductor 165Ab, or the conductor 1011 may be composed of the lead conductor 165Ab.
  • the conductor 1011 may be omitted or may be provided.
  • a predetermined side of the rectangular main conductor portion 165Ba the same side as the side on which the pad 1001s is arranged in the conductor layer A, optionally including a predetermined repetition pattern.
  • a plurality of pads 1001d are connected at a predetermined interval through the conductor 1012 of FIG.
  • Each pad 1001d may be constituted by a lead conductor portion 165Bb, or the conductor 1012 may be constituted by a lead conductor portion 165Bb.
  • the conductor 1012 may be omitted or may be provided.
  • the arrangement of the pad 1001s and the pad 1001d is such that four pads 1001s and the pad 1001d continuous in the Y direction are set as one set.
  • a set of pads 1001 is folded back in the Y direction and arranged in a mirror symmetric arrangement.
  • the magnetic field generated from each of the conductor layers A and B and the induced electromotive force based thereon can be more effectively canceled out. Sex noise can be further improved.
  • FIG. 95 shows a sixth arrangement example of the pads.
  • AA in FIG. 95 is a plan view showing an example of the arrangement of the conductor layer A (wiring layer 165A) and the pads 1001s connected thereto.
  • BB in FIG. 95 is a plan view showing an example of the arrangement of the conductor layer B (wiring layer 165B) and the pads 1001d connected thereto.
  • 95C is a plan view showing a state in which the conductor layers A and B shown in FIGS. 95A and B, respectively, and the pads 1001s and 1001d are stacked.
  • a pad 1001s represents, for example, a pad 1001 to which GND or minus power is supplied
  • a pad 1001d represents, for example, a pad 1001 to which plus power is supplied.
  • a plurality of pads 1001s are connected at predetermined intervals to a predetermined side of a rectangular main conductor portion 165Aa via a conductor 1011 having a shape optionally including a predetermined repetition pattern.
  • Each of the pads 1001s may be composed of the lead conductor 165Ab, or the conductor 1011 may be composed of the lead conductor 165Ab.
  • the conductor 1011 may be omitted or may be provided.
  • a predetermined side of the rectangular main conductor portion 165Ba which is the same side as the side where the pad 1001s is arranged in the conductor layer A, optionally includes a predetermined repetition pattern.
  • a plurality of pads 1001d are connected at a predetermined interval through the conductor 1012 of FIG.
  • Each pad 1001d may be constituted by a lead conductor portion 165Bb, or the conductor 1012 may be constituted by a lead conductor portion 165Bb.
  • the conductor 1012 may be omitted or may be provided.
  • the arrangement of the pads 1001s and the pads 1001d is such that four pads 1001s and the pads 1001d continuous in the Y direction constitute one set.
  • a set of pads 1001 is folded back in the Y direction and arranged in a mirror symmetric arrangement.
  • the four pads 1001 s and 1001 d forming one set are also mirror-symmetrically arranged such that two pads 1001 are folded back in the Y direction with respect to the center line in the Y direction.
  • the range in which the residual magnetic field is accumulated is smaller than that of the one-stage mirror arrangement shown in FIG. 94, so that the induced electromotive force is more effectively canceled.
  • the inductive noise can be further improved depending on the layout other than the pads.
  • FIG. 96 shows a seventh arrangement example of the pads.
  • 96A is a plan view showing an example of the arrangement of the conductor layer A (wiring layer 165A) and the pads 1001s connected thereto.
  • 96B is a plan view showing an example of the arrangement of the conductor layer B (wiring layer 165B) and the pads 1001d connected thereto.
  • 96C is a plan view showing a state in which the conductor layers A and B shown in FIGS. 96A and 96B, respectively, and the pads 1001s and 1001d are stacked.
  • a pad 1001s represents a pad 1001 to which, for example, GND or minus power is supplied
  • a pad 1001d represents, for example, a pad 1001 to which plus power is supplied.
  • a plurality of lead conductor portions 165Ab are connected to a predetermined side of a rectangular main conductor portion 165Aa, and a predetermined repetition pattern is arbitrarily provided on an outer peripheral portion of each lead conductor portion 165Ab.
  • a plurality of pads 1001s are connected at predetermined intervals via a conductor 1011 having a shape including the plurality of pads.
  • the conductor 1011 may be omitted or provided. Further, the conductor 1011 may be located between the main conductor 165Aa and the lead conductor 165Ab.
  • a plurality of lead conductors 165Bb are connected to a predetermined side of the rectangular main conductor 165Ba, and a predetermined repetition pattern is arbitrarily provided on the outer periphery of each lead conductor 165Bb.
  • a plurality of pads 1001d are connected at predetermined intervals via a conductor 1012 having a shape including the pads.
  • the conductor 1012 may be omitted or provided. Further, the conductor 1012 may be between the main conductor 165Ba and the lead conductor 165Bb.
  • the pads 1001s and the pads 1001d are arranged alternately in the Y direction.
  • the magnetic field generated from each of the conductor layers A and B and the induced electromotive force based on the magnetic field can be effectively canceled, so that the inductive noise can be further improved.
  • the pads 1001 are not arranged symmetrically with respect to the Y direction, when the pads 1001 are arranged in a wide range, in other words, the main conductors 165Aa or 165Ba, the lead conductors 165Ab or 165Bb, or the conductors 1011 or 1012 are In the case where the length is longer in the arrangement direction of 1001 (the case where the Y direction is longer than the X direction in FIG. 96), there is a magnetic field which cannot be canceled out, and is accumulated as the Victim conductor loop becomes larger, and the induced electromotive force increases. In addition, inductive noise may deteriorate.
  • FIG. 97 shows an eighth arrangement example of the pads.
  • a in FIG. 97 is a plan view showing an example of the arrangement of the conductor layer A (wiring layer 165A) and the pads 1001s connected thereto.
  • 97B is a plan view showing an example of the arrangement of the conductor layer B (wiring layer 165B) and the pads 1001d connected thereto.
  • 97C is a plan view showing a state where the conductor layers A and B shown in FIGS. 97A and 97B and the pads 1001s and 1001d, respectively, are stacked.
  • a pad 1001s represents, for example, a pad 1001 to which GND or minus power is supplied
  • a pad 1001d represents, for example, a pad 1001 to which plus power is supplied.
  • a plurality of lead conductor portions 165Ab are connected to a predetermined side of a rectangular main conductor portion 165Aa, and a predetermined repetition pattern is optionally provided on an outer peripheral portion of each lead conductor portion 165Ab.
  • a plurality of pads 1001s are connected at predetermined intervals via a conductor 1011 having a shape including the plurality of pads.
  • the conductor 1011 may be omitted or provided. Further, the conductor 1011 may be located between the main conductor 165Aa and the lead conductor 165Ab.
  • a plurality of lead conductor portions 165Bb are connected to a predetermined side of the rectangular main conductor portion 165Ba, and a predetermined repetition pattern is optionally provided on the outer peripheral portion of each lead conductor portion 165Bb.
  • a plurality of pads 1001d are connected at predetermined intervals via a conductor 1012 having a shape including the pads.
  • the conductor 1012 may be omitted or provided. Further, the conductor 1012 may be between the main conductor 165Ba and the lead conductor 165Bb.
  • the arrangement of the pads 1001s and the pads 1001d is such that four pads 1001s and the pads 1001d that are continuous in the Y direction constitute one set.
  • a set of pads 1001 is folded back in the Y direction and arranged in a mirror symmetric arrangement.
  • Sex noise can be further improved.
  • FIG. 98 shows a ninth arrangement example of the pads.
  • 98A is a plan view showing an example of the arrangement of the conductor layer A (wiring layer 165A) and the pads 1001s connected thereto.
  • BB in FIG. 98 is a plan view showing an example of the arrangement of the conductor layer B (wiring layer 165B) and the pads 1001d connected thereto.
  • FIG. 98 is a plan view of a state in which the conductor layers A and B shown in FIGS. 98A and 98B and the pads 1001s and 1001d are stacked.
  • a pad 1001s represents, for example, a pad 1001 to which a GND or a minus power is supplied
  • a pad 1001d represents, for example, a pad 1001 to which a plus power is supplied.
  • a plurality of lead conductor portions 165Ab are connected to a predetermined side of a rectangular main conductor portion 165Aa, and a predetermined repetition pattern is arbitrarily provided on an outer peripheral portion of each lead conductor portion 165Ab.
  • a plurality of pads 1001s are connected at predetermined intervals via a conductor 1011 having a shape including the plurality of pads.
  • the conductor 1011 may be omitted or provided. Further, the conductor 1011 may be located between the main conductor 165Aa and the lead conductor 165Ab.
  • a plurality of lead conductor portions 165Bb are connected to a predetermined side of the rectangular main conductor portion 165Ba, and a predetermined repetition pattern is arbitrarily provided on the outer peripheral portion of each lead conductor portion 165Bb.
  • a plurality of pads 1001d are connected at predetermined intervals via a conductor 1012 having a shape including the pads.
  • the conductor 1012 may be omitted or provided. Further, the conductor 1012 may be between the main conductor 165Ba and the lead conductor 165Bb.
  • the arrangement of the pad 1001s and the pad 1001d is such that four pads 1001s and the pad 1001d continuous in the Y direction constitute one set.
  • a set of pads 1001 is folded back in the Y direction and arranged in a mirror symmetric arrangement.
  • the four pads 1001 s and 1001 d forming one set are also mirror-symmetrically arranged such that two pads 1001 are folded back in the Y direction with respect to the center line in the Y direction.
  • the range in which the residual magnetic field is stored is smaller than that of the one-stage mirror arrangement shown in FIG. 97, so that the induced electromotive force is more effectively canceled.
  • the inductive noise can be further improved depending on the layout other than the pads.
  • FIG. 99 shows a tenth arrangement example of the pads.
  • a in FIG. 99 is a plan view showing an example of the arrangement of the conductor layer A (wiring layer 165A) and the pads 1001s connected thereto.
  • BB in FIG. 99 is a plan view showing an example of the arrangement of the conductor layer B (wiring layer 165B) and the pads 1001d connected thereto.
  • CC of FIG. 99 is a plan view showing a state in which the conductor layers A and B shown in FIGS. 99A and B, respectively, and the pads 1001s and 1001d are stacked.
  • a pad 1001s represents, for example, a pad 1001 to which GND or minus power is supplied
  • a pad 1001d represents, for example, a pad 1001 to which plus power is supplied.
  • a plurality of lead conductor portions 165Ab are connected to a predetermined side of a rectangular main conductor portion 165Aa, and a predetermined repetition pattern is arbitrarily provided on the outer peripheral portion of each lead conductor portion 165Ab.
  • One pad 1001s is connected through a conductor 1011 having a shape including the pad.
  • the conductor 1011 may be omitted or provided. Further, the conductor 1011 may be located between the main conductor 165Aa and the lead conductor 165Ab.
  • a plurality of lead conductor portions 165Bb are connected to a predetermined side of the rectangular main conductor portion 165Ba, and a predetermined repetition pattern is optionally provided on the outer peripheral portion of each lead conductor portion 165Bb.
  • One pad 1001d is connected via a conductor 1012 having the included shape.
  • the conductor 1012 may be omitted or provided. Further, the conductor 1012 may be between the main conductor 165Ba and the lead conductor 165Bb.
  • the pads 1001s and the pads 1001d are arranged alternately in the Y direction.
  • the magnetic field generated from each of the conductor layers A and B and the induced electromotive force based on the magnetic field can be effectively canceled, so that the inductive noise can be further improved.
  • the pads 1001 are not arranged symmetrically with respect to the Y direction, when the pads 1001 are arranged in a wide range, in other words, the main conductors 165Aa or 165Ba, the lead conductors 165Ab or 165Bb, or the conductors 1011 or 1012 are In the case where it is longer in the arrangement direction of 1001 (the case where the Y direction is longer than the X direction in FIG. 99), there is a magnetic field which cannot be canceled out, and the magnetic field is accumulated and the induced electromotive force increases as the Victim conductor loop becomes larger. In addition, inductive noise may deteriorate.
  • FIG. 100 shows an eleventh arrangement example of the pad.
  • ⁇ Circle around (A) ⁇ in FIG. 100 is a plan view showing an example of the arrangement of the conductor layer A (wiring layer 165A) and the pads 1001s connected thereto.
  • FIG. 100 is a plan view showing an example of the arrangement of the conductor layer B (wiring layer 165B) and the pads 1001d connected thereto.
  • CC of FIG. 100 is a plan view showing a state in which the conductor layers A and B shown in FIGS.
  • a pad 1001s represents a pad 1001 to which, for example, GND or minus power is supplied
  • a pad 1001d represents, for example, a pad 1001 to which plus power is supplied.
  • a plurality of lead conductors 165Ab are connected to a predetermined side of a rectangular main conductor 165Aa, and a predetermined repetition pattern is arbitrarily provided on the outer periphery of each lead conductor 165Ab.
  • One pad 1001s is connected through a conductor 1011 having a shape including the pad.
  • the conductor 1011 may be omitted or provided. Further, the conductor 1011 may be located between the main conductor 165Aa and the lead conductor 165Ab.
  • a plurality of lead conductor portions 165Bb are connected to a predetermined side of the rectangular main conductor portion 165Ba, and a predetermined repetition pattern is arbitrarily provided on the outer peripheral portion of each lead conductor portion 165Bb.
  • One pad 1001d is connected via a conductor 1012 having the included shape.
  • the conductor 1012 may be omitted or provided. Further, the conductor 1012 may be between the main conductor 165Ba and the lead conductor 165Bb.
  • the arrangement of the pads 1001s and the pads 1001d is such that four pads 1001s and the pads 1001d continuous in the Y direction constitute one set.
  • a set of pads 1001 is folded back in the Y direction and arranged in a mirror symmetric arrangement.
  • the magnetic field generated from each of the conductor layers A and B and the induced electromotive force based thereon can be more effectively canceled out. Sex noise can be further improved.
  • FIG. 101 shows a twelfth arrangement example of the pads.
  • a of FIG. 101 is a plan view showing an example of the arrangement of the conductor layer A (wiring layer 165A) and the pads 1001s connected thereto.
  • BB in FIG. 101 is a plan view showing an example of the arrangement of the conductor layer B (wiring layer 165B) and the pads 1001d connected thereto.
  • CC of FIG. 101 is a plan view showing a state where the conductor layers A and B shown in FIGS. 101A and 101B and the pads 1001s and 1001d are stacked.
  • a pad 1001s represents a pad 1001 supplied with, for example, GND or minus power
  • a pad 1001d represents a pad 1001 supplied with, for example, plus power.
  • a plurality of lead conductor portions 165Ab are connected to a predetermined side of a rectangular main conductor portion 165Aa, and a predetermined repetition pattern is arbitrarily provided on an outer peripheral portion of each lead conductor portion 165Ab.
  • One pad 1001s is connected through a conductor 1011 having a shape including the pad.
  • the conductor 1011 may be omitted or provided. Further, the conductor 1011 may be located between the main conductor 165Aa and the lead conductor 165Ab.
  • a plurality of lead conductor portions 165Bb are connected to a predetermined side of the rectangular main conductor portion 165Ba, and a predetermined repetition pattern is arbitrarily provided on the outer peripheral portion of each lead conductor portion 165Bb.
  • One pad 1001d is connected via a conductor 1012 having the included shape.
  • the conductor 1012 may be omitted or provided. Further, the conductor 1012 may be between the main conductor 165Ba and the lead conductor 165Bb.
  • the arrangement of the pad 1001s and the pad 1001d is such that four pads 1001s and the pad 1001d continuous in the Y direction constitute one set.
  • a set of pads 1001 is folded back in the Y direction and arranged in a mirror symmetric arrangement.
  • the four pads 1001 s and 1001 d forming one set are also mirror-symmetrically arranged such that two pads 1001 are folded back in the Y direction with respect to the center line in the Y direction.
  • the range in which the residual magnetic field is accumulated is smaller than that of the one-stage mirror arrangement shown in FIG. 100, so that the induced electromotive force is more effectively canceled.
  • the inductive noise can be further improved depending on the layout other than the pads.
  • FIG. 102 shows a thirteenth arrangement example of the pads.
  • ⁇ Circle around (A) ⁇ in FIG. 102 is a plan view showing an example of the arrangement of the conductor layer A (wiring layer 165A) and the pads 1001s connected thereto.
  • BB in FIG. 102 is a plan view showing an example of the arrangement of the conductor layer B (wiring layer 165B) and the pads 1001d connected thereto.
  • 102C is a plan view showing a state in which the conductor layers A and B shown in FIGS. 102A and 102B and the pads 1001s and 1001d are stacked.
  • a pad 1001s represents a pad 1001 supplied with, for example, GND or minus power
  • a pad 1001d represents a pad 1001 supplied with, for example, plus power.
  • a plurality of lead conductor portions 165Ab are connected to a predetermined side of a rectangular main conductor portion 165Aa, and a predetermined repetition pattern is arbitrarily provided on an outer peripheral portion of each lead conductor portion 165Ab.
  • the conductor 1011 having the included shape is connected.
  • One pad 1001s is connected to a part of the plurality of lead conductors 165Ab via a conductor 1011.
  • the conductor 1011 may be omitted or provided. Further, the conductor 1011 may be located between the main conductor 165Aa and the lead conductor 165Ab.
  • a plurality of lead conductor portions 165Bb are connected to a predetermined side of the rectangular main conductor portion 165Ba, and a predetermined repetition pattern is arbitrarily provided on the outer peripheral portion of each lead conductor portion 165Bb.
  • the conductor 1012 having the included shape is connected.
  • One pad 1001d is arranged on a part of the plurality of lead conductors 165Bb via the conductor 1012.
  • the conductor 1012 may be omitted or provided. Further, the conductor 1012 may be between the main conductor 165Ba and the lead conductor 165Bb.
  • the arrangement of the pads 1001s and the pads 1001d is an alternating arrangement in which they are alternately arranged in the Y direction.
  • the magnetic field generated from each of the conductor layers A and B and the induced electromotive force based on the magnetic field can be effectively canceled, so that the inductive noise can be further improved.
  • the pads 1001 are not arranged symmetrically with respect to the Y direction, when the pads 1001 are arranged in a wide range, in other words, the main conductors 165Aa or 165Ba, the lead conductors 165Ab or 165Bb, or the conductors 1011 or 1012 are In the case where it is longer in the arrangement direction of 1001 (the case where the Y direction is longer than the X direction in FIG. 102), there is a magnetic field which cannot be canceled out, and the magnetic field is accumulated as the Victim conductor loop becomes larger and the induced electromotive force increases. In addition, inductive noise may deteriorate.
  • FIG. 103 shows a fourteenth arrangement example of the pads.
  • a of FIG. 103 is a plan view showing an example of the arrangement of the conductor layer A (wiring layer 165A) and the pads 1001s connected thereto.
  • BB in FIG. 103 is a plan view showing an example of the arrangement of the conductor layer B (wiring layer 165B) and the pads 1001d connected thereto.
  • FIG. 103 is a plan view showing a state in which the conductor layers A and B shown in FIGS. 103A and 103B and the pads 1001s and 1001d are stacked.
  • a pad 1001s represents, for example, a pad 1001 to which GND or negative power is supplied
  • a pad 1001d represents, for example, a pad 1001 to which positive power is supplied.
  • a plurality of lead conductor portions 165Ab are connected to a predetermined side of a rectangular main conductor portion 165Aa, and a predetermined repetition pattern is arbitrarily provided on an outer peripheral portion of each lead conductor portion 165Ab.
  • the conductor 1011 having the included shape is connected.
  • One pad 1001s is connected to a part of the plurality of lead conductors 165Ab via a conductor 1011.
  • the conductor 1011 may be omitted or provided. Further, the conductor 1011 may be located between the main conductor 165Aa and the lead conductor 165Ab.
  • a plurality of lead conductor portions 165Bb are connected to a predetermined side of the rectangular main conductor portion 165Ba, and a predetermined repetition pattern is arbitrarily provided on the outer peripheral portion of each lead conductor portion 165Bb.
  • the conductor 1012 having the included shape is connected.
  • One pad 1001d is arranged on a part of the plurality of lead conductors 165Bb via the conductor 1012.
  • the conductor 1012 may be omitted or provided. Further, the conductor 1012 may be between the main conductor 165Ba and the lead conductor 165Bb.
  • the arrangement of the pad 1001s and the pad 1001d is such that four pads 1001s and the pad 1001d continuous in the Y direction constitute one set.
  • a set of pads 1001 is folded back in the Y direction and arranged in a mirror symmetric arrangement.
  • the magnetic field generated from each of the conductor layers A and B and the induced electromotive force based on the magnetic field can be more effectively canceled as compared with the alternate arrangement shown in FIG. Sex noise can be further improved.
  • FIG. 104 shows a fifteenth arrangement example of the pads.
  • 104A is a plan view showing an example of the arrangement of the conductor layer A (wiring layer 165A) and the pads 1001s connected thereto.
  • BB in FIG. 104 is a plan view showing an example of the arrangement of the conductor layer B (wiring layer 165B) and the pads 1001d connected thereto.
  • FIG. 104 is a plan view showing a state in which the conductor layers A and B shown in FIGS. 104A and 104B, respectively, and the pads 1001s and 1001d are stacked.
  • a pad 1001s represents, for example, a pad 1001 to which GND or minus power is supplied
  • a pad 1001d represents, for example, a pad 1001 to which plus power is supplied.
  • a plurality of lead conductor portions 165Ab are connected to a predetermined side of a rectangular main conductor portion 165Aa, and a predetermined repetition pattern is arbitrarily provided on an outer peripheral portion of each lead conductor portion 165Ab.
  • the conductor 1011 having the included shape is connected.
  • One pad 1001s is connected to a part of the plurality of lead conductors 165Ab via a conductor 1011.
  • the conductor 1011 may be omitted or provided. Further, the conductor 1011 may be located between the main conductor 165Aa and the lead conductor 165Ab.
  • a plurality of lead conductor portions 165Bb are connected to a predetermined side of the rectangular main conductor portion 165Ba, and a predetermined repetition pattern is arbitrarily provided on the outer peripheral portion of each lead conductor portion 165Bb.
  • the conductor 1012 having the included shape is connected. Further, one pad 1001d is arranged on a part of the plurality of lead conductor portions 165Bb via the conductor 1012.
  • the conductor 1012 may be omitted or provided. Further, the conductor 1012 may be between the main conductor 165Ba and the lead conductor 165Bb.
  • the arrangement of the pads 1001s and the pads 1001d is such that four pads 1001s and the pads 1001d continuous in the Y direction constitute one set.
  • a set of pads 1001 is folded back in the Y direction and arranged in a mirror symmetric arrangement.
  • the four pads 1001 s and 1001 d forming one set are also mirror-symmetrically arranged such that two pads 1001 are folded back in the Y direction with respect to the center line in the Y direction.
  • the range in which the residual magnetic field is accumulated is narrower than in the one-stage mirror arrangement shown in FIG. 103, so that the induced electromotive force is more effectively canceled.
  • the inductive noise can be further improved depending on the layout other than the pads.
  • the total number of pads connected to a predetermined side of the main conductor portion 165a of the conductor layers A and B is eight, and eight pads continuous in the Y direction are provided.
  • the example in which the arrangement of the pads 1001 is alternately arranged, the mirror arrangement having a single-stage configuration, and the mirror arrangement having a two-stage configuration has been described.
  • the arrangement may be a two-stage mirror arrangement.
  • the number of one set of pads arranged alternately or in a mirror surface is not limited to two or four as described above, and is arbitrary.
  • the number of pads connected to one lead conductor portion 165b is not limited to one or two shown in FIGS. 93 to 104, and may be three or more.
  • FIGS. 93 to 104 show an example in which a plurality of pads 1001 are connected to only one predetermined side of the main conductor portion 165a of the rectangular conductor layers A and B for simplicity. May be one side other than the side shown in the above, or any two, three, or four sides.
  • each component shown as an example of the pad arrangement may be partially or wholly divided into a plurality of parts, or some or all of the constituent elements may be divided into a plurality of parts, or a plurality of divided or separated constituent elements may be divided. Functions and features may be different in at least a part of the elements. Furthermore, different pad arrangements may be made by arbitrarily combining at least some of the components shown as pad arrangement examples.
  • each component shown as the pad arrangement example may be moved to have a different pad arrangement.
  • a different pad arrangement may be provided by adding a coupling element or a relay element to at least a part of combinations of the constituent elements shown as the pad arrangement examples.
  • a different pad arrangement may be provided by adding a switching element or a switching function to at least a part of the combinations of the constituent elements shown as the pad arrangement examples.
  • FIG. 105 shows a sixteenth arrangement example of the pads.
  • ⁇ Circle around (A) ⁇ in FIG. 105 is a plan view showing an example of the arrangement of the conductor layer A (wiring layer 165A) and the pads 1001s connected thereto.
  • BB in FIG. 105 is a plan view showing an example of the arrangement of the conductor layer B (wiring layer 165B) and the pads 1001d connected thereto.
  • 105C is a plan view showing a state in which the conductor layers A and B shown in FIGS. 105A and 105B and the pads 1001s and 1001d are stacked, respectively.
  • a pad 1001s represents, for example, a pad 1001 to which GND or minus power is supplied
  • a pad 1001d represents, for example, a pad 1001 to which plus power is supplied.
  • a plurality of pads 1001s are connected at predetermined intervals to two adjacent sides of a rectangular main conductor 165Aa via a conductor 1011 having a shape optionally including a predetermined repetition pattern.
  • Each of the pads 1001s may be composed of the lead conductor 165Ab, or the conductor 1011 may be composed of the lead conductor 165Ab.
  • the conductor 1011 may be omitted or may be provided.
  • a plurality of pads 1001d are connected at predetermined intervals to two adjacent sides of a rectangular main conductor portion 165Ba via a conductor 1012 having a shape optionally including a predetermined repetition pattern.
  • Each pad 1001d may be constituted by a lead conductor portion 165Bb, or the conductor 1012 may be constituted by a lead conductor portion 165Bb.
  • the conductor 1012 may be omitted or may be provided.
  • the pads 1001s and the pads 1001d are arranged on two adjacent sides of the rectangular main conductor 165a. Are alternately arranged. Further, of the two sides of the pad 1001s and the pad 1001d arranged alternately, the polarity of the pad 1001 at the end of each side is the pad 1001s connected to GND or a minus power supply.
  • the polarity of the pad 1001 at the end closest to the corner of the substrate 1000 is in-phase, and the ESD (electrostatic discharge)
  • the ESD electrostatic discharge
  • the polarity of the pad 1001 at the end of the two sides in which the pads 1001s and the pads 1001d are alternately arranged is, for example, the pad 1001s connected to GND or a minus power supply.
  • the pad 1001d connected to the power supply may be used.
  • FIG. 106 shows a seventeenth arrangement example of the pads.
  • a of FIG. 106 is a plan view showing an example of the arrangement of the conductor layer A (wiring layer 165A) and the pads 1001s connected thereto.
  • ⁇ Circle over (B) ⁇ in FIG. 106 is a plan view showing an example of the arrangement of the conductor layer B (wiring layer 165B) and the pads 1001d connected thereto.
  • FIG. 106 is a plan view showing a state where the conductor layers A and B shown in FIGS. 106A and 106B and the pads 1001s and 1001d are stacked.
  • a pad 1001s represents, for example, a pad 1001 to which GND or minus power is supplied
  • a pad 1001d represents, for example, a pad 1001 to which plus power is supplied.
  • a plurality of pads 1001s are connected at predetermined intervals to two adjacent sides of a rectangular main conductor portion 165Aa via a conductor 1011 having a shape optionally including a predetermined repetition pattern.
  • Each of the pads 1001s may be composed of the lead conductor 165Ab, or the conductor 1011 may be composed of the lead conductor 165Ab.
  • the conductor 1011 may be omitted or may be provided.
  • a plurality of pads 1001d are connected at predetermined intervals to two adjacent sides of a rectangular main conductor portion 165Ba via a conductor 1012 having a shape optionally including a predetermined repetition pattern.
  • Each pad 1001d may be constituted by a lead conductor portion 165Bb, or the conductor 1012 may be constituted by a lead conductor portion 165Bb.
  • the conductor 1012 may be omitted or may be provided.
  • FIG. 106C in a state where the conductor layers A and B are stacked, as in the pad arrangement example shown in FIG. 95C, four continuous pads 1001s and 1001d are formed as one set.
  • the mirrors are arranged mirror-symmetrically in which one set of pads 1001 is folded in the Y direction and sequentially arranged. Further, of the two sides of the pad 1001s and the pad 1001d arranged in mirror symmetry, the polarity of the pad 1001 at the end of each side is the pad 1001s connected to GND or minus.
  • the polarity of the pad 1001 at the end closest to the corner of the substrate 1000 among the plurality of pads 1001 on the two sides in which the pad 1001s and the pad 1001d are arranged mirror-symmetrically has the same phase and high ESD resistance.
  • the ESD resistance can be increased.
  • the impedance difference between the Vss wiring and the Vdd wiring is small and the current difference is small, so that the inductive noise can be further improved as compared with the sixteenth arrangement example of FIG. .
  • the polarity of the pad 1001 at the end of the two sides where the pad 1001s and the pad 1001d are arranged mirror-symmetrically is, for example, the pad 1001s connected to GND or a minus power supply.
  • the pad 1001d connected to a positive power supply may be used.
  • FIG. 107 shows an eighteenth arrangement example of the pad.
  • ⁇ Circle around (A) ⁇ in FIG. 107 is a plan view showing an example of the arrangement of the conductor layer A (wiring layer 165A) and the pads 1001s connected thereto.
  • ⁇ Circle over (B) ⁇ in FIG. 107 is a plan view showing an example of the arrangement of the conductor layer B (wiring layer 165B) and the pads 1001d connected thereto.
  • ⁇ C of FIG. 107 is a plan view showing a state in which the conductor layers A and B shown in FIGS. 107A and 107B and the pads 1001s and 1001d are stacked.
  • a pad 1001s represents a pad 1001 to which, for example, GND or minus power is supplied
  • a pad 1001d represents, for example, a pad 1001 to which plus power is supplied.
  • a plurality of pads 1001s are connected at predetermined intervals to two adjacent sides of a rectangular main conductor portion 165Aa via a conductor 1011 having a shape optionally including a predetermined repetition pattern.
  • Each of the pads 1001s may be composed of the lead conductor 165Ab, or the conductor 1011 may be composed of the lead conductor 165Ab.
  • the conductor 1011 may be omitted or may be provided.
  • a plurality of pads 1001d are connected at predetermined intervals to two adjacent sides of a rectangular main conductor portion 165Ba via a conductor 1012 having a shape optionally including a predetermined repetition pattern.
  • Each pad 1001d may be constituted by a lead conductor portion 165Bb, or the conductor 1012 may be constituted by a lead conductor portion 165Bb.
  • the conductor 1012 may be omitted or may be provided.
  • the arrangement of the pads 1001s and the pads 1001d is such that the pads 1001s and the pads 1001d are alternately arranged in the same manner as in the pad arrangement example shown in FIG. Are arranged alternately.
  • the pad arrangement example shown in FIG. 105 is that the polarity of the pad 1001 at the end of each side is opposite to that of the pad 1001s and the pad 1001d among the pads 1001s and the pad 1001d arranged on two sides. And different.
  • FIG. 108 shows a nineteenth arrangement example of the pad.
  • 108A is a plan view showing an example of the arrangement of the conductor layer A (wiring layer 165A) and the pads 1001s connected thereto.
  • 108B is a plan view showing an example of the arrangement of the conductor layer B (wiring layer 165B) and the pads 1001d connected thereto.
  • 108C is a plan view showing a state in which the conductor layers A and B shown in FIGS. 108A and 108B and the pads 1001s and 1001d are stacked.
  • a pad 1001s represents, for example, a pad 1001 to which GND or minus power is supplied
  • a pad 1001d represents, for example, a pad 1001 to which plus power is supplied.
  • a plurality of pads 1001s are connected at predetermined intervals to two adjacent sides of a rectangular main conductor 165Aa via a conductor 1011 having a shape optionally including a predetermined repetition pattern.
  • Each of the pads 1001s may be composed of the lead conductor 165Ab, or the conductor 1011 may be composed of the lead conductor 165Ab.
  • the conductor 1011 may be omitted or may be provided.
  • a plurality of pads 1001d are connected at predetermined intervals to two adjacent sides of a rectangular main conductor portion 165Ba via a conductor 1012 having a shape optionally including a predetermined repetition pattern.
  • Each pad 1001d may be constituted by a lead conductor portion 165Bb, or the conductor 1012 may be constituted by a lead conductor portion 165Bb.
  • the conductor 1012 may be omitted or may be provided.
  • the arrangement of the pad 1001s and the pad 1001d is the same as the pad arrangement example shown in FIG. It has a symmetrical arrangement.
  • the pad arrangement example shown in FIG. 106 is that, of the pads 1001s and 1001d arranged on two sides, the polarity of the pad 1001 at the end of each side is opposite to that of the pad 1001s and the pad 1001d. And different.
  • the Vss wiring 106 can be further reduced, and the current difference is further reduced, so that inductive noise can be further improved as compared with the seventeenth arrangement example of FIG.
  • a plurality of pads 1001 are provided on two adjacent sides of a rectangular main conductor portion 165a via conductors 1011 or 1012.
  • the sides on which the pads 1001 are arranged are not limited to two sides, and may be three or four sides.
  • the alternate arrangement of FIG. 93 and the two-stage configuration of FIG. Although the example in which the mirror arrangement is adopted is shown, a form in which the mirror arrangement of the single-stage configuration shown in FIG. 94 is adopted and the polarity of the pad 1001 at the end closest to the corner may be the same phase or the opposite phase may be adopted.
  • the lead conductor portion 165b is omitted, but as shown in FIGS.
  • the polarity of the pad 1001 at the end closest to the corner may be the same phase or opposite phase.
  • the lead conductors 165Ab and 165Bb and the conductors 1011 and 1012 are connected to the main conductor 165Aa from the pad 1001s, for example, by supplying GND or minus power to the main conductor 165Ba from the pad 1001d. It is desirable, but not limited, to be configured to be supplied to In other words, it is preferable that the lead conductors 165Ab and 165Bb and the conductors 1011 and 1012 are configured so that, for example, GND or a negative power supply supplied from the pad 1001 and a positive power supply having the opposite polarity do not completely short-circuit. That's not true. Note that in at least a part of FIGS.
  • all the pads 1001d may be the same, all the pads 1001d may not be the same, all the conductors 1011 may be the same, or all the conductors may be the same. 1011 may not be the same, all conductors 1012 may be the same, not all conductors 1012 may be the same,
  • the lead conductor portions 165Ab may be the same, not all the lead conductor portions 165Ab may be the same, all the lead conductor portions 165Bb may be the same, or all the lead conductor portions 165Bb They need not be the same.
  • the total number of pads 1001s and the total number of pads 1001d that are directly or indirectly connected to the main conductor portion 165a on the substrate 1000 are the same or substantially the same, and that the main conductor That the total number of pads 1001s and the total number of pads 1001d that are directly or indirectly connected to the portion 165a are the same or substantially the same, and that the main conductor 165a is directly or indirectly connected to the main conductor 165a on two predetermined opposite sides of the substrate 1000
  • the total number of pads 1001s to be electrically connected and the total number of pads 1001d are the same or substantially the same, and the total number of pads 1001s directly or indirectly connected to the main conductor 165a on a predetermined side of the substrate 1000 That the total number of pads 1001d is the same or substantially the same,
  • the total number of pads 1001s and the total number of pads 1001d that are directly or indirectly connected to at least two lead conductor portions 165b on the sides are the same or substantially the same.
  • the total number of pads 1001s and the total number of pads 1001d that are directly or indirectly connected to one lead conductor portion 165b are the same or substantially the same, and at least one lead conductor portion 165b is directly connected to a predetermined side of the substrate 1000. That the total number of pads 1001 s and the total number of pads 1001 d to be directly or indirectly connected are the same or substantially the same, and that at least two sets of conductors 1011 and 1012 are directly or indirectly connected to predetermined two adjacent sides of the substrate 1000.
  • FIG. 109 shows a substrate arrangement example of the Victim conductor loop and the Aggressor conductor loop.
  • ⁇ Circle around (A) ⁇ in FIG. 109 is a cross-sectional view schematically showing an example of the substrate arrangement of the above-described Victim conductor loop and Aggressor conductor loop.
  • a Victim conductor loop 1101 is included in the first semiconductor substrate 101, and Aggressor conductor loops 1102A and 1102B are included in the second semiconductor substrate 102.
  • the structure in which the first semiconductor substrate 101 and the second semiconductor substrate 102 are stacked has been described.
  • first semiconductor substrate 101 and the second semiconductor substrate 102 are not stacked, and the first semiconductor substrate 101 and the second semiconductor substrate 102 are arranged adjacent to each other as shown in FIG.
  • first semiconductor substrate 101 and the second semiconductor substrate 102 are arranged on the same plane at a predetermined interval.
  • the Victim conductor loop 1101 is included in the first semiconductor substrate 101
  • the Aggressor conductor loops 1102A and 1102B are included in the second semiconductor substrate 102
  • the first semiconductor substrate 101 and the second semiconductor substrate 101 are connected to each other.
  • 3 shows a structure in which a third semiconductor substrate 103 is inserted between semiconductor substrates 102 and a first semiconductor substrate 101 to a third semiconductor substrate 103 are stacked.
  • the Victim conductor loop 1101 is included in the first semiconductor substrate 101
  • the Aggressor conductor loop 1102A is included in the second semiconductor substrate 102
  • the Aggressor conductor loop 1102B is included in the third semiconductor substrate 103. Further, a structure is shown in which the first to third semiconductor substrates 101 to 103 are stacked in that order.
  • 110C shows that the Victim conductor loop 1101 is included in the first semiconductor substrate 101, the Aggressor conductor loops 1102A and 1102B are included in the second semiconductor substrate 102, and the first semiconductor substrate 101 and the second semiconductor substrate 101 are connected to each other.
  • 1 shows a structure in which a support substrate 104 is inserted between semiconductor substrates 102, and a first semiconductor substrate 101, a support substrate 104, and a second semiconductor substrate 102 are stacked in that order.
  • the support substrate 104 may be omitted, and the first semiconductor substrate 101 and the second semiconductor substrate 102 may be arranged with a predetermined gap.
  • 110D shows that the Victim conductor loop 1101 is included in the first semiconductor substrate 101, the Aggressor conductor loops 1102A and 1102B are included in the second semiconductor substrate 102, and the first semiconductor substrate 101 and the second semiconductor substrate 101 are connected to each other.
  • 1 shows a structure in which a semiconductor substrate 102 is placed on a support substrate 104 and arranged on the same plane at a predetermined interval.
  • the support substrate 104 may be omitted, and the first semiconductor substrate 101 and the second semiconductor substrate 102 may be supported at different positions so that they are arranged on the same plane.
  • the first semiconductor substrate 101 2 shows a structure in which the second semiconductor substrate 102 and the second semiconductor substrate 102 are stacked.
  • the region on the XY plane where the Victim conductor loop 1101 is formed in the first semiconductor substrate 101 is the same as the region on the XY plane where the Aggressor conductor loops 1102A and 1102B are formed in the second semiconductor substrate 102. , At least partially overlap.
  • 110F shows that the Victim conductor loop 1101 is included in the first semiconductor substrate 101, the Aggressor conductor loops 1102A and 1102B are included in the second semiconductor substrate 102, and the first semiconductor substrate 101 and the second semiconductor substrate 101 are connected to each other.
  • 1 shows a structure in which semiconductor substrates 102 are stacked.
  • the region on the XY plane where the Victim conductor loop 1101 is formed in the first semiconductor substrate 101 is the same as the region on the XY plane where the Aggressor conductor loops 1102A and 1102B are formed in the second semiconductor substrate 102. It may be a completely different region or a partially overlapping region.
  • the first semiconductor substrate 101 2 shows a structure in which the second semiconductor substrate 102 and the second semiconductor substrate 102 are stacked.
  • the region on the XY plane where the Victim conductor loop 1101 is formed in the first semiconductor substrate 101 is different from the region on the XY plane where the Aggressor conductor loops 1102A and 1102B are formed.
  • HH of FIG. 110 shows a structure in which the Victim conductor loop 1101 and the Aggressor conductor loops 1102A and 1102B are included in one semiconductor substrate 105. However, in one semiconductor substrate 105, the region on the XY plane where the Victim conductor loop 1101 is formed at least partially overlaps the region on the XY plane where the Aggressor conductor loops 1102A and 1102B are formed. .
  • FIG. 110 shows a structure in which a Victim conductor loop 1101 and Aggressor conductor loops 1102A and 1102B are included in one semiconductor substrate 105.
  • the region on the XY plane where the Victim conductor loop 1101 is formed is different from the region on the XY plane where the Aggressor conductor loops 1102A and 1102B are formed.
  • the number of semiconductor substrates including the Victim conductor loop 1101 and the Aggressor conductor loops 1102A and 1102B, the arrangement thereof, and the presence or absence of the support substrate can take various structures.
  • the Aggressor conductor loop that generates a magnetic flux passing through the loop surface of the Victim conductor loop may or may not overlap the Victim conductor loop. Further, the Aggressor conductor loop may be formed on a plurality of semiconductor substrates stacked on the semiconductor substrate on which the Victim conductor loop is formed, or may be formed on the same semiconductor substrate as the Victim conductor loop. Is also good.
  • the Aggressor conductor loop is not a semiconductor substrate, but various substrates such as a printed circuit board, a flexible printed circuit board, an interposer substrate, a package substrate, an inorganic substrate, or an organic substrate are conceivable, but include or form a conductor. Any substrate that can be used may be used, and may be present in a circuit other than the semiconductor substrate such as a package in which the semiconductor substrate is sealed.
  • the distance of the Aggressor conductor loop to the Victim conductor loop is determined when the Aggressor conductor loop is formed on the semiconductor substrate, when the Aggressor conductor loop is formed on the package, and when the Aggressor conductor loop is formed on the printed circuit board. It becomes shorter in order.
  • the inductive noise and capacitive noise that can occur in the Victim conductor loop tend to increase as the distance of the Aggressor conductor loop to the Victim conductor loop increases.Therefore, this technology is more effective as the distance of the Aggressor conductor loop to the Victim conductor loop becomes shorter. Can be played. Furthermore, not only the substrate, but also the conductor itself represented by a conducting wire or a conducting plate, such as a bonding wire, a lead wire, an antenna line, a power line, a GND line, a coaxial line, a dummy wire, a sheet metal, etc. The present technology can be applied.
  • a conductor 1101 (hereinafter, referred to as at least a part of a Victim conductor loop) is formed.
  • Victim conductor loop 1101) and conductors 1102A and 1102B (hereinafter, referred to as Aggressor conductor loops 1102A and 1102B) that are at least a part of the Aggressor conductor loop will be described.
  • the above-described Victim conductor loop or Aggressor conductor loop includes at least a conductor disposed on at least two of the semiconductor substrate 1121, the package substrate 1122, and the printed substrate 1123. It may be configured.
  • the semiconductor substrate 1121 can be replaced with any of a package substrate, an interposer substrate, a printed substrate, a flexible printed substrate, an inorganic substrate, an organic substrate, a substrate including a conductor, or a substrate on which a conductor can be formed.
  • the package substrate 1122 can be replaced with any of a semiconductor substrate, an interposer substrate, a printed substrate, a flexible printed substrate, an inorganic substrate, an organic substrate, a substrate including a conductor, or a substrate on which a conductor can be formed.
  • the printed board 1123 can be replaced with any of a semiconductor board, a package board, an interposer board, a flexible printed board, an inorganic board, an organic board, a board including a conductor, or a board on which a conductor can be formed.
  • ⁇ Circle around (A) ⁇ to (R) of FIG. 112 show examples of the arrangement of the Victim conductor loop and the Aggressor conductor loop in the laminated structure in which the three types of substrates shown in FIG. 111 are laminated.
  • ⁇ Circle around (A) ⁇ in FIG. 112 is a schematic diagram of a laminated structure in which the Victim conductor loop 1101 and the Aggressor conductor loops 1102A and 1102B are all included in the semiconductor substrate 1121.
  • the package substrate 1122 and the printed circuit board 1123 on which neither the Victim conductor loop 1101 nor the Aggressor conductor loops 1102A and 1102B are formed may be omitted.
  • BB of FIG. 112 is a schematic diagram of a stacked structure in which the Victim conductor loop 1101 and the Aggressor conductor loop 1102A are included in the semiconductor substrate 1121, and the Aggressor conductor loop 1102B is included in the package substrate 1122.
  • the printed circuit board 1123 on which neither the Victim conductor loop 1101 nor the Aggressor conductor loops 1102A and 1102B are formed may be omitted.
  • CC of FIG. 112 is a schematic view of a laminated structure in which the Victim conductor loop 1101 and the Aggressor conductor loop 1102A are included in the semiconductor substrate 1121, and the Aggressor conductor loop 1102B is included in the printed circuit board 1123.
  • the package substrate 1122 on which neither the Victim conductor loop 1101 nor the Aggressor conductor loops 1102A and 1102B are formed may be omitted.
  • DD of FIG. 112 is a schematic diagram of a laminated structure in which the Victim conductor loop 1101 is included in the semiconductor substrate 1121 and the Aggressor conductor loops 1102A and 1102B are included in the package substrate 1122.
  • the printed circuit board 1123 on which neither the Victim conductor loop 1101 nor the Aggressor conductor loops 1102A and 1102B are formed may be omitted.
  • FIG. 112E is a schematic diagram of a stacked structure in which the Victim conductor loop 1101 is included in the semiconductor substrate 1121, the Aggressor conductor loop 1102A is included in the package substrate 1122, and the Aggressor conductor loop 1102B is included in the printed circuit board 1123. I have.
  • FF of FIG. 112 is a schematic diagram of a laminated structure in which the Victim conductor loop 1101 is included in the semiconductor substrate 1121 and the Aggressor conductor loops 1102A and 1102B are included in the printed circuit board 1123.
  • the package substrate 1122 on which neither the Victim conductor loop 1101 nor the Aggressor conductor loops 1102A and 1102B are formed may be omitted.
  • G in FIG. 112 is a schematic diagram of a stacked structure in which the Aggressor conductor loops 1102A and 1102B are included in the semiconductor substrate 1121 and the Victim conductor loop 1101 is included in the package substrate 1122.
  • the printed circuit board 1123 on which neither the Victim conductor loop 1101 nor the Aggressor conductor loops 1102A and 1102B are formed may be omitted.
  • HH of FIG. 112 is a schematic diagram of a stacked structure in which the Aggressor conductor loop 1102A is included in the semiconductor substrate 1121, and the Aggressor conductor loop 1102B and the Victim conductor loop 1101 are included in the package substrate 1122.
  • the printed circuit board 1123 on which neither the Victim conductor loop 1101 nor the Aggressor conductor loops 1102A and 1102B are formed may be omitted.
  • FIG. 112I shows a schematic diagram of a stacked structure in which the Aggressor conductor loop 1102A is included in the semiconductor substrate 1121, the Victim conductor loop 1101 is included in the package substrate 1122, and the Aggressor conductor loop 1102B is included in the printed circuit board 1123. I have.
  • JJ in FIG. 112 is a schematic diagram of a stacked structure in which the Victim conductor loop 1101 and the Aggressor conductor loops 1102A and 1102B are all included in the package substrate 1122.
  • the semiconductor substrate 1121 and the printed circuit board 1123 on which neither the Victim conductor loop 1101 nor the Aggressor conductor loops 1102A and 1102B are formed may be omitted.
  • KK in FIG. 112 is a schematic diagram of a laminated structure in which the Victim conductor loop 1101 and the Aggressor conductor loop 1102A are included in the package substrate 1122, and the Aggressor conductor loop 1102B is included in the printed circuit board 1123.
  • the semiconductor substrate 1121 on which neither the Victim conductor loop 1101 nor the Aggressor conductor loops 1102A and 1102B are formed may be omitted.
  • L in FIG. 112 is a schematic diagram of a laminated structure in which the Victim conductor loop 1101 is included in the package substrate 1122, and the Aggressor conductor loops 1102A and 1102B are included in the printed circuit board 1123.
  • the semiconductor substrate 1121 on which neither the Victim conductor loop 1101 nor the Aggressor conductor loops 1102A and 1102B are formed may be omitted.
  • ⁇ Circle around (M) ⁇ in FIG. 112 is a schematic diagram of a laminated structure in which the Aggressor conductor loops 1102A and 1102B are included in the semiconductor substrate 1121 and the Victim conductor loop 1101 is included in the printed circuit board 1123.
  • the package substrate 1122 on which neither the Victim conductor loop 1101 nor the Aggressor conductor loops 1102A and 1102B are formed may be omitted.
  • N in FIG. 112 shows a schematic diagram of a laminated structure in which the Aggressor conductor loop 1102A is included in the semiconductor substrate 1121, the Aggressor conductor loop 1102B is included in the package substrate 1122, and the Victim conductor loop 1101 is included in the printed circuit board 1123. I have.
  • FIG. 112 is a schematic diagram of a laminated structure in which the Aggressor conductor loop 1102A is included in the semiconductor substrate 1121 and the Aggressor conductor loop 1102B and the Victim conductor loop 1101 are included in the printed circuit board 1123.
  • the package substrate 1122 on which neither the Victim conductor loop 1101 nor the Aggressor conductor loops 1102A and 1102B are formed may be omitted.
  • ⁇ Circle over (P) ⁇ in FIG. 112 is a schematic diagram of a laminated structure in which Aggressor conductor loops 1102A and 1102B are included in package substrate 1122 and Victim conductor loop 1101 is included in printed circuit board 1123.
  • the semiconductor substrate 1121 on which neither the Victim conductor loop 1101 nor the Aggressor conductor loops 1102A and 1102B are formed may be omitted.
  • ⁇ Circle around (Q) ⁇ in FIG. 112 is a schematic diagram of a laminated structure in which the Aggressor conductor loop 1102A is included in the package substrate 1122, and the Aggressor conductor loop 1102B and the Victim conductor loop 1101 are included in the printed circuit board 1123.
  • the semiconductor substrate 1121 on which neither the Victim conductor loop 1101 nor the Aggressor conductor loops 1102A and 1102B are formed may be omitted.
  • RR in FIG. 112 is a schematic diagram of a laminated structure in which the Victim conductor loop 1101 and the Aggressor conductor loops 1102A and 1102B are all included in the printed circuit board 1123.
  • the semiconductor substrate 1121 and the package substrate 1122 on which neither the Victim conductor loop 1101 nor the Aggressor conductor loops 1102A and 1102B are formed may be omitted.
  • the positions of the Victim conductor loop 1101, Aggressor conductor loop 1102A, or Aggressor conductor loop 1102B may be reversed upside down by reversing the stacking order of the substrates shown in A to R in FIG.
  • the Victim conductor loop 1101 and the Aggressor conductor loops 1102A and 1102B can be formed in any area of the semiconductor substrate 1121, the package substrate 1122, and the printed substrate 1123.
  • FIG. 113 is a diagram illustrating an example of package stacking of the first semiconductor substrate 101 and the second semiconductor substrate 102 forming the solid-state imaging device 100.
  • the first semiconductor substrate 101 and the second semiconductor substrate 102 may be stacked in any manner as a package.
  • the first semiconductor substrate 101 and the second semiconductor substrate 102 are individually sealed using a sealing material, and the resulting packages 601 and 602 are sealed. They may be stacked.
  • the package 603 may be generated by sealing the first semiconductor substrate 101 and the second semiconductor substrate 102 in a stacked state with a sealing material.
  • the bonding wires 604 may be connected to the second semiconductor substrate 102 as shown in FIG. 113B, or may be connected to the first semiconductor substrate 101 as shown in FIG. 113C. May be.
  • the package may be in any form.
  • CSP Chip Size Package
  • WL-CSP Wafer Level Chip Size Package
  • an interposer substrate or a rewiring layer may be used in the package.
  • any form without a package may be used.
  • a semiconductor substrate may be mounted as COB (Chip On Board).
  • BGA Bit Grid Array
  • COB Chip On Board
  • COT Chip On Tape
  • CSP Chip Size Package / Chip Scale Package
  • DIMM Dual In-line Memory Module
  • DIP Dual In-line
  • FBGA Feine-pitch Ball Grid Array
  • FLGA FLGA
  • FQFP Fine-pitch Quad Flat Package
  • HSIP Single In-line Package with Heatsink
  • LCC Leadless Chip Carrier
  • LFLGA Low Profile Fine Pitch Land Grid Array
  • LGA Landand Grid Array
  • LQFP Low-profile Quad Flat Package
  • MC-FBGA Multi-Chip Fine-pitch Ball All Grid Array
  • MCM Multi-Chip Module
  • MCP Multi-Chip Package
  • M-CSP Molded Chip Size Package
  • MFP Mini Flat Package
  • MQFP Metal Quad Flat Package
  • MQUAD Metal Quad
  • MSOP Micro Small Array
  • the present technology is, for example, a CCD (Charge-Coupled Device) image sensor, CCD sensor, CMOS sensor, MOS sensor, IR (Infrared) sensor, UV (Ultraviolet) sensor, ToF (Time of Flight) sensor, ranging sensor
  • CCD Charge-Coupled Device
  • CMOS complementary metal-oxide-semiconductor
  • MOS Metal Organic Sensor Suppression Sensor
  • IR Infrared
  • UV Ultraviolet
  • ToF Time of Flight
  • ranging sensor ranging sensor
  • the present invention can be applied to any sensor, circuit board, device, electronic device, and the like.
  • the present technology is suitable for a sensor, a circuit board, a device, or an electronic device in which some device such as a transistor, a diode, or an antenna is arranged in an array, and a sensor, a circuit board, or the like in which some device is arranged in a substantially same plane. It is particularly suitable for devices and electronic equipment, but not limited thereto.
  • the present technology for example, various memory sensors related to memory devices, circuit boards for memory, memory devices, or electronic devices including memory, various CCD sensors related to CCD, circuit boards for CCD, CCD device, or CCD Electronic devices including CMOS, various CMOS sensors related to CMOS, CMOS circuit boards, CMOS devices, or electronic devices including CMOS, various MOS sensors related to MOS, circuit substrates for MOS, MOS devices, including MOS Electronic equipment, various display sensors related to light emitting devices, display circuit boards, display devices, or electronic devices including displays, various laser sensors related to light emitting devices, laser circuit boards, laser devices, or lasers Various antenna sensors related to electronic devices and antenna devices, circuit boards for antennas, antenna devices, or antennas It can be applied to electronic devices, even in such as including.
  • a sensor, a circuit board, a device, or an electronic device a sensor including a control line or a signal line, a circuit board, a device, or an electronic device, a horizontal control line or a vertical Suitable for a sensor including a signal line, a circuit board, a device, or an electronic device, but is not limited thereto.
  • Example of conductive shield arrangement> In the above-described configuration example, it has been described that the inductive noise can be reduced by devising the configuration of the conductor layer A (the wiring layer 165A) and the conductor layer B (the wiring layer 165B). A configuration for further improving inductive noise will be described.
  • FIGS. 114 and 115 are cross-sectional views illustrating a configuration example in which a conductive shield is provided for the solid-state imaging device 100 in which the first semiconductor substrate 101 and the second semiconductor substrate 102 illustrated in FIG. 6 are stacked. It is.
  • FIG. 114 is a cross-sectional view showing a first configuration example in which a conductive shield is provided for the solid-state imaging device 100 shown in FIG.
  • a conductive shield 1151 is formed in the multilayer wiring layer 153 of the first semiconductor substrate 101.
  • BB of FIG. 114 is a cross-sectional view showing a second configuration example in which a conductive shield is provided for the solid-state imaging device 100 shown in FIG.
  • a conductive shield 1151 is formed in the multilayer wiring layer 163 of the second semiconductor substrate 102.
  • CC of FIG. 114 is a cross-sectional view showing a third configuration example in which a conductive shield is provided for the solid-state imaging device 100 shown in FIG.
  • a conductive shield 1151 is formed on each of the multilayer wiring layers of the first semiconductor substrate 101 and the second semiconductor substrate 102. More specifically, a conductive shield 1151A is formed in the multilayer wiring layer 153 of the first semiconductor substrate 101, and a conductive shield 1151B is formed in the multilayer wiring layer 163 of the second semiconductor substrate 102. I have.
  • FIG. 115 is a cross-sectional view showing a fourth configuration example in which a conductive shield is provided for the solid-state imaging device 100 shown in FIG.
  • a conductive shield 1151 is formed on each of the multilayer wiring layers of the first semiconductor substrate 101 and the second semiconductor substrate 102, and they are joined. More specifically, a conductive shield 1151A is formed in the multilayer wiring layer 153 of the first semiconductor substrate 101 on the joint surface with the multilayer wiring layer 163 of the second semiconductor substrate 102, and the second semiconductor substrate A conductive shield 1151B is formed on a bonding surface of the first semiconductor substrate 101 with the multilayer wiring layer 153 in the multilayer wiring layer 163 of the first semiconductor substrate 102, and the conductive shields 1151A and 1151B are connected by, for example, Cu-Cu bonding. They are joined by the same kind of metal joining such as Au-Au joining or Al-Al joining, or by the dissimilar metal joining such as Cu-Au joining, Cu-Al joining or Au- Al joining.
  • FIG. 115A are examples in which the planar regions of the conductive shields 1151A and 1151B coincide, but it is sufficient that at least some of them overlap and be joined.
  • BB of FIG. 115 is a cross-sectional view showing a fifth configuration example in which a conductive shield is provided for the solid-state imaging device 100 shown in FIG.
  • BB in FIG. 115 has a configuration in which the wiring layer 165A as the conductor layer A also has a function as the conductive shield 1151.
  • a part of the wiring layer 165A may be the conductive shield 1151.
  • CC of FIG. 115 is a cross-sectional view showing a sixth configuration example in which a conductive shield is provided for the solid-state imaging device 100 shown in FIG.
  • the conductive shield 1151 is formed in the multilayer wiring layer 153, as in the first configuration example shown in FIG. 114A.
  • the plane area formed is smaller than the plane areas of the wiring layer 165A as the conductor layer A and the wiring layer 165B as the conductor layer B.
  • the area of the plane region where the conductive shield 1151 is formed is the plane of the wiring layer 165A that is the conductor layer A and the wiring layer 165B that is the conductor layer B. Although it is preferable that the area be equal to or larger than the area of the region, the area may be small as shown in FIG. 115B.
  • the wiring layers shielded by the conductive shield 1151 are two layers of the wiring layers 165A and 165B, but may be one layer.
  • a magnetic shield may be used instead of the conductive shield 1151.
  • the magnetic shield may be conductive or non-conductive. If the magnetic shield is conductive, inductive and capacitive noise can be further improved.
  • FIGS. 116 to 119 show first to fourth configuration examples of the arrangement of the conductive shield 1151 with respect to the signal line 132 and the planar shape.
  • the conductive shield 1151 is the same except for the planar shape.
  • FIG. 116 is a cross-sectional view showing the positional relationship in the Z direction between the signal line 132 for transmitting an analog pixel signal on the first semiconductor substrate 101, the conductive shield 1151, and the wiring layer 165A.
  • FIG. 116B is a plan view showing a planar shape of the conductive shield 1151.
  • a conductive shield 1151 is arranged between the signal line 132 and the wiring layer 165A. As shown in FIG. 116B, the planar shape of the conductive shield 1151 can be planar.
  • the planar shape of the conductive shield 1151 is formed in a linear shape, and each linear region corresponds to the signal line 132 one-to-one. It can be formed so as to overlap.
  • each linear region of the conductive shield 1151 does not need to correspond one-to-one with the signal line 132 as in the second configuration example of FIGS. 117A and 117B.
  • one linear region may be formed so as to overlap a plurality of signal lines 132.
  • FIG. 118 shows a planar shape in which one linear region of the conductive shield 1151 corresponds to two signal lines 132, a planar shape corresponding to three or more signal lines 132 may be used.
  • planar shape of the conductive shield 1151 may be formed not in a linear shape but in a mesh shape as in the fourth configuration example of FIGS. 119A and 119B.
  • the conductor width, the gap width, and the conductor period of the vertical conductor extending in the vertical direction (Y direction) of the mesh-shaped conductive shield 1151 and the horizontal conductor extending in the horizontal direction (X direction) may be different or the same. .
  • the conductive shield 1151 has one layer, but may have two layers as shown in FIG. 114C and FIG. 115A. The same applies to the wiring layer 165B shown in FIGS. 116 to 119 as the wiring layer 165B.
  • the conductive shield 1151 is formed at a position overlapping with the entire region of the signal line 132, the conductive shield 1151 may be formed at a position overlapping with some region or at a position not overlapping. However, since noise is often propagated via a signal line, it is preferable that the noise be located at a position overlapping with the signal line 132.
  • the conductive shield 1151 is preferably connected to GND or a negative power supply, but may be connected to another control line, another signal line, another conductor, or another wiring. .
  • the conductive shield 1151 may not be connected to another control line, another signal line, another conductor, another wiring, or the like.
  • a third conductor layer may be further arranged near the two conductor layers of the wiring layer 165A (conductor layer A) and the wiring layer 165B (conductor layer B).
  • the third conductor layer is, for example, a wire for relaying GND or a minus power supply to the Vss wiring of the conductor layer A that is the wiring layer 165A, and a plus power supply to the Vdd wiring of the conductor layer B that is the wiring layer 165B. Wiring, or reinforcing wiring for minimizing the voltage drop (IR-Drop) of the conductor layer A or the conductor layer B as much as possible.
  • the third conductor layer is referred to as a wiring layer 165C or a conductor layer C corresponding to the names of the wiring layers 165A and 165B, the conductor layers A and the conductor layers B of the above-described respective configuration examples
  • the third conductor The wiring layer 165C which is a layer, is arranged with respect to the wiring layers 165A and 165B in any of the positional relations A to C in FIG.
  • ⁇ Circle around (A) ⁇ through (C) of FIG. 120 are schematic cross-sectional views showing examples of the arrangement of the wiring layer 165C with respect to the wiring layers 165A and 165B.
  • a wiring layer 170 (a fourth conductor layer) including at least a part of a control line 133 for controlling a transistor of the pixel 131 or at least a part of a signal line 132 for transmitting a pixel signal.
  • an active element layer 171 including an active element such as the MOS transistor 164 is formed on the second semiconductor substrate 102.
  • At least a part of the control line 133 or at least a part of the signal line 132 may constitute at least a part of the above-described Victim conductor loop (Victim conductor loop 11 or Victim conductor loop 1101). Absent.
  • the wiring layer 165A is disposed on the wiring layer 170 side of the first semiconductor substrate 101, and the wiring layer 165B is disposed on the active element layer 171 side.
  • wiring layer 165C (conductor layer C) may be arranged between wiring layer 165B and active element layer 171 as shown in FIG. .
  • each wiring layer is stacked in the order of the wiring layer 170, the wiring layer 165A, the wiring layer 165B, the wiring layer 165C, and the active element layer 171 from the first semiconductor substrate 101 side.
  • the wiring layer 165C (conductor layer C) may be disposed between the wiring layer 165A and the wiring layer 165B as shown in FIG. 120B.
  • each wiring layer is stacked in the order of the wiring layer 170, the wiring layer 165A, the wiring layer 165C, the wiring layer 165B, and the active element layer 171 from the first semiconductor substrate 101 side.
  • the wiring layer 165C (conductor layer C) may be disposed between the wiring layer 170 and the wiring layer 165A as shown in FIG. 120C.
  • each wiring layer is laminated in the order of the wiring layer 170, the wiring layer 165C, the wiring layer 165A, the wiring layer 165B, and the active element layer 171 from the first semiconductor substrate 101 side.
  • FIG. 120 is a diagram illustrating the positional relationship between the three conductor layers of the wiring layers 165A to 165C, and shows the relationship between the wiring layer 170 of the first semiconductor substrate 101 and the active element layer 171 of the second semiconductor substrate 102.
  • the first semiconductor substrate 101 may not include either the signal line 132 or the control line 133, and the first semiconductor substrate 101 may include both the signal line 132 and the control line 133.
  • at least a part of either the signal line 132 or the control line 133 may be formed on the wiring layer 170.
  • the signal line 132 or the control line 133 may be provided in the second semiconductor substrate 102 instead of the first semiconductor substrate 101.
  • the signal line 132 or the control line 133 may include at least a part of the first semiconductor substrate 101 and the second semiconductor substrate 102.
  • the first semiconductor substrate 101 and the second semiconductor substrate 102 At least it may be configured to straddle.
  • at least one of the wiring layers 165A, 165B, and 165C may be provided in the second semiconductor substrate 102 instead of the first semiconductor substrate 101.
  • the arrangement of the wiring layer 170 of the first semiconductor substrate 101 and the arrangement of the active element layer 171 of the second semiconductor substrate 102 may be omitted.
  • the first semiconductor substrate 101 and the second semiconductor substrate 102 may be integrally formed as one semiconductor substrate instead of being separate bodies.
  • the wiring layer 170 is interpreted as the Victim conductor loop 1101
  • the wiring layer 165A is interpreted as the Aggressor conductor loop 1102A
  • the wiring layer 165B is interpreted as the Aggressor conductor loop 1102B.
  • the wiring layer 165C may be provided, and it is desirable that the three conductor layers of the wiring layers 165A to 165C have the positional relationship shown in FIG. 120, but this is not a limitation.
  • FIG. 121 is a diagram showing an example of the wiring pattern of the wiring layer 165C.
  • FIG. 121 shows a conductor layer C (wiring layer 165C)
  • B of FIG. 121 shows a conductor layer A (wiring layer 165A)
  • C of FIG. 121 shows a conductor layer B (wiring layer 165B).
  • FIG. 121D is a plan view of the laminated state of the conductor layer A and the conductor layer C
  • FIG. 121E is a plan view of the laminated state of the conductor layer B and the conductor layer C
  • F is a plan view of a laminated state of the conductor layer A and the conductor layer B.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the direction perpendicular to the XY plane is the Z axis.
  • the conductor layer A (wiring layer 165A) and the conductor layer B (wiring layer 165B) of FIG. 121 have the resistance value in the X direction (first direction) and the Y direction (second direction) described with reference to FIG.
  • An eleventh configuration example using mesh-like conductors having different resistance values (direction) is employed.
  • the conductor layer A in FIG. 121B is made of a mesh conductor 1201.
  • the mesh conductor 1201 has a conductor width WXA, a gap width GXA, and a conductor period FXA in the X direction, and has a conductor width WYA, a gap width GYA, and a conductor period FYA in the Y direction.
  • the mesh conductor 1201 is a conductor having a shape in which basic patterns (first basic patterns) of the conductor cycle FXA and the conductor cycle FYA are repeatedly arranged on the same plane.
  • the mesh conductor 1201 is, for example, a wiring (Vss wiring) connected to GND or a negative power supply.
  • the gap region of the mesh-shaped conductor 1201 has a shape in which the Y direction is longer than the X direction, the resistance value differs between the X direction and the Y direction, and the resistance value in the Y direction is smaller than the resistance value in the X direction. Become. Therefore, the current flows more easily in the mesh conductor 1201 in the Y direction than in the X direction.
  • the conductor layer B in FIG. 121C is composed of a mesh conductor 1202.
  • the mesh conductor 1202 has a conductor width WXB in the X direction, a gap width GXB, and a conductor period FXB, and has a conductor width WYB, a gap width GYB, and a conductor period FYB in the Y direction.
  • the mesh conductor 1202 is a conductor having a shape in which basic patterns (second basic patterns) of the conductor cycle FXB and the conductor cycle FYB are repeatedly arranged on the same plane.
  • the mesh conductor 1202 is, for example, a wiring (Vdd wiring) connected to a positive power supply.
  • the gap region of the mesh-shaped conductor 1202 has a shape in which the Y direction is longer than the X direction, the resistance value differs between the X direction and the Y direction, and the resistance value in the Y direction is smaller than the resistance value in the X direction. Become. Therefore, current flows more easily in the mesh conductor 1202 in the Y direction than in the X direction.
  • the mesh-like conductor 1201 of the conductor layer A and the mesh-like conductor 1202 of the conductor layer B have a differential structure. That is, as described in the eleventh configuration example and the like, the current distribution of the mesh-shaped conductor 1201 of the conductor layer A and the current distribution of the mesh-shaped conductor 1202 of the conductor layer B have substantially equal and opposite characteristics. .
  • substantially equal means a difference in a range that can be regarded as equal. For example, a difference in a range that does not exceed at least twice may be sufficient.
  • the AC current flows substantially uniformly, and the current direction is the same as that of the mesh-like conductor 1201 and the mesh-like conductor. 1202 is the opposite direction.
  • the magnetic field generated by the current distribution of the mesh conductor 1201 and the magnetic field generated by the current distribution of the mesh conductor 1202 are effectively canceled. Thereby, inductive noise can be suppressed.
  • the lamination of the conductor layer A and the conductor layer B eliminates the opening area, so that the hot carrier emission from the active element group 167 can be shielded.
  • the conductor layer C in FIG. 121A is a conductor layer having a low sheet resistance in which current easily flows, and linear conductors 1211A long in the X direction and linear conductors 1211B long in the X direction are alternately arranged in the Y direction. Are arranged periodically.
  • the linear conductor 1211A is, for example, a wiring (Vss wiring) connected to GND or a negative power supply.
  • the linear conductor 1211B is, for example, a wiring (Vdd wiring) connected to a positive power supply.
  • the linear conductor 1211A is connected to, for example, a pad (not shown) on the outer peripheral portion of the semiconductor substrate, and is electrically connected to the mesh conductor 1201 of the conductor layer A.
  • the mesh conductor 1201 of the conductor layer A and the linear conductor 1211A of the conductor layer C may be electrically connected, for example, via a conductor via (VIA) extending in the Z direction.
  • the linear conductor 1211B is connected to, for example, a pad (not shown) on the outer peripheral portion of the semiconductor substrate, and is electrically connected to the mesh conductor 1202 of the conductor layer B.
  • the mesh-shaped conductor 1202 of the conductor layer B and the linear conductor 1211B of the conductor layer C may be electrically connected, for example, via a conductor via (VIA) extending in the Z direction.
  • the linear conductor 1211A has a conductor width WYCA in the Y direction
  • the linear conductor 1211B has a conductor width WYCB in the Y direction
  • the conductor width WYCA of the linear conductor 1211A is the conductor width WYCB of the linear conductor 1211B.
  • a gap having a gap width GYC is provided between the linear conductors 1211A and 1211B in the Y direction.
  • the conductor width WYCA of the linear conductor 1211A is: Since the conductor width WYCB of the linear conductors 1211B is different, the sum of the conductor widths WYCA of the plurality of linear conductors 1211A in a predetermined plane range is significantly different from the sum of the conductor widths WYCB of the plurality of linear conductors 1211B. .
  • the total amount of current flowing through the mesh-like conductor 1202 is larger than the total amount of current flowing through the mesh-like conductor 1201.
  • the current distribution is largely different between the mesh conductor 1201 and the mesh conductor 1202, so that the generation of inductive noise cannot be suppressed and the inductive noise deteriorates.
  • FIG. 122 shows a first configuration example of a three-layer conductor layer.
  • FIG. 122A shows the conductor layer C (wiring layer 165C)
  • FIG. 122B shows the conductor layer A (wiring layer 165A)
  • FIG. 122C shows the conductor layer B (wiring layer 165B).
  • FIG. 122 is a plan view of a laminated state of the conductor layer A and the conductor layer C
  • FIG. 122E is a plan view of a laminated state of the conductor layer B and the conductor layer C
  • F is a plan view of a laminated state of the conductor layer A and the conductor layer B.
  • the conductor layer A in FIG. 122B is composed of the same mesh conductor 1201 as in FIG. That is, the mesh conductor 1201 has a conductor width WXA, a gap width GXA, and a conductor period FXA in the X direction, and has a conductor width WYA, a gap width GYA, and a conductor period FYA in the Y direction.
  • the mesh conductor 1201 is a conductor having a shape in which basic patterns (first basic patterns) of the conductor cycle FXA and the conductor cycle FYA are repeatedly arranged on the same plane.
  • the mesh conductor 1201 is, for example, a wiring (Vss wiring) connected to GND or a negative power supply.
  • the conductor layer B in FIG. 122C is composed of the same mesh conductor 1202 as in FIG. That is, the mesh conductor 1202 has a conductor width WXB in the X direction, a gap width GXB, and a conductor cycle FXB, and has a conductor width WYB, a gap width GYB, and a conductor cycle FYB in the Y direction.
  • the mesh conductor 1202 is a conductor having a shape in which basic patterns (second basic patterns) of the conductor cycle FXB and the conductor cycle FYB are repeatedly arranged on the same plane.
  • the mesh conductor 1202 is, for example, a wiring (Vdd wiring) connected to a positive power supply.
  • substantially the same means a difference in a range that can be regarded as the same. For example, the difference may be at least a difference that does not exceed twice.
  • the conductor layer C in FIG. 122A is a conductor layer having a low sheet resistance through which current easily flows, and includes a linear conductor 1221A (third basic pattern) long in the X direction and a linear conductor 1221B (third basic pattern) long in the X direction. 4 basic patterns) are alternately and periodically arranged in the Y direction.
  • the linear conductor 1221A is, for example, a wiring (Vss wiring) connected to GND or a negative power supply.
  • the linear conductor 1221B is, for example, a wiring (Vdd wiring) connected to a positive power supply.
  • the linear conductor 1221A and the linear conductor 1221B are differential conductors (differential structures) in which current directions are opposite to each other.
  • the linear conductor 1221A is connected to, for example, a pad (not shown) on the outer peripheral portion of the semiconductor substrate, and is electrically connected to the mesh conductor 1201 of the conductor layer A.
  • the mesh-shaped conductor 1201 of the conductor layer A and the linear conductor 1221A of the conductor layer C may be electrically connected, for example, via a conductor via (VIA) extending in the Z direction.
  • the linear conductor 1221B is connected to, for example, a pad (not shown) on the outer peripheral portion of the semiconductor substrate, and is electrically connected to the mesh conductor 1202 of the conductor layer B.
  • the mesh-shaped conductor 1202 of the conductor layer B and the linear conductor 1221B of the conductor layer C may be electrically connected, for example, via a conductor via (VIA) extending in the Z direction.
  • the linear conductor 1221A has a conductor width WYCA in the Y direction
  • the linear conductor 1221B has a conductor width WYCB in the Y direction
  • the conductor width WYCA of the linear conductor 1221A and the conductor width WYCB of the linear conductor 1221B are not necessarily the same and may be substantially the same (conductor width WYCA ⁇ conductor width WYCB).
  • a gap having a gap width GYC is provided between the linear conductors 1221A and 1221B in the Y direction.
  • the conductor period FYC of the linear conductor 1221A and the conductor period FYC of the linear conductor 1221B are the same or substantially the same.
  • the conductor cycle FYC which is the repetition cycle of the linear conductor 1221A of the conductor layer C, is an integral multiple of the conductor cycle FYA which is the repetition cycle of the mesh conductor 1201 of the conductor layer A in the Y direction.
  • FIG. 122 shows an example in which the conductor period FYC is twice the conductor period FYA.
  • the conductor cycle FYC which is the repetition cycle of the linear conductor 1221B of the conductor layer C, is an integral multiple of the conductor cycle FYB which is the repetition cycle of the mesh conductor 1202 of the conductor layer B in the Y direction.
  • FIG. 122 is an example in which the conductor period FYC is twice the conductor period FYB.
  • the conductor width WYCA, the conductor width WYCB, and the gap width GYC can be designed to any values.
  • the conductor width WYCA of the linear conductor 1221A Since the conductor width WYCB of the linear conductor 1221B is the same or substantially the same, the sum of the conductor widths WYCA of the plurality of linear conductors 1221A in a predetermined plane range and the conductor width WYCB of the plurality of linear conductors 1221B are determined. The sum is the same or substantially the same.
  • the current distribution of the linear conductor 1221A and the current distribution of the linear conductor 1221B are the same or substantially the same, so that the generation of inductive noise can be suppressed.
  • the linear conductors 1221A and 1221B of the conductor layer C and the Capacitive noise may occur due to capacitive coupling between the signal line 132 and the control line 133.
  • the capacitive noise is repeated. Can be completely canceled in the Y direction. The capacitive noise can be greatly improved as the conductor layer C is closer to the wiring layer 170.
  • the stack of the conductor layers A and B has a light-shielding structure, so that hot carrier emission from the active element group 167 can be shielded.
  • the laminated structure of the conductor layers A and C and the laminated structure of the conductor layers B and C also have a light-shielding structure, and light-shielding properties are maintained.
  • the light-shielding restrictions of the conductor layers A and B can be greatly eased, so that the conductor area of the conductor layers A and B can be used to the maximum, the wiring resistance can be reduced, and the voltage drop can be further improved. can do. Further, the degree of freedom in the layout of the conductor layers A and B can be improved.
  • the mesh conductor 1201 of the conductor layer A is electrically connected to the linear conductor 1221A of the conductor layer C
  • the mesh conductor 1202 of the conductor layer B is electrically connected to the linear conductor 1221B of the conductor layer C.
  • the amount of current in the conductor layers A and B can be reduced, so that inductive noise and voltage drop from the conductor layers A and B can be further improved.
  • FIG. 123 shows a second configuration example of the three conductor layers.
  • FIG. 123A shows the conductor layer C (wiring layer 165C)
  • FIG. 123B shows the conductor layer A (wiring layer 165A)
  • FIG. 123C shows the conductor layer B (wiring layer 165B).
  • FIG. 123D is a plan view of a laminated state of the conductor layer A and the conductor layer C
  • FIG. 123E is a plan view of a laminated state of the conductor layer B and the conductor layer C
  • F is a plan view of a laminated state of the conductor layer A and the conductor layer B.
  • the conductor layer A of FIG. 123B is the same mesh conductor 1201 as the first configuration example of FIG. 122, and the conductor layer B of FIG. 123C is the same mesh conductor as the first configuration example of FIG. Since it is 1202, its description is omitted.
  • the conductor layer C of A in FIG. 123 is configured by arranging linear conductors 1222A long in the X direction and linear conductors 1222B long in the X direction alternately and periodically in the Y direction in units of two. ing.
  • the linear conductor 1222A is, for example, a wiring (Vss wiring) connected to GND or a negative power supply.
  • the linear conductor 1222B is, for example, a wiring (Vdd wiring) connected to a positive power supply.
  • the linear conductor 1222A and the linear conductor 1222B are differential conductors whose current directions are opposite to each other.
  • the linear conductor 1222A is connected to, for example, a pad (not shown) on the outer peripheral portion of the semiconductor substrate, and is electrically connected to the mesh conductor 1201 of the conductor layer A.
  • the mesh-shaped conductor 1201 of the conductor layer A and the linear conductor 1222A of the conductor layer C may be electrically connected, for example, via a conductor via (VIA) extending in the Z direction.
  • the linear conductor 1222B is connected to, for example, a pad (not shown) on the outer peripheral portion of the semiconductor substrate, and is electrically connected to the mesh conductor 1202 of the conductor layer B.
  • the mesh-shaped conductor 1202 of the conductor layer B and the linear conductor 1222B of the conductor layer C may be electrically connected, for example, via a conductor via (VIA) extending in the Z direction.
  • the linear conductor 1222A has a conductor width WYCA in the Y direction
  • the linear conductor 1222B has a conductor width WYCB in the Y direction
  • the conductor width WYCA of the linear conductor 1222A and the conductor width WYCB of the linear conductor 1222B are not necessarily the same and may be substantially the same (conductor width WYCA ⁇ conductor width WYCB).
  • the linear conductors 1222A adjacent to each other in the Y direction, the linear conductors 1222B, or the linear conductor 1222A and the linear conductor 1222B have a gap width GYC.
  • the conductor cycle FYC of the two linear conductors 1222A and the conductor cycle FYC of the two linear conductors 1222B are the same or substantially the same.
  • FIG. 123 shows an example in which two linear conductors 1222A and 1222B are periodically arranged. However, the present invention is not limited thereto. For example, three or more linear conductors may be periodically arranged. . Further, FIG. 123 shows an example in which the same number of linear conductors are periodically arranged in the linear conductors 1222A and 1222B. However, the present invention is not limited thereto. However, different numbers of linear conductors may be periodically arranged.
  • the linear conductors 1222A and 1222B of the conductor layer C and the Capacitive noise may occur due to capacitive coupling between the signal line 132 and the control line 133.
  • the capacitive noise is reduced. Can be completely canceled in the Y direction. The capacitive noise can be greatly improved as the conductor layer C is closer to the wiring layer 170.
  • the laminate of the conductor layers A and B has a light-shielding structure, and can shield hot carrier emission from the active element group 167, as shown in FIGS. 123D and E.
  • a certain range of light-shielding properties is maintained in the lamination of the conductor layers A and C and the lamination of the conductor layers B and C.
  • the light-shielding restrictions of the conductor layers A and B can be relaxed, so that the conductor area of the conductor layers A and B can be maximized, the wiring resistance can be reduced, and the voltage drop can be further improved.
  • Can be Further, the degree of freedom in the layout of the conductor layers A and B can be improved.
  • the mesh conductor 1201 of the conductor layer A is electrically connected to the straight conductor 1222A of the conductor layer C
  • the mesh conductor 1202 of the conductor layer B is electrically connected to the straight conductor 1222B of the conductor layer C.
  • the amount of current in the conductor layers A and B can be reduced, so that inductive noise and voltage drop from the conductor layers A and B can be further improved.
  • FIG. 124 shows a first modification of the second configuration example of the three-layer conductor layer.
  • FIG. 124 A to F in FIG. 124 correspond to A to F in FIG. 123, respectively, and description of common parts denoted by the same reference numerals will be omitted as appropriate, and different parts will be described.
  • the conductor width WYCA in the Y direction of the two linear conductors 1222A adjacent in the Y direction in the conductor layer C was the same.
  • the conductor widths of the two linear conductors 1222A adjacent in the Y direction are different between the conductor widths WYCA1 and WYCA2 (conductor width WYCA1 ⁇ conductor width WYCA2).
  • the conductor width WYCA1 and the conductor width WYCA2 can be designed to have arbitrary values.
  • the conductor width WYCB in the Y direction of two linear conductors 1222B adjacent in the Y direction was the same.
  • the conductor widths of the two linear conductors 1222B adjacent in the Y direction are different between the conductor width WYCB1 and the conductor width WYCB2 (conductor width WYCB1 ⁇ conductor width WYCB2).
  • the conductor width WYCB1 and the conductor width WYCB2 can be designed to have arbitrary values.
  • the configuration is the same as the second configuration example of FIG. 123 except for the difference in the conductor width of the linear conductors 1222A and 1222B.
  • FIG. 125 shows a second modification of the second configuration example of the three conductor layers.
  • FIG. 125A to F in FIG. 125 correspond to A to F in FIG. 123, respectively, and description of common portions denoted by the same reference numerals will be omitted as appropriate, and different portions will be described.
  • the second modification of FIG. 125 differs from the second configuration example of FIG. 123 in that the conductor width of two linear conductors 1222A adjacent in the Y direction is different in the conductor layer C. Common to the first modification. In addition, the difference from the second configuration example of FIG. 123 is that the conductor widths of two linear conductors 1222B adjacent in the Y direction are different, and are common to the first modification example of FIG.
  • the arrangement of the two linear conductors 1222A having different conductor widths was the same as the arrangement of the two linear conductors 1222B.
  • two linear conductors 1222A are arranged in the order of a linear conductor 1222A having a narrow conductor width (of conductor width WYCA1), and a linear conductor 1222A having a large conductor width of conductor width (of conductor width WYCA2).
  • the two linear conductors 1222B are also linear conductors 1222B having a narrow conductor width (of conductor width WYCB1) and linear conductors 1222B having a large conductor width of conductor width (of conductor width WYCB2). , In the order of Y.

Abstract

本技術は、信号におけるノイズの発生をより効果的に抑制することができるようにする回路基板、半導体装置、および、電子機器に関する。 回路基板は、第1の方向へ第1の周期幅で配置された第1の導体幅の2本以上の導体で構成される第1の導体群と、第1の方向に直交する第2の方向へ第2の周期幅で配置された第2の導体幅の2本以上の導体で構成される第2の導体群と、第2の導体群の少なくとも一部を、第1の方向へ第1の周期幅の1倍を移動させて、かつ、第2の方向へ第3の周期幅の1倍を移動させた位置に配置される第1の移動導体群とを含む網目状導体を備え、第3の周期幅と第2の周期幅とが異なる。本技術は、例えば、半導体装置の回路基板等に適用できる。

Description

回路基板、半導体装置、および、電子機器
 本技術は、回路基板、半導体装置、および、電子機器に関し、特に、信号におけるノイズの発生をより効果的に抑制できるようにした回路基板、半導体装置、および、電子機器に関する。
 CMOS(complementary metal oxide semiconductor)イメージセンサに代表される固体撮像装置においては、各画素が生成する画素信号に対して、固体撮像装置の内部の構成に起因してノイズが生じ得る。
 例えば、固体撮像装置の内部に存在するトランジスタやダイオード等の能動素子には微細なホットキャリア発光を生じるものが有り、このホットキャリア発光が画素に形成された光電変換部に漏れ込んだ場合、画素信号にノイズが生じることになる。
 能動素子から生じたホットキャリア発光に起因するノイズを抑制する方法としては、能動素子と光電変換部の間の形成されている配線に遮光構造を持たせる技術が知られている(例えば、特許文献1参照)。
 また、例えば、固体撮像装置の内部の構成に起因して生じた磁界による誘導起電力によって画素信号にノイズ(誘導性ノイズ)が生じることがある。具体的には、ある画素から画素信号を読み出す際に、画素信号を読み出す画素を選択するための制御信号が伝達される制御線と、選択された画素から読み出された画素信号が伝達される信号線とから導体ループが画素アレイ上に形成される。
 そして、制御線と信号線から成る導体ループの近傍に配線が存在すると、その配線に流れる電流変化により導体ループを通過する磁束が発生し、これにより導体ループに誘導起電力が発生して画素信号に誘導性ノイズが生じることがある。以下、近傍の配線に流れる電流変化により磁束が発生し、それにより誘導起電力が発生する導体ループをVictim導体ループと称することにする。
 電子機器の内部における誘導性ノイズを抑制する方法としては、電子機器内部で磁束を生じさせていた配線を、2層の網目状配線とすることにより、発生していた磁束を打ち消す方法が存在する(例えば、特許文献2参照)。
WO2013/115075 特開2014-57426号公報
 ただし、上述した特許文献2に記載の発明では、誘導性ノイズは抑制できるが、ホットキャリア発光を遮光することについては考慮されていなかった。
 本技術はこのような状況に鑑みてなされたものであり、信号におけるノイズの発生をより効果的に抑制できるようにするものである。
 本技術の第1の側面の回路基板は、第1の方向へ第1の周期幅で配置された第1の導体幅の2本以上の導体で構成される第1の導体群と、前記第1の方向に直交する第2の方向へ第2の周期幅で配置された第2の導体幅の2本以上の導体で構成される第2の導体群と、前記第2の導体群の少なくとも一部を、前記第1の方向へ前記第1の周期幅の1倍を移動させて、かつ、前記第2の方向へ第3の周期幅の1倍を移動させた位置に配置される第1の移動導体群とを含む網目状導体を備え、前記第3の周期幅と前記第2の周期幅とが異なる。
 本技術の第2の側面の半導体装置は、第1の方向へ第1の周期幅で配置された第1の導体幅の2本以上の導体で構成される第1の導体群と、前記第1の方向に直交する第2の方向へ第2の周期幅で配置された第2の導体幅の2本以上の導体で構成される第2の導体群と、前記第2の導体群の少なくとも一部を、前記第1の方向へ前記第1の周期幅の1倍を移動させて、かつ、前記第2の方向へ第3の周期幅の1倍を移動させた位置に配置される第1の移動導体群とを含む網目状導体を備え、前記第3の周期幅と前記第2の周期幅とが異なる回路基板を備える。
 本技術の第3の側面の電子機器は、第1の方向へ第1の周期幅で配置された第1の導体幅の2本以上の導体で構成される第1の導体群と、前記第1の方向に直交する第2の方向へ第2の周期幅で配置された第2の導体幅の2本以上の導体で構成される第2の導体群と、前記第2の導体群の少なくとも一部を、前記第1の方向へ前記第1の周期幅の1倍を移動させて、かつ、前記第2の方向へ第3の周期幅の1倍を移動させた位置に配置される第1の移動導体群とを含む網目状導体を備え、前記第3の周期幅と前記第2の周期幅とが異なる回路基板を備える半導体装置を備える。
 本技術の第1乃至第3の側面においては、第1の方向へ第1の周期幅で配置された第1の導体幅の2本以上の導体で構成される第1の導体群と、前記第1の方向に直交する第2の方向へ第2の周期幅で配置された第2の導体幅の2本以上の導体で構成される第2の導体群と、前記第2の導体群の少なくとも一部を、前記第1の方向へ前記第1の周期幅の1倍を移動させて、かつ、前記第2の方向へ第3の周期幅の1倍を移動させた位置に配置される第1の移動導体群とを含む網目状導体が設けられ、前記第3の周期幅と前記第2の周期幅とが異なるように構成される。
 回路基板、半導体装置、及び、電子機器は、独立した装置であっても良いし、他の装置に組み込まれるモジュールであっても良い。
 本技術の第1乃至第3の側面によれば、信号におけるノイズの発生を抑制することができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
導体ループの変化による誘導起電力の変化を説明する図である。 本技術を適用した固体撮像装置の構成例を示すブロック図である。 画素・アナログ処理部の主な構成要素例を示すブロック図である。 画素アレイの詳細な構成例を示す図である。 画素の構成例を示す回路図である。 固体撮像装置の断面構造例を示すブロック図である。 能動素子群が形成された領域から成る回路ブロックの平面配置例を示す概略構成図である。 遮光構造による遮光対象領域と、能動素子群の領域および緩衝領域との位置関係例を示す図である。 導体層A及びBの第1の比較例を示す図である。 第1の比較例に流れる電流条件を示す図である。 第1の比較例に対応する誘導性ノイズのシミュレーション結果を示す図である。 導体層A及びBの第1の構成例を示す図である。 第1の構成例に流れる電流条件を示す図である。 第1の構成例に対応する誘導性ノイズのシミュレーション結果を示す図である。 導体層A及びBの第2の構成例を示す図である。 第2の構成例に流れる電流条件を示す図である。 第2の構成例に対応する誘導性ノイズのシミュレーション結果を示す図である。 導体層A及びBの第2の比較例を示す図である。 第2の比較例に対応する誘導性ノイズのシミュレーション結果を示す図である。 導体層A及びBの第3の比較例を示す図である。 第3の比較例に対応する誘導性ノイズのシミュレーション結果を示す図である。 導体層A及びBの第3の構成例を示す図である。 第3の構成例に流れる電流条件を示す図である。 第3の構成例に対応する誘導性ノイズのシミュレーション結果を示す図である。 導体層A及びBの第4の構成例を示す図である。 導体層A及びBの第5の構成例を示す図である。 導体層A及びBの第6の構成例を示す図である。 第4乃至第6の構成例に対応する誘導性ノイズのシミュレーション結果を示す図である。 導体層A及びBの第7の構成例を示す図である。 第7の構成例に流れる電流条件を示す図である。 第7の構成例に対応する誘導性ノイズのシミュレーション結果を示す図である。 導体層A及びBの第8の構成例を示す図である。 導体層A及びBの第9の構成例を示す図である。 導体層A及びBの第10の構成例を示す図である。 第8乃至第10の構成例に対応する誘導性ノイズのシミュレーション結果を示す図である。 導体層A及びBの第11の構成例を示す図である。 第11の構成例に流れる電流条件を示す図である。 第11の構成例に対応する誘導性ノイズのシミュレーション結果を示す図である。 導体層A及びBの第12の構成例を示す図である。 導体層A及びBの第13の構成例を示す図である。 第12及び第13の構成例に対応する誘導性ノイズのシミュレーション結果を示す図である。 半導体基板におけるパッドの第1の配置例を示す平面図である。 半導体基板におけるパッドの第2の配置例を示す平面図である。 半導体基板におけるパッドの第3の配置例を示す平面図である。 X方向とY方向とで抵抗値が異なる導体の例を示す図である。 導体層A及びBの第2の構成例のX方向の導体周期を1/2倍に変形した変形例とその効果を示す図である。 導体層A及びBの第5の構成例のX方向の導体周期を1/2倍に変形した変形例とその効果を示す図である。 導体層A及びBの第6の構成例のX方向の導体周期を1/2倍に変形した変形例とその効果を示す図である。 導体層A及びBの第2の構成例のY方向の導体周期を1/2倍に変形した変形例とその効果を示す図である。 導体層A及びBの第5の構成例のY方向の導体周期を1/2倍に変形した変形例とその効果を示す図である。 導体層A及びBの第6の構成例のY方向の導体周期を1/2倍に変形した変形例とその効果を示す図である。 導体層A及びBの第2の構成例のX方向の導体幅を2倍に変形した変形例とその効果を示す図である。 導体層A及びBの第5の構成例のX方向の導体幅を2倍に変形した変形例とその効果を示す図である。 導体層A及びBの第6の構成例のX方向の導体幅を2倍に変形した変形例とその効果を示す図である。 導体層A及びBの第2の構成例のY方向の導体幅を2倍に変形した変形例とその効果を示す図である。 導体層A及びBの第5の構成例のY方向の導体幅を2倍に変形した変形例とその効果を示す図である。 導体層A及びBの第6の構成例のY方向の導体幅を2倍に変形した変形例とその効果を示す図である。 導体層A及びBの各構成例を形成する網目状導体の変形例を示す図である。 レイアウト自由度の向上を説明するための図である。 電圧降下(IR-Drop)の低減を説明するための図である。 電圧降下(IR-Drop)の低減を説明するための図である。 容量性ノイズの低減を説明するための図である。 導体層の主導体部と引出し導体部を説明する図である。 導体層A及びBの第11の構成例を示す図である。 導体層A及びBの第14の構成例を示す図である。 導体層A及びBの第14の構成例の第1変形例を示す図である。 導体層A及びBの第14の構成例の第2変形例を示す図である。 導体層A及びBの第14の構成例の第3変形例を示す図である。 導体層A及びBの第15の構成例を示す図である。 導体層A及びBの第15の構成例の第1変形例を示す図である。 導体層A及びBの第15の構成例の第2変形例を示す図である。 導体層A及びBの第16の構成例を示す図である。 導体層A及びBの第16の構成例の第1変形例を示す図である。 導体層A及びBの第16の構成例の第2変形例を示す図である。 導体層A及びBの第17の構成例を示す図である。 導体層A及びBの第17の構成例の第1変形例を示す図である。 導体層A及びBの第17の構成例の第2変形例を示す図である。 導体層A及びBの第18の構成例を示す図である。 導体層A及びBの第19の構成例を示す図である。 導体層A及びBの第19の構成例の変形例を示す図である。 導体層A及びBの第20の構成例を示す図である。 導体層A及びBの第21の構成例を示す図である。 導体層A及びBの第22の構成例を示す図である。 第22の構成例における導体層Bの他の構成例を示す図である。 導体層A及びBの第23の構成例を示す図である。 導体層A及びBの第24の構成例を示す図である。 導体層A及びBの第25の構成例を示す図である。 導体層A及びBの第26の構成例を示す図である。 導体層A及びBの第27の構成例を示す図である。 導体層A及びBの第28の構成例を示す図である。 第28の構成例における導体層Aの他の構成例を示す図である。 基板上に形成された導体層Aの全体を示す平面図である。 パッドの第4の配置例を示す平面図である。 パッドの第5の配置例を示す平面図である。 パッドの第6の配置例を示す平面図である。 パッドの第7の配置例を示す平面図である。 パッドの第8の配置例を示す平面図である。 パッドの第9の配置例を示す平面図である。 パッドの第10の配置例を示す平面図である。 パッドの第11の配置例を示す平面図である。 パッドの第12の配置例を示す平面図である。 パッドの第13の配置例を示す平面図である。 パッドの第14の配置例を示す平面図である。 パッドの第15の配置例を示す平面図である。 パッドの第16の配置例を示す平面図である。 パッドの第17の配置例を示す平面図である。 パッドの第18の配置例を示す平面図である。 パッドの第19の配置例を示す平面図である。 Victim導体ループとAggressor導体ループの基板配置例を示す断面図である。 Victim導体ループとAggressor導体ループの基板配置例を示す断面図である。 3種類の基板が積層された構造におけるVictim導体ループとAggressor導体ループの配置例を説明する図である。 3種類の基板が積層された構造におけるVictim導体ループとAggressor導体ループの配置例を説明する図である。 固体撮像装置を成す第1の半導体基板と第2の半導体基板とのパッケージ積層例を示す図である。 導電性シールドを設けた構成例を示す断面図である。 導電性シールドを設けた構成例を示す断面図である。 導電性シールドの信号線に対する配置と平面形状の第1の構成例を示す図である。 導電性シールドの信号線に対する配置と平面形状の第2の構成例を示す図である。 導電性シールドの信号線に対する配置と平面形状の第3の構成例を示す図である。 導電性シールドの信号線に対する配置と平面形状の第4の構成例を示す図である。 導体層が3層ある場合の配置例を示す図である。 導体層が3層ある場合の問題を説明する図である。 3層導体層の第1の構成例を示す図である。 3層導体層の第2の構成例を示す図である。 3層導体層の第2の構成例の第1変形例を示す図である。 3層導体層の第2の構成例の第2変形例を示す図である。 3層導体層の第3の構成例を示す図である。 3層導体層の第3の構成例の変形例を示す図である。 3層導体層の第4の構成例を示す図である。 3層導体層の第4の構成例の第1変形例を示す図である。 3層導体層の第4の構成例の第2変形例を示す図である。 3層導体層の第5の構成例を示す図である。 3層導体層の第6の構成例を示す図である。 3層導体層の第6の構成例の変形例を示す図である。 3層導体層の第7の構成例を示す図である。 3層導体層の第8の構成例を示す図である。 3層導体層の第8の構成例の第1変形例を示す図である。 3層導体層の第8の構成例の第2変形例を示す図である。 3層導体層の第8の構成例の第3変形例を示す図である。 3層導体層の第8の構成例の第4変形例を示す図である。 3層導体層の第8の構成例の第5変形例を示す図である。 3層導体層の第9の構成例を示す図である。 3層導体層の第9の構成例の第1変形例を示す図である。 3層導体層の第9の構成例の第2変形例を示す図である。 3層導体層の第9の構成例の第3変形例を示す図である。 3層導体層の第9の構成例の第4変形例を示す図である。 3層導体層の第10の構成例を示す図である。 3層導体層の第10の構成例の変形例を示す図である。 3層導体層の第11の構成例を示す図である。 3層導体層の第12の構成例を示す図である。 3層導体層の第12の構成例の第1変形例を示す図である。 3層導体層の第12の構成例の第2変形例を示す図である。 3層導体層の第13の構成例を示す図である。 3層導体層の第14の構成例を示す図である。 3層導体層の第14の構成例の第1変形例を示す図である。 3層導体層の第14の構成例の第2変形例を示す図である。 3層導体層の第14の構成例の第3変形例乃至第5変形例を示す図である。 3層導体層の第14の構成例の第6変形例乃至第8変形例を示す図である。 3層導体層の第14の構成例の第9変形例乃至第11変形例を示す図である。 3層導体層の第14の構成例の第12変形例乃至第14変形例を示す図である。 3層導体層の第14の構成例の第15変形例乃至第17変形例を示す図である。 3層導体層の第14の構成例の第18変形例乃至第20変形例を示す図である。 3層導体層の第14の構成例の第21変形例乃至第23変形例を示す図である。 3層導体層の第14の構成例の第24変形例乃至第26変形例を示す図である。 網目状導体の容量性ノイズについて説明する図である。 所定のずらし量を設定した網目状導体の容量性ノイズについて説明する図である。 網目状導体の第1のずらし構成例の導体幅および間隙幅を説明する図である。 網目状導体の第1のずらし構成例の平面図である。 網目状導体の第1のずらし構成例の平面図である。 第1のずらし構成例の容量性ノイズの理論値を示す図である。 第1のずらし構成例の容量性ノイズの理論値を示す図である。 網目状導体の定義を説明する図である。 網目状導体の定義を説明する図である。 第1のずらし構成例の第1および第2変形例を示す平面図である。 第1のずらし構成例の第3および第4変形例を示す平面図である。 第1のずらし構成例の第5および第6変形例を示す平面図である。 第1のずらし構成例の第7および第8変形例を示す平面図である。 第1のずらし構成例の第9および第10変形例を示す平面図である。 第1のずらし構成例の第11および第12変形例を示す平面図である。 第1のずらし構成例の第13および第14変形例を示す平面図である。 第1のずらし構成例の第15および第16変形例を示す平面図である。 第1のずらし構成例の第17および第18変形例を示す平面図である。 網目状導体の第2のずらし構成例の平面図である。 第2のずらし構成例の容量性ノイズの理論値を示す図である。 第2のずらし構成例の容量性ノイズの理論値を示す図である。 網目状導体の第3のずらし構成例の導体幅および間隙幅を説明する図である。 網目状導体の第3のずらし構成例の平面図である。 網目状導体の第3のずらし構成例の平面図である。 第3のずらし構成例の容量性ノイズの理論値を示す図である。 第3のずらし構成例の容量性ノイズの理論値を示す図である。 網目状導体の第4のずらし構成例の導体幅および間隙幅を説明する図である。 網目状導体の第4のずらし構成例の平面図である。 網目状導体の第4のずらし構成例の平面図である。 第4のずらし構成例の容量性ノイズの理論値を示す図である。 第4のずらし構成例の容量性ノイズの理論値を示す図である。 網目状導体の第5のずらし構成例の導体幅および間隙幅を説明する図である。 網目状導体の第5のずらし構成例の平面図である。 網目状導体の第5のずらし構成例の平面図である。 網目状導体の第5のずらし構成例の平面図である。 第5のずらし構成例の容量性ノイズの理論値を示す図である。 第5のずらし構成例の容量性ノイズの理論値を示す図である。 網目状導体の第6のずらし構成例の導体幅および間隙幅を説明する図である。 網目状導体の第6のずらし構成例の平面図である。 網目状導体の第6のずらし構成例の平面図である。 第6のずらし構成例の容量性ノイズの理論値を示す図である。 第6のずらし構成例の容量性ノイズの理論値を示す図である。 網目状導体の第7のずらし構成例の導体幅および間隙幅を説明する図である。 網目状導体の第7のずらし構成例の平面図である。 網目状導体の第7のずらし構成例の平面図である。 第7のずらし構成例の容量性ノイズの理論値を示す図である。 第7のずらし構成例の容量性ノイズの理論値を示す図である。 撮像装置の構成例を示すブロック図である。 体内情報取得システムの概略的な構成の一例を示すブロック図である。 内視鏡手術システムの概略的な構成の一例を示す図である。 カメラヘッド及びCCUの機能構成の一例を示すブロック図である。 車両制御システムの概略的な構成の一例を示すブロック図である。 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。
 以下、本技術を実施するための最良の形態(以下、実施の形態と称する)について、図面を参照しながら詳細に説明する。なお、説明は、以下の順序で行なう。
 1.Victim導体ループと磁束
 2.本技術の実施の形態である固体撮像装置の構成例
 3.ホットキャリア発光に対する遮光構造
 4.導体層A及びBの構成例
 5.導体層A及びBが形成される半導体基板における電極の配置例
 6.導体層A及びBの構成例の変形例
 7.網目状導体の変形例
 8.様々な効果
 9.引き出し部が異なる構成例
 10.パッドとの接続構成例
 11.導電性シールドの配置例
 12.導体層が3層ある場合の構成例
 13.応用例
 14.網目状導体のずらし構成例
 15.撮像装置の構成例
 16.体内情報取得システムへの応用例
 17.内視鏡手術システムへの応用例
 18.移動体への応用例
<1.Victim導体ループと磁束>
 例えば、CMOSイメージセンサ等の固体撮像装置(半導体装置)において電源配線の近傍にVictim導体ループが形成される回路が存在する場合、Victim導体ループのループ面内を通過する磁束が変化すると、Victim導体ループに発生する誘導起電力が変化し、画素信号にノイズが発生することがあった。なお、Victim導体ループは、少なくとも一部に導体を含んで形成されていればよい。また、Victim導体ループが全て導体で形成されていてもよい。
 ここで、Victim導体ループ(第1の導体ループ)とは、近傍で生じた磁界強度の変化に影響を受ける側の導体ループを指す。一方、Victim導体ループの近傍に存在し、流れる電流の変化によって磁界強度に変化を生じさせ、Victim導体ループに対して影響を及ぼす側の導体ループをAggressor導体ループ(第2の導体ループ)と称する。
 図1は、Victim導体ループの変化による誘導起電力の変化を説明する図である。例えば、図1に示されるCMOSイメージセンサ等の固体撮像装置は、ピクセル基板10とロジック基板20とが、上からその順に積層されて構成される。図1の固体撮像装置においては、ピクセル基板10の画素領域にVictim導体ループ11(11A,11B)の少なくとも一部が形成され、そのピクセル基板10に積層されるロジック基板20の、このVictim導体ループ11の近傍には、(デジタル)電源を供給するための電源配線21が形成される。
 そして、ピクセル基板10上のVictim導体ループ11のループ面内には、この電源配線21による磁束が通過し、それによってVictim導体ループ11に誘導起電力が発生する。
 なお、Victim導体ループ11に発生する誘導起電力Vemfは次式(1)および(2)によって算出できる。なお、Φは磁束、Hは磁界強度、μは透磁率、SはVictim導体ループ11の面積をそれぞれ示す。
Figure JPOXMLDOC01-appb-M000001
           ・・・(1)
Figure JPOXMLDOC01-appb-M000002
           ・・・(2)
 ピクセル基板10の画素領域に形成されるVictim導体ループ11のループ経路は、画素信号を読み出す読み出し対象画素として選択される画素の位置によって変わる。図1の例の場合、画素Aが選択された際に形成されるVictim導体ループ11Aのループ経路は、画素Aと異なる位置の画素Bが選択された際に形成されるVictim導体ループ11Bのループ経路と異なる。換言すると、選択される画素の位置によって、導体ループの実効的な形状が変化する。
 このようにVictim導体ループ11のループ経路が変化すると、Victim導体ループのループ面内を通過する磁束が変化し、それによってVictim導体ループに発生する誘導起電力が大きく変化することがあった。また、その誘導起電力の変化により、画素から読み出される画素信号にノイズ(誘導性ノイズ)が生じることがあった。そして、この誘導性ノイズにより、撮像画像に縞状の画像ノイズが発生することがあった。つまり、撮像画像の画質が低減することがあった。
 そこで、本開示では、Victim導体ループおける誘導起電力による誘導性ノイズの発生を抑制する技術を提案する。
<2.本技術の実施の形態である固体撮像装置(半導体装置)の構成例>
 図2は、本技術の実施の形態である固体撮像装置の主な構成例を示すブロック図である。
 図2に示される固体撮像装置100は、被写体からの光を光電変換して画像データとして出力するデバイスである。例えば、固体撮像装置100は、CMOSを用いた裏面照射型CMOSイメージセンサ等として構成される。
 図2に示されるように、固体撮像装置100は、第1の半導体基板101と第2の半導体基板102とが積層されて構成される。
 第1の半導体基板101には、画素やアナログ回路等を有する画素・アナログ処理部111が形成されている。第2の半導体基板102には、デジタル回路等を有するデジタル処理部112が形成されている。
 第1の半導体基板101および第2の半導体基板102は、互いに絶縁された状態で重畳される。つまり、画素・アナログ処理部111の構成と第2の半導体基板102の構成とは、基本的に互いに絶縁されている。なお、図示を省略しているが、画素・アナログ処理部111に形成される構成と、デジタル処理部112に形成される構成とは、必要に応じて(必要な部分が)、例えば、導体ビア(VIA)、シリコン貫通ビア(TSV)、Cu-Cu接合、Au-Au接合、若しくは、Al-Al接合等の同種金属接合、Cu-Au接合、Cu-Al接合、若しくは、Au- Al接合等の異種金属接合、または、ボンディングワイヤ等を介して互いに電気的に接続される。
 なお、図2においては、積層された2層の基板からなる固体撮像装置100を例に説明したが、固体撮像装置100を構成する基板の積層数は任意である。例えば単層であってもよいし、3層以上であってもよい。以下においては、図2の例のように2層の基板により構成される場合について説明する。
 図3は、画素・アナログ処理部111に形成される主な構成要素例を示すブロック図である。
 図3に示されるように、画素・アナログ処理部111には、画素アレイ121、A/D変換部122、および垂直走査部123等が形成される。
 画素アレイ121は、フォトダイオード等の光電変換素子をそれぞれ有する複数の画素131(図4)が縦横に配置されている。
 A/D変換部122は、画素アレイ121の各画素131から読み出されたアナログ信号等をA/D変換し、その結果得られるデジタルの画素信号を出力する。
 垂直走査部123は、画素アレイ121の各画素131のトランジスタ(図5の転送トランジスタ142等)の動作を制御する。つまり、画素アレイ121の各画素131に蓄積された電荷は、垂直走査部123に制御されて読み出され、画素信号として、単位画素のカラム毎に信号線132(図4)を介してA/D変換部122に供給され、A/D変換される。
 A/D変換部122は、そのA/D変換結果(デジタルの画素信号)を、画素131のカラム毎に、デジタル処理部112に形成されるロジック回路(図示せず)に供給する。
 図4は、画素アレイ121の詳細な構成例を示す図である。画素アレイ121には、画素131-11乃至131-MNが形成されている(M,Nは任意の自然数)。すなわち、画素アレイ121には、M行N列の画素131が行列状(アレイ状)に配置されている。以下、画素131-11乃至131-MNを個々に区別する必要が無い場合、画素131と称する。
 画素アレイ121には、信号線132-1乃至132-Nと、制御線133-1乃至133-Mが形成されている。以下、信号線132-1乃至132-Nを個々に区別する必要が無い場合、信号線132と称し、制御線133-1乃至133-Mを個々に区別する必要が無い場合、制御線133と称する。
 画素131には、カラム(列)毎に、そのカラムに対応する信号線132が接続されている。また、画素131には、行毎に、その行に対応する制御線133に接続されている。画素131に対しては、制御線133を介して、垂直走査部123からの制御信号が伝送される。
 画素131からは、信号線132を介して、アナログの画素信号がA/D変換部122に出力される。
 次に、図5は、画素131の構成例を示す回路図である。画素131は、光電変換素子としてのフォトダイオード141、転送トランジスタ142、リセットトランジスタ143、増幅トランジスタ144、およびセレクトトランジスタ145を有する。
 フォトダイオード141は、受光した光をその光量に応じた電荷量の光電荷(ここでは、光電子)に光電変換してその光電荷を蓄積する。フォトダイオード141のアノード電極はGNDに接続され、カソード電極は転送トランジスタ142を介してフローティングディフュージョン(FD)に接続される。もちろん、フォトダイオード141のカソード電極が電源に接続され、アノード電極が転送トランジスタ142を介してフローティングディフュージョンに接続され、光電荷を光正孔として読み出す方式としてもよい。
 転送トランジスタ142は、フォトダイオード141からの光電荷の読み出しを制御する。転送トランジスタ142は、ドレイン電極がフローティングディフュージョンに接続され、ソース電極がフォトダイオード141のカソード電極に接続される。また、転送トランジスタ142のゲート電極には、垂直走査部123(図3)から供給される転送制御信号TRGを伝送する転送制御線が接続される。転送制御信号TRG(すなわち、転送トランジスタ142のゲート電位)がオフ状態のとき、フォトダイオード141からの光電荷の転送が行われない(フォトダイオード141において光電荷が蓄積される)。転送制御信号TRG(すなわち、転送トランジスタ142のゲート電位)がオン状態のとき、フォトダイオード141に蓄積された光電荷がフローティングディフュージョンに転送される。
 リセットトランジスタ143は、フローティングディフュージョンの電位をリセットする。リセットトランジスタ143は、ドレイン電極が電源電位に接続され、ソース電極がフローティングディフュージョンに接続される。また、リセットトランジスタ143のゲート電極には、垂直走査部123から供給されるリセット制御信号RSTを伝送するリセット制御線が接続される。リセット制御信号RST(すなわち、リセットトランジスタ143のゲート電位)がオフ状態のとき、フローティングディフュージョンは電源電位と切り離されている。リセット制御信号RST(すなわち、リセットトランジスタ143のゲート電位)がオン状態のとき、フローティングディフュージョンの電荷が電源電位に排出されて、フローティングディフュージョンがリセットされる。
 増幅トランジスタ144は、フローティングディフュージョンの電圧に応じた電気信号(アナログ信号)を出力する(電流を流す)。増幅トランジスタ144は、ゲート電極がフローティングディフュージョンに接続され、ドレイン電極が(ソースフォロワ)電源電圧に接続され、ソース電極がセレクトトランジスタ145のドレイン電極に接続されている。例えば、増幅トランジスタ144は、リセットトランジスタ143によってリセットされたフローティングディフュージョンの電圧に応じた電気信号としてのリセット信号(リセットレベル)を画素信号としてセレクトトランジスタ145に出力する。また、増幅トランジスタ144は、転送トランジスタ142によって光電荷が転送されたフローティングディフュージョンの電圧に応じた電気信号としての光蓄積信号(信号レベル)を画素信号としてセレクトトランジスタ145に出力する。
 セレクトトランジスタ145は、増幅トランジスタ144から供給される電気信号の信号線(VSL)132(すなわち、A/D変換部122)への出力を制御する。セレクトトランジスタ145は、ドレイン電極が増幅トランジスタ144のソース電極に接続され、ソース電極が信号線132に接続されている。また、セレクトトランジスタ145のゲート電極には、垂直走査部123から供給されるセレクト制御信号SELを伝送するセレクト制御線が接続される。セレクト制御信号SEL(すなわち、セレクトトランジスタ145のゲート電位)がオフ状態のとき、増幅トランジスタ144と信号線132は電気的に切り離されている。したがって、この状態のとき、当該画素131から画素信号としてのリセット信号や光蓄積信号が出力されない。セレクト制御信号SEL(すなわち、セレクトトランジスタ145のゲート電位)がオン状態のとき、当該画素131が選択状態となる。つまり、増幅トランジスタ144と信号線132が電気的に接続され、増幅トランジスタ144から出力される画素信号としてのリセット信号や光蓄積信号が、信号線132を介してA/D変換部122に供給される。すなわち、当該画素131から画素信号としてのリセット信号や光蓄積信号が読み出される。
 なお、画素131の構成は任意であり、図5の例に限定されない。
 以上のように構成される画素・アナログ処理部111においては、画素信号としてのアナログ信号の読み出しの対象として画素131が選択されると、上述した各種トランジスタを制御する制御線133や、信号線132、電源配線(アナログ電源配線、デジタル電源配線)等により、様々なVictim導体ループ(ループ形状(環状)の導体)が形成される。このVictim導体ループのループ面内に、近傍の配線等から発生する磁束が通過することにより誘導起電力が発生する。
 Victim導体ループとしては、制御線133または信号線132の少なくとも一方の一部の配線を含んでいればよい。また、制御線133の一部を含むVictim導体ループと、信号線132の一部を含むVictim導体ループとがそれぞれ独立のVictim導体ループとして存在してもよい。さらに、Victim導体ループは、その一部または全部が第2の半導体基板102に含まれていてもよい。さらに、Victim導体ループは、ループ経路が可変であってもよいし、固定であってもよい。
 Victim導体ループを成す制御線133と信号線132の配線方向は互いに略直交することが望ましいが、互いに略平行であってもよい。
 なお、他の導体ループの近傍に存在する導体ループは、Victim導体ループになり得る。例えば、近傍のAggressorループに流れる電流の変化によって磁界強度に変化が生じても、影響を受けない導体ループであっても、Victim導体ループとなり得る。
 Victim導体ループでは、その近傍に存在する配線(Aggressor導体ループ)に高周波信号が流れて、Aggressor導体ループの周辺の磁界強度が変化すると、その影響によりVictim導体ループに誘導起電力が生じ、Victim導体ループにノイズが発生することがあった。特に、Victim導体ループの近傍に、互いに同一の方向に電流が流れる配線が密集する場合、磁界強度の変化が大きくなり、Victim導体ループに発生する誘導起電力(すなわちノイズ)も大きくなる。
 そこで、本開示では、Aggressor導体ループのループ面から生じる磁束の方向を調整し、その磁界がAggressor導体ループを通過させないようにする。
<3.ホットキャリア発光に対する遮光構造>
 図6は、固体撮像装置100の断面構造例を示す図である。
 上述したように、固体撮像装置100は、第1の半導体基板101と、第2の半導体基板102とが積層されて構成される。
 第1の半導体基板101には、例えば、光電変換部となるフォトダイオード141と、複数の画素トランジスタ(図5の転送トランジスタ142乃至セレクトトランジスタ145)とからなる画素単位が2次元的に複数配列された画素アレイが形成される。
 フォトダイオード141は、例えば、半導体基体152に形成されたウェル領域内にn型半導体領域と基体表面側(図中、下側)のp型半導体領域を有して形成される。半導体基体152上には、複数の画素トランジスタ(図5の転送トランジスタ142乃至セレクトトランジスタ145)が形成される。
 半導体基体152の表面側には、層間絶縁膜を介して複数層の配線が配置された多層配線層153が形成される。配線は、例えば銅配線で形成される。画素トランジスタ及び垂直走査部123等は、異なる配線層の配線同士が、配線層間を貫通する接続導体により所要箇所で接続される。半導体基体152の裏面(図中、上側の面)上には、例えば、反射防止膜、所定領域を遮光する遮光膜、及び、各フォトダイオード141に対応する位置に設けられたカラーフィルタやマイクロレンズ等の光学部材155が形成される。
 一方、第2の半導体基板102には、デジタル処理部112(図2)としてのロジック回路が形成される。ロジック回路は、例えば、半導体基体162のp型の半導体ウェル領域に形成された、複数のMOSトランジスタ164からなる。
 さらに、半導体基体162上には、層間絶縁膜を介して配線が配置された配線層を複数備える多層配線層163が形成される。図6では、多層配線層163を形成する複数の配線層のうちの2層の配線層(配線層165A,165B)を示している。
 固体撮像装置100においては、配線層165Aおよび配線層165Bによって遮光構造151を成している。
 ここで、第2の半導体基板102において、MOSトランジスタ164等の能動素子が形成されている領域を能動素子群167とする。第2の半導体基板102では、例えば、複数のnMOSトランジスタやpMOSトランジスタ等の能動素子を組み合わせて一つの機能を実現するための回路が構成される。そして、この能動素子群167が形成された領域を、回路ブロック(図7の回路ブロック202乃至204に相当)とする。なお、第2の半導体基板102に形成される能動素子としては、MOSトランジスタ164以外にダイオード等も存在し得る。
 そして、第2の半導体基板102の多層配線層163において、配線層165Aと配線層165Bから成る遮光構造151が、能動素子群167とフォトダイオード141との間に存在することにより、能動素子群167から発生するホットキャリア発光がフォトダイオード141に漏れ込むことを抑制している(詳細は後述する)。
 以下、遮光構造151を成す配線層165Aと配線層165Bのうち、フォトダイオード141等が形成された第1の半導体基板101に近い方の配線層165Aを導体層A(第1の導体層)と称することにする。また、能動素子群167に近い方の配線層165Bを導体層B(第2の導体層)と称することにする。
 ただし、フォトダイオード141等が形成された第1の半導体基板101に近い方の配線層165Aを導体層B、能動素子群167に近い方の配線層165Bを導体層Aとしてもよい。さらに、導体層A及びBの間には、絶縁層、半導体層、他の導体層等のいずれかが設けられていてもよい。また、導体層A及びBの間以外にも、絶縁層、半導体層、他の導体層等のいずれかが設けられていてもよい。
 導体層Aや導体層Bは、回路基板や半導体基板や電子機器の中で最も電流の流れやすい導体層であることが望ましいが、その限りではない。
 導体層Aと導体層Bの一方が、回路基板や半導体基板や電子機器の中で1番目に電流の流れやすい導体層であり、他方が、回路基板や半導体基板や電子機器の中で2番目に電流の流れやすい導体層であることが望ましいが、その限りではない。
 導体層Aと導体層Bの一方が、回路基板や半導体基板や電子機器の中で最も電流の流れにくい導体層ではないことが望ましいが、その限りではない。導体層Aと導体層Bの両方が、回路基板や半導体基板や電子機器の中で最も電流の流れにくい導体層ではないことが望ましいが、その限りではない。
 例えば、導体層Aと導体層Bの一方が、第1の半導体基板101の中で1番目に電流の流れやすい導体層であり、他方が、第1の半導体基板101の中で2番目に電流の流れやすい導体層であってもよい。
 例えば、導体層Aと導体層Bの一方が、第2の半導体基板102の中で1番目に電流の流れやすい導体層であり、他方が、第2の半導体基板102の中で2番目に電流の流れやすい導体層であってもよい。
 例えば、導体層Aと導体層Bの一方が、第1の半導体基板101の中で1番目に電流の流れやすい導体層であり、他方が、第2の半導体基板102の中で1番目に電流の流れやすい導体層であってもよい。
 例えば、導体層Aと導体層Bの一方が、第1の半導体基板101の中で1番目に電流の流れやすい導体層であり、他方が、第2の半導体基板102の中で2番目に電流の流れやすい導体層であってもよい。
 例えば、導体層Aと導体層Bの一方が、第1の半導体基板101の中で2番目に電流の流れやすい導体層であり、他方が、第2の半導体基板102の中で1番目に電流の流れやすい導体層であってもよい。
 例えば、導体層Aと導体層Bの一方が、第1の半導体基板101の中で2番目に電流の流れやすい導体層であり、他方が、第2の半導体基板102の中で2番目に電流の流れやすい導体層であってもよい。
 例えば、導体層Aと導体層Bの一方が、第1の半導体基板101または第2の半導体基板102の中で最も電流の流れにくい導体層ではなくてもよい。
 例えば、導体層Aと導体層Bの両方が、第1の半導体基板101または第2の半導体基板102の中で最も電流の流れにくい導体層ではなくてもよい。
 なお、上述した1番目は、3番目や4番目やN番目(Nは正数)として置き換え可能であり、上述した2番目も、3番目や4番目やN番目(Nは正数)として置き換え可能である。
 なお、上述した回路基板や半導体基板や電子機器の中で電流の流れやすい導体層は、回路基板の中で電流の流れやすい導体層、半導体基板の中で電流の流れやすい導体層、電子機器の中で電流の流れやすい導体層、の何れかであると考えてもよい。また、上述した回路基板や半導体基板や電子機器の中で電流の流れにくい導体層は、回路基板の中で電流の流れにくい導体層、半導体基板の中で電流の流れにくい導体層、電子機器の中で電流の流れにくい導体層、の何れかであると考えてもよい。また、上述した電流の流れやすい導体層をシート抵抗の低い導体層とし、電流の流れにくい導体層をシート抵抗の高い導体層としても、それぞれ置き換え可能である。
 なお、導体層A及びBに用いる導体の材料としては、銅、アルミ、タングステン、クロム、ニッケル、タンタル、モリブデン、チタン、金、銀、鉄等の金属、若しくは、これらの何れかを少なくとも含む混合物、化合物、または、合金が主に用いられる。また、シリコン、ゲルマニウム、化合物半導体、有機半導体等の半導体が含まれていてもよい。さらに、綿、紙、ポリエチレン、ポリ塩化ビニル、天然ゴム、ポリエステル、エポキシ樹脂、メラミン樹脂、フェノール樹脂、ポリウレタン、合成樹脂、マイカ、石綿、ガラス繊維、磁器等の絶縁体が含まれていてもよい。
 遮光構造151を成す導体層A及びBは、電流が流されることによってAggressor導体ループと成り得る。
 次に、遮光構造151によって遮光される領域(遮光対象領域)について説明する。
 図7は、半導体基体162における、能動素子群167が形成された領域から成る回路ブロックの平面配置例を示す概略構成図である。
 図7のAは、複数の回路ブロック202乃至204が一括して遮光構造151による遮光対象領域とされる場合の例であり、回路ブロック202,203および204の全てを含む領域205が遮光対象領域となる。
 図7のBは、複数の回路ブロック202乃至204が個別に遮光構造151による遮光対象領域とされる場合の例であり、回路ブロック202,203、および204のそれぞれを含む領域206,207、および208が個別に遮光対象領域となり、領域206乃至208以外の領域209が遮光非対象領域とされる。
 図7のBに示した例の場合、遮光構造151を成す導体層A及びBのレイアウトの自由度が制限されることを回避することができる。しかしながら、導体層A及びBのレイアウトが複雑化するため、導体層A及びBのレイアウトを設計するために多大な労力が必要となる。
 遮光構造151を成す導体層A及びBのレイアウトを容易に設計するためには、図7のAに示した例を採用し、複数の回路ブロックを一括して遮光対象領域とすることが望ましい。
 そこで、本開示では、導体層A及びBのレイアウトの自由度が制限されることを回避しつつ、レイアウトを容易に設計できる導体層A及びBの構造を提案する。
 なお、本実施の形態における遮光対象領域には、ホットキャリア発光の発光源となる能動素子群167の領域を表す回路ブロックに加えて、回路ブロックの周辺にも遮光対象領域となるように緩衝領域を設けるようにする。回路ブロックの周囲に緩衝領域を設けることにより、回路ブロックから斜め方向に射出されるホットキャリア発光がフォトダイオード141に漏れ込むことを抑止できる。
 図8は、遮光構造151による遮光対象領域と、能動素子群の領域および緩衝領域との位置関係例を示す図である。
 図8に示す例では、能動素子群167が形成された領域と、能動素子群167の周囲の緩衝領域191が遮光対象領域194としており、遮光対象領域194に対向するように、遮光構造151が形成される。
 ここで、能動素子群167から遮光構造151までの長さを層間距離192とする。また、能動素子群167の端部から配線による遮光構造151の端部までの長さを緩衝領域幅193とする。
 遮光構造151は、緩衝領域幅193が、層間距離192よりも大きくなるように形成する。これにより、点光源として発生するホットキャリア発光の斜め成分についても遮光することが可能となる。
 なお、緩衝領域幅193の適切な値は、遮光構造151と能動素子群167との層間距離192に依存して変わる。例えば、層間距離192が長い場合、能動素子群167からのホットキャリア発光の斜め成分を十分に遮蔽できるように緩衝領域191を大きく設ける必要がある。一方、層間距離192が短い場合、緩衝領域191を大きく設けなくても能動素子群167からのホットキャリア発光を十分に遮光することができる。従って、多層配線層163を構成する複数の配線層のうち、能動素子群167に近い配線層を用いて遮光構造151を形成するようにすれば、導体層A及びBのレイアウトの自由度を向上させることができる。ただし、能動素子群167に近い配線層を用いて遮光構造151を形成することは、能動素子群167に近い配線層のレイアウト制約などにより、難しい場合が多い。本技術では、能動素子群167から遠い配線層を用いて遮光構造151を形成する場合でも、高いレイアウト自由度が得られる。
<4.導体層A及びBの構成例>
 以下、本技術を適用した固体撮像装置100におけるAggressor導体ループと成り得る、遮光構造151を成す導体層A(配線層165A)および導体層B(配線層165B)の構成例について説明するが、その前に、構成例の比較対象とする比較例について説明する。
 <第1の比較例>
 図9は、遮光構造151を成す導体層A及びBの、後述する複数の構成例と比較するための第1の比較例を示す平面図である。なお、図9のAは導体層Aを、図9のBは導体層Bを示している。図9における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 第1の比較例における導体層Aは、Y方向に長い直線状導体211が、X方向に導体周期FXAで周期的に配置されている。なお、導体周期FXA=X方向の導体幅WXA+X方向の間隙幅GXAである。各直線状導体211は、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。
 第1の比較例における導体層Bは、Y方向に長い直線状導体212が、X方向に導体周期FXBで周期的に配置されている。なお、導体周期FXB=X方向の導体幅WXB+X方向の間隙幅GXBである。各直線状導体212は、例えば、プラス電源に接続される配線(Vdd配線)である。ここで、導体周期FXB=導体周期FXAである。
 なお、各直線状導体211をVdd配線とし、各直線状導体212をVss配線とするように、導体層A及びBの接続先を入れ替えてもよい。
 図9のCは、図9のAとBにそれぞれ示した導体層A及びBをフォトダイオード141側(裏面側)から見た状態を示している。第1の比較例の場合、図9のCに示されるように、導体層Aを構成する直線状導体211と、導体層Bを構成する直線状導体212とを重ねて配置した場合に、導体部分が重畳する重複部分が生じるように、直線状導体211,212が形成されるので、能動素子群167からのホットキャリア発光を十分に遮光することができる。なお、重複部分の幅を重複幅とも称する。
 図10は、第1の比較例(図9)に流れる電流条件を示す図である。
 導体層Aを構成する直線状導体211と、導体層Bを構成する直線状導体212に対しては、端部では均等にAC電流が流れるものとする。ただし、電流方向は、時間によって変化し、例えば、Vdd配線である直線状導体212に、電流が、図面の上側から下側に流れるとき、Vss配線である直線状導体211に、電流が、図面の下側から上側に流れるものとする。
 第1の比較例に、図10に示したように電流が流れる場合、Vss配線である直線状導体211と、Vdd配線である直線状導体212との間には、図10の平面図において、隣接する直線状導体211及び212を含んで形成される、ループ面がXY平面にほぼ平行な導体ループによって、略Z方向の磁束が発生し易くなる。
 一方、導体層A及びBから成る遮光構造151が形成された第2の半導体基板102に積層された第1の半導体基板101の画素アレイ121においては、図10に示されるように信号線132と制御線133から成るVictim導体ループがXY平面に形成される。XY平面に形成されるVictim導体ループは、Z方向の磁束によって誘導起電力が生じ易く、誘導起電力の変化が大きいほど、固体撮像装置100から出力される画像が悪化する(誘導性ノイズが増す)ことになる。
 さらに、Aggressor導体ループの構成次第では、誘導起電力はVictim導体ループの寸法に比例するので、画素アレイ121において選択画素が移動されることにより、信号線132と制御線133から成るVictim導体ループの実効的な寸法が変化されると、誘導起電力の変化が顕著になる。
 第1の比較例の場合、導体層A及びBから成る遮光構造151のAggressor導体ループのループ面から生じる磁束の方向(略Z方向)と、Victim導体ループに誘導起電力を生じさせ易い磁束の方向(Z方向)とが略一致するので、固体撮像装置100から出力される画像の悪化(誘導性ノイズの発生)が予想される。
 図11は、第1の比較例を、固体撮像装置100に適用した場合に生じる誘導性ノイズのシミュレーション結果を示している。
 図11のAは、固体撮像装置100から出力される、誘導性ノイズが生じた画像を示している。図11のBは、図11のAに示した画像の線分X1-X2における画素信号の変化を示している。図11のCは、画像に誘導性ノイズを生じさせた誘導起電力を表す実線L1を示している。図11のCの横軸は画像のX軸座標、縦軸は誘導起電力の大きさを示している。
 以下、図11のCに示した実線L1を、遮光構造151を成す導体層A及びBの構成例を固体撮像装置100に適用した場合に生じる誘導性ノイズのシミュレーション結果との比較に用いることにする。
 <第1の構成例>
 図12は、導体層A及びBの第1の構成例を示している。なお、図12のAは導体層Aを、図12のBは導体層Bを示している。図12における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 第1の構成例における導体層Aは、面状導体213から成る。面状導体213は、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。
 第1の比較例における導体層Bは、面状導体214から成る。面状導体214は、例えば、プラス電源に接続される配線(Vdd配線)である。
 なお、面状導体213をVdd配線とし、面状導体214をVss配線とするように、導体層A及びBの接続先を入れ替えてもよい。以降に説明する各構成例においても同様とする。
 図12のCは、図12のAとBにそれぞれ示した導体層A及びBをフォトダイオード141側(裏面側)から見た状態を示している。ただし、図12のCにおける斜線が交差するハッチングの領域215は、導体層Aの面状導体213と、導体層Bの面状導体214とが重複する領域を示している。したがって、図12のCの場合は、導体層Aの面状導体213と、導体層Bの面状導体214との全面が重なっていることを示している。第1の構成例の場合、導体層Aの面状導体213と、導体層Bの面状導体214との全面が重なるので、能動素子群167からのホットキャリア発光を確実に遮光することができる。
 図13は、第1の構成例(図12)に流れる電流条件を示す図である。
 導体層Aを構成する面状導体213と、導体層Bを構成する面状導体214に対しては、端部では均等にAC電流が流れるものとする。ただし、電流方向は、時間によって変化し、例えば、Vdd配線である面状導体214に、電流が、図面の上側から下側に流れるとき、Vss配線である面状導体213に、電流が、図面の下側から上側に流れるものとする。
 第1の構成例に、図13に示したように電流が流れる場合、Vss配線である面状導体213と、Vdd配線である面状導体214との間には、面状導体213及び214が配置された断面において、面状導体213及び214(の断面)を含んで形成される、ループ面がX軸にほぼ垂直な導体ループおよびループ面がY軸にほぼ垂直な導体ループによって、略X方向および略Y方向の磁束が発生し易くなる。
 一方、導体層A及びBから成る遮光構造151が形成された第2の半導体基板102に積層された第1の半導体基板101の画素アレイ121においては、図13に示されるように信号線132と制御線133から成るVictim導体ループがXY平面に形成される。XY平面に形成されるVictim導体ループは、Z軸方向の磁束によって誘導起電力が生じ易く、誘導起電力の変化が大きいほど、固体撮像装置100から出力される画像が悪化する(誘導性ノイズが増す)ことになる。
 さらに、画素アレイ121において選択画素が移動されることにより、信号線132と制御線133から成るVictim導体ループの実効的な寸法が変化されると、誘導起電力の変化が顕著になる。
 第1の構成例の場合、導体層A及びBから成る遮光構造151のAggressor導体ループのループ面から生じる磁束の方向(略X方向や略Y方向)と、Victim導体ループに誘導起電力を生じさせる磁束の方向(Z方向)とが略直交して略90度異なる。換言すれば、Aggressor導体ループから磁束が発生するループ面の方向と、Victim導体ループに誘導起電力を発生させるループ面の方向とが略90度異なる。そのため、固体撮像装置100から出力される画像の悪化(誘導性ノイズの発生)は、第1の比較例の場合に比べて少ないことが予想される。
 図14は、第1の構成例(図12)を、固体撮像装置100に適用した場合に生じる誘導性ノイズのシミュレーション結果を示している。
 図14のAは、固体撮像装置100から出力される、誘導性ノイズが生じ得る画像を示している。図14のBは、図14のAに示した画像の線分X1-X2における画素信号の変化を示している。図14のCは、画像に誘導性ノイズを生じさせた誘導起電力を表す実線L11を示している。図14のCの横軸は画像のX軸座標、縦軸は誘導起電力の大きさを示している。なお、図14のCの点線L1は、第1の比較例(図9)に対応するものである。
 図14のCに示した実線L11と点線L1を比較して明らかなように、第1の構成例は、第1の比較例に比べて、Victim導体ループに生じさせる誘導起電力の変化を抑えることができる。よって、固体撮像装置100から出力される画像における誘導性ノイズの発生を抑止することができる。
 <第2の構成例>
 図15は、導体層A及びBの第2の構成例を示している。なお、図15のAは導体層Aを、図15のBは導体層Bを示している。図15における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 第2の構成例における導体層Aは、網目状導体216から成る。網目状導体216におけるX方向の導体幅をWXA、間隙幅をGXA、導体周期をFXA(=導体幅WXA+間隙幅GXA)、端部幅をEXA(=導体幅WXA/2)とする。また、網目状導体216におけるY方向の導体幅をWYA、間隙幅をGYA、導体周期をFYA(=導体幅WYA+間隙幅GYA)、端部幅をEYA(=導体幅WYA/2)とする。網目状導体216は、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。
 第2の構成例における導体層Bは、網目状導体217から成る。網目状導体217におけるX方向の導体幅をWXB、間隙幅をGXB、導体周期をFXB(=導体幅WXB+間隙幅GXB)、端部幅をEXB(=導体幅WXB/2)とする。また、網目状導体217におけるY方向の導体幅をWYB、間隙幅をGYB、導体周期をFYB(=導体幅WYB+間隙幅GYB)、端部幅をEYB(=導体幅WYB/2)とする。網目状導体217は、例えば、プラス電源に接続される配線(Vdd配線)である。
 なお、網目状導体216と網目状導体217は、以下の関係を満たすことが望ましい。
 導体幅WXA=導体幅WYA=導体幅WXB=導体幅WYB
 間隙幅GXA=間隙幅GYA=間隙幅GXB=間隙幅GYB
 端部幅EXA=端部幅EYA=端部幅EXB=端部幅EYB
 導体周期FXA=導体周期FYA=導体周期FXB=導体周期FYB
 図15のCは、図15のAとBにそれぞれ示した導体層A及びBをフォトダイオード141側(裏面側)から見た状態を示している。ただし、図15のCにおける斜線が交差するハッチングの領域218は、導体層Aの網目状導体216と、導体層Bの網目状導体217とが重複する領域を示している。第2の構成例の場合、導体層Aを成す網目状導体216の間隙と導体層Bを成す網目状導体217の間隙が一致するので、能動素子群167からのホットキャリア発光を十分に遮光することはできない。ただし、後述するように、誘導性ノイズの発生を抑えることはできる。
 図16は、第2の構成例(図15)に流れる電流条件を示す図である。
 導体層Aを構成する網目状導体216と、導体層Bを構成する網目状導体217に対しては、端部では均等にAC電流が流れるものとする。ただし、電流方向は、時間によって変化し、例えば、Vdd配線である網目状導体217に、電流が、図面の上側から下側に流れるとき、Vss配線である網目状導体216に、電流が、図面の下側から上側に流れるものとする。
 第2の構成例に、図16に示したように電流が流れる場合、Vss配線である網目状導体216と、Vdd配線である網目状導体217との間には、網目状導体216及び217が配置された断面において、網目状導体216及び217(の断面)を含んで形成される、ループ面がX軸にほぼ垂直な導体ループおよびループ面がY軸にほぼ垂直な導体ループによって、略X方向および略Y方向の磁束が発生し易くなる。
 一方、導体層A及びBから成る遮光構造151が形成された第2の半導体基板102に積層された第1の半導体基板101の画素アレイ121においては、図16に示されるように信号線132と制御線133から成るVictim導体ループがXY平面に形成される。XY平面に形成されるVictim導体ループは、Z方向の磁束によって誘導起電力が生じ易く、誘導起電力の変化が大きいほど、固体撮像装置100から出力される画像が悪化する(誘導性ノイズが増す)ことになる。
 さらに、画素アレイ121において選択画素が移動されることにより、信号線132と制御線133から成るVictim導体ループの実効的な寸法が変化されると、誘導起電力の変化が顕著になる。
 第2の構成例の場合、導体層A及びBから成る遮光構造151のAggressor導体ループのループ面から生じる磁束の方向(略X方向や略Y方向)と、Victim導体ループに誘導起電力を生じさせる磁束の方向(Z方向)とが略直交して略90度異なる。換言すれば、Aggressor導体ループから磁束が発生するループ面の方向と、Victim導体ループに誘導起電力を発生させるループ面の方向とが略90度異なる。そのため、固体撮像装置100から出力される画像の悪化(誘導性ノイズの発生)は、第1の比較例に比べて少ないことが予想される。
 図17は、第2の構成例(図15)を、固体撮像装置100に適用した場合に生じる誘導性ノイズのシミュレーション結果を示している。
 図17のAは、固体撮像装置100から出力される、誘導性ノイズが生じ得る画像を示している。図17のBは、図17のAに示した画像の線分X1-X2における画素信号の変化を示している。図17のCは、画像に誘導性ノイズを生じさせた誘導起電力を表す実線L21を示している。図17のCの横軸は画像のX軸座標、縦軸は誘導起電力の大きさを示している。なお、図17のCの点線L1は、第1の比較例(図9)に対応するものである。
 図17のCに示した実線L21と点線L1を比較して明らかなように、第2の構成例は、第1の比較例に比べて、Victim導体ループに生じさせる誘導起電力の変化を抑えることができる。よって、固体撮像装置100から出力される画像における誘導性ノイズの発生を抑止することができる。
 <第2の比較例>
 第2の構成例(図15)では、導体層Aを成す網目状導体216と導体層Bを成す網目状導体217の関係として、導体周期FXA=導体周期FYA=導体周期FXB=導体周期FYBを満たすようにしている。
 このように、導体層AのX方向の導体周期FXAと、導体層AのY方向の導体周期FYAと、導体層BのX方向の導体周期FXBと、導体層BのX方向の導体周期FYBとを一致させると、誘導性ノイズの発生を抑えることができる。
 図18および図19は、導体層Aと導体層Bの全ての導体周期を一致させると、誘導性ノイズの発生を抑えることができることを説明するための図である。
 図18のAは、図15に示した第2の構成例と比較するための、第2の構成例を変形した第2の比較例を示している、この第2の比較例は、第2の構成例における導体層Aを成す網目状導体216のX方向の間隙幅GXAとY方向の間隙幅GYAを広げて、X方向の導体周期FXAとY方向の導体周期FYAを、第2の構成例の5倍にしたものである。なお、第2の比較例における導体層Bを成す網目状導体217は、第2の構成例と同じものとする。
 図18のBは、図15のCに示した第2の構成例を図18のAと同倍率で示したものである。
 図19は、第2の比較例(図18のA)と、第2の構成例(図18のB)を固体撮像装置100に適用した場合のミュレーション結果として、画像に誘導性ノイズを生じさせる誘導起電力の変化を示している。なお、第2の比較例に流れる電流条件は、図16に示した場合と同様とする。図19の横軸は画像のX軸座標、縦軸は誘導起電力の大きさを示している。
 図19における実線L21は、第2の構成例に対応し、点線L31は第2の比較例に対応するものである。
 実線L21と点線L31を比較して明らかなように、第2の構成例は、第2の比較例に比べて、Victim導体ループに生じさせる誘導起電力の変化を抑えることができ、誘導性ノイズを抑制できることがわかる。
 <第3の比較例>
 ところで、第2の比較例における導体層Aを成す網目状導体の導体幅を広げた場合にも誘導性ノイズの発生を抑えることができる。
 図20および図21は、導体層Aを成す網目状導体の導体幅を広げると、誘導性ノイズの発生を抑えることができることを説明するための図である。
 図20のAは、図18のAに示した第2の比較例を再掲したものである。
 図20のBは、第2の比較例と比べるための、第2の構成例を変形した第3の比較例を示している、この第3の比較例は、第2の構成例における導体層Aを成す網目状導体216のX方向とY方向の導体幅WXA,WYAを第2の構成例の5倍に広げたものである。なお、第3の比較例における導体層Bを成す網目状導体217は、第2の構成例と同じものとする。
 図21は、第3の比較例と、第2の比較例を固体撮像装置100に適用した場合のシミュレーション結果として、画像に誘導性ノイズを生じさせる誘導起電力の変化を示している。なお、第3の比較例に流れる電流条件は、図16に示した場合と同様とする。図21の横軸は画像のX軸座標、縦軸は誘導起電力の大きさを示している。
 図21における実線L41は、第3の比較例に対応し、点線L31は第2の比較例に対応するものである。
 実線L41と点線L31を比較して明らかなように、第3の比較例は、第2の比較例に比べて、Victim導体ループに生じさせる誘導起電力の変化を抑えることができ、誘導性ノイズを抑制できることがわかる。
 <第3の構成例>
 次に、図22は、導体層A及びBの第3の構成例を示している。なお、図22のAは導体層Aを、図22のBは導体層Bを示している。図22における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 第3の構成例における導体層Aは、面状導体221から成る。面状導体221は、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。
 第3の構成例における導体層Bは、網目状導体222から成る。網目状導体222におけるX方向の導体幅をWXB、間隙幅をGXB、導体周期をFXB(=導体幅WXB+間隙幅GXB)とする。また、網目状導体222におけるY方向の導体幅をWYB、間隙幅をGYB、導体周期をFYB(=導体幅WYB+間隙幅GYB)、端部幅をEYBとする。網目状導体222は、例えば、プラス電源に接続される配線(Vdd配線)である。
 なお、網目状導体222は、以下の関係を満たすことが望ましい。
 導体幅WXB=導体幅WYB
 間隙幅GXB=間隙幅GYB
 端部幅EYB=導体幅WYB/2
 導体周期FXB=導体周期FYB
 上述した関係のように、X方向とY方向で導体幅、導体周期、間隙幅を揃えることにより、網目状導体222のX方向とY方向とで配線抵抗や配線インピーダンスが均一になるので、X方向とY方向とで磁界耐性や電圧降下を均等にすることができる。
 また、端部幅EYBを導体幅WYBの1/2とすることにより、網目状導体222の端部周辺で発生する磁界によってVictim導体ループに生じる誘導起電力を抑制することができる。
 図22のCは、図22のAとBにそれぞれ示した導体層A及びBをフォトダイオード141側(裏面側)から見た状態を示している。ただし、図22のCにおける斜線が交差するハッチングの領域223は、導体層Aの面状導体221と、導体層Bの網目状導体222とが重複する領域を示している。第3の構成例の場合、導体層Aまたは導体層Bの少なくとも一方によって能動素子群167が覆われていることになるので、能動素子群167からのホットキャリア発光を遮光することができる。
 図23は、第3の構成例(図22)に流れる電流条件を示す図である。
 導体層Aを構成する面状導体221と、導体層Bを構成する網目状導体222に対しては、端部では均等にAC電流が流れるものとする。ただし、電流方向は、時間によって変化し、例えば、Vdd配線である網目状導体222に、電流が、図面の上側から下側に流れるとき、Vss配線である面状導体221に流れる電流は、図面の下側から上側に流れるものとする。
 第3の構成例に、図23に示したように電流が流れる場合、Vss配線である面状導体221と、Vdd配線である網目状導体222との間には、面状導体221と網目状導体222が配置された断面において、面状導体221と網目状導体222(の断面)を含んで形成される、ループ面がX軸にほぼ垂直な導体ループおよびループ面がY軸にほぼ垂直な導体ループによって、略X方向および略Y方向の磁束が発生し易くなる。
 一方、導体層A及びBから成る遮光構造151が形成された第2の半導体基板102に積層された第1の半導体基板101の画素アレイ121においては、信号線132と制御線133から成るVictim導体ループがXY平面に形成される。XY平面に形成されるVictim導体ループは、Z方向の磁束によって誘導起電力が生じ易く、誘導起電力の変化が大きいほど、固体撮像装置100から出力される画像が悪化する(誘導性ノイズが増す)ことになる。
 さらに、画素アレイ121において選択画素が移動されることにより、信号線132と制御線133から成るVictim導体ループの実効的な寸法が変化されると、誘導起電力の変化が顕著になる。
 第3の構成例の場合、導体層A及びBから成る遮光構造151のAggressor導体ループのループ面から生じる磁束の方向(略X方向や略Y方向)と、Victim導体ループに誘導起電力を生じさせる磁束の方向(Z方向)とが略直交して略90度異なる。換言すれば、Aggressor導体ループから磁束が発生するループ面の方向と、Victim導体ループに誘導起電力を発生させるループ面の方向とが略90度異なる。そのため、固体撮像装置100から出力される画像の悪化(誘導性ノイズの発生)は、第1の比較例に比べて少ないことが予想される。
 図24は、第3の構成例(図22)を、固体撮像装置100に適用した場合に生じる誘導性ノイズのシミュレーション結果を示している。
 図24のAは、固体撮像装置100から出力される、誘導性ノイズが生じ得る画像を示している。図24のBは、図24のAに示した画像の線分X1-X2における画素信号の変化を示している。図24のCは、画像に誘導性ノイズを生じさせた誘導起電力を表す実線L51を示している。図24のCの横軸は画像のX軸座標、縦軸は誘導起電力の大きさを示している。なお、図24のCの点線L1は、第1の比較例(図9)に対応するものである。
 図24のCに示した実線L51と点線L1を比較して明らかなように、第3の構成例は、第1の比較例に比べて、Victim導体ループに生じさせる誘導起電力の変化を抑えることができる。よって、固体撮像装置100から出力される画像における誘導性ノイズの発生を抑止することができる。
 <第4の構成例>
 次に、図25は、導体層A及びBの第4の構成例を示している。なお、図25のAは導体層Aを、図25のBは導体層Bを示している。図25における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 第4の構成例における導体層Aは、網目状導体231から成る。網目状導体231におけるX方向の導体幅をWXA、間隙幅をGXA、導体周期をFXA(=導体幅WXA+間隙幅GXA)、端部幅をEXA(=導体幅WXA/2)とする。また、網目状導体231におけるY方向の導体幅をWYA、間隙幅をGYA、導体周期をFYA(=導体幅WYA+間隙幅GYA)とする。網目状導体231は、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。
 第4の構成例における導体層Bは、網目状導体232から成る。網目状導体232におけるX方向の導体幅をWXB、間隙幅をGXB、導体周期をFXB(=導体幅WXB+間隙幅GXB)とする。また、網目状導体232におけるY方向の導体幅をWYB、間隙幅をGYB、導体周期をFYB(=導体幅WYB+間隙幅GYB)、端部幅をEYB(=導体幅WYB/2)とする。網目状導体232は、例えば、プラス電源に接続される配線(Vdd配線)である。
 なお、網目状導体231と網目状導体232は、以下の関係を満たすことが望ましい。
 導体幅WXA=導体幅WYA=導体幅WXB=導体幅WYB
 間隙幅GXA=間隙幅GYA=間隙幅GXB=間隙幅GYB
 端部幅EXA=端部幅EYB
 導体周期FXA=導体周期FYA=導体周期FXB=導体周期FYB
 導体幅WYA=2×重複幅+間隙幅GYA、導体幅WXA=2×重複幅+間隙幅GXA
 導体幅WYB=2×重複幅+間隙幅GYB、導体幅WXB=2×重複幅+間隙幅GXB
 ここで、重複幅とは、導体層Aの網目状導体231と、導体層Bの網目状導体232とを重ねて配置した場合に、導体部分が重複する重複部分の幅である。
 上述した関係のように、網目状導体231と網目状導体232のX方向とY方向の導体周期を全て揃えることにより、網目状導体231の電流分布と、網目状導体232の電流分布とを略均等、且つ、逆特性にできるので、網目状導体231の電流分布によって生じる磁界と、網目状導体232の電流分布によって生じる磁界とを効果的に相殺できる。
 また、網目状導体231と網目状導体232のX方向とY方向の導体周期、導体幅、間隙幅を全て揃えることにより、網目状導体231と網目状導体232のX方向とY方向とで配線抵抗や配線インピーダンスが均一になるので、X方向とY方向とで磁界耐性や電圧降下を均等にすることができる。
 また、網目状導体231の端部幅EXAを導体幅WXAの1/2とすることにより、網目状導体231の端部周辺で発生する磁界によってVictim導体ループに生じる誘導起電力を抑制することができる。また、網目状導体232の端部幅EYBを導体幅WYBの1/2とすることにより、網目状導体231の端部周辺で発生する磁界によってVictim導体ループに生じる誘導起電力を抑制することができる。
 なお、導体層Aの網目状導体231のX方向に端部を設ける代わりに、導体層Bの網目状導体232のX方向の端部を設けるようにしてもよい。また、導体層Bの網目状導体232のY方向の端部を設ける代わりに、導体層Aの網目状導体231のY方向に端部を設けるようにしてもよい。
 図25のCは、図25のAとBにそれぞれ示した導体層A及びBをフォトダイオード141側(裏面側)から見た状態を示している。ただし、図25のCにおける斜線が交差するハッチングの領域233は、導体層Aの網目状導体231と、導体層Bの網目状導体232とが重複する領域を示している。第4の構成例の場合、導体層Aまたは導体層Bの少なくとも一方によって能動素子群167が覆われていることになるので、能動素子群167からのホットキャリア発光を遮光することができる。
 ただし、導体層Aの網目状導体231と、導体層Bの網目状導体232とにより、完全にホットキャリア発光を遮光するためには、以下の関係を満たす必要がある。
導体幅WYA≧間隙幅GYA
導体幅WXA≧間隙幅GXA
導体幅WYB≧間隙幅GYB
導体幅WXB≧間隙幅GXB
 この場合、以下の関係が満たされることになる。
導体幅WYA=2×重複幅+間隙幅GYA
導体幅WXA=2×重複幅+間隙幅GXA
導体幅WYB=2×重複幅+間隙幅GYB
導体幅WXB=2×重複幅+間隙幅GXB
 第4の構成例に、図23に示した場合と同様に電流が流れる場合、Vss配線である網目状導体231と、Vdd配線である網目状導体232との間には、網目状導体231及び232が配置された断面において、網目状導体231及び232(の断面)を含んで形成される、ループ面がX軸にほぼ垂直な導体ループおよびループ面がY軸にほぼ垂直な導体ループによって、略X方向および略Y方向の磁束が発生し易くなる。
 <第5の構成例>
 次に、図26は、導体層A及びBの第5の構成例を示している。なお、図26のAは導体層Aを、図26のBは導体層Bを示している。図26における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 第5の構成例における導体層Aは、網目状導体241から成る。網目状導体241は、第4の構成例(図25)における導体層Aを成す網目状導体231をY方向に導体周期FYA/2だけ移動したものである。網目状導体241は、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。
 第5の構成例における導体層Bは、網目状導体242から成る。網目状導体242は、第4の構成例(図25)における導体層Bを成す網目状導体232と同様の形状を有するので、その説明は省略する。網目状導体242は、例えば、プラス電源に接続される配線(Vdd配線)である。
 なお、網目状導体241と網目状導体242は、以下の関係を満たすことが望ましい。
 導体幅WXA=導体幅WYA=導体幅WXB=導体幅WYB
 間隙幅GXA=間隙幅GYA=間隙幅GXB=間隙幅GYB
 端部幅EXA=端部幅EYB
 導体周期FXA=導体周期FYA=導体周期FXB=導体周期FYB
 導体幅WYA=2×重複幅+間隙幅GYA、導体幅WXA=2×重複幅+間隙幅GXA
 導体幅WYB=2×重複幅+間隙幅GYB、導体幅WXB=2×重複幅+間隙幅GXB
 ここで、重複幅とは、導体層Aの網目状導体241と、導体層Bの網目状導体242とを重ねて配置した場合に、導体部分が重複する重複部分の幅である。
 図26のCは、図26のAとBにそれぞれ示した導体層A及びBをフォトダイオード141側(裏面側)から見た状態を示している。ただし、図26のCにおける斜線が交差するハッチングの領域243は、導体層Aの網目状導体241と、導体層Bの網目状導体242とが重複する領域を示している。第5の構成例の場合、導体層Aまたは導体層Bの少なくとも一方によって能動素子群167が覆われていることになるので、能動素子群167からのホットキャリア発光を遮光することができる。
 また、第5の構成例の場合、網目状導体241と網目状導体242との重複する領域243がX方向に連なる。網目状導体241と網目状導体242との重複する領域243では、網目状導体241と網目状導体242に互いに極性が異なる電流が流れるので、領域243から生じる磁界が互いに打ち消されることになる。よって、領域243付近における誘導性ノイズの発生を抑えることができる。
 第5の構成例に、図23に示した場合と同様に電流が流れる場合、Vss配線である網目状導体241と、Vdd配線である網目状導体242との間には、網目状導体241及び242が配置された断面において、網目状導体241及び242(の断面)を含んで形成される、ループ面がX軸にほぼ垂直な導体ループおよびループ面がY軸にほぼ垂直な導体ループによって、略X方向および略Y方向の磁束が発生し易くなる。
 <第6の構成例>
 次に、図27は、導体層A及びBの第6の構成例を示している。なお、図27のAは導体層Aを、図27のBは導体層Bを示している。図27における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 第6の構成例における導体層Aは、網目状導体251から成る。網目状導体251は、第4の構成例(図25)における導体層Aを成す網目状導体231と同様の形状を有するので、その説明は省略する。網目状導体251は、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。
 第6の構成例における導体層Bは、網目状導体252から成る。網目状導体252は、第4の構成例(図25)における導体層Bを成す網目状導体232をX方向に導体周期FXB/2だけ移動したものである。網目状導体252は、例えば、プラス電源に接続される配線(Vdd配線)である。
 なお、網目状導体251と網目状導体252は、以下の関係を満たすことが望ましい。
 導体幅WXA=導体幅WYA=導体幅WXB=導体幅WYB
 間隙幅GXA=間隙幅GYA=間隙幅GXB=間隙幅GYB
 端部幅EXA=端部幅EYB
 導体周期FXA=導体周期FYA=導体周期FXB=導体周期FYB
 導体幅WYA=2×重複幅+間隙幅GYA、導体幅WXA=2×重複幅+間隙幅GXA
 導体幅WYB=2×重複幅+間隙幅GYB、導体幅WXB=2×重複幅+間隙幅GXB
 ここで、重複幅とは、導体層Aの網目状導体251と、導体層Bの網目状導体252とを重ねて配置した場合に、導体部分が重複する重複部分の幅である。
 図27のCは、図27のAとBにそれぞれ示した導体層A及びBをフォトダイオード141側(裏面側)から見た状態を示している。ただし、図27のCにおける斜線が交差するハッチングの領域253は、導体層Aの網目状導体251と、導体層Bの網目状導体252とが重複する領域を示している。第6の構成例の場合、導体層Aまたは導体層Bの少なくとも一方によって能動素子群167が覆われていることになるので、能動素子群167からのホットキャリア発光を遮光することができる。
 第6の構成例に、図23に示した場合と同様に電流が流れる場合、Vss配線である網目状導体251と、Vdd配線である網目状導体252との間には、網目状導体251及び252が配置された断面において、網目状導体251及び252(の断面)を含んで形成される、ループ面がX軸にほぼ垂直な導体ループおよびループ面がY軸にほぼ垂直な導体ループによって、略X方向および略Y方向の磁束が発生し易くなる。
 さらに、第6の構成例の場合、網目状導体251と網目状導体252の重複する領域253がY方向に連なる。この網目状導体251と網目状導体252との重複する領域253では、網目状導体251と網目状導体252に互いに極性が異なる電流が流れるので、領域253から生じる磁界が互いに打ち消されることになる。よって、領域253付近における誘導性ノイズの発生を抑えることができる。
 <第4乃至第6の構成例のシミュレーション結果>
 図28は、第4乃至第6の構成例(図25乃至図27)を固体撮像装置100に適用した場合のシミュレーション結果として、画像に誘導性ノイズを生じさせる誘導起電力の変化を示している。なお、第4乃至第6の構成例に流れる電流条件は、図23に示した場合と同様とする。図28の横軸は画像のX軸座標、縦軸は誘導起電力の大きさを示している。
 図28のAにおける実線L52は、第4の構成例(図25)に対応するものであり、点線L1は第1の比較例(図9)に対応するものである。実線L52と点線L1を比較して明らかなように、第4の構成例は、第1の比較例に比べて、Victim導体ループに生じさせる誘導起電力の変化を抑えることができ、誘導性ノイズを抑制できることがわかる。
 図28のBにおける実線L53は、第5の構成例(図26)に対応するものであり、点線L1は第1の比較例(図9)に対応するものである。実線L53と点線L1を比較して明らかなように、第5の構成例は、第1の比較例に比べて、Victim導体ループに生じさせる誘導起電力の変化を抑えることができ、誘導性ノイズを抑制できることがわかる。
 図28のCにおける実線L54は、第6の構成例(図27)に対応するものであり、点線L1は第1の比較例(図9)に対応するものである。実線L54と点線L1を比較して明らかなように、第6の構成例は、第1の比較例に比べて、Victim導体ループに生じさせる誘導起電力の変化を抑えることができ、誘導性ノイズを抑制できることがわかる。
 また、実線L52乃至L54を比較して明らかなように、第6の構成例は、第4の構成例及び第5の構成例に比べて、Victim導体ループに生じさせる誘導起電力の変化をより抑えることができ、誘導性ノイズをより抑制できることがわかる。
 <第7の構成例>
 次に、図29は、導体層A及びBの第7の構成例を示している。なお、図29のAは導体層Aを、図29のBは導体層Bを示している。図29における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 第7の構成例における導体層Aは、面状導体261から成る。面状導体261は、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。
 第7の構成例における導体層Bは、網目状導体262と中継導体301から成る。網目状導体262は、第3の構成例(図22)における導体層Bの網目状導体222と同様の形状を有するので、その説明は省略する。網目状導体262は、例えば、プラス電源に接続される配線(Vdd配線)である。
 中継導体(他の導体)301は、網目状導体262の導体ではない間隙領域に配置されて網目状導体262と電気的に絶縁されており、導体層Aの面状導体261が接続されたVssに接続される。
 中継導体301の形状は任意であり、回転対称または鏡面対称などのように対称な円形または多角形が望ましい。中継導体301は、網目状導体262の間隙領域の中央その他の任意の位置に配置することができる。中継導体301は、導体層Aとは異なるVss配線としての導体層に接続されるようにしてもよい。中継導体301は、導体層Bよりも能動素子群167に近い側のVss配線としての導体層に接続されるようにしてもよい。中継導体301は、Z方向に延伸された導体ビア(VIA)を介して、導体層Aとは異なる導体層や、導体層Bよりも能動素子群167に近い側の導体層等に接続することができる。
 図29のCは、図29のAとBにそれぞれ示した導体層A及びBをフォトダイオード141側(裏面側)から見た状態を示している。ただし、図29のCにおける斜線が交差するハッチングの領域263は、導体層Aの面状導体261と、導体層Bの網目状導体262とが重複する領域を示している。第7の構成例の場合、導体層Aまたは導体層Bの少なくとも一方によって能動素子群167が覆われていることになるので、能動素子群167からのホットキャリア発光を遮光することができる。
 また、第7の構成例の場合、中継導体301を設けたことにより、Vss配線である面状導体261を略最短距離または短距離で能動素子群167と接続することができる。面状導体261と能動素子群167とを略最短距離または短距離で接続することにより、面状導体261と能動素子群167の間の電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 図30は、第7の構成例(図29)に流れる電流条件を示す図である。
 導体層Aを構成する面状導体261と、導体層Bを構成する網目状導体262に対しては、端部では均等にAC電流が流れるものとする。ただし、電流方向は、時間によって変化し、例えば、Vdd配線である網目状導体262に、電流が、図面の上側から下側に流れるとき、Vss配線である面状導体261に、電流が、図面の下側から上側に流れるものとする。
 第7の構成例に、図30に示したように電流が流れる場合、Vss配線である面状導体261と、Vdd配線である網目状導体262との間には、面状導体261と網目状導体262が配置された断面において、面状導体261と網目状導体262(の断面)を含んで形成される、ループ面がX軸にほぼ垂直な導体ループおよびループ面がY軸にほぼ垂直な導体ループによって、略X方向および略Y方向の磁束が発生し易くなる。
 一方、導体層A及びBから成る遮光構造151が形成された第2の半導体基板102に積層された第1の半導体基板101の画素アレイ121においては、信号線132と制御線133から成るVictim導体ループがXY平面に形成される。XY平面に形成されるVictim導体ループは、Z方向の磁束によって誘導起電力が生じ易く、誘導起電力の変化が大きいほど、固体撮像装置100から出力される画像が悪化する(誘導性ノイズが増す)ことになる。
 さらに、画素アレイ121において選択画素が移動されることにより、信号線132と制御線133から成るVictim導体ループの実効的な寸法が変化されると、誘導起電力の変化が顕著になる。
 第7の構成例の場合、導体層A及びBから成る遮光構造151のAggressor導体ループのループ面から生じる磁束の方向(略X方向や略Y方向)と、Victim導体ループに誘導起電力を生じさせる磁束の方向(Z方向)とが略直交して略90度異なる。換言すれば、Aggressor導体ループから磁束が発生するループ面の方向と、Victim導体ループに誘導起電力を発生させるループ面の方向とが略90度異なる。そのため、固体撮像装置100から出力される画像の悪化(誘導性ノイズの発生)は、第1の比較例に比べて少ないことが予想される。
 図31は、第7の構成例(図29)を、固体撮像装置100に適用した場合に生じる誘導性ノイズのシミュレーション結果を示している。
 図31のAは、固体撮像装置100から出力される、誘導性ノイズが生じ得る画像を示している。図31のBは、図31のAに示した画像の線分X1-X2における画素信号の変化を示している。図31のCは、画像に誘導性ノイズを生じさせた誘導起電力を表す実線L61を示している。図31のCの横軸は画像のX軸座標、縦軸は誘導起電力の大きさを示している。なお、図31のCの点線L51は、第3の構成例(図22)に対応するものである。
 図31のCに示した実線L61と点線L51を比較して明らかなように、第7の構成例は、第3の構成例に比べて、Victim導体ループに生じさせる誘導起電力の変化を悪化させないことがわかる。すなわち、導体層Bの網目状導体262の間隙に中継導体301が配置された第7の構成例でも、固体撮像装置100から出力される画像における誘導性ノイズの発生を、第3の構成例と同じ程度に抑制することができる。ただし、このシミュレーション結果は、面状導体261が能動素子群167と接続されておらず、かつ、網目状導体262が能動素子群167と接続されていない場合のシミュレーション結果である。例えば、面状導体261と能動素子群167の少なくとも一部が導体ビア等を介して略最短距離または短距離で接続されている場合や、網目状導体262と能動素子群167の少なくとも一部が導体ビア等を介して略最短距離または短距離で接続されている場合には、面状導体261や網目状導体262に流れる電流量が位置に応じて徐々に小さくなる。このような場合には、中継導体301を設けたことにより、電圧降下やエネルギ損失や誘導性ノイズが半分以下へ大幅に改善される条件もある。
 <第8の構成例>
 次に、図32は、導体層A及びBの第8の構成例を示している。なお、図32のAは導体層Aを、図32のBは導体層Bを示している。図32における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 第8の構成例における導体層Aは、網目状導体271から成る。網目状導体271は、第4の構成例(図25)における導体層Aの網目状導体231と同様の形状を有するので、その説明は省略する。網目状導体271は、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。
 第8の構成例における導体層Bは、網目状導体272と中継導体302から成る。網目状導体272は、第4の構成例(図25)における導体層Bの網目状導体232と同様の形状を有するので、その説明は省略する。網目状導体232は、例えば、プラス電源に接続される配線(Vdd配線)である。
 中継導体(他の導体)302は、網目状導体272の導体ではない間隙領域に配置されて、網目状導体272と電気的に絶縁されており、導体層Aの網目状導体271が接続されたVssに接続される。
 なお、中継導体302の形状は任意であり、回転対称または鏡面対称などのように対称な円形または多角形が望ましい。中継導体302は、網目状導体272の間隙領域の中央その他の任意の位置に配置することができる。中継導体302は、導体層Aとは異なるVss配線としての導体層に接続されるようにしてもよい。中継導体302は、導体層Bよりも能動素子群167に近い側のVss配線としての導体層に接続されるようにしてもよい。中継導体302は、Z方向に延伸された導体ビア(VIA)を介して、導体層Aとは異なる導体層や、導体層Bよりも能動素子群167に近い側の導体層等に接続することができる。
 図32のCは、図32のAとBにそれぞれ示した導体層A及びBをフォトダイオード141側(裏面側)から見た状態を示している。ただし、図32のCにおける斜線が交差するハッチングの領域273は、導体層Aの網目状導体271と、導体層Bの網目状導体272とが重複する領域を示している。第8の構成例の場合、導体層Aまたは導体層Bの少なくとも一方によって能動素子群167が覆われていることになるので、能動素子群167からのホットキャリア発光を遮光することができる。
 第8の構成例に、図30に示した場合と同様に電流が流れる場合、Vss配線である網目状導体271と、Vdd配線である網目状導体272との間には、網目状導体271及び272が配置された断面において、網目状導体271及び272(の断面)を含んで形成される、ループ面がX軸にほぼ垂直な導体ループおよびループ面がY軸にほぼ垂直な導体ループによって、略X方向および略Y方向の磁束が発生し易くなる。
 また、第8の構成例の場合、中継導体302を設けたことにより、Vss配線である網目状導体271を略最短距離または短距離で能動素子群167と接続することができる。網目状導体271と能動素子群167とを略最短距離または短距離で接続することにより、網目状導体271と能動素子群167の間の電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 <第9の構成例>
 次に、図33は、導体層A及びBの第9の構成例を示している。なお、図33のAは導体層Aを、図33のBは導体層Bを示している。図33における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 第9の構成例における導体層Aは、網目状導体281から成る。網目状導体281は、第5の構成例(図26)における導体層Aの網目状導体241と同様の形状を有するので、その説明は省略する。網目状導体281は、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。
 第9の構成例における導体層Bは、網目状導体282と中継導体303から成る。網目状導体282は、第5の構成例(図26)における導体層Bの網目状導体242と同様の形状を有するので、その説明は省略する。網目状導体282は、例えば、プラス電源に接続される配線(Vdd配線)である。
 中継導体(他の導体)303は、網目状導体282の導体ではない間隙領域に配置されて、網目状導体282と電気的に絶縁されており、導体層Aの網目状導体281が接続されたVssに接続される。
 なお、中継導体303の形状は任意であり、回転対称または鏡面対称などのように対称な円形または多角形が望ましい。中継導体303は、網目状導体282の間隙領域の中央その他の任意の位置に配置することができる。中継導体303は、導体層Aとは異なるVss配線としての導体層に接続されるようにしてもよい。中継導体303は、導体層Bよりも能動素子群167に近い側のVss配線としての導体層に接続されるようにしてもよい。中継導体303は、Z方向に延伸された導体ビア(VIA)を介して、導体層Aとは異なる導体層や、導体層Bよりも能動素子群167に近い側の導体層等に接続することができる。
 図33のCは、図33のAとBにそれぞれ示した導体層A及びBをフォトダイオード141側(裏面側)から見た状態を示している。ただし、図33のCにおける斜線が交差するハッチングの領域283は、導体層Aの網目状導体281と、導体層Bの網目状導体282とが重複する領域を示している。第9の構成例の場合、導体層Aまたは導体層Bの少なくとも一方によって能動素子群167が覆われていることになるので、能動素子群167からのホットキャリア発光を遮光することができる。
 第9の構成例に、図30に示した場合と同様に電流が流れる場合、Vss配線である網目状導体281と、Vdd配線である網目状導体282との間には、網目状導体281及び282が配置された断面において、網目状導体281及び282(の断面)を含んで形成される、ループ面がX軸にほぼ垂直な導体ループおよびループ面がY軸にほぼ垂直な導体ループによって、略X方向および略Y方向の磁束が発生し易くなる。
 また、第9の構成例の場合、中継導体303を設けたことにより、Vss配線である網目状導体281を略最短距離または短距離で能動素子群167と接続することができる。網目状導体281と能動素子群167とを略最短距離または短距離で接続することにより、網目状導体281と能動素子群167の間の電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 <第10の構成例>
 次に、図34は、導体層A及びBの第10の構成例を示している。なお、図34のAは導体層Aを、図34のBは導体層Bを示している。図34における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 第10の構成例における導体層Aは、網目状導体291から成る。網目状導体291は、第6の構成例(図27)における導体層Aの網目状導体251と同様の形状を有するので、その説明は省略する。網目状導体291は、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。
 第10の構成例における導体層Bは、網目状導体292と中継導体304から成る。網目状導体292は、第6の構成例(図27)における導体層Bの網目状導体252と同様の形状を有するので、その説明は省略する。網目状導体292は、例えば、プラス電源に接続される配線(Vdd配線)である。
 中継導体(他の導体)304は、網目状導体292の導体ではない間隙領域に配置されて、網目状導体292と電気的に絶縁されており、導体層Aの網目状導体291が接続されたVssに接続される。
 なお、中継導体304の形状は任意であり、回転対称または鏡面対称などのように対称な円形または多角形が望ましい。中継導体304は、網目状導体292の間隙領域の中央その他の任意の位置に配置することができる。中継導体304は、導体層Aとは異なるVss配線としての導体層に接続されるようにしてもよい。中継導体304は、導体層Bよりも能動素子群167に近い側のVss配線としての導体層に接続されるようにしてもよい。中継導体304は、Z方向に延伸された導体ビア(VIA)を介して、導体層Aとは異なる導体層や、導体層Bよりも能動素子群167に近い側の導体層等に接続することができる。
 図34のCは、図34のAとBにそれぞれ示した導体層A及びBをフォトダイオード141側(裏面側)から見た状態を示している。ただし、図34のCにおける斜線が交差するハッチングの領域293は、導体層Aの網目状導体291と、導体層Bの網目状導体292とが重複する領域を示している。第10の構成例の場合、導体層Aまたは導体層Bの少なくとも一方によって能動素子群167が覆われていることになるので、能動素子群167からのホットキャリア発光を遮光することができる。
 第10の構成例に、図30に示した場合と同様に電流が流れる場合、Vss配線である網目状導体291と、Vdd配線である網目状導体292との間には、網目状導体291及び292が配置された断面において、網目状導体291及び292(の断面)を含んで形成される、ループ面がX軸にほぼ垂直な導体ループおよびループ面がY軸にほぼ垂直な導体ループによって、略X方向および略Y方向の磁束が発生し易くなる。
 また、第10の構成例の場合、中継導体304を設けたことにより、Vss配線である網目状導体291を略最短距離または短距離で能動素子群167と接続することができる。網目状導体291と能動素子群167とを略最短距離または短距離で接続することにより、網目状導体291と能動素子群167の間の電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 <第8乃至第10の構成例のシミュレーション結果>
 図35は、第8乃至第10の構成例(図32乃至図34)を固体撮像装置100に適用した場合のシミュレーション結果として、画像に誘導性ノイズを生じさせる誘導起電力の変化を示している。なお、第8乃至第10の構成例に流れる電流条件は、図30に示した場合と同様とする。図35の横軸は画像のX軸座標、縦軸は誘導起電力の大きさを示している。
 図35のAにおける実線L62は、第8の構成例(図32)に対応するものであり、点線L52は、第4の構成例(図25)に対応するものである。実線L62と点線L52を比較して明らかなように、第8の構成例は、第4の構成例に比べて、Victim導体ループに生じさせる誘導起電力の変化を悪化させないことがわかる。すなわち、導体層Bの網目状導体272の間隙に中継導体302が配置された第8の構成例でも、固体撮像装置100から出力される画像における誘導性ノイズの発生を第4の構成例と同じ程度に抑制することができる。ただし、このシミュレーション結果は、網目状導体271が能動素子群167と接続されておらず、かつ、網目状導体272が能動素子群167と接続されていない場合のシミュレーション結果である。例えば、網目状導体271と能動素子群167の少なくとも一部が導体ビア等を介して略最短距離または短距離で接続されている場合や、網目状導体272と能動素子群167の少なくとも一部が導体ビア等を介して略最短距離または短距離で接続されている場合には、網目状導体271や網目状導体272に流れる電流量が位置に応じて徐々に小さくなる。このような場合には、中継導体302を設けたことにより、電圧降下やエネルギ損失や誘導性ノイズが半分以下へ大幅に改善される条件もある。
 図35のBにおける実線L63は、第9の構成例(図33)に対応するものであり、点線L53は、第5の構成例(図26)に対応するものである。実線L63と点線L53を比較して明らかなように、第9の構成例は、第5の構成例に比べて、Victim導体ループに生じさせる誘導起電力の変化を悪化させないことがわかる。すなわち、導体層Bの網目状導体282の間隙に中継導体303が配置された第9の構成例でも、固体撮像装置100から出力される画像における誘導性ノイズの発生を第5の構成例と同じ程度に抑制することができる。ただし、このシミュレーション結果は、網目状導体281が能動素子群167と接続されておらず、かつ、網目状導体282が能動素子群167と接続されていない場合のシミュレーション結果である。例えば、網目状導体281と能動素子群167の少なくとも一部が導体ビア等を介して略最短距離または短距離で接続されている場合や、網目状導体282と能動素子群167の少なくとも一部が導体ビア等を介して略最短距離または短距離で接続されている場合には、網目状導体281や網目状導体282に流れる電流量が位置に応じて徐々に小さくなる。このような場合には、中継導体303を設けたことにより、電圧降下やエネルギ損失や誘導性ノイズが半分以下へ大幅に改善される条件もある。
 図35のCにおける実線L64は、第10の構成例に(図34)対応するものであり、点線L54は、第6の構成例(図27)に対応するものである。実線L64と点線L54を比較して明らかなように、第10の構成例は、第6の構成例に比べて、Victim導体ループに生じさせる誘導起電力の変化を悪化させないことがわかる。すなわち、導体層Bの網目状導体292の間隙に中継導体304が配置された第10の構成例でも、固体撮像装置100から出力される画像における誘導性ノイズの発生を第6の構成例と同じ程度に抑制することができる。ただし、このシミュレーション結果は、網目状導体291が能動素子群167と接続されておらず、かつ、網目状導体292が能動素子群167と接続されていない場合のシミュレーション結果である。例えば、網目状導体291と能動素子群167の少なくとも一部が導体ビア等を介して略最短距離または短距離で接続されている場合や、網目状導体292と能動素子群167の少なくとも一部が導体ビア等を介して略最短距離または短距離で接続されている場合には、網目状導体291や網目状導体292に流れる電流量が位置に応じて徐々に小さくなる。このような場合には、中継導体304を設けたことにより、電圧降下やエネルギ損失や誘導性ノイズが半分以下へ大幅に改善される条件もある。
 また、実線L62乃至L64を比較して明らかなように、第10の構成例は、第8の構成例及び第9の構成例に比べて、Victim導体ループに生じさせる誘導起電力の変化をより抑えることができ、誘導性ノイズをより抑制できることがわかる。
 <第11の構成例>
 次に、図36は、導体層A及びBの第11の構成例を示している。なお、図36のAは導体層Aを、図36のBは導体層Bを示している。図36における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 第11の構成例における導体層Aは、X方向(第1の方向)の抵抗値とY方向(第2の方向)の抵抗値が異なる網目状導体311から成る。網目状導体311は、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。
 網目状導体311におけるX方向の導体幅をWXA、間隙幅をGXA、導体周期をFXA(=導体幅WXA+間隙幅GXA)、端部幅をEXA(=導体幅WXA/2)とする。また、網目状導体311におけるY方向の導体幅をWYA、間隙幅をGYA、導体周期をFYA(=導体幅WYA+間隙幅GYA)、端部幅をEYA(=導体幅WYA/2)とする。網目状導体311においては、間隙幅GYA>間隙幅GXAが満たされる。したがって、網目状導体311の間隙領域は、Y方向がX方向よりも長い形状を有しており、X方向とY方向とで抵抗値が異なり、Y方向の抵抗値がX方向の抵抗値よりも小さくなる。
 第11の構成例における導体層Bは、X方向の抵抗値とY方向の抵抗値が異なる網目状導体312から成る。網目状導体312は、例えば、プラス電源に接続される配線(Vdd配線)である。
 網目状導体312におけるX方向の導体幅をWXB、間隙幅をGXB、導体周期をFXB(=導体幅WXB+間隙幅GXB)とする。また、網目状導体312におけるY方向の導体幅をWYB、間隙幅をGYB、導体周期をFYB(=導体幅WYB+間隙幅GYB)、端部幅をEYB(=導体幅WYB/2)とする。網目状導体312においては、間隙幅GYB>間隙幅GXBが満たされる。したがって、網目状導体312の間隙領域は、Y方向がX方向よりも長い形状を有しており、X方向とY方向とで抵抗値が異なり、Y方向の抵抗値がX方向の抵抗値よりも小さくなる。
 なお、網目状導体311のシート抵抗値が網目状導体312のシート抵抗値よりも大きい場合、網目状導体311と網目状導体312は、以下の関係を満たすことが望ましい。
 導体幅WYA≧導体幅WYB
 導体幅WXA≧導体幅WXB
 間隙幅GXA≦間隙幅GXB
 間隙幅GYA≦間隙幅GYB
 反対に、網目状導体311のシート抵抗値が網目状導体312のシート抵抗値よりも小さい場合、網目状導体311と網目状導体312は、以下の関係を満たすことが望ましい。
 導体幅WYA≦導体幅WYB
 導体幅WXA≦導体幅WXB
 間隙幅GXA≧間隙幅GXB
 間隙幅GYA≧間隙幅GYB
 さらに、網目状導体311,312のシート抵抗値と導体幅については、以下の関係を満たすことが望ましい。
 (網目状導体311のシート抵抗値)/(網目状導体312のシート抵抗値)
≒導体幅WYA/導体幅WYB
 (網目状導体311のシート抵抗値)/(網目状導体312のシート抵抗値)
≒導体幅WXA/導体幅WXB
 本明細書で開示する寸法関係に関わる限定は必須ではなく、網目状導体311の電流分布と、網目状導体312の電流分布とが、略均等、略同一、または、略類似した電流分布であり、且つ、逆特性な電流分布となるように構成されていることが望ましい。
 例えば、網目状導体311のX方向の配線抵抗と網目状導体311のY方向の配線抵抗との比と、網目状導体312のX方向の配線抵抗と網目状導体312のY方向の配線抵抗との比とが、略同一となるように構成されていることが望ましい。
 また、網目状導体311のX方向の配線インダクタンスと網目状導体311のY方向の配線インダクタンスとの比と、網目状導体312のX方向の配線インダクタンスと網目状導体312のY方向の配線インダクタンスとの比とが、略同一となるように構成されていることが望ましい。
 また、網目状導体311のX方向の配線キャパシタンスと網目状導体311のY方向の配線キャパシタンスとの比と、網目状導体312のX方向の配線キャパシタンスと網目状導体312のY方向の配線キャパシタンスとの比とが、略同一となるように構成されていることが望ましい。
 また、網目状導体311のX方向の配線インピーダンスと網目状導体311のY方向の配線インピーダンスとの比と、網目状導体312のX方向の配線インピーダンスと網目状導体312のY方向の配線インピーダンスとの比とが、略同一となるように構成されていることが望ましい。
 換言すると、(網目状導体311のX方向の配線抵抗×網目状導体312のY方向の配線抵抗)≒(網目状導体312のX方向の配線抵抗×網目状導体311のY方向の配線抵抗)、
(網目状導体311のX方向の配線インダクタンス×網目状導体312のY方向の配線インダクタンス)≒(網目状導体312のX方向の配線インダクタンス×網目状導体311のY方向の配線インダクタンス)、
(網目状導体311のX方向の配線キャパシタンス×網目状導体312のY方向の配線キャパシタンス)≒(網目状導体312のX方向の配線キャパシタンス×網目状導体311のY方向の配線キャパシタンス)、または、
(網目状導体311のX方向の配線インピーダンス×網目状導体312のY方向の配線インピーダンス)≒(網目状導体312のX方向の配線インピーダンス×網目状導体311のY方向の配線インピーダンス)、
の何れかの関係を満たすことが望ましいが、この関係を満たすことが必須ではない。
 なお、上述した配線抵抗、配線インダクタンス、配線キャパシタンス、および、配線インピーダンスは、それぞれ、導体抵抗、導体インダクタンス、導体キャパシタンス、および、導体インピーダンスに、置き換え可能である。
 なお、上述したインピーダンスZ、抵抗R、インダクタンスL、キャパシタンスCの間には、角周波数ωおよび虚数単位jによってZ=R+jωL+1÷(jωC)の関係がある。
 なお、これらの比の関係は、網目状導体311および網目状導体312の全体として満たされていてもよいし、網目状導体311および網目状導体312における一部の範囲内で満たされていてもよく、任意の範囲内で満たされていればよい。
 さらに、電流分布が略均等または略同一または略類似、且つ、逆特性となるように調整する回路が設けられていてもよい。
 上述した関係を満たすことにより、網目状導体311の電流分布と、網目状導体312の電流分布とを略均等、且つ、逆特性にできるので、網目状導体311の電流分布によって生じる磁界と、網目状導体312の電流分布によって生じる磁界とを効果的に相殺できる。
 図36のCは、図36のAとBにそれぞれ示した導体層A及びBをフォトダイオード141側(裏面側)から見た状態を示している。ただし、図36のCにおける斜線が交差するハッチングの領域313は、導体層Aの網目状導体311と、導体層Bの網目状導体312とが重複する領域を示している。第11の構成例の場合、導体層Aまたは導体層Bの少なくとも一方によって能動素子群167が覆われていることになるので、能動素子群167からのホットキャリア発光を遮光することができる。
 また、第11の構成例の場合、網目状導体311と網目状導体312との重複する領域313がX方向に連なる。網目状導体311と網目状導体312との重複する領域313では、網目状導体311と網目状導体312に互いに極性が異なる電流が流れるので、領域313から生じる磁界が互いに打ち消されることになる。よって、領域313付近における誘導性ノイズの発生を抑えることができる。
 また、第11の構成例の場合、網目状導体311のY方向の間隙幅GYAとX方向の間隙幅GXAが異なるように形成されるとともに、網目状導体312のY方向の間隙幅GYBとX方向の間隙幅GXBが異なるように形成される。
 このように、網目状導体311,312をX方向とY方向の間隙幅に差異を設けた形状とすることにより、実際に導体層を設計、製造する際の、配線領域の寸法、空隙領域の寸法、各導体層における配線領域の占有率等の制約を守ることができ、配線レイアウトの設計の自由度を高めることができる。また、間隙幅に差異を設けない場合に比較して、電圧降下(IR-Drop)や誘導性ノイズなどの観点で有利なレイアウトに配線を設計することができる。
 図37は、第11の構成例(図36)に流れる電流条件を示す図である。
 導体層Aを構成する網目状導体311と、導体層Bを構成する網目状導体312に対しては、端部では均等にAC電流が流れるものとする。ただし、電流方向は、時間によって変化し、例えば、Vdd配線である網目状導体312に、電流が、図面の上側から下側に流れるとき、Vss配線である網目状導体311に、電流が、図面の下側から上側に流れるものとする。
 第11の構成例に、図37に示したように電流が流れる場合、Vss配線である網目状導体311と、Vdd配線である網目状導体312との間には、網目状導体311及び312が配置された断面において、網目状導体311及び312(の断面)を含んで形成される、ループ面がX軸にほぼ垂直な導体ループおよびループ面がY軸にほぼ垂直な導体ループによって、略X方向および略Y方向の磁束が発生し易くなる。
 一方、導体層A及びBから成る遮光構造151が形成された第2の半導体基板102に積層された第1の半導体基板101の画素アレイ121においては、信号線132と制御線133から成るVictim導体ループがXY平面に形成される。XY平面に形成されるVictim導体ループは、Z方向の磁束によって誘導起電力が生じ易く、誘導起電力の変化が大きいほど、固体撮像装置100から出力される画像が悪化する(誘導性ノイズが増す)ことになる。
 さらに、画素アレイ121において選択画素が移動されることにより、信号線132と制御線133から成るVictim導体ループの実効的な寸法が変化されると、誘導起電力の変化が顕著になる。
 第11の構成例の場合、導体層A及びBから成る遮光構造151のAggressor導体ループのループ面から生じる磁束の方向(略X方向や略Y方向)と、Victim導体ループに誘導起電力を生じさせる磁束の方向(Z方向)とが略直交して略90度異なる。換言すれば、Aggressor導体ループから磁束が発生するループ面の方向と、Victim導体ループに誘導起電力を発生させるループ面の方向とが略90度異なる。そのため、固体撮像装置100から出力される画像の悪化(誘導性ノイズの発生)は、第1の比較例に比べて少ないことが予想される。
 図38は、第11の構成例(図36)を、固体撮像装置100に適用した場合に生じる誘導性ノイズのシミュレーション結果を示している。
 図38のAは、固体撮像装置100から出力される、誘導性ノイズが生じ得る画像を示している。図38のBは、図38のAに示した画像の線分X1-X2における画素信号の変化を示している。図38のCは、画像に誘導性ノイズを生じさせた誘導起電力を表す実線L71を示している。図38のCの横軸は画像のX軸座標、縦軸は誘導起電力の大きさを示している。なお、図38のCの点線L1は、第1の比較例(図9)に対応するものである。
 図38のCに示した実線L71と点線L1を比較して明らかなように、第11の構成例は、第1の比較例に比べて、Victim導体ループに生じさせる誘導起電力の変化を抑えることができ、誘導性ノイズを抑制できることがわかる。
 なお、第11の構成例は、XY平面状で90度回転させて用いてもよい。また、90度に限らず任意の角度に回転させて用いてもよい。例えば、X軸やY軸に対して斜めに構成してもよい。
 <第12の構成例>
 次に、図39は、導体層A及びBの第12の構成例を示している。なお、図39のAは導体層Aを、図39のBは導体層Bを示している。図39における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 第12の構成例における導体層Aは、網目状導体321から成る。網目状導体321は、第11の構成例(図36)における導体層Aの網目状導体311と同様の形状を有するので、その説明は省略する。網目状導体321は、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。
 第12の構成例における導体層Bは、網目状導体322と中継導体305から成る。網目状導体322は、第11の構成例(図36)における導体層Bの網目状導体312と同様の形状を有するので、その説明は省略する。網目状導体322は、例えば、プラス電源に接続される配線(Vdd配線)である。
 中継導体(他の導体)305は、網目状導体322の導体ではないY方向に長い長方形の間隙領域に配置されて、網目状導体322と電気的に絶縁されており、導体層Aの網目状導体321が接続されたVssに接続される。
 なお、中継導体305の形状は任意であり、回転対称または鏡面対称などのように対称な円形または多角形が望ましい。中継導体305は、網目状導体322の間隙領域の中央その他の任意の位置に配置することができる。中継導体305は、導体層Aとは異なるVss配線としての導体層に接続されるようにしてもよい。中継導体305は、導体層Bよりも能動素子群167に近い側のVss配線としての導体層に接続されるようにしてもよい。中継導体305は、Z方向に延伸された導体ビア(VIA)を介して、導体層Aとは異なる導体層や、導体層Bよりも能動素子群167に近い側の導体層等に接続することができる。
 図39のCは、図39のAとBにそれぞれ示した導体層A及びBをフォトダイオード141側(裏面側)から見た状態を示している。ただし、図39のCにおける斜線が交差するハッチングの領域323は、導体層Aの網目状導体321と、導体層Bの網目状導体322とが重複する領域を示している。第12の構成例の場合、導体層Aまたは導体層Bの少なくとも一方によって能動素子群167が覆われていることになるので、能動素子群167からのホットキャリア発光を遮光することができる。
 第12の構成例に、図37に示した場合と同様に電流が流れる場合、Vss配線である網目状導体321と、Vdd配線である網目状導体322との間には、網目状導体321及び322が配置された断面において、網目状導体321及び322(の断面)を含んで形成される、ループ面がX軸にほぼ垂直な導体ループおよびループ面がY軸にほぼ垂直な導体ループによって、略X方向および略Y方向の磁束が発生し易くなる。
 さらに、第12の構成例の場合、網目状導体321と網目状導体322との重複する領域323がX方向に連なる。網目状導体321と網目状導体322との重複する領域323では、網目状導体321と網目状導体322に互いに極性が異なる電流が流れるので、領域323から生じる磁界が互いに打ち消されることになる。よって、領域323付近における誘導性ノイズの発生を抑えることができる。
 また、第12の構成例の場合、中継導体305を設けたことにより、Vss配線である網目状導体321を略最短距離または短距離で能動素子群167と接続することができる。網目状導体321と能動素子群167とを略最短距離または短距離で接続することにより、網目状導体321と能動素子群167の間の電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 なお、第12の構成例は、XY平面状で90度回転させて用いてもよい。また、90度に限らず任意の角度に回転させて用いてもよい。例えば、X軸やY軸に対して斜めに構成してもよい。
 <第13の構成例>
 次に、図40は、導体層A及びBの第13の構成例を示している。なお、図40のAは導体層Aを、図40のBは導体層Bを示している。図40における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 第13の構成例における導体層Aは、網目状導体331から成る。網目状導体331は、第11の構成例(図36)における導体層Aの網目状導体311と同様の形状を有するので、その説明は省略する。網目状導体331は、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。
 第13の構成例における導体層Bは、網目状導体332と中継導体306から成る。網目状導体332は、第11の構成例(図36)における導体層Bの網目状導体312と同様の形状を有するので、その説明は省略する。網目状導体332は、例えば、プラス電源に接続される配線(Vdd配線)である。
 中継導体(他の導体)306は、第12の構成例(図39)における中継導体305を、間隔を空けて複数(図40の場合は10)に分割したものである。中継導体306は、網目状導体332のY方向に長い長方形の間隙領域に配置されて、網目状導体332と電気的に絶縁されており、導体層Aの網目状導体331が接続されたVssに接続される。中継導体の分割数やVssへの接続の有無は、領域によって異ならせてもよい。この場合には、設計時に電流分布を微調整できるので、誘導性ノイズ抑制や電圧降下(IR-Drop)低減に繋げることができる。
 なお、中継導体306の形状は任意であり、回転対称または鏡面対称などのように対称な円形または多角形が望ましい。中継導体306の分割数は、任意に変更することができる。中継導体306は、網目状導体332の間隙領域の中央その他の任意の位置に配置することができる。中継導体306は、導体層Aとは異なるVss配線としての導体層に接続されるようにしてもよい。中継導体306は、導体層Bよりも能動素子群167に近い側のVss配線としての導体層に接続されるようにしてもよい。中継導体306は、Z方向に延伸された導体ビア(VIA)を介して、導体層Aとは異なる導体層や、導体層Bよりも能動素子群167に近い側の導体層等に接続することができる。
 図40のCは、図40のAとBにそれぞれ示した導体層A及びBをフォトダイオード141側(裏面側)から見た状態を示している。ただし、図40のCにおける斜線が交差するハッチングの領域333は、導体層Aの網目状導体331と、導体層Bの網目状導体332とが重複する領域を示している。第13の構成例の場合、導体層Aまたは導体層Bの少なくとも一方によって能動素子群167が覆われていることになるので、能動素子群167からのホットキャリア発光を遮光することができる。
 第13の構成例に、図37に示した場合と同様に電流が流れる場合、Vss配線である網目状導体331と、Vdd配線である網目状導体332との間には、網目状導体331及び332が配置された断面において、網目状導体331及び332(の断面)を含んで形成される、ループ面がX軸にほぼ垂直な導体ループおよびループ面がY軸にほぼ垂直な導体ループによって、略X方向および略Y方向の磁束が発生し易くなる。
 さらに、第13の構成例の場合、網目状導体331と網目状導体332との重複する領域333がX方向に連なる。領域333では、網目状導体331と網目状導体332に互いに極性が異なる電流が流れるので、領域333から生じる磁界が互いに打ち消されることになる。よって、領域333付近における誘導性ノイズの発生を抑えることができる。
 また、第13の構成例の場合、中継導体306を設けたことにより、Vss配線である網目状導体331を略最短距離または短距離で能動素子群167と接続することができる。網目状導体331と能動素子群167とを略最短距離または短距離で接続することにより、網目状導体331と能動素子群167の間の電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 さらに、第13の構成例では、中継導体306が複数に分割されていることにより、導体層Aにおける電流分布と、導体層Bとにおける電流分布とを、略均一、かつ、逆極性にすることができるので、導体層Aから生じる磁界と導体層Bから生じる磁界とを互いに打ち消すことができる。したがって、第13の構成例では、外的要因によるVdd配線とVss配線との電流分布差を生じさせ難くすることができる。よって、第16の構成例は、XY平面の電流分布が複雑である場合や、網目状導体331,332に接続される導体のインピーダンスがVdd配線とVss配線とで異なる場合に好適である。
 なお、第13の構成例は、XY平面状で90度回転させて用いてもよい。また、90度に限らず任意の角度に回転させて用いてもよい。例えば、X軸やY軸に対して斜めに構成してもよい。
 <第12及び第13の構成例のシミュレーション結果>
 図41は、第12の構成例(図39)及び第13の構成例(図40)を固体撮像装置100に適用した場合のシミュレーション結果として、画像に誘導性ノイズを生じさせる誘導起電力の変化を示している。なお、第12及び第13の構成例に流れる電流条件は、図37に示した場合と同様とする。図41の横軸は画像のX軸座標、縦軸は誘導起電力の大きさを示している。
 図41のAにおける実線L72は、第12の構成例(図39)に対応するものであり、点線L1は、第1の比較例(図9)に対応するものである。実線L72と点線L1を比較して明らかなように、第12の構成例は、第1の比較例に比べて、Victim導体ループに生じさせる誘導起電力を変化させないことがわかる。よって、第12の構成例は、第1の比較例に比べて、固体撮像装置100から出力される画像における誘導性ノイズを抑制することができる。ただし、このシミュレーション結果は、網目状導体321が能動素子群167と接続されておらず、かつ、網目状導体322が能動素子群167と接続されていない場合のシミュレーション結果である。例えば、網目状導体321と能動素子群167の少なくとも一部が導体ビア等を介して略最短距離または短距離で接続されている場合や、網目状導体322と能動素子群167の少なくとも一部が導体ビア等を介して略最短距離または短距離で接続されている場合には、網目状導体321や網目状導体322に流れる電流量が位置に応じて徐々に小さくなる。このような場合には、中継導体305を設けたことにより、電圧降下やエネルギ損失や誘導性ノイズが半分以下へ大幅に改善される条件もある。
 図41のBにおける実線L73は、第13の構成例(図40)に対応するものであり、点線L1は、第1の比較例(図9)に対応するものである。実線L73と点線L1を比較して明らかなように、第13の構成例は、第1の比較例に比べて、Victim導体ループに生じさせる誘導起電力を変化させないことがわかる。よって、第13の構成例は、第1の比較例に比べて、固体撮像装置100から出力される画像における誘導性ノイズを抑制することができる。ただし、このシミュレーション結果は、網目状導体331が能動素子群167と接続されておらず、かつ、網目状導体332が能動素子群167と接続されていない場合のシミュレーション結果である。例えば、網目状導体331と能動素子群167の少なくとも一部が導体ビア等を介して略最短距離または短距離で接続されている場合や、網目状導体332と能動素子群167の少なくとも一部が導体ビア等を介して略最短距離または短距離で接続されている場合には、網目状導体331や網目状導体332に流れる電流量が位置に応じて徐々に小さくなる。このような場合には、中継導体306を設けたことにより、電圧降下やエネルギ損失や誘導性ノイズが半分以下へ大幅に改善される条件もある。
<5.導体層A及びBが形成される半導体基板における電極の配置例>
 次に、上述した導体層A及びBの第11乃至第13の構成例のように、X方向とY方向とで抵抗値が異なる導体が形成される半導体基板における電極の配置について説明する。
 なお、以下の説明では、Y方向の抵抗値がX方向の抵抗値よりも小さい導体(網目状導体331,332)を含む導体層A及びBから成る第13の構成例(図40)が半導体基板に形成される場合を例にして説明する。ただし、Y方向の抵抗値がX方向の抵抗値よりも小さい導体を含む導体層A及びBの第11および第12の構成例が半導体基板に形成される場合についても同様とする。
 半導体基板に形成される導体層A及びBの第13の構成例では、導体(網目状導体331,332)のY方向の抵抗値がX方向の抵抗値よりも小さいので、Y方向に電流が流れ易い。したがって、導体層A及びBの第13の構成例の導体における電圧降下(IR-Drop)をできるだけ小さくするためには、半導体基板に配置する複数のパッド(電極)を、抵抗値が小さい方向であるY方向よりも、抵抗値が大きい方向であるX方向に密に配置することが望ましいが、X方向よりもY方向に密に配置してもよい。
 <半導体基板におけるパッドの第1の配置例>
 図42は、半導体基板においてY方向よりもX方向に密にパッドを配置した第1の配置例を示す平面図である。なお、図42における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 図42のAは、導体層A及びBから成る第13の構成例(図40)が複数形成される配線領域400の1辺にパッドを配置した場合を示している。図42のBは、導体層A及びBから成る第13の構成例(図40)が複数形成される配線領域400のY方向で対向する2辺にパッドを配置した場合を示している。なお、図中の点線矢印は、そこに流れる電流の向きの一例を示しており、点線矢印で示した電流による電流ループ411が生じる。点線矢印で示した電流の方向は、時々刻々と変化する。
 図42のCは、導体層A及びBから成る第13の構成例(図40)が複数形成される配線領域400の3辺にパッドを配置した場合を示している。図42のDは、導体層A及びBから成る第13の構成例(図40)が複数形成される配線領域400の4辺にパッドを配置した場合を示している。図42のEは配線領域400に複数形成される導体層A及びBの第13の構成例の向きを示している。
 配線領域400に配置されるパッド401はVdd配線に接続され、パッド402は、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。
 図42に示した第1の配置例の場合、パッド401及び402は、それぞれ、1又は隣接して配置された複数(図42の場合、2)のパッドから成る。パッド401と402とは、隣接して配置される。1のパッドからなるパッド401と1のパッドからなるパッド402とは、隣接して配置され、2のパッドからなるパッド401と2のパッドからなるパッド402とは、隣接して配置される。パッド401と402との極性(接続先がVdd配線またはVss配線)は逆極性とされている。配線領域400に配置するパッド401の数と、パッド402の数は略同数とする。
 これにより、配線領域400に形成される導体層A及びBのそれぞれに流れる電流分布を略均一、かつ、逆極性にできるので、導体層A及びBのそれぞれから生じる磁界とそれに基づく誘導起電力を効果的に相殺することができる。
 また、図42のB,C,Dに示されるように、配線領域400の2辺以上にパッドを形成した場合、対向する辺で向かい合うパッドの極性が逆極性とされている。これにより、図42のBに点線矢印で示したように、配線領域400のX座標が共通であってY座標が異なる位置には、同じ方向の電流が分布し易くなる。
 <半導体基板におけるパッドの第2の配置例>
 次に、図43は、半導体基板においてY方向よりもX方向に密にパッドを配置した第2の配置例を示す平面図である。なお、図43における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 図43のAは、導体層A及びBから成る第13の構成例(図40)が複数形成される配線領域400のY方向で対向する2辺にパッドを配置した場合を示している。なお、図中の点線矢印は、そこに流れる電流の向きを示しており、点線矢印で示した電流による電流ループ412が生じる。点線矢印で示した電流の方向は、時々刻々と変化する。
 図43のBは、導体層A及びBから成る第13の構成例(図40)が複数形成される配線領域400の3辺にパッドを配置した場合を示している。図43のCは、導体層A及びBから成る第13の構成例(図40)が複数形成される配線領域400の4辺にパッドを配置した場合を示している。図43のDは、配線領域400に複数形成される導体層A及びBの第13の構成例の向きを示している。
 配線領域400に配置されるパッド401はVdd配線に接続され、パッド402は、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。
 図43に示した第2の配置例の場合、パッド401及び402は、隣接して配置された複数(図43の場合、2)のパッドから成る。パッド401と402とは、隣接して配置される。1のパッドからなるパッド401と1のパッドからなるパッド402とは、隣接して配置され、2のパッドからなるパッド401と2のパッドからなるパッド402とは、隣接して配置される。パッド401と402との極性(接続先がVdd配線またはVss配線)は逆極性とされている。配線領域400に配置するパッド401の数と、パッド402の数は略同数とする。
 これにより、配線領域400に形成される導体層A及びBのそれぞれに流れる電流分布を略均一、かつ、逆極性にできるので、導体層A及びBのそれぞれから生じる磁界とそれに基づく誘導起電力を効果的に相殺することができる。
 さらに、第2の配置例では、対向する辺で向かい合うパッドの極性を同極性としている。ただし、対向する辺で向かい合うパッドの一部は極性が逆極性であってもよい。これにより、配線領域400には、図42のBに示した電流ループ411に比べて小さい電流ループ412が生じることになる。電流ループは、その大きさが磁界の分布範囲に影響し、電界ループが小さい程、磁界の分布範囲が狭くなる。したがって、第2の配置例は、第1の配置例に比べて、磁界の分布範囲が狭くなる。よって、第2の配置例は、第1の配置例に比べて、生じる誘導起電力と、それに基づく誘導性ノイズを小さくすることができる。
 <半導体基板におけるパッドの第3の配置例>
 次に、図44は、半導体基板においてY方向よりもX方向に密にパッドを配置した第3の配置例を示す平面図である。なお、図44における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 図44のAは、導体層A及びBから成る第13の構成例(図40)が複数形成される配線領域400の1辺にパッドを配置した場合を示している。図44のBは、導体層A及びBから成る第13の構成例(図40)が複数形成される配線領域400のY方向で対向する2辺にパッドを配置した場合を示している。なお、図中の点線矢印は、そこに流れる電流の向きを示しており、点線矢印で示した電流による電流ループ413が生じる。
 図44のCは、導体層A及びBから成る第13の構成例(図40)が複数形成される配線領域400の3辺にパッドを配置した場合を示している。図44のDは、導体層A及びBから成る第13の構成例(図40)が複数形成される配線領域400の4辺にパッドを配置した場合を示している。図44のEは、配線領域400に複数形成される導体層A及びBの第13の構成例の向きを示している。
 配線領域400に配置されるパッド401はVdd配線に接続され、パッド402は、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。
 図44に示した第3の配置例の場合、隣接して配置した複数(図44の場合、2)のパッドから成るパッド群を成す各パッドの極性(接続先がVdd配線またはVss配線)が逆極性とされている。配線領域400の1辺または全ての辺に配置したパッド401の数と、パッド402の数は略同数とする。
 さらに、第3の配置例では、対向する辺で向かい合うパッドの極性を同極性としている。ただし、対向する辺で向かい合うパッドの一部は、極性が逆極性であってもよい。
 これにより、配線領域400には、図43のAに示した電流ループ412よりも小さい電流ループ413が生じることになる。したがって、第3の配置例は、第2の配置例に比べて、磁界の分布範囲が狭くなる。よって、第3の配置例は、第2の配置例に比べて、生じる誘導起電力と、それに基づく誘導性ノイズを小さくすることができる。
 <Y方向の抵抗値とX方向の抵抗値とが異なる導体の例>
 図45は、導体層A及びBを構成する導体の他の例を示す平面図である。すなわち、図45は、Y方向の抵抗値とX方向の抵抗値とが異なる導体の例を示す平面図である。なお、図45のA乃至Cは、Y方向の抵抗値がX方向の抵抗値よりも小さい例を示し、図45のD乃至Fは、X方向の抵抗値がY方向の抵抗値よりも小さい例を示している。
 図45のAは、X方向の導体幅WXとY方向の導体幅WYが等しく、X方向の間隙幅GXがY方向の間隙幅GYよりも狭い網目状導体を示している。図45のBは、X方向の導体幅WXがY方向の導体幅WYよりも広く、X方向の間隙幅GXがY方向の間隙幅GYよりも狭い網目状導体を示している。図45のCは、X方向の導体幅WXとY方向の導体幅WYが等しく、X方向の間隙幅GXがY方向の間隙幅GYと等しく、導体幅WYを有するX方向に長い部分の、導体幅WXを有するY方向に長い部分と交差しない領域に穴が設けられた網目状導体を示している。
 図45のDは、X方向の導体幅WXとY方向の導体幅WYが等しく、X方向の間隙幅GXがY方向の間隙幅GYよりも広い網目状導体を示している。図45のEは、X方向の導体幅WXがY方向の導体幅WYよりも狭く、X方向の間隙幅GXがY方向の間隙幅GYよりも広い網目状導体を示している。図45のFは、X方向の導体幅WXとY方向の導体幅WYが等しく、X方向の間隙幅GXがY方向の間隙幅GYと等しく、導体幅WXを有するY方向に長い部分の、導体幅WYを有するX方向に長い部分と交差しない領域に穴が設けられた網目状導体を示している。
 図42乃至図44に示した配線領域400におけるパッドの第1乃至第3の配置例は、図45のA乃至Cに示したようなY方向の抵抗値がX方向の抵抗値よりも小さく、Y方向に電流が流れ易い導体を配線領域400に形成した場合に、その導体における電圧降下(IR-Drop)を抑制する効果がある。
 また、図42乃至図44に示した配線領域400におけるパッドの第1乃至第3の配置例は、図45のD乃至Fに示したようなX方向の抵抗値がY方向の抵抗値よりも小さく、X方向に電流が流れ易い導体を配線領域400に形成した場合に、電流がX方向に拡散し易くなり、配線領域400の辺に配置されたパッドの近傍における磁界が集中しにくくなるので、誘導性ノイズの発生を抑制できる効果が期待できる。
<6.導体層A及びBの構成例の変形例>
 次に、上述した導体層A及びBの第1乃至第13の構成例のうちのいくつかの構成例についての変形例について説明する。
 図46は、導体層A及びBの第2の構成例(図15)のX方向の導体周期を1/2倍に変形した変形例とその効果を示す図である。なお、図46のAは導体層A及びBの第2の構成例、図46のBは導体層A及びBの第2の構成例の変形例を示している。
 図46のCは、図46のBに示した変形例を固体撮像装置100に適用した場合のシミュレーション結果として、画像に誘導性ノイズを生じさせる誘導起電力の変化を示している。なお、この変形例に流れる電流条件は、図13に示した場合と同様とする。図46の横軸は画像のX軸座標、縦軸は誘導起電力の大きさを示している。
 図46のCにおける実線L81は、図46のBに示した変形例に対応するものであり、点線L21は第2の構成例(図15)に対応するものである。実線L81と点線L21を比較して明らかなように、この変形例は、第2の構成例に比べて、Victim導体ループに生じさせる誘導起電力の変化が若干少ない。よって、この変形例は、第2の構成例に比較して誘導性ノイズを若干抑制できることがわかる。
 図47は、導体層A及びBの第5の構成例(図26)のX方向の導体周期を1/2倍に変形した変形例とその効果を示す図である。なお、図47のAは導体層A及びBの第5の構成例、図47のBは導体層A及びBの第5の構成例の変形例を示している。
 図47のCは、図47のBに示した変形例を固体撮像装置100に適用した場合のシミュレーション結果として、画像に誘導性ノイズを生じさせる誘導起電力の変化を示している。なお、この変形例に流れる電流条件は、図23に示した場合と同様とする。図47の横軸は画像のX軸座標、縦軸は誘導起電力の大きさを示している。
 図47のCにおける実線L82は、図47のBに示した変形例に対応するものであり、点線L53は第5の構成例(図26)に対応するものである。実線L82と点線L53を比較して明らかなように、この変形例は、第5の構成例に比べて、Victim導体ループに生じさせる誘導起電力の変化がとても少ない。よって、この変形例は、第5の構成例に比較して誘導性ノイズをより一層抑制できることがわかる。
 図48は、導体層A及びBの第6の構成例(図27)のX方向の導体周期を1/2倍に変形した変形例とその効果を示す図である。なお、図48のAは導体層A及びBの第6の構成例、図48のBは導体層A及びBの第6の構成例の変形例を示している。
 図48のCは、図48のBに示した変形例を固体撮像装置100に適用した場合のシミュレーション結果として、画像に誘導性ノイズを生じさせる誘導起電力の変化を示している。なお、この変形例に流れる電流条件は、図23に示した場合と同様とする。図48の横軸は画像のX軸座標、縦軸は誘導起電力の大きさを示している。
 図48のCにおける実線L83は、図48のBに示した変形例に対応するものであり、点線L54は第6の構成例(図27)に対応するものである。実線L83と点線L54を比較して明らかなように、この変形例は、第6の構成例に比べて、Victim導体ループに生じさせる誘導起電力の変化が少ない。よって、この変形例は、第6の構成例に比較して誘導性ノイズをより抑制できることがわかる。
 図49は、導体層A及びBの第2の構成例(図15)のY方向の導体周期を1/2倍に変形した変形例とその効果を示す図である。なお、図49のAは導体層A及びBの第2の構成例、図49のBは導体層A及びBの第2の構成例の変形例を示している。
 図49のCは、図49のBに示した変形例を固体撮像装置100に適用した場合のシミュレーション結果として、画像に誘導性ノイズを生じさせる誘導起電力の変化を示している。なお、この変形例に流れる電流条件は、図13に示した場合と同様とする。図49の横軸は画像のX軸座標、縦軸は誘導起電力の大きさを示している。
 図49のCにおける実線L111は、図49のBに示した変形例に対応するものであり、点線L21は第2の構成例に対応するものである。実線L111と点線L21を比較して明らかなように、この変形例は、第2の構成例に比べて、Victim導体ループに生じさせる誘導起電力の変化が若干少ない。よって、この変形例は、第2の構成例に比較して誘導性ノイズを若干抑制できることがわかる。
 図50は、導体層A及びBの第5の構成例(図26)のY方向の導体周期を1/2倍に変形した変形例とその効果を示す図である。なお、図50のAは導体層A及びBの第5の構成例、図50のBは導体層A及びBの第5の構成例の変形例を示している。
 図50のCは、図50のBに示した変形例を固体撮像装置100に適用した場合のシミュレーション結果として、画像に誘導性ノイズを生じさせる誘導起電力の変化を示している。なお、この変形例に流れる電流条件は、図23に示した場合と同様とする。図50の横軸は画像のX軸座標、縦軸は誘導起電力の大きさを示している。
 図50のCにおける実線L112は、図50のBに示した変形例に対応するものであり、点線L53は第5の構成例に対応するものである。実線L112と点線L53を比較して明らかなように、この変形例は、第5の構成例に比べて、Victim導体ループに生じさせる誘導起電力の変化がとても少ない。よって、この変形例は、第5の構成例に比較して誘導性ノイズをより一層抑制できることがわかる。
 図51は、導体層A及びBの第6の構成例(図27)のY方向の導体周期を1/2倍に変形した変形例とその効果を示す図である。なお、図51のAは導体層A及びBの第6の構成例、図51のBは導体層A及びBの第6の構成例の変形例を示している。
 図51のCは、図51のBに示した変形例を固体撮像装置100に適用した場合のシミュレーション結果として、画像に誘導性ノイズを生じさせる誘導起電力の変化を示している。なお、この変形例に流れる電流条件は、図23に示した場合と同様とする。図51の横軸は画像のX軸座標、縦軸は誘導起電力の大きさを示している。
 図51のCにおける実線L113は、図51のBに示した変形例に対応するものであり、点線L54は第6の構成例に対応するものである。実線L113と点線L54を比較して明らかなように、この変形例は、第6の構成例に比べて、Victim導体ループに生じさせる誘導起電力の変化が少ない。よって、この変形例は、第6の構成例に比較して誘導性ノイズをより抑制できることがわかる。
 図52は、導体層A及びBの第2の構成例(図15)のX方向の導体幅を2倍に変形した変形例とその効果を示す図である。なお、図52のAは導体層A及びBの第2の構成例、図52のBは導体層A及びBの第2の構成例の変形例を示している。
 図52のCは、図52のBに示した変形例を固体撮像装置100に適用した場合のシミュレーション結果として、画像に誘導性ノイズを生じさせる誘導起電力の変化を示している。なお、この変形例に流れる電流条件は、図13に示した場合と同様とする。図52の横軸は画像のX軸座標、縦軸は誘導起電力の大きさを示している。
 図52のCにおける実線L121は、図52のBに示した変形例に対応するものであり、点線L21は第2の構成例に対応するものである。実線L121と点線L21を比較して明らかなように、この変形例は、第2の構成例に比べて、Victim導体ループに生じさせる誘導起電力の変化が若干少ない。よって、この変形例は、第2の構成例に比較して誘導性ノイズを若干抑制できることがわかる。
 図53は、導体層A及びBの第5の構成例(図26)のX方向の導体幅を2倍に変形した変形例とその効果を示す図である。なお、図53のAは導体層A及びBの第5の構成例、図53のBは導体層A及びBの第5の構成例の変形例を示している。
 図53のCは、図53のBに示した変形例を固体撮像装置100に適用した場合のシミュレーション結果として、画像に誘導性ノイズを生じさせる誘導起電力の変化を示している。なお、この変形例に流れる電流条件は、図23に示した場合と同様とする。図53の横軸は画像のX軸座標、縦軸は誘導起電力の大きさを示している。
 図53のCにおける実線L122は、図53のBに示した変形例に対応するものであり、点線L53は第5の構成例に対応するものである。実線L122と点線L53を比較して明らかなように、この変形例は、第5の構成例に比べて、Victim導体ループに生じさせる誘導起電力の変化がとても少ない。よって、この変形例は、第5の構成例に比較して誘導性ノイズをより一層抑制できることがわかる。
 図54は、導体層A及びBの第6の構成例(図27)のX方向の導体幅を2倍に変形した変形例とその効果を示す図である。なお、図54のAは導体層A及びBの第6の構成例、図54のBは導体層A及びBの第6の構成例の変形例を示している。
 図54のCは、図54のBに示した変形例を固体撮像装置100に適用した場合のシミュレーション結果として、画像に誘導性ノイズを生じさせる誘導起電力の変化を示している。なお、この変形例に流れる電流条件は、図23に示した場合と同様とする。図54の横軸は画像のX軸座標、縦軸は誘導起電力の大きさを示している。
 図54のCにおける実線L123は、図54のBに示した変形例に対応するものであり、点線L54は第6の構成例に対応するものである。実線L123と点線L54を比較して明らかなように、この変形例は、第6の構成例に比べて、Victim導体ループに生じさせる誘導起電力の変化が少ない。よって、この変形例は、第6の構成例に比較して誘導性ノイズをより抑制できることがわかる。
 図55は、導体層A及びBの第2の構成例(図15)のY方向の導体幅を2倍に変形した変形例とその効果を示す図である。なお、図55のAは導体層A及びBの第2の構成例、図55のBは導体層A及びBの第2の構成例の変形例を示している。
 図55のCは、図55のBに示した変形例を固体撮像装置100に適用した場合のシミュレーション結果として、画像に誘導性ノイズを生じさせる誘導起電力の変化を示している。なお、この変形例に流れる電流条件は、図13に示した場合と同様とする。図55の横軸は画像のX軸座標、縦軸は誘導起電力の大きさを示している。
 図55のCにおける実線L131は、図55のBに示した変形例に対応するものであり、点線L21は第2の構成例に対応するものである。実線L131と点線L21を比較して明らかなように、この変形例は、第2の構成例に比べて、Victim導体ループに生じさせる誘導起電力の変化が若干少ない。よって、この変形例は、第2の構成例に比較して誘導性ノイズを若干抑制できることがわかる。
 図56は、導体層A及びBの第5の構成例(図26)のY方向の導体幅を2倍に変形した変形例とその効果を示す図である。なお、図56のAは導体層A及びBの第5の構成例、図56のBは導体層A及びBの第5の構成例の変形例を示している。
 図56のCは、図56のBに示した変形例を固体撮像装置100に適用した場合のシミュレーション結果として、画像に誘導性ノイズを生じさせる誘導起電力の変化を示している。なお、この変形例に流れる電流条件は、図23に示した場合と同様とする。図56の横軸は画像のX軸座標、縦軸は誘導起電力の大きさを示している。
 図56のCにおける実線L132は、図56のBに示した変形例に対応するものであり、点線L53は第5の構成例に対応するものである。実線L132と点線L53を比較して明らかなように、この変形例は、第5の構成例に比べて、Victim導体ループに生じさせる誘導起電力の変化がとても少ない。よって、この変形例は、第5の構成例に比較して誘導性ノイズをより一層抑制できることがわかる。
 図57は、導体層A及びBの第6の構成例(図27)のY方向の導体幅を2倍に変形した変形例とその効果を示す図である。なお、図57のAは導体層A及びBの第6の構成例、図57のBは導体層A及びBの第6の構成例の変形例を示している。
 図57のCは、図57のBに示した変形例を固体撮像装置100に適用した場合のシミュレーション結果として、画像に誘導性ノイズを生じさせる誘導起電力の変化を示している。なお、この変形例に流れる電流条件は、図23に示した場合と同様とする。図57の横軸は画像のX軸座標、縦軸は誘導起電力の大きさを示している。
 図57のCにおける実線L133は、図57のBに示した変形例に対応するものであり、点線L54は第6の構成例に対応するものである。実線L133と点線L54を比較して明らかなように、この変形例は、第6の構成例に比べて、Victim導体ループに生じさせる誘導起電力の変化が少ない。よって、この変形例は、第6の構成例に比較して誘導性ノイズをより抑制できることがわかる。
<7.網目状導体の変形例>
 次に、図58は、上述した導体層A及びBの各構成例に適用できる網目状導体の変形例を示す平面図である。
 図58のAは、上述した導体層A及びBの各構成例に採用されている網目状導体の形状を簡略化して示したものである。上述した導体層A及びBの各構成例に採用されている網目状導体は、間隙領域が矩形であり、矩形の各間隙領域がX方向とY方向にそれぞれ直線状に配置されていた。
 図58のBは、網目状導体の第1の変形例を簡略化して示したものである。網目状導体の第1の変形例は、間隙領域が矩形であり、各間隙領域がX方向には直線状に配置され、Y方向には段毎にずれて配置される。
 図58のCは、網目状導体の第2の変形例を簡略化して示したものである。網目状導体の第2の変形例は、間隙領域が菱形であり、各間隙領域が斜め方向には直線状に配置される。
 図58のDは、網目状導体の第3の変形例を簡略化して示したものである。網目状導体の第3の変形例は、間隙領域が矩形以外の円形または多角形(図58のDの場合、8角形)であり、各間隙領域がX方向とY方向にそれぞれ直線状に配置される。
 図58のEは、網目状導体の第4の変形例を簡略化して示したものである。網目状導体の第4の変形例は、間隙領域が矩形以外の円形または多角形(図58のEの場合、8角形)であり、各間隙領域がX方向には直線状に配置され、Y方向には段毎にずれて配置される。
 図58のFは、網目状導体の第5の変形例を簡略化して示したものである。網目状導体の第5の変形例は、間隙領域が矩形以外の円形または多角形(図58のFの場合、8角形)であり、各間隙領域が斜め方向に直線状に配置される。
 なお、導体層A及びBの各構成例に適用できる網目状導体の形状は、図58に示した変形例に限らず、網目状であればよい。
<8.様々な効果>
 <レイアウト設計自由度の向上>
 上述したように、導体層A及びBの各構成例では、面状導体または網目状導体を採用している。一般に、網目状導体(格子状導体)は、X方向およびY方向に対して周期的な配線構造を有している。よって、周期構造の単位(1周期分)となる基本周期構造を有する網目状導体を設計すれば、その基本周期構造をX方向やY方向に繰り返して配置することにより、直線状導体を用いる場合に比較して、簡単に配線のレイアウトが設計できる。換言すると、網目状導体を用いた場合、直線状導体を用いるよりもレイアウト自由度が向上する。したがって、レイアウト設計に要する工数や時間や費用を圧縮できる。
 図59は、所定の条件を満たす回路配線のレイアウトを、直線状導体を用いて設計する場合の設計工数と、網目状導体(格子状導体)を用いて設計する場合の設計工数とをシミュレーションした結果を示す図である。
 図59の場合、直線状導体を用いて設計する場合の設計工数を100%とすれば、網目状導体(格子状導体)を用いて設計するときの設計工数は40%程度となり、大幅に設計工数を減らすことができることがわかる。
 <電圧降下(IR-drop)の低減>
 図60は、XY平面に配置された同じ材質であって形状が異なる導体に対して同じ条件でDC電流をY方向に流した場合における電圧変化を示す図である。
 図60のAは直線状導体、図60のBは網目状導体、図60のCは面状導体のそれぞれに対応し、色の濃淡が電圧を表している。図60のA,B,Cを比較すると、電圧変化は、直線状導体が最も大きく、次に網目状導体、面状導体の順であることがわかる。
 図61は、図60のAに示した直線状導体の電圧降下を100%として、網目状導体と面状導体の電圧降下を相対的にグラフ化して示す図である。
 図61からも明らかなように、面状導体および網目状導体は、直線状導体に比較して、半導体装置の駆動にとって致命的な障害となり得る電圧降下(IR-Drop)を低減できることがわかる。
 ただし、現在の半導体基板の加工プロセスでは、面状導体を製造できない場合が多いことが知られている。よって、導体層A及びBには、ともに網目状導体を用いる構成例を採用することが現実的である。ただし、半導体基板の加工プロセスが進化して面状導体を製造できるようになった場合には、その限りではない。メタル層の中でも最上層メタルや最下層メタルについては、面状導体を製造できる場合もある。
 <容量性ノイズの低減>
 導体層A及びBを形成する導体(面状導体または網目状導体)は、信号線132および制御線133から成るVictim導体ループに対して誘導性ノイズだけでなく、容量性ノイズを生じさせることが考えられる。
 ここで、容量性ノイズとは、導体層A及びBを形成する導体に電圧が印加された場合に、その導体と信号線132や制御線133との間の容量結合によって、信号線132や制御線133に電圧が発生し、さらに、印加電圧が変化することにより、信号線132や制御線133に電圧ノイズが生じることを指す。この電圧ノイズは、画素信号のノイズとなる。
 容量性ノイズの大きさは、導体層A及びBを形成する導体と、信号線132や制御線133等の配線との間の静電容量や電圧にほぼ比例すると考えられる。静電容量については、2枚の導体(一方が導体、他方が配線でもよい)の重なり合う面積がSであり、2枚の導体の間隔がdで平行に配置され、導体の間に誘電率εの誘電体が均一に充てんされている場合、2枚の導体間の静電容量C=ε*S/dである。したがって、2枚の導体の重なり合う面積Sが広いほど、容量性ノイズは大きくなることがわかる。
 図62は、XY平面に配置された同じ材質であって形状が異なる導体と、他の導体(配線)との静電容量の違いを説明するための図である。
 図62のAは、Y方向に長い直線状導体と、その直線状導体とZ方向に間隔を空けてY方向に直線状に形成されている配線501,502(信号線132や制御線133に相当する)を示している。ただし、配線501は、その全体が直線状導体の導体領域と重なり合うが、配線502は、その全体が直線状導体の間隙領域と重なり合い、導体領域と重なり合う面積を有していない。
 図62のBは、網目状導体と、その網目状導体とZ方向に間隔を空けてY方向に直線状に形成されている配線501,502を示している。ただし、配線501は、その全体が網目状導体の導体領域と重なり合うが、配線502は、その略半分が網目状導体の導体領域と重なり合う。
 図62のCは、面状導体と、その面状導体とZ方向に間隔を空けてY方向に直線状に形成されている配線501,502を示している。ただし、配線501,502は、その全体が面状導体の導の領域と重なり合う。
 図62のA,B,Cにおける導体(直線状導体、網目状導体、または面状導体)と配線501の静電容量と、導体(直線状導体、網目状導体、または面状導体)と配線502の静電容量との差分を比較した場合、直線状導体が最も大きく、次に、網目状導体、面状導体の順となる。
 すなわち、直線状導体では、配線のXY座標の違いによる、直線状導体と配線との静電容量の差が大きく、容量性ノイズの発生も大きく異なることになる。よって、画像においては視認性が高い画素信号のノイズになる可能性が有る。
 これに対して、網目状導体や面状導体では、直線状導体に比較して、配線のXY座標の違いによる、導体と配線との静電容量の差が小さいので、容量性ノイズの発生をより小さくすることができる。よって、容量性ノイズに起因する画素信号のノイズを抑制することができる。
 <放射性ノイズの低減>
 上述したように、導体層A及びBの各構成例のうち、第1の構成例以外の構成例では、網目状導体を用いている。網目状導体には、放射性ノイズを低減する効果が期待できる。ここで、放射性ノイズは、固体撮像装置100の内部から外部への放射性ノイズ(不要輻射)と、固体撮像装置100の外部から内部への放射性ノイズ(伝達されるノイズ)を含むものとする。
 固体撮像装置100の外部から内部への放射性ノイズは、信号線132等における電圧ノイズや画素信号のノイズを発生させ得るので、導体層A及びBの少なくとも一方に網目状導体を用いた構成例を採用した場合、電圧ノイズや画素信号のノイズを抑制する効果を期待できる。
 網目状導体の導体周期は、網目状導体が低減できる放射性ノイズの周波数帯に影響するので、導体層A及びBのそれぞれに導体周期が異なる網目状導体を用いた場合、導体層A及びBに同じ導体周波数の網目状導体を用いた場合に比べて、より広い周波数帯の放射性ノイズを低減させることができる。
 なお、上述した効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
<9.引き出し部が異なる構成例>
 ところで、例えば、導体層Aである配線層165Aまたは導体層Bである配線層165Bがパッド401または402に接続される場合には、図42乃至図44に示したように、パッド401または402に接続するための配線引出部が設けられる。配線引出し部は、通常、パッドのサイズに合わせて、配線幅が狭く形成される。
 そこで、例えば、配線層165A(導体層A)を、図63のAに示されるように、主導体部165Aaと、引出し導体部165Abとに分けて考える。主導体部165Aaは、能動素子群167からのホットキャリア発光を遮光するとともに、誘導性ノイズの発生を抑止することを主目的とする部分であり、引出し導体部165Abよりも広い面積を有する。引出し導体部165Abは、主導体部165Aaとパッド402とを接続し、GNDやマイナス電源(Vss)等の所定の電圧を主導体部165Aaに供給することを主目的とする部分である。引出し導体部165Abは、X方向(第1の方向)またはY方向(第2の方向)の少なくとも一方の長さ(幅)が、主導体部165Aaの長さ(幅)よりも短く(狭く)なっている。図63のAにおいて一点鎖線で示される主導体部165Aaと引出し導体部165Abとの接続部分を、接合部と称する。
 同様に、配線層165B(導体層B)を、図63のBに示されるように、主導体部165Baと、引出し導体部165Bbとに分けて考える。主導体部165Baは、能動素子群167からのホットキャリア発光を遮光するとともに、誘導性ノイズの発生を抑止することを主目的とする部分であり、引出し導体部165Bbよりも広い面積を有する。引出し導体部165Bbは、主導体部165Baとパッド401とを接続し、プラス電源(Vdd)等の所定の電圧を主導体部165Baに供給することを主目的とする部分である。引出し導体部165Bbは、X方向(第1の方向)またはY方向(第2の方向)の少なくとも一方の長さ(幅)が、主導体部165Baの長さ(幅)よりも短く(狭く)なっている。図63のBにおいて一点鎖線で示される主導体部165Baと引出し導体部165Bbとの接続部分を、接合部と称する。
 なお、配線層165A(導体層A)と配線層165B(導体層B)を区別することなく、主導体部165Aaと主導体部165Baを総称する場合、および、引出し導体部165Abと引出し導体部165Bbを総称する場合には、それぞれ、主導体部165aと引出し導体部165bのように称する。
 図63では、理解を容易にするため、引出し導体部165Abおよび引出し導体部165Bbは、パッド401または402に接続されることを前提として説明したが、必ずしもパッド401または402に接続される必要はなく、他の配線または電極と接続されればよい。
 また、図63では、パッド401とパッド402が、略同一な形状で、略同一な位置に配置される例を示したがこの限りではない。例えば、パッド401とパッド402とが、互いに異なる形状であってもよく、互いに異なる位置に配置されていてもよい。また、パッド401とパッド402とが、図63で示した一例よりも小さい寸法で構成されていてもよく、配線層165Aでは互いに接触ないように構成されていてもよく、配線層165Bでは互いに接触ないように構成されていてもよく、複数設けられていてもよい。
 さらに、主導体部165Aaと引出し導体部165Abとで、Y方向の端部位置が略一致している例を図63で示したがこの限りではない。例えば、主導体部165Aaと引出し導体部165Abとで、端部位置が一致しないように構成されていてもよい。同様に、主導体部165Baと引出し導体部165Bbとで、Y方向の端部位置が略一致している例を図63で示したがこの限りではない。例えば、主導体部165Baと引出し導体部165Bbとで、端部位置が一致しないように構成されていてもよい。これらの主導体部165aと引出し導体部165bの形状および位置、パッド401および402との関係については、以下で説明する各構成例についても同様である。
 上述した第1乃至第13の構成例では、配線層165Aについて、主導体部165Aaと引出し導体部165Abとを特に区別することなく、主導体部165Aaと引出し導体部165Abの両方が、面状導体や網目状導体等の同一の配線パタンで形成されていた。
 配線層165Bについても、主導体部165Baと引出し導体部165Bbとを特に区別することなく、主導体部165Baと引出し導体部165Bbの両方が、面状導体や網目状導体等の同一の配線パタンで形成されていた。
 図64は、上述した第1乃至第13の構成例の一例として、図36に示した第11の構成例を、異なる配線パタンを用いて配線層165Aおよび配線層165Bに適用した例を示している。
 図64のAは導体層A(配線層165A)を、図64のBは導体層B(配線層165B)を示している。図64における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 図36に示した第11の構成例では、図36のAに示した導体層Aの網目状導体311は、X方向における導体幅WXAが間隙幅GXAよりも広い形状の例であったが、図64のAの導体層Aの網目状導体811は、X方向における導体幅WXAが間隙幅GXAよりも狭い形状となっている。また、Y方向については、図36のAに示した網目状導体311は、導体幅WYAが間隙幅GYAよりも狭い形状の例であったが、図64のAの導体層Aの網目状導体811は、導体幅WYAが間隙幅GYAよりも広い形状となっている。図36のAに示した導体層Aの網目状導体311は、導体幅WYAと導体幅WXAとが略同一な形状の例であったが、図64のAの導体層Aの網目状導体811は、導体幅WYAが導体幅WXAよりも広い形状となっている。そして、図64のAの導体層Aの網目状導体811は、主導体部165Aaと引出し導体部165Abのいずれにおいても、X方向については導体周期FXAで同一パタンが周期的に配置されており、Y方向については、導体周期FYAで同一パタンが周期的に配置されている。
 導体層Bについては、図64のBの導体層Bの網目状導体812の、X方向における導体幅WXBに対する間隙幅GXBの比(間隙幅GXB/導体幅WXB)が、図36のBに示した導体層Bの網目状導体312の、X方向における導体幅WXBに対する間隙幅GXBの比(間隙幅GXB/導体幅WXB)よりも大きな形状となっている。換言すれば、図64のBの導体層Bの網目状導体812では、導体幅WXBと間隙幅GXBとの差が、図36のBに示した導体層Bの網目状導体312よりも大きくなっている。Y方向については、図64のBの導体層Bの網目状導体812の導体幅WYBに対する間隙幅GYBの比(間隙幅GYB/導体幅WYB)が、図36のBに示した導体層Bの網目状導体312の導体幅WYBに対する間隙幅GYBの比(間隙幅GYB/導体幅WYB)よりも小さくなっている。図36のBに示した導体層Bの網目状導体312は、導体幅WYBと導体幅WXBとが略同一な形状の例であったが、図64のBの導体層Bの網目状導体812は、導体幅WYBが導体幅WXBよりも広い形状となっている。そして、図64のBの導体層Bの網目状導体812は、主導体部165Baと引出し導体部165Bbのいずれにおいても、X方向については導体周期FXBで同一パタンが周期的に配置されており、Y方向については、導体周期FYBで同一パタンが周期的に配置されている。
 図64のCは、図64のAとBにそれぞれ示した導体層A及びBを導体層A側(フォトダイオード141側)から見た状態を示している。図64のCでは、導体層Aと重なって隠れる導体層Bの領域は示されていない。
 図64のCに示されるように、第11の構成例の場合、導体層Aまたは導体層Bの少なくとも一方によって能動素子群167が覆われることになるので、能動素子群167からのホットキャリア発光を遮光することができるとともに、誘導性ノイズの発生を抑えることができる。
 このように、上述した第1乃至第13の構成例は、配線層165A(導体層A)について、主導体部165Aaと引出し導体部165Abとを、特に区別することなく、同一の配線パタンで形成し、配線層165B(導体層B)についても、主導体部165Baと引出し導体部165Bbとを、特に区別することなく、同一の配線パタンで形成した例であった。
 しかしながら、引出し導体部165bは、主導体部165aよりも小さい面積で形成されるため、電流が集中する部分であり、配線抵抗を小さくしたり、主導体部165aにおいて電流が拡散しやすい構成にすることが望ましい。
 そこで、以下では、配線層165A(導体層A)のうち、引出し導体部165Abの配線パタンを主導体部165Aaと異なる配線パタンにし、配線層165B(導体層B)についても、引出し導体部165Bbの配線パタンを主導体部165Baと異なる配線パタンにした構成例について説明する。
 <第14の構成例>
 図65は、導体層A及びBの第14の構成例を示している。なお、図65のAは導体層Aを、図65のBは導体層Bを示している。図65における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 第14の構成例における導体層Aは、図65のAに示されるように、主導体部165Aaの網目状導体821Aaと、引出し導体部165Abの網目状導体821Abとからなる。網目状導体821Aaと網目状導体821Abは、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。
 主導体部165Aaの網目状導体821Aaは、X方向においては、導体幅WXAaおよび間隙幅GXAaを有し、導体周期FXAaで同一パタンが周期的に配置されて構成され、Y方向においては、導体幅WYAaおよび間隙幅GYAaを有し、導体周期FYAaで同一パタンが周期的に配置されて構成されている。したがって、網目状導体821Aaは、X方向またはY方向の少なくとも一方において、所定の基本パタンが導体周期で繰り返し配列される繰り返しパタンを含む形状である。
 引出し導体部165Abの網目状導体821Abは、X方向においては、導体幅WXAbおよび間隙幅GXAbを有し、導体周期FXAbで同一パタンが周期的に配置されて構成され、Y方向においては、導体幅WYAbおよび間隙幅GYAbを有する。したがって、網目状導体821Abは、X方向またはY方向の少なくとも一方において、所定の基本パタンが導体周期で繰り返し配列される繰り返しパタンを含む形状である。
 また、主導体部165Aaの網目状導体821Aaと、引出し導体部165Abの網目状導体821Abの、対応する導体幅WXA、間隙幅GXA、導体幅WYA、および、間隙幅GYAどうしを比較すると、少なくとも一つは異なる値となっており、引出し導体部165Abの網目状導体821Abの繰り返しパタンは、主導体部165Aaの網目状導体821Aaの繰り返しパタンと異なるパタンである。
 主導体部165Aaの網目状導体821AaのY方向の全長LAaと、引出し導体部165Abの網目状導体821AbのY方向の全長LAbとを比較すると、網目状導体821Aaの全長LAaは、網目状導体821Abの全長LAbよりも長い。したがって、引出し導体部165Abの網目状導体821Abは、主導体部165Aaの網目状導体821Aaよりも局所的に電流が集中するため、電圧降下(特にIR-Drop)が大きい。
 ここで、引出し導体部165Abの網目状導体821Abの繰り返しパタンは、主導体部165Aaに向かうX方向を第1の方向として、少なくとも第1の方向に電流が流れる形状であり、第1の方向に直交する第2の方向(Y方向)の導体幅(配線幅)WYAbは、主導体部165Aaの網目状導体821Aaの第2の方向の導体幅(配線幅)WYAaよりも大きく形成されている。これにより、電流集中箇所である引出し導体部165Abの網目状導体821Abの配線抵抗を小さくできるため、電圧降下をさらに改善することができる。なお、導体幅WYAbが導体幅WYAaよりも大きい例を用いて説明したがこの限りではなく、例えば導体幅WXAbが導体幅WXAaよりも大きく形成されていてもよい。これにより、網目状導体821Abの配線抵抗を小さくできるため、電圧降下をさらに改善することができる。
 また、主導体部165Aaの網目状導体821Aaの少なくとも一部は、X方向(第1の方向)よりもY方向(第2の方向)に電流が流れやすいパタン(形状)となっている。具体的には、配線幅(導体幅WXAa、導体幅WYAa)、配線間隔(間隙幅GXAa、間隙幅GYAa)の少なくとも一方が異なることにより、X方向よりもY方向の配線抵抗が小さく形成されている。これにより、網目状導体821Abの全長LAbよりも長い全長LAaを有する主導体部165Aaにおいて、Y方向へ電流が拡散しやすくなるので、主導体部165Aaと引出し導体部165Abの接合部周辺における電極集中を緩和でき、誘導性ノイズをさらに改善することができる。
 第14の構成例における導体層Bは、図65のBに示されるように、主導体部165Baの網目状導体822Baと、引出し導体部165Bbの網目状導体822Bbとからなる。網目状導体822Baと網目状導体822Bbは、例えば、プラス電源に接続される配線(Vdd配線)である。
 主導体部165Baの網目状導体822Baは、X方向においては、導体幅WXBaおよび間隙幅GXBaを有し、導体周期FXBaで同一パタンが周期的に配置されて構成され、Y方向においては、導体幅WYBaおよび間隙幅GYBaを有し、導体周期FYBaで同一パタンが周期的に配置されて構成されている。したがって、網目状導体822Baは、X方向またはY方向の少なくとも一方において、所定の基本パタンが導体周期で繰り返し配列される繰り返しパタンを含む形状である。
 引出し導体部165Bbの網目状導体822Bbは、X方向においては、導体幅WXBbおよび間隙幅GXBbを有し、導体周期FXBbで同一パタンが周期的に配置されて構成され、Y方向においては、導体幅WYBbおよび間隙幅GYBbを有する。したがって、網目状導体822Bbは、X方向またはY方向の少なくとも一方において、所定の基本パタンが導体周期で繰り返し配列される繰り返しパタンを含む形状である。
 また、主導体部165Baの網目状導体822Baと、引出し導体部165Bbの網目状導体822Bbの、対応する導体幅WXB、間隙幅GXB、導体幅WYB、および、間隙幅GYBどうしを比較すると、少なくとも一つは異なる値となっており、引出し導体部165Bbの網目状導体822Bbの繰り返しパタンは、主導体部165Baの網目状導体822Baの繰り返しパタンと異なるパタンである。
 主導体部165Baの網目状導体822BaのY方向の全長LBaと、引出し導体部165Bbの網目状導体822BbのY方向の全長LBbとを比較すると、網目状導体822Baの全長LBaは、網目状導体822Bbの全長LBbよりも長い。したがって、引出し導体部165Bbの網目状導体822Bbは、主導体部165Baの網目状導体822Baよりも局所的に電流が集中するため、電圧降下(特にIR-Drop)が大きい。
 ここで、引出し導体部165Bbの網目状導体822Bbの繰り返しパタンは、主導体部165Baに向かうX方向を第1の方向として、少なくとも第1の方向に電流が流れる形状であり、第1の方向に直交する第2の方向(Y方向)の導体幅(配線幅)WYBbは、主導体部165Baの網目状導体822Baの第2の方向の導体幅(配線幅)WYBaよりも大きく形成されている。これにより、電流集中箇所である引出し導体部165Bbの網目状導体822Bbの配線抵抗を小さくできるため、電圧降下をさらに改善することができる。なお、導体幅WYBbが導体幅WYBaよりも大きい例を用いて説明したがこの限りではなく、例えば導体幅WXBbが導体幅WXBaよりも大きく形成されていてもよい。これにより、網目状導体822Bbの配線抵抗を小さくできるため、電圧降下をさらに改善することができる。
 また、主導体部165Baの網目状導体822Baの少なくとも一部は、X方向(第1の方向)よりもY方向(第2の方向)に電流が流れやすいパタン(形状)となっている。具体的には、配線幅(導体幅WXBa、導体幅WYBa)、配線間隔(間隙幅GXBa、間隙幅GYBa)の少なくとも一方が異なることにより、X方向よりもY方向の配線抵抗が小さく形成されている。これにより、網目状導体822Bbの全長LBbよりも長い全長LBaを有する主導体部165Baにおいて、Y方向へ電流が拡散しやすくなるので、主導体部165Baと引出し導体部165Bbの接合部周辺における電極集中を緩和でき、誘導性ノイズをさらに改善することができる。
 以上のように、第14の構成例によれば、配線層165A(導体層A)において、引出し導体部165Abの網目状導体821Abの繰り返しパタンを、主導体部165Aaの網目状導体821Aaの繰り返しパタンと異なるパタンで形成し、主導体部165Aaと引出し導体部165Abとを電気的に接続することにより、引出し導体部165Abの配線抵抗を小さくし、電圧降下をさらに改善することができる。配線層165B(導体層B)についても、引出し導体部165Bbの網目状導体822Bbの繰り返しパタンを、主導体部165Baの網目状導体822Baの繰り返しパタンと異なるパタンで形成し、主導体部165Baと引出し導体部165Bbとを電気的に接続することにより、引出し導体部165Bbの配線抵抗を小さくし、電圧降下をさらに改善することができる。
 また、図65のCに示されるように、導体層Aと導体層Bを重ねた状態では、導体層Aと導体層Bの少なくとも一方によって能動素子群167が覆われる。すなわち、配線層165Aの主導体部165Aaと配線層165Bの主導体部165Baとは遮光構造を成し、配線層165Aの引出し導体部165Abと配線層165Bの引出し導体部165Bbとは遮光構造を成している。これにより、上述した第1乃至第13の構成例と同様に、第14の構成例においても、能動素子群167からのホットキャリア発光を遮光することができる。
 <第14の構成例の変形例>
 図66乃至図68は、第14の構成例の第1乃至第3変形例を示している。なお、図66乃至図68のA乃至Cは、図65のA乃至Cにそれぞれ対応し、同一の符号を付してあるので、共通する部分の説明は適宜省略し、異なる部分について説明する。
 図65に示した第14の構成例では、配線層165A(導体層A)において、主導体部165Aaと引出し導体部165Abとの接合部は、主導体部165Aaの外周を囲む矩形の辺上に配置されていたが、これに限られない。
 例えば、図66のAに示されるように、引出し導体部165Abの網目状導体821Abが、主導体部165Aaの外周を囲む矩形の内側に入り込むように、主導体部165Aaと引出し導体部165Abが接続されてもよい。
 また例えば、図67のAおよび図68のAに示されるように、引出し導体部165Abの網目状導体821Abの主導体部165Aaに向かって伸びる導体幅WYAbの複数の配線のうち、一部の配線のみが、主導体部165Aaの外周を囲む矩形の内側に入り込むように、主導体部165Aaと引出し導体部165Abが接続されてもよい。図67のAの引出し導体部165Abの網目状導体821Abは、導体幅WYAbの2本の配線のうち、上側の配線が、主導体部165Aaの外周を囲む矩形の内側に入り込むように伸びており、図68のAの引出し導体部165Abの網目状導体821Abは、下側の配線が、主導体部165Aaの外周を囲む矩形の内側に入り込むように伸びている。
 配線層165B(導体層B)についても同様である。すなわち、図65に示した第14の構成例では、主導体部165Baと引出し導体部165Bbとの接合部は、主導体部165Baの外周を囲む矩形の辺上に配置されていたが、これに限られない。
 例えば、図66のBに示されるように、引出し導体部165Bbの網目状導体822Bbが、主導体部165Baの外周を囲む矩形の内側に入り込むように、主導体部165Baと引出し導体部165Bbが接続されてもよい。
 また例えば、図67のBおよび図68のBに示されるように、引出し導体部165Bbの網目状導体822Bbの主導体部165Baに向かって伸びる導体幅WYBbの複数の配線のうち、一部の配線のみが、主導体部165Baの外周を囲む矩形の内側に入り込むように、主導体部165Baと引出し導体部165Bbが接続されてもよい。図67のBの引出し導体部165Bbの網目状導体822Bbは、導体幅WYBbの2本の配線のうち、上側の配線が、主導体部165Baの外周を囲む矩形の内側に入り込むように伸びており、図68のBの引出し導体部165Bbの網目状導体822Bbは、下側の配線が、主導体部165Baの外周を囲む矩形の内側に入り込むように伸びている。
 図66乃至図68のように、主導体部165aと引出し導体部165bとの接続する部分の形状は、複雑に構成されていてもよい。
 図66乃至図68に示した第14の構成例の第1乃至第3変形例は、引出し導体部165Abの網目状導体821Abが、主導体部165Aaの外周を囲む矩形の内側に入り込むように、主導体部165Aaと引出し導体部165Abが接続されていたが、主導体部165Aaの網目状導体821Aaが、主導体部165Aaの外周を囲む矩形の外側に張り出し、引出し導体部165Ab側へ入り込んでもよい。また、主導体部165Baの網目状導体822Baが、主導体部165Baの外周を囲む矩形の外側に張り出し、引出し導体部165Bb側へ入り込んでもよい。
 <第15の構成例>
 図69は、導体層A及びBの第15の構成例を示している。なお、図69のAは導体層Aを、図69のBは導体層Bを示している。図69における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 第15の構成例における導体層Aは、図69のAに示されるように、主導体部165Aaの網目状導体831Aaと、引出し導体部165Abの網目状導体831Abとからなる。網目状導体831Aaと網目状導体831Abは、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。
 主導体部165Aaの網目状導体831Aaは、図65に示した第14の構成例における主導体部165Aaの網目状導体821Aaと同様である。一方、引出し導体部165Abの網目状導体831Abは、図65に示した第14の構成例における引出し導体部165Abの網目状導体821Abと異なる。
 具体的には、引出し導体部165Abの網目状導体831AbのY方向の間隙幅GYAbが、主導体部165Aaの網目状導体831AaのY方向の間隙幅GYAaよりも小さく形成されている。図65に示した第14の構成例では、引出し導体部165Abの網目状導体821AbのY方向の間隙幅GYAbは、主導体部165Aaの網目状導体821AaのY方向の間隙幅GYAaと同一である。
 このように、引出し導体部165Abの網目状導体831AbのY方向の間隙幅GYAbを、主導体部165Aaの網目状導体831AaのY方向の間隙幅GYAaよりも小さく形成することにより、電流集中箇所である引出し導体部165Abの網目状導体831Abの配線抵抗を小さくできるため、電圧降下をさらに改善することができる。なお、間隙幅GYAbが間隙幅GYAaよりも小さい例を用いて説明したがこの限りではなく、例えば間隙幅GXAbが間隙幅GXAaよりも小さく形成されていてもよい。これにより、網目状導体831Abの配線抵抗を小さくできるため、電圧降下をさらに改善することができる。
 第15の構成例における導体層Bは、図69のBに示されるように、主導体部165Baの網目状導体832Baと、引出し導体部165Bbの網目状導体832Bbとからなる。網目状導体832Baと網目状導体832Bbは、例えば、プラス電源に接続される配線(Vdd配線)である。
 主導体部165Baの網目状導体832Baは、図65に示した第14の構成例における主導体部165Baの網目状導体822Baと同様である。一方、引出し導体部165Bbの網目状導体832Bbは、図65に示した第14の構成例における引出し導体部165Bbの網目状導体822Bbと異なる。
 具体的には、引出し導体部165Bbの網目状導体832BbのY方向の間隙幅GYBbが、主導体部165Baの網目状導体832BaのY方向の間隙幅GYBaよりも小さく形成されている。図65に示した第14の構成例では、引出し導体部165Bbの網目状導体822BbのY方向の間隙幅GYBbは、主導体部165Baの網目状導体822Baの第2の方向の間隙幅GYBaと同一である。
 このように、引出し導体部165Bbの網目状導体832BbのY方向の間隙幅GYBbを、主導体部165Baの網目状導体832BaのY方向の間隙幅GYBaよりも小さく形成することにより、電流集中箇所である引出し導体部165Bbの網目状導体832Bbの配線抵抗を小さくできるため、電圧降下をさらに改善することができる。なお、間隙幅GYBbが間隙幅GYBaよりも小さい例を用いて説明したがこの限りではなく、例えば間隙幅GXBbが間隙幅GXBaよりも小さく形成されていてもよい。これにより、網目状導体832Bbの配線抵抗を小さくできるため、電圧降下をさらに改善することができる。
 また、図69のCに示されるように、導体層Aと導体層Bを重ねた状態では、導体層Aと導体層Bの少なくとも一方によって能動素子群167が覆われる。すなわち、配線層165Aの主導体部165Aaと配線層165Bの主導体部165Baとは遮光構造を成し、配線層165Aの引出し導体部165Abと配線層165Bの引出し導体部165Bbとは遮光構造を成している。これにより、第15の構成例においても、能動素子群167からのホットキャリア発光を遮光することができる。
 <第15の構成例の第1変形例>
 図70は、第15の構成例の第1変形例を示している。なお、図70のAは導体層Aを、図70のBは導体層Bを示している。図70のCは、図70のAとBにそれぞれ示した導体層A及びBを導体層A側から見た状態を示している。図70における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 第15の構成例の第1変形例では、配線層165Aの引出し導体部165AbのY方向の全ての間隙幅GYAbが均等でない点が、図69に示した第15の構成例と異なる。具体的には、図70のAに示されるように、配線層165Aの引出し導体部165Abの網目状導体831Abは、小さい間隙幅GYAb1と、大きい間隙幅GYAb2の2種類の間隙幅GYAbを有する。
 また、配線層165Bの引出し導体部165BbのY方向の全ての間隙幅GYBbが均等でない点が、図69に示した第15の構成例と異なる。具体的には、図70のBに示されるように、配線層165Bの引出し導体部165Bbの網目状導体832Bbは、小さい間隙幅GYBb1と、大きい間隙幅GYBb2の2種類の間隙幅GYBbを有する。
 第15の構成例の第1変形例においても、図70のCに示されるように、導体層Aと導体層Bを重ねた状態では、配線層165Aの引出し導体部165Abと配線層165Bの引出し導体部165Bbとは遮光構造を成している。
 <第15の構成例の第2変形例>
 図71は、第15の構成例の第2変形例を示している。なお、図71のAは導体層Aを、図71のBは導体層Bを示している。図71のCは、図71のAとBにそれぞれ示した導体層A及びBを導体層A側から見た状態を示している。図71における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 第15の構成例の第2変形例では、配線層165Aの引出し導体部165AbのY方向の全ての導体幅WYAbが均等でない点が、図69に示した第15の構成例と異なる。具体的には、図71のAに示されるように、配線層165Aの引出し導体部165Abの網目状導体831Abは、小さい導体幅WYAb1と、大きい導体幅WYAb2の2種類の導体幅WYAbを有する。
 また、配線層165Bの引出し導体部165BbのY方向の全ての導体幅WYBbが均等でない点が、図69に示した第15の構成例と異なる。具体的には、図71のBに示されるように、配線層165Bの引出し導体部165Bbの網目状導体832Bbは、小さい導体幅WYBb1と、大きい導体幅WYBb2の2種類の導体幅WYBbを有する。
 第15の構成例の第2変形例においても、図71のCに示されるように、導体層Aと導体層Bを重ねた状態では、配線層165Aの引出し導体部165Abと配線層165Bの引出し導体部165Bbとは遮光構造を成している。
 第15の構成例の第1変形例および第2変形例のように、配線層165Aの引出し導体部165Abの間隙幅GYAbまたは導体幅WYAb、配線層165Bの引出し導体部165Bbの間隙幅GYBbまたは導体幅WYBbを不均一にすることで、配線の自由度を高めることができる。各導体層では、一般的に導体領域の占有率に関する制約があるが、配線の自由度が高まることで、占有率の制約内で、引出し導体部165Abおよび165Bbの配線抵抗を、最大限に小さくできるため、電圧降下をさらに改善することができる。なお、全ての間隙幅GYAbが均等でない例と、全ての間隙幅GYBbが均等でない例と、全ての導体幅WYAbが均等でない例と、全ての導体幅WYBbが均等でない例とを用いて説明したが、この限りではない。例えば、X方向の全ての間隙幅GXAb、X方向の全ての間隙幅GXBb、X方向の全ての導体幅WXAb、または、X方向の全ての導体幅WXBbが、均等でないように構成されていてもよい。これらの場合にも配線の自由度を高めることができるため、上記と同様の理由で電圧降下をさらに改善することができる。
 <第16の構成例>
 図72は、導体層A及びBの第16の構成例を示している。なお、図72のAは導体層Aを、図72のBは導体層Bを示している。図72における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 図72のAに示される第16の構成例の導体層Aは、図65に示した第14の構成例の導体層Aと同様であるので、説明は省略する。
 図72のBに示される第16の構成例の導体層Bは、図65に示した第14の構成例の導体層Bに、中継導体841がさらに追加された構成を有する。より詳しくは、主導体部165Baは、網目状導体822Baと複数の中継導体841で構成され、引出し導体部165Bbは、第14の構成例と同様の網目状導体822Bbからなる。
 主導体部165Baにおいて、中継導体841は、網目状導体822Baの導体ではないY方向に長い長方形の間隙領域に配置されて、網目状導体822Baと電気的に絶縁されており、例えば、導体層Aの網目状導体821Aaが接続されたVss配線に接続される。中継導体841は、網目状導体822Baの間隙領域内に、1または複数個配置される。図72のBは、2行1列の配置で計2個の中継導体841が網目状導体822Baの間隙領域内に配置された例を示している。
 図72のBでは、主導体部165Baの全領域のうち、網目状導体822Baの一部の間隙領域内のみに中継導体841を配置している。
 しかしながら、主導体部165Baの全領域の間隙領域内に、中継導体841を配置してもよい。また、第16の構成例の導体層Bは、引出し導体部165Bbの網目状導体822Bbの間隙領域内には、中継導体841を配置していないが、網目状導体822Bbの間隙領域内にも、中継導体841を配置してもよい。
 <第16の構成例の第1変形例>
 図73は、第16の構成例の第1変形例を示している。
 図73の第16の構成例の第1変形例では、導体層Bの主導体部165Baの全領域の間隙領域内に、中継導体841が配置されるとともに、引出し導体部165Bbの網目状導体822Bbの間隙領域内にも、中継導体841が配置されている。図73の第1変形例におけるその他の構成は、図72に示した第16の構成例と同様である。
 <第16の構成例の第2変形例>
 図74は、第16の構成例の第2変形例を示している。
 図74の第16の構成例の第2変形例は、導体層Bの主導体部165Baの全領域の間隙領域内に、中継導体841を配置した点で、第1変形例と同様である。一方、第16の構成例の第2変形例は、引出し導体部165Bbの網目状導体822Bbの間隙領域内に、中継導体841と異なる中継導体842が配置されている点で、第1変形例と異なる。図74の第2変形例におけるその他の構成は、図72に示した第16の構成例と同様である。
 第2変形例のように、導体層Bの主導体部165Baの網目状導体822Baの間隙領域内に配置される中継導体841と、引出し導体部165Bbの網目状導体822Bbの間隙領域内に配置される中継導体842とは、個数や形状が異なっていてもよい。
 図72に示した第16の構成例の導体層Bのように、引出し導体部165Bbの網目状導体822Bbの間隙領域内に、中継導体841を配置しない場合には、配線(網目状導体822Bb)の自由度を高めることができる。各導体層では、一般的に導体領域の占有率に関する制約があるが、配線の自由度が高まることで、占有率の制約内で、引出し導体部165Bbの配線抵抗を、最大限に小さくできるため、電圧降下をさらに改善することができる。
 一方、引出し導体部165Bbの網目状導体822Bbの間隙領域内に、中継導体841または中継導体842等を配置した場合には、引出し導体部165Bbの領域内や、引出し導体部165Bbと同じ平面位置の上下層に、MOSトランジスタやダイオード等の能動素子を配置する場合に、電圧降下をさらに改善することができる。
 また、導体層Bの主導体部165Baの網目状導体822Baの間隙領域内に配置される中継導体841と、引出し導体部165Bbの網目状導体822Bbの間隙領域内に配置される中継導体842とで、個数や形状を異ならせることにより、主導体部165Baと引出し導体部165Bbとで、各導体層の導体領域の占有率を最大限に活用することができるので、配線抵抗を小さくすることで、電圧降下をさらに改善することができる。
 なお、中継導体841の形状は任意であるが、回転対称または鏡面対称などのように対称な円形または多角形が望ましい。中継導体841は、網目状導体822Baの間隙領域の中央その他の任意の位置に配置することができる。中継導体841は、導体層Aとは異なるVss配線としての導体層に接続されるようにしてもよい。中継導体841は、導体層Bよりも能動素子群167に近い側のVss配線としての導体層に接続されるようにしてもよい。中継導体841は、Z方向に延伸された導体ビア(VIA)を介して、導体層Aとは異なる導体層や、導体層Bよりも能動素子群167に近い側の導体層等に接続することができる。中継導体842についても同様である。
 図72乃至図74の第16の構成例では、導体層Bの網目状導体822Baおよび822Bbの間隙領域内に中継導体841または842を配置する例を示したが、導体層Aの網目状導体821Aaおよび821Abの間隙領域内に、同一のまたは異なる中継導体を配置してもよい。
 <第17の構成例>
 図75は、導体層A及びBの第17の構成例を示している。なお、図75のAは導体層Aを、図75のBは導体層Bを示している。図75における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 図75のAに示される第17の構成例における導体層Aを、図65のAに示した第14の構成例の導体層Aと比較すると、主導体部165Aaの網目状導体851Aaの形状、および、引出し導体部165Abの網目状導体851Abの形状が異なる。
 換言すれば、図65のAに示した第14の構成例における網目状導体821Aaの間隙領域が、縦長の長方形状であったのに対して、図75のAに示される第17の構成例における網目状導体851Aaの間隙領域は、横長の長方形状である。また、図65のAの網目状導体821Abの間隙領域が、縦長の長方形状であったのに対し、図75のAの網目状導体851Abの間隙領域は、横長の長方形状である。
 図75のAの引出し導体部165Abの網目状導体851Abは、主導体部165Aaに向かうX方向(第1の方向)に直交するY方向(第2の方向)よりも、X方向に電流が流れやすい点で、図65のAの第14の構成例における網目状導体821Abと共通する。
 一方、図75のAの主導体部165Aaの網目状導体851Aaは、Y方向よりも、X方向に電流が流れやすい形状となっているのに対して、図65のAの第14の構成例における主導体部165Aaの網目状導体821Aaは、Y方向に電流が流れやすい形状となっている。
 すなわち、図75のAに示される第17の構成例における導体層Aは、主導体部165Aaの電流が流れやすい方向が、図65のAの第14の構成例の導体層Aと異なる。
 また、第17の構成例における導体層Aの主導体部165Aaは、X方向よりもY方向に電流が流れやすいように補強した補強導体853を含む。補強導体853の導体幅WXAcは、網目状導体851AaのX方向の導体幅WXAaおよびY方向の導体幅WYAaの一方または両方より大きく形成されることが望ましい。補強導体853の導体幅WXAcは、網目状導体851AaのX方向の導体幅WXAaおよびY方向の導体幅WYAaのいずれか小さい方の導体幅よりも大きく形成される。なお、図75の例では、補強導体853が形成されたX方向の位置は、主導体部165Aaの領域内のうち、引出し導体部165Abに最も近い位置とされているが、接合部の近傍の位置であればよい。
 主導体部165Aaの網目状導体851Aaを、X方向に電流が流れやすい形状で形成できることで、最小限の基本パタンの繰り返しでレイアウトを作成できるので、配線レイアウトの設計の自由度が高まる。また、MOSトランジスタやダイオード等の能動素子の配置によっては電圧降下をさらに改善することができる。
 そして、Y方向に電流が流れやすいように補強した補強導体853を設けることで、主導体部165AaにおいてY方向へ電流が拡散しやすくなるので、主導体部165Aaと引出し導体部165Abとの接合部周辺における電流集中を緩和できる。局所的に電流集中する場合は、集中箇所に起因して誘導性ノイズが悪化するが、電流集中を緩和できるので、誘導性ノイズをさらに改善することができる。
 図75のBに示される第17の構成例における導体層Bを、図65のBに示した第14の構成例の導体層Bと比較すると、主導体部165Baの網目状導体852Baの形状、および、引出し導体部165Bbの網目状導体852Bbの形状が異なる。
 換言すれば、図65のBに示した第14の構成例における網目状導体822Baの間隙領域が、縦長の長方形状であったのに対して、図75のBに示される第17の構成例における網目状導体852Baの間隙領域は、横長の長方形状である。また、図65のBの網目状導体822Bbの間隙領域が、縦長の長方形状であったのに対し、図75のBの網目状導体852Bbの間隙領域は、横長の長方形状である。
 図75のBの引出し導体部165Bbの網目状導体852Bbは、主導体部165Baに向かうX方向(第1の方向)に直交するY方向(第2の方向)よりも、X方向に電流が流れやすい点で、図65のBの第14の構成例における網目状導体822Bbと共通する。
 一方、図75のBの主導体部165Baの網目状導体852Baは、Y方向よりも、X方向に電流が流れやすい形状となっているのに対して、図65のBの第14の構成例における主導体部165Baの網目状導体822Baは、Y方向に電流が流れやすい形状となっている。
 すなわち、図75のBに示される第17の構成例における導体層Bは、主導体部165Baの電流が流れやすい方向が、図65のBの第14の構成例の導体層Bと異なる。
 また、第17の構成例における導体層Bの主導体部165Baは、X方向よりもY方向に電流が流れやすいように補強した補強導体854を含む。補強導体854の導体幅WXBcは、網目状導体852BaのX方向の導体幅WXBaおよびY方向の導体幅WYBaの一方または両方より大きく形成されることが望ましい。補強導体854の導体幅WXBcは、網目状導体852BaのX方向の導体幅WXBaおよびY方向の導体幅WYBaのいずれか小さい方の導体幅よりも大きく形成される。図75の例では、補強導体854が形成されたX方向の位置は、主導体部165Baの領域内のうち、引出し導体部165Bbに最も近い位置とされているが、接合部の近傍の位置であればよい。
 図75のCに示されるように、導体層Aの補強導体853と、導体層Bの補強導体854は、重なる位置に形成される。導体層Aと導体層Bを重ねた状態では、導体層Aと導体層Bの少なくとも一方によって能動素子群167が覆われるので、第17の構成例においても、能動素子群167からのホットキャリア発光を遮光することができる。なお、例えば補強導体853または補強導体854の付近での遮光が必要ない場合は、補強導体853と補強導体854とが重なる位置に形成されていなくてもよい。また、例えば主導体部165aの電流分布次第では、補強導体853と補強導体854のうちの少なくとも一方を設けないようにしてもよい。
 主導体部165Baの網目状導体852Baを、X方向に電流が流れやすい形状で形成できることで、最小限の基本パタンの繰り返しでレイアウトを作成できるので、配線レイアウトの設計の自由度が高まる。また、MOSトランジスタやダイオード等の能動素子の配置によっては電圧降下をさらに改善することができる。
 そして、Y方向に電流が流れやすいように補強した補強導体854を設けることで、主導体部165Baにおいて第2の方向へ電流が拡散しやすくなるので、主導体部165Baと引出し導体部165Bbとの接合部周辺における電流集中を緩和できる。局所的に電流集中する場合は、集中箇所に起因して誘導性ノイズが悪化するが、電流集中を緩和できるので、誘導性ノイズをさらに改善することができる。
 さらに、図75のBに示される第17の構成例における導体層Bは、主導体部165Baの網目状導体852Baの少なくとも一部の間隙領域内に、中継導体855が配置されている点で、図65のBの第14の構成例の導体層Bと異なる。この中継導体855は、配置してもよいし、しなくてもよい。
 <第17の構成例の第1変形例>
 図76は、第17の構成例の第1変形例を示している。
 第17の構成例の第1変形例では、図76のAに示される導体層Aの補強導体853が、主導体部165AaのY方向の全長に渡って形成されるのではなく、Y方向の一部に形成されている点が、図75のAに示した第17の構成例の導体層Aと異なる。より具体的には、図76の第1変形例では、導体層Aの補強導体853が、接合部のY方向位置を除いたY方向位置に形成されている。第1変形例における導体層Aのその他の構成は、図75のAに示した第17の構成例の導体層Aと同様である。
 導体層Bについても同様に、図76のBに示される導体層Bの補強導体854が、主導体部165BaのY方向の全長に渡って形成されるのではなく、Y方向の一部に形成されている点が、図75のBに示した第17の構成例の導体層Bと異なる。より具体的には、図76の第1変形例では、導体層Bの補強導体854が、接合部のY方向位置を除いたY方向位置に形成されている。第1変形例における導体層Bのその他の構成は、図75のAに示した第17の構成例の導体層Bと同様である。
 <第17の構成例の第2変形例>
 図77は、第17の構成例の第2変形例を示している。
 第17の構成例の第2変形例では、図77のAに示される導体層Aの補強導体853が、主導体部165AaのY方向の全長に渡って形成されるのではなく、Y方向の一部に形成されている点が、図75のAに示した第17の構成例の導体層Aと異なる。より具体的には、図77の第2変形例では、導体層Aの補強導体853が、接合部のY方向位置のみに形成されている。第2変形例における導体層Aのその他の構成は、図75のAに示した第17の構成例の導体層Aと同様である。
 導体層Bについても同様に、図77のBに示される導体層Bの補強導体854が、主導体部165BaのY方向の全長に渡って形成されるのではなく、Y方向の一部に形成されている点が、図75のBに示した第17の構成例の導体層Bと異なる。より具体的には、図77の第2変形例では、導体層Bの補強導体854が、接合部のY方向位置のみに形成されている。第2変形例における導体層Bのその他の構成は、図75のAに示した第17の構成例の導体層Bと同様である。
 第17の構成例の第1変形例および第2変形例のように、導体層Aの補強導体853および導体層Bの補強導体854は、必ずしも主導体部165AaのY方向の全長に渡って形成される必要はなく、所定の一部のY方向領域に形成してもよい。
 <第18の構成例>
 図78は、導体層A及びBの第18の構成例を示している。なお、図78のAは導体層Aを、図78のBは導体層Bを示している。図78のCは、図78のAとBにそれぞれ示した導体層A及びBを導体層A側から見た状態を示している。図78における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 図78に示される第18の構成例は、図75に示した第17の構成例の一部を変更した構成を有する。図78において、図75と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略する。
 図78のAに示される第18の構成例の導体層Aは、X方向に電流が流れやすい形状の網目状導体851Aaと、Y方向に電流が流れやすいように補強した補強導体853とを備える点で、図75に示した第17の構成例と共通する。
 一方、第18の構成例の導体層Aは、Y方向よりもX方向に電流が流れやすいように補強した補強導体856をさらに備える点で、図75に示した第17の構成例と異なる。補強導体856の導体幅WYAcは、網目状導体851AaのX方向の導体幅WXAaおよびY方向の導体幅WYAaの一方または両方より大きく形成されることが望ましい。補強導体856の導体幅WYAcは、網目状導体851AaのX方向の導体幅WXAaおよびY方向の導体幅WYAaのいずれか小さい方の導体幅よりも大きく形成される。補強導体856は、主導体部165Aaの領域内に、Y方向の所定の間隔で複数本配置してもよいし、所定のY方向位置に1本でもよい。
 X方向に電流が流れやすいように補強した補強導体856を設けることで、補強導体853によるY方向だけでなく、X方向へも電流が流れやすくすることができ、主導体部165Aaと引出し導体部165Abとの接合部周辺における電流集中を緩和できる。局所的に電流集中する場合は、集中箇所に起因して誘導性ノイズが悪化するが、電流集中を緩和できるので、誘導性ノイズをさらに改善することができる。
 図78のBに示される第18の構成例の導体層Bは、X方向に電流が流れやすい形状の網目状導体852Baと、Y方向に電流が流れやすいように補強した補強導体854とを備える点で、図75に示した第17の構成例と共通する。
 一方、第18の構成例の導体層Bは、Y方向よりもX方向に電流が流れやすいように補強した補強導体857をさらに備える点で、図75に示した第17の構成例と異なる。補強導体857の導体幅WYBcは、網目状導体852BaのX方向の導体幅WXBaおよびY方向の導体幅WYBaの一方または両方より大きく形成されることが望ましい。補強導体857の導体幅WYBcは、網目状導体852BaのX方向の導体幅WXBaおよびY方向の導体幅WYBaのいずれか小さい方の導体幅よりも大きく形成される。補強導体857は、主導体部165Baの領域内に、Y方向の所定の間隔で複数本配置してもよいし、所定のY方向位置に1本でもよい。
 図78のCに示されるように、導体層Aの補強導体856と、導体層Bの補強導体857は、重なる位置に形成される。導体層Aと導体層Bを重ねた状態では、導体層Aと導体層Bの少なくとも一方によって能動素子群167が覆われるので、第18の構成例においても、能動素子群167からのホットキャリア発光を遮光することができる。なお、例えば補強導体856または補強導体857の付近での遮光が必要ない場合は、補強導体856と補強導体857とが重なる位置に形成されていなくてもよい。また、例えば主導体部165aの電流分布次第では、補強導体856と補強導体857のうちの少なくとも一方を設けないようにしてもよい。
 X方向に電流が流れやすいように補強した補強導体857を設けることで、補強導体854によるY方向だけでなく、X方向へも電流が流れやすくすることができ、主導体部165Baと引出し導体部165Bbとの接合部周辺における電流集中を緩和できる。局所的に電流集中する場合は、集中箇所に起因して誘導性ノイズが悪化するが、電流集中を緩和できるので、誘導性ノイズをさらに改善することができる。
 図75の第17の構成例では、Y方向に電流が流れやすいように補強した補強導体853および854を備える構成を示し、図78の第18の構成例では、補強導体853および854に加えて、X方向に電流が流れやすいように補強した補強導体856および857を備える構成を示した。
 図示は省略するが、第17の構成例または第18の構成例の変形例として、導体層Aが、補強導体853を備えず、補強導体856を備え、導体層Bが、補強導体854を備えず、補強導体857を備えた構成としてもよい。換言すれば、補強導体としては、補強導体856と857のみを備えた構成としてもよい。
 X方向に電流が流れやすいように補強した補強導体856を設けることで、補強導体853を備えない場合であっても、配線抵抗の関係性によってはY方向へ電流が拡散しやすくすることができ、主導体部165Aaと引出し導体部165Abとの接合部周辺における電流集中を緩和できる。局所的に電流集中する場合は、集中箇所に起因して誘導性ノイズが悪化するが、電流集中を緩和できるので、誘導性ノイズをさらに改善することができる。
 X方向に電流が流れやすいように補強した補強導体857を設けることで、補強導体854を備えない場合であっても、配線抵抗の関係性によってはY方向へ電流が拡散しやすくすることができ、主導体部165Baと引出し導体部165Bbとの接合部周辺における電流集中を緩和できる。局所的に電流集中する場合は、集中箇所に起因して誘導性ノイズが悪化するが、電流集中を緩和できるので、誘導性ノイズをさらに改善することができる。
 <第19の構成例>
 図79は、導体層A及びBの第19の構成例を示している。なお、図79のAは導体層Aを、図79のBは導体層Bを示している。図79のCは、図79のAとBにそれぞれ示した導体層A及びBを導体層A側から見た状態を示している。図79における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 図79に示される第19の構成例は、図75に示した第17の構成例の一部を変更した構成を有する。図79において、図75と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略する。
 図79のAに示される第19の構成例の導体層Aは、図75に示した第17の構成例の補強導体853が補強導体871に置き換えられている点で相違し、その他の点で共通する。補強導体871は、Y方向に伸びる複数本の配線からなる。補強導体871を構成する各配線は、間隙幅GXAdでX方向に均等に離れて配置されている。間隙幅GXAdは、主導体部165Aaの網目状導体851Aaの間隙幅GXAaよりも小さく構成されている。
 図79のBに示される第19の構成例の導体層Bは、図75に示した第17の構成例の補強導体854が補強導体872に置き換えられている点で相違し、その他の点で共通する。補強導体872は、Y方向に伸びる複数本の配線からなる。補強導体872を構成する各配線は、間隙幅GXBdでX方向に均等に離れて配置されている。間隙幅GXBdは、主導体部165Baの網目状導体852Baの間隙幅GXBaよりも小さく構成されている。
 図79のCに示されるように、導体層Aの補強導体871と、導体層Bの補強導体872は、重なる位置に形成される。導体層Aと導体層Bを重ねた状態では、導体層Aと導体層Bの少なくとも一方によって能動素子群167が覆われるので、第19の構成例においても、能動素子群167からのホットキャリア発光を遮光することができる。なお、例えば補強導体871または補強導体872の付近での遮光が必要ない場合は、補強導体871と補強導体872とが重なる位置に形成されていなくてもよい。また、例えば主導体部165aの電流分布次第では、補強導体871と補強導体872のうちの少なくとも一方を設けないようにしてもよい。
 <第19の構成例の変形例>
 図80は、第19の構成例の変形例を示している。
 図79に示した第19の構成例では、導体層Aの補強導体871を構成する複数本の配線が間隙幅GXAdでX方向に均等に離れて配置されていた。導体層Bの補強導体872を構成する複数本の配線も、間隙幅GXAdでX方向に均等に離れて配置されていた。
 これに対して、第19の構成例の変形例である図80では、導体層Aの補強導体871を構成する複数本の配線において、隣接する配線の間隙幅GXAdが、それぞれ異なる幅となっている。各間隙幅GXAdの少なくとも一つは、主導体部165Aaの網目状導体851Aaの間隙幅GXAaよりも小さく構成されている。導体層Bの補強導体872を構成する複数本の配線において、隣接する配線の間隙幅GXBdが、それぞれ異なる幅となっている。各間隙幅GXBdの少なくとも一つは、主導体部165Baの網目状導体852Baの間隙幅GXBaよりも小さく構成されている。
 なお、図80の例では、複数の間隙幅GXAdおよび間隙幅GXBdは、左側から徐々に短くなるように形成されているが、これに限らず、右側から徐々に短くなるように形成してもよいし、ランダムな幅としてもよい。
 以上のように、間隙幅GXAdおよびGXBdが、均等ではなく、変調されている点を除いて、図80の第19の構成例の変形例は、図79に示した第19の構成例と同様である。
 図79および図80に示した第19の構成例およびその変形例のように、導体層Aの補強導体871および導体層Bの補強導体872は、所定の間隙幅GXAdまたはGXBdで配置した複数本の配線で構成することができる。
 Y方向に電流が流れやすいように補強した補強導体871および872を設けることで、Y方向へ電流が拡散しやすくなるので、接合部周辺における電流集中を緩和できる。局所的に電流集中する場合は、集中箇所に起因して誘導性ノイズが悪化するが、電流集中を緩和できるので、誘導性ノイズをさらに改善することができる。図79および図80に示した第19の構成例およびその変形例では、X方向の間隙幅GXAaまたは間隙幅GXBaよりも小さい間隙幅を少なくとも含み、Y方向に電流が流れやすいように補強した補強導体871および872を備える構成を示したがこの限りではない。例えば、図示は省略するが、Y方向の間隙幅GYAaまたは間隙幅GYBaよりも小さい間隙幅を少なくとも含み、図78の第18の構成例と同様にX方向に電流が流れやすいように補強した補強導体を備える構成としてもよい。また、X方向に電流が流れやすいように補強した補強導体を備える構成、Y方向に電流が流れやすいように補強した補強導体を備える構成、X方向に電流が流れやすいように補強した補強導体とY方向に電流が流れやすいように補強した補強導体とを両方備える構成、の何れであってもよい。これらの場合にも、配線抵抗の関係性によっては電流集中を緩和できるので、誘導性ノイズをさらに改善することができる。
 <第20の構成例>
 図81は、導体層A及びBの第20の構成例を示している。なお、図81のAは導体層Aを、図81のBは導体層Bを示している。図81のCは、図81のAとBにそれぞれ示した導体層A及びBを導体層A側から見た状態を示している。図81における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 図81に示される第20の構成例は、図72に示した第16の構成例の一部を変更した構成を有する。図81において、図72と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略する。
 図81のAに示される第20の構成例の導体層Aは、主導体部165Aaが網目状導体821Aaからなる点で、図72に示した第16の構成例の導体層Aと共通する。一方、第20の構成例の導体層Aは、引出し導体部165Abが網目状導体821Abとは異なる網目状導体881Abからなる点で、図72に示した第16の構成例の導体層Aと相違する。
 図81のBに示される第20の構成例の導体層Bは、主導体部165Baが、網目状導体822Baと間隙領域内に配置された中継導体841とを有する点で、図72に示した第16の構成例の導体層Bと共通する。第20の構成例の導体層Bは、引出し導体部165Bbが網目状導体822Bbとは異なる網目状導体882Bbからなる点で、図72に示した第16の構成例の導体層Bと相違する。
 すなわち、第20の構成例は、図72に示した第16の構成例と、引出し導体部165bの繰り返しパタンの形状が異なる。
 図81のCに示されるように、導体層Aと導体層Bとを重ねた状態では、引出し導体部165bの一部の領域が開口された領域となっている。
 このように、導体層Aと導体層Bの全ての領域で遮光構造を採用する必要はなく、例えば、MOSトランジスタやダイオード等の能動素子を配置しない領域では、遮光しなくてもよい。
 図81の第20の構成例は、導体層Aおよび導体層Bの引出し導体部165bの一部の領域が、遮光しない構成であるが、導体層Aおよび導体層Bの主導体部165aの一部の領域を、遮光しない構成としてもよい。遮光が不要な領域については、遮光構造を採用しないことで、配線レイアウトの設計の自由度がさらに増大するので、誘導性ノイズをさらに改善し、電圧降下もさらに改善する配線パタンを採用することができる。
 <第21の構成例>
 上述した第14乃至第20の構成例では、主導体部165aと接続される引出し導体部165bの導体層が、いずれも網目状導体で構成される例であった。
 しかしながら、引出し導体部165bの導体層は、網目状導体に限定されず、主導体部165aと同様に、面状導体や直線状導体で構成されてもよい。
 以下の第21乃至第24の構成例では、引出し導体部165bの導体層が面状導体や直線状導体で形成された構成例について説明する。
 図82は、導体層A及びBの第21の構成例を示している。なお、図82のAは導体層Aを、図81のBは導体層Bを示している。図82のCは、図82のAとBにそれぞれ示した導体層A及びBを導体層A側から見た状態を示している。図82における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 図82に示される第21の構成例は、図72に示した第16の構成例の引出し導体部165bの導体層を変更した構成を有する。図82において、図72と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略する。
 図82のAに示される第21の構成例の導体層Aの引出し導体部165Abには、第16の構成例の網目状導体821Abに代えて、X方向に長い直線状導体891Abが、Y方向に導体周期FYAbで周期的に配置されている。導体周期FYAbは、Y方向の導体幅WYAbとY方向の間隙幅GYAbとの和に等しい(導体周期FYAb=Y方向の導体幅WYAb+Y方向の間隙幅GYAb)。
 図82のBに示される第21の構成例の導体層Bの引出し導体部165Bbには、第16の構成例の網目状導体822Bbに代えて、X方向に長い直線状導体892Bbが、Y方向に導体周期FYBbで周期的に配置されている。導体周期FYBbは、Y方向の導体幅WYBbとY方向の間隙幅GYBbとの和に等しい(導体周期FYBb=Y方向の導体幅WYBb+Y方向の間隙幅GYBb)。
 図82のCに示されるように、導体層Aと導体層Bを重ねた状態では、導体層Aと導体層Bの少なくとも一方によって能動素子群167が覆われるので、第21の構成例においても、能動素子群167からのホットキャリア発光を遮光することができる。
 <第22の構成例>
 図83は、導体層A及びBの第22の構成例を示している。なお、図83のAは導体層Aを、図83のBは導体層Bを示している。図83のCは、図83のAとBにそれぞれ示した導体層A及びBを導体層A側から見た状態を示している。図83における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 図83に示される第22の構成例は、図72に示した第16の構成例の引出し導体部165bの導体層を変更した構成を有する。図83において、図72と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略する。
 図83のAに示される第22の構成例の導体層Aの引出し導体部165Abには、第16の構成例の網目状導体821Abに代えて、面状導体901Abが配置されている。面状導体901Abは、Y方向の導体幅WYAbを有する。
 図83のBに示される第22の構成例の導体層Bの引出し導体部165Bbには、第16の構成例の網目状導体822Bbに代えて、面状導体902Bbが配置されている。面状導体902Bbは、Y方向の導体幅WYBbを有する。
 図83のCに示されるように、導体層Aと導体層Bを重ねた状態では、導体層Aと導体層Bの少なくとも一方によって能動素子群167が覆われるので、第22の構成例においても、能動素子群167からのホットキャリア発光を遮光することができる。
 なお、第22の構成例においては、図83のBに示した導体層Bに代えて、図84のAまたはBの導体層Bを採用してもよい。
 図84のAおよびBに示される導体層Bは、図83のBに示した導体層Bと、引出し導体部165bのみが異なる。
 図84のAの導体層Bの引出し導体部165Bbには、図83のBに示した面状導体901Abに代えて、X方向に長い直線状導体903Bbが、Y方向に導体周期FYBbで周期的に配置されている。なお、導体周期FYBb=Y方向の導体幅WYBb+Y方向の間隙幅GYBbである。
 図84のBの導体層Bの引出し導体部165Bbには、図83のBに示した面状導体901Abに代えて、網目状導体904Bbが設けられている。網目状導体904Bbは、X方向においては、導体幅WXBbおよび間隙幅GXBbを有し、導体周期FXBbで同一パタンが周期的に配置されて構成され、Y方向においては、導体幅WYBbおよび間隙幅GYBbを有し、導体周期FYBbで同一パタンが周期的に配置されて構成される。したがって、網目状導体904Bbは、X方向またはY方向の少なくとも一方において、所定の基本パタンが導体周期で繰り返し配列される繰り返しパタンを含む形状である。
 図84のAまたはBの導体層Bと、図83のAに示した導体層Aとを重ねた状態の平面図は、図83のCと同様となる。
 <第23の構成例>
 図85は、導体層A及びBの第23の構成例を示している。なお、図85のAは導体層Aを、図85のBは導体層Bを示している。図85のCは、図85のAとBにそれぞれ示した導体層A及びBを導体層A側から見た状態を示している。図85における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 図85に示される第23の構成例は、図72に示した第16の構成例の引出し導体部165bの導体層を変更した構成を有する。図85において、図72と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略する。
 図85のAに示される第23の構成例の導体層Aの引出し導体部165Abには、第16の構成例の網目状導体821Abに代えて、X方向に長い直線状導体911Abが、Y方向に導体周期FYAbで周期的に配置されるとともに、X方向に長い直線状導体912Abが、Y方向に導体周期FYAbで周期的に配置されている。直線状導体911Abは、例えば、プラス電源に接続される配線(Vdd配線)である。直線状導体912Abは、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。導体周期FYAbは、Y方向の導体幅WYAbとY方向の間隙幅GYAbとの和に等しい(導体周期FYAb=導体幅WYAb+間隙幅GYAb)。
 図85のBに示される第23の構成例の導体層Bの引出し導体部165Bbには、第16の構成例の網目状導体822Bbに代えて、X方向に長い直線状導体913Bbが、Y方向に導体周期FYBbで周期的に配置されるとともに、X方向に長い直線状導体914Bbが、Y方向に導体周期FYBbで周期的に配置されている。直線状導体913Bbは、例えば、プラス電源に接続される配線(Vdd配線)である。直線状導体914Bbは、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。導体周期FYBbは、Y方向の導体幅WYBbとY方向の間隙幅GYBbとの和に等しい(導体周期FYBb=導体幅WYBb+間隙幅GYBb)。
 導体層Aの引出し導体部165Abの直線状導体912Abは、主導体部165Aaの網目状導体821Aaと電気的に接続されるとともに、導体層Bの引出し導体部165Bbの直線状導体914Bbと、例えばZ方向に延伸された導体ビア(VIA)等を介して電気的に接続されている。
 導体層Bの引出し導体部165Bbの直線状導体913Bbは、主導体部165Baの網目状導体822Baと電気的に接続されるとともに、導体層Aの引出し導体部165Abの直線状導体911Abと、例えばZ方向に延伸された導体ビア(VIA)等を介して電気的に接続されている。
 図85のCに示されるように、導体層Aと導体層Bを重ねた状態では、導体層Aと導体層Bの少なくとも一方によって能動素子群167が覆われるので、第21の構成例においても、能動素子群167からのホットキャリア発光を遮光することができる。
 上述した第14乃至第22の構成例では、引出し導体部165bにおいて、極性が異なるVdd配線とVss配線が、同じ平面領域に重なるように配置されていたが、図85の第23の構成例のように、極性が異なるVdd配線とVss配線が、異なる平面領域となるようにずらして配置し、導体層Aと導体層Bの両方を用いて、GNDやマイナス電源、プラス電源を伝送するようにしてもよい。
 なお、導体層Aの引出し導体部165Abの直線状導体911Abは、導体層Bの引出し導体部165Bbの直線状導体913Bbと電気的に接続せずに、ダミー配線としてもよい。導体層Bの引出し導体部165Bbの直線状導体914Bbは、導体層Aの引出し導体部165Abの直線状導体912Abと電気的に接続せずに、ダミー配線としてもよい。
 なお、1群の直線状導体911Abと1群の直線状導体912Abとが、隣接配置される一例を図85で示したが、この限りではない。例えば、複数群の直線状導体911Abと複数群の直線状導体912Abとが設けられており、1群の直線状導体911Abと1群の直線状導体912Abとが、交互に配置されていてもよい。
 また、複数本の直線状導体を含む直線状導体911Abと複数本の直線状導体を含む直線状導体912Abとが、隣接配置される一例を図85で示したが、この限りではない。例えば、1本の直線状導体911Abと1本の直線状導体912Abとが、交互に配置されていてもよい。
 また、1群の直線状導体913Bbと1群の直線状導体914Bbとが、隣接配置される一例を図85で示したが、この限りではない。例えば、複数群の直線状導体913Bbと複数群の直線状導体914Bbとが設けられており、1群の直線状導体913Bbと1群の直線状導体914Bbとが、交互に配置されていてもよい。
 また、複数本の直線状導体を含む直線状導体913Bbと複数本の直線状導体を含む直線状導体914Bbとが、隣接配置される一例を図85で示したが、この限りではない。例えば、1本の直線状導体913Bbと1本の直線状導体914Bbとが、交互に配置されていてもよい。
 <第24の構成例>
 図86は、導体層A及びBの第24の構成例を示している。なお、図86のAは導体層Aを、図86のBは導体層Bを示している。図86のCは、図86のAとBにそれぞれ示した導体層A及びBを導体層A側から見た状態を示している。図86における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 図86に示される第24の構成例は、図72に示した第16の構成例の引出し導体部165bの導体層を変更した構成を有する。図86において、図72と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略する。
 図86のAに示される第24の構成例の導体層Aの引出し導体部165Abには、第16の構成例の網目状導体821Abに代えて、Y方向に長い直線状導体921Abが、X方向に導体周期FXAbで周期的に配置されるとともに、Y方向に長い直線状導体922Abが、X方向に導体周期FXAbで周期的に配置されている。直線状導体921Abは、例えば、プラス電源に接続される配線(Vdd配線)である。直線状導体922Abは、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。導体周期FXAbは、X方向の導体幅WXAbとX方向の間隙幅GXAbとの和に等しい(導体周期FXAb=導体幅WXAb+間隙幅GXAb)。
 図86のBに示される第24の構成例の導体層Bの引出し導体部165Bbには、第16の構成例の網目状導体822Bbに代えて、Y方向に長い直線状導体923Bbが、X方向に導体周期FXBbで周期的に配置されるとともに、Y方向に長い直線状導体924Bbが、X方向に導体周期FXBbで周期的に配置されている。直線状導体923Bbは、例えば、プラス電源に接続される配線(Vdd配線)である。直線状導体924Bbは、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。導体周期FXBbは、X方向の導体幅WXBbとX方向の間隙幅GXBbとの和に等しい(導体周期FXBb=導体幅WXBb+間隙幅GXBb)。
 導体層Aの引出し導体部165Abの直線状導体922Abは、導体層Bの引出し導体部165Bbの直線状導体924Bbと、例えばZ方向に延伸された導体ビア(VIA)等を介して電気的に接続されるとともに、直線状導体924Bbを介して、主導体部165Aaの網目状導体821Aaと電気的に接続されている。
 すなわち、例えばGNDやマイナス電源は、引出し導体部165bにおいて、導体層Aの直線状導体922Abと、導体層Bの直線状導体924Bbとを交互に伝送されて、主導体部165Aaの網目状導体821Aaに到達する。
 導体層Bの引出し導体部165Bbの直線状導体923Bbは、導体層Aの引出し導体部165Abの直線状導体921Abと、例えばZ方向に延伸された導体ビア(VIA)等を介して電気的に接続されるとともに、直線状導体921Abを介して、主導体部165Baの網目状導体822Baと電気的に接続されている。
 すなわち、例えばプラス電源は、引出し導体部165bにおいて、導体層Aの直線状導体921Abと、導体層Bの直線状導体923Bbとを交互に伝送されて、主導体部165Baの網目状導体822Baに到達する。
 図86のCに示されるように、導体層Aと導体層Bを重ねた状態では、導体層Aと導体層Bの少なくとも一方によって能動素子群167が覆われるので、第21の構成例においても、能動素子群167からのホットキャリア発光を遮光することができる。
 上述した第14乃至第22の構成例では、引出し導体部165bにおいて、極性が異なるVdd配線とVss配線が、同じ平面領域に重なるように配置されていたが、図86の第24の構成例のように、極性が異なるVdd配線とVss配線が、異なる平面領域となるようにずらして配置し、導体層Aと導体層Bの両方を用いて、GNDやマイナス電源、プラス電源を伝送するようにしてもよい。
 以上、図82乃至図86に示した第21乃至第24の構成例のように、引出し導体部165bの導体層は、網目状導体に限定されず、面状導体や直線状導体で構成してもよい。また、導体層AまたはBの1層だけではなく、導体層AおよびBの2層を用いてもよい。
 このような構成とすることにより、配線のレイアウト制約を満たす、配線レイアウトの設計の自由度をさらに改善する、誘導性ノイズをさらに改善する、電圧降下をさらに改善する、などのいずれかの効果を奏することができる。
 <第25の構成例>
 図87は、導体層A及びBの第25の構成例を示している。なお、図87のAは導体層Aを、図87のBは導体層Bを示している。図87のCは、図87のAとBにそれぞれ示した導体層A及びBを導体層A側から見た状態を示している。図87における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 図87に示される第25の構成例は、図72に示した第16の構成例に一部を追加した構成を有する。図86において、図72と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略する。
 図87のAに示される第25の構成例の導体層Aは、図72に示した第16の構成例における主導体部165Aaの網目状導体821Aaと、引出し導体部165Abの網目状導体821Abとの間に、それらと異なる繰り返しパタンを任意で含む形状の導体941が追加されている。なお、導体941は、配線レイアウトを効率よく設計するために繰り返しパタンを含む形状であることが望ましいが、繰り返しパタンを含まない形状であってもよい。導体941のパタンは任意の形状を取り得るため、図87のAの導体941では、特に規定せず、面状で表している。導体941は、網目状導体821Aaと網目状導体821Abの両方と電気的に接続されている。換言すれば、主導体部165Aaの網目状導体821Aaと、引出し導体部165Abの網目状導体821Abとが、導体941を介して電気的に接続されている。
 図87のBに示される第25の構成例の導体層Bは、図72に示した第16の構成例における主導体部165Baの網目状導体822Baと、引出し導体部165Bbの網目状導体822Bbとの間に、それらと異なる繰り返しパタンを任意で含む形状の導体942が追加されている。なお、導体942は、配線レイアウトを効率よく設計するために繰り返しパタンを含む形状であることが望ましいが、繰り返しパタンを含まない形状であってもよい。導体942のパタンは任意の形状を取り得るため、図87のBの導体942では、特に規定せず、面状で表している。導体942は、網目状導体822Baと網目状導体822Bbの両方と電気的に接続されている。換言すれば、主導体部165Baの網目状導体822Baと、引出し導体部165Bbの網目状導体822Bbとが、導体942を介して電気的に接続されている。
 第25の構成例によれば、導体層Aにおいて、所定の導体941を介して、主導体部165Aaの網目状導体821Aaと、引出し導体部165Abの網目状導体821Abとを接続することにより、配線レイアウトの設計の自由をさらに改善することができ、パッド近傍の自由度を特に改善することができる。
 導体層Bにおいても、所定の導体942を介して、主導体部165Baの網目状導体822Baと、引出し導体部165Bbの網目状導体822Bbとを接続することにより、配線レイアウトの設計の自由をさらに改善することができ、パッド近傍の自由度を特に改善することができる。
 <第26の構成例>
 図88は、導体層A及びBの第26の構成例を示している。なお、図88のAは導体層Aを、図88のBは導体層Bを示している。図88のCは、図88のAとBにそれぞれ示した導体層A及びBを導体層A側から見た状態を示している。図88における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 図88に示される第26の構成例は、図87に示した第25の構成例の一部を変更した構成を有する。図86において、図87と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略する。
 図88のAに示される第26の構成例の導体層Aは、主導体部165Aaについては、図87に示した第25の構成例と同様の網目状導体821Aaを備える。また、引出し導体部165Abについては、第26の構成例の導体層Aは、第25の構成例と同様の網目状導体821Abと導体941をY方向に所定の間隔で複数備える。換言すれば、図88のAの第26の構成例の導体層Aは、図87に示した第25の構成例の引出し導体部165Abの網目状導体821Abと導体941を、Y方向に所定の間隔で複数設けるように変形した構成である。なお、複数の導体941は、それらの全てが同一であってもよいし、同一でなくてもよい。
 図88のBに示される第26の構成例の導体層Bは、主導体部165Baについては、図87に示した第25の構成例と同様の網目状導体822Baを備える。また、引出し導体部165Bbについては、第26の構成例の導体層Bは、第25の構成例と同様の網目状導体822Bbと導体942をY方向に所定の間隔で複数備える。換言すれば、図88のBの第26の構成例の導体層Bは、図87に示した第25の構成例の引出し導体部165Bbの網目状導体822Bbと導体942を、Y方向に所定の間隔で複数設けるように変形した構成である。なお、複数の導体942は、それらの全てが同一であってもよいし、同一でなくてもよい。
 このような構成とすることにより、配線のレイアウト制約を満たす、配線レイアウトの設計の自由度をさらに改善する、誘導性ノイズをさらに改善する、電圧降下をさらに改善する、などのいずれかの効果を奏することができる。
 <第27の構成例>
 図89は、導体層A及びBの第27の構成例を示している。なお、図89のAは導体層Aを、図89のBは導体層Bを示している。図89のCは、図89のAとBにそれぞれ示した導体層A及びBを導体層A側から見た状態を示している。図89における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 図89に示される第27の構成例は、図88に示した第26の構成例の一部を変更した構成を有する。図89において、図88と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略する。
 図89のAに示される第27の構成例の導体層Aの主導体部165Aaは、図88に示した第26の構成例と同様の網目状導体821Aaを備える。第27の構成例の導体層Aの引出し導体部165Abは、網目状導体951Abと網目状導体952Abを備える。網目状導体951Abおよび網目状導体952Abの形状は、いずれも、X方向の導体幅WXAbおよび間隙幅GXAb並びにY方向の導体幅WYAbおよび間隙幅GYAbからなる。ただし、網目状導体952Abは、例えば、プラス電源に接続される配線(Vdd配線)であり、網目状導体951Abは、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。
 主導体部165Aaの網目状導体821Aaと、引出し導体部165Abの網目状導体951Abとの間に、それらと異なる繰り返しパタンを任意で含む形状の導体961が配置されている。主導体部165Aaの網目状導体821Aaと、引出し導体部165Abの網目状導体952Abとの間に、それらと異なる繰り返しパタンを任意で含む形状の導体962が配置されている。なお、導体961または962は、配線レイアウトを効率よく設計するために繰り返しパタンを含む形状であることが望ましいが、繰り返しパタンを含まない形状であってもよい。導体961および962のパタンは任意の形状を取り得るため、図89のAの導体961および962では、特に規定せず、面状で表している。
 図89のBに示される第27の構成例の導体層Bの主導体部165Baは、図88に示した第26の構成例と同様の網目状導体822Baを備える。第27の構成例の導体層Bの引出し導体部165Bbは、網目状導体953Bbと網目状導体954Bbを備える。網目状導体953Bbおよび網目状導体954Bbの形状は、いずれも、X方向の導体幅WXBbおよび間隙幅GXBb並びにY方向の導体幅WYBbおよび間隙幅GYBbからなる。ただし、網目状導体954Bbは、例えば、プラス電源に接続される配線(Vdd配線)であり、網目状導体953Bbは、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。
 主導体部165Baの網目状導体822Baと、引出し導体部165Bbの網目状導体953Bbとの間に、それらと異なる繰り返しパタンを任意で含む形状の導体963が配置されている。主導体部165Baの網目状導体822Baと、引出し導体部165Bbの網目状導体954Bbとの間に、それらと異なる繰り返しパタンを任意で含む形状の導体964が配置されている。なお、導体963または964は、配線レイアウトを効率よく設計するために繰り返しパタンを含む形状であることが望ましいが、繰り返しパタンを含まない形状であってもよい。導体963および964のパタンは任意の形状を取り得るため、図89のBの導体963および964では、特に規定せず、面状で表している。
 導体層Aの導体961は、主導体部165Aaの網目状導体821Aaと、引出し導体部165bの網目状導体951Abまたは953Bbのうちの少なくとも一方と、直接的または例えば導体963の少なくとも一部のような導体を介して間接的に、電気的に接続されている。換言すれば、主導体部165Aaの網目状導体821Aaと、引出し導体部165bの網目状導体951Abまたは953Bbのうちの少なくとも一方とが、導体961を介して電気的に接続されている。また、引出し導体部165Abの網目状導体951Abは、導体層Bの引出し導体部165Bbの網目状導体953Bbと、例えばZ方向に延伸された導体ビア(VIA)等を介して電気的に接続されていてもよい。導体961と導体963も、例えばZ方向に延伸された導体ビア(VIA)等を介して電気的に接続されてもよい。
 導体層Bの導体964は、主導体部165Baの網目状導体822Baと、引出し導体部165bの網目状導体952Abまたは954Bbのうちの少なくとも一方と、直接的または例えば導体962の少なくとも一部のような導体を介して間接的に、電気的に接続されている。換言すれば、主導体部165Baの網目状導体822Baと、引出し導体部165bの網目状導体952Abまたは954Bbのうちの少なくとも一方とが、導体964を介して電気的に接続されている。また、引出し導体部165Abの網目状導体952Abは、導体層Bの引出し導体部165Bbの網目状導体954Bbと、例えばZ方向に延伸された導体ビア(VIA)等を介して電気的に接続されていてもよい。導体962と導体964も、例えばZ方向に延伸された導体ビア(VIA)等を介して電気的に接続されてもよい。
 例えば、上述した図88の第26の構成例において、主導体部165aおよび引出し導体部165bのそれぞれについて、同じ平面位置の導体層Aと導体層Bの極性を見ると、導体層Aの主導体部165Aaと導体層Bの主導体部165Baは、極性がVss配線とVdd配線とで異なる極性となっており、導体層Aの引出し導体部165Abと導体層Bの引出し導体部165Bbも、異なる極性となっている。
 これに対して、図89の第27の構成例において、主導体部165aおよび引出し導体部165bのそれぞれについて、同じ平面位置の導体層Aと導体層Bの極性を見ると、導体層Aの主導体部165Aaと導体層Bの主導体部165Baは、極性がVss配線とVdd配線とで異なる極性となっているが、導体層Aの引出し導体部165Abと導体層Bの引出し導体部165Bbは、同じ極性となっている。このような極性配置により、上下の導体層Aおよび導体層Bを構成した場合、上下の導体層Aと導体層Bが電気的に接続された引出し導体部165bを、パッド(電極)とすることができる。
 第27の構成例によれば、配線のレイアウト制約を満たす、配線レイアウトの設計の自由度をさらに改善する、誘導性ノイズをさらに改善する、電圧降下をさらに改善する、などのいずれかの効果を奏することができる。
 <第28の構成例>
 図90は、導体層A及びBの第28の構成例を示している。なお、図90のAは導体層Aを、図90のBは導体層Bを示している。図90のCは、図90のAとBにそれぞれ示した導体層A及びBを導体層A側から見た状態を示している。図90における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 図90に示される第28の構成例は、図89に示した第27の構成例の一部を変更した構成を有する。図90において、図89と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略する。
 図90に示される第28の構成例は、導体層Aの引出し導体部165Abの形状のみが、図89の第27の構成例と異なり、その他の点は、図89の第27の構成例と共通する。
 具体的には、図89の第27の構成例における導体層Aの引出し導体部165Abには、X方向の導体幅WXAbおよび間隙幅GXAb並びにY方向の導体幅WYAbおよび間隙幅GYAbの形状からなる網目状導体951Abおよび網目状導体952Abが形成されていた。
 これに対して、図90の第28の構成例における導体層Aの引出し導体部165Abには、X方向の導体幅WXAbおよびY方向の導体幅WYAbの形状からなる面状導体971Abおよび面状導体972Abが形成されている。
 換言すれば、図90の第28の構成例では、導体層Aの引出し導体部165Abにおいて、図89の第27の構成例における網目状導体951Abに代えて、面状導体971Abが設けられ、網目状導体952Abに代えて、面状導体972Abが設けられている。
 図89に示した第27の構成例は、上下の導体層Aおよび導体層Bの引出し導体部165bの形状を同一形状とした例であるが、図90の第28の構成例のように、異なる形状としてもよい。
 さらに言えば、図90の第28の構成例では、導体層Aの引出し導体部165Abの形状を面状としたが、図91のAに示される導体層Aの引出し導体部165Abの網目状導体973Abおよび網目状導体974Abのように、同じ網目状であっても、図91のAの導体層Aの網目状導体973Abと図90のBの導体層Bの網目状導体953Bbとで遮光構造を成し、図91のAの導体層Aの網目状導体974Abと図90のBの導体層Bの網目状導体954Bbとで遮光構造を成すように構成してもよい。さらに、X方向の導体幅WXAbまたは間隙幅GXAbやY方向の導体幅WYAbまたは間隙幅GYAbを、導体層Bの引出し導体部165Bbの網目状導体953Bbまたは網目状導体954Bbと略同一な大きさの形状としてもよい。
 あるいはまた、図91のBに示される導体層Aの引出し導体部165Abの網目状導体975Abおよび網目状導体976Abのように、X方向の導体幅WXAbまたは間隙幅GXAbを、図90のBの導体層Bの引出し導体部165Bbの網目状導体953Bbまたは網目状導体954Bbよりも小さい形状としてもよい。さらに、図91のBの導体層Aの網目状導体975Abと図90のBの導体層Bの網目状導体953Bbとで遮光構造を成し、図91のBの導体層Aの網目状導体976Abと図90のBの導体層Bの網目状導体954Bbとで遮光構造を成すように構成してもよい。加えて、図示は省略するが、導体層Aの引出し導体部165AbのY方向の導体幅WYAbまたは間隙幅GYAbを、導体層Bの引出し導体部165Bbの網目状導体953Bbまたは網目状導体954Bbよりも小さい形状としてもよく、導体層Aの引出し導体部165AbのX方向の導体幅WXAbまたは間隙幅GXAbや、Y方向の導体幅WYAbまたは間隙幅GYAbを、導体層Bの引出し導体部165Bbの網目状導体953Bbまたは網目状導体954Bbよりも大きい形状としてもよい。
 図91のAおよびBは、図90の第28の構成例における導体層Aのその他の構成例を示している。
 <第14乃至第28の構成例のまとめ>
 図65乃至図90で示した第14乃至第28の構成例は、導体層Aおよび導体層Bのいずれも、主導体部165aと引出し導体部165bの繰り返しパタンが、異なるパタン(形状)で構成される。
 導体層A(第1の導体層)は、面状、直線状、または、網目状の繰り返しパタン(第1の基本パタン)をX方向またはY方向の同一平面上に繰り返し配列した形状の導体を含む主導体部165Aa(第1導体部)と、面状、直線状、または、網目状の繰り返しパタン(第4の基本パタン)をX方向またはY方向の同一平面上に繰り返し配列した形状の導体を含む引出し導体部165Ab(第4導体部)とを備える。ここで、主導体部165Aaの導体の繰り返しパタンと引出し導体部165Abの導体の繰り返しパタンは異なる形状であり、主導体部165Aaの導体と引出し導体部165Abの導体との間には、それらのパタンとパタンの異なる導体があってもよい。
 導体層B(第2の導体層)は、面状、直線状、または、網目状の繰り返しパタン(第2の基本パタン)をX方向またはY方向の同一平面上に繰り返し配列した形状の導体を含む主導体部165Ba(第2導体部)と、面状、直線状、または、網目状の繰り返しパタン(第3の基本パタン)をX方向またはY方向の同一平面上に繰り返し配列した形状の導体を含む引出し導体部165Bb(第3導体部)とを備える。ここで、主導体部165Baの導体の繰り返しパタンと引出し導体部165Bbの導体の繰り返しパタンは異なる形状であり、主導体部165Baの導体と引出し導体部165Bbの導体との間には、それらのパタンとパタンの異なる導体があってもよい。
 上述した各構成例において、例えばGNDやマイナス電源に接続される配線(Vss配線)として説明した導体は、例えばプラス電源に接続される配線(Vdd配線)であってもよく、例えばプラス電源に接続される配線(Vdd配線)として説明した導体は、例えばGNDやマイナス電源に接続される配線(Vss配線)でもよい。
 上述した各構成例において、主導体部165Aaの導体のY方向の全長LAaが、引出し導体部165Abの導体のY方向の全長LAbよりも長い構成としたが、全長LAaと全長LAbとが同一若しくは略同一、または、全長LAaが全長LAbよりも短い構成であってもよい。
 同様に、主導体部165BaのY方向の全長LBaが、引出し導体部165BbのY方向の全長LBbよりも長い構成としたが、全長LBaと全長LBbとが同一若しくは略同一、または、全長LBaが全長LBbよりも短い構成であってもよい。
 上述した各構成例において、主導体部165Aaおよび主導体部165Baの繰り返しパタンの例として、電流がX方向よりもY方向へ流れやすい繰り返しパタンを用いた構成例については、電流がX方向へ流れやすい繰り返しパタン例にしてもよいし、逆に、電流がY方向よりもX方向へ流れやすい繰り返しパタンを用いた構成例については、電流がY方向へ流れやすい繰り返しパタン例にしてもよい。また、電流がX方向およびY方向へ同程度に流れやすい繰り返しパタン例でもよい。
 上述した各構成例において、導体層A(配線層165A)の主導体部165Aaと、導体層B(配線層165B)の主導体部165Baの導体のパタンは、第1乃至第13の構成例で説明したパタンのいずれの構成でもよい。なお、上述した各構成例の一部では、全ての導体周期や全ての導体幅や全ての間隙幅が均等である一例を用いて説明したが、この限りではない。例えば、導体周期や導体幅や間隙幅は、不均等であってもよく、位置によって導体周期や導体幅や間隙幅を変調させた形状であってもよい。また、上述した各構成例の一部では、Vdd配線とVss配線とで、導体周期、導体幅、間隙幅、配線形状、配線位置、または配線本数などが略同一である一例を用いて説明したが、この限りではない。例えば、Vdd配線とVss配線とで、導体周期が異なっていてもよく、導体幅が異なっていてもよく、間隙幅が異なっていてもよく、配線形状が異なっていてもよく、配線位置が異なっていてもよく、配線位置にズレやズラシがあってもよく、配線本数が異なっていてもよい。
<10.パッドとの接続構成例>
 次に、図92乃至図108を参照して、導体層AおよびBとパッドとの関係について説明する。
 図92は、基板上に形成された導体層Aの全体を示す平面図である。
 導体層A(配線層165A)は、上述したように、主導体部165Aaと引出し導体部165Abとで構成される。
 導体層Aとは別にパッドが設けられる場合、図92のAに示されるように、引出し導体部165Abは、パッド1001に近い位置に設けられ、主導体部165Aaとパッド1001とを接続する。一方、図92のBに示されるように、引出し導体部165Abがパッド1001を構成する場合もある。
 主導体部165Aaは、基板1000の主要な領域、例えば、基板中央領域に、引出し導体部165Abよりも広い面積で形成され、主導体部165Aaの領域内またはその領域面に垂直なZ方向の他層に形成されているMOMSトランジスタやダイオード等の能動素子を遮光する。
 なお、図92は、導体層Aの配置および形状の一例を示すものであり、導体層Aの配置および形状は、この例に限られない。したがって、主導体部165Aa、引出し導体部165Ab、および、パッド1001が形成される基板1000内の位置および面積は任意であり、主導体部165Aaおよび引出し導体部165Abの領域内またはその領域面に垂直なZ方向の他層に能動素子が形成されていなくてもよい。引出し導体部165Abは、パッド1001に近い位置に設けられていなくてもよい。また、主導体部165Aaに対する引出し導体部165Abおよびパッド1001の配置は、図92のように、主導体部165Aaの四辺のX方向側の辺でなく、Y方向側の辺でもよいし、X方向側およびY方向側の両方の辺でもよい。さらに、パッド1001の個数も、図92のように、各辺に2個ではなく、1個または3個以上でもよい。
 図92は、導体層A(配線層165A)の例を示したが、導体層B(配線層165B)についても同様である。
 このような構成とすることにより、配線のレイアウト制約を満たす、配線レイアウトの設計の自由度をさらに改善する、誘導性ノイズをさらに改善する、電圧降下をさらに改善する、などのいずれかの効果を奏することができる。
 図92では、パッド1001が、例えば、プラス電源に接続される電極(Vdd電極)であるか、GNDやマイナス電源に接続される電極(Vss電極)であるかは特に区別しなかったが、これらを区別した場合のパッド1001の配置について、以下説明する。
 <パッドの第4の配置例>
 図93は、パッドの第4の配置例を示している。
 図93のAは、導体層A(配線層165A)と、それに接続されるパッド1001sの配置例を示す平面図である。
 図93のBは、導体層B(配線層165B)と、それに接続されるパッド1001dの配置例を示す平面図である。
 図93のCは、図93のAとBにそれぞれ示した導体層AおよびBと、パッド1001sおよびパッド1001dを積層した状態の平面図である。
 図93において、パッド1001sは、例えばGNDやマイナス電源(Vss)が供給されるパッド1001を表し、パッド1001dは、例えばプラス電源(Vdd)が供給されるパッド1001を表す。
 図93のAに示されるように、矩形形状の主導体部165Aaの所定の一辺に、所定の繰り返しパタンを任意で含む形状の導体1011を介して、複数のパッド1001sが所定の間隔で接続されている。各パッド1001sは、例えば、図89に示した第27の構成例のように引出し導体部165Abで構成してもよいし、導体1011が引出し導体部165Abで構成されてもよい。また、パッド1001sが引出し導体部165Abである場合、導体1011は省略されてもよいし、あってもよい。
 図93のBに示されるように、矩形形状の主導体部165Baの所定の一辺であって、導体層Aにおいてパッド1001sが配置された辺と同じ辺に、所定の繰り返しパタンを任意で含む形状の導体1012を介して、複数のパッド1001dが所定の間隔で接続されている。各パッド1001dは、例えば、図89に示した第27の構成例のように引出し導体部165Bbで構成してもよいし、導体1012が引出し導体部165Bbで構成されてもよい。また、パッド1001dが引出し導体部165Bbである場合、導体1012は省略されてもよいし、あってもよい。
 図93のCに示されるように、導体層AとBが積層された状態では、パッド1001sおよびパッド1001dの配置は、それらをY方向に交互に配置した交互配置となっている。この場合、図42乃至図44を参照して説明したように、導体層A及びBのそれぞれから生じる磁界とそれに基づく誘導起電力を効果的に相殺することができるので、誘導性ノイズをさらに改善することができる。ただし、Y方向に対して対称配置ではないため、広範囲にパッド1001が配置される場合には、つまり、主導体部165Aa若しくは165Ba、引出し導体部165Ab若しくは165Bb、または、導体1011若しくは1012が、パッド1001の配列方向へ長い場合(図93ではX方向よりもY方向が長い場合)には、相殺しきれない磁界が存在し、Victim導体ループが大きくなるにつれて蓄積されて誘導起電力が増大して、誘導性ノイズが悪化する場合もあり得る。
 <パッドの第5の配置例>
 図94は、パッドの第5の配置例を示している。
 図94のAは、導体層A(配線層165A)と、それに接続されるパッド1001sの配置例を示す平面図である。
 図94のBは、導体層B(配線層165B)と、それに接続されるパッド1001dの配置例を示す平面図である。
 図94のCは、図94のAとBにそれぞれ示した導体層AおよびBと、パッド1001sおよびパッド1001dを積層した状態の平面図である。
 図94において、パッド1001sは、例えばGNDやマイナス電源が供給されるパッド1001を表し、パッド1001dは、例えばプラス電源が供給されるパッド1001を表す。
 図94のAに示されるように、矩形形状の主導体部165Aaの所定の一辺に、所定の繰り返しパタンを任意で含む形状の導体1011を介して、複数のパッド1001sが所定の間隔で接続されている。各パッド1001sは、引出し導体部165Abで構成してもよいし、導体1011が引出し導体部165Abで構成されてもよい。また、パッド1001sが引出し導体部165Abである場合、導体1011は省略されてもよいし、あってもよい。
 図94のBに示されるように、矩形形状の主導体部165Baの所定の一辺であって、導体層Aにおいてパッド1001sが配置された辺と同じ辺に、所定の繰り返しパタンを任意で含む形状の導体1012を介して、複数のパッド1001dが所定の間隔で接続されている。各パッド1001dは、引出し導体部165Bbで構成してもよいし、導体1012が引出し導体部165Bbで構成されてもよい。また、パッド1001dが引出し導体部165Bbである場合、導体1012は省略されてもよいし、あってもよい。
 図94のCに示されるように、導体層AとBが積層された状態では、パッド1001sおよびパッド1001dの配置は、Y方向に連続する4個のパッド1001sおよびパッド1001dを1組として、1組のパッド1001をY方向に折り返して順次配置した鏡面対称配置となっている。この場合、図93に示した交互配置と比較して、導体層A及びBのそれぞれから生じる磁界とそれに基づく誘導起電力をさらに効果的に相殺することができるので、パッド以外のレイアウト次第では誘導性ノイズをさらに改善することができる。
 <パッドの第6の配置例>
 図95は、パッドの第6の配置例を示している。
 図95のAは、導体層A(配線層165A)と、それに接続されるパッド1001sの配置例を示す平面図である。
 図95のBは、導体層B(配線層165B)と、それに接続されるパッド1001dの配置例を示す平面図である。
 図95のCは、図95のAとBにそれぞれ示した導体層AおよびBと、パッド1001sおよびパッド1001dを積層した状態の平面図である。
 図95において、パッド1001sは、例えばGNDやマイナス電源が供給されるパッド1001を表し、パッド1001dは、例えばプラス電源が供給されるパッド1001を表す。
 図95のAに示されるように、矩形形状の主導体部165Aaの所定の一辺に、所定の繰り返しパタンを任意で含む形状の導体1011を介して、複数のパッド1001sが所定の間隔で接続されている。各パッド1001sは、引出し導体部165Abで構成してもよいし、導体1011が引出し導体部165Abで構成されてもよい。また、パッド1001sが引出し導体部165Abである場合、導体1011は省略されてもよいし、あってもよい。
 図95のBに示されるように、矩形形状の主導体部165Baの所定の一辺であって、導体層Aにおいてパッド1001sが配置された辺と同じ辺に、所定の繰り返しパタンを任意で含む形状の導体1012を介して、複数のパッド1001dが所定の間隔で接続されている。各パッド1001dは、引出し導体部165Bbで構成してもよいし、導体1012が引出し導体部165Bbで構成されてもよい。また、パッド1001dが引出し導体部165Bbである場合、導体1012は省略されてもよいし、あってもよい。
 図95のCに示されるように、導体層AとBが積層された状態では、パッド1001sおよびパッド1001dの配置は、Y方向に連続する4個のパッド1001sおよびパッド1001dを1組として、1組のパッド1001をY方向に折り返して順次配置した鏡面対称配置となっている。さらに、1組を構成する4個のパッド1001sおよびパッド1001dも、Y方向の中心線を基準に片方の2個のパッド1001をY方向に折り返して配置した鏡面対称配置となっている。このような鏡面配置の2段構成とした場合、図94に示した1段構成の鏡面配置と比較して、残存磁界の蓄積される範囲が狭いので、誘導起電力がさらに効果的に相殺され、パッド以外のレイアウト次第では誘導性ノイズをさらに改善することができる。
 <パッドの第7の配置例>
 図96は、パッドの第7の配置例を示している。
 図96のAは、導体層A(配線層165A)と、それに接続されるパッド1001sの配置例を示す平面図である。
 図96のBは、導体層B(配線層165B)と、それに接続されるパッド1001dの配置例を示す平面図である。
 図96のCは、図96のAとBにそれぞれ示した導体層AおよびBと、パッド1001sおよびパッド1001dを積層した状態の平面図である。
 図96において、パッド1001sは、例えばGNDやマイナス電源が供給されるパッド1001を表し、パッド1001dは、例えばプラス電源が供給されるパッド1001を表す。
 図96のAに示されるように、矩形形状の主導体部165Aaの所定の一辺に、複数の引出し導体部165Abが接続され、各引出し導体部165Abの外周部に、所定の繰り返しパタンを任意で含む形状の導体1011を介して、複数のパッド1001sが所定の間隔で接続されている。導体1011は省略されてもよいし、あってもよい。また、導体1011は、主導体部165Aaと引出し導体部165Abとの間にあってもよい。
 図96のBに示されるように、矩形形状の主導体部165Baの所定の一辺に、複数の引出し導体部165Bbが接続され、各引出し導体部165Bbの外周部に、所定の繰り返しパタンを任意で含む形状の導体1012を介して、複数のパッド1001dが所定の間隔で接続されている。導体1012は省略されてもよいし、あってもよい。また、導体1012は、主導体部165Baと引出し導体部165Bbとの間にあってもよい。
 図96のCに示されるように、導体層AとBが積層された状態では、パッド1001sおよびパッド1001dの配置は、それらをY方向に交互に配置された交互配置となっている。この場合、導体層A及びBのそれぞれから生じる磁界とそれに基づく誘導起電力を効果的に相殺することができるので、誘導性ノイズをさらに改善することができる。ただし、Y方向に対して対称配置ではないため、広範囲にパッド1001が配置される場合には、つまり、主導体部165Aa若しくは165Ba、引出し導体部165Ab若しくは165Bb、または、導体1011若しくは1012が、パッド1001の配列方向へ長い場合(図96ではX方向よりもY方向が長い場合)には、相殺しきれない磁界が存在し、Victim導体ループが大きくなるにつれて蓄積されて誘導起電力が増大して、誘導性ノイズが悪化する場合もあり得る。
 <パッドの第8の配置例>
 図97は、パッドの第8の配置例を示している。
 図97のAは、導体層A(配線層165A)と、それに接続されるパッド1001sの配置例を示す平面図である。
 図97のBは、導体層B(配線層165B)と、それに接続されるパッド1001dの配置例を示す平面図である。
 図97のCは、図97のAとBにそれぞれ示した導体層AおよびBと、パッド1001sおよびパッド1001dを積層した状態の平面図である。
 図97において、パッド1001sは、例えばGNDやマイナス電源が供給されるパッド1001を表し、パッド1001dは、例えばプラス電源が供給されるパッド1001を表す。
 図97のAに示されるように、矩形形状の主導体部165Aaの所定の一辺に、複数の引出し導体部165Abが接続され、各引出し導体部165Abの外周部に、所定の繰り返しパタンを任意で含む形状の導体1011を介して、複数のパッド1001sが所定の間隔で接続されている。導体1011は省略されてもよいし、あってもよい。また、導体1011は、主導体部165Aaと引出し導体部165Abとの間にあってもよい。
 図97のBに示されるように、矩形形状の主導体部165Baの所定の一辺に、複数の引出し導体部165Bbが接続され、各引出し導体部165Bbの外周部に、所定の繰り返しパタンを任意で含む形状の導体1012を介して、複数のパッド1001dが所定の間隔で接続されている。導体1012は省略されてもよいし、あってもよい。また、導体1012は、主導体部165Baと引出し導体部165Bbとの間にあってもよい。
 図97のCに示されるように、導体層AとBが積層された状態では、パッド1001sおよびパッド1001dの配置は、Y方向に連続する4個のパッド1001sおよびパッド1001dを1組として、1組のパッド1001をY方向に折り返して順次配置した鏡面対称配置となっている。この場合、図96に示した交互配置と比較して、導体層A及びBのそれぞれから生じる磁界とそれに基づく誘導起電力をさらに効果的に相殺することができるので、パッド以外のレイアウト次第では誘導性ノイズをさらに改善することができる。
 <パッドの第9の配置例>
 図98は、パッドの第9の配置例を示している。
 図98のAは、導体層A(配線層165A)と、それに接続されるパッド1001sの配置例を示す平面図である。
 図98のBは、導体層B(配線層165B)と、それに接続されるパッド1001dの配置例を示す平面図である。
 図98のCは、図98のAとBにそれぞれ示した導体層AおよびBと、パッド1001sおよびパッド1001dを積層した状態の平面図である。
 図98において、パッド1001sは、例えばGNDやマイナス電源が供給されるパッド1001を表し、パッド1001dは、例えばプラス電源が供給されるパッド1001を表す。
 図98のAに示されるように、矩形形状の主導体部165Aaの所定の一辺に、複数の引出し導体部165Abが接続され、各引出し導体部165Abの外周部に、所定の繰り返しパタンを任意で含む形状の導体1011を介して、複数のパッド1001sが所定の間隔で接続されている。導体1011は省略されてもよいし、あってもよい。また、導体1011は、主導体部165Aaと引出し導体部165Abとの間にあってもよい。
 図98のBに示されるように、矩形形状の主導体部165Baの所定の一辺に、複数の引出し導体部165Bbが接続され、各引出し導体部165Bbの外周部に、所定の繰り返しパタンを任意で含む形状の導体1012を介して、複数のパッド1001dが所定の間隔で接続されている。導体1012は省略されてもよいし、あってもよい。また、導体1012は、主導体部165Baと引出し導体部165Bbとの間にあってもよい。
 図98のCに示されるように、導体層AとBが積層された状態では、パッド1001sおよびパッド1001dの配置は、Y方向に連続する4個のパッド1001sおよびパッド1001dを1組として、1組のパッド1001をY方向に折り返して順次配置した鏡面対称配置となっている。さらに、1組を構成する4個のパッド1001sおよびパッド1001dも、Y方向の中心線を基準に片方の2個のパッド1001をY方向に折り返して配置した鏡面対称配置となっている。このような鏡面配置の2段構成とした場合、図97に示した1段構成の鏡面配置と比較して、残存磁界の蓄積される範囲が狭いので、誘導起電力がさらに効果的に相殺され、パッド以外のレイアウト次第では誘導性ノイズをさらに改善することができる。
 <パッドの第10の配置例>
 図99は、パッドの第10の配置例を示している。
 図99のAは、導体層A(配線層165A)と、それに接続されるパッド1001sの配置例を示す平面図である。
 図99のBは、導体層B(配線層165B)と、それに接続されるパッド1001dの配置例を示す平面図である。
 図99のCは、図99のAとBにそれぞれ示した導体層AおよびBと、パッド1001sおよびパッド1001dを積層した状態の平面図である。
 図99において、パッド1001sは、例えばGNDやマイナス電源が供給されるパッド1001を表し、パッド1001dは、例えばプラス電源が供給されるパッド1001を表す。
 図99のAに示されるように、矩形形状の主導体部165Aaの所定の一辺に、複数の引出し導体部165Abが接続され、各引出し導体部165Abの外周部に、所定の繰り返しパタンを任意で含む形状の導体1011を介して、1つのパッド1001sが接続されている。導体1011は省略されてもよいし、あってもよい。また、導体1011は、主導体部165Aaと引出し導体部165Abとの間にあってもよい。
 図99のBに示されるように、矩形形状の主導体部165Baの所定の一辺に、複数の引出し導体部165Bbが接続され、各引出し導体部165Bbの外周部に、所定の繰り返しパタンを任意で含む形状の導体1012を介して、1つのパッド1001dが接続されている。導体1012は省略されてもよいし、あってもよい。また、導体1012は、主導体部165Baと引出し導体部165Bbとの間にあってもよい。
 図99のCに示されるように、導体層AとBが積層された状態では、パッド1001sおよびパッド1001dの配置は、それらをY方向に交互に配置した交互配置となっている。この場合、導体層A及びBのそれぞれから生じる磁界とそれに基づく誘導起電力を効果的に相殺することができるので、誘導性ノイズをさらに改善することができる。ただし、Y方向に対して対称配置ではないため、広範囲にパッド1001が配置される場合には、つまり、主導体部165Aa若しくは165Ba、引出し導体部165Ab若しくは165Bb、または、導体1011若しくは1012が、パッド1001の配列方向へ長い場合(図99ではX方向よりもY方向が長い場合)には、相殺しきれない磁界が存在し、Victim導体ループが大きくなるにつれて蓄積されて誘導起電力が増大して、誘導性ノイズが悪化する場合もあり得る。
 <パッドの第11の配置例>
 図100は、パッドの第11の配置例を示している。
 図100のAは、導体層A(配線層165A)と、それに接続されるパッド1001sの配置例を示す平面図である。
 図100のBは、導体層B(配線層165B)と、それに接続されるパッド1001dの配置例を示す平面図である。
 図100のCは、図100のAとBにそれぞれ示した導体層AおよびBと、パッド1001sおよびパッド1001dを積層した状態の平面図である。
 図100において、パッド1001sは、例えばGNDやマイナス電源が供給されるパッド1001を表し、パッド1001dは、例えばプラス電源が供給されるパッド1001を表す。
 図100のAに示されるように、矩形形状の主導体部165Aaの所定の一辺に、複数の引出し導体部165Abが接続され、各引出し導体部165Abの外周部に、所定の繰り返しパタンを任意で含む形状の導体1011を介して、1つのパッド1001sが接続されている。導体1011は省略されてもよいし、あってもよい。また、導体1011は、主導体部165Aaと引出し導体部165Abとの間にあってもよい。
 図100のBに示されるように、矩形形状の主導体部165Baの所定の一辺に、複数の引出し導体部165Bbが接続され、各引出し導体部165Bbの外周部に、所定の繰り返しパタンを任意で含む形状の導体1012を介して、1つのパッド1001dが接続されている。導体1012は省略されてもよいし、あってもよい。また、導体1012は、主導体部165Baと引出し導体部165Bbとの間にあってもよい。
 図100のCに示されるように、導体層AとBが積層された状態では、パッド1001sおよびパッド1001dの配置は、Y方向に連続する4個のパッド1001sおよびパッド1001dを1組として、1組のパッド1001をY方向に折り返して順次配置した鏡面対称配置となっている。この場合、図99に示した交互配置と比較して、導体層A及びBのそれぞれから生じる磁界とそれに基づく誘導起電力をさらに効果的に相殺することができるので、パッド以外のレイアウト次第では誘導性ノイズをさらに改善することができる。
 <パッドの第12の配置例>
 図101は、パッドの第12の配置例を示している。
 図101のAは、導体層A(配線層165A)と、それに接続されるパッド1001sの配置例を示す平面図である。
 図101のBは、導体層B(配線層165B)と、それに接続されるパッド1001dの配置例を示す平面図である。
 図101のCは、図101のAとBにそれぞれ示した導体層AおよびBと、パッド1001sおよびパッド1001dを積層した状態の平面図である。
 図101において、パッド1001sは、例えばGNDやマイナス電源が供給されるパッド1001を表し、パッド1001dは、例えばプラス電源が供給されるパッド1001を表す。
 図101のAに示されるように、矩形形状の主導体部165Aaの所定の一辺に、複数の引出し導体部165Abが接続され、各引出し導体部165Abの外周部に、所定の繰り返しパタンを任意で含む形状の導体1011を介して、1つのパッド1001sが接続されている。導体1011は省略されてもよいし、あってもよい。また、導体1011は、主導体部165Aaと引出し導体部165Abとの間にあってもよい。
 図101のBに示されるように、矩形形状の主導体部165Baの所定の一辺に、複数の引出し導体部165Bbが接続され、各引出し導体部165Bbの外周部に、所定の繰り返しパタンを任意で含む形状の導体1012を介して、1つのパッド1001dが接続されている。導体1012は省略されてもよいし、あってもよい。また、導体1012は、主導体部165Baと引出し導体部165Bbとの間にあってもよい。
 図101のCに示されるように、導体層AとBが積層された状態では、パッド1001sおよびパッド1001dの配置は、Y方向に連続する4個のパッド1001sおよびパッド1001dを1組として、1組のパッド1001をY方向に折り返して順次配置した鏡面対称配置となっている。さらに、1組を構成する4個のパッド1001sおよびパッド1001dも、Y方向の中心線を基準に片方の2個のパッド1001をY方向に折り返して配置した鏡面対称配置となっている。このような鏡面配置の2段構成とした場合、図100に示した1段構成の鏡面配置と比較して、残存磁界の蓄積される範囲が狭いので、誘導起電力がさらに効果的に相殺され、パッド以外のレイアウト次第では誘導性ノイズをさらに改善することができる。
 <パッドの第13の配置例>
 図102は、パッドの第13の配置例を示している。
 図102のAは、導体層A(配線層165A)と、それに接続されるパッド1001sの配置例を示す平面図である。
 図102のBは、導体層B(配線層165B)と、それに接続されるパッド1001dの配置例を示す平面図である。
 図102のCは、図102のAとBにそれぞれ示した導体層AおよびBと、パッド1001sおよびパッド1001dを積層した状態の平面図である。
 図102において、パッド1001sは、例えばGNDやマイナス電源が供給されるパッド1001を表し、パッド1001dは、例えばプラス電源が供給されるパッド1001を表す。
 図102のAに示されるように、矩形形状の主導体部165Aaの所定の一辺に、複数の引出し導体部165Abが接続され、各引出し導体部165Abの外周部に、所定の繰り返しパタンを任意で含む形状の導体1011が接続されている。また、複数の引出し導体部165Abの一部には、導体1011を介して、1つのパッド1001sが接続されている。導体1011は省略されてもよいし、あってもよい。また、導体1011は、主導体部165Aaと引出し導体部165Abとの間にあってもよい。
 図102のBに示されるように、矩形形状の主導体部165Baの所定の一辺に、複数の引出し導体部165Bbが接続され、各引出し導体部165Bbの外周部に、所定の繰り返しパタンを任意で含む形状の導体1012が接続されている。また、複数の引出し導体部165Bbの一部には、導体1012を介して、1つのパッド1001dが配置されている。導体1012は省略されてもよいし、あってもよい。また、導体1012は、主導体部165Baと引出し導体部165Bbとの間にあってもよい。
 図102のCに示されるように、導体層AとBが積層された状態では、パッド1001sおよびパッド1001dの配置は、それらをY方向に交互に配置した交互配置となっている。この場合、導体層A及びBのそれぞれから生じる磁界とそれに基づく誘導起電力を効果的に相殺することができるので、誘導性ノイズをさらに改善することができる。ただし、Y方向に対して対称配置ではないため、広範囲にパッド1001が配置される場合には、つまり、主導体部165Aa若しくは165Ba、引出し導体部165Ab若しくは165Bb、または、導体1011若しくは1012が、パッド1001の配列方向へ長い場合(図102ではX方向よりもY方向が長い場合)には、相殺しきれない磁界が存在し、Victim導体ループが大きくなるにつれて蓄積されて誘導起電力が増大して、誘導性ノイズが悪化する場合もあり得る。
 <パッドの第14の配置例>
 図103は、パッドの第14の配置例を示している。
 図103のAは、導体層A(配線層165A)と、それに接続されるパッド1001sの配置例を示す平面図である。
 図103のBは、導体層B(配線層165B)と、それに接続されるパッド1001dの配置例を示す平面図である。
 図103のCは、図103のAとBにそれぞれ示した導体層AおよびBと、パッド1001sおよびパッド1001dを積層した状態の平面図である。
 図103において、パッド1001sは、例えばGNDやマイナス電源が供給されるパッド1001を表し、パッド1001dは、例えばプラス電源が供給されるパッド1001を表す。
 図103のAに示されるように、矩形形状の主導体部165Aaの所定の一辺に、複数の引出し導体部165Abが接続され、各引出し導体部165Abの外周部に、所定の繰り返しパタンを任意で含む形状の導体1011が接続されている。また、複数の引出し導体部165Abの一部には、導体1011を介して、1つのパッド1001sが接続されている。導体1011は省略されてもよいし、あってもよい。また、導体1011は、主導体部165Aaと引出し導体部165Abとの間にあってもよい。
 図103のBに示されるように、矩形形状の主導体部165Baの所定の一辺に、複数の引出し導体部165Bbが接続され、各引出し導体部165Bbの外周部に、所定の繰り返しパタンを任意で含む形状の導体1012が接続されている。また、複数の引出し導体部165Bbの一部には、導体1012を介して、1つのパッド1001dが配置されている。導体1012は省略されてもよいし、あってもよい。また、導体1012は、主導体部165Baと引出し導体部165Bbとの間にあってもよい。
 図103のCに示されるように、導体層AとBが積層された状態では、パッド1001sおよびパッド1001dの配置は、Y方向に連続する4個のパッド1001sおよびパッド1001dを1組として、1組のパッド1001をY方向に折り返して順次配置した鏡面対称配置となっている。この場合、図102に示した交互配置と比較して、導体層A及びBのそれぞれから生じる磁界とそれに基づく誘導起電力をさらに効果的に相殺することができるので、パッド以外のレイアウト次第では誘導性ノイズをさらに改善することができる。
 <パッドの第15の配置例>
 図104は、パッドの第15の配置例を示している。
 図104のAは、導体層A(配線層165A)と、それに接続されるパッド1001sの配置例を示す平面図である。
 図104のBは、導体層B(配線層165B)と、それに接続されるパッド1001dの配置例を示す平面図である。
 図104のCは、図104のAとBにそれぞれ示した導体層AおよびBと、パッド1001sおよびパッド1001dを積層した状態の平面図である。
 図104において、パッド1001sは、例えばGNDやマイナス電源が供給されるパッド1001を表し、パッド1001dは、例えばプラス電源が供給されるパッド1001を表す。
 図104のAに示されるように、矩形形状の主導体部165Aaの所定の一辺に、複数の引出し導体部165Abが接続され、各引出し導体部165Abの外周部に、所定の繰り返しパタンを任意で含む形状の導体1011が接続されている。また、複数の引出し導体部165Abの一部には、導体1011を介して、1つのパッド1001sが接続されている。導体1011は省略されてもよいし、あってもよい。また、導体1011は、主導体部165Aaと引出し導体部165Abとの間にあってもよい。
 図104のBに示されるように、矩形形状の主導体部165Baの所定の一辺に、複数の引出し導体部165Bbが接続され、各引出し導体部165Bbの外周部に、所定の繰り返しパタンを任意で含む形状の導体1012が接続されている。また、複数の引出し導体部165Bbの一部には、導体1012を介して、1つのパッド1001dが配置されている。導体1012は省略されてもよいし、あってもよい。また、導体1012は、主導体部165Baと引出し導体部165Bbとの間にあってもよい。
 図104のCに示されるように、導体層AとBが積層された状態では、パッド1001sおよびパッド1001dの配置は、Y方向に連続する4個のパッド1001sおよびパッド1001dを1組として、1組のパッド1001をY方向に折り返して順次配置した鏡面対称配置となっている。さらに、1組を構成する4個のパッド1001sおよびパッド1001dも、Y方向の中心線を基準に片方の2個のパッド1001をY方向に折り返して配置した鏡面対称配置となっている。このような鏡面配置の2段構成とした場合、図103に示した1段構成の鏡面配置と比較して、残存磁界の蓄積される範囲が狭いので、誘導起電力がさらに効果的に相殺され、パッド以外のレイアウト次第では誘導性ノイズをさらに改善することができる。
 図93乃至図104を参照して説明したパッドの配置例では、導体層AおよびBの主導体部165aの所定の一辺に接続されるパッド総数が8個であって、Y方向に連続する8個のパッド1001の配列を、交互配置、1段構成の鏡面配置、および、2段構成の鏡面配置とした例を説明したが、8個以外のパッド総数で、交互配置、1段構成の鏡面配置、および、2段構成の鏡面配置としてもよい。交互配置または鏡面配置とする1組のパッド数も、上述した2個や4個に限らず、任意である。
 また、1つの引出し導体部165bに接続されるパッドの個数も、図93乃至図104に示した1個または2個の例に限らず、3個以上でもよい。
 さらに、図93乃至図104では、簡単のため、矩形形状の導体層AおよびBの主導体部165aの所定の一辺のみ複数のパッド1001が接続される例を示したが、図93乃至図104に示した辺以外の一辺でもよいし、任意の二辺、三辺、または、四辺でもよい。
 パッド総数が8の場合を例に説明したが、この限りではない。パッド数を増やしてもよく、パッド数を減らしてもよい。
 パッド配置例として示した各構成要素は、その一部または全部が省略されていてもよく、その一部または全部が変化していてもよく、その一部または全部が変更されていてもよく、その一部または全部が他の構成要素で置き換えられていてもよく、その一部または全部に他の構成要素が追加されていてもよい。また、パッド配置例として示した各構成要素はその一部または全部が複数に分割されていてもよく、その一部または全部が複数に分離されていてもよく、分割または分離された複数の構成要素の少なくとも一部で機能や特徴を異ならせていてもよい。さらに、パッド配置例として示した各構成要素の少なくとも一部を任意に組み合わせて、異なるパッド配置としてもよい。さらに、パッド配置例として示した各構成要素の少なくとも一部を移動させて、異なるパッド配置としてもよい。さらに、パッド配置例として示した各構成要素の少なくとも一部の組み合わせに結合要素や中継要素を加えて、異なるパッド配置としてもよい。さらに、パッド配置例として示した各構成要素の少なくとも一部の組み合わせに切り替え要素や切り替え機能を加えて、異なるパッド配置としてもよい。
 <パッドの第16の配置例>
 次に、図105乃至図108を参照して、導体層AおよびBの矩形形状の主導体部165aの隣接する二辺に複数のパッド1001を配置する場合の直交パッド配置例について説明する。
 図105は、パッドの第16の配置例を示している。
 図105のAは、導体層A(配線層165A)と、それに接続されるパッド1001sの配置例を示す平面図である。
 図105のBは、導体層B(配線層165B)と、それに接続されるパッド1001dの配置例を示す平面図である。
 図105のCは、図105のAとBにそれぞれ示した導体層AおよびBと、パッド1001sおよびパッド1001dを積層した状態の平面図である。
 図105において、パッド1001sは、例えばGNDやマイナス電源が供給されるパッド1001を表し、パッド1001dは、例えばプラス電源が供給されるパッド1001を表す。
 図105のAに示されるように、矩形形状の主導体部165Aaの隣接する二辺に、所定の繰り返しパタンを任意で含む形状の導体1011を介して、複数のパッド1001sが所定の間隔で接続されている。各パッド1001sは、引出し導体部165Abで構成してもよいし、導体1011が引出し導体部165Abで構成されてもよい。また、パッド1001sが引出し導体部165Abである場合、導体1011は省略されてもよいし、あってもよい。
 図105のBに示されるように、矩形形状の主導体部165Baの隣接する二辺に、所定の繰り返しパタンを任意で含む形状の導体1012を介して、複数のパッド1001dが所定の間隔で接続されている。各パッド1001dは、引出し導体部165Bbで構成してもよいし、導体1012が引出し導体部165Bbで構成されてもよい。また、パッド1001dが引出し導体部165Bbである場合、導体1012は省略されてもよいし、あってもよい。
 図105のCに示されるように、導体層AとBが積層された状態では、パッド1001sおよびパッド1001dの配置は、矩形形状の主導体部165aの隣接する二辺に、パッド1001sおよびパッド1001dが交互に配置された交互配置となっている。また、交互に配置された二辺のパッド1001sおよびパッド1001dのうち、各辺の端部のパッド1001の極性は、いずれも、GNDやマイナス電源に接続されるパッド1001sとなっている。このように、パッド1001sおよびパッド1001dを交互に配置した二辺の複数のパッド1001のうち、基板1000の角部に最も近い端部のパッド1001の極性を同相とし、かつ、ESD(electrostatic discharge)耐性が高い方の極性であるパッド1001sとすることにより、ESD耐性を高めることができる。
 なお、ESD耐性を考慮すると、パッド1001sおよびパッド1001dを交互に配置した二辺の端部のパッド1001の極性を、例えばGNDやマイナス電源に接続されるパッド1001sとすることが好ましいが、例えばプラス電源に接続されるパッド1001dとしてもよい。
 <パッドの第17の配置例>
 図106は、パッドの第17の配置例を示している。
 図106のAは、導体層A(配線層165A)と、それに接続されるパッド1001sの配置例を示す平面図である。
 図106のBは、導体層B(配線層165B)と、それに接続されるパッド1001dの配置例を示す平面図である。
 図106のCは、図106のAとBにそれぞれ示した導体層AおよびBと、パッド1001sおよびパッド1001dを積層した状態の平面図である。
 図106において、パッド1001sは、例えばGNDやマイナス電源が供給されるパッド1001を表し、パッド1001dは、例えばプラス電源が供給されるパッド1001を表す。
 図106のAに示されるように、矩形形状の主導体部165Aaの隣接する二辺に、所定の繰り返しパタンを任意で含む形状の導体1011を介して、複数のパッド1001sが所定の間隔で接続されている。各パッド1001sは、引出し導体部165Abで構成してもよいし、導体1011が引出し導体部165Abで構成されてもよい。また、パッド1001sが引出し導体部165Abである場合、導体1011は省略されてもよいし、あってもよい。
 図106のBに示されるように、矩形形状の主導体部165Baの隣接する二辺に、所定の繰り返しパタンを任意で含む形状の導体1012を介して、複数のパッド1001dが所定の間隔で接続されている。各パッド1001dは、引出し導体部165Bbで構成してもよいし、導体1012が引出し導体部165Bbで構成されてもよい。また、パッド1001dが引出し導体部165Bbである場合、導体1012は省略されてもよいし、あってもよい。
 図106のCに示されるように、導体層AとBが積層された状態では、図95のCに示したパッド配置例と同様に、連続する4個のパッド1001sおよびパッド1001dを1組として、1組のパッド1001をY方向に折り返して順次配置した鏡面対称配置となっている。また、鏡面対称に配置された二辺のパッド1001sおよびパッド1001dのうち、各辺の端部のパッド1001の極性は、いずれも、GNDやマイナスに接続されるパッド1001sとなっている。このように、パッド1001sおよびパッド1001dを鏡面対称に配置した二辺の複数のパッド1001のうち、基板1000の角部に最も近い端部のパッド1001の極性を同相とし、かつ、ESD耐性が高い方の極性であるパッド1001sとすることにより、ESD耐性を高めることができる。また、鏡面対称に配置することにより、Vss配線とVdd配線とでインピーダンス差が小さく、電流差が小さくなるので、図105の第16の配置例よりもさらに、誘導性ノイズを改善することができる。
 なお、ESD耐性を考慮すると、パッド1001sおよびパッド1001dを鏡面対称に配置した二辺の端部のパッド1001の極性を、例えばGNDやマイナス電源に接続されるパッド1001sとすることが好ましいが、例えばプラス電源に接続されるパッド1001dとしてもよい。
 <パッドの第18の配置例>
 図107は、パッドの第18の配置例を示している。
 図107のAは、導体層A(配線層165A)と、それに接続されるパッド1001sの配置例を示す平面図である。
 図107のBは、導体層B(配線層165B)と、それに接続されるパッド1001dの配置例を示す平面図である。
 図107のCは、図107のAとBにそれぞれ示した導体層AおよびBと、パッド1001sおよびパッド1001dを積層した状態の平面図である。
 図107において、パッド1001sは、例えばGNDやマイナス電源が供給されるパッド1001を表し、パッド1001dは、例えばプラス電源が供給されるパッド1001を表す。
 図107のAに示されるように、矩形形状の主導体部165Aaの隣接する二辺に、所定の繰り返しパタンを任意で含む形状の導体1011を介して、複数のパッド1001sが所定の間隔で接続されている。各パッド1001sは、引出し導体部165Abで構成してもよいし、導体1011が引出し導体部165Abで構成されてもよい。また、パッド1001sが引出し導体部165Abである場合、導体1011は省略されてもよいし、あってもよい。
 図107のBに示されるように、矩形形状の主導体部165Baの隣接する二辺に、所定の繰り返しパタンを任意で含む形状の導体1012を介して、複数のパッド1001dが所定の間隔で接続されている。各パッド1001dは、引出し導体部165Bbで構成してもよいし、導体1012が引出し導体部165Bbで構成されてもよい。また、パッド1001dが引出し導体部165Bbである場合、導体1012は省略されてもよいし、あってもよい。
 図107のCに示されるように、導体層AとBが積層された状態では、パッド1001sおよびパッド1001dの配置は、図105に示したパッド配置例と同様に、パッド1001sおよびパッド1001dが交互に配置された交互配置となっている。ただし、二辺に配置されたパッド1001sおよびパッド1001dのうち、各辺の端部のパッド1001の極性がパッド1001sとパッド1001dの逆相となっている点が、図105に示したパッド配置例と異なる。このように、パッド1001sおよびパッド1001dを交互に配置した二辺の複数のパッド1001のうち、基板1000の角部に最も近い端部のパッド1001の極性を逆相とすることにより、Vss配線とVdd配線とのインピーダンス差をさらに小さくすることができ、電流差がさらに小さくなるので、図106の第17の配置例よりもさらに、誘導性ノイズを改善することができる。
 <パッドの第19の配置例>
 図108は、パッドの第19の配置例を示している。
 図108のAは、導体層A(配線層165A)と、それに接続されるパッド1001sの配置例を示す平面図である。
 図108のBは、導体層B(配線層165B)と、それに接続されるパッド1001dの配置例を示す平面図である。
 図108のCは、図108のAとBにそれぞれ示した導体層AおよびBと、パッド1001sおよびパッド1001dを積層した状態の平面図である。
 図108において、パッド1001sは、例えばGNDやマイナス電源が供給されるパッド1001を表し、パッド1001dは、例えばプラス電源が供給されるパッド1001を表す。
 図108のAに示されるように、矩形形状の主導体部165Aaの隣接する二辺に、所定の繰り返しパタンを任意で含む形状の導体1011を介して、複数のパッド1001sが所定の間隔で接続されている。各パッド1001sは、引出し導体部165Abで構成してもよいし、導体1011が引出し導体部165Abで構成されてもよい。また、パッド1001sが引出し導体部165Abである場合、導体1011は省略されてもよいし、あってもよい。
 図108のBに示されるように、矩形形状の主導体部165Baの隣接する二辺に、所定の繰り返しパタンを任意で含む形状の導体1012を介して、複数のパッド1001dが所定の間隔で接続されている。各パッド1001dは、引出し導体部165Bbで構成してもよいし、導体1012が引出し導体部165Bbで構成されてもよい。また、パッド1001dが引出し導体部165Bbである場合、導体1012は省略されてもよいし、あってもよい。
 図108のCに示されるように、導体層AとBが積層された状態では、パッド1001sおよびパッド1001dの配置は、図106に示したパッド配置例と同様に、パッド1001sおよびパッド1001dが鏡面対称配置となっている。ただし、二辺に配置されたパッド1001sおよびパッド1001dのうち、各辺の端部のパッド1001の極性がパッド1001sとパッド1001dの逆相となっている点が、図106に示したパッド配置例と異なる。このように、パッド1001sおよびパッド1001dを鏡面対称に配置した二辺の複数のパッド1001のうち、基板1000の角部に最も近い端部のパッド1001の極性を逆相とすることにより、Vss配線とVdd配線とのインピーダンス差をさらに小さくすることができ、電流差がさらに小さくなるので、図106の第17の配置例よりもさらに、誘導性ノイズを改善することができる。
 図105乃至図108を参照して説明したパッドの第16乃至第19の配置例では、矩形形状の主導体部165aの隣接する二辺に、導体1011または1012を介して、複数のパッド1001が所定の間隔で配置された例について説明したが、パッド1001が配置される辺は、二辺に限らず、三辺または四辺でもよい。
 また、図105乃至図108を参照して説明したパッドの第16乃至第19の配置例では、一辺に配置されるパッド1001の形態として、図93の交互配置と、図95の2段構成の鏡面配置を採用した例を示したが、図94の1段構成の鏡面配置を採用し、かつ、角部に最も近い端部のパッド1001の極性を同相または逆相とする形態でもよい。
 さらに、図105乃至図108を参照して説明したパッドの第16乃至第19の配置例は、引出し導体部165bが省略された形態であるが、図96乃至図104のように、矩形形状の主導体部165Aaの辺に引出し導体部165bを備えた構成に対して、図93の交互配置、図94の1段構成の鏡面配置、または、図95の2段構成の鏡面配置を採用し、かつ、角部に最も近い端部のパッド1001の極性を同相または逆相とする形態でもよい。
 なお、引出し導体部165Abおよび165Bb、並びに、導体1011および1012は、例えば、GNDまたはマイナス電源が、パッド1001sから主導体部165Aaへ供給され、逆極性のプラス電源が、パッド1001dから主導体部165Baへ供給されるように構成することが望ましいが、その限りではない。換言すれば、引出し導体部165Abおよび165Bb、並びに、導体1011および1012は、パッド1001から供給される、例えばGNDまたはマイナス電源と逆極性のプラス電源とが完全短絡しないように構成することが望ましいが、その限りではない。なお、図92乃至図108の少なくとも一部では、複数のパッド1001sを配置する例、複数のパッド1001dを配置する例、複数の導体1011を配置する例、複数の導体1012を配置する例、複数の引出し導体部165Abを配置する例、複数の引出し導体部165Bbを配置する例、などを示したが、それぞれの図において、全てのパッド1001sが同一であってもよいし、全てのパッド1001sが同一ではなくてもよいし、全てのパッド1001dが同一であってもよいし、全てのパッド1001dが同一ではなくてもよいし、全ての導体1011が同一であってもよいし、全ての導体1011が同一ではなくてもよいし、全ての導体1012が同一であってもよいし、全ての導体1012が同一ではなくてもよいし、全ての引出し導体部165Abが同一であってもよいし、全ての引出し導体部165Abが同一ではなくてもよいし、全ての引出し導体部165Bbが同一であってもよいし、全ての引出し導体部165Bbが同一ではなくてもよい。なお、基板1000において主導体部165aへ直接的または間接的に接続されるパッド1001sの総数とパッド1001dの総数とが同数または略同数であること、基板1000の所定の隣接する二辺において主導体部165aへ直接的または間接的に接続されるパッド1001sの総数とパッド1001dの総数とが同数または略同数であること、基板1000の所定の対向する二辺において主導体部165aへ直接的または間接的に接続されるパッド1001sの総数とパッド1001dの総数とが同数または略同数であること、基板1000の所定の一辺において主導体部165aへ直接的または間接的に接続されるパッド1001sの総数とパッド1001dの総数とが同数または略同数であること、基板1000の所定の隣接する二辺において少なくとも2つの引出し導体部165bへ直接的または間接的に接続されるパッド1001sの総数とパッド1001dの総数とが同数または略同数であること、基板1000の所定の対向する二辺において少なくとも2つの引出し導体部165bへ直接的または間接的に接続されるパッド1001sの総数とパッド1001dの総数とが同数または略同数であること、基板1000の所定の一辺において少なくとも1つの引出し導体部165bへ直接的または間接的に接続されるパッド1001sの総数とパッド1001dの総数とが同数または略同数であること、基板1000の所定の隣接する二辺において少なくとも2組の導体1011および1012へ直接的または間接的に接続されるパッド1001sの総数とパッド1001dの総数とが同数または略同数であること、基板1000の所定の対向する二辺において少なくとも2組の導体1011および1012へ直接的または間接的に接続されるパッド1001sの総数とパッド1001dの総数とが同数または略同数であること、基板1000の所定の一辺において少なくとも1組の導体1011および1012へ直接的または間接的に接続されるパッド1001sの総数とパッド1001dの総数とが同数または略同数であること、のうちの少なくとも何れかを満たすことが望ましいが、その限りではない。例えば、上記のパッド1001sの総数とパッド1001dの総数とが同数ではなくてもよいし、上記のパッド1001sの総数とパッド1001dの総数とが略同数ではなくてもよい。
 <Victim導体ループとAggressor導体ループの基板配置例>
 図109は、Victim導体ループとAggressor導体ループの基板配置例を示している。
 図109のAは、上述してきたVictim導体ループとAggressor導体ループの基板配置例を模式的に示した断面図である。
 上述した各構成例においては、図109のAに示されるように、Victim導体ループ1101が第1の半導体基板101に含まれ、Aggressor導体ループ1102Aおよび1102Bが第2の半導体基板102に含まれ、かつ、第1の半導体基板101と第2の半導体基板102が積層された構造について説明した。
 しかしながら、第1の半導体基板101と第2の半導体基板102とを積層せず、図109のBのように、第1の半導体基板101と第2の半導体基板102が隣接して配置された構造、または、図109のCのように、第1の半導体基板101と第2の半導体基板102が所定の間隔を開けて、同一平面に配置された構造でもよい。
 さらに、Victim導体ループとAggressor導体ループの基板配置は、図110のA乃至Iに示されるような各種の配置構成を採用することができる。
 図110のAは、Victim導体ループ1101が第1の半導体基板101に含まれ、Aggressor導体ループ1102Aおよび1102Bが第2の半導体基板102に含まれて、かつ、第1の半導体基板101と第2の半導体基板102の間に、第3の半導体基板103が挿入されて、第1の半導体基板101乃至第3の半導体基板103が積層された構造を示している。
 図110のBは、Victim導体ループ1101が第1の半導体基板101に含まれ、Aggressor導体ループ1102Aが第2の半導体基板102に含まれ、Aggressor導体ループ1102Bが第3の半導体基板103に含まれて、かつ、第1の半導体基板101乃至第3の半導体基板103が、その順で積層された構造を示している。
 図110のCは、Victim導体ループ1101が第1の半導体基板101に含まれ、Aggressor導体ループ1102Aおよび1102Bが第2の半導体基板102に含まれて、かつ、第1の半導体基板101と第2の半導体基板102の間に、支持基板104が挿入されて、第1の半導体基板101、支持基板104、および第2の半導体基板102が、その順で積層された構造を示している。支持基板104は省略され、第1の半導体基板101と第2の半導体基板102が所定の間隙を開けて配置されてもよい。
 図110のDは、Victim導体ループ1101が第1の半導体基板101に含まれ、Aggressor導体ループ1102Aおよび1102Bが第2の半導体基板102に含まれて、かつ、第1の半導体基板101と第2の半導体基板102が、支持基板104上に載置されて、所定の間隔を開けて同一平面に配置された構造を示している。支持基板104は省略され、別の箇所で第1の半導体基板101と第2の半導体基板102が同一平面に配置されるように支持されてもよい。
 図110のEは、Victim導体ループ1101およびAggressor導体ループ1102Aが第1の半導体基板101に含まれ、Aggressor導体ループ1102Bが第2の半導体基板102に含まれて、かつ、第1の半導体基板101と第2の半導体基板102が積層された構造を示している。ここで、第1の半導体基板101内のVictim導体ループ1101が形成されたXY平面上の領域は、第2の半導体基板102内のAggressor導体ループ1102Aおよび1102Bが形成されたXY平面上の領域と、少なくとも一部で重なっている。
 図110のFは、Victim導体ループ1101が第1の半導体基板101に含まれ、Aggressor導体ループ1102Aおよび1102Bが第2の半導体基板102に含まれて、かつ、第1の半導体基板101と第2の半導体基板102が積層された構造を示している。ここで、第1の半導体基板101内のVictim導体ループ1101が形成されたXY平面上の領域は、第2の半導体基板102内のAggressor導体ループ1102Aおよび1102Bが形成されたXY平面上の領域と完全に異なる領域でもよいし、一部が重なる領域でもよい。
 図110のGは、Victim導体ループ1101およびAggressor導体ループ1102Aが第1の半導体基板101に含まれ、Aggressor導体ループ1102Bが第2の半導体基板102に含まれて、かつ、第1の半導体基板101と第2の半導体基板102が積層された構造を示している。ここで、第1の半導体基板101内のVictim導体ループ1101が形成されたXY平面上の領域は、Aggressor導体ループ1102Aおよび1102Bが形成されたXY平面上の領域と異なる領域となっている。
 図110のHは、Victim導体ループ1101と、Aggressor導体ループ1102Aおよび1102Bとが、1枚の半導体基板105に含まれた構造を示している。ただし、1枚の半導体基板105内で、Victim導体ループ1101が形成されたXY平面上の領域は、Aggressor導体ループ1102Aおよび1102Bが形成されたXY平面上の領域と、少なくとも一部で重なっている。
 図110のIは、Victim導体ループ1101と、Aggressor導体ループ1102Aおよび1102Bとが、1枚の半導体基板105に含まれた構造を示している。ただし、1枚の半導体基板105内で、Victim導体ループ1101が形成されたXY平面上の領域は、Aggressor導体ループ1102Aおよび1102Bが形成されたXY平面上の領域と異なる領域となっている。
 図110のA乃至Iに示した各基板の積層順を反対にして、Victim導体ループ1101と、Aggressor導体ループ1102Aおよび1102Bの位置を上下逆にしてもよい。
 以上のように、Victim導体ループ1101と、Aggressor導体ループ1102Aおよび1102Bが含まれる半導体基板の枚数、配置、支持基板の有無は、各種の構造をとり得る。
 Victim導体ループのループ面を通過する磁束を発生させるAggressor導体ループは、Victim導体ループと重畳していてもよいし、重畳していなくてもよい。さらに、Aggressor導体ループは、Victim導体ループが形成される半導体基板に積層された複数の半導体基板に形成されるようにしてもよいし、Victim導体ループと同一の半導体基板に形成されるようにしてもよい。
 さらに、Aggressor導体ループは、半導体基板ではなく、例えばプリント基板、フレキシブルプリント基板、インターポーザ基板、パッケージ基板、無機基板、または、有機基板など、様々な基板が考えられるが、導体を含むまたは導体を形成できる何かしらの基板であればよく、半導体基板が封止されたパッケージ等の半導体基板以外の回路に存在してもよい。一般的に、Victim導体ループに対するAggressor導体ループの距離は、Aggressor導体ループが半導体基板に形成された場合、Aggressor導体ループがパッケージに形成された場合、Aggressor導体ループがプリント基板に形成された場合の順に短くなる。Victim導体ループに生じ得る誘導性ノイズや容量性ノイズは、Victim導体ループに対するAggressor導体ループの距離が短いほど増大し易くなるので、本技術は、Victim導体ループに対するAggressor導体ループの距離が短いほど効果を奏することができる。さらに、基板のみに限定されず、ボンディングワイヤやリード線やアンテナ線や電力線やGND線や同軸線やダミー線や板金などのような、導線や導板に代表される導体自体に対しても、本技術を適用することができる。
 次に、図111に示されるように、半導体基板1121、パッケージ基板1122、および、プリント基板1123の3種類の基板が積層された構造において、Victim導体ループの少なくとも一部である導体1101(以下、Victim導体ループ1101と称する。)と、Aggressor導体ループの少なくとも一部である導体1102Aおよび1102B(以下、Aggressor導体ループ1102Aおよび1102Bと称する。)が配置される配置例について説明する。なお、図示は省略するが、上述したVictim導体ループまたはAggressor導体ループは、半導体基板1121、パッケージ基板1122、および、プリント基板1123、のうちの2つ以上の基板に配置される導体を少なくとも含んで構成される場合もある。半導体基板1121は、パッケージ基板、インターポーザ基板、プリント基板、フレキシブルプリント基板、無機基板、有機基板、導体を含む基板、または、導体を形成できる基板、の何れかに置き換え可能である。また、パッケージ基板1122は、半導体基板、インターポーザ基板、プリント基板、フレキシブルプリント基板、無機基板、有機基板、導体を含む基板、または、導体を形成できる基板、の何れかに置き換え可能である。さらに、プリント基板1123は、半導体基板、パッケージ基板、インターポーザ基板、フレキシブルプリント基板、無機基板、有機基板、導体を含む基板、または、導体を形成できる基板、の何れかに置き換え可能である。
 図112のA乃至Rは、図111に示した3種類の基板が積層された積層構造におけるVictim導体ループとAggressor導体ループの配置例を示している。
 図112のAは、Victim導体ループ1101とAggressor導体ループ1102Aおよび1102Bの全てが、半導体基板1121に含まれた積層構造の模式図を示している。Victim導体ループ1101とAggressor導体ループ1102Aおよび1102Bのいずれも形成されないパッケージ基板1122およびプリント基板1123は、省略されてもよい。
 図112のBは、Victim導体ループ1101とAggressor導体ループ1102Aが、半導体基板1121に含まれ、Aggressor導体ループ1102Bが、パッケージ基板1122に含まれた積層構造の模式図を示している。Victim導体ループ1101とAggressor導体ループ1102Aおよび1102Bのいずれも形成されないプリント基板1123は、省略されてもよい。
 図112のCは、Victim導体ループ1101とAggressor導体ループ1102Aが、半導体基板1121に含まれ、Aggressor導体ループ1102Bが、プリント基板1123に含まれた積層構造の模式図を示している。Victim導体ループ1101とAggressor導体ループ1102Aおよび1102Bのいずれも形成されないパッケージ基板1122は、省略されてもよい。
 図112のDは、Victim導体ループ1101が半導体基板1121に含まれ、Aggressor導体ループ1102Aおよび1102Bがパッケージ基板1122に含まれた積層構造の模式図を示している。Victim導体ループ1101とAggressor導体ループ1102Aおよび1102Bのいずれも形成されないプリント基板1123は、省略されてもよい。
 図112のEは、Victim導体ループ1101が半導体基板1121に含まれ、Aggressor導体ループ1102Aがパッケージ基板1122に含まれ、Aggressor導体ループ1102Bがプリント基板1123に含まれた積層構造の模式図を示している。
 図112のFは、Victim導体ループ1101が半導体基板1121に含まれ、Aggressor導体ループ1102Aおよび1102Bがプリント基板1123に含まれた積層構造の模式図を示している。Victim導体ループ1101とAggressor導体ループ1102Aおよび1102Bのいずれも形成されないパッケージ基板1122は、省略されてもよい。
 図112のGは、Aggressor導体ループ1102Aおよび1102Bが半導体基板1121に含まれ、Victim導体ループ1101がパッケージ基板1122に含まれた積層構造の模式図を示している。Victim導体ループ1101とAggressor導体ループ1102Aおよび1102Bのいずれも形成されないプリント基板1123は、省略されてもよい。
 図112のHは、Aggressor導体ループ1102Aが半導体基板1121に含まれ、Aggressor導体ループ1102BおよびVictim導体ループ1101がパッケージ基板1122に含まれた積層構造の模式図を示している。Victim導体ループ1101とAggressor導体ループ1102Aおよび1102Bのいずれも形成されないプリント基板1123は、省略されてもよい。
 図112のIは、Aggressor導体ループ1102Aが半導体基板1121に含まれ、Victim導体ループ1101がパッケージ基板1122に含まれ、Aggressor導体ループ1102Bがプリント基板1123に含まれた積層構造の模式図を示している。
 図112のJは、Victim導体ループ1101とAggressor導体ループ1102Aおよび1102Bの全てが、パッケージ基板1122に含まれた積層構造の模式図を示している。Victim導体ループ1101とAggressor導体ループ1102Aおよび1102Bのいずれも形成されない半導体基板1121およびプリント基板1123は、省略されてもよい。
 図112のKは、Victim導体ループ1101とAggressor導体ループ1102Aが、パッケージ基板1122に含まれ、Aggressor導体ループ1102Bがプリント基板1123に含まれた積層構造の模式図を示している。Victim導体ループ1101とAggressor導体ループ1102Aおよび1102Bのいずれも形成されない半導体基板1121は、省略されてもよい。
 図112のLは、Victim導体ループ1101がパッケージ基板1122に含まれ、Aggressor導体ループ1102Aおよび1102Bがプリント基板1123に含まれた積層構造の模式図を示している。Victim導体ループ1101とAggressor導体ループ1102Aおよび1102Bのいずれも形成されない半導体基板1121は、省略されてもよい。
 図112のMは、Aggressor導体ループ1102Aおよび1102Bが半導体基板1121に含まれ、Victim導体ループ1101がプリント基板1123に含まれた積層構造の模式図を示している。Victim導体ループ1101とAggressor導体ループ1102Aおよび1102Bのいずれも形成されないパッケージ基板1122は、省略されてもよい。
 図112のNは、Aggressor導体ループ1102Aが半導体基板1121に含まれ、Aggressor導体ループ1102Bがパッケージ基板1122に含まれ、Victim導体ループ1101がプリント基板1123に含まれた積層構造の模式図を示している。
 図112のOは、Aggressor導体ループ1102Aが半導体基板1121に含まれ、Aggressor導体ループ1102BおよびVictim導体ループ1101がプリント基板1123に含まれた積層構造の模式図を示している。Victim導体ループ1101とAggressor導体ループ1102Aおよび1102Bのいずれも形成されないパッケージ基板1122は、省略されてもよい。
 図112のPは、Aggressor導体ループ1102Aおよび1102Bがパッケージ基板1122に含まれ、Victim導体ループ1101がプリント基板1123に含まれた積層構造の模式図を示している。Victim導体ループ1101とAggressor導体ループ1102Aおよび1102Bのいずれも形成されない半導体基板1121は、省略されてもよい。
 図112のQは、Aggressor導体ループ1102Aがパッケージ基板1122に含まれ、Aggressor導体ループ1102BおよびVictim導体ループ1101がプリント基板1123に含まれた積層構造の模式図を示している。Victim導体ループ1101とAggressor導体ループ1102Aおよび1102Bのいずれも形成されない半導体基板1121は、省略されてもよい。
 図112のRは、Victim導体ループ1101とAggressor導体ループ1102Aおよび1102Bの全てが、プリント基板1123に含まれた積層構造の模式図を示している。Victim導体ループ1101とAggressor導体ループ1102Aおよび1102Bのいずれも形成されない半導体基板1121およびパッケージ基板1122は、省略されてもよい。
 図112のA乃至Rに示した各基板の積層順を反対にして、Victim導体ループ1101、Aggressor導体ループ1102A、または、Aggressor導体ループ1102Bの位置を上下逆にしてもよい。
 以上のように、Victim導体ループ1101とAggressor導体ループ1102Aおよび1102Bは、半導体基板1121、パッケージ基板1122、プリント基板1123の任意の領域に形成することができる。
 <固体撮像装置100を成す第1の半導体基板101と第2の半導体基板102とのパッケージ積層例>
 図113は、固体撮像装置100を成す第1の半導体基板101と第2の半導体基板102とのパッケージ積層例を示す図である。
 第1の半導体基板101と第2の半導体基板102は、パッケージとして、互いにどのように積層されていてもよい。
 例えば、図113のAに示されるように、第1の半導体基板101と第2の半導体基板102をそれぞれ個別に封止材を用いて封止し、その結果得られるパッケージ601とパッケージ602とを積層してもよい。
 また、図113のBまたはCに示されるように、第1の半導体基板101と第2の半導体基板102を積層した状態で封止材により封止し、パッケージ603を生成してもよい。この場合、ボンディングワイヤ604は、図113のBに示されるように、第2の半導体基板102に接続してもよいし、図113のCに示されるように、第1の半導体基板101に接続してもよい。
 また、パッケージとしては、どのような形態であってもよい。例えば、CSP(Chip Size Package)やWL-CSP(Wafer Level Chip Size Package)であってもよく、パッケージでインターポーザ基板や再配線層が用いられていてもよい。また、パッケージがないどのような形態であってもよい。例えば、COB(Chip On Board)として半導体基板が実装されていてもよい。例えば、BGA(Ball Grid Array)、COB(Chip On Board)、COT(Chip On Tape)、CSP(Chip Size Package/Chip Scale Package)、DIMM(Dual In-line Memory Module)、DIP(Dual In-line Package)、FBGA(Fine-pitch Ball Grid Array)、FLGA(Fine-pitch Land Grid Array)、FQFP(Fine-pitch Quad Flat Package)、HSIP(Single In-line Package with Heatsink)、LCC(Leadless Chip Carrier)、LFLGA(Low profile Fine pitch Land Grid Array)、LGA(Land Grid Array)、LQFP(Low-profile Quad Flat Package)、MC-FBGA(Multi-Chip Fine-pitch Ball Grid Array)、MCM(Multi-Chip Module)、MCP(Multi-Chip Package)、M-CSP(Molded Chip Size Package)、MFP(Mini Flat Package)、MQFP(Metric Quad Flat Package)、MQUAD(Metal Quad)、MSOP(Micro Small Outline Package)、PGA(Pin Grid Array)、PLCC(Plastic Leaded Chip Carrie)、PLCC(Plastic Leadless Chip Carrie)、QFI(Quad Flat I-leaded Package)、QFJ(Quad Flat J-leaded Package)、QFN(Quad Flat non-leaded Package)、QFP(Quad Flat Package)、QTCP(Quad Tape Carrier Package)、QUIP(Quad In-line Package)、SDIP(Shrink Dual In-line Package)、SIMM(Single In-line Memory Module)、SIP(Single In-line Package)、S-MCP(Stacked Multi Chip Package)、SNB(Small Outline Non-leaded Board)、SOI(Small Outline I-leaded Package)、SOJ(Small Outline J-leaded Package)、SON(Small Outline Non-leaded Package)、SOP(Small Outline Package)、SSIP(Shrink Single In-line Package)、SSOP(Shrink Small Outline Package)、SZIP(Shrink Zigzag In-line Package)、TAB(Tape-Automated Bonding)、TCP(Tape Carrier Package)、TQFP(Thin Quad Flat Package)、TSOP(Thin Small Outline Package)、TSSOP(Thin Shrink Small Outline Package)、UCSP(Ultra Chip Scale Package)、UTSOP(Ultra Thin Small Outline Package)、VSO(Very Short Pitch Small Outline Package)、VSOP(Very Small Outline Packag)、WL-CSP(Wafer Level Chip Size Package)、ZIP(Zigzag In-line Package)、μMCP(Micro Multi-Chip Package)、の何れの形態であってもよい。
 本技術は、例えば、CCD(Charge-Coupled Device)イメージセンサ、CCDセンサ、CMOSセンサ、MOSセンサ、IR(Infrared)センサ、UV(Ultraviolet)センサ、ToF(Time of Flight)センサ、測距センサのような何れのセンサや回路基板や装置や電子機器などにも適用できる。
 また、本技術は、トランジスタやダイオードやアンテナのような何かしらデバイスをアレー配置したセンサや回路基板や装置や電子機器で好適であり、何かしらデバイスを略同一平面上にアレー配置したセンサや回路基板や装置や電子機器で特に好適であるが、その限りではない。
 本技術は、例えば、メモリデバイスが関わる各種のメモリセンサ、メモリ用回路基板、メモリ装置、または、メモリを含む電子機器、CCDが関わる各種のCCDセンサ、CCD用回路基板、CCD装置、または、CCDを含む電子機器、CMOSが関わる各種のCMOSセンサ、CMOS用回路基板、CMOS装置、または、CMOSを含む電子機器、MOSが関わる各種のMOSセンサ、MOS用回路基板、MOS装置、または、MOSを含む電子機器、発光デバイスが関わる各種のディスプレイセンサ、ディスプレイ用回路基板、ディスプレイ装置、または、ディスプレイを含む電子機器、発光デバイスが関わる各種のレーザセンサ、レーザ用回路基板、レーザ装置、または、レーザを含む電子機器、アンテナデバイスが関わる各種のアンテナセンサ、アンテナ用回路基板、アンテナ装置、または、アンテナを含む電子機器、などにも適用できる。これらの中でも、ループ経路が可変のVictim導体ループを含むセンサ、回路基板、装置、または、電子機器、制御線若しくは信号線を含むセンサ、回路基板、装置、または、電子機器、水平制御線若しくは垂直信号線を含むセンサ、回路基板、装置、または、電子機器などで好適だが、その限りではない。
<11.導電性シールドの配置例>
 上述した構成例では、導体層A(配線層165A)と導体層B(配線層165B)の構成を工夫することにより、誘導性ノイズを小さくできることについて説明したが、導電性シールドをさらに設けることで、誘導性ノイズをさらに改善する構成について説明する。
 図114および図115は、図6に示した第1の半導体基板101と第2の半導体基板102とが積層された固体撮像装置100に対して、導電性シールドを設けた構成例を示す断面図である。
 なお、図114および図115において、導電性シールド以外の構成については、図6に示した構造と同様であるので、その説明は適宜省略する。
 図114のAは、図6に示した固体撮像装置100に対して導電性シールドを設けた第1の構成例を示す断面図である。
 図114のAでは、第1の半導体基板101の多層配線層153内に、導電性シールド1151が形成されている。
 図114のBは、図6に示した固体撮像装置100に対して導電性シールドを設けた第2の構成例を示す断面図である。
 図114のBでは、第2の半導体基板102の多層配線層163内に、導電性シールド1151が形成されている。
 図114のCは、図6に示した固体撮像装置100に対して導電性シールドを設けた第3の構成例を示す断面図である。
 図114のCでは、第1の半導体基板101と第2の半導体基板102の多層配線層それぞれに、導電性シールド1151が形成されている。より具体的には、第1の半導体基板101の多層配線層153内に、導電性シールド1151Aが形成され、第2の半導体基板102の多層配線層163内に、導電性シールド1151Bが形成されている。
 図115のAは、図6に示した固体撮像装置100に対して導電性シールドを設けた第4の構成例を示す断面図である。
 図115のAでは、第1の半導体基板101と第2の半導体基板102の多層配線層それぞれに導電性シールド1151が形成され、かつ、それらが接合されている。より具体的には、第1の半導体基板101の多層配線層153内の、第2の半導体基板102の多層配線層163との接合面に、導電性シールド1151Aが形成され、第2の半導体基板102の多層配線層163内の、第1の半導体基板101の多層配線層153との接合面に、導電性シールド1151Bが形成され、導電性シールド1151Aと1151Bとが、例えば、Cu-Cu接合、Au-Au接合、またはAl-Al接合などの同種金属接合や、Cu-Au接合、Cu-Al接合、またはAu- Al接合などの異種金属接合により接合されている。
 なお、図114のCおよび図115のAは、導電性シールド1151Aと1151Bの平面領域が一致している例であるが、少なくとも一部が重畳し、接合されていればよい。
 図115のBは、図6に示した固体撮像装置100に対して導電性シールドを設けた第5の構成例を示す断面図である。
 図115のBでは、導体層Aである配線層165Aが、導電性シールド1151としての機能を兼ね備える構成である。配線層165Aの一部が、導電性シールド1151であってもよい。
 図115のCは、図6に示した固体撮像装置100に対して導電性シールドを設けた第6の構成例を示す断面図である。
 図115のCの第6の構成例は、図114のAに示した第1の構成例と同様に、多層配線層153内に導電性シールド1151が形成されているが、導電性シールド1151が形成されている平面領域が、導体層Aである配線層165A、および、導体層Bである配線層165Bの平面領域よりも小さく構成されている。
 図114のAの第1の構成例のように、導電性シールド1151が形成されている平面領域の面積は、導体層Aである配線層165A、および、導体層Bである配線層165Bの平面領域の面積以上である方が好ましいが、図115のBのように、小さく構成されていてもよい。
 図114および図115の第1乃至第6の構成例のように、導電性シールド1151を設けることにより、誘導性ノイズをさらに改善することができる。
 図114および図115の第1乃至第6の構成例は、導電性シールド1151で遮蔽する配線層が、配線層165Aおよび165Bの2層の例であるが、1層でもよい。
 図114および図115の第1乃至第6の構成例において、導電性シールド1151の代わりに、磁性シールドを用いてもよい。この磁性シールドは、導電性であっても、非導電性であってもよい。磁性シールドが導電性である場合には、誘導性ノイズおよび容量性ノイズをさらに改善することができる。
 次に、図116乃至図119を参照して、第1の半導体基板101内に形成されている信号線132に対する導電性シールド1151の配置と平面形状について説明する。
 図116乃至図119は、導電性シールド1151の信号線132に対する配置と平面形状の第1乃至第4の構成例を示している。図116乃至図119の第1乃至第4の構成例において、導電性シールド1151の平面形状以外は同一である。
 図116のAは、第1の半導体基板101においてアナログの画素信号が伝送される信号線132と、導電性シールド1151、および、配線層165AとのZ方向の位置関係を示す断面図である。図116のBは、導電性シールド1151の平面形状を示す平面図である。
 図116のAに示されるように、信号線132と配線層165Aとの間に、導電性シールド1151が配置される。図116のBに示されるように、導電性シールド1151の平面形状は面状に形成することができる。
 あるいはまた、図117のAおよびBの第2の構成例のように、導電性シールド1151の平面形状は直線状に形成され、各直線状領域が、信号線132と1対1に対応して重畳するように形成することができる。
 あるいはまた、図117のAおよびBの第2の構成例のように導電性シールド1151の各直線状領域が信号線132と1対1に対応する必要はなく、例えば、図118のAおよびBの第3の構成例のように、複数本の信号線132に対して1つの直線状領域が重畳するように形成されてもよい。図118は、2本の信号線132に対して導電性シールド1151の1つの直線状領域が対応する平面形状であるが、3本以上の信号線132に対応する平面形状でもよい。
 あるいはまた、導電性シールド1151の平面形状が直線状に形成されるのではなく、図119のAおよびBの第4の構成例のように、網目状に形成されてもよい。網目状の導電性シールド1151の縦方向(Y方向)に伸びる縦導体と、横方向(X方向)に伸びる横導体の導体幅、間隙幅、および、導体周期は、異なっていても同一でもよい。
 図116乃至図119の第1乃至第4の構成例において、導電性シールド1151は1層であったが、図114のCおよび図115のAに示したように2層とすることもできる。また、図116乃至図119に示した配線層165Aは、配線層165Bとしても同様である。
 導電性シールド1151は、信号線132の全領域と重畳する位置に形成されていたが、一部の領域と重畳する位置でもよいし、重畳しない位置でもよい。ただし、ノイズは信号線経由で伝搬されることが多いため、信号線132と重畳する位置にあることが好ましい。
 第1の半導体基板101においてアナログの画素信号が伝送される信号線132に対する導電性シールド1151の形成位置を説明したが、画素信号伝送用の信号線132ではなく、他の信号伝送用の信号線でもよいし、制御線、配線、導体、GNDであってもよい。ノイズを効率的に逃がすため、導電性シールド1151は、GNDやマイナス電源に接続されることが好ましいが、他の制御線、他の信号線、他の導体、他の配線に接続されてもよい。あるいは、導電性シールド1151は、他の制御線、他の信号線、他の導体、他の配線等に接続されていなくてもよい。
 導電性シールド1151を設けることにより、誘導性ノイズおよび容量性ノイズをさらに改善することができる。
<12.導体層が3層ある場合の構成例>
 <導体層が3層ある場合の配置例>
 上述した各構成例では、配線層165Aである導体層Aと、配線層165Bである導体層Bの2層の導体層の配線パタンについて説明した。
 しかしながら、配線層165A(導体層A)と配線層165B(導体層B)の2層の導体層の近傍に、さらに第3の導体層が配置される場合がある。
 第3の導体層は、例えば、配線層165Aである導体層AのVss配線に、GNDやマイナス電源を中継するための配線、配線層165Bである導体層BのVdd配線に、プラス電源を中継するための配線、あるいは、導体層Aまたは導体層Bの電圧降下(IR-Drop)をできるだけ小さくするための補強用の配線などとして用いられる。
 第3の導体層を、上述した各構成例の配線層165Aおよび165Bや導体層Aおよび導体層Bの呼称に対応して、配線層165Cまたは導体層Cと称することとすると、第3の導体層である配線層165Cは、配線層165Aおよび165Bに対して、図120のA乃至Cのいずれかの位置関係で配置される。
 図120のA乃至Cは、配線層165Aおよび165Bに対する配線層165Cの配置例を示す断面模式図である。
 第1の半導体基板101には、画素131のトランジスタを制御する制御線133の少なくとも一部、または、画素信号を伝送する信号線132の少なくとも一部を含む配線層170(第4の導体層)が形成され、第2の半導体基板102には、MOSトランジスタ164等の能動素子を含む能動素子層171が形成されている。この制御線133の少なくとも一部または信号線132の少なくとも一部が、前述したVictim導体ループ(Victim導体ループ11やVictim導体ループ1101)の少なくとも一部を構成していてもよいが、その限りではない。
 図6等を参照して説明したように、配線層165Aは、第1の半導体基板101の配線層170側、配線層165Bは、能動素子層171側に配置されている。
 この配線層165Aおよび165Bの配置に対して、配線層165C(導体層C)は、図120のAに示されるように、配線層165Bと能動素子層171との間に配置される場合がある。この場合、各配線層は、第1の半導体基板101側から、配線層170、配線層165A、配線層165B、配線層165C、能動素子層171の順序で積層される。
 あるいはまた、配線層165C(導体層C)は、図120のBに示されるように、配線層165Aと配線層165Bとの間に配置される場合がある。この場合、各配線層は、第1の半導体基板101側から、配線層170、配線層165A、配線層165C、配線層165B、能動素子層171の順序で積層される。
 さらには、配線層165C(導体層C)は、図120のCに示されるように、配線層170と配線層165Aとの間に配置される場合がある。この場合、各配線層は、第1の半導体基板101側から、配線層170、配線層165C、配線層165A、配線層165B、能動素子層171の順序で積層される。
 なお、図120は、配線層165A乃至165Cの3つの導体層の位置関係を説明した図であり、第1の半導体基板101の配線層170や、第2の半導体基板102の能動素子層171の配置は逆でもよい。また、第1の半導体基板101が信号線132または制御線133の何れか一方を備えていなくてもよく、第1の半導体基板101が信号線132および制御線133を両方とも備える場合であっても、信号線132または制御線133の何れか一方の少なくとも一部が配線層170に形成されていればよい。また、信号線132または制御線133は、第1の半導体基板101ではなく、第2の半導体基板102が備えていてもよい。また、信号線132または制御線133は、第1の半導体基板101および第2の半導体基板102が少なくとも一部を備えていてもよく、例えば第1の半導体基板101および第2の半導体基板102を少なくとも跨いで構成されていてもよい。また、配線層165A、配線層165B、および、配線層165Cのうちの少なくとも1つの何れかの配線層は、第1の半導体基板101ではなく、第2の半導体基板102が備えていてもよい。また、第1の半導体基板101の配線層170や、第2の半導体基板102の能動素子層171の配置は省略されてもよい。また、第1の半導体基板101と第2の半導体基板102とは、別体ではなくて、1つの半導体基板として一体で構成させていてもよい。また、配線層170をVictim導体ループ1101、配線層165AをAggressor導体ループ1102A、配線層165BをAggressor導体ループ1102B、としてそれぞれ解釈し、図109乃至図112で示した基板配置例の任意の位置に配線層165Cが配置されていてもよく、配線層165A乃至165Cの3つの導体層の位置関係が図120に示す位置関係であることが望ましいが、その限りではない。
 <導体層が3層ある場合の問題>
 上述した各構成例では、導体層A(配線層165A)と導体層B(配線層165B)の2層の導体層において、能動素子群167からのホットキャリア発光を遮光し、かつ、誘導性ノイズ、容量性ノイズ、または電圧降下を少なくとも改善する配線レイアウトを提案したが、第3の導体層の配線レイアウトによっては、誘導性ノイズが悪化してしまうことがあり得る。
 図121は、配線層165Cの配線パタンの一例を示す図である。
 図121のAは導体層C(配線層165C)を、図121のBは導体層A(配線層165A)を、図121のCは導体層B(配線層165B)を示している。
 また、図121のDは、導体層Aと導体層Cとの積層状態の平面図であり、図121のEは、導体層Bと導体層Cとの積層状態の平面図であり、図121のFは、導体層Aと導体層Bとの積層状態の平面図である。
 図121における座標系は、横方向をX軸、縦方向をY軸、XY平面に対して垂直な方向をZ軸とする。
 図121の導体層A(配線層165A)および導体層B(配線層165B)には、図36を参照して説明した、X方向(第1の方向)の抵抗値とY方向(第2の方向)の抵抗値が異なる網目状導体を用いた第11の構成例が採用されている。
 図121のBの導体層Aは、網目状導体1201から成る。網目状導体1201は、X方向の導体幅WXA、間隙幅GXA、および、導体周期FXAを有し、Y方向の導体幅WYA、間隙幅GYA、および、導体周期FYAを有する。網目状導体1201は、導体周期FXAおよび導体周期FYAの基本パタン(第1の基本パタン)を同一平面上に繰り返し配置した形状の導体となっている。網目状導体1201は、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。
 網目状導体1201においては、導体幅WXA>導体幅WYA、かつ、間隙幅GYA>間隙幅GXAである。網目状導体1201の間隙領域は、Y方向がX方向よりも長い形状を有しており、X方向とY方向とで抵抗値が異なり、Y方向の抵抗値がX方向の抵抗値よりも小さくなる。したがって、網目状導体1201は、X方向よりもY方向の方が、電流が流れやすい。
 図121のCの導体層Bは、網目状導体1202から成る。網目状導体1202は、X方向の導体幅WXB、間隙幅GXB、および、導体周期FXBを有し、Y方向の導体幅WYB、間隙幅GYB、および、導体周期FYBを有する。網目状導体1202は、導体周期FXBおよび導体周期FYBの基本パタン(第2の基本パタン)を同一平面上に繰り返し配置した形状の導体となっている。網目状導体1202は、例えば、プラス電源に接続される配線(Vdd配線)である。
 網目状導体1202においては、導体幅WXB>導体幅WYB、かつ、間隙幅GYB>間隙幅GXBである。網目状導体1202の間隙領域は、Y方向がX方向よりも長い形状を有しており、X方向とY方向とで抵抗値が異なり、Y方向の抵抗値がX方向の抵抗値よりも小さくなる。したがって、網目状導体1202は、X方向よりもY方向の方が、電流が流れやすい。
 導体層Aの網目状導体1201と導体層Bの網目状導体1202とは差動構造となっている。すなわち、第11の構成例等において説明したように、導体層Aの網目状導体1201の電流分布と、導体層Bの網目状導体1202の電流分布とが、略均等、且つ、逆特性である。ここで、略均等とは、均等とみなせる範囲の差とするが、例えば、少なくとも2倍を超えない範囲の差であればよい。さらに具体的に言えば、導体層Aの網目状導体1201と、導体層Bの網目状導体1202の端部では、略均等にAC電流が流れ、電流方向が、網目状導体1201と網目状導体1202とで逆向きである。その結果、網目状導体1201の電流分布によって生じる磁界と、網目状導体1202の電流分布によって生じる磁界とが効果的に相殺される。これにより、誘導性ノイズを抑制することができる。
 また、図121のFに示されるように、導体層Aと導体層Bの積層により、開口される領域が存在しなくなるので、能動素子群167からのホットキャリア発光を遮光することができる。
 一方、図121のAの導体層Cは、電流の流れやすいシート抵抗の低い導体層であり、X方向に長い直線状導体1211Aと、X方向に長い直線状導体1211Bとが、Y方向に交互に周期的に配置されている。直線状導体1211Aは、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。直線状導体1211Bは、例えば、プラス電源に接続される配線(Vdd配線)である。直線状導体1211Aは、例えば、半導体基板の外周部のパッド(不図示)に接続され、導体層Aの網目状導体1201と電気的に接続されている。導体層Aの網目状導体1201と導体層Cの直線状導体1211Aとが、例えばZ方向に延伸された導体ビア(VIA)等を介して電気的に接続されてもよい。直線状導体1211Bは、例えば、半導体基板の外周部のパッド(不図示)に接続され、導体層Bの網目状導体1202と電気的に接続されている。導体層Bの網目状導体1202と導体層Cの直線状導体1211Bとが、例えばZ方向に延伸された導体ビア(VIA)等を介して電気的に接続されてもよい。
 直線状導体1211Aは、Y方向の導体幅WYCAを有し、直線状導体1211Bは、Y方向の導体幅WYCBを有し、直線状導体1211Aの導体幅WYCAは、直線状導体1211Bの導体幅WYCBよりも大きい(導体幅WYCA>導体幅WYCB)。Y方向の直線状導体1211Aと直線状導体1211Bとの間は、間隙幅GYCの間隙となっている。そして、1本の直線状導体1211Aおよび直線状導体1211Bが、導体周期FYC(=導体幅WYCA+導体幅WYCB+2×間隙幅GYC)で、Y方向に周期的に配置されている。
 直線状導体1211Aおよび直線状導体1211Bが、導体周期FYCでY方向に周期的に配置された導体層Cを所定の平面範囲(平面領域)で見ると、直線状導体1211Aの導体幅WYCAと、直線状導体1211Bの導体幅WYCBとが異なるため、所定の平面範囲における複数本の直線状導体1211Aの導体幅WYCAの総和と、複数本の直線状導体1211Bの導体幅WYCBの総和とが大きく異なる。この場合、直線状導体1211Aの電流分布と、直線状導体1211Bの電流分布とが大きく異なるため、誘導性ノイズの発生を抑圧できず、誘導性ノイズが悪化する。具体的には、直線状導体1211Aと直線状導体1211BとでX方向の抵抗値が大きく異なるので、直線状導体1211Aと直線状導体1211Bとで電流分布が大きく異なり、直線状導体1211Bに流れる総電流量よりも直線状導体1211Aに流れる総電流量が大きくなる。また、電流保存の法則(キルヒホッフの第一法則)に従って、網目状導体1201に流れる総電流量よりも網目状導体1202に流れる総電流量が大きくなる。これにより、網目状導体1201と網目状導体1202とで電流分布が大きく異なるため、誘導性ノイズの発生を抑圧できず、誘導性ノイズが悪化する。
 したがって、導体層Cの配線レイアウトによっては、導体層Aまたは導体層Bの2層の導体層において誘導性ノイズを抑制した効果が削減されてしまう。
 そこで、以下では、配線層165A乃至165Cの3つの導体層の積層構造を有する場合に、誘導性ノイズを効果的に削減する構成について説明する。なお、誘導性ノイズの大きさ次第では、図121の構成例を適用できる場合もあるため、図121の構成例は排除されない。
 <3層導体層の第1の構成例>
 図122は、3層導体層の第1の構成例を示している。
 図122のAは導体層C(配線層165C)を、図122のBは導体層A(配線層165A)を、図122のCは導体層B(配線層165B)を示している。
 また、図122のDは、導体層Aと導体層Cとの積層状態の平面図であり、図122のEは、導体層Bと導体層Cとの積層状態の平面図であり、図122のFは、導体層Aと導体層Bとの積層状態の平面図である。
 図122のBの導体層Aは、図121と同じ網目状導体1201で構成される。すなわち、網目状導体1201は、X方向の導体幅WXA、間隙幅GXA、および、導体周期FXAを有し、Y方向の導体幅WYA、間隙幅GYA、および、導体周期FYAを有する。網目状導体1201は、導体周期FXAおよび導体周期FYAの基本パタン(第1の基本パタン)を同一平面上に繰り返し配置した形状の導体となっている。網目状導体1201は、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。
 図122のCの導体層Bは、図121と同じ網目状導体1202で構成される。すなわち、網目状導体1202は、X方向の導体幅WXB、間隙幅GXB、および、導体周期FXBを有し、Y方向の導体幅WYB、間隙幅GYB、および、導体周期FYBを有する。網目状導体1202は、導体周期FXBおよび導体周期FYBの基本パタン(第2の基本パタン)を同一平面上に繰り返し配置した形状の導体となっている。網目状導体1202は、例えば、プラス電源に接続される配線(Vdd配線)である。網目状導体1201と網目状導体1202の導体周期は同一である。すなわち、導体周期FXA=導体周期FXBおよび導体周期FYA=導体周期FYBである。なお、略同一でもよい。ここで、略同一とは、同一とみなせる範囲の差とするが、例えば、少なくとも2倍を超えない範囲の差であればよい。
 図122のAの導体層Cは、電流の流れやすいシート抵抗の低い導体層であり、X方向に長い直線状導体1221A(第3の基本パタン)と、X方向に長い直線状導体1221B(第4の基本パタン)とを、Y方向に交互に周期的に配置して構成されている。
 直線状導体1221Aは、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。直線状導体1221Bは、例えば、プラス電源に接続される配線(Vdd配線)である。直線状導体1221Aと直線状導体1221Bは、電流方向が互いに逆方向となる差動導体(差動構造)である。直線状導体1221Aは、例えば、半導体基板の外周部のパッド(不図示)に接続され、導体層Aの網目状導体1201と電気的に接続されている。導体層Aの網目状導体1201と導体層Cの直線状導体1221Aとが、例えばZ方向に延伸された導体ビア(VIA)等を介して電気的に接続されてもよい。直線状導体1221Bは、例えば、半導体基板の外周部のパッド(不図示)に接続され、導体層Bの網目状導体1202と電気的に接続されている。導体層Bの網目状導体1202と導体層Cの直線状導体1221Bとが、例えばZ方向に延伸された導体ビア(VIA)等を介して電気的に接続されてもよい。
 直線状導体1221Aは、Y方向の導体幅WYCAを有し、直線状導体1221Bは、Y方向の導体幅WYCBを有し、直線状導体1221Aの導体幅WYCAと、直線状導体1221Bの導体幅WYCBとは同一である(導体幅WYCA=導体幅WYCB)。なお、導体幅WYCAと導体幅WYCBとは、同一でなくても略同一でもよい(導体幅WYCA≒導体幅WYCB)。Y方向の直線状導体1221Aと直線状導体1221Bとの間は、間隙幅GYCの間隙となっている。
 そして、1本の直線状導体1221Aおよび直線状導体1221Bが、導体周期FYC(=導体幅WYCA+導体幅WYCB+2×間隙幅GYC)で、Y方向に周期的に配置されている。直線状導体1221Aの導体周期FYCと、直線状導体1221Bの導体周期FYCとが、同一または略同一である。
 また、導体層Cの直線状導体1221Aの繰り返し周期である導体周期FYCは、導体層Aの網目状導体1201のY方向の繰り返し周期である導体周期FYAの整数倍である。図122は、導体周期FYCが、導体周期FYAの2倍の例である。
 導体層Cの直線状導体1221Bの繰り返し周期である導体周期FYCは、導体層Bの網目状導体1202のY方向の繰り返し周期である導体周期FYBの整数倍である。図122は、導体周期FYCが、導体周期FYBの2倍の例である。
 なお、導体幅WYCA、導体幅WYCB、および、間隙幅GYCは、任意の値に設計することができる。
 直線状導体1221Aおよび直線状導体1221Bが、導体周期FYCでY方向に周期的に配置された導体層Cを所定の平面範囲(平面領域)で見ると、直線状導体1221Aの導体幅WYCAと、直線状導体1221Bの導体幅WYCBとが同一または略同一であるため、所定の平面範囲における複数本の直線状導体1221Aの導体幅WYCAの総和と、複数本の直線状導体1221Bの導体幅WYCBの総和とが同一または略同一となる。これにより、直線状導体1221Aの電流分布と、直線状導体1221Bの電流分布とが同一または略同一となるため、誘導性ノイズの発生を抑制することができる。
 また、例えば、導体層Cが、図120のCに示したように、配線層170の近傍に配置されている場合、導体層Cの直線状導体1221Aおよび直線状導体1221Bと、配線層170の信号線132や制御線133との間の容量結合による容量性ノイズが生じ得るが、直線状導体1221Aおよび直線状導体1221Bは、Y方向に同じ配線パタンの繰り返しとなっているので、容量性ノイズをY方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図122のFに示されるように、導体層AとBの積層が遮光構造となっており、能動素子群167からのホットキャリア発光を遮光することができることは勿論、図122のDおよびEに示されるように、導体層AとCとの積層、および、導体層BとCとの積層においても遮光構造となっており、遮光性が保たれている。これにより、導体層AとBの遮光制約を大幅に緩和することができるので、導体層AとBの導体面積を最大限に利用することができ、配線抵抗を下げて、電圧降下をさらに改善することができる。また、導体層A及びBのレイアウトの自由度を向上させることができる。
 さらに、導体層Aの網目状導体1201と導体層Cの直線状導体1221Aとが電気的に接続され、導体層Bの網目状導体1202と導体層Cの直線状導体1221Bとが電気的に接続される場合には、導体層AおよびBの電流量を小さくすることができるので、導体層AまたはBからの誘導性ノイズや電圧降下をさらに改善することができる。
 <3層導体層の第2の構成例>
 図123は、3層導体層の第2の構成例を示している。
 図123のAは導体層C(配線層165C)を、図123のBは導体層A(配線層165A)を、図123のCは導体層B(配線層165B)を示している。
 また、図123のDは、導体層Aと導体層Cとの積層状態の平面図であり、図123のEは、導体層Bと導体層Cとの積層状態の平面図であり、図123のFは、導体層Aと導体層Bとの積層状態の平面図である。
 図123のBの導体層Aは、図122の第1の構成例と同じ網目状導体1201であり、図123のCの導体層Bは、図122の第1の構成例と同じ網目状導体1202であるので、その説明は省略する。
 図123のAの導体層Cは、X方向に長い直線状導体1222Aと、X方向に長い直線状導体1222Bとを、それぞれ2本単位で、Y方向に交互に周期的に配置して構成されている。
 直線状導体1222Aは、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。直線状導体1222Bは、例えば、プラス電源に接続される配線(Vdd配線)である。直線状導体1222Aと直線状導体1222Bは、電流方向が互いに逆方向となる差動導体である。直線状導体1222Aは、例えば、半導体基板の外周部のパッド(不図示)に接続され、導体層Aの網目状導体1201と電気的に接続されている。導体層Aの網目状導体1201と導体層Cの直線状導体1222Aとが、例えばZ方向に延伸された導体ビア(VIA)等を介して電気的に接続されてもよい。直線状導体1222Bは、例えば、半導体基板の外周部のパッド(不図示)に接続され、導体層Bの網目状導体1202と電気的に接続されている。導体層Bの網目状導体1202と導体層Cの直線状導体1222Bとが、例えばZ方向に延伸された導体ビア(VIA)等を介して電気的に接続されてもよい。
 直線状導体1222Aは、Y方向の導体幅WYCAを有し、直線状導体1222Bは、Y方向の導体幅WYCBを有し、直線状導体1222Aの導体幅WYCAと、直線状導体1222Bの導体幅WYCBとは同一である(導体幅WYCA=導体幅WYCB)。なお、導体幅WYCAと導体幅WYCBとは、同一でなくても略同一でもよい(導体幅WYCA≒導体幅WYCB)。Y方向に隣接する直線状導体1222Aどうし、直線状導体1222Bどうし、または、直線状導体1222Aと直線状導体1222Bとの間は、間隙幅GYCの間隙となっている。
 そして、2本の直線状導体1222Aおよび2本の直線状導体1222Bが、導体周期FYC(=2×導体幅WYCA+2×導体幅WYCB+4×間隙幅GYC)で、Y方向に周期的に配置されている。換言すれば、2本の直線状導体1222Aの導体周期FYCと、2本の直線状導体1222Bの導体周期FYCとが、同一または略同一である。
 なお、導体幅WYCA、導体幅WYCB、および、間隙幅GYCは、任意の値に設計することができる。また、図123では2本の直線状導体1222Aおよび1222Bが周期的に配置されている例を示したがこの限りではなく、例えば3本以上の直線状導体が周期的に配置されていてもよい。また、図123では直線状導体1222Aと直線状導体1222Bとで同じ本数の直線状導体が周期的に配置されている例を示したがこの限りではなく、直線状導体1222Aと直線状導体1222Bとで異なる本数の直線状導体が周期的に配置されていてもよい。
 直線状導体1222Aおよび直線状導体1222Bが、導体周期FYCでY方向に周期的に配置された導体層Cを所定の平面範囲(平面領域)で見ると、直線状導体1222Aの導体幅WYCAと、直線状導体1222Bの導体幅WYCBとが同一または略同一であるため、所定の平面範囲における複数本の直線状導体1222Aの導体幅WYCAの総和と、複数本の直線状導体1222Bの導体幅WYCBの総和とが同一または略同一となる。これにより、直線状導体1222Aの電流分布と、直線状導体1222Bの電流分布とが同一または略同一となるため、誘導性ノイズの発生を抑制することができる。
 また、例えば、導体層Cが、図120のCに示したように、配線層170の近傍に配置されている場合、導体層Cの直線状導体1222Aおよび直線状導体1222Bと、配線層170の信号線132や制御線133との間の容量結合による容量性ノイズが生じ得るが、直線状導体1222Aおよび直線状導体1222Bは、Y方向に同じ配線パタンの繰り返しとなっているので、容量性ノイズをY方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図123のFに示されるように、導体層AとBの積層が遮光構造となっており、能動素子群167からのホットキャリア発光を遮光することができ、図123のDおよびEに示されるように、導体層AとCとの積層、および、導体層BとCとの積層においても一定範囲の遮光性が保たれている。これにより、導体層AとBの遮光制約を緩和することができるので、導体層AとBの導体面積を最大限に利用することができ、配線抵抗を下げて、電圧降下をさらに改善することができる。また、導体層A及びBのレイアウトの自由度を向上させることができる。
 さらに、導体層Aの網目状導体1201と導体層Cの直線状導体1222Aとが電気的に接続され、導体層Bの網目状導体1202と導体層Cの直線状導体1222Bとが電気的に接続される場合には、導体層AおよびBの電流量を小さくすることができるので、導体層AまたはBからの誘導性ノイズや電圧降下をさらに改善することができる。
 <3層導体層の第2の構成例の変形例>
 図124は、3層導体層の第2の構成例の第1変形例を示している。
 図124のA乃至Fは、図123のA乃至Fにそれぞれ対応し、同一の符号を付した共通する部分の説明は適宜省略し、異なる部分について説明する。
 図123の第2の構成例では、導体層Cにおいて、Y方向に隣接する2本の直線状導体1222AのY方向の導体幅WYCAは同一であった。これに対して、図124の第1変形例では、Y方向に隣接する2本の直線状導体1222Aの導体幅が導体幅WYCA1と導体幅WYCA2とで異なる(導体幅WYCA1<導体幅WYCA2)。なお、導体幅WYCA1、および、導体幅WYCA2は、任意の値に設計することができる。
 同様に、図123の第2の構成例では、導体層Cにおいて、Y方向に隣接する2本の直線状導体1222BのY方向の導体幅WYCBは同一であった。これに対して、図124の第1変形例では、Y方向に隣接する2本の直線状導体1222Bの導体幅が導体幅WYCB1と導体幅WYCB2とで異なる(導体幅WYCB1<導体幅WYCB2)。なお、導体幅WYCB1、および、導体幅WYCB2は、任意の値に設計することができる。
 図124の第1変形例において、直線状導体1222Aおよび1222Bの導体幅の違い以外は、図123の第2の構成例と同様である。
 図125は、3層導体層の第2の構成例の第2変形例を示している。
 図125のA乃至Fは、図123のA乃至Fにそれぞれ対応し、同一の符号を付した共通する部分の説明は適宜省略し、異なる部分について説明する。
 図125の第2変形例では、導体層Cにおいて、Y方向に隣接する2本の直線状導体1222Aの導体幅が異なる点で、図123の第2の構成例と相違し、図124の第1変形例と共通する。また、Y方向に隣接する2本の直線状導体1222Bの導体幅が異なる点で、図123の第2の構成例と相違し、図124の第1変形例と共通する。
 一方、図124に示した第1変形例では、導体幅が異なる2本の直線状導体1222Aの配列が、2本の直線状導体1222Bの配列と同じであった。具体的には、2本の直線状導体1222Aが、導体幅の細い(導体幅WYCA1の)直線状導体1222A、導体幅の導体幅の太い(導体幅WYCA2の)直線状導体1222A、の順でY方向に配列されている場合、2本の直線状導体1222Bも、導体幅の細い(導体幅WYCB1の)直線状導体1222B、導体幅の導体幅の太い(導体幅WYCB2の)直線状導体1222B、の順でY方向に配列されていた。
 これに対して、図125の第2変形例では、導体幅が異なる2本の直線状導体1222Aの配列が、2本の直線状導体1222Bの配列と異なる。具体的には、2本の直線状導体1222Aが、導体幅の細い(導体幅WYCA1の)直線状導体1222A、導体幅の太い(導体幅WYCA2の)直線状導体1222A、の順でY方向に配列されている場合、2本の直線状導体1222Bは、導体幅の導体幅の太い(導体幅WYCB1の)直線状導体1222B、導体幅の細い(導体幅WYCB2の)直線状導体1222B、の順でY方向に配列されている。換言すれば、導体幅の異なる2本の直線状導体1222Aと1222Bとが、Y方向で鏡面対称に配置されている。
 図125の第2変形例において、直線状導体1222Aおよび1222Bの導体幅の違い以外は、図123の第2の構成例と同様である。
 図124および図125の第1変形例および第2変形例においても、導体層Cを所定の平面範囲(平面領域)で見ると、所定の平面範囲における複数本の直線状導体1222Aの導体幅WYCA1およびWYCA2の総和と、複数本の直線状導体1222Bの導体幅WYCB1およびWYCB2の総和とが同一または略同一となる。これにより、直線状導体1222Aの電流分布と、直線状導体1222Bの電流分布とが同一または略同一となるため、誘導性ノイズの発生を抑制できる。
 図124および図125の第1変形例および第2変形例においても、容量性ノイズを大きく改善し、導体層AとBの遮光制約を緩和できる。また、配線抵抗を下げて、電圧降下を改善できる。さらに、導体層A及びBのレイアウトの自由度を向上させることができる。
 <3層導体層の第3の構成例>
 図126は、3層導体層の第3の構成例を示している。
 図126のAは導体層C(配線層165C)を、図126のBは導体層A(配線層165A)を、図126のCは導体層B(配線層165B)を示している。
 また、図126のDは、導体層Aと導体層Cとの積層状態の平面図であり、図126のEは、導体層Bと導体層Cとの積層状態の平面図であり、図126のFは、導体層Aと導体層Bとの積層状態の平面図である。
 図126のBの導体層Aは、図122の第1の構成例と同じ網目状導体1201であり、図126のCの導体層Bは、図122の第1の構成例と同じ網目状導体1202であるので、その説明は省略する。
 図126のAの導体層Cは、X方向に長い直線状導体1223Aと、X方向に長い直線状導体1223Bのそれぞれが、Y方向に交互に周期的に配置されている点で、図122の第1の構成例と同様である。ただし、図122の第1の構成例では、Y方向に順に配列される直線状導体1221Aの導体幅は、全て導体幅WYCAで同一であった。
 これに対して、図126の第3の構成例では、Y方向に交互に周期的に配置される直線状導体1223Aと直線状導体1223Bのうち、直線状導体1223Aについては、異なる導体幅WYCA1と導体幅WYCA2の直線状導体1223AがY方向に交互に配列されているのに対して、直線状導体1223Bについては、同じ導体幅WYCBの直線状導体1223Aが配列されている。
 図126の第3の構成例において、直線状導体1223Aおよび1223Bの導体幅の違い以外は、図122の第1の構成例と同様である。
 すなわち、直線状導体1223Aは、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。直線状導体1223Bは、例えば、プラス電源に接続される配線(Vdd配線)である。直線状導体1223Aと直線状導体1223Bは、電流方向が互いに逆方向となる差動導体である。直線状導体1223Aは、例えば、半導体基板の外周部のパッド(不図示)に接続され、導体層Aの網目状導体1201と電気的に接続されている。導体層Aの網目状導体1201と導体層Cの直線状導体1223Aとが、例えばZ方向に延伸された導体ビア(VIA)等を介して電気的に接続されてもよい。直線状導体1223Bは、例えば、半導体基板の外周部のパッド(不図示)に接続され、導体層Bの網目状導体1202と電気的に接続されている。導体層Bの網目状導体1202と導体層Cの直線状導体1223Bとが、例えばZ方向に延伸された導体ビア(VIA)等を介して電気的に接続されてもよい。
 Y方向に隣接する直線状導体1223Aと直線状導体1223Bとの間は、間隙幅GYCの間隙となっている。そして、2本の直線状導体1223Aおよび2本の直線状導体1223Bが、導体周期FYC(=導体幅WYCA1+導体幅WYCA2+2×導体幅WYCB+4×間隙幅GYC)で、Y方向に周期的に配置されている。なお、導体幅WYCA1、導体幅WYCA2、導体幅WYCB、および、間隙幅GYCは、任意の値に設計できる。また、図126では2本の直線状導体1223Aおよび1223Bが周期的に配置されている例を示したがこの限りではなく、例えば3本以上の直線状導体が周期的に配置されていてもよい。また、図126では直線状導体1223Aと直線状導体1223Bとで同じ本数の直線状導体が周期的に配置されている例を示したがこの限りではなく、直線状導体1223Aと直線状導体1223Bとで異なる本数の直線状導体が周期的に配置されていてもよい。
 直線状導体1223Aおよび直線状導体1223Bが、導体周期FYCでY方向に周期的に配置された導体層Cを所定の平面範囲(平面領域)で見ると、所定の平面範囲における複数本の直線状導体1223Aの導体幅WYCA1およびWYCA2の総和と、複数本の直線状導体1223Bの導体幅WYCBの総和とが同一または略同一となる。これにより、直線状導体1223Aの電流分布と、直線状導体1223Bの電流分布とが同一または略同一となるため、誘導性ノイズの発生を抑制できる。
 図126の第3の構成例においても、容量性ノイズを大きく改善し、導体層AとBの遮光制約を緩和できる。また、配線抵抗を下げて、電圧降下を改善できる。さらに、導体層A及びBのレイアウトの自由度を向上させることができる。
 <3層導体層の第3の構成例の変形例>
 図127は、3層導体層の第3の構成例の変形例を示している。
 図127のA乃至Fは、図126のA乃至Fにそれぞれ対応し、同一の符号を付した共通する部分の説明は適宜省略し、異なる部分について説明する。
 図126の第3の構成例では、導体層Cにおいて、Y方向に交互に周期的に配置される直線状導体1223Aと直線状導体1223Bのうち、直線状導体1223Aの導体幅が導体幅WYCA1と導体幅WYCA2の2種類存在し、各直線状導体1223Bは同じ導体幅WYCBであった。
 これに対して、図127の第3の構成例の変形例では、導体層Cにおいて、Y方向に交互に周期的に配置される直線状導体1223Aと直線状導体1223Bのうち、各直線状導体1223Aが同じ導体幅WYCAであり、直線状導体1223Bの導体幅が導体幅WYCB1と導体幅WYCB2の2種類存在する。図127の第3の構成例の変形例では、直線状導体1223Bについては、異なる導体幅WYCB1と導体幅WYCB2の直線状導体1223BがY方向に交互に配列されている。
 図127の第3の構成例の変形例において、直線状導体1223Aおよび1223Bの導体幅の違い以外は、図126の第3の構成例と同様である。
 直線状導体1223Aおよび直線状導体1223Bが、導体周期FYCでY方向に周期的に配置された導体層Cを所定の平面範囲(平面領域)で見ると、所定の平面範囲における複数本の直線状導体1223Aの導体幅WYCAの総和と、複数本の直線状導体1223Bの導体幅WYCB1およびWYCB2の総和とが同一または略同一となる。これにより、直線状導体1223Aの電流分布と、直線状導体1223Bの電流分布とが同一または略同一となるため、誘導性ノイズの発生を抑制できる。
 図127の第3の構成例の変形例においても、容量性ノイズを大きく改善し、導体層AとBの遮光制約を緩和できる。また、配線抵抗を下げて、電圧降下を改善できる。さらに、導体層A及びBのレイアウトの自由度を向上させることができる。
 <3層導体層の第4の構成例>
 図128は、3層導体層の第4の構成例を示している。
 図128のAは導体層C(配線層165C)を、図128のBは導体層A(配線層165A)を、図128のCは導体層B(配線層165B)を示している。
 また、図128のDは、導体層Aと導体層Cとの積層状態の平面図であり、図128のEは、導体層Bと導体層Cとの積層状態の平面図であり、図128のFは、導体層Aと導体層Bとの積層状態の平面図である。
 図128の第4の構成例において、図122に示した第1の構成例と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略して、異なる部分に着目して説明する。
 図128のAの導体層Cは、図122に示した第1の構成例の導体層Cと同様である。すなわち、導体層Cは、X方向に長い直線状導体1221Aと、X方向に長い直線状導体1221Bとを、導体周期FYCでY方向に交互に周期的に配置して構成されている。
 図128のBの導体層Aは、図121と同じ網目状導体1201を有する。また、導体層Aは、網目状導体1201のX方向の間隙幅GXAおよびY方向の間隙幅GYAを有する間隙の内側に、中継導体1241(第1の中継導体)を有する。中継導体1241は、網目状導体1201の全ての間隙に、1対1に配置されている。中継導体1241どうしの間隔、換言すれば、中継導体1241の周期も、導体周期FXAおよびFYAである。
 中継導体1241は、例えば、プラス電源に接続される配線(Vdd配線)であり、図120のCに示した積層順の場合には、導体層Bの網目状導体1202と、導体層Cの直線状導体1221Bとを、例えばZ方向に延伸された導体ビア(VIA)等を介して電気的に接続する。換言すれば、導体層Bの網目状導体1202と、導体層Cの直線状導体1221Bとが、導体層Aの中継導体1241を介して、電気的に接続されている。また、中継導体1241は、例えば、図120のAに示した積層順の場合には、導体層Bの網目状導体1202と、導体層A乃至Cとは異なる導体層の導体とを、例えばZ方向に延伸された導体ビア(VIA)等を介して電気的に接続してもよい。また、中継導体1241は、例えば、図120のBに示した積層順の場合には、導体層Cの直線状導体1221Bと、導体層A乃至Cとは異なる導体層の導体とを、例えばZ方向に延伸された導体ビア(VIA)等を介して電気的に接続してもよい。また、中継導体1241は、その全てが電気的な接続に用いられていなくてもよく、その全てが電気的な接続に用いられていてもよく、その一部が電気的な接続に用いられていてもよい。
 中継導体1241を設けたことにより、網目状導体1202と直線状導体1221Bとを略最短距離または短距離で接続して電源を引き込むことが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 図128のCの導体層Bは、図121と同じ網目状導体1202を有する。また、導体層Bは、網目状導体1202のX方向の間隙幅GXBおよびY方向の間隙幅GYBを有する間隙の内側に、中継導体1242(第2の中継導体)を有する。中継導体1242は、網目状導体1202の全ての間隙に、1対1に配置されている。中継導体1242どうしの間隔、換言すれば、中継導体1242の周期も、導体周期FXBおよびFYBである。
 中継導体1242は、例えば、GNDやマイナス電源に接続される配線(Vss配線)であり、図120のAに示した積層順の場合には、導体層Aの網目状導体1201と、導体層Cの直線状導体1221Aとを、例えばZ方向に延伸された導体ビア(VIA)等を介して電気的に接続する。換言すれば、導体層Bの網目状導体1201と、導体層Cの直線状導体1221Aとが、導体層Bの中継導体1242を介して、電気的に接続されている。また、中継導体1242は、例えば、図120のCに示した積層順の場合には、導体層Aの網目状導体1201と、導体層A乃至Cとは異なる導体層の導体とを、例えばZ方向に延伸された導体ビア(VIA)等を介して電気的に接続してもよい。また、中継導体1242は、例えば、図120のBに示した積層順の場合には、導体層Cの直線状導体1221Aと、導体層A乃至Cとは異なる導体層の導体とを、例えばZ方向に延伸された導体ビア(VIA)等を介して電気的に接続してもよい。また、中継導体1242は、その全てが電気的な接続に用いられていなくてもよく、その全てが電気的な接続に用いられていてもよく、その一部が電気的な接続に用いられていてもよい。
 中継導体1242を設けたことにより、網目状導体1201と直線状導体1221Aとを略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 また、図128のAの直線状導体1221Aおよび直線状導体1221Bは、X方向に長い導体であるので、電流が流れやすい方向はX方向である。また、図128のBおよびCの網目状導体1201および1202の電流が流れやすい方向は、Y方向である。したがって、導体層Cの電流が流れやすい方向と、導体層AおよびBの電流が流れやすい方向は、略直交して略90度異なる。これにより、電流が拡散しやすくなる(電流が集中しにくくなる)ので、誘導性ノイズをさらに改善できる。
 図128のFに示されるように、導体層AとBの積層が遮光構造となっている。また、図128のDおよびEに示されるように、導体層AとCとの積層、および、導体層BとCとの積層においても遮光構造となっており、遮光性が保たれている。これにより、能動素子群167からのホットキャリア発光を遮光できる。また、導体層AとBの遮光制約を大幅に緩和できるので、導体層AとBの導体面積を最大限に利用することができ、配線抵抗を下げて、電圧降下をさらに改善できる。導体層A及びBのレイアウトの自由度を向上させることができる。
 <3層導体層の第4の構成例の変形例>
 図129は、3層導体層の第4の構成例の第1変形例を示している。
 図129のAは導体層C(配線層165C)を、図129のBは導体層A(配線層165A)を、図129のCは導体層B(配線層165B)を示している。
 また、図129のDは、導体層Aと導体層Cとの積層状態の平面図であり、図129のEは、導体層Bと導体層Cとの積層状態の平面図であり、図129のFは、導体層Aと導体層Bとの積層状態の平面図である。
 図129において、図128に示した第4の構成例と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略して、異なる部分に着目して説明する。
 第4の構成例の第1変形例では、図129のAの導体層Cの構成のみが、図128と異なる。
 図128のAの導体層Cでは、X方向に長い直線状導体1221Aと、X方向に長い直線状導体1221Bとが、導体周期FYCでY方向に交互に周期的に配置して構成されていた。また、導体層Cの電流が流れやすい方向と、導体層AおよびBの電流が流れやすい方向は、略直交して略90度異なっていた。
 これに対して、図129のAの導体層Cでは、Y方向に長い直線状導体1251Aと、Y方向に長い直線状導体1251Bとが、X方向に交互に周期的に配置して構成されている。
 また、図129のAの直線状導体1251Aおよび直線状導体1251BはY方向に長い導体であるので、電流が流れやすい方向はY方向である。また、図128のBおよびCの網目状導体1201および1202の電流が流れやすい方向は、Y方向である。これにより、導体層Cの電流が流れやすい方向と、導体層AおよびBの電流が流れやすい方向は、同一または略同一である。この場合、配線レイアウトによっては、電圧降下をさらに改善できる。略90度と、方向についての略同一とは、2つの方向の差分が90度または同一角度とみなせる範囲であればよいが、90度または同一角度に対して、少なくとも45度以上の差はない状態とする。
 直線状導体1251Aは、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。直線状導体1251Bは、例えば、プラス電源に接続される配線(Vdd配線)である。直線状導体1251Aと直線状導体1251Bは、電流方向が互いに逆方向となる差動導体である。直線状導体1251Aは、例えば、半導体基板の外周部のパッド(不図示)に接続され、導体層Aの網目状導体1201と電気的に接続されている。導体層Aの網目状導体1201と導体層Cの直線状導体1251Aとが、例えばZ方向に延伸された導体ビア(VIA)等を介して電気的に接続されてもよい。直線状導体1251Bは、例えば、半導体基板の外周部のパッド(不図示)に接続され、導体層Bの網目状導体1202と電気的に接続されている。導体層Bの網目状導体1202と導体層Cの直線状導体1251Bとが、例えばZ方向に延伸された導体ビア(VIA)等を介して電気的に接続されてもよい。
 直線状導体1251Aは、X方向の導体幅WXCAを有し、直線状導体1251Bは、X方向の導体幅WXCBを有し、直線状導体1251Aの導体幅WXCAと、直線状導体1251Bの導体幅WXCBとは同一または略同一である(導体幅WXCA=導体幅WXCB,導体幅WXCA≒導体幅WXCB)。Y方向の直線状導体1251Aと直線状導体1251Bとの間は、間隙幅GXCの間隙となっている。
 そして、1本の直線状導体1251Aおよび直線状導体1251Bが、導体周期FXC(=導体幅WXCA+導体幅WXCB+2×間隙幅GXC)で、X方向に周期的に配置されている。換言すれば、直線状導体1251Aの導体周期FXCと、直線状導体1251Bの導体周期FXCとが、同一または略同一である。
 また、導体層Cの直線状導体1251Aの繰り返し周期である導体周期FXCは、導体層Aの網目状導体1201のX方向の繰り返し周期である導体周期FXAの整数倍である。図129は、導体周期FXCが、導体周期FYAの2倍の例である。
 導体層Cの直線状導体1251Bの繰り返し周期である導体周期FXCは、導体層Bの網目状導体1202のX方向の繰り返し周期である導体周期FXBの整数倍である。図129は、導体周期FXCが、導体周期FXBの2倍の例である。
 なお、導体幅WXCA、導体幅WXCB、および、間隙幅GXCは、任意の値に設計できる。
 直線状導体1251Aおよび直線状導体1251Bが、導体周期FXCでX方向に周期的に配置された導体層Cを所定の平面範囲(平面領域)で見ると、直線状導体1251Aの導体幅WXCAと、直線状導体1251Bの導体幅WXCBとが同一または略同一であるため、所定の平面範囲における複数本の直線状導体1251Aの導体幅WXCAの総和と、複数本の直線状導体1251Bの導体幅WXCBの総和とが同一または略同一となる。これにより、直線状導体1251Aの電流分布と、直線状導体1251Bの電流分布とが同一または略同一となるため、誘導性ノイズの発生を抑制できる。
 また、例えば、導体層Cが、図120のCに示したように、配線層170の近傍に配置されている場合、導体層Cの直線状導体1251Aおよび直線状導体1251Bと、配線層170の信号線132や制御線133との間の容量結合による容量性ノイズが生じ得るが、直線状導体1251Aおよび直線状導体1251Bは、X方向に同じ配線パタンの繰り返しとなっているので、容量性ノイズをX方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善できる。
 図129のFに示されるように、導体層AとBの積層が遮光構造となっており、能動素子群167からのホットキャリア発光を遮光できることは勿論、図129のDに示されるように、導体層AとCとの積層においても遮光構造となっており、遮光性が保たれている。これにより、導体層AとBの遮光制約を大幅に緩和できるので、導体層AとBの導体面積を最大限に利用することができ、配線抵抗を下げて、電圧降下をさらに改善できる。また、導体層A及びBのレイアウトの自由度を向上させることができる。
 さらに、導体層Aの網目状導体1201と導体層Cの直線状導体1251Aとが電気的に接続され、導体層Bの網目状導体1202と導体層Cの直線状導体1251Bとが電気的に接続される場合には、導体層AおよびBの電流量を小さくできるので、導体層AまたはBからの誘導性ノイズや電圧降下をさらに改善できる。
 図130は、3層導体層の第4の構成例の第2変形例を示している。
 図130のA乃至Fは、図129のA乃至Fにそれぞれ対応し、同一の符号を付した共通する部分の説明は適宜省略し、異なる部分について説明する。
 図129の第1変形例では、導体層Aの網目状導体1201および導体層Bの網目状導体1202の間隙の位置を見ると、X方向の位置が異なり、Y方向の位置が一致している。
 一方、図130の第2変形例の、導体層Aの網目状導体1201および導体層Bの網目状導体1202の間隙の位置を見ると、X方向の位置が一致し、Y方向の位置が異なる。
 換言すれば、導体層Aの網目状導体1201と導体層Bの網目状導体1202の、配線層170の信号線132が伸びる方向(Y方向)と同一または略同一の方向の導体を、導体層Aの網目状導体1201と導体層Bの網目状導体1202とで比較すると、積層方向からみて全ての導体が重複している。このような構成の導体層Aと導体層Bは、図27で示した導体層A及びBの第6の構成例に相当し、図28のCのシミュレーション結果で示したように誘導性ノイズを大幅に改善することができる。
 導体層Aの中継導体1241と、導体層Bの中継導体1242の位置を比較すると、図129の第1変形例では、X方向の位置が異なり、Y方向の位置が一致している。一方、図130の第2変形例では、X方向の位置が一致し、Y方向の位置が異なる。
 図129の第1変形例では、導体層AとBの積層、および、導体層AとCの積層が遮光構造となっており、遮光性が保たれている。一方、図130の第2変形例では、導体層AとCの積層、および、導体層BとCの積層が遮光構造となっており、遮光性が保たれている。
 図130の第2変形例において、上述した点以外は、図129の第1の変形例と同様である。
 図130の第2変形例においても、導体層Cを所定の平面範囲(平面領域)で見ると、直線状導体1251Aの電流分布と、直線状導体1251Bの電流分布とが同一または略同一となるため、誘導性ノイズの発生を抑制できる。
 また、容量性ノイズをX方向で完全相殺することが可能なので、容量性ノイズを大きく改善できる。導体層AとCの積層、および、導体層BとCの積層が遮光構造であるので、導体層AとBの遮光制約を大幅に緩和できる。また、配線抵抗を下げて、電圧降下を改善できる。さらに、導体層A及びBのレイアウトの自由度を向上させることができる。
 <3層導体層の第5の構成例>
 図131は、3層導体層の第5の構成例を示している。
 図131のAは導体層C(配線層165C)を、図131のBは導体層A(配線層165A)を、図131のCは導体層B(配線層165B)を示している。
 また、図131のDは、導体層Aと導体層Cとの積層状態の平面図であり、図131のEは、導体層Bと導体層Cとの積層状態の平面図であり、図131のFは、導体層Aと導体層Bとの積層状態の平面図である。
 図131の第5の構成例において、図128に示した第4の構成例と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略して、異なる部分に着目して説明する。
 図131のBの導体層Aは、網目状導体1261を有する。網目状導体1261が、図128に示した第4の構成例の網目状導体1201と異なる点は、X方向の間隙幅GXAとY方向の間隙幅GYAとの比である。具体的には、図128に示した第4の構成例の導体層Aの網目状導体1201は、(間隙幅GYA/間隙幅GXA)>1であるが、図131のBの第5の構成例の導体層Aの網目状導体1261は、(間隙幅GYA/間隙幅GXA)<1である。
 換言すれば、図128に示した第4の構成例の導体層Aの網目状導体1201は、導体幅WXA>導体幅WYA、かつ、間隙幅GYA>間隙幅GXAであり、Y方向に電流が流れやすい導体であるのに対して、図131のBの第5の構成例の導体層Aの網目状導体1261は、導体幅WXA<導体幅WYA、かつ、間隙幅GYA<間隙幅GXAであり、X方向に電流が流れやすい導体である。
 さらに、換言すれば、図128に示した第4の構成例の導体層Cの電流が流れやすい方向と、導体層AおよびBの電流が流れやすい方向は、略直交して略90度異なっているのに対して、図131のBの第5の構成例の導体層Cの電流が流れやすい方向と、導体層AおよびBの電流が流れやすい方向は、同一または略同一である。図131の第5の構成例の場合、配線レイアウトによっては、電圧降下をさらに改善できる。
 図128に示した第4の構成例では、導体層Aの網目状導体1201と導体層Bの網目状導体1202の間隙の位置を比較すると、X方向の位置が異なり、Y方向の位置が一致している。
 一方、図131のBの第5の構成例では、導体層Aの網目状導体1261と導体層Bの網目状導体1262の間隙のX方向の位置が一致し、Y方向の位置が異なる。
 換言すれば、導体層Aの網目状導体1261と導体層Bの網目状導体1262の、配線層170の信号線132が伸びる方向(Y方向)と同一または略同一の方向の導体を、導体層Aの網目状導体1261と導体層Bの網目状導体1262とで比較すると、積層方向からみて全ての導体が重複している。このような構成の導体層Aと導体層Bは、図27で示した導体層A及びBの第6の構成例に相当し、図28のCのシミュレーション結果で示したように誘導性ノイズを大幅に改善することができる。
 図130の第2変形例において、上述した点以外は、図128に示した第4の構成例と同様である。
 図131のAの導体層Cについては、図128に示した第4の構成例の導体層Cと同一である。したがって、導体層Cを所定の平面範囲(平面領域)で見ると、直線状導体1221Aの電流分布と、直線状導体1221Bの電流分布とが同一または略同一となるため、誘導性ノイズの発生を抑制することができる。
 直線状導体1221Aおよび直線状導体1221Bは、Y方向に同じ配線パタンの繰り返しとなっているので、容量性ノイズをY方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図131のFに示されるように、導体層AとBの積層が遮光構造となっており、能動素子群167からのホットキャリア発光を遮光できることは勿論、図131のDに示されるように、導体層AとCとの積層においても遮光構造となっており、遮光性が保たれている。これにより、導体層AとBの遮光制約を大幅に緩和できるので、導体層AとBの導体面積を最大限に利用することができ、配線抵抗を下げて、電圧降下をさらに改善できる。また、導体層A及びBのレイアウトの自由度を向上させることができる。
 さらに、導体層Aの網目状導体1261と導体層Cの直線状導体1221Aとが電気的に接続され、導体層Bの網目状導体1262と導体層Cの直線状導体1221Bとが電気的に接続される場合には、導体層AおよびBの電流量を小さくできるので、導体層AまたはBからの誘導性ノイズや電圧降下をさらに改善できる。
 <3層導体層の第6の構成例>
 図132は、3層導体層の第6の構成例を示している。
 図132のAは導体層C(配線層165C)を、図132のBは導体層A(配線層165A)を、図132のCは導体層B(配線層165B)を示している。
 また、図132のDは、導体層Aと導体層Cとの積層状態の平面図であり、図132のEは、導体層Bと導体層Cとの積層状態の平面図であり、図132のFは、導体層Aと導体層Bとの積層状態の平面図である。
 図132の第6の構成例において、図128に示した第4の構成例と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略して、異なる部分に着目して説明する。
 図132の第6の構成例は、図128に示した第4の構成例における、導体層Aの中継導体1241の一部を省略した構成である。具体的には、図128の第4の構成例では、網目状導体1201の行列状の全ての間隙内に、中継導体1241が形成されていたのに対して、図132の第6の構成例では、中継導体1241が形成された行と、中継導体1241が形成されていない行とが、Y方向に、行単位で交互に配置されている。導体層Aの中継導体1241は、導体層Cの直線状導体1221BのXY平面領域内に位置する。
 このように、網目状導体1201の各間隙内に形成される中継導体1241は、全ての間隙内に配置せずに間引いて、間隙の一部に対して配置するようにしてもよい。導体層Aにおける配線領域の占有率等の制約を守ることができ、配線レイアウトの設計の自由度を高めることができる。
 図132の第6の構成例において、上述した点以外は、図128に示した第4の構成例と同様である。
 図132のAの導体層Cについては、図128に示した第4の構成例の導体層Cと同一である。したがって、導体層Cを所定の平面範囲(平面領域)で見ると、直線状導体1221Aの電流分布と、直線状導体1221Bの電流分布とが同一または略同一となるため、誘導性ノイズの発生を抑制することができる。
 直線状導体1221Aおよび直線状導体1221Bは、Y方向に同じ配線パタンの繰り返しとなっているので、容量性ノイズをY方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図132のFに示されるように、導体層AとBの積層が遮光構造となっており、能動素子群167からのホットキャリア発光を遮光できることは勿論、図132のDおよびEに示されるように、導体層AとCとの積層、および、導体層BとCとの積層においても遮光構造となっており、遮光性が保たれている。これにより、導体層AとBの遮光制約を大幅に緩和できるので、導体層AとBの導体面積を最大限に利用することができ、配線抵抗を下げて、電圧降下をさらに改善できる。また、導体層A及びBのレイアウトの自由度を向上させることができる。
 導体層Aに中継導体1241を設けたことにより、網目状導体1202と直線状導体1221Bとを略最短距離または短距離で接続して電源を引き込むことが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 導体層Bに中継導体1242を設けたことにより、網目状導体1201と直線状導体1221Aとを略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 図132の第6の構成例において、導体層Cの電流が流れやすい方向と、導体層AおよびBの電流が流れやすい方向は、略直交して略90度異なる。これにより、電流が拡散しやすくなる(電流が集中しにくくなる)ので、誘導性ノイズをさらに改善できる。
 <3層導体層の第6の構成例の変形例>
 図133は、3層導体層の第6の構成例の変形例を示している。
 図133のAは導体層C(配線層165C)を、図133のBは導体層A(配線層165A)を、図133のCは導体層B(配線層165B)を示している。
 また、図133のDは、導体層Aと導体層Cとの積層状態の平面図であり、図133のEは、導体層Bと導体層Cとの積層状態の平面図であり、図133のFは、導体層Aと導体層Bとの積層状態の平面図である。
 図133において、図132に示した第6の構成例と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略して、異なる部分に着目して説明する。
 第6の構成例の変形例では、導体層Aと導体層Cの構成が、図132の第6の構成例と異なる。
 図132のAの導体層Cでは、X方向に長い直線状導体1221Aと、X方向に長い直線状導体1221Bとが、Y方向に交互に周期的に配置して構成されていた。これにより、導体層Cの電流が流れやすい方向と、導体層AおよびBの電流が流れやすい方向は、略直交して略90度異なっていた。
 これに対して、図133のAの導体層Cでは、Y方向に長い直線状導体1251Aと、Y方向に長い直線状導体1251Bとが、X方向に交互に周期的に配置して構成されている。これにより、導体層Cの電流が流れやすい方向と、導体層AおよびBの電流が流れやすい方向は、同一または略同一である。この場合、配線レイアウトによっては、電圧降下をさらに改善できる。
 次に、図132のBの導体層Aでは、網目状導体1201の行列状の間隙内に、中継導体1241が形成された行と、形成されていない行とが、Y方向に、行単位で交互に配置されていた。
 これに対して、図133のBの導体層Aでは、網目状導体1201の行列状の間隙内に、中継導体1241が形成された列と、形成されていない列とが、X方向に、列単位で交互に配置されている。導体層Aの中継導体1241は、導体層Cの直線状導体1251BのXY平面領域内に位置する。
 図133の第6の構成例の変形例において、上述した点以外は、図132に示した第6の構成例と同様である。
 図133のAの導体層Cについては、図129に示した第4の構成例の第1変形例の導体層Cと同一である。したがって、直線状導体1251Aの電流分布と、直線状導体1251Bの電流分布とが同一または略同一となるため、誘導性ノイズの発生を抑制することができる。
 直線状導体1251Aおよび直線状導体1251Bは、X方向に同じ配線パタンの繰り返しとなっているので、容量性ノイズをX方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図133のFに示されるように、導体層AとBの積層が遮光構造となっており、能動素子群167からのホットキャリア発光を遮光できることは勿論、図133のDに示されるように、導体層AとCとの積層においても遮光構造となっており、遮光性が保たれている。これにより、導体層AとBの遮光制約を大幅に緩和できるので、導体層AとBの導体面積を最大限に利用することができ、配線抵抗を下げて、電圧降下をさらに改善できる。また、導体層A及びBのレイアウトの自由度を向上させることができる。
 さらに、導体層Aの網目状導体1201と導体層Cの直線状導体1251Aとが電気的に接続され、導体層Bの網目状導体1202と導体層Cの直線状導体1251Bとが電気的に接続される場合には、導体層AおよびBの電流量を小さくできるので、導体層AまたはBからの誘導性ノイズや電圧降下をさらに改善できる。
 なお、図133の第6の構成例の変形例では、導体層Aの中継導体1241が間引かれ、導体層Bの中継導体1242は間引かれない構成としたが、導体層Aの中継導体1241が間引かれずに、導体層Bの中継導体1242が間引かれる構成も可能である。
 <3層導体層の第7の構成例>
 図134は、3層導体層の第7の構成例を示している。
 図134のAは導体層C(配線層165C)を、図134のBは導体層A(配線層165A)を、図134のCは導体層B(配線層165B)を示している。
 また、図134のDは、導体層Aと導体層Cとの積層状態の平面図であり、図134のEは、導体層Bと導体層Cとの積層状態の平面図であり、図134のFは、導体層Aと導体層Bとの積層状態の平面図である。
 図134の第7の構成例において、図131に示した第5の構成例と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略して、異なる部分に着目して説明する。
 第7の構成例では、図134のBの導体層Aの構成のみが、図131の第5の構成例と異なる。第7の構成例の導体層BおよびCは、図131の第5の構成例の導体層BおよびCと同様である。
 第7の構成例における図134のBの導体層Aは、網目状導体1271を有する。また、導体層Aでは、網目状導体1271のX方向の間隙幅GXAおよびY方向の間隙幅GYAを有する間隙の内側に、中継導体1241が形成されていない。
 換言すれば、図134のBの網目状導体1271の間隙幅GXAおよび間隙幅GYAは、図131のBの網目状導体1261の間隙幅GXAおよび間隙幅GYAよりも小さく、中継導体1241を形成するほど十分な間隙がない。
 図134の第7の構成例において、上述した点以外は、図131に示した第5の構成例と同様である。
 図134のAの導体層Cについては、図131に示した第5の構成例の導体層Cと同一である。したがって、導体層Cを所定の平面範囲(平面領域)で見ると、直線状導体1221Aの電流分布と、直線状導体1221Bの電流分布とが同一または略同一となるため、誘導性ノイズの発生を抑制することができる。
 直線状導体1221Aおよび直線状導体1221Bは、Y方向に同じ配線パタンの繰り返しとなっているので、容量性ノイズをY方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図134のFに示されるように、導体層AとBの積層が遮光構造となっており、能動素子群167からのホットキャリア発光を遮光できることは勿論、図134のDに示されるように、導体層AとCとの積層においても遮光構造となっており、遮光性が保たれている。これにより、導体層AとBの遮光制約を大幅に緩和できるので、導体層AとBの導体面積を最大限に利用することができ、配線抵抗を下げて、電圧降下をさらに改善できる。また、導体層A及びBのレイアウトの自由度を向上させることができる。
 図134の第7の構成例は、特に、導体層A乃至Cの3層を電気的に接続できる積層順、具体的には、図120のBに示した積層順に好適である。図120のBに示した導体層A、C、Bの積層順の場合、導体層Aの網目状導体1271と、導体層Cの直線状導体1221Aとが、平面領域が重複する領域の一部において、Z方向の導体ビアで接続でき、導体層Bの網目状導体1262および中継導体1242が、それぞれ、導体層Cの直線状導体1221Bおよび1221Aと、電流特性が共通の導体どうしで、かつ、平面領域が重複する領域の一部において、Z方向の導体ビアで接続できる。
 <3層導体層の第8の構成例>
 図135は、3層導体層の第8の構成例を示している。
 図135のAは導体層C(配線層165C)を、図135のBは導体層A(配線層165A)を、図135のCは導体層B(配線層165B)を示している。
 また、図135のDは、導体層Aと導体層Cとの積層状態の平面図であり、図135のEは、導体層Bと導体層Cとの積層状態の平面図であり、図135のFは、導体層Aと導体層Bとの積層状態の平面図である。
 図135の第8の構成例は、図128に示した第4の構成例の一部を変更した構成を有しており、第4構成例と比較して、図135の第8構成例について説明する。なお、図135においては、図128と対応する部分については同一の符号を付してある。
 図135のAの導体層Cは、図128のAに示した第4構成例の導体層Cと同様である。すなわち、導体層Cは、X方向に長い直線状導体1221Aと、X方向に長い直線状導体1221Bとを、Y方向に交互に周期的に配置して構成されている。
 図128のBの導体層Aは、図128に示した第4の構成例における、導体層Aの中継導体1241の一部を省略した構成である。具体的には、図128の第4の構成例では、網目状導体1201の行列状の全ての間隙内に、中継導体1241が形成されていたのに対して、図135の第8の構成例では、中継導体1241が形成された行と、中継導体1241が形成されていない行とが、Y方向に、行単位で交互に配置されている。
 図128のCの導体層Bも、同様に、図128に示した第4の構成例における、導体層Bの中継導体1242の一部を省略した構成である。具体的には、図128の第4の構成例では、網目状導体1201の行列状の全ての間隙内に、中継導体1242が形成されていたのに対して、図135の第8の構成例では、中継導体1242が形成された行と、中継導体1242が形成されていない行とが、Y方向に、行単位で交互に配置されている。
 したがって、図135の第8の構成例は、図128に示した第4の構成例から、導体層Aについては、網目状導体1201の行列状の各間隙に配置された中継導体1241を行単位で1行おきに間引き、導体層Bについては、網目状導体1202の行列状の各間隙に配置された中継導体1242を行単位で1行おきに間引いた構成を有する。
 図135の第8の構成例において、上述した点以外は、図128に示した第4の構成例と同様である。
 図135のAの導体層Cを所定の平面範囲(平面領域)で見ると、直線状導体1221Aの電流分布と、直線状導体1221Bの電流分布とが同一または略同一となるため、誘導性ノイズの発生を抑制することができる。
 直線状導体1221Aおよび直線状導体1221Bは、Y方向に同じ配線パタンの繰り返しとなっているので、容量性ノイズをY方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図135のFに示されるように、導体層AとBの積層が遮光構造となっており、能動素子群167からのホットキャリア発光を遮光できることは勿論、図135のDおよびEに示されるように、導体層AとCとの積層、および、導体層BとCとの積層においても遮光構造となっており、遮光性が保たれている。これにより、導体層AとBの遮光制約を大幅に緩和できるので、導体層AとBの導体面積を最大限に利用することができ、配線抵抗を下げて、電圧降下をさらに改善できる。また、導体層A及びBのレイアウトの自由度を向上させることができる。
 導体層Aに中継導体1241を設けたことにより、網目状導体1202と直線状導体1221Bとを略最短距離または短距離で接続して電源を引き込むことが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 導体層Bに中継導体1242を設けたことにより、網目状導体1201と直線状導体1221Aとを略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 図135の第8の構成例において、導体層Cの電流が流れやすい方向と、導体層AおよびBの電流が流れやすい方向は、略直交して略90度異なる。これにより、電流が拡散しやすくなる(電流が集中しにくくなる)ので、誘導性ノイズをさらに改善できる。
 <3層導体層の第8の構成例の第1変形例>
 図136は、3層導体層の第8の構成例の第1変形例を示している。
 図136のAは導体層C(配線層165C)を、図136のBは導体層A(配線層165A)を、図136のCは導体層B(配線層165B)を示している。
 また、図136のDは、導体層Aと導体層Cとの積層状態の平面図であり、図136のEは、導体層Bと導体層Cとの積層状態の平面図であり、図136のFは、導体層Aと導体層Bとの積層状態の平面図である。
 図136において、図135に示した第8の構成例と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略して、異なる部分に着目して説明する。
 第8の構成例の第1変形例では、導体層A乃至Cの構成が、図135の第8の構成例と異なる。
 図135のAに示した導体層Cでは、X方向に長い直線状導体1221Aと、X方向に長い直線状導体1221Bとが、Y方向に交互に周期的に配置して構成されていた。これにより、導体層Cの電流が流れやすい方向と、導体層AおよびBの電流が流れやすい方向は、略直交して略90度異なっていた。
 これに対して、図136のAの導体層Cでは、Y方向に長い直線状導体1251Aと、Y方向に長い直線状導体1251Bとが、X方向に交互に周期的に配置して構成されている。これにより、導体層Cの電流が流れやすい方向と、導体層AおよびBの電流が流れやすい方向は、同一または略同一である。この場合、配線レイアウトによっては、電圧降下をさらに改善できる。
 次に、図135のBに示した導体層Aでは、網目状導体1201の行列状の間隙内に、中継導体1241が形成された行と、形成されていない行とが、Y方向に、行単位で交互に配置されていた。
 これに対して、図136のBの導体層Aでは、網目状導体1201の行列状の間隙内に、中継導体1241が形成された列と、形成されていない列とが、X方向に、列単位で交互に配置されている。導体層Aの中継導体1241は、導体層Cの直線状導体1251BのXY平面領域内に位置する。
 また、図135のCに示した導体層Bでは、網目状導体1202の行列状の間隙内に、中継導体1242が形成された行と、形成されていない行とが、Y方向に、行単位で交互に配置されていた。
 これに対して、図136のCの導体層Bでは、網目状導体1202の行列状の間隙内に、中継導体1242が形成された列と、形成されていない列とが、X方向に、列単位で交互に配置されている。
 図136の第8の構成例の第1変形例において、上述した点以外は、図135に示した第8の構成例と同様である。
 図136のAの導体層Cを所定の平面範囲(平面領域)で見ると、直線状導体1251Aの電流分布と、直線状導体1251Bの電流分布とが同一または略同一となるため、誘導性ノイズの発生を抑制することができる。
 直線状導体1251Aおよび直線状導体1251Bは、X方向に同じ配線パタンの繰り返しとなっているので、容量性ノイズをX方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図136のFに示されるように、導体層AとBの積層が遮光構造となっており、能動素子群167からのホットキャリア発光を遮光できることは勿論、図136のDに示されるように、導体層AとCとの積層においても遮光構造となっており、遮光性が保たれている。これにより、導体層AとBの遮光制約を大幅に緩和できるので、導体層AとBの導体面積を最大限に利用することができ、配線抵抗を下げて、電圧降下をさらに改善できる。また、導体層A及びBのレイアウトの自由度を向上させることができる。
 さらに、導体層Aの網目状導体1201と導体層Cの直線状導体1251Aとが電気的に接続され、導体層Bの網目状導体1202と導体層Cの直線状導体1251Bとが電気的に接続される場合には、導体層AおよびBの電流量を小さくできるので、導体層AまたはBからの誘導性ノイズや電圧降下をさらに改善できる。
 導体層Aに中継導体1241を設けたことにより、網目状導体1202と直線状導体1251Bとを略最短距離または短距離で接続して電源を引き込むことが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 導体層Bに中継導体1242を設けたことにより、網目状導体1201と直線状導体1251Aとを略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 <3層導体層の第8の構成例の第2変形例>
 図137は、3層導体層の第8の構成例の第2変形例を示している。
 図137のAは導体層C(配線層165C)を、図137のBは導体層A(配線層165A)を、図137のCは導体層B(配線層165B)を示している。
 また、図137のDは、導体層Aと導体層Cとの積層状態の平面図であり、図137のEは、導体層Bと導体層Cとの積層状態の平面図であり、図137のFは、導体層Aと導体層Bとの積層状態の平面図である。
 図137において、図135に示した第8の構成例と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略して、異なる部分に着目して説明する。
 第8の構成例の第2変形例では、導体層Aと導体層Bの構成が、図135の第8の構成例と異なる。
 図137のBの導体層Aは、図135に示した第8の構成例と比較すると、網目状導体1201の中継導体1241が形成されていない間隙内に、Y方向の導体幅WYAd1を有する補強導体1281が新たに追加されている。補強導体1281は、X方向の導体幅が間隙幅GXAで、X方向に長い直線状導体である。
 図137のCの導体層Bは、図135に示した第8の構成例と比較すると、網目状導体1202の中継導体1242が形成されていない間隙内に、Y方向の導体幅WYBd1を有する補強導体1282が新たに追加されている。補強導体1282は、X方向の導体幅が間隙幅GXBで、X方向に長い直線状導体である。
 図137の第8の構成例の第2変形例において、上述した点以外は、図135に示した第8の構成例と同様である。
 図137のAの導体層Cを所定の平面範囲(平面領域)で見ると、直線状導体1221Aの電流分布と、直線状導体1221Bの電流分布とが同一または略同一となるため、誘導性ノイズの発生を抑制することができる。
 直線状導体1221Aおよび直線状導体1221Bは、Y方向に同じ配線パタンの繰り返しとなっているので、容量性ノイズをY方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図137のFに示されるように、導体層AとBの積層が遮光構造となっており、能動素子群167からのホットキャリア発光を遮光できることは勿論、図137のDおよびEに示されるように、導体層AとCとの積層、および、導体層BとCとの積層においても遮光構造となっており、遮光性が保たれている。これにより、導体層AとBの遮光制約を大幅に緩和できるので、導体層AとBの導体面積を最大限に利用することができ、配線抵抗を下げて、電圧降下をさらに改善できる。また、導体層A及びBのレイアウトの自由度を向上させることができる。
 導体層Aに中継導体1241を設けたことにより、網目状導体1202と直線状導体1221Bとを略最短距離または短距離で接続して電源を引き込むことが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 導体層Bに中継導体1242を設けたことにより、網目状導体1201と直線状導体1221Aとを略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 図137の第8の構成例の第2変形例において、導体層Cの電流が流れやすい方向と、導体層AおよびBの電流が流れやすい方向は、略直交して略90度異なる。これにより、電流が拡散しやすくなる(電流が集中しにくくなる)ので、誘導性ノイズをさらに改善できる。
 導体層Aにおいて、中継導体1241を間引きした位置に、X方向に長い補強導体1281を配置したことにより、配線抵抗を小さくできるため、電圧降下をさらに改善することができる。電圧降下が改善されることにより、誘導性ノイズも改善できる。
 導体層Bにおいて、中継導体1242を間引きした位置に、X方向に長い補強導体1282を配置したことにより、配線抵抗を小さくできるため、電圧降下をさらに改善することができる。電圧降下が改善されることにより、誘導性ノイズも改善できる。
 <3層導体層の第8の構成例の第3変形例>
 図138は、3層導体層の第8の構成例の第3変形例を示している。
 図138のAは導体層C(配線層165C)を、図138のBは導体層A(配線層165A)を、図138のCは導体層B(配線層165B)を示している。
 また、図138のDは、導体層Aと導体層Cとの積層状態の平面図であり、図138のEは、導体層Bと導体層Cとの積層状態の平面図であり、図138のFは、導体層Aと導体層Bとの積層状態の平面図である。
 図138において、図135に示した第8の構成例と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略して、異なる部分に着目して説明する。
 第8の構成例の第3変形例では、導体層Aと導体層Bの構成が、図135の第8の構成例と異なる。
 最初に、導体層Aについて見ると、図135に示した第8の構成例では、網目状導体1201の行列状の各間隙は、Y方向の間隙幅GYAを共通に有していた。換言すれば、Y方向の間隙幅GYAは、網目状導体1201の行列状の全ての間隙で同一であった。
 これに対して、図138のBの導体層Aでは、中継導体1241が形成されている間隙は、Y方向の間隙幅GYAを有し、中継導体1241が形成されていない間隙は、間隙幅GYAよりも小さいY方向の間隙幅GYAd1(間隙幅GYA>間隙幅GYAd1)を有する。
 次に、導体層Bについて見ると、図135に示した第8の構成例では、網目状導体1202の行列状の各間隙は、Y方向の間隙幅GYBを共通に有していた。換言すれば、Y方向の間隙幅GYBは、網目状導体1202の行列状の全ての間隙で同一であった。
 これに対して、図138のBの導体層Aでは、中継導体1242が形成されている間隙は、Y方向の間隙幅GYBを有し、中継導体1242が形成されていない間隙は、間隙幅GYBよりも小さいY方向の間隙幅GYBd1(間隙幅GYB>間隙幅GYBd1)を有する。
 図138の第8の構成例の第3変形例において、上述した点以外は、図135に示した第8の構成例と同様である。
 図138のAの導体層Cを所定の平面範囲(平面領域)で見ると、直線状導体1221Aの電流分布と、直線状導体1221Bの電流分布とが同一または略同一となるため、誘導性ノイズの発生を抑制することができる。
 直線状導体1221Aおよび直線状導体1221Bは、Y方向に同じ配線パタンの繰り返しとなっているので、容量性ノイズをY方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図138のFに示されるように、導体層AとBの積層が遮光構造となっており、能動素子群167からのホットキャリア発光を遮光できることは勿論、図138のDおよびEに示されるように、導体層AとCとの積層、および、導体層BとCとの積層においても遮光構造となっており、遮光性が保たれている。これにより、導体層AとBの遮光制約を大幅に緩和できるので、導体層AとBの導体面積を最大限に利用することができ、配線抵抗を下げて、電圧降下をさらに改善できる。また、導体層A及びBのレイアウトの自由度を向上させることができる。
 導体層Aに中継導体1241を設けたことにより、網目状導体1202と直線状導体1221Bとを略最短距離または短距離で接続して電源を引き込むことが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 導体層Bに中継導体1242を設けたことにより、網目状導体1201と直線状導体1221Aとを略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 図138の第8の構成例の第3変形例において、導体層Cの電流が流れやすい方向と、導体層AおよびBの電流が流れやすい方向は、略直交して略90度異なる。これにより、電流が拡散しやすくなる(電流が集中しにくくなる)ので、誘導性ノイズをさらに改善できる。
 導体層Aにおいて、中継導体1241を間引きした位置の間隙幅GYAd1を、中継導体1241が形成されている位置の間隙幅GYAよりも小さくしたことにより、配線抵抗を小さくできるため、電圧降下をさらに改善することができる。電圧降下が改善されることにより、誘導性ノイズも改善できる。
 導体層Bにおいて、中継導体1242を間引きした位置の間隙幅GYBd1を、中継導体1242が形成されている位置の間隙幅GYBよりも小さくしたことにより、配線抵抗を小さくできるため、電圧降下をさらに改善することができる。電圧降下が改善されることにより、誘導性ノイズも改善できる。
 なお、図138の第8の構成例の第3変形例において、導体層Aの網目状導体1201のY方向の導体幅WYAを太くすることで、中継導体1241を間引きした位置の間隙幅GYAd1を、中継導体1241が形成されている位置の間隙幅GYAよりも小さくしてもよいし、Y方向の導体幅WYAは図135の第8の構成例と同じでもよい。導体層Bの網目状導体1202についても同様である。
 <3層導体層の第8の構成例の第4変形例>
 図139は、3層導体層の第8の構成例の第4変形例を示している。
 図139のAは導体層C(配線層165C)を、図139のBは導体層A(配線層165A)を、図139のCは導体層B(配線層165B)を示している。
 また、図139のDは、導体層Aと導体層Cとの積層状態の平面図であり、図139のEは、導体層Bと導体層Cとの積層状態の平面図であり、図139のFは、導体層Aと導体層Bとの積層状態の平面図である。
 図139の第8の構成例の第4変形例は、図136の第8の構成例の第1変形例の一部を変更した構成を有する。図139では、図136と対応する部分については同一の符号を付し、その部分の説明は適宜省略し、異なる部分について説明する。
 図136の第1変形例では、導体層Aの網目状導体1201と導体層Bの網目状導体1202の間隙の位置を比較すると、X方向の位置が異なり、Y方向の位置が一致している。
 一方、図139の第4変形例では、導体層Aの網目状導体1201と導体層Bの網目状導体1202の間隙の位置を比較すると、X方向の位置が一致し、Y方向の位置が異なる。
 図139の第8の構成例の第4変形例において、上述した点以外は、図136の第1変形例と同様である。例えば、導体層Aにおいて、網目状導体1201の行列状の間隙内に、中継導体1241が形成された列と、形成されていない列とが、X方向に、列単位で交互に配置されている点、導体層Bにおいて、網目状導体1202の行列状の間隙内に、中継導体1242が形成された列と、形成されていない列とが、X方向に、列単位で交互に配置されている点も同様である。
 また、図139の第8の構成例の第4変形例は、図130に示した第4の構成例の第2変形例から、導体層Aにおいて、中継導体1241を列単位で1列おきに間引き、導体層Bにおいて、中継導体1242を列単位で1列おきに間引いた構成に相当する。
 図139のAの導体層Cを所定の平面範囲(平面領域)で見ると、直線状導体1251Aの電流分布と、直線状導体1251Bの電流分布とが同一または略同一となるため、誘導性ノイズの発生を抑制することができる。
 直線状導体1251Aおよび直線状導体1251Bは、X方向に同じ配線パタンの繰り返しとなっているので、容量性ノイズをX方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図139のDおよびEに示されるように、導体層AとCとの積層、および、導体層BとCとの積層において遮光構造となっており、遮光性が保たれている。これにより、導体層AとBの遮光制約を大幅に緩和できるので、導体層AとBの導体面積を最大限に利用することができ、配線抵抗を下げて、電圧降下をさらに改善できる。また、導体層A及びBのレイアウトの自由度を向上させることができる。
 さらに、導体層Aの網目状導体1201と導体層Cの直線状導体1251Aとが電気的に接続され、導体層Bの網目状導体1202と導体層Cの直線状導体1251Bとが電気的に接続される場合には、導体層AおよびBの電流量を小さくできるので、導体層AまたはBからの誘導性ノイズや電圧降下をさらに改善できる。
 図139のAの導体層Cでは、導体層Cの電流が流れやすい方向と、導体層AおよびBの電流が流れやすい方向は、同一または略同一である。この場合、配線レイアウトによっては、電圧降下をさらに改善できる。
 導体層Aに中継導体1241を設けたことにより、網目状導体1202と直線状導体1251Bとを略最短距離または短距離で接続して電源を引き込むことが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 導体層Bに中継導体1242を設けたことにより、網目状導体1201と直線状導体1251Aとを略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 <3層導体層の第8の構成例の第5変形例>
 図140は、3層導体層の第8の構成例の第5変形例を示している。
 図140のAは導体層C(配線層165C)を、図140のBは導体層A(配線層165A)を、図140のCは導体層B(配線層165B)を示している。
 また、図140のDは、導体層Aと導体層Cとの積層状態の平面図であり、図140のEは、導体層Bと導体層Cとの積層状態の平面図であり、図140のFは、導体層Aと導体層Bとの積層状態の平面図である。
 図140の第8の構成例の第5変形例は、図136に示した第8の構成例の第1変形例の一部を変更した構成を有する。図140では、図136と対応する部分については同一の符号を付し、その部分の説明は適宜省略し、異なる部分について説明する。
 第8の構成例の第5変形例では、導体層Bの構成のみが、図136の第8の構成例の第1変形例と異なる。
 図136の第1変形例では、導体層Bは、網目状導体1202の行列状の間隙内に、中継導体1242が形成された列と、形成されていない列とが、X方向に、列単位で交互に配置されていた。換言すれば、中継導体1241が列単位で1列おきに間引かれていた。
 これに対して、図140の導体層Bは、網目状導体1202の行列状の間隙内に、中継導体1242が形成された列と、形成されていない列とが、X方向に、2列単位で交互に配置されている。換言すれば、中継導体1241が2列単位で2列おきに間引かれている。
 図140の第8の構成例の第5変形例において、上述した点以外は、図136の第8の構成例の第1変形例と同様である。
 図140のAの導体層Cを所定の平面範囲(平面領域)で見ると、直線状導体1251Aの電流分布と、直線状導体1251Bの電流分布とが同一または略同一となるため、誘導性ノイズの発生を抑制することができる。
 直線状導体1251Aおよび直線状導体1251Bは、X方向に同じ配線パタンの繰り返しとなっているので、容量性ノイズをX方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図140のFに示されるように、導体層AとBの積層が遮光構造となっており、能動素子群167からのホットキャリア発光を遮光できることは勿論、図140のDに示されるように、導体層AとCとの積層においても遮光構造となっており、遮光性が保たれている。これにより、導体層AとBの遮光制約を大幅に緩和できるので、導体層AとBの導体面積を最大限に利用することができ、配線抵抗を下げて、電圧降下をさらに改善できる。また、導体層A及びBのレイアウトの自由度を向上させることができる。
 さらに、導体層Aの網目状導体1201と導体層Cの直線状導体1251Aとが電気的に接続され、導体層Bの網目状導体1202と導体層Cの直線状導体1251Bとが電気的に接続される場合には、導体層AおよびBの電流量を小さくできるので、導体層AまたはBからの誘導性ノイズや電圧降下をさらに改善できる。
 図140のAの導体層Cでは、導体層Cの電流が流れやすい方向と、導体層AおよびBの電流が流れやすい方向は、同一または略同一である。この場合、配線レイアウトによっては、電圧降下をさらに改善できる。
 導体層Aに中継導体1241を設けたことにより、網目状導体1202と直線状導体1251Bとを略最短距離または短距離で接続して電源を引き込むことが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 導体層Bに中継導体1242を設けたことにより、網目状導体1201と直線状導体1251Aとを略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 <3層導体層の第9の構成例>
 図141は、3層導体層の第9の構成例を示している。
 図141のAは導体層C(配線層165C)を、図141のBは導体層A(配線層165A)を、図141のCは導体層B(配線層165B)を示している。
 また、図141のDは、導体層Aと導体層Cとの積層状態の平面図であり、図141のEは、導体層Bと導体層Cとの積層状態の平面図であり、図141のFは、導体層Aと導体層Bとの積層状態の平面図である。
 図141の第9の構成例は、図132の第6の構成例の一部を変更した構成を有する。図141では、図132と対応する部分については同一の符号を付し、その部分の説明は適宜省略し、異なる部分について説明する。
 第9の構成例では、導体層Aの構成のみが、図132の第6の構成例と異なる。
 図132の第6の構成例の導体層Aは、網目状導体1201の行列状の間隙内に、中継導体1241が形成された行と、中継導体1241が形成されていない行とが、Y方向に、行単位で交互に配置されていた。
 図141の第9の構成例の導体層Aは、図132の第6の構成例の導体層Aの中継導体1241が形成されていない行の間隙に、中継導体1243(第3の中継導体)が新たに設けられた構成を有する。中継導体1243は、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。
 すなわち、図141の第9の構成例の導体層Aは、網目状導体1201を有し、網目状導体1201の行列状の間隙内に、中継導体1241が形成された行と、中継導体1243が形成された列とが、Y方向に、行単位で交互に配置された構成を有する。
 例えば、図141の第9の構成例の導体層A乃至Cが、導体層B、導体層C、導体層Aの順で、導体層Cが真ん中に配置される積層順である場合、導体層Bの中継導体1242は、導体層Cの直線状導体1221AとZ方向の導体ビアで接続し、導体層Bの網目状導体1202は、導体層Cの直線状導体1221Bと、Z方向の導体ビアで接続できる。また、導体層Aの中継導体1241は、導体層Cの直線状導体1221BとZ方向の導体ビアで接続し、中継導体1243は、導体層Cの直線状導体1221AとZ方向の導体ビアで接続できる。さらに、導体層Aの網目状導体1201と、導体層Cの直線状導体1221Aとを、Z方向の導体ビアで接続できる。また、中継導体1243は、導体層A乃至Cとは異なる導体層の導体と、Z方向の導体ビアで接続してもよい。また、中継導体1243は、その全てが電気的な接続に用いられていなくてもよく、その全てが電気的な接続に用いられていてもよく、その一部が電気的な接続に用いられていてもよい。
 導体層Aに中継導体1241を設けたことにより、直線状導体1221Bと略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 導体層Aに中継導体1243を設けたことにより、直線状導体1221Aと略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 導体層Bに中継導体1242を設けたことにより、直線状導体1221Aと略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 図141の第9の構成例において、上述した点以外は、図132の第6の構成例と同様である。
 図141のAの導体層Cについては、図132の第6の構成例の導体層Cと同一である。したがって、導体層Cを所定の平面範囲(平面領域)で見ると、直線状導体1221Aの電流分布と、直線状導体1221Bの電流分布とが同一または略同一となるため、誘導性ノイズの発生を抑制することができる。
 直線状導体1221Aおよび直線状導体1221Bは、Y方向に同じ配線パタンの繰り返しとなっているので、容量性ノイズをY方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図141のFに示されるように、導体層AとBの積層が遮光構造となっており、能動素子群167からのホットキャリア発光を遮光できることは勿論、図141のDおよびEに示されるように、導体層AとCとの積層、および、導体層BとCとの積層においても遮光構造となっており、遮光性が保たれている。これにより、導体層AとBの遮光制約を大幅に緩和できるので、導体層AとBの導体面積を最大限に利用することができ、配線抵抗を下げて、電圧降下をさらに改善できる。また、導体層A及びBのレイアウトの自由度を向上させることができる。
 図141の第9の構成例において、導体層Cの電流が流れやすい方向と、導体層AおよびBの電流が流れやすい方向は、略直交して略90度異なる。これにより、電流が拡散しやすくなる(電流が集中しにくくなる)ので、誘導性ノイズをさらに改善できる。
 <3層導体層の第9の構成例の第1変形例>
 図142は、3層導体層の第9の構成例の第1変形例を示している。
 図142のAは導体層C(配線層165C)を、図142のBは導体層A(配線層165A)を、図142のCは導体層B(配線層165B)を示している。
 また、図142のDは、導体層Aと導体層Cとの積層状態の平面図であり、図142のEは、導体層Bと導体層Cとの積層状態の平面図であり、図142のFは、導体層Aと導体層Bとの積層状態の平面図である。
 第9の構成例の第1変形例は、図133の第6の構成例の第1変形例の一部を変更した構成を有する。図142では、図133と対応する部分については同一の符号を付し、その部分の説明は適宜省略し、異なる部分について説明する。
 第9の構成例の第1変形例では、導体層Aの構成のみが、図133の第6の構成例の第1変形例と異なる。
 図133の第6の構成例の第1変形例の導体層Aは、網目状導体1201の行列状の間隙内に、中継導体1241が形成された列と、中継導体1241が形成されていない列とが、Y方向に、列単位で交互に配置されていた。
 図142の第9の構成例の第1変形例の導体層Aは、図133の第6の構成例の第1変形例の導体層Aの中継導体1241が形成されていない列の間隙に、中継導体1243が新たに設けられた構成を有する。
 すなわち、図142の第9の構成例の第1変形例の導体層Aは、網目状導体1201を有し、網目状導体1201の行列状の間隙内に、中継導体1241が形成された列と、中継導体1243が形成された列とが、X方向に、列単位で交互に配置された構成を有する。
 例えば、図142の第9の構成例の導体層A乃至Cが、導体層B、導体層C、導体層Aの順で、導体層Cが真ん中に配置される積層順である場合、導体層Bの中継導体1242は、導体層Cの直線状導体1251Aと接続し、導体層Bの網目状導体1202は、導体層Cの直線状導体1251Bと、Z方向の導体ビアで接続できる。また、導体層Aの中継導体1241は、導体層Cの直線状導体1251Bと接続し、中継導体1243は、導体層Cの直線状導体1251Aと接続できる。さらに、導体層Aの網目状導体1201と、導体層Cの直線状導体1251Aとを、Z方向の導体ビアで接続できる。
 導体層Aに中継導体1241を設けたことにより、直線状導体1251Bと略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 導体層Aに中継導体1243を設けたことにより、直線状導体1251Aと略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 導体層Bに中継導体1242を設けたことにより、直線状導体1251Aと略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 図142の第9の構成例の第1変形例において、上述した点以外は、図133の第6の構成例の第1変形例と同様である。
 図142のAの導体層Cについては、図132の第6の構成例の導体層Cと同一である。したがって、導体層Cを所定の平面範囲(平面領域)で見ると、直線状導体1251Aの電流分布と、直線状導体1251Bの電流分布とが同一または略同一となるため、誘導性ノイズの発生を抑制することができる。
 直線状導体1251Aおよび直線状導体1251Bは、X方向に同じ配線パタンの繰り返しとなっているので、容量性ノイズをX方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図142のFに示されるように、導体層AとBの積層が遮光構造となっており、能動素子群167からのホットキャリア発光を遮光できることは勿論、図142のDに示されるように、導体層AとCとの積層においても遮光構造となっており、遮光性が保たれている。これにより、導体層AとBの遮光制約を大幅に緩和できるので、導体層AとBの導体面積を最大限に利用することができ、配線抵抗を下げて、電圧降下をさらに改善できる。また、導体層A及びBのレイアウトの自由度を向上させることができる。
 図142の第9の構成例の第1変形例において、導体層Cの電流が流れやすい方向と、導体層AおよびBの電流が流れやすい方向は、同一または略同一である。この場合、配線レイアウトによっては、電圧降下をさらに改善できる。
 <3層導体層の第9の構成例の第2変形例>
 図143は、3層導体層の第9の構成例の第2変形例を示している。
 図143のAは導体層C(配線層165C)を、図143のBは導体層A(配線層165A)を、図143のCは導体層B(配線層165B)を示している。
 また、図143のDは、導体層Aと導体層Cとの積層状態の平面図であり、図143のEは、導体層Bと導体層Cとの積層状態の平面図であり、図143のFは、導体層Aと導体層Bとの積層状態の平面図である。
 第9の構成例の第2変形例は、図141の第9の構成例の一部を変更した構成を有する。図143では、図141と対応する部分については同一の符号を付し、その部分の説明は適宜省略し、異なる部分について説明する。
 第9の構成例の第2変形例では、導体層Bの構成のみが、図141の第9の構成例と異なる。
 図141の第9の構成例の導体層Bは、網目状導体1202を有し、網目状導体1202の行列状の全ての間隙内に、中継導体1242が形成されていた。
 これに対して、図143の第9の構成例の第2変形例では、網目状導体1201の各間隙内に、中継導体1242が形成された行と、中継導体1244(第4の中継導体)が形成された行とが、Y方向に、行単位で交互に配置されている。中継導体1244は、例えば、プラス電源に接続される配線(Vdd配線)である。
 例えば、図143の第9の構成例の第2変形例の導体層A乃至Cが、導体層B、導体層A、導体層Cの順で、導体層Aが真ん中に配置される積層順である場合、導体層Bの中継導体1242は、導体層Aの網目状導体1201とZ方向の導体ビアで接続し、導体層Bの中継導体1244は、導体層Bの網目状導体1202と、導体層A乃至Cとは異なる導体層の導体を介して接続する。また、導体層Bの網目状導体1202は、導体層Aの中継導体1241と、Z方向の導体ビアで接続できる。導体層Aの中継導体1241は、導体層Cの直線状導体1221BとZ方向の導体ビアで接続し、中継導体1243は、導体層Cの直線状導体1221AとZ方向の導体ビアで接続できる。さらに、導体層Aの網目状導体1201は、導体層Cの直線状導体1221Aと、Z方向の導体ビアで接続できる。なお、中継導体1244は、その全てが電気的な接続に用いられていなくてもよく、その全てが電気的な接続に用いられていてもよく、その一部が電気的な接続に用いられていてもよい。図143の第9の構成例の第2変形例では、位置ずれがあるものの、導体層A及びBおけるVdd配線の形状とVss配線の形状とが同一または略同一である。そのため、導体層A乃至Cのレイアウトを容易に設計できる場合があり、Vdd配線とVss配線とを好適な電流関係または電圧関係にしやすい場合がある。
 導体層Aに中継導体1241を設けたことにより、直線状導体1221Bと略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 導体層Aに中継導体1243を設けたことにより、直線状導体1221Aと略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 導体層Bに中継導体1242を設けたことにより、直線状導体1221Aと略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 導体層Bに中継導体1244を設けたことにより、直線状導体1221Bと略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 図143の第9の構成例の第2変形例において、上述した点以外は、図141の第9の構成例と同様である。
 図143のAの導体層Cについては、図141の第9の構成例の導体層Cと同一である。したがって、導体層Cを所定の平面範囲(平面領域)で見ると、直線状導体1221Aの電流分布と、直線状導体1221Bの電流分布とが同一または略同一となるため、誘導性ノイズの発生を抑制することができる。
 直線状導体1221Aおよび直線状導体1221Bは、Y方向に同じ配線パタンの繰り返しとなっているので、容量性ノイズをY方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図143のFに示されるように、導体層AとBの積層が遮光構造となっており、能動素子群167からのホットキャリア発光を遮光できることは勿論、図143のDおよびEに示されるように、導体層AとCとの積層、および、導体層BとCとの積層においても遮光構造となっており、遮光性が保たれている。これにより、導体層AとBの遮光制約を大幅に緩和できるので、導体層AとBの導体面積を最大限に利用することができ、配線抵抗を下げて、電圧降下をさらに改善できる。また、導体層A及びBのレイアウトの自由度を向上させることができる。
 図143の第9の構成例において、導体層Cの電流が流れやすい方向と、導体層AおよびBの電流が流れやすい方向は、略直交して略90度異なる。これにより、電流が拡散しやすくなる(電流が集中しにくくなる)ので、誘導性ノイズをさらに改善できる。
 <3層導体層の第9の構成例の第3変形例>
 図144は、3層導体層の第9の構成例の第3変形例を示している。
 図144のAは導体層C(配線層165C)を、図144のBは導体層A(配線層165A)を、図144のCは導体層B(配線層165B)を示している。
 また、図144のDは、導体層Aと導体層Cとの積層状態の平面図であり、図144のEは、導体層Bと導体層Cとの積層状態の平面図であり、図144のFは、導体層Aと導体層Bとの積層状態の平面図である。
 第9の構成例の第3変形例は、図142の第9の構成例の第1変形例の一部を変更した構成を有する。図144では、図142と対応する部分については同一の符号を付し、その部分の説明は適宜省略し、異なる部分について説明する。
 第9の構成例の第3変形例では、導体層Bの構成のみが、図142の第9の構成例の第1変形例と異なる。
 図142の第9の構成例の第1変形例の導体層Bは、網目状導体1202を有し、網目状導体1202の行列状の全ての間隙内に、中継導体1242が形成されていた。
 これに対し、図144の第9の構成例の第3変形例の導体層Bは、網目状導体1202を有し、網目状導体1202の行列状の間隙内に、中継導体1242が形成された列と、中継導体1244が形成された列とが、X方向に、列単位で交互に配置された構成を有する。
 例えば、図144の第9の構成例の第3変形例の導体層A乃至Cが、導体層B、導体層A、導体層Cの順で、導体層Aが真ん中に配置される積層順である場合、導体層Bの中継導体1242は、導体層Aの網目状導体1201とZ方向の導体ビアで接続し、導体層Bの中継導体1244は、導体層Bの網目状導体1202と、導体層A乃至Cとは異なる導体層の導体を介して接続する。また、導体層Bの網目状導体1202は、導体層Aの中継導体1241と、Z方向の導体ビアで接続できる。導体層Aの中継導体1241は、導体層Cの直線状導体1251BとZ方向の導体ビアで接続し、中継導体1243は、導体層Cの直線状導体1251AとZ方向の導体ビアで接続できる。さらに、導体層Aの網目状導体1201は、導体層Cの直線状導体1251Aと、Z方向の導体ビアで接続できる。図144の第9の構成例の第3変形例では、位置ずれがあるものの、導体層A及びBにおけるVdd配線の形状とVss配線の形状とが同一または略同一である。そのため、導体層A乃至Cのレイアウトを容易に設計できる場合があり、Vdd配線とVss配線とを好適な電流関係または電圧関係にしやすい場合がある。
 導体層Aに中継導体1241を設けたことにより、直線状導体1251Bと略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 導体層Aに中継導体1243を設けたことにより、直線状導体1251Aと略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 導体層Bに中継導体1242を設けたことにより、直線状導体1251Aと略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 導体層Bに中継導体1244を設けたことにより、直線状導体1251Bと略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 図144の第9の構成例の第3変形例において、上述した点以外は、図142の第9の構成例の第1変形例と同様である。
 図144のAの導体層Cについては、図142の第9の構成例の第1変形例の導体層Cと同一である。したがって、導体層Cを所定の平面範囲(平面領域)で見ると、直線状導体1251Aの電流分布と、直線状導体1251Bの電流分布とが同一または略同一となるため、誘導性ノイズの発生を抑制することができる。
 直線状導体1251Aおよび直線状導体1251Bは、X方向に同じ配線パタンの繰り返しとなっているので、容量性ノイズをX方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図144のFに示されるように、導体層AとBの積層が遮光構造となっており、能動素子群167からのホットキャリア発光を遮光できることは勿論、図144のDに示されるように、導体層AとCとの積層においても遮光構造となっており、遮光性が保たれている。これにより、導体層AとBの遮光制約を大幅に緩和できるので、導体層AとBの導体面積を最大限に利用することができ、配線抵抗を下げて、電圧降下をさらに改善できる。また、導体層A及びBのレイアウトの自由度を向上させることができる。
 図144の第9の構成例の第3変形例において、導体層Cの電流が流れやすい方向と、導体層AおよびBの電流が流れやすい方向は、同一または略同一である。この場合、配線レイアウトによっては、電圧降下をさらに改善できる。
 <3層導体層の第9の構成例の第4変形例>
 図145は、3層導体層の第9の構成例の第4変形例を示している。
 図145のAは導体層C(配線層165C)を、図145のBは導体層A(配線層165A)を、図145のCは導体層B(配線層165B)を示している。
 また、図145のDは、導体層Aと導体層Cとの積層状態の平面図であり、図145のEは、導体層Bと導体層Cとの積層状態の平面図であり、図145のFは、導体層Aと導体層Bとの積層状態の平面図である。
 第9の構成例の第4変形例は、図144の第9の構成例の第3変形例の一部を変更した構成を有する。図145では、図144と対応する部分については同一の符号を付し、その部分の説明は適宜省略し、異なる部分について説明する。
 図144の第3変形例では、導体層Aの網目状導体1201と導体層Bの網目状導体1202の間隙の位置を比較すると、X方向の位置が異なり、Y方向の位置が一致している。
 一方、図145の第4変形例では、導体層Aの網目状導体1201と導体層Bの網目状導体1202の間隙の位置を比較すると、X方向の位置が一致し、Y方向の位置が異なる。
 また例えば、導体層Aの中継導体1241と、導体層Bの中継導体1244の位置を比較すると、図144の第3変形例では、X方向の位置が異なり、Y方向の位置が一致している。一方、図145の第4変形例では、X方向の位置が一致し、Y方向の位置が異なる。
 また例えば、導体層Aの中継導体1243と、導体層Bの中継導体1242の位置を比較すると、図144の第3変形例では、X方向の位置が異なり、Y方向の位置が一致している。一方、図145の第4変形例では、X方向の位置が一致し、Y方向の位置が異なる。
 図144の第3変形例では、導体層AとBの積層、および、導体層AとCの積層が遮光構造となっており、遮光性が保たれている。一方、図145の第4変形例では、導体層AとCの積層、および、導体層BとCの積層が遮光構造となっており、遮光性が保たれている。これにより、導体層AとBの遮光制約を大幅に緩和できるので、導体層AとBの導体面積を最大限に利用することができ、配線抵抗を下げて、電圧降下をさらに改善できる。また、導体層A及びBのレイアウトの自由度を向上させることができる。
 また、例えば、図145の第9の構成例の第4変形例の導体層A乃至Cが、導体層B、導体層C、導体層Aの順で、導体層Cが真ん中に配置される積層順である場合、導体層Bの中継導体1242は、導体層Cの直線状導体1251AとZ方向の導体ビアで接続し、導体層Bの中継導体1244は、導体層Cの直線状導体1251BとZ方向の導体ビアで接続する。また、導体層Bの網目状導体1202は、導体層Cの直線状導体1251Bと、Z方向の導体ビアで接続できる。導体層Aの中継導体1241は、導体層Cの直線状導体1251BとZ方向の導体ビアで接続し、中継導体1243は、導体層Cの直線状導体1251AとZ方向の導体ビアで接続できる。さらに、導体層Aの網目状導体1201は、導体層Cの直線状導体1251Aと、Z方向の導体ビアで接続できる。また、中継導体1244は、導体層A乃至Cとは異なる導体層の導体と、Z方向の導体ビアで接続してもよい。
 図145の第4変形例において、上述した点以外は、図144の第3の変形例と同様である。
 図145のAの導体層Cを所定の平面範囲(平面領域)で見ると、直線状導体1251Aの電流分布と、直線状導体1251Bの電流分布とが同一または略同一となるため、誘導性ノイズの発生を抑制することができる。
 直線状導体1251Aおよび直線状導体1251Bは、X方向に同じ配線パタンの繰り返しとなっているので、容量性ノイズをX方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図145の第9の構成例の第4変形例において、導体層Cの電流が流れやすい方向と、導体層AおよびBの電流が流れやすい方向は、同一または略同一である。この場合、配線レイアウトによっては、電圧降下をさらに改善できる。
 導体層Aに中継導体1241を設けたことにより、直線状導体1251Bと略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 導体層Aに中継導体1243を設けたことにより、直線状導体1251Aと略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 導体層Bに中継導体1242を設けたことにより、直線状導体1251Aと略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 導体層Bに中継導体1244を設けたことにより、直線状導体1251Bと略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 <3層導体層の第10の構成例>
 図146は、3層導体層の第10の構成例を示している。
 図146のAは導体層C(配線層165C)を、図146のBは導体層A(配線層165A)を、図146のCは導体層B(配線層165B)を示している。
 また、図146のDは、導体層Aと導体層Cとの積層状態の平面図であり、図146のEは、導体層Bと導体層Cとの積層状態の平面図であり、図146のFは、導体層Aと導体層Bとの積層状態の平面図である。
 第10の構成例は、図128の第4の構成例の一部を変更した構成を有する。図146では、図128と対応する部分については同一の符号を付し、その部分の説明は適宜省略し、異なる部分について説明する。
 第10の構成例では、導体層Cの構成のみが、図128の第4の構成例と異なる。
 図146のAの導体層Cは、X方向に長い直線状導体1291Aと、X方向に長い直線状導体1291Bとを、Y方向に交互に周期的に配置して構成されている。直線状導体1219Aは、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。直線状導体1291Bは、例えば、プラス電源に接続される配線(Vdd配線)である。
 図128の第4の構成例において、図128のAの導体層Cの直線状導体1221Aの繰り返し周期である導体周期FYCは、図128のBの導体層Aの網目状導体1201のY方向の繰り返し周期である導体周期FYAの2倍であった。
 これに対して、図146のAの導体層Cの直線状導体1291Aの繰り返し周期である導体周期FYCは、図146のBの導体層Aの網目状導体1201のY方向の繰り返し周期である導体周期FYAの1倍である。
 同様に、図128の第4の構成例では、図128のAの導体層Cの直線状導体1221Bの導体周期FYCは、図128のCの導体層Bの網目状導体1202の導体周期FYBの2倍であったが、図146のAの導体層Cの直線状導体1291Bの導体周期FYCは、図146のCの導体層Bの網目状導体1202の導体周期FYBの1倍である。
 図146の第10の構成例において、上述した点以外は、図128の第4の構成例と同様である。
 図146のAの導体層Cを所定の平面範囲(平面領域)で見ると、直線状導体1291Aの電流分布と、直線状導体1291Bの電流分布とが同一または略同一となるため、誘導性ノイズの発生を抑制することができる。
 直線状導体1291Aおよび直線状導体1291Bは、Y方向に同じ配線パタンの繰り返しとなっているので、容量性ノイズをY方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図146のFに示されるように、導体層AとBの積層が遮光構造となっており、能動素子群167からのホットキャリア発光を遮光できることは勿論、図132のDおよびEに示されるように、導体層AとCとの積層、および、導体層BとCとの積層においても、一定範囲で、遮光性が保たれている。これにより、導体層AとBの遮光制約を緩和できるので、導体層AとBの導体面積を最大限に利用することができ、配線抵抗を下げて、電圧降下をさらに改善できる。また、導体層A及びBのレイアウトの自由度を向上させることができる。
 図146の第10の構成例において、導体層Cの電流が流れやすい方向と、導体層AおよびBの電流が流れやすい方向は、略直交して略90度異なる。これにより、電流が拡散しやすくなる(電流が集中しにくくなる)ので、誘導性ノイズをさらに改善できる。
 導体層Aに中継導体1241を設けたことにより、直線状導体1291Bと略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 導体層Bに中継導体1242を設けたことにより、直線状導体1291Aと略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 <3層導体層の第10の構成例の変形例>
 図147は、3層導体層の第10の構成例の変形例を示している。
 図147のAは導体層C(配線層165C)を、図147のBは導体層A(配線層165A)を、図147のCは導体層B(配線層165B)を示している。
 また、図147のDは、導体層Aと導体層Cとの積層状態の平面図であり、図147のEは、導体層Bと導体層Cとの積層状態の平面図であり、図147のFは、導体層Aと導体層Bとの積層状態の平面図である。
 第10の構成例の変形例は、図128の第4の構成例の一部を変更した構成を有する。図147では、図128と対応する部分については同一の符号を付し、その部分の説明は適宜省略し、異なる部分について説明する。
 第10の構成例の変形例では、導体層Cの構成のみが、図128の第4の構成例と異なる。
 図147のAの導体層Cは、X方向に長い直線状導体1301Aと、X方向に長い直線状導体1301Bとを、Y方向に交互に周期的に配置して構成されている。直線状導体1301Aは、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。直線状導体1301Bは、例えば、プラス電源に接続される配線(Vdd配線)である。直線状導体1301Aと直線状導体1301Bとの間隔は、間隙幅GYC1と間隙幅GYC2とで交互に配置されている。
 図128の第4の構成例において、図128のAの導体層Cの直線状導体1221Aの繰り返し周期である導体周期FYCは、図128のBの導体層Aの網目状導体1201のY方向の繰り返し周期である導体周期FYAの2倍であった。
 これに対して、図147のAの導体層Cの直線状導体1301Aの繰り返し周期である導体周期FYCは、図147のBの導体層Aの網目状導体1201のY方向の繰り返し周期である導体周期FYAの(1/整数)倍である。図147は、導体周期FYCが、導体周期FYAの1/2倍の例である。
 同様に、図128の第4の構成例では、図128のAの導体層Cの直線状導体1221Bの導体周期FYCは、図128のCの導体層Aの網目状導体1202の導体周期FYBの2倍であったが、図147のAの導体層Cの直線状導体1301Bの導体周期FYCは、図147のCの導体層Bの網目状導体1202の導体周期FYBの(1/整数)倍である。図147は、導体周期FYCが、導体周期FYBの1/2倍の例である。
 図147の第10の構成例の変形例において、上述した点以外は、図128の第4の構成例と同様である。
 図147のAの導体層Cを所定の平面範囲(平面領域)で見ると、直線状導体1301Aの電流分布と、直線状導体1301Bの電流分布とが同一または略同一となるため、誘導性ノイズの発生を抑制することができる。
 直線状導体1301Aおよび直線状導体1301Bは、Y方向に同じ配線パタンの繰り返しとなっているので、容量性ノイズをY方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図147のFに示されるように、導体層AとBの積層により、能動素子群167からのホットキャリア発光を遮光できることは勿論、図132のDおよびEに示されるように、導体層AとCとの積層、および、導体層BとCとの積層においても、一定範囲で、遮光性が保たれている。これにより、導体層AとBの遮光制約を緩和できるので、導体層AとBの導体面積を最大限に利用することができ、配線抵抗を下げて、電圧降下をさらに改善できる。また、導体層A及びBのレイアウトの自由度を向上させることができる。
 図147の第10の構成例の変形例において、導体層Cの電流が流れやすい方向と、導体層AおよびBの電流が流れやすい方向は、略直交して略90度異なる。これにより、電流が拡散しやすくなる(電流が集中しにくくなる)ので、誘導性ノイズをさらに改善できる。
 導体層Aに中継導体1241を設けたことにより、直線状導体1301Bと略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 導体層Bに中継導体1242を設けたことにより、直線状導体1301Aと略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 <3層導体層の第11の構成例>
 上述した3層導体層の第1乃至第10の構成例では、導体層Aおよび導体層Bの構成として、X方向の抵抗値とY方向の抵抗値が異なる網目状導体を用いた第11の構成例を採用して説明した。換言すれば、導体層Aおよび導体層Bとして、図128の第4の構成例の網目状導体1201および1202や、図131の第5の構成例の網目状導体1261および1602のように、X方向の間隙幅GXAとY方向の間隙幅GYAとが異なり、X方向の間隙幅GXBとY方向の間隙幅GYBとが異なる構成を採用して説明した。
 しかしながら、導体層Aおよび導体層Bは、図12乃至図41で説明した導体層A及びBの第1乃至第13の構成例のいずれをも採用することができる。
 次の、図148乃至図152では、導体層C(配線層165C)については、図122等で採用した構成で統一し、導体層Aおよび導体層Bが、X方向とY方向の抵抗値が同一の網目状導体を採用した構成について説明する。
 図148は、3層導体層の第11の構成例を示している。
 図148のAは導体層C(配線層165C)を、図148のBは導体層A(配線層165A)を、図148のCは導体層B(配線層165B)を示している。
 また、図148のDは、導体層Aと導体層Cとの積層状態の平面図であり、図148のEは、導体層Bと導体層Cとの積層状態の平面図であり、図148のFは、導体層Aと導体層Bとの積層状態の平面図である。
 図148の第11の構成例において、図128に示した第4の構成例と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略して、異なる部分に着目して説明する。
 図148のAの導体層Cは、X方向に長い直線状導体1221Aと、X方向に長い直線状導体1221Bとを、導体周期FYCでY方向に交互に周期的に配置して構成されている。
 図148のBの導体層Aは、網目状導体1311から成る。網目状導体1311は、X方向の導体幅WXA、間隙幅GXA、および、導体周期FXAを有し、Y方向の導体幅WYA、間隙幅GYA、および、導体周期FYAを有する。ここで、導体幅WXA=導体幅WYA、間隙幅GXA=間隙幅GYA、および、導体周期FXA=導体周期FYAである。また、網目状導体1201の各間隙には、中継導体1241が配置されている。中継導体1241どうしの間隔、換言すれば、中継導体1241の周期も、導体周期FXAおよびFYAである。網目状導体1311は、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。
 図128のCの導体層Bは、網目状導体1312から成る。網目状導体1312は、X方向の導体幅WXB、間隙幅GXB、および、導体周期FXBを有し、Y方向の導体幅WYB、間隙幅GYB、および、導体周期FYBを有する。ここで、導体幅WXB=導体幅WYB、間隙幅GXB=間隙幅GYB、および、導体周期FXB=導体周期FYBである。また、網目状導体1312の各間隙には、中継導体1242が配置されている。中継導体1242どうしの間隔、換言すれば、中継導体1242の周期も、導体周期FXBおよびFYBである。網目状導体1312は、例えば、プラス電源に接続される配線(Vdd配線)である。
 図148のBおよびCに示されるように、導体層Aに形成された中継導体1241の平面位置と、導体層Bに形成された中継導体1242の平面位置は同じである。換言すれば、導体層Aの網目状導体1311と、導体層Bの網目状導体1312とは、積層方向から見て全て重複している。このような構成の導体層Aと導体層Bは、図15で示した導体層A及びBの第2の構成例に相当し、図17のシミュレーション結果で示したように誘導性ノイズを大幅に改善することができる。
 そのため、導体層C(配線層165C)を、図120のBに示したように、導体層A(配線層165A)と導体層B(配線層165B)の間に配置して、導体層Aの網目状導体1311と、導体層Cの直線状導体1221Aとが、Z方向の導体ビアで接続され、導体層Bの網目状導体1312と、導体層Cの直線状導体1221Bとが、Z方向の導体ビアで接続される積層順に好適である。
 導体層Cを所定の平面範囲(平面領域)で見ると、直線状導体1221Aの電流分布と、直線状導体1221Bの電流分布とが同一または略同一となるため、誘導性ノイズの発生を抑制することができる。
 導体層Cの直線状導体1221Aおよび直線状導体1221Bは、Y方向に同じ配線パタンの繰り返しとなっているので、容量性ノイズをY方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図148のFに示されるように、導体層Aと導体層Bの積層は、遮光構造となっていないが、図148のDおよびEに示されるように、導体層AとCとの積層、および、導体層BとCとの積層によって遮光構造となっており、遮光性が保たれている。これにより、能動素子群167からのホットキャリア発光を遮光できる。また、導体層AとBの遮光制約を大幅に緩和できるので、導体層AとBの導体面積を最大限に利用することができ、配線抵抗を下げて、電圧降下をさらに改善できる。導体層A及びBのレイアウトの自由度を向上させることができる。
 <3層導体層の第12の構成例>
 図149は、3層導体層の第12の構成例を示している。
 図149のAは導体層C(配線層165C)を、図149のBは導体層A(配線層165A)を、図149のCは導体層B(配線層165B)を示している。
 また、図149のDは、導体層Aと導体層Cとの積層状態の平面図であり、図149のEは、導体層Bと導体層Cとの積層状態の平面図であり、図149のFは、導体層Aと導体層Bとの積層状態の平面図である。
 図149の第12の構成例において、図128に示した第4の構成例と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略して、異なる部分に着目して説明する。
 図149のAの導体層Cは、X方向に長い直線状導体1221Aと、X方向に長い直線状導体1221Bとを、導体周期FYCでY方向に交互に周期的に配置して構成されている。
 図149のBの導体層Aは、面状導体1321から成る。面状導体1321は、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。
 図149のCの導体層Bは、面状導体1322から成る。面状導体1322は、例えば、プラス電源に接続される配線(Vdd配線)である。
 導体層Cを所定の平面範囲(平面領域)で見ると、直線状導体1221Aの電流分布と、直線状導体1221Bの電流分布とが同一または略同一となるため、誘導性ノイズの発生を抑制することができる。
 直線状導体1222Aおよび直線状導体1222Bは、Y方向に同じ配線パタンの繰り返しとなっているので、容量性ノイズをY方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図149のFに示されるように、導体層AとBの積層が遮光構造となっており、能動素子群167からのホットキャリア発光を遮光することができ、図149のDおよびEに示されるように、導体層AとCとの積層、および、導体層BとCとの積層においても遮光構造となっており、遮光性が保たれている。これにより、導体層AとBの遮光制約を大幅に緩和することができるので、導体層AとBの導体面積を最大限に利用することができ、配線抵抗を下げて、電圧降下をさらに改善することができる。また、導体層A及びBのレイアウトの自由度を向上させることができる。
 この3層導体層の第12の構成例は、図120のBに示したような、導体層C(配線層165C)を、導体層A(配線層165A)と導体層B(配線層165B)の間に配置して、導体層Aの面状導体1321と、導体層Cの直線状導体1221Aとが、Z方向の導体ビアで接続され、導体層Bの面状導体1322と、導体層Cの直線状導体1221Bとが、Z方向の導体ビアで接続される積層順に好適である。
 <3層導体層の第12の構成例の変形例>
 図150は、3層導体層の第12の構成例の第1変形例を示している。
 図150のAは導体層C(配線層165C)を、図150のBは導体層A(配線層165A)を、図150のCは導体層B(配線層165B)を示している。
 また、図150のDは、導体層Aと導体層Cとの積層状態の平面図であり、図150のEは、導体層Bと導体層Cとの積層状態の平面図であり、図150のFは、導体層Aと導体層Bとの積層状態の平面図である。
 図150において、図148および図149に示した第11および第12の構成例と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略して、異なる部分に着目して説明する。
 第12の構成例の第1変形例では、図150のCの導体層Bの構成のみが、図149と異なる。
 図150のCの導体層Bは、網目状導体1312と、その間隙に形成された中継導体1242とから成る。
 図149に示した第12の構成例は、導体層Aについては、図148に示した3層導体層の第11の構成例の網目状導体1311および中継導体1241を、面状導体1321に変更し、導体層Bについては、図148に示した3層導体層の第11の構成例の網目状導体1312および中継導体1242を、面状導体1322に変更した構成である。
 これに対して、図150の第12の構成例の第1変形例は、導体層Aについては、図148に示した3層導体層の第11の構成例の網目状導体1311および中継導体1241を、面状導体1321に変更し、導体層Bについては、図148に示した3層導体層の第11の構成例と同じ、網目状導体1312および中継導体1242とした構成である。
 図151は、3層導体層の第12の構成例の第2変形例を示している。
 図151のAは導体層C(配線層165C)を、図151のBは導体層A(配線層165A)を、図151のCは導体層B(配線層165B)を示している。
 また、図151のDは、導体層Aと導体層Cとの積層状態の平面図であり、図151のEは、導体層Bと導体層Cとの積層状態の平面図であり、図151のFは、導体層Aと導体層Bとの積層状態の平面図である。
 図151において、図148および図149に示した第11および第12の構成例と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略して、異なる部分に着目して説明する。
 第12の構成例の第2変形例では、図151のBの導体層Aの構成のみが、図149と異なる。
 図149に示した第12の構成例は、導体層Aについては、図148に示した3層導体層の第11の構成例の網目状導体1311および中継導体1241を、面状導体1321に変更し、導体層Bについては、図148に示した3層導体層の第11の構成例の網目状導体1312および中継導体1242を、面状導体1322に変更した構成である。
 これに対して、図151の第12の構成例の第2変形例は、導体層Aについては、図148に示した3層導体層の第11の構成例と同じ、網目状導体1311および中継導体1241とし、導体層Bについては、図148に示した3層導体層の第11の構成例の網目状導体1312および中継導体1242を、面状導体1322に変更した構成である。
 第1変形例および第2変形例においても、図149に示した第12の構成例と同様の作用効果を奏する。
 すなわち、導体層Cを所定の平面範囲(平面領域)で見ると、直線状導体1221Aの電流分布と、直線状導体1221Bの電流分布とが同一または略同一となるため、誘導性ノイズの発生を抑制することができる。
 直線状導体1222Aおよび直線状導体1222Bは、Y方向に同じ配線パタンの繰り返しとなっているので、容量性ノイズをY方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 導体層AとBの積層が遮光構造となっており、能動素子群167からのホットキャリア発光を遮光することができることは勿論、導体層AとCとの積層、および、導体層BとCとの積層においても遮光構造となっており、遮光性が保たれている。これにより、導体層AとBの遮光制約を大幅に緩和することができるので、導体層AとBの導体面積を最大限に利用することができ、配線抵抗を下げて、電圧降下をさらに改善することができる。また、導体層A及びBのレイアウトの自由度を向上させることができる。
 図150の第1変形例は、特に、導体層A乃至Cの3層を電気的に接続できる積層順、具体的には、図120のAおよびBに示した積層順に好適である。例えば、図120のAに示した導体層A、B、Cの積層順の場合、導体層Aの面状導体1321と、導体層Bの中継導体1242とが接続でき、導体層Bの網目状導体1312および中継導体1242が、それぞれ、導体層Cの直線状導体1221Bおよび1221Aと、電流特性が共通の導体どうしで、かつ、平面領域が重複する領域の一部において、Z方向の導体ビアで接続できる。
 図151の第2変形例は、特に、導体層A乃至Cの3層を電気的に接続できる積層順、具体的には、図120のBおよびCに示した積層順に好適である。例えば、図120のBに示した導体層A、C、Bの積層順の場合、導体層Aの網目状導体1311および中継導体1241が、それぞれ、導体層Cの直線状導体1221Aおよび1221Bと、電流特性が共通の導体どうしで、かつ、平面領域が重複する領域の一部において、Z方向の導体ビアで接続でき、導体層Bの面状導体1322と、導体層Cの直線状導体1221Bとが、接続できる。
 <3層導体層の第13の構成例>
 図152は、3層導体層の第13の構成例を示している。
 図152のAは導体層C(配線層165C)を、図152のBは導体層A(配線層165A)を、図152のCは導体層B(配線層165B)を示している。
 また、図152のDは、導体層Aと導体層Cとの積層状態の平面図であり、図152のEは、導体層Bと導体層Cとの積層状態の平面図であり、図152のFは、導体層Aと導体層Bとの積層状態の平面図である。
 図152の第12の構成例において、図148に示した第11の構成例と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略して、異なる部分に着目して説明する。
 第13の構成例では、図152のBの導体層Aの構成のみが、図148と異なる。
 図152のBの導体層Aは、網目状導体1331から成る。網目状導体1331は、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。網目状導体1331は、X方向の導体幅WXA、間隙幅GXA、および、導体周期FXAを有し、Y方向の導体幅WYA、間隙幅GYA、および、導体周期FYAを有する。ここで、導体幅WXA=導体幅WYA、間隙幅GXA=間隙幅GYA、および、導体周期FXA=導体周期FYAである。ただし、網目状導体1331の間隙の間隙幅GXAおよび間隙幅GYAは、導体層Bの網目状導体1312の間隙の間隙幅GXBおよび間隙幅GYBよりも小さい(間隙幅GXA=間隙幅GYA<間隙幅GXB=間隙幅GYB)。また、網目状導体1331の間隙内には、中継導体は形成されていない。
 図152の第13の構成例において、上述した点以外は、図148の第11の構成例と同様である。
 図152のAの導体層Cを所定の平面範囲(平面領域)で見ると、直線状導体1221Aの電流分布と、直線状導体1221Bの電流分布とが同一または略同一となるため、誘導性ノイズの発生を抑制することができる。
 直線状導体1221Aおよび直線状導体1221Bは、Y方向に同じ配線パタンの繰り返しとなっているので、容量性ノイズをY方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図152のDおよびEに示されるように、導体層AとCとの積層、および、導体層BとCとの積層のそれぞれが遮光構造となっており、遮光性が保たれている。これにより、導体層AとBの遮光制約を大幅に緩和できるので、導体層AとBの導体面積を最大限に利用することができ、配線抵抗を下げて、電圧降下をさらに改善できる。また、導体層A及びBのレイアウトの自由度を向上させることができる。
 導体層Bに中継導体1242を設けたことにより、直線状導体1221Aと略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 図152の第13の構成例は、特に、導体層A乃至Cの3層を電気的に接続できる積層順、具体的には、図120のBに示した積層順に好適である。例えば、図120のBに示した導体層A、C、Bの積層順の場合、導体層Aの網目状導体1331が、導体層Cの直線状導体1221AとZ方向の導体ビアで接続でき、導体層Bの網目状導体1312および中継導体1242が、それぞれ、導体層Cの直線状導体1221Bおよび1221Aと、電流特性が共通の導体どうしで、かつ、平面領域が重複する領域の一部において、Z方向の導体ビアで接続できる。
 <3層導体層の第14の構成例>
 上述した3層導体層の第1乃至第13の構成例では、導体層Cの構成として、いわゆる縦縞または横縞の配線パタンである、X方向に長い直線状導体か、または、Y方向に長い直線状導体を用いた構成を採用して説明した。
 しかしながら、導体層Cは、縦縞または横縞の配線パタンに限られない。
 次の、図153乃至図163では、導体層Cが、縦縞または横縞の配線パタン以外の構成を有する場合について説明する。
 図153は、3層導体層の第14の構成例を示している。
 図153のAは導体層C(配線層165C)を、図153のBは導体層A(配線層165A)を、図153のCは導体層B(配線層165B)を示している。
 また、図153のDは、導体層Aと導体層Cとの積層状態の平面図であり、図153のEは、導体層Bと導体層Cとの積層状態の平面図であり、図153のFは、導体層Aと導体層Bとの積層状態の平面図である。
 図153の第14の構成例において、図148に示した第11の構成例と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略して、異なる部分に着目して説明する。
 第14の構成例では、図153のAの導体層Cの構成のみが、図148と異なる。
 図153のAの導体層Cは、複数の矩形状導体1341Aおよび1341Bを、所定の繰り返し周期で同一平面上に繰り返し配置して構成されている。矩形状導体1341Aは、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。矩形状導体1341Bは、例えば、プラス電源に接続される配線(Vdd配線)である。
 具体的には、矩形状導体1341Aを、X方向に間隙幅GXCを空けて繰り返し配置した行と、矩形状導体1341Bを、X方向に間隙幅GXCを空けて繰り返し配置した行とが、Y方向に交互に周期的に配置されている。矩形状導体1341Aおよび1341Bは、X方向には導体周期FXCで繰り返し配置され、Y方向には導体周期FYCで繰り返し配置されている。矩形状導体1341Aと矩形状導体1341BとのY方向の間には、間隙幅GYCの間隙がある。矩形状導体1341Aは、X方向の導体幅WXCAおよびY方向の導体幅WYCAを有し、矩形状導体1341Bは、X方向の導体幅WXCBおよびY方向の導体幅WYCBを有する。ここで、導体幅WXCA、WYCA、WXCB、および、WYCBは同一である(導体幅WXCA=導体幅WYCA=導体幅WXCB=導体幅WYCB)。
 図153の第14の構成例において、上述した点以外は、図148の第11の構成例と同様である。
 図153のAの導体層Cを所定の平面範囲(平面領域)で見ると、矩形状導体1341Aの電流分布と、矩形状導体1341Bの電流分布とが同一または略同一となるため、誘導性ノイズの発生を抑制することができる。
 矩形状導体1341Aおよび矩形状導体1341Bは、Y方向に同じ配線パタンの繰り返しとなっているので、容量性ノイズをY方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図153のDおよびEに示されるように、導体層AとCとの積層、および、導体層BとCとの積層のそれぞれが遮光構造となっており、遮光性が保たれている。これにより、導体層AとBの遮光制約を大幅に緩和できるので、導体層AとBの導体面積を最大限に利用することができ、配線抵抗を下げて、電圧降下をさらに改善できる。また、導体層A及びBのレイアウトの自由度を向上させることができる。
 導体層Aに中継導体1241を設けたことにより、矩形状導体1341Bと略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 導体層Bに中継導体1242を設けたことにより、矩形状導体1341Aと略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 <3層導体層の第14の構成例の変形例>
 図154は、3層導体層の第14の構成例の第1変形例を示している。
 図154のAは導体層C(配線層165C)を、図154のBは導体層A(配線層165A)を、図154のCは導体層B(配線層165B)を示している。
 また、図154のDは、導体層Aと導体層Cとの積層状態の平面図であり、図154のEは、導体層Bと導体層Cとの積層状態の平面図であり、図154のFは、導体層Aと導体層Bとの積層状態の平面図である。
 図154において、図153に示した第14の構成例と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略して、異なる部分に着目して説明する。
 第14の構成例の第1変形例では、図154のAの導体層Cの構成のみが、図153と異なり、導体層AおよびBの構成は、図153と同様である。
 図154のAの導体層Cは、複数の矩形状導体1341Aおよび1341Bを、所定の繰り返し周期で同一平面上に繰り返し配置して構成される点で図153と共通するが、隣接する列で、Y方向の導体周期FYCの1/4だけ、配置がずれている点が異なる。X方向の繰り返し周期である導体周期FXCは、2列単位となる。
 図155は、3層導体層の第14の構成例の第2変形例を示している。
 図155のAは導体層C(配線層165C)を、図155のBは導体層A(配線層165A)を、図155のCは導体層B(配線層165B)を示している。
 また、図155のDは、導体層Aと導体層Cとの積層状態の平面図であり、図155のEは、導体層Bと導体層Cとの積層状態の平面図であり、図155のFは、導体層Aと導体層Bとの積層状態の平面図である。
 図155において、図153に示した第14の構成例と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略して、異なる部分に着目して説明する。
 第14の構成例の第2変形例では、図155のAの導体層Cの構成のみが、図149と異なり、導体層AおよびBの構成は、図149と同様である。
 図155のAの導体層Cは、複数の矩形状導体1341Aおよび1341Bを、所定の繰り返し周期で同一平面上に繰り返し配置して構成される点で図149と共通するが、隣接する列で、Y方向の導体周期FYCの1/2だけ、配置がずれている点が異なる。X方向の繰り返し周期である導体周期FXCは、2列単位となる。なお、矩形状導体1341Aおよび1341Bの、隣接する列でのY方向のずらし量は、任意の値に設計することができる。
 図154および図155の第14の構成例の第1変形例および第2変形例において、導体層Cを所定の平面範囲(平面領域)で見ると、矩形状導体1341Aの電流分布と、矩形状導体1341Bの電流分布とが同一または略同一となるため、誘導性ノイズの発生を抑制することができる。
 また、第14の構成例の第1変形例および第2変形例において、矩形状導体1341Aおよび矩形状導体1341Bは、Y方向に同じ配線パタンの繰り返しとなっているので、容量性ノイズをY方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図155の第14の構成例の第2変形例では、さらに、矩形状導体1341Aおよび矩形状導体1341Bは、X方向に同じ配線パタンの繰り返しとなっているので、容量性ノイズをX方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図154の第14の構成例の第1変形例では、導体層AとBの積層、導体層AとCとの積層、および、導体層BとCとの積層により、一定範囲で、遮光性が保たれている。これにより、導体層AとBの遮光制約を若干緩和できるので、導体層AとBの導体面積を最大限に利用することができ、配線抵抗を下げて、電圧降下をさらに改善できる。また、導体層A及びBのレイアウトの自由度を向上させることができる。
 図155の第14の構成例の第2変形例では、導体層AとCとの積層、および、導体層BとCとの積層のそれぞれが遮光構造となっており、遮光性が保たれている。これにより、導体層AとBの遮光制約を大幅に緩和できるので、導体層AとBの導体面積を最大限に利用することができ、配線抵抗を下げて、電圧降下をさらに改善できる。また、導体層A及びBのレイアウトの自由度を向上させることができる。
 導体層Aに中継導体1241を設けたことにより、矩形状導体1341Bと略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 導体層Bに中継導体1242を設けたことにより、矩形状導体1341Aと略最短距離または短距離で接続することが可能となり、電圧降下、エネルギ損失、または、誘導性ノイズを低減できる。
 <3層導体層の第14の構成例におけるその他の変形例>
 以下では、図156乃至図163を参照して、図153に示した3層導体層の第14の構成例のその他の変形例について説明する。
 なお、第14の構成例の変形例は、図154および図155の第1および第2変形例と同様に、導体層Cの構成のみが変更されるため、図156乃至図163では、導体層Cの構成のみを図示する。また、図156乃至図163では、図153のAに示した第14の構成例の導体層Cと比較して、導体層Cの構成を説明する。
 図156のAは、3層導体層の第14の構成例の第3変形例の導体層Cを示している。
 図156のAの導体層Cは、複数の矩形状導体1342Aおよび1342Bを、所定の繰り返し周期で同一平面上に繰り返し配置して構成されている。矩形状導体1342Aは、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。矩形状導体1342Bは、例えば、プラス電源に接続される配線(Vdd配線)である。
 図156のAの導体層Cが図153のAの導体層Cと異なる点は、矩形状導体1342Aおよび1342Bの導体サイズ、即ち、導体幅WXCA、WYCA、WXCB、および、WYCBである。なお、導体幅WXCA、WYCA、WXCB、および、WYCBは同一である(導体幅WXCA=導体幅WYCA=導体幅WXCB=導体幅WYCB)。
 図156のAの導体層Cは、容量性ノイズをY方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 また、矩形状導体1342Aおよび1342Bの導体サイズを、図153のAに示した第14の構成例よりも大きくすることにより、配線抵抗をより下げることができる。
 図156のBは、3層導体層の第14の構成例の第4変形例の導体層Cを示している。
 図156のBの導体層Cは、複数の矩形状導体1342Aおよび1342Bを、所定の繰り返し周期で同一平面上に繰り返し配置して構成される点で図156のAと共通するが、隣接する列で、Y方向の導体周期FYCの1/4だけ、配置がずれている点が異なる。X方向の繰り返し周期である導体周期FXCは、2列単位となる。
 図156のBの導体層Cは、容量性ノイズをY方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図156のCは、3層導体層の第14の構成例の第5変形例の導体層Cを示している。
 図156のCの導体層Cは、複数の矩形状導体1342Aおよび1342Bを、所定の繰り返し周期で同一平面上に繰り返し配置して構成される点で図156のAと共通するが、隣接する列で、Y方向の導体周期FYCの1/2だけ、配置がずれている点が異なる。隣接する行で、X方向の導体周期FXCの1/2だけ、配置がずれているとも言える。X方向の導体周期FXCは、2列単位であり、Y方向の導体周期FYCは、2行単位である。なお、矩形状導体1342Aおよび1342Bの、隣接する列でのY方向のずらし量は、任意の値に設計することができる。
 図156のCの導体層Cは、容量性ノイズをY方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 さらに、図156のCの導体層Cは、容量性ノイズをX方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図157のAは、3層導体層の第14の構成例の第6変形例の導体層Cを示している。
 図157のAの導体層Cは、複数の矩形状導体1343Aおよび1343Bを、所定の繰り返し周期で同一平面上に繰り返し配置して構成されている。矩形状導体1343Aは、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。矩形状導体1343Bは、例えば、プラス電源に接続される配線(Vdd配線)である。
 図157のAの導体層Cが図153のAの導体層Cと異なる点は、矩形状導体1343Aおよび1343Bの導体サイズ、具体的には、導体幅WXCAおよびWXCBである。なお、矩形状導体1343Aおよび1343Bは長方形であり、導体幅WXCA>導体幅WYCA、かつ、導体幅WXCB>導体幅WYCBである。また、導体幅WXCAと導体幅WXCBとが等しく、導体幅WYCAと導体幅WYCBとが等しい(導体幅WXCA=導体幅WXCB,導体幅WYCA=導体幅WYCB)。
 図157のAの導体層Cは、容量性ノイズをY方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図157のBは、3層導体層の第14の構成例の第7変形例の導体層Cを示している。
 図157のBの導体層Cは、複数の矩形状導体1343Aおよび1343Bを、所定の繰り返し周期で同一平面上に繰り返し配置して構成される点で図157のAと共通するが、隣接する行で、X方向の導体周期FXCの1/2だけ、配置がずれている点が異なる。Y方向の繰り返し周期である導体周期FYCは、2行単位となる。なお、矩形状導体1343Aおよび1343Bの、隣接する行でのX方向のずらし量は、任意の値に設計することができる。
 図157のBの導体層Cは、矩形状導体1343Aおよび矩形状導体1343Bが、Y方向に同じ配線パタンの繰り返しではないので、容量性ノイズをY方向で完全相殺できないX位置が存在する。
 そこで、X方向の導体周期FXCの1/2だけずらす場合には、図157のCの導体層Cのように構成することができる。
 図157のCは、3層導体層の第14の構成例の第8変形例の導体層Cを示している。
 図157のCの導体層Cは、Y方向に隣接する矩形状導体1343Aおよび1343Bの2行単位で、X方向の導体周期FXCの1/2だけ配置をずらし、所定の繰り返し周期で同一平面上に繰り返し配置して構成される。
 図157のCの導体層Cは、容量性ノイズをY方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 なお、矩形状導体1343Aおよび1343Bの、隣接する2行単位でのX方向のずらし量は、任意の値に設計することができる。また、矩形状導体1343Aおよび1343Bの2行単位でのX方向のずらしは、隣接する2行の矩形状導体ではなく、隣接しない2行の矩形状導体をずらしてもよい。また、矩形状導体1343Aおよび1343Bの2行単位でのX方向のずらしは、所定の平面範囲(平面領域)で見る場合の、矩形状導体1343AのY方向の導体幅の総和と、矩形状導体1343BのY方向の導体幅の総和とが同一であれば容量性ノイズをY方向で完全相殺することができるので、2行単位である必要はない。換言すると、矩形状導体1343Aおよび1343Bを、隣接する隣接しないに関わらず、2行以上の複数行単位で、任意の値に設計したずらし量で、X方向にずらしてもよく、所定の平面範囲(平面領域)で見る場合の、矩形状導体1343AのY方向の導体幅の総和と、矩形状導体1343BのY方向の導体幅の総和とが同一または略同一である場合に好適だが、その限りではない。
 図158のAは、3層導体層の第14の構成例の第9変形例の導体層Cを示している。
 図158のAの導体層Cは、複数の矩形状導体1344Aおよび1344Bを、所定の繰り返し周期で同一平面上に繰り返し配置して構成されている。矩形状導体1344Aは、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。矩形状導体1344Bは、例えば、プラス電源に接続される配線(Vdd配線)である。
 図158のAの導体層Cが図157のAの導体層Cと異なる点は、矩形状導体1344Aおよび1344Bの導体サイズ、具体的には、導体幅WXCAおよびWXCBである。図158のAの矩形状導体1344Aと1344Bの導体幅WXCAおよびWXCBは、図157のAの矩形状導体1343Aと1343Bの導体幅WXCAおよびWXCBよりも大きい。
 なお、矩形状導体1344Aおよび1344Bは長方形であり、導体幅WXCA>導体幅WYCA、かつ、導体幅WXCB>導体幅WYCBである。また、導体幅WXCAと導体幅WXCBとが等しく、導体幅WYCAと導体幅WYCBとが等しい(導体幅WXCA=導体幅WXCB,導体幅WYCA=導体幅WYCB)。
 図158のAの導体層Cは、容量性ノイズをY方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図158のBは、3層導体層の第14の構成例の第10変形例の導体層Cを示している。
 図158のBの導体層Cは、複数の矩形状導体1344Aおよび1344Bを、所定の繰り返し周期で同一平面上に繰り返し配置して構成される点で図158のAと共通するが、隣接する行で、X方向の導体周期FXCの1/3だけ、配置がずれている点が異なる。Y方向の繰り返し周期である導体周期FYCは、6行単位となる。
 図158のBの導体層Cは、容量性ノイズをY方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図158のCは、3層導体層の第14の構成例の第11変形例の導体層Cを示している。
 図158のCの導体層Cは、Y方向に隣接する矩形状導体1344Aおよび1344Bの2行単位で、X方向の導体周期FXCの1/3だけ、配置をずらし、所定の繰り返し周期で同一平面上に繰り返し配置して構成される。
 図158のCの導体層Cは、容量性ノイズをY方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図159のAは、3層導体層の第14の構成例の第12変形例の導体層Cを示している。
 図159のAの導体層Cは、複数の矩形状導体1341Aおよび1341Bを、所定の繰り返し周期で同一平面上に繰り返し配置して構成されている。
 図159のAの導体層Cが図153のAの導体層Cと異なる点は、矩形状導体1341Aおよび1341Bの配列方向である。具体的には、図153のAの導体層Cでは、矩形状導体1341Aおよび1341Bのそれぞれは、導体周期FXCでX方向に繰り返し配置され、矩形状導体1341Aおよび1341Bは、Y方向に交互に周期的に配置されていた。これに対して、図159のAの導体層Cでは、矩形状導体1341Aおよび1341Bのそれぞれは、導体周期FYCでY方向に繰り返し配置され、矩形状導体1341Aおよび1341Bは、X方向に交互に周期的に配置されている。
 図159のAの導体層Cは、容量性ノイズをX方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図159のBは、3層導体層の第14の構成例の第13変形例の導体層Cを示している。
 図159のBの導体層Cは、複数の矩形状導体1361Aおよび1361Bを、所定の繰り返し周期で同一平面上に繰り返し配置して構成されている。矩形状導体1361Aは、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。矩形状導体1361Bは、例えば、プラス電源に接続される配線(Vdd配線)である。
 図159のBの導体層Cが図159のAの導体層Cと異なる点は、矩形状導体1361Aおよび1361Bの導体サイズ、具体的には、導体幅WYCAおよびWYCBである。なお、矩形状導体1361Aおよび1361Bは長方形であり、導体幅WXCA<導体幅WYCA、かつ、導体幅WXCB<導体幅WYCBである。また、導体幅WXCAと導体幅WXCBとが等しく、導体幅WYCAと導体幅WYCBとが等しい(導体幅WXCA=導体幅WXCB,導体幅WYCA=導体幅WYCB)。
 図159のBの導体層Cは、容量性ノイズをX方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 なお、図示は省略するが、矩形状導体1361Aおよび1361Bを、隣接する列で、Y方向の導体周期FYCの1/2だけずらし、所定の繰り返し周期で同一平面上に繰り返し配置する構成や、隣接する列で、Y方向の導体周期FYCの1/3だけずらす構成も可能である。また、矩形状導体1361Aおよび1361Bの、隣接する列でのY方向のずらし量は、任意の値に設計することができる。また、矩形状導体1361Aおよび1361Bを、隣接する隣接しないに関わらず、2列以上の複数列単位で、任意の値に設計したずらし量で、Y方向にずらしてもよく、所定の平面範囲(平面領域)で見る場合の、矩形状導体1361AのX方向の導体幅の総和と、矩形状導体1361BのX方向の導体幅の総和とが同一または略同一である場合に好適だが、その限りではない。
 図159のCは、3層導体層の第14の構成例の第14変形例の導体層Cを示している。
 図159のCの導体層Cは、X方向に隣接する矩形状導体1361Aおよび1361Bの2列単位で、Y方向の導体周期FYCの1/2だけ、配置をずらし、所定の繰り返し周期で同一平面上に繰り返し配置して構成される。
 図159のCの導体層Cは、容量性ノイズをX方向で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図160のAは、3層導体層の第14の構成例の第15変形例の導体層Cを示している。
 図160のAの導体層Cは、2個の矩形状導体1341Aと2個の矩形状導体1341Bを、X方向およびY方向に所定の繰り返し周期で同一平面上に配置して構成されている。隣接する矩形状導体1341Aどうしの間隙、隣接する矩形状導体1341Bどうしの間隙、および、隣接する矩形状導体1341Aと1341Bとの間隙は、X方向に間隙幅GXC、Y方向に間隙幅GYCを有する。2個の矩形状導体1341Aと2個の矩形状導体1341Bは、X方向には導体周期FXCで繰り返し配置され、Y方向には導体周期FYCで繰り返し配置されている。
 図160のBは、3層導体層の第14の構成例の第16変形例の導体層Cを示している。
 図160のBの導体層Cは、複数の矩形状導体1343Aおよび1343Bを、所定の繰り返し周期で同一平面上に繰り返し配置して構成される点で図157のAと共通するが、隣接する列で、Y方向の導体周期FYCの1/2だけ、配置がずれている点が異なる。隣接する行で、配置がX方向の導体周期FXCの1/2だけずれているとも言える。X方向の導体周期FXCは、2列単位であり、Y方向の導体周期FYCは、2行単位である。
 図160のCは、3層導体層の第14の構成例の第17変形例の導体層Cを示している。
 図160のCの導体層Cは、複数の矩形状導体1344Aおよび1344Bを、所定の繰り返し周期で同一平面上に繰り返し配置して構成される点で図158のAと共通するが、隣接する列で、Y方向の導体周期FYCの1/2だけ、配置がずれている点が異なる。隣接する行で、配置がX方向の導体周期FXCの1/2だけずれているとも言える。X方向の導体周期FXCは、2列単位であり、Y方向の導体周期FYCは、2行単位である。図160のBの導体層Cと、図160のCの導体層Cとは、X方向の導体幅WXCAおよびWXCBが異なるだけである。
 図160のA乃至Cの導体層Cは、容量性ノイズをX方向およびY方向の両方で完全相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図161のAは、3層導体層の第14の構成例の第18変形例の導体層Cを示している。
 図161のAの導体層Cは、2個の矩形状導体1341Aと2個の矩形状導体1341Bを、X方向およびY方向に所定の繰り返し周期で同一平面上に配置して構成される点で図156のAと共通するが、2列単位で、Y方向の導体周期FYCの1/4だけ、配置がずれている点が異なる。
 図161のBは、3層導体層の第14の構成例の第19変形例の導体層Cを示している。
 図161のBの導体層Cは、複数の矩形状導体1343Aおよび1343Bを、所定の繰り返し周期で同一平面上に繰り返し配置して構成される点で図157のAと共通するが、隣接する列で、Y方向の導体周期FYCの1/4だけ、配置がずれている点が異なる。
 図161のCは、3層導体層の第14の構成例の第20変形例の導体層Cを示している。
 図161のCの導体層Cは、導体1381Aおよび1381Bを、Y方向に所定の繰り返し周期で同一平面上に配置して構成されている。導体1381Aは、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。導体1381Bは、例えば、プラス電源に接続される配線(Vdd配線)である。
 導体1381Aは、図161のBのX方向に配列された全ての矩形状導体1343Aを最短経路で接続した形状を有する。導体1381Bは、図161のBのX方向に配列された全ての矩形状導体1343Bを最短経路で接続した形状を有する。図161のCの間隙幅GXCおよび間隙幅GYCは、隣接する導体間のX方向およびY方向の最小幅に相当する。なお、導体1381Aおよび導体1381Bは、図161のBのX方向に配列された全ての矩形状導体を最短経路で接続した形状でなくてもよく、例えば、ミアンダ形状であってもよく、蛇行した形状であってもよい。
 図161のA乃至Cの導体層Cは、Y方向については容量性ノイズを完全相殺し、X方向については一部の容量性ノイズを相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図162のAは、3層導体層の第14の構成例の第21変形例の導体層Cを示している。
 図162のAの導体層Cは、複数の矩形状導体1341Aおよび1341Bを、所定の繰り返し周期で同一平面上に繰り返し配置して構成される点で図153のAと共通するが、隣接する列で、Y方向の導体周期FYCの1/4だけ、配置がずれている点が異なる。
 図162のBは、3層導体層の第14の構成例の第22変形例の導体層Cを示している。
 図162のBの導体層Cは、導体1382Aおよび1382Bを、X方向の導体周期FXCおよびY方向の導体周期FYCで同一平面上に周期的に配置して構成されている。導体1382Aは、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。導体1382Bは、例えば、プラス電源に接続される配線(Vdd配線)である。導体1382Aは、X方向の導体幅WXCAおよびY方向の導体幅WYCAを有し、導体1382Bは、X方向の導体幅WXCBおよびY方向の導体幅WYCBを有する。図162のBの間隙幅GXCおよび間隙幅GYCは、隣接する導体間のX方向およびY方向の最小幅に相当する。
 導体1382Aは、図162のAのX方向に配列された2個の矩形状導体1341Aを最短経路で接続した形状を有する。導体1382Bは、図162のAのX方向に配列された2個の矩形状導体1341Bを最短経路で接続した形状を有する。なお、導体1382Aおよび導体1382Bは、最短経路で接続した形状でなくてもよく、図162のAのX方向に配列された2個以上の矩形状導体を電気的に接続した形状であればよい。
 図162のCは、3層導体層の第14の構成例の第23変形例の導体層Cを示している。
 図162のCの導体層Cは、導体1383Aおよび1383Bを、Y方向に所定の繰り返し周期で同一平面上に配置して構成されている。導体1383Aは、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。導体1383Bは、例えば、プラス電源に接続される配線(Vdd配線)である。導体1383Aは、Y方向の導体幅WYCAを有し、導体1382Bは、Y方向の導体幅WYCBを有する。図162のCの間隙幅GXCおよび間隙幅GYCは、隣接する導体間のX方向およびY方向の最小幅に相当する。
 導体1383Aは、図162のAのX方向に配列された全ての矩形状導体1341Aを最短経路で接続した形状を有する。導体1383Bは、図162のAのX方向に配列された全ての矩形状導体1341Bを最短経路で接続した形状を有する。なお、導体1383Aおよび導体1383Bは、図162のAのX方向に配列された全ての矩形状導体を最短経路で接続した形状でなくてもよく、例えば、ミアンダ形状であってもよく、蛇行した形状であってもよい。
 図162のA乃至Cの導体層Cは、Y方向については容量性ノイズを完全相殺し、X方向については一部の容量性ノイズを相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。
 図163のAは、3層導体層の第14の構成例の第24変形例の導体層Cを示している。
 図163のAの導体層Cは、矩形状導体1341Aおよび1341Bを、所定の繰り返し周期で同一平面上に繰り返し配置して構成される点で図153のAと共通するが、隣接する列で、配置がY方向の導体周期FYCの1/4だけずれている領域と、ずれていない領域が混在する点が異なる。図163のAの導体層Cは、Y方向の位置ずれがない2個の矩形状導体1341Aおよび1341BのX方向中心を基準として、導体周期FXCでX方向に折り返して繰り返し配置した構成を有する。
 図163のBは、3層導体層の第14の構成例の第25変形例の導体層Cを示している。
 図163のBの導体層Cは、矩形状導体1371Aおよび1371Bを配置し、導体1382Aおよび1382Bを、所定の繰り返し周期で同一平面上に繰り返し配置して構成されている。
 図163のBの導体層Cは、矩形状導体1371Aおよび1371BのX方向中心で導体1382Aおよび1382Bを折り返した構成を有し、導体1382Aおよび1382Bを導体周期FXCでX方向に繰り返し配置した構成を有する。
 図163のCは、3層導体層の第14の構成例の第26変形例の導体層Cを示している。
 図163のCの導体層Cは、導体1391Aおよび1391Bを、Y方向に所定の繰り返し周期で同一平面上に配置して構成されている。導体1391Aは、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。導体1391Bは、例えば、プラス電源に接続される配線(Vdd配線)である。導体1391Aは、Y方向の導体幅WYCAを有し、導体1391Bは、Y方向の導体幅WYCBを有する。図163のCの間隙幅GXCおよび間隙幅GYCは、隣接する導体間のX方向およびY方向の最小幅に相当する。
 導体1391Aは、図163のBのX方向に配列された全ての矩形状導体1371Aおよび導体1382Aを最短経路で接続した形状を有する。導体1391Bは、図163のBのX方向に配列された全ての矩形状導体1371Bおよび導体1382Bを最短経路で接続した形状を有する。なお、導体1391Aおよび導体1391Bは、図163のBのX方向に配列された全ての矩形状導体を最短経路で接続した形状でなくてもよく、例えば、ミアンダ形状であってもよく、蛇行した形状であってもよい。
 図163のCの導体層Cは、図163のBの導体層Cと同じ領域単位で、導体周期FXCでX方向に折り返して繰り返し配置した構成を有する。
 図163のA乃至Cの導体層Cは、X方向に鏡面対称な導体配置となっている。
 図163のA乃至Cの導体層Cは、Y方向については容量性ノイズを完全相殺し、X方向については一部の容量性ノイズを相殺することが可能である。容量性ノイズは、導体層Cが配線層170に近いほど、大きく改善することができる。一部の具体例を上述したが、第1乃至第14の構成例またはその変形例(図122乃至図163)は、特に、導体層A乃至Cの3層を、Z方向に延伸された導体ビア(VIA)等を介して電気的に接続できる積層順に好適である。具体的には、図122乃至図127、図134、図148、図149、および、図152乃至図163に示した構成例並びにその変形例は、図120のBに示した積層順に好適である。また、図150に示した構成例およびその変形例は、図120のAおよびBに示した積層順に好適である。また、図129、図131、図133、図135乃至図138、図140、図142乃至図144、図146、図147、および、図151に示した構成例並びにその変形例は、図120のBおよびCに示した積層順に好適である。また、図128、図130、図132、図139、図141、および、図145に示した構成例並びにその変形例は、図120のA乃至Cに示した積層順に好適である。
 <3層導体層のその他の変形例>
 上述した各構成例において、例えばGNDやマイナス電源に接続される配線(Vss配線)として説明した導体は、例えばプラス電源に接続される配線(Vdd配線)であってもよく、例えばプラス電源に接続される配線(Vdd配線)として説明した導体は、例えばGNDやマイナス電源に接続される配線(Vss配線)でもよい。VddまたはVssとする電圧は、GNDと電源でもよいし、電圧が異なる2種類の電源でもよい。VddまたはVssとする電圧は、2つの極性が異なることが望ましいが、その限りではない。導体層A、B、C間をZ方向に延伸して接続する導体ビア(VIA)の個数または総面積は、所定の平面範囲(平面領域)において、VddとVssとで同じであることが望ましいが、その限りではない。間隙内に配置する中継導体を間引く場合には、上述した例以外の間引き方、例えば、ランダムに間引くなどしてもよい。
 導体層Cは、電流の流れやすいシート抵抗の低い導体層としたが、電流の流れにくいシート抵抗の高い導体層としてもよい。導体層Cは、回路基板や半導体基板や電子機器の中で最も電流の流れにくい導体層ではないことが望ましいが、その限りではない。導体層Cは、回路基板や半導体基板や電子機器の中で最も電流の流れやすい導体層であることが望ましいが、その限りではない。導体層Cは、導体層Aと導体層Bとの少なくとも一方よりも電流の流れやすい導体層であることが望ましいが、その限りではない。導体層Cは、回路基板や半導体基板や電子機器の中で導体層Aの次に電流の流れやすい導体層であることが望ましいが、その限りではない。導体層Cは、回路基板や半導体基板や電子機器の中で導体層Bの次に電流の流れやすい導体層であることが望ましいが、その限りではない。例えば、導体層Cは、第1の半導体基板101または第2の半導体基板102の中で1番目に電流の流れにくい導体層であってもよい。例えば、導体層Cは、第1の半導体基板101または第2の半導体基板102の中で1番目に電流の流れやすい導体層であってもよい。例えば、導体層Cは、第1の半導体基板101または第2の半導体基板102の中で2番目に電流の流れやすい導体層であってもよい。例えば、導体層Cは、第1の半導体基板101または第2の半導体基板102の中で3番目に電流の流れやすい導体層であってもよい。例えば、導体層Cは、第1の半導体基板101または第2の半導体基板102の中で導体層Aの次に電流の流れやすい導体層であってもよい。例えば、導体層Cは、第1の半導体基板101または第2の半導体基板102の中で導体層Bの次に電流の流れやすい導体層であってもよい。
 なお、上述した回路基板や半導体基板や電子機器の中で電流の流れやすい導体層は、回路基板の中で電流の流れやすい導体層、半導体基板の中で電流の流れやすい導体層、電子機器の中で電流の流れやすい導体層、の何れかであると考えてもよい。また、上述した回路基板や半導体基板や電子機器の中で電流の流れにくい導体層は、回路基板の中で電流の流れにくい導体層、半導体基板の中で電流の流れにくい導体層、電子機器の中で電流の流れにくい導体層、の何れかであると考えてもよい。また、上述した電流の流れやすい導体層をシート抵抗の低い導体層とし、電流の流れにくい導体層をシート抵抗の高い導体層としても、それぞれ置き換え可能である。
 導体層Cに用いる導体の材料としては、銅、アルミ、タングステン、クロム、ニッケル、タンタル、モリブデン、チタン、金、銀、鉄等の金属、若しくは、これらの何れかを少なくとも含む混合物、化合物、または、合金が主に用いられる。また、シリコン、ゲルマニウム、化合物半導体、有機半導体等の半導体が含まれていてもよい。さらに、綿、紙、ポリエチレン、ポリ塩化ビニル、天然ゴム、ポリエステル、エポキシ樹脂、メラミン樹脂、フェノール樹脂、ポリウレタン、合成樹脂、マイカ、石綿、ガラス繊維、磁器等の絶縁体が含まれていてもよい。また、導体層Cは、最上層メタルまたは最下層メタル、つまり最上層または最下層の導体層であってもよく、Cu-Cu接合、Au-Au接合、またはAl-Al接合などの同種金属接合や、Cu-Au接合、Cu-Al接合、またはAu- Al接合などの異種金属接合に用いられる導体層であってもよい。
 導体層A乃至Cの各導体層の平面配置は、X方向を反転させてもよいし、Y方向を反転させてもよい。また、時計回りに所定角度(例えば、90度)回転させてもよいし、反時計回りに所定角度(例えば、-90度)回転させてもよい。また、上述した各構成例の一部では、全ての導体周期や全ての導体幅や全ての間隙幅が均等である一例を用いて説明したが、この限りではない。例えば、導体周期や導体幅や間隙幅は、不均等であってもよく、位置によって導体周期や導体幅や間隙幅を変調させた形状であってもよい。また、上述した各構成例の一部では、Vdd配線とVss配線とで、導体周期、導体幅、間隙幅、配線形状、配線位置、または配線本数などが略同一である一例を用いて説明したが、この限りではない。例えば、Vdd配線とVss配線とで、導体周期が異なっていてもよく、導体幅が異なっていてもよく、間隙幅が異なっていてもよく、配線形状が異なっていてもよく、配線位置が異なっていてもよく、配線位置にズレやズラシがあってもよく、配線本数が異なっていてもよい。
<13.応用例>
 本開示による技術は、上記各実施の形態および、その変形例または応用例の説明に限定されず種々の変形実施が可能である。上記各実施の形態および、その変形例または応用例における各構成要素は、その一部が省略されていてもよく、その一部または全部が変化していてもよく、その一部または全部が変更されていてもよく、その一部が他の構成要素で置き換えられていてもよく、その一部または全部に他の構成要素が追加されていてもよい。また、上記各実施の形態および、その変形例または応用例における各構成要素は、その一部または全部が複数に分割されていてもよく、その一部または全部が複数に分離されていてもよく、分割または分離された複数の構成要素の少なくとも一部で機能や特徴を異ならせていてもよい。さらに、上記各実施の形態および、その変形例または応用例における各構成要素の少なくとも一部を組み合わせて、異なる実施の形態としてもよい。さらに、上記各実施の形態および、その変形例または応用例における各構成要素の少なくとも一部を移動させて、異なる実施の形態としてもよい。さらに、上記各実施の形態および、その変形例または応用例における各構成要素の少なくとも一部の組み合わせに結合要素や中継要素を加えて、異なる実施の形態としてもよい。さらに、上記各実施の形態および、その変形例または応用例における各構成要素の少なくとも一部の組み合わせに切り替え要素や切り替え機能を加えて、異なる実施の形態としてもよい。
 本実施の形態である固体撮像装置100においてAggressor導体ループと成り得る導体層A及びBをそれぞれ形成する導体は、Vdd配線またはVss配線とされていた。つまり、導体層A及びBには、少なくとも一部の領域で互いに逆方向に電流が流れており、ある時刻において、導体層Aには図中上から下方向に電流が流れるとき、導体層Bには図中下から上方向に電流が流れていた。なお、電流の大きさは互いに同一であることが望ましい。なお、導体層A及びBを形成する導体が第2の半導体基板内に構成される例を用いて説明したが、この限りではない。例えば、第1の半導体基板内に構成されていてもよく、一部または全部が第2の半導体基板以外に構成されていてもよい。
 導体層A及びBに流れる信号としては、時間方向に電流の方向が変化する差動信号であれば、VddやVss以外のどのような信号が流れるようにしてもよい。つまり、導体層A及びBは、時間tに応じて電流Iが変化する(微小時間dtの微小電流変化がdIである)信号が流れていればよい。なお、導体層A及びBに基本的にはDC電流が流れていても、電流の立ち上がり、電流の時間遷移、電流の立ち下がり、などがある場合は、時間tに応じて電流Iが変化している。
 例えば、導体層Aに流れる電流の大きさと、導体層Bに流れる電流の大きさとが互いに同一でなくてもよい。逆に、導体層Aに流れる電流の大きさと、導体層Bに流れる電流の大きさとが互いに同一である(導体層A及びBに、時間に応じて変化する電流が略同一のタイミングで流れる)ようにしてもよい。一般的には、導体層A及びBに、時間に応じて変化する電流が略同一のタイミングで流れる場合の方が、導体層Aに流れる電流の大きさと、導体層Bに流れる電流の大きさとが互いに同一でない場合よりも、Victim導体ループに発生する誘導起電力の大きさをより抑制することができる。一方、導体層A及びBに流れる信号が差動信号でなくてもよい。例えば、両方ともVdd配線、両方ともVss配線、両方ともGND配線、同じ種類の信号線、異なる種類の信号線、などの何れであってもよい。また、導体層A及びBを形成する導体が、電源や信号源とは接続されない導体であってもよい。これらの場合には、誘導性ノイズを抑制できるという効果が低下するものの、それ以外の発明効果は得られる。
 また、導体層A及びBには、例えばクロック信号のような、所定の周波数の周波数信号が流れるようにしてもよい。また、導体層A及びBには、例えば、交流電源電流が流れるようにしてもよい。また、導体層A及びBには、例えば、同一の周波数信号が流れるようにしてもよい。また、導体層A及びBには、複数の周波数成分を含む信号が流れるようにしてもよい。一方、時間tに応じて電流Iが全く変化しないDC信号が流れていてもよい。この場合には、誘導性ノイズを抑制できるという効果は得られないが、それ以外の発明効果は得られる。一方、信号が流れないようにしてもよい。この場合には、誘導性ノイズ抑制、容量性ノイズ抑制、電圧降下(IR-Drop)低減、の効果は得られないが、それ以外の発明効果は得られる。
<14.網目状導体のずらし構成例>
<網目状導体の第1のずらし構成例>
 ところで、上述した導体層A及び導体層Bにおいて、網目状導体を採用した構成例をいくつか提案してきた。
 例えば、図15に示した第2の構成例では、網目状導体216から成る導体層Aと、網目状導体217から成る導体層Bを示した。図25に示した第4の構成例では、網目状導体231から成る導体層Aと、網目状導体232から成る導体層Bを示した。
 また、網目状導体の間隙領域内に、中継導体が配置された構成例も提案されている。
 例えば、図32に示した第8の構成例では、網目状導体271から成る導体層Aと、網目状導体272と中継導体302から成る導体層Bを示した。中継導体302は、網目状導体272の導体ではない間隙領域内に配置された非網目状の導体である。網目状導体の間隙領域内に配置される中継導体の個数は1個に限られない。例えば、図40の導体層Bの中継導体306のように複数配置される場合もある。
 さらに、例えば、図128に示した3層導体層の第4の構成例のように、導体層Aと導体層Bのそれぞれが、中継導体を有している場合もある。
 上述したような、網目状導体がXY方向に同一位置への繰り返しとなっている配線パタンでは、容量性ノイズについては不利な側面がある。
 具体的には、例えば、図164の左側に示されるように、網目状導体1501と、その間隙領域内に配置された中継導体1502とで構成される導体層1511がある。網目状導体1501は、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。中継導体1502は、例えば、プラス電源に接続される配線(Vdd配線)である。
 網目状導体1501と中継導体1502とで構成される導体層1511の上側または下側の層には、Victim導体ループの一部を構成する配線1512が配置されている。配線1512は、例えば、固体撮像装置100の信号線132や制御線133に相当する。
 信号線132は、X方向よりもY方向に長く配線され、画素アレイ121に複数本、所定の周期幅(例えば画素単位)で周期的に配置される。信号線132は、各画素131のセレクトトランジスタ145によって選択されたとき、信号が伝送される。制御線133は、Y方向よりもX方向に長く配線され、画素アレイ121に複数本、所定の周期幅(例えば画素単位)で周期的に配置される。制御線133は、垂直走査部123によって選択されたとき、信号が伝送される。
 配線1512のようにY方向に長い直線状導体に対して、導体層1511の網目状導体1501と中継導体1502とが影響を及ぼす部分、すなわち、配線1512と重なるようなY方向の直線状に、Vdd配線およびVss配線をそれぞれ積算すると、図164の右側に示されるように、Vddによる総電荷量と、Vssによる総電荷量とが、大きく異なる。このVdd配線によるプラス側容量とVss配線によるマイナス側容量との差分が、容量性ノイズを発生させる。
 容量性ノイズとは、図62等を参照して説明したように、導体層を形成する導体に電圧が印加された場合に、その導体と配線との間の容量結合によって、配線に電圧が発生し、さらに、印加電圧が変化することにより、配線に電圧ノイズが生じることを指す。この電圧ノイズは、画素信号のノイズとなる。
 これに対して、図165の左側の導体層1611のように、Victim導体ループの一部を構成する配線1512の長手方向に直交する方向に対して、所定のずらし量を設定した導体層が、本件発明者らによって考えられた。
 導体層1611は、網目状導体1601と、その間隙領域内に配置された中継導体1602とで構成される。網目状導体1601は、例えば、GNDやマイナス電源に接続される配線(Vss配線)である。中継導体1602は、例えば、プラス電源に接続される配線(Vdd配線)である。
 このように、配線1512の長手方向に直交する方向に対して所定のずらし量を設けた場合、Y方向の直線状に、Vdd配線およびVss配線をそれぞれ積算すると、図165の右側に示されるように、Vddによる総電荷量と、Vssによる総電荷量とを略同一にすることができる。また、網目状導体1601と中継導体1602の電圧の極性は、VddとVssとで反対(逆極性)である。そのため、導体層1611によれば、Victim導体である配線1512における容量性ノイズを相殺することができる。Y方向積算のVdd配線とVss配線とが一致する場合には、容量性ノイズは完全相殺することができる。
 以下では、網目状導体の導体層において、Victim導体の長手方向に直交する方向に対して所定のずらし量を設けることにより、容量性ノイズを軽減、好ましくは完全相殺する構成例について説明する。
 最初に、図166を参照して、ずらし量を設けた網目状導体の第1の構成例(網目状導体の第1のずらし構成例)としての導体層1611を構成する網目状導体1601と中継導体1602の導体幅および間隙幅について説明する。
 網目状導体1601は、X方向については、導体幅WDXと間隙幅GDXとを有し、周期幅FDX(=導体幅WDX+間隙幅GDX)による導体幅WDXおよび間隙幅GDXの繰り返しパタンである。また、Y方向については、網目状導体1601は、導体幅WDYと間隙幅GDYとを有し、周期幅FDY(=導体幅WDY+間隙幅GDY)による導体幅WDYおよび間隙幅GDYの繰り返しパタンである。ただし、網目状導体1601では、Y方向の周期幅FDYが繰り返されるごとに、X方向の導体幅WDXと間隙幅GDXの導体配置が、所定のずれ量PDXだけ、X方向にずれている。この周期幅FDY単位のX方向のずれ量PDXを、以下、周期ずれPDXとも称する。
 中継導体1602は、網目状導体1601のX方向の間隙幅GDXとY方向の間隙幅GDYの間隙領域内に配置されている。中継導体1602は、X方向の導体幅CDXと、Y方向の導体幅CDYとを有する矩形であり、X方向の導体幅CDXよりも、Y方向の導体幅CDYが大きい(CDY>CDX)縦長の長方形である。
 中継導体1602のX方向の一方の端面は、網目状導体1601に対して第1の間隙幅GDX1だけ離れており、X方向の他方の端面は、網目状導体1601に対して第2の間隙幅GDX2だけ離れている。網目状導体1601のX方向の間隙幅GDXは、中継導体1602のX方向の導体幅CDXと、第1の間隙幅GDX1と、第2の間隙幅GDX2との合計に等しい。すなわち、GDX=CDX+GDX1+GDX2である。
 中継導体1602のY方向の一方の端面は、網目状導体1601に対して第1の間隙幅GDY1だけ離れており、Y方向の他方の端面は、網目状導体1601に対して第2の間隙幅GDY2だけ離れている。網目状導体1601のY方向の間隙幅GDYは、中継導体1602のY方向の導体幅CDYと、第1の間隙幅GDY1と、第2の間隙幅GDY2との合計に等しい。すなわち、GDY=CDY+GDY1+GDY2である。
 ここで、網目状導体1601と中継導体1602の導体幅と間隙の大小関係は、以下のようであると定義する。
 図166に示されるように、任意の実数をAとして、網目状導体1601のX方向の導体幅WDXと、Y方向の導体幅WDYとは、2Aとなる幅である。換言すれば、網目状導体1601のX方向の導体幅WDXとY方向の導体幅WDYの1/2を実数Aとする。また、X方向の第1の間隙幅GDX1と第2の間隙幅GDX2も、2Aとする。
 中継導体1602のX方向の導体幅CDXは、6Aに設定され、Y方向の導体幅CDYは、7Aに設定される。Y方向の第1の間隙幅GDY1と第2の間隙幅GDY2は、1Aに設定される。
 したがって、周期幅FDX(=導体幅WDX+間隙幅GDX)は、任意の実数Aを用いて表すと、12Aに相当し、周期幅FDY(=導体幅WDY+間隙幅GDY)は、11Aに相当する。
 図167および図168は、周期ずれPDXを様々な値に設定した導体層1611の平面図である。
 図167のAは、周期ずれPDXをゼロに設定した導体層1611の平面図である。なお、周期ずれPDXをゼロに設定した導体層1611は、図164の網目状導体1501に相当する。
 図167のBは、X方向の周期ずれPDXを1A、即ち、X方向の繰り返し周期(周期幅FDX)の1/12に設定した導体層1611の平面図である。
 図167のCは、周期ずれPDXを2A、即ち、X方向の繰り返し周期(周期幅FDX)の2/12に設定した導体層1611の平面図である。
 図167のDは、周期ずれPDXを3A、即ち、X方向の繰り返し周期(周期幅FDX)の3/12に設定した導体層1611の平面図である。
 図168のAは、周期ずれPDXを4A、即ち、X方向の繰り返し周期(周期幅FDX)の4/12に設定した導体層1611の平面図である。
 図168のBは、周期ずれPDXを5A、即ち、X方向の繰り返し周期(周期幅FDX)の5/12に設定した導体層1611の平面図である。
 図168のCは、周期ずれPDXを6A、即ち、X方向の繰り返し周期(周期幅FDX)の6/12に設定した導体層1611の平面図である。
 図169は、図167および図168のように周期ずれPDXを様々な値に設定した導体層1611の容量性ノイズの理論値を示したグラフである。
 図169の横軸は、導体層1611のX方向の位置を示す座標を表し、縦軸は、各X位置におけるVdd配線とVss配線の容量性ノイズを表す。なお、Vdd配線の印加電圧(Vdd印加電圧)とVss配線の印加電圧(Vss印加電圧)の絶対値は同一であるとする。例えば、Vdd印加電圧が+1Vで、Vss印加電圧が-1Vであるような場合が想定される。
 図169に示されるように、周期ずれPDXが所定の値の場合に、容量性ノイズの変化量がゼロ、かつ、容量性ノイズの絶対値がゼロとなっている。より具体的には、周期ずれPDXを、X方向の繰り返し周期の1/12、2/12、または、5/12とした場合に、容量性ノイズの変化量がゼロ、かつ、容量性ノイズの絶対値がゼロとなっている。
 その他の周期ずれPDXの場合、具体的には、周期ずれPDXを、X方向の繰り返し周期の3/12、4/12、または、6/12とした場合には、容量性ノイズの変化量および絶対値はゼロとならないが、周期ずれPDXがゼロ、即ち、周期ずれなしの場合よりも、容量性ノイズの変化量を少なくすることができる。
 図170は、中継導体1602を省略した導体層1611において、周期ずれPDXを様々な値に設定した場合の容量性ノイズの理論値を示したグラフである。中継導体1602を省略した導体層1611の図示は省略するが、図167および図168の各導体層1611から、中継導体1602を取り除いたものに相当する。
 中継導体1602がない場合には、図170に示されるように、容量性ノイズの絶対値はゼロにはならないが、周期ずれPDXが所定の値の場合に、容量性ノイズの変化量がゼロとなっている。容量性ノイズの変化量がゼロとなるずらし量は、中継導体1602がある場合と同じである。すなわち、周期ずれPDXを、X方向の繰り返し周期の1/12、2/12、または、5/12とした場合に、容量性ノイズの変化量がゼロとなっている。その他の周期ずれPDXの場合、具体的には、周期ずれPDXを、X方向の繰り返し周期の3/12、4/12、または、6/12とした場合には、容量性ノイズの変化量はゼロとならないが、周期ずれPDXがゼロ、即ち、周期ずれなしの場合よりも、容量性ノイズの変化量を少なくすることができる。
 図169と図170のグラフより、容量性ノイズの変化量がゼロとなる場合は、以下の条件のときである。
 まず、前提として、周期ずれPDXは、網目状導体1601のX方向の周期幅FDX(=12A)とは異なる値に設定される。
 周期ずれPDXが2A、すなわち網目状導体1601のX方向の導体幅WDXと同じ場合に、容量性ノイズの変化量がゼロとなる。また、周期ずれPDXが1Aである場合と、周期ずれPDXが5Aである場合にも、容量性ノイズの変化量がゼロとなる。
 周期ずれPDXが1Aまたは5Aである場合には、12行単位で、容量性ノイズの変化量がゼロとなる。これに対して、周期ずれPDXが2Aである場合には、6行単位で、容量性ノイズの変化量がゼロとなる。周期ずれPDXが網目状導体1601の導体幅WDXと等しい場合には、少ない行数で容量性ノイズの変化量をゼロにすることができるので、配線レイアウトの自由度を高めることができる。
 周期ずれPDXが網目状導体1601のX方向の繰り返し周期の3/12(=3A)とは異なる場合、換言すれば、周期ずれPDXが周期幅FDX(=12A)÷4ではない場合に、容量性ノイズの変化量がゼロとなる。
 周期ずれPDXが網目状導体1601のX方向の繰り返し周期の4/12(=4A)とは異なる場合、換言すれば、周期ずれPDXが周期幅FDX(=12A)÷3ではない場合に、容量性ノイズの変化量がゼロとなる。
 周期ずれPDXが網目状導体1601のX方向の繰り返し周期の6/12(=6A)とは異なる場合、換言すれば、周期ずれPDXが周期幅FDX(=12A)÷2ではない場合に、容量性ノイズの変化量がゼロとなる。
 中継導体1602がある場合には、容量性ノイズの変化量がゼロとなるだけではなく、容量性ノイズの絶対値もゼロにすることができる。中継導体1602がない場合には、容量性ノイズの変化量はゼロとなるが、容量性ノイズの絶対値はゼロにはならない。
 また、中継導体1602がある場合の方が、中継導体1602がない場合よりも、容量性ノイズの改善効果が大きい。
 図167乃至図170の例では、周期ずれPDXが、周期幅FDX(=12A)の半分である6Aとなるまで、X軸のプラス方向へずらした例について説明したが、X軸のマイナス方向へずらした場合も同様である。より詳しくは、周期ずれPDXを、X軸のマイナス方向へ1A、2A、3A、4A、5A、6Aずらした場合の容量性ノイズは、それぞれ、図169および図170において、X軸のプラス方向へ1A、2A、3A、4A、5A、6Aずらした場合の容量性ノイズの理論値と同様である。
 また、周期ずれPDXを、X軸のプラス方向へ7A、8A、9A、10A、11Aずらした場合の容量性ノイズは、それぞれ、図169および図170において、X軸のマイナス方向へ5A、4A、3A、2A、1Aずらした場合の容量性ノイズの理論値と同様である。換言すれば、周期ずれPDXを、X軸のプラス方向へ7A、8A、9A、10A、11Aずらした場合の容量性ノイズは、それぞれ、X軸のプラス方向へ5A、4A、3A、2A、1Aずらした場合の容量性ノイズの理論値と同様である。
 さらに言えば、周期ずれPDXを、X軸のプラス方向へ13A、14A、15A、16A、17A、18Aずらした場合の容量性ノイズは、それぞれ、図169および図170において、X軸のプラス方向へ1A、2A、3A、4A、5A、6Aずらした場合の容量性ノイズの理論値と同様である。X軸のマイナス方向へ13A、14A、15A、16A、17A、18Aずらした場合も同様である。
 以上の網目状導体の第1のずらし構成例である導体層1611によれば、X方向の周期ずれPDXを設けることにより、周期ずれPDXがゼロ、即ち、周期ずれなしの場合よりも、容量性ノイズの変化量を少なくすることができる。そしてさらに、例えば、周期ずれPDXを、網目状導体1601のX方向の導体幅WDXと同じに設定した場合など、周期ずれPDXが所定の条件の場合には、容量性ノイズの変化量をゼロにすることができる。
 さらに、網目状導体1601の間隙領域内に、中継導体1602を設けた場合には、容量性ノイズの変化量がゼロの場合には、容量性ノイズの絶対値もゼロにすることができる。
 以下の3つの条件を満たす場合には、容量性ノイズの変化量も絶対値もゼロ、即ち、容量性ノイズを完全相殺することができる。以下、完全相殺の第1乃至第3条件という。
1.所定範囲内のVdd導体の面積=所定範囲内のVss導体の面積
 (導体幅CDX)×(導体幅CDY)=
  {(導体幅CDY)+(第1の間隙幅GDY1)+(第2の間隙幅GDY2)}×(導体幅WDX)
  +{(導体幅CDX)+(第1の間隙幅GDX1)+(第2の間隙幅GDX2)}×(導体幅WDY)
  +(導体幅WDX)×(導体幅WDY)
2.(導体幅CDY)×{最少行数-{(導体幅WDX)+(第1の間隙幅GDX1)+(第2の間隙幅GDX2)}÷導体幅WDX}=(導体幅WDY)×最少行数+(導体幅CDY)+(第1の間隙幅GDY1)+(第2の間隙幅GDY2)
3.周期ずれPDX×相殺行数=整数N×{(導体幅WDX)+(第1の間隙幅GDX1)+(導体幅CDX)+(第2の間隙幅GDX2)}
 完全相殺の第1条件は、所定範囲内の網目状導体1601の導体面積と、所定範囲内の中継導体1602の導体面積が一致することを意味するが、厳密な一致ではなく、略同一であってもよい。略同一とは、同一とみなすことができる所定の範囲(誤差)で一致していることをいう。第2条件における最少行数とは、周期ずれPDXが導体幅WDXである場合に容量性ノイズを完全相殺できる、網目状導体1601の最も少ない行数を表す。例外はあるが、網目状導体1601の行数が最少行数の整数倍である場合に、容量性ノイズを完全相殺できる条件が存在する。第2条件は、「最少行数={(第1の間隙幅GDY1)+(第2の間隙幅GDY2)+(導体幅CDY)+(導体幅CDY)×{(導体幅WDX)+(第1の間隙幅GDX1)+(第2の間隙幅GDX2)}÷導体幅WDX}÷{(導体幅CDY)-(導体幅WDY)}」へ変形できるので、最少行数を計算可能であり、数式左辺(最少行数)が整数値であるため数式右辺も整数値となる。なお、第2条件は、所定範囲内の網目状導体1601のY方向の導体長さの総和と、所定範囲内の中継導体1602のY方向の導体長さの総和と、が一致する場合に完全相殺できることから導出した数式である。つまり、最少行数に関わらず、所定範囲内の網目状導体1601のY方向の導体長さの総和と、所定範囲内の中継導体1602のY方向の導体長さの総和と、が同一または略同一であることが望ましい。第3条件における相殺行数とは、容量性ノイズを完全相殺できる網目状導体1601の行数を表す。第3条件における整数Nとは、容量性ノイズを完全相殺できる条件を表す。例外はあるが、相殺行数は整数であり、「周期ずれPDX×相殺行数」が「(導体幅WDX)+(第1の間隙幅GDX1)+(導体幅CDX)+(第2の間隙幅GDX2)」の整数倍(N倍)となる場合に、すなわち周期幅FDXの整数倍(N倍)となる場合に、容量性ノイズを完全相殺できる条件が存在する。換言すると、相殺行数分の周期ずれPDXの総和(周期ずれPDX×相殺行数)と、周期幅FDXの整数倍(N倍)と、が同一または略同一であることが望ましい。また、例外もあり得るが、相殺行数が最少行数の整数倍となる場合に、容量性ノイズを完全相殺できる条件が存在する。また、網目状導体1601の行数が相殺行数をさらに整数倍した行数であれば容量性ノイズを完全相殺できる。なお、容量性ノイズを完全相殺するためには第1条件を少なくとも満たす必要があると考えられるが、第1乃至第3条件のうち第2条件または第3条件の少なくとも一方を満たす場合にも容量性ノイズの少なくとも一部を相殺できる場合があるので、第1乃至第3条件のうちの少なくとも一部のみ満たしてもよい。また、その場合に、最少行数または相殺行数を網目状導体1601の行数として解釈してもよい。
 周期ずれPDXを多少なりとも設けることにより、容量性ノイズの変化量がゼロではない場合であっても、容量性ノイズの改善効果を大きくすることができる。
 なお、上述した第1のずらし構成例では、Vdd印加電圧とVss印加電圧の絶対値は同一であるとしたが、必ずしも同一でなくてもよい。例えば、Vdd印加電圧がプラス電源(+1V)で、Vss印加電圧がGND(0V)であってもよい。Vdd印加電圧とVss印加電圧とで絶対値が同一でない場合であっても、X方向の周期ずれPDXを設けることにより、容量性ノイズの少なくとも一部は相殺されるので、容量性ノイズの改善効果が得られる。また、Vdd印加電圧とVss印加電圧とが同一でない場合であっても、例えばVdd導体とVss導体とで電流方向が異なり(特に略逆向き)、電圧降下(IR-Drop)の電圧変化によって生じる容量性ノイズがVdd導体とVss導体とで逆極性となることで、容量性ノイズが完全相殺される場合もある。
 図171を参照して、X方向の周期ずれPDXを有する網目状導体1601を定義する。
 網目状導体1601は、X方向へ配線された複数本の導体1651と、隣接する2本の導体1651の間にY方向へ配線された複数本の導体1652とに分けることができる。
 網目状導体1601は、Y方向(第1の方向)へ、周期幅FDY(第1の周期幅)で配置された導体幅WDY(第1の導体幅)の2本以上の導体1651で構成される第1の導体群1661と、Y方向に直交するX方向(第2の方向)へ周期幅FDX(第2の周期幅)で配置された導体幅WDX(第2の導体幅)の2本以上の導体1652で構成される第2の導体群1662とを含む。
 さらに、網目状導体1601は、2本以上の導体1652で構成される第2の導体群1662の少なくとも一部(例えば、全部)を、Y方向へ周期幅FDYの1倍を移動させて、かつ、X方向へ周期ずれPDX(第3の周期幅)の1倍を移動させた位置に配置される第1の移動体群1663を含む。ここで、周期ずれPDXと周期幅FDXとは異なる。
 また、網目状導体1601が、2本以上の導体1652で構成される第2の導体群1662の少なくとも一部(例えば、全部)を、Y方向へ周期幅FDYのM倍を移動させて、かつ、X方向へ周期ずれPDX(第3の周期幅)のM倍を移動させた位置に配置される第Mの移動体群1663(M=2,3,4,5,・・,L(Lは2以上の整数))をさらに含む場合、網目状導体1601は、図172に示されるようになる。
 図171及び図172のように、網目状導体1601が、周期幅FDXとは異なる周期ずれPDXを設けた構成を有することにより、X方向およびY方向に直交するZ方向から見て、網目状導体1601の少なくとも一部に対して重畳する位置に配置される配線(導体)に対する容量性ノイズを軽減、好ましくは完全相殺することができる。この配線としては、例えば、図164および図165で説明したように、固体撮像装置100の信号線132や制御線133などが挙げられる。
<網目状導体の第1のずらし構成例の変形例>
 図173乃至図181は、網目状導体の第1のずらし構成例の各種の変形例を示している。
 なお、図173乃至図181では、周期ずれPDXは、2A、即ち、網目状導体1601の導体幅WDXとされている。また、図173乃至図181の各種の変形例の説明では、簡単のため、図167および図168に示した網目状導体の第1のずらし構成例を、周期ずらしの基本構成例と称し、周期ずらしの基本構成例と異なる部分についてのみ説明する。
 図173のAは、網目状導体の第1のずらし構成例の第1変形例を示す平面図である。
 図173のAの第1変形例では、周期ずらしの基本構成例と比較して、中継導体1602の配置が、間隙領域内の左寄りに変更されている点が異なる。周期ずらしの基本構成例では、(第1の間隙幅GDX1)=(第2の間隙幅GDX2)であったが、第1変形例では、(第1の間隙幅GDX1)<(第2の間隙幅GDX2)となっている。
 図173のBは、網目状導体の第1のずらし構成例の第2変形例を示す平面図である。
 図173のBの第2変形例では、周期ずらしの基本構成例と比較して、中継導体1602の配置が、間隙領域内の右寄りに変更されている点が異なる。周期ずらしの基本構成例では、(第1の間隙幅GDX1)=(第2の間隙幅GDX2)であったが、第2変形例では、(第1の間隙幅GDX1)>(第2の間隙幅GDX2)となっている。
 図174のAは、網目状導体の第1のずらし構成例の第3変形例を示す平面図である。
 図174のAの第3変形例では、周期ずらしの基本構成例と比較して、中継導体1602の配置が、間隙領域内の上寄りに変更されている点が異なる。周期ずらしの基本構成例では、(第1の間隙幅GDY1)=(第2の間隙幅GDY2)であったが、第3変形例では、(第1の間隙幅GDY1)<(第2の間隙幅GDY2)となっている。
 図174のBは、網目状導体の第1のずらし構成例の第4変形例を示す平面図である。
 図174のBの第4変形例では、周期ずらしの基本構成例と比較して、中継導体1602の配置が、間隙領域内の下寄りに変更されている点が異なる。周期ずらしの基本構成例では、(第1の間隙幅GDY1)=(第2の間隙幅GDY2)であったが、第4変形例では、(第1の間隙幅GDY1)>(第2の間隙幅GDY2)となっている。
 図175のAは、網目状導体の第1のずらし構成例の第5変形例を示す平面図である。
 図175のAの第5変形例では、周期ずらしの基本構成例と比較して、中継導体1602の配置が、上寄りと下寄りが1列ごとの交互配置に変更されている点が異なる。上寄りと下寄りそれぞれにおける(第1の間隙幅GDY1)と(第2の間隙幅GDY2)の大小関係は、第3変形例と第4変形例と同様である。
 図175のBは、網目状導体の第1のずらし構成例の第6変形例を示す平面図である。
 図175のBの第6変形例では、周期ずらしの基本構成例と比較して、中継導体1602の配置が、上寄りと下寄りが1行ごと、かつ、1列ごとの交互配置に変更されている点が異なる。上寄りと下寄りそれぞれにおける(第1の間隙幅GDY1)と(第2の間隙幅GDY2)の大小関係は、第3変形例と第4変形例と同様である。
 なお、図示は省略するが、同様に、右寄りと左寄りが1列ごとの交互配置や、右寄りと左寄りが1行ごと、かつ、1列ごとの交互配置も可能である。
 図176のAは、網目状導体の第1のずらし構成例の第7変形例を示す平面図である。
 図176のAの第7変形例では、周期ずらしの基本構成例と比較して、中継導体1602が、ペアとなる2行で内側寄りとされた2行をY方向へ繰り返した配置に変更されている点が異なる。上寄りと下寄りそれぞれにおける(第1の間隙幅GDY1)と(第2の間隙幅GDY2)の大小関係は、第3変形例と第4変形例と同様である。
 図176のBは、網目状導体の第1のずらし構成例の第8変形例を示す平面図である。
 図176のBの第8変形例では、周期ずらしの基本構成例と比較して、中継導体1602が、ペアとなる2行で内側寄りと外側寄りが2列ごと、かつ、2行ごととされた2行をY方向へ繰り返した配置に変更されている点が異なる。上寄りと下寄りそれぞれにおける(第1の間隙幅GDY1)と(第2の間隙幅GDY2)の大小関係は、第3変形例と第4変形例と同様である。
 図177のAは、網目状導体の第1のずらし構成例の第9変形例を示す平面図である。
 図177のAの第9変形例では、周期ずらしの基本構成例と比較して、中継導体1602が、左右方向に均等に2つに分離された構成となっている点が異なる。分離された2つの中継導体1602は、分離方向(X方向)に鏡面対称に配置されている。
 図177のBは、網目状導体の第1のずらし構成例の第10変形例を示す平面図である。
 図177のBの第10変形例では、周期ずらしの基本構成例と比較して、中継導体1602が、左右方向に2つに分離され、それら2つの上下方向(Y方向)の配置が異なる構成となっている点が異なる。
 図178のAは、網目状導体の第1のずらし構成例の第11変形例を示す平面図である。
 図178のAの第11変形例では、周期ずらしの基本構成例と比較して、中継導体1602が、左右方向に不均等に2つの分離された構成となっている点が異なる。図178のAの第11変形例では、分離された2つのうち、左側が、右側よりも大きい構成となっているが、右側が、左側よりも大きい構成も取り得る。また、上下方向に不均等に2つに分離された構成も取り得る。
 図178のBは、網目状導体の第1のずらし構成例の第12変形例を示す平面図である。
 図178のBの第12変形例では、周期ずらしの基本構成例と比較して、中継導体1602が、分離せずに左右方向に2分割し、上下方向にずらした構成となっている点が異なる。図178のBの第12変形例では、上下方向にずらした左側と右側の2つのうち、左側を上方向へ、右側を下方向へずらした構成となっているが、右側を上方向、左側を下方向へすらした構成も取り得る。また、上下方向の中心から左右方向にずらした構成も取り得る。
 図179のAは、網目状導体の第1のずらし構成例の第13変形例を示す平面図である。
 図179のAの第13変形例では、周期ずらしの基本構成例と比較して、中継導体1602が、左右方向に均等に3つに分離された構成となっている点が異なる。
 なお、図示は省略するが、このような左右方向に均等3分離構成の他、2分離構成において示した図177および図178と同様の構成も可能である。例えば、上下方向の均等3分離構成、不均等な左右方向の3分離構成、不均等な上下方向の3分離構成、左右方向の均等3分離で上下方向にずらした構成、上下方向の均等3分離で左右方向にずらした構成、分離せずに3分割を上下方向にずらした構成、分離せずに3分割を左右方向にずらした構成、なども可能である。
 図179のBは、網目状導体の第1のずらし構成例の第14変形例を示す平面図である。
 図179のBの第14変形例では、周期ずらしの基本構成例と比較して、中継導体1602が、上下左右方向に均等に4つに分離された構成となっている点が異なる。
 中継導体1602を4分離した構成においても、不均等な分離や、分離した4つを上下方向または左右方向の少なくとも一方にずらした構成、分離せずにずらした構成なども取り得る。
 図177乃至図179では、中継導体1602が2分離、3分離、または、4分離で構成される例について説明したが、5分離以上の任意の分離数も可能である。図180では、5分離と9分離の例について説明する。
 図180のAは、網目状導体の第1のずらし構成例の第15変形例を示す平面図である。
 図180のAの第15変形例では、周期ずらしの基本構成例と比較して、中継導体1602が、5つに分離された構成となっている点が異なる。図180のAの例では、分離された5つのうち、真ん中の1つの領域が大きいが、このような5つのサイズ関係や配置関係も一例であり、これに限定されない。
 図180のBは、網目状導体の第1のずらし構成例の第16変形例を示す平面図である。
 図180のBの第16変形例では、周期ずらしの基本構成例と比較して、中継導体1602が、9つに分離された構成となっている点が異なる。図180のBの例では、分離された9つのうち、真ん中の1つの領域が大きいが、このような9つのサイズ関係や配置関係も一例であり、これに限定されない。
 図181のAは、網目状導体の第1のずらし構成例の第17変形例を示す平面図である。
 図181のAの第17変形例では、周期ずらしの基本構成例と比較して、中継導体1602が、内側に1つ以上の間隙(穴)を有する構成となっている点が異なる。間隙の個数や位置、および、形状は、この例に限定されない。
 図181のBは、網目状導体の第1のずらし構成例の第18変形例を示す平面図である。
 図181のBの第18変形例では、周期ずらしの基本構成例と比較して、中継導体1602が、内側の導体を外側の導体で包囲するような構成となっている点が異なる。導体の個数や位置、および、形状は、この例に限定されない。
 図173乃至図181を参照して説明したように、中継導体1602は、網目状導体1601の間隙領域内に中央配置されている必要はない。中継導体1602は、例えば、X方向またはY方向に偏りをもった配置であってもよく、複数配置されていてもよい。また、中継導体1602は、X方向またはY方向に非対称形状であってもよく、X方向またはY方向に対称形状であってもよく、回転対称形状であってもよい。なお、図173乃至図181のそれぞれの変形例における容量性ノイズの理論値は、第1のずらし構成例において周期ずれPDXが2Aである場合と同様に、容量性ノイズの変化量がゼロ、かつ、容量性ノイズの絶対値がゼロである。
 なお、中継導体1602が、どのような形状、配置であっても、中継導体1602は、上述した完全相殺の第1条件を少なくとも満たすように形成される。
 図173乃至図181で示した第1変形例乃至第18変形例では、例えば、設計の自由度や、間隙領域内に対する別の導体、何かしらの素子または物体の配置の自由度が向上する。
 さらに、中継導体1602は、他の導体層と他の導体層を電気的に接続する導体でなく、他の導体層と他の導体層を電気的に接続しない導体である非網目状導体でもよい。ただし、中継導体1602は、他の導体層どうしを電気的に接続しない非網目状体ではなく、他の導体層どうしを電気的に中継する導体であることが望ましい。中継導体1602とした場合には、電源引き込みのための配線レイアウトの自由度が向上する。また、MOSトランジスタやダイオード等の能動素子の配置によっては、電圧降下をさらに改善することができる。また、中継導体1602があることで誘導性ノイズが改善され、中継導体1602を複数配置(分離配置、分割配置)することで誘導性ノイズがさらに改善される場合もある。
<網目状導体の第2のずらし構成例>
 図182は、網目状導体の第2のずらし構成例を示す平面図である。
 網目状導体の第2のずらし構成例では、網目状導体または中継導体の寸法の一部を変更した場合であっても、容量性ノイズの変化量をゼロとすることができることを示す。
 図182の導体層1711は、網目状導体1701と中継導体1702とで構成される。
 図182の導体層1711は、中継導体1702のY方向の導体幅CDYと、第1の間隙幅GDY1および第2の間隙幅GDY2の寸法が、上述した第1のずらし構成例と異なるように変更されている。
 具体的には、図166に示したように、網目状導体1601のX方向の導体幅WDXとY方向の導体幅WDYの1/2を実数Aとして、上述した第1のずらし構成例では、中継導体1702のY方向の導体幅CDYが7A、第1の間隙幅GDY1および第2の間隙幅GDY2が、それぞれ、1Aとされていた。
 これに対して、図182の第2のずらし構成例では、中継導体1702のY方向の導体幅CDYが8A、第1の間隙幅GDY1および第2の間隙幅GDY2が、それぞれ、2Aとされている。
 換言すれば、上述した第1のずらし構成例では、網目状導体1601のY方向の間隙幅GDYが、9Aであったのに対して、第2のずらし構成例では、12Aに拡大されている。
 第2のずらし構成例において、その他の導体幅や間隙幅の寸法は、第1のずらし構成例と同様である。第2のずらし構成例においても、上述した完全相殺の第1条件を少なくとも満たしている。
 図183は、第2のずらし構成例において、第1のずらし構成例と同様に、周期ずれPDXを様々な値に設定した導体層1711の容量性ノイズの理論値を示したグラフである。
 図183のグラフの横軸および縦軸は図169と同様であるので、説明は省略する。なお、図183のグラフのスケールも、図169に合わせて示している。
 図183に示されるように、第2のずらし構成例においても、周期ずれPDXが所定の値の場合に、容量性ノイズの変化量がゼロ、かつ、容量性ノイズの絶対値がゼロとなっている。より具体的には、周期ずれPDXを、X方向の繰り返し周期の1/12、2/12、または、5/12とした場合に、容量性ノイズの変化量がゼロ、かつ、容量性ノイズの絶対値がゼロとなっている。
 その他の周期ずれPDXの場合、具体的には、周期ずれPDXを、X方向の繰り返し周期の3/12、4/12、または、6/12とした場合には、容量性ノイズの変化量および絶対値はゼロとならないが、周期ずれPDXがゼロ、即ち、周期ずれなしの場合よりも、容量性ノイズの変化量を少なくすることができる。
 Y方向の寸法を拡大した第2のずらし構成例では、図183において破線で示される、周期ずれPDXがゼロ、即ち、周期ずれなしの場合の容量性ノイズが、第1のずらし構成例のときの周期ずれなしの場合の容量性ノイズよりも悪化している。これによって、周期ずれPDXを設定したことによって、改善効果が高まっていることが分かる。
 図184は、第2のずらし構成例において、中継導体1702がない場合の容量性ノイズの理論値を示したグラフである。
 図184のグラフの横軸および縦軸は図169と同様であるので、説明は省略する。なお、図184のグラフのスケールも、図169に合わせて示している。
 中継導体1602がない場合には、図184に示されるように、容量性ノイズの絶対値はゼロにはならないが、周期ずれPDXが所定の値の場合に、容量性ノイズの変化量がゼロとなっている。容量性ノイズの変化量がゼロとなるずらし量は、中継導体1602がある場合と同じである。すなわち、周期ずれPDXを、X方向の繰り返し周期の1/12、2/12、または、5/12とした場合に、容量性ノイズの変化量がゼロとなっている。
 図183と図184のグラフより、第2のずらし構成例において、容量性ノイズの変化量がゼロとなる条件は、第1のずらし構成例のときと同様である。
 即ち、周期ずれPDXは、網目状導体1701のX方向の周期幅FDX(=12A)とは異なる値に設定される。
 周期ずれPDXが2A、すなわち網目状導体1701のX方向の導体幅WDXと同じ場合に、容量性ノイズの変化量がゼロとなる。また、周期ずれPDXが1Aである場合と、周期ずれPDXが5Aである場合にも、容量性ノイズの変化量がゼロとなる。
 周期ずれPDXが1Aまたは5Aである場合には、12行単位で、容量性ノイズの変化量がゼロとなる。これに対して、周期ずれPDXが2Aである場合には、6行単位で、容量性ノイズの変化量がゼロとなる。周期ずれPDXが網目状導体1701の導体幅WDXと等しい場合には、少ない行数で容量性ノイズの変化量をゼロにすることができるので、配線レイアウトの自由度を高めることができる。
 周期ずれPDXが網目状導体1701のX方向の繰り返し周期の3/12(=3A)とは異なる場合、換言すれば、周期ずれPDXが周期幅FDX(=12A)÷4ではない場合に、容量性ノイズの変化量がゼロとなる。
 周期ずれPDXが網目状導体1701のX方向の繰り返し周期の4/12(=4A)とは異なる場合、換言すれば、周期ずれPDXが周期幅FDX(=12A)÷3ではない場合に、容量性ノイズの変化量がゼロとなる。
 周期ずれPDXが網目状導体1701のX方向の繰り返し周期の6/12(=6A)とは異なる場合、換言すれば、周期ずれPDXが周期幅FDX(=12A)÷2ではない場合に、容量性ノイズの変化量がゼロとなる。
 中継導体1702がある場合には、容量性ノイズの変化量がゼロとなるだけではなく、容量性ノイズの絶対値もゼロにすることができる。中継導体1702がない場合には、容量性ノイズの変化量はゼロとなるが、容量性ノイズの絶対値はゼロにはならない。
 また、中継導体1702がある場合の方が、中継導体1702がない場合よりも、容量性ノイズの改善効果が大きい。
<網目状導体の第3のずらし構成例>
 上述した第1および第2のずらし構成例では、容量性ノイズの変化量がゼロとなるときの周期ずれPDXの条件が、中継導体が有る場合と無い場合で同じであった。
 次に、中継導体が有る場合と無い場合で、容量性ノイズの変化量がゼロとなるときの周期ずれPDXの条件が異なる例を、第3のずらし構成例として示す。
 図185は、網目状導体の第3のずらし構成例としての導体層の導体幅および間隙幅を説明する平面図である。
 図185の導体層1731は、網目状導体1721と中継導体1722とで構成される。
 網目状導体1721は、任意の実数をAとして、3Aに設定された導体幅WDXと、1Aに設定された導体幅WDYとを有する。網目状導体1721の間隙領域内は、6Aに設定された間隙幅GDXと、17Aに設定された間隙幅GDYとで形成されている。
 網目状導体1721の間隙領域内に配置された中継導体1722は、4Aに設定された導体幅CDXと、15Aに設定された導体幅CDYとを有する矩形であり、X方向の導体幅CDXよりも、Y方向の導体幅CDYが大きい(CDY>CDX)縦長の長方形である。網目状導体1721と中継導体1722との間は、X方向の第1の間隙幅GDX1および第2の間隙幅GDX2のいずれも、1Aに設定されている。また、Y方向の第1の間隙幅GDY1および第2の間隙幅GDY2のいずれも、1Aに設定されている。
 したがって、周期幅FDX(=導体幅WDX+間隙幅GDX)は、任意の実数Aを用いて表すと、9Aに相当し、周期幅FDY(=導体幅WDY+間隙幅GDY)は、18Aに相当する。第3のずらし構成例において、実数Aは、網目状導体1721のX方向の導体幅WDXの1/3に等しい。
 第3のずらし構成例においても、上述した完全相殺の第1条件は少なくとも満たしている。
 図186および図187は、網目状導体の第3のずらし構成例としての導体層1731において周期ずれPDXを様々な値に設定した平面図である。
 図186のAは、周期ずれPDXをゼロに設定した導体層1731の平面図である。
 図186のBは、X方向の周期ずれPDXを1A、即ち、X方向の繰り返し周期(周期幅FDX)の1/9に設定した導体層1731の平面図である。
 図186のCは、周期ずれPDXを2A、即ち、X方向の繰り返し周期(周期幅FDX)の2/9に設定した導体層1731の平面図である。
 図187のAは、周期ずれPDXを3A、即ち、X方向の繰り返し周期(周期幅FDX)の3/9に設定した導体層1731の平面図である。
 図187のBは、周期ずれPDXを4A、即ち、X方向の繰り返し周期(周期幅FDX)の4/9に設定した導体層1731の平面図である。
 図188は、図186および図187のように周期ずれPDXを様々な値に設定した導体層1731の容量性ノイズの理論値を示したグラフである。
 図188のグラフの横軸および縦軸は図169と同様であるので、説明は省略する。なお、図188のグラフのスケールも、図169に合わせて示している。Vdd印加電圧とVss印加電圧の条件も同様とする。
 図188に示されるように、周期ずれPDXが所定の値の場合に、容量性ノイズの変化量がゼロ、かつ、容量性ノイズの絶対値がゼロとなっている。より具体的には、周期ずれPDXを、X方向の繰り返し周期の1/9、2/9、または、4/9とした場合に、容量性ノイズの変化量がゼロ、かつ、容量性ノイズの絶対値がゼロとなっている。周期ずれPDXを、X方向の繰り返し周期の1/9(=1A)、2/9(=2A)、または、4/9(=4A)とした場合、9行単位で、容量性ノイズの変化量がゼロとなる。
 その他の周期ずれPDXの場合、具体的には、周期ずれPDXを、X方向の繰り返し周期の3/9とした場合には、容量性ノイズの変化量および絶対値はゼロとならないが、周期ずれPDXがゼロ、即ち、周期ずれなしの場合よりも、容量性ノイズの変化量を少なくすることができる。
 以上より、中継導体1722を備える第3のずらし構成例においては、以下の条件の場合に、容量性ノイズの変化量をゼロにすることができる。
 まず、前提として、周期ずれPDXは、網目状導体1721のX方向の周期幅FDX(=9A)とは異なる値に設定される。
 周期ずれPDXが1A、2A、または、4Aである場合に、9行単位で、容量性ノイズの変化量がゼロとなる。また、周期ずれPDXが網目状導体1721のX方向の繰り返し周期の3/9(=3A)とは異なる場合、換言すれば、周期ずれPDXが周期幅FDX(=9A)÷3ではない場合に、容量性ノイズの変化量がゼロとなる。
 図189は、中継導体1722を省略した導体層1731において、周期ずれPDXを様々な値に設定した場合の容量性ノイズの理論値を示したグラフである。中継導体1722を省略した導体層1731の図示は省略するが、図186および図187の各導体層1731から、中継導体1722を取り除いたものに相当する。
 中継導体1722がない場合には、図189に示されるように、容量性ノイズの絶対値はゼロにはならないが、周期ずれPDXが所定の値の場合に、容量性ノイズの変化量がゼロとなっている。容量性ノイズの変化量がゼロとなるずらし量は、中継導体1722がある場合と異なる。具体的には、周期ずれPDXを、X方向の繰り返し周期の1/9、2/9、3/9、または、4/9とした場合に、容量性ノイズの変化量がゼロとなっている。周期ずれPDXを、X方向の繰り返し周期の1/9(=1A)、2/9(=2A)、または、4/9(=4A)とした場合、9行単位で、容量性ノイズの変化量がゼロとなる。周期ずれPDXを、X方向の繰り返し周期の3/9(=3A)とした場合、3行単位で、容量性ノイズの変化量がゼロとなる。
 以上より、中継導体1722を備えない第3のずらし構成例においては、以下の条件の場合に、容量性ノイズの変化量をゼロにすることができる。
 まず、前提として、周期ずれPDXは、網目状導体1721のX方向の周期幅FDX(=9A)とは異なる値に設定される。
 周期ずれPDXが1A、2A、または、4Aである場合に、9行単位で、容量性ノイズの変化量がゼロとなる。また、周期ずれPDXが網目状導体1721のX方向の繰り返し周期の3/9(=3A)と同じ場合にも、3行単位で、容量性ノイズの変化量がゼロとなる。
 したがって、第3のずらし構成例において、周期ずれPDXを網目状導体1721の導体幅WDX=3Aと同じに設定した場合、中継導体1722がある場合には、容量性ノイズの変化量がゼロとならないが、中継導体1722がない場合には、容量性ノイズの変化量がゼロとなる。すなわち、第3のずらし構成例では、中継導体1722がある場合とない場合で、容量性ノイズの変化量がゼロとなるときの周期ずれPDXの条件が異なっている。
 網目状導体1721の導体部と間隙領域との形状関係により、網目状導体1721の導体幅WDXの整数倍と周期幅FDXとが一致し、周期ずれPDXと導体幅WDXとが一致する場合には、容量性ノイズが均等に分散されるので、中継導体1722がないと容量性ノイズ変化量をゼロにすることができる。
<網目状導体の第4のずらし構成例>
 上述した第1乃至第3のずらし構成例では、中継導体がX方向よりもY方向が長い縦長形状の例について説明した。
 次に、中継導体がX方向よりもY方向が短い横長形状の例を、第4のずらし構成例として示す。
 図190は、網目状導体の第4のずらし構成例としての導体層の導体幅および間隙幅を説明する平面図である。
 図190の導体層1771は、網目状導体1761と中継導体1762とで構成される。
 網目状導体1761は、任意の実数をAとして、2Aに設定された導体幅WDXと、2Aに設定された導体幅WDYとを有する。網目状導体1761の間隙領域は、12Aに設定された間隙幅GDXと、10Aに設定された間隙幅GDYとで形成されている。
 網目状導体1761の間隙領域内に配置された中継導体1762は、8Aに設定された導体幅CDXと、6Aに設定された導体幅CDYとを有する矩形であり、Y方向の導体幅CDYよりも、X方向の導体幅CDXが大きい(CDX>CDY)横長の長方形である。網目状導体1761と中継導体1762との間は、X方向の第1の間隙幅GDX1および第2の間隙幅GDX2のいずれも、2Aに設定されている。また、Y方向の第1の間隙幅GDY1および第2の間隙幅GDY2のいずれも、2Aに設定されている。
 したがって、周期幅FDX(=導体幅WDX+間隙幅GDX)は、任意の実数Aを用いて表すと、14Aに相当し、周期幅FDY(=導体幅WDY+間隙幅GDY)は、12Aに相当する。第4のずらし構成例において、実数Aは、網目状導体1761のX方向の導体幅WDXの1/2に等しい。
 第4のずらし構成例においても、上述した完全相殺の第1条件は少なくとも満たしている。
 図191および図192は、網目状導体の第4のずらし構成例としての導体層1771において周期ずれPDXを様々な値に設定した平面図である。
 図191のAは、周期ずれPDXをゼロに設定した導体層1771の平面図である。
 図191のBは、X方向の周期ずれPDXを1A、即ち、X方向の繰り返し周期(周期幅FDX)の1/14に設定した導体層1771の平面図である。
 図191のCは、周期ずれPDXを2A、即ち、X方向の繰り返し周期(周期幅FDX)の2/14に設定した導体層1771の平面図である。
 図191のDは、周期ずれPDXを3A、即ち、X方向の繰り返し周期(周期幅FDX)の3/14に設定した導体層1771の平面図である。
 図192のAは、周期ずれPDXを4A、即ち、X方向の繰り返し周期(周期幅FDX)の4/14に設定した導体層1771の平面図である。
 図192のBは、周期ずれPDXを5A、即ち、X方向の繰り返し周期(周期幅FDX)の5/14に設定した導体層1771の平面図である。
 図192のCは、周期ずれPDXを6A、即ち、X方向の繰り返し周期(周期幅FDX)の6/14に設定した導体層1771の平面図である。
 図192のDは、周期ずれPDXを7A、即ち、X方向の繰り返し周期(周期幅FDX)の7/14に設定した導体層1771の平面図である。
 図193は、図191および図192のように周期ずれPDXを様々な値に設定した導体層1771の容量性ノイズの理論値を示したグラフである。
 図193のグラフの横軸および縦軸は図169と同様であるので、説明は省略する。なお、図193のグラフのスケールも、図169に合わせて示している。Vdd印加電圧とVss印加電圧の条件も同様とする。
 図193に示されるように、周期ずれPDXが所定の値の場合に、容量性ノイズの変化量がゼロ、かつ、容量性ノイズの絶対値がゼロとなっている。より具体的には、周期ずれPDXを、X方向の繰り返し周期の1/14、2/14、3/14、4/14、5/14、または、6/14とした場合に、容量性ノイズの変化量がゼロ、かつ、容量性ノイズの絶対値がゼロとなっている。
 周期ずれPDXを、X方向の繰り返し周期の1/14(=1A)、3/14(=3A)、または、5/14(=5A)とした場合、14行単位で、容量性ノイズの変化量がゼロ、かつ、容量性ノイズの絶対値となる。
 周期ずれPDXを、X方向の繰り返し周期の2/14(=2A)、4/14(=4A)、または、6/14(=6A)とした場合、7行単位で、容量性ノイズの変化量がゼロ、かつ、容量性ノイズの絶対値となる。これは、周期ずれPDXが網目状導体1721の導体幅WDXと等しい場合に加えて、導体幅WDXの整数倍と等しい場合にも、少ない行数で、容量性ノイズの変化量がゼロ、かつ、容量性ノイズの絶対値となる。導体幅WDXの整数倍が、周期幅FDX(=14A)÷3、周期幅FDX(=14A)÷4と一致しない場合には、周期ずれPDXが導体幅WDXの整数倍と等しい場合にも、少ない行数で、容量性ノイズの変化量がゼロ、かつ、容量性ノイズの絶対値となる。
 その他の周期ずれPDXの場合、具体的には、周期ずれPDXを、X方向の繰り返し周期の7/14とした場合には、容量性ノイズの変化量および絶対値はゼロとならないが、周期ずれPDXがゼロ、即ち、周期ずれなしの場合よりも、容量性ノイズの変化量を少なくすることができる。
 以上より、中継導体1762を備える第4のずらし構成例においては、以下の条件の場合に、容量性ノイズの変化量をゼロにすることができる。
 まず、前提として、周期ずれPDXは、網目状導体1761のX方向の周期幅FDX(=14A)とは異なる値に設定される。
 周期ずれPDXが2A、すなわち網目状導体1761のX方向の導体幅WDXと同じ場合に、容量性ノイズの変化量および絶対値はゼロとなる。また、周期ずれPDXが1A、3A、4A、5A、および、6Aである場合にも、容量性ノイズの変化量および絶対値はゼロとなる。
 逆に言えば、周期ずれPDXが網目状導体1761のX方向の繰り返し周期の7/14(=7A)とは異なる場合、換言すれば、周期ずれPDXが周期幅FDX(=14A)÷2ではない場合に、容量性ノイズの変化量および絶対値がゼロとなる。
 図194は、中継導体1762を省略した導体層1771において、周期ずれPDXを様々な値に設定した場合の容量性ノイズの理論値を示したグラフである。中継導体1762を省略した導体層1771の図示は省略するが、図191および図192の各導体層1771から、中継導体1762を取り除いたものに相当する。
 図194に示されるように、中継導体1762がない場合においても、容量性ノイズの変化量がゼロとなるずらし量は、中継導体1762がある場合と同じである。ただし、容量性ノイズの絶対値はゼロとならない。
 以上より、中継導体1762を備えない第4のずらし構成例においては、以下の条件の場合に、容量性ノイズの変化量をゼロにすることができる。
 まず、前提として、周期ずれPDXは、網目状導体1761のX方向の周期幅FDX(=14A)とは異なる値に設定される。
 周期ずれPDXが2A、すなわち網目状導体1761のX方向の導体幅WDXと同じ場合に、容量性ノイズの変化量はゼロとなる。また、周期ずれPDXが1A、3A、4A、5A、および、6Aである場合にも、容量性ノイズの変化量はゼロとなる。
 逆に言えば、周期ずれPDXが網目状導体1761のX方向の繰り返し周期の7/14(=7A)とは異なる場合、換言すれば、周期ずれPDXが周期幅FDX(=14A)÷2ではない場合に、容量性ノイズの変化量がゼロとなる。
<網目状導体の第5のずらし構成例>
 次に、網目状導体のX方向の導体幅WDXが広い場合の例を、第5のずらし構成例として示す。
 図195は、網目状導体の第5のずらし構成例としての導体層の導体幅および間隙幅を説明する平面図である。
 図195の導体層1791は、網目状導体1781と中継導体1782とで構成される。
 網目状導体1781は、任意の実数をAとして、4Aに設定された導体幅WDXと、2Aに設定された導体幅WDYとを有する。網目状導体1781の間隙領域は、12Aに設定された間隙幅GDXと、16Aに設定された間隙幅GDYとで形成されている。
 網目状導体1781の間隙領域内に配置された中継導体1782は、8Aに設定された導体幅CDXと、12Aに設定された導体幅CDYとを有する矩形であり、X方向の導体幅CDXよりも、Y方向の導体幅CDYが大きい(CDY>CDX)縦長の長方形である。網目状導体1781と中継導体1782との間は、X方向の第1の間隙幅GDX1および第2の間隙幅GDX2のいずれも、2Aに設定されている。また、Y方向の第1の間隙幅GDY1および第2の間隙幅GDY2のいずれも、2Aに設定されている。
 したがって、周期幅FDX(=導体幅WDX+間隙幅GDX)は、任意の実数Aを用いて表すと、16Aに相当し、周期幅FDY(=導体幅WDY+間隙幅GDY)は、18Aに相当する。第5のずらし構成例において、実数Aは、網目状導体1781のX方向の導体幅WDXの1/4に等しい。
 第5のずらし構成例においても、上述した完全相殺の第1条件は少なくとも満たしている。
 図196乃至図198は、網目状導体の第5のずらし構成例としての導体層1791において周期ずれPDXを様々な値に設定した平面図である。
 図196のAは、周期ずれPDXをゼロに設定した導体層1791の平面図である。
 図196のBは、X方向の周期ずれPDXを1A、即ち、X方向の繰り返し周期(周期幅FDX)の1/16に設定した導体層1791の平面図である。
 図196のCは、周期ずれPDXを2A、即ち、X方向の繰り返し周期(周期幅FDX)の2/16に設定した導体層1791の平面図である。
 図197のAは、周期ずれPDXを3A、即ち、X方向の繰り返し周期(周期幅FDX)の3/16に設定した導体層1791の平面図である。
 図197のBは、周期ずれPDXを4A、即ち、X方向の繰り返し周期(周期幅FDX)の4/16に設定した導体層1791の平面図である。
 図197のCは、周期ずれPDXを5A、即ち、X方向の繰り返し周期(周期幅FDX)の5/16に設定した導体層1791の平面図である。
 図198のAは、周期ずれPDXを6A、即ち、X方向の繰り返し周期(周期幅FDX)の6/16に設定した導体層1791の平面図である。
 図198のBは、周期ずれPDXを7A、即ち、X方向の繰り返し周期(周期幅FDX)の7/16に設定した導体層1791の平面図である。
 図198のCは、周期ずれPDXを8A、即ち、X方向の繰り返し周期(周期幅FDX)の8/16に設定した導体層1791の平面図である。
 図199は、図196乃至図198のように周期ずれPDXを様々な値に設定した導体層1771の容量性ノイズの理論値を示したグラフである。
 図199のグラフの横軸および縦軸は図169と同様であるので、説明は省略する。なお、図199のグラフのスケールも、図169に合わせて示している。Vdd印加電圧とVss印加電圧の条件も同様とする。
 図199に示されるように、周期ずれPDXが所定の値の場合に、容量性ノイズの変化量がゼロ、かつ、容量性ノイズの絶対値がゼロとなっている。より具体的には、周期ずれPDXを、X方向の繰り返し周期の1/16(=1A)、2/16(=2A)、3/16(=3A)、4/16(=4A)、5/16(=5A)、6/16(=6A)、または、7/16(=7A)とした場合に、容量性ノイズの変化量がゼロ、かつ、容量性ノイズの絶対値がゼロとなっている。
 逆に言えば、周期ずれPDXが網目状導体1781のX方向の繰り返し周期の8/16(=8A)とは異なる場合、換言すれば、周期ずれPDXが周期幅FDX(=16A)÷2ではない場合に、容量性ノイズの変化量および絶対値がゼロとなる。
 周期ずれPDXを、X方向の繰り返し周期の1/16(=1A)、3/16(=3A)、5/16(=5A)、または、7/16(=7A)とした場合、16行単位で、容量性ノイズの変化量がゼロ、かつ、容量性ノイズの絶対値となる。
 周期ずれPDXを、X方向の繰り返し周期の2/16(=2A)、または、6/16(=6A)とした場合、8行単位で、容量性ノイズの変化量がゼロ、かつ、容量性ノイズの絶対値となる。
 周期ずれPDXを、X方向の繰り返し周期の4/16(=4A)した場合、4行単位で、容量性ノイズの変化量がゼロ、かつ、容量性ノイズの絶対値となる。
 その他の周期ずれPDXの場合、具体的には、周期ずれPDXを、X方向の繰り返し周期の8/16とした場合には、容量性ノイズの変化量および絶対値はゼロとならないが、周期ずれPDXがゼロ、即ち、周期ずれなしの場合よりも、容量性ノイズの変化量を少なくすることができる。
 以上より、中継導体1762を備える第5のずらし構成例においては、以下の条件の場合に、容量性ノイズの変化量をゼロにすることができる。
 まず、前提として、周期ずれPDXは、網目状導体1781のX方向の周期幅FDX(=16A)とは異なる値に設定される。
 周期ずれPDXが4A、すなわち網目状導体1781のX方向の導体幅WDXと同じ場合に、容量性ノイズの変化量および絶対値はゼロとなる。
 また、周期ずれPDXが2Aおよび6Aである場合にも、容量性ノイズの変化量および絶対値はゼロとなる。周期ずれPDXを2Aとした場合、周期ずれPDXは導体幅WDXの半分の1倍に等しい。周期ずれPDXを6Aとした場合、周期ずれPDXは導体幅WDXの半分の3倍に等しい。さらに言えば、周期ずれPDXを4Aとした場合、周期ずれPDXは導体幅WDXの半分の2倍に等しい。
 上述した第4のずらし構成例のように、網目状導体のX方向の導体幅WDXを狭く設定した場合には、周期ずれPDXが網目状導体1721の導体幅WDXの整数倍と等しい場合に、容量性ノイズの変化量がゼロ、かつ、容量性ノイズの絶対値となった。
 これに対して、網目状導体のX方向の導体幅WDXを広く設定した場合には、周期ずれPDXが網目状導体1721の導体幅WDXの半分の整数倍と等しい場合に、容量性ノイズの変化量がゼロ、かつ、容量性ノイズの絶対値となっている。
 このように、周期ずれPDXが、導体幅WDXの整数倍だけでなく、導体幅WDXの半分の整数倍に等しい場合に、容量性ノイズの変化量および絶対値がゼロとなる場合もある。
 図200は、中継導体1782を省略した導体層1791において、周期ずれPDXを様々な値に設定した場合の容量性ノイズの理論値を示したグラフである。中継導体1782を省略した導体層1791の図示は省略するが、図196乃至図198の各導体層1791から、中継導体1782を取り除いたものに相当する。
 図200に示されるように、中継導体1782がない場合においても、容量性ノイズの変化量がゼロとなるずらし量は、中継導体1782がある場合と同じである。ただし、容量性ノイズの絶対値はゼロとならない。
<網目状導体の第6のずらし構成例>
 上述した第1乃至第5のずらし構成例では、網目状導体のX方向の導体幅WDXと間隙幅GDXとの関係に着目すると、間隙幅GDXが導体幅WDXよりも大きい例(間隙幅GDX>導体幅WDX)を説明した。
 次の第6のずらし構成例では、間隙幅GDXが導体幅WDXよりも小さい例(間隙幅GDX<導体幅WDX)について説明する。
 図201は、網目状導体の第6のずらし構成例としての導体層の導体幅および間隙幅を説明する平面図である。
 図201の導体層1811は、網目状導体1801と中継導体1802とで構成される。
 網目状導体1801は、任意の実数をAとして、6Aに設定された導体幅WDXと、6Aに設定された導体幅WDYとを有する。網目状導体1801の間隙領域は、4Aに設定された間隙幅GDXと、4Aに設定された間隙幅GDYとで形成されている。したがって、導体幅WDX(=6A)が間隙幅GDX(=4A)よりも大きくなっている。
 網目状導体1801の間隙領域内に配置された中継導体1802は、2Aに設定された導体幅CDXと、2Aに設定された導体幅CDYとを有する矩形であり、X方向の導体幅CDXとY方向の導体幅CDYとが同じ(CDY=CDX)正方形である。網目状導体1801と中継導体1802との間は、X方向の第1の間隙幅GDX1および第2の間隙幅GDX2のいずれも、1Aに設定されている。また、Y方向の第1の間隙幅GDY1および第2の間隙幅GDY2のいずれも、1Aに設定されている。
 したがって、周期幅FDX(=導体幅WDX+間隙幅GDX)は、任意の実数Aを用いて表すと、10Aに相当し、周期幅FDY(=導体幅WDY+間隙幅GDY)は、10Aに相当する。
 第6のずらし構成例では、所定範囲内における網目状導体1801の導体面積と中継導体1802の導体面積を比較すると、網目状導体1801の導体面積の方が大きくなっており、上述した完全相殺の第1条件は満たしていない。
 図202および図203は、網目状導体の第6のずらし構成例としての導体層1811において周期ずれPDXを様々な値に設定した平面図である。
 図202のAは、周期ずれPDXをゼロに設定した導体層1811の平面図である。
 図202のBは、X方向の周期ずれPDXを1A、即ち、X方向の繰り返し周期(周期幅FDX)の1/10に設定した導体層1811の平面図である。
 図202のCは、周期ずれPDXを2A、即ち、X方向の繰り返し周期(周期幅FDX)の2/10に設定した導体層1811の平面図である。
 図203のAは、周期ずれPDXを3A、即ち、X方向の繰り返し周期(周期幅FDX)の3/10に設定した導体層1811の平面図である。
 図203のBは、周期ずれPDXを4A、即ち、X方向の繰り返し周期(周期幅FDX)の4/10に設定した導体層1811の平面図である。
 図203のCは、周期ずれPDXを5A、即ち、X方向の繰り返し周期(周期幅FDX)の5/10に設定した導体層1811の平面図である。
 図204は、図202および図203のように周期ずれPDXを様々な値に設定した導体層1811の容量性ノイズの理論値を示したグラフである。
 図204のグラフの横軸および縦軸は図169と同様であるので、説明は省略する。なお、図204のグラフのスケールも、図169に合わせて示している。Vdd印加電圧とVss印加電圧の条件も同様とする。
 図204に示されるように、周期ずれPDXが所定の値の場合に、容量性ノイズの変化量がゼロとなっている。より具体的には、周期ずれPDXを、X方向の繰り返し周期の1/10(=1A)、2/10(=2A)、3/10(=3A)、または、4/10(=4A)とした場合に、容量性ノイズの変化量がゼロとなっている。なお、容量性ノイズの絶対値はゼロとならない。
 逆に言えば、周期ずれPDXが網目状導体1801のX方向の繰り返し周期の5/10(=5A)とは異なる場合、換言すれば、周期ずれPDXが周期幅FDX(=10A)÷2ではない場合に、容量性ノイズの変化量がゼロとなる。
 周期ずれPDXを、X方向の繰り返し周期の1/10(=1A)、または、3/10(=3A)とした場合、10行単位で、容量性ノイズの変化量がゼロとなる。
 周期ずれPDXを、X方向の繰り返し周期の2/10(=2A)、または、4/10(=4A)とした場合、5行単位で、容量性ノイズの変化量がゼロとなる。
 その他の周期ずれPDXの場合、具体的には、周期ずれPDXを、X方向の繰り返し周期の5/10とした場合には、容量性ノイズの変化量はゼロとならないが、周期ずれPDXがゼロ、即ち、周期ずれなしの場合よりも、容量性ノイズの変化量を少なくすることができる。
 以上より、中継導体1802を備える第6のずらし構成例においては、以下の条件の場合に、容量性ノイズの変化量をゼロにすることができる。
 まず、前提として、周期ずれPDXは、網目状導体1801のX方向の周期幅FDX(=10A)とは異なる値に設定される。
 周期ずれPDXが4A、すなわち網目状導体1801のX方向の間隙幅GDXと同じ場合に、容量性ノイズの変化量はゼロとなる。また、周期ずれPDXが1A、2A、および3Aである場合にも、容量性ノイズの変化量はゼロとなる。
 図204のグラフにはないが、周期ずれPDXが間隙幅GDX(=4A)の2倍である8Aである場合、周期幅FDXは10Aであり、8/10=(10-2)/10なので、周期ずれPDXが2Aである場合と等価となるので、容量性ノイズの変化量はゼロとなる。また、周期ずれPDXが間隙幅GDX(=4A)の3倍である12Aである場合、周期幅FDXは10Aであり、12/10=(10+2)/10なので、周期ずれPDXが2Aである場合と等価となるので、容量性ノイズの変化量はゼロとなる。
 したがって、間隙幅GDXが導体幅WDXよりも大きい網目状導体1801を有する導体層1811では、間隙幅GDXの整数倍であるとき、容量性ノイズの変化量をゼロとすることができる。ただし、周期ずれPDXが1Aまたは3Aである場合も、容量性ノイズの変化量はゼロとなるので、間隙幅GDXの整数倍に限定されるわけではない。
 図205は、中継導体1802を省略した導体層1811において、周期ずれPDXを様々な値に設定した場合の容量性ノイズの理論値を示したグラフである。中継導体1802を省略した導体層1811の図示は省略するが、図202および図203の各導体層1811から、中継導体1802を取り除いたものに相当する。
 図205に示されるように、中継導体1802がない場合においても、容量性ノイズの変化量がゼロとなるずらし量は、中継導体1802がある場合と同じである。ただし、容量性ノイズの絶対値はゼロとならない。
<網目状導体の第7のずらし構成例>
 次に、網目状導体のX方向の導体幅WDXと間隙幅GDXとが等しい場合の例(導体幅WDX=間隙幅GDX)を、第7のずらし構成例として示す。
 図206は、網目状導体の第7のずらし構成例としての導体層の導体幅および間隙幅を説明する平面図である。
 図206の導体層1831は、網目状導体1821と中継導体1822とで構成される。
 網目状導体1821は、任意の実数をAとして、6Aに設定された導体幅WDXと、6Aに設定された導体幅WDYとを有する。網目状導体1821の間隙領域は、6Aに設定された間隙幅GDXと、6Aに設定された間隙幅GDYとで形成されている。したがって、導体幅WDX(=6A)と間隙幅GDX(=6A)とが等しくなっている。
 網目状導体1821の間隙領域内に配置された中継導体1822は、2Aに設定された導体幅CDXと、2Aに設定された導体幅CDYとを有する矩形であり、X方向の導体幅CDXとY方向の導体幅CDYとが同じ(CDY=CDX)正方形である。網目状導体1821と中継導体1822との間は、X方向の第1の間隙幅GDX1および第2の間隙幅GDX2のいずれも、2Aに設定されている。また、Y方向の第1の間隙幅GDY1および第2の間隙幅GDY2のいずれも、2Aに設定されている。
 したがって、周期幅FDX(=導体幅WDX+間隙幅GDX)は、任意の実数Aを用いて表すと、12Aに相当し、周期幅FDY(=導体幅WDY+間隙幅GDY)は、12Aに相当する。
 第7のずらし構成例では、所定範囲内における網目状導体1801の導体面積と中継導体1802の導体面積を比較すると、網目状導体1801の導体面積の方が大きくなっており、上述した完全相殺の第1条件は満たしていない。
 図207および図208は、網目状導体の第7のずらし構成例としての導体層1831において周期ずれPDXを様々な値に設定した平面図である。
 図207のAは、周期ずれPDXをゼロに設定した導体層1831の平面図である。
 図207のBは、X方向の周期ずれPDXを1A、即ち、X方向の繰り返し周期(周期幅FDX)の1/12に設定した導体層1831の平面図である。
 図207のCは、周期ずれPDXを2A、即ち、X方向の繰り返し周期(周期幅FDX)の2/12に設定した導体層1831の平面図である。
 図207のDは、周期ずれPDXを3A、即ち、X方向の繰り返し周期(周期幅FDX)の3/12に設定した導体層1831の平面図である。
 図208のAは、周期ずれPDXを4A、即ち、X方向の繰り返し周期(周期幅FDX)の4/12に設定した導体層1831の平面図である。
 図208のBは、周期ずれPDXを5A、即ち、X方向の繰り返し周期(周期幅FDX)の5/12に設定した導体層1831の平面図である。
 図208のCは、周期ずれPDXを6A、即ち、X方向の繰り返し周期(周期幅FDX)の6/12に設定した導体層1831の平面図である。
 図209は、図207および図208のように周期ずれPDXを様々な値に設定した導体層1831の容量性ノイズの理論値を示したグラフである。
 図209のグラフの横軸および縦軸は図169と同様であるので、説明は省略する。なお、図209のグラフのスケールも、図169に合わせて示している。Vdd印加電圧とVss印加電圧の条件も同様とする。
 図209に示されるように、周期ずれPDXが所定の値の場合に、容量性ノイズの変化量がゼロとなっている。より具体的には、周期ずれPDXを、X方向の繰り返し周期の1/12(=1A)、2/12(=2A)、または、5/12(=5A)とした場合に、容量性ノイズの変化量がゼロとなっている。なお、容量性ノイズの絶対値はゼロとならない。
 逆に言えば、周期ずれPDXが網目状導体1821のX方向の繰り返し周期の3/12(=3A)、4/12(=4A)、および、6/12(=6A)とは異なる場合、換言すれば、周期ずれPDXが、周期幅FDX(=12A)÷4、周期幅FDX(=12A)÷3、および、周期幅FDX(=12A)÷2ではない場合に、容量性ノイズの変化量がゼロとなる。
 周期ずれPDXを、X方向の繰り返し周期の1/12(=1A)、または、5/12(=5A)とした場合、12行単位で、容量性ノイズの変化量がゼロとなる。
 周期ずれPDXを、X方向の繰り返し周期の2/12(=2A)とした場合、6行単位で、容量性ノイズの変化量がゼロとなる。X方向の導体幅WDXと間隙幅GDXとが等しい網目状導体1821では、周期ずれPDXが、中継導体1822のX方向の導体幅CDX(=2A)と同じ場合に、少ない行数で、容量性ノイズの変化量をゼロにすることができる。周期ずれPDXが、網目状導体1821のX方向の導体幅WDX(=6A)と同じ場合には、容量性ノイズの変化量をゼロにならない。
 周期ずれPDXを、網目状導体1821のX方向の繰り返し周期の3/12(=3A)、4/12(=4A)、および、6/12(=6A)とした場合には、容量性ノイズの変化量はゼロとならないが、周期ずれPDXがゼロ、即ち、周期ずれなしの場合よりも、容量性ノイズの変化量を少なくすることができる。
 以上より、中継導体1822を備える第7のずらし構成例においては、以下の条件の場合に、容量性ノイズの変化量をゼロにすることができる。
 まず、前提として、周期ずれPDXは、網目状導体1821のX方向の周期幅FDX(=12A)とは異なる値に設定される。
 周期ずれPDXが2A、すなわち中継導体1822のX方向の導体幅CDXと同じ場合に、容量性ノイズの変化量はゼロとなる。また、周期ずれPDXが1A、および、5Aである場合にも、容量性ノイズの変化量はゼロとなる。
 周期ずれPDXが網目状導体1821のX方向の繰り返し周期の3/12(=3A)とは異なる場合、換言すれば、周期ずれPDXが周期幅FDX(=12A)÷4ではない場合に、容量性ノイズの変化量がゼロとなる。
 周期ずれPDXが網目状導体1821のX方向の繰り返し周期の4/12(=4A)とは異なる場合、換言すれば、周期ずれPDXが周期幅FDX(=12A)÷3ではない場合に、容量性ノイズの変化量がゼロとなる。
 周期ずれPDXが網目状導体1821のX方向の繰り返し周期の6/12(=6A)とは異なる場合、換言すれば、周期ずれPDXが周期幅FDX(=12A)÷2ではない場合に、容量性ノイズの変化量がゼロとなる。
 図210は、中継導体1822を省略した導体層1831において、周期ずれPDXを様々な値に設定した場合の容量性ノイズの理論値を示したグラフである。中継導体1822を省略した導体層1831の図示は省略するが、図207および図208の各導体層1831から、中継導体1822を取り除いたものに相当する。
 中継導体1822がない場合においても、図210に示されるように、周期ずれPDXが所定の値の場合に、容量性ノイズの変化量がゼロとなっている。ただし、容量性ノイズの変化量がゼロとなるずらし量は、中継導体1822がある場合と異なる。具体的には、周期ずれPDXを、X方向の繰り返し周期の1/12、2/12、3/12、5/12、または、6/12とした場合に、容量性ノイズの変化量がゼロとなっている。
 周期ずれPDXを、X方向の繰り返し周期の3/12(=3A)とした場合、4行単位で、容量性ノイズの変化量がゼロとなる。周期ずれPDXを、X方向の繰り返し周期の2/12(=2A)とした場合、6行単位で、容量性ノイズの変化量がゼロとなる。
 周期ずれPDXを、X方向の繰り返し周期の6/12(=6A)とした場合、2行単位で、容量性ノイズの変化量がゼロとなる。
 以上より、中継導体1822を備えない第7のずらし構成例においては、以下の条件の場合に、容量性ノイズの変化量をゼロにすることができる。
 まず、前提として、周期ずれPDXは、網目状導体1821のX方向の周期幅FDX(=12A)とは異なる値に設定される。
 周期ずれPDXが網目状導体1821のX方向の繰り返し周期の1/12(=1A)、2/12(=2A)、3/12(=3A)、5/12(=5A)、または、6/12(=6A)である場合、容量性ノイズの変化量がゼロとなる。網目状導体1821のX方向の繰り返し周期の1/12(=1A)、2/12(=2A)、3/12(=3A)、および、6/12(=6A)は、それぞれ、周期ずれPDXが、周期幅FDX(=12A)÷12、周期幅FDX(=12A)÷6、周期幅FDX(=12A)÷4、および、周期幅FDX(=12A)÷2であると言い換えることができる。したがって、周期ずれPDXが、周期幅FDX÷偶数の整数である場合に、容量性ノイズの変化量がゼロとなる。周期ずれPDXを、X方向の繰り返し周期の6/12(=6A)とした場合である、周期ずれPDXが周期幅FDX(=12A)÷2である場合に、最も少ない行数で、容量性ノイズの変化量がゼロとなり好適であるが、これに限られない。
 また、周期ずれPDXが網目状導体1821のX方向の繰り返し周期の4/12(=4A)とは異なる場合、換言すれば、周期ずれPDXが、周期幅FDX(=12A)÷3ではない場合に、容量性ノイズの変化量がゼロとなる。
 したがって、第7のずらし構成例においては、中継導体1822がある場合とない場合で、容量性ノイズの変化量がゼロとなるときの周期ずれPDXの条件が異なっている。
 網目状導体1821の導体部と間隙領域との形状関係により、周期ずれPDXの偶数の整数倍と周期幅FDXとが一致する場合には、容量性ノイズが均等に分散されるので、中継導体1822がないと容量性ノイズ変化量をゼロにすることができる。
<網目状導体のずらし構成例の変形例>
 上述した網目状導体の第1乃至第7のずらし構成例の少なくとも1つに対して、以下のような変形を行った構成も可能である。
 例えば、網目状導体のY方向の導体幅WDYを間隙幅GDYよりも大きくしたり(導体幅WDY>間隙幅GDY)、X方向の導体幅WDXを間隙幅GDXよりも大きくしてもよい(導体幅WDX>間隙幅GDX)。この場合、遮光性や導体占有率の観点で有利になる。
 反対に、例えば、網目状導体のY方向の導体幅WDYを間隙幅GDYと同じか、または、それより小さくしたり(導体幅WDY≦間隙幅GDY)、X方向の導体幅WDXを間隙幅GDXと同じか、または、それより小さくしてもよい(導体幅WDX≦間隙幅GDX)。この場合、容量性ノイズの相殺性の観点で有利になる。
 上述した網目状導体のずらし構成例では、X軸のプラス方向へずらした例を用いて説明したが、X軸のマイナス方向へずらしてもよい。また、X軸のプラス方向への1行または複数行のずらしと、X軸のマイナス方向への1行または複数行のずらしとを交互に配置するなど、X軸のプラス方向へのずらしとマイナス方向へのずらしを組み合わせて構成してもよい。
 上述した網目状導体のずらし構成を有する導体層は、Victim導体に近い導体層である場合に特に好適だが、その限りではない。網目状導体のずらし構成を有する導体層は、上述した導体層A(配線層165A)または導体層B(配線層165B)の網目状導体に適用される例として説明したが、導体層AまたはB以外の導体層にも適用可能である。例えば、導体層C(配線層165C)でもよいし、回路基板、半導体基板、または、電子機器のなかの何れかの導体層に適用されてもよい。また、網目状導体のずらし構成を有する導体層を2層以上備えてもよく、その場合にはこの2層のそれぞれ導体層における周期ずれ量が互いに同一または略同一であることが誘導性ノイズの観点で望ましいが、周期ずれ量を互いに異ならせてもよい。また、網目状導体を有する導体層を2層以上備え、一部の導体層の網目状導体には周期ずれを設けて、他の導体層の網目状導体には周期ずれを設けないようにしてもよい。また、一つの導体層内に、周期ずれ量が互いに異なる網目状導体を複数備えてもよく、周期ずれを設けた網目状導体と周期ずれを設けない網目状導体との両方を備えてもよい。
 網目状導体または中継導体としての配線の周期(配線周期)、配線の幅(配線幅)、配線の間隙幅、配線の周期ずれは、位置によって変調された構造であってもよい。例えば、配線周期、配線幅、間隙幅、周期ずれは、X方向またはY方向の距離に応じて徐々に大きくなる構造であってもよく、X方向またはY方向の距離に応じて徐々に小さくなる構造であってもよい。さらに、X方向またはY方向の距離に応じて徐々に大きくなる構造と、X方向またはY方向の距離に応じて徐々に小さくなる構造を組み合わせた構造や交互に配置した構造であってもよい。
 網目状導体または中継導体の少なくとも一部の導体は、複数個または複数本に分離されていてもよく、図178のBのように、分離されてはいないが、複数個または複数本に分割された形状が結合した形状でもよい。また、網目状導体の少なくとも一部が、切断して分離された形状であってもよい。
 上述した網目状導体のずらし構成例では、網目状導体が、GNDやマイナス電源に接続される配線(Vss配線)であり、中継導体が、プラス電源に接続される配線(Vdd配線)であるとして説明した。また、Vdd印加電圧とVss印加電圧の絶対値が同一である例について説明した。
 しかしながら、Vdd印加電圧とVss印加電圧は、反対でもよい。すなわち、網目状導体が、プラス電源に接続される配線(Vdd配線)であり、中継導体が、GNDやマイナス電源に接続される配線(Vss配線)であってもよい。また、Vdd印加電圧とVss印加電圧の絶対値が同一ではない電圧でもよい。例えば、例えば、Vdd印加電圧がプラス電源(例えば、+1V)で、Vss印加電圧がGND(0V)であってもよい。
 網目状導体に印加される電圧と、中継導体に印加される電圧は、上記の例に限らず、別の電源であってもよく、何かしらの2種類の電源であればよい。この場合、2種類の電源の極性が互いに異なることが望ましいが、その限りではない。
 網目状導体のずらし構成を有する導体層の平面配置は、X方向を反転させてもよいし、Y方向を反転させてもよい。また、時計回りに所定角度(例えば、90度)回転させてもよいし、反時計回りに所定角度(例えば、-90度)回転させてもよい。
 本開示では、網目状導体の周期ずれによって容量性ノイズが改善される効果を示したが、周期ずれがない網目状導体と中継導体を除外するものではない。上述したように、周期ずれがない導体層についても、中継導体の有り無しいずれも、導体層A(配線層165A)または導体層B(配線層165B)の網目状導体として適用できる。
 中継導体は、例えば、円形、多角形、対称形状、非対称形状、星形状、放射形状など、どのような形状でもよく、複雑な形状でもよい。また、上述した網目状導体のずらし構成において、中継導体とした導体は、他の導体層どうしを電気的に中継しない導体でもよく、網目状導体の間隙領域内に配置される非網目状の導体(非網目状導体)であればよい。中継導体を含む非網目状導体は、網目状導体の各間隙領域の全てに配置されていてもよいし、所定の一部の間隙領域のみに配置されていてもよい。
<15.撮像装置の構成例>
 上述した固体撮像装置100は、例えば、デジタルカメラやビデオカメラ等のカメラシステム、撮像機能を有する携帯電話、撮像機能を備えた他の機器、又は、フラッシュメモリ等の高感度アナログ素子を有する半導体装置を備える電子機器に適用することができる。
 図211は、電子機器の一例として、撮像装置700の構成例を示すブロック図である。
 撮像装置700は、固体撮像素子701、固体撮像素子701に入射光を導く光学系702、固体撮像素子701と及び光学系702間に設けられたシャッタ機構703と、固体撮像素子701を駆動する駆動回路704を有する。さらに、撮像装置700は、固体撮像素子701の出力信号を処理する信号処理回路705を有する。
 固体撮像素子701は、上述した固体撮像装置100に相当する。光学系702は、光学レンズ群等から成り、被写体からの像光(入射光)を固体撮像素子701に入射させる。これにより、固体撮像素子701内に、一定期間、信号電荷が蓄積される。シャッタ機構703は、入射光の固体撮像素子701への光照射期間及び遮光期間を制御する。
 駆動回路704は、固体撮像素子701及びシャッタ機構703に駆動信号を供給する。そして、駆動回路704は、供給した駆動信号により、固体撮像素子701の信号処理回路705への信号出力動作、及び、シャッタ機構703のシャッタ動作を制御する。すなわち、この例では、駆動回路704から供給される駆動信号(タイミング信号)により、固体撮像素子701から信号処理回路705への信号転送動作を行う。
 信号処理回路705は、固体撮像素子701から転送された信号に対して、各種の信号処理を施す。そして、各種信号処理が施された信号(映像信号)は、メモリなどの記憶媒体(不図示)に記憶される、又は、モニタ(不図示)に出力される。
 上述の撮像装置700等の電子機器によれば、固体撮像素子701において、周辺回路部における動作時のMOSトランジスタ、ダイオード等の能動素子からのホットキャリア発光等の光の受光素子へ漏れ込みによるノイズ発生を抑制することができる。従って、画質が向上した高品質の電子機器を提供することができる。
<16.体内情報取得システムへの応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、カプセル型内視鏡を用いた患者の体内情報取得システムに適用されてもよい。
 図212は、本開示に係る技術が適用され得る、カプセル型内視鏡を用いた患者の体内情報取得システムの概略的な構成の一例を示すブロック図である。
 体内情報取得システム10001は、カプセル型内視鏡10100と、外部制御装置10200とから構成される。
 カプセル型内視鏡10100は、検査時に、患者によって飲み込まれる。カプセル型内視鏡10100は、撮像機能及び無線通信機能を有し、患者から自然排出されるまでの間、胃や腸等の臓器の内部を蠕動運動等によって移動しつつ、当該臓器の内部の画像(以下、体内画像ともいう)を所定の間隔で順次撮像し、その体内画像についての情報を体外の外部制御装置10200に順次無線送信する。
 外部制御装置10200は、体内情報取得システム10001の動作を統括的に制御する。また、外部制御装置10200は、カプセル型内視鏡10100から送信されてくる体内画像についての情報を受信し、受信した体内画像についての情報に基づいて、表示装置(図示せず)に当該体内画像を表示するための画像データを生成する。
 体内情報取得システム10001では、このようにして、カプセル型内視鏡10100が飲み込まれてから排出されるまでの間、患者の体内の様子を撮像した体内画像を随時得ることができる。
 カプセル型内視鏡10100と外部制御装置10200の構成及び機能についてより詳細に説明する。
 カプセル型内視鏡10100は、カプセル型の筐体10101を有し、その筐体10101内には、光源部10111、撮像部10112、画像処理部10113、無線通信部10114、給電部10115、電源部10116、及び制御部10117が収納されている。
 光源部10111は、例えばLED(Light Emitting Diode)等の光源から構成され、撮像部10112の撮像視野に対して光を照射する。
 撮像部10112は、撮像素子、及び当該撮像素子の前段に設けられる複数のレンズからなる光学系から構成される。観察対象である体組織に照射された光の反射光(以下、観察光という)は、当該光学系によって集光され、当該撮像素子に入射する。撮像部10112では、撮像素子において、そこに入射した観察光が光電変換され、その観察光に対応する画像信号が生成される。撮像部10112によって生成された画像信号は、画像処理部10113に提供される。
 画像処理部10113は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等のプロセッサによって構成され、撮像部10112によって生成された画像信号に対して各種の信号処理を行う。画像処理部10113は、信号処理を施した画像信号を、RAWデータとして無線通信部10114に提供する。
 無線通信部10114は、画像処理部10113によって信号処理が施された画像信号に対して変調処理等の所定の処理を行い、その画像信号を、アンテナ10114Aを介して外部制御装置10200に送信する。また、無線通信部10114は、外部制御装置10200から、カプセル型内視鏡10100の駆動制御に関する制御信号を、アンテナ10114Aを介して受信する。無線通信部10114は、外部制御装置10200から受信した制御信号を制御部10117に提供する。
 給電部10115は、受電用のアンテナコイル、当該アンテナコイルに発生した電流から電力を再生する電力再生回路、及び昇圧回路等から構成される。給電部10115では、いわゆる非接触充電の原理を用いて電力が生成される。
 電源部10116は、二次電池によって構成され、給電部10115によって生成された電力を蓄電する。図212では、図面が煩雑になることを避けるために、電源部10116からの電力の供給先を示す矢印等の図示を省略しているが、電源部10116に蓄電された電力は、光源部10111、撮像部10112、画像処理部10113、無線通信部10114、及び制御部10117に供給され、これらの駆動に用いられ得る。
 制御部10117は、CPU等のプロセッサによって構成され、光源部10111、撮像部10112、画像処理部10113、無線通信部10114、及び、給電部10115の駆動を、外部制御装置10200から送信される制御信号に従って適宜制御する。
 外部制御装置10200は、CPU,GPU等のプロセッサ、又はプロセッサとメモリ等の記憶素子が混載されたマイクロコンピュータ若しくは制御基板等で構成される。外部制御装置10200は、カプセル型内視鏡10100の制御部10117に対して制御信号を、アンテナ10200Aを介して送信することにより、カプセル型内視鏡10100の動作を制御する。カプセル型内視鏡10100では、例えば、外部制御装置10200からの制御信号により、光源部10111における観察対象に対する光の照射条件が変更され得る。また、外部制御装置10200からの制御信号により、撮像条件(例えば、撮像部10112におけるフレームレート、露出値等)が変更され得る。また、外部制御装置10200からの制御信号により、画像処理部10113における処理の内容や、無線通信部10114が画像信号を送信する条件(例えば、送信間隔、送信画像数等)が変更されてもよい。
 また、外部制御装置10200は、カプセル型内視鏡10100から送信される画像信号に対して、各種の画像処理を施し、撮像された体内画像を表示装置に表示するための画像データを生成する。当該画像処理としては、例えば現像処理(デモザイク処理)、高画質化処理(帯域強調処理、超解像処理、NR(Noise reduction)処理及び/若しくは手ブレ補正処理等)、並びに/又は拡大処理(電子ズーム処理)等、各種の信号処理を行うことができる。外部制御装置10200は、表示装置の駆動を制御して、生成した画像データに基づいて撮像された体内画像を表示させる。あるいは、外部制御装置10200は、生成した画像データを記録装置(図示せず)に記録させたり、印刷装置(図示せず)に印刷出力させてもよい。
 以上、本開示に係る技術が適用され得る体内情報取得システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部10112に適用することができる。具体的には、撮像部10112として、上述した固体撮像装置100を適用することができる。撮像部10112に本開示に係る技術を適用することにより、撮像部10112に本開示に係る技術を適用することにより、ノイズの発生が抑制され、より鮮明な術部画像を得ることができるため、検査の精度が向上する。
<17.内視鏡手術システムへの応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
 図213は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。
 図213では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギ処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。
 光源装置11203は、例えばLED(Light Emitting Diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギ処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。
 また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。
 図214は、図213に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。
 撮像部11402は、撮像素子で構成される。撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(Dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギ処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。
 以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、カメラヘッド11102の撮像部11402に適用することができる。具体的には、撮像部11402として、上述した固体撮像装置100を適用することができる。撮像部11402に本開示に係る技術を適用することにより、ノイズの発生が抑制され、より鮮明な術部画像を得ることができるため、術者が術部を確実に確認することが可能になる。
 なお、ここでは、一例として内視鏡手術システムについて説明したが、本開示に係る技術は、その他、例えば、顕微鏡手術システム等に適用されてもよい。
<18.移動体への応用例>
 さらに、本開示に係る技術は、例えば、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
 図215は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図215に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図215の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
 図216は、撮像部12031の設置位置の例を示す図である。
 図216では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図216には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部12031に適用することができる。具体的には、撮像部12031として、上述した固体撮像装置100を適用することができる。撮像部12031に本開示に係る技術を適用することにより、ノイズの発生が抑制され、より見やすい撮影画像を得ることができるため、ドライバによる運転を適切に支援することが可能になる。
 本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、本明細書に記載されたもの以外の効果があってもよい。
 なお、本技術は以下のような構成も取ることができる。
(1)
 第1の方向へ第1の周期幅で配置された第1の導体幅の2本以上の導体で構成される第1の導体群と、
 前記第1の方向に直交する第2の方向へ第2の周期幅で配置された第2の導体幅の2本以上の導体で構成される第2の導体群と、
 前記第2の導体群の少なくとも一部を、前記第1の方向へ前記第1の周期幅の1倍を移動させて、かつ、前記第2の方向へ第3の周期幅の1倍を移動させた位置に配置される第1の移動導体群と
 を含む網目状導体を備え、
 前記第3の周期幅と前記第2の周期幅とが異なる
 回路基板。
(2)
 前記網目状導体は、前記第2の導体群の少なくとも一部を、前記第1の方向へ前記第1の周期幅のM倍を移動させて、かつ、前記第2の方向へ第3の周期幅のM倍を移動させた位置に配置される第Mの移動導体群を含む
 (M=2,3,4,5,・・,L(Lは2以上の整数))
 前記(1)に記載の回路基板。
(3)
 前記第1の方向および前記第2の方向に直交する第3の方向から見て、
 前記網目状導体の少なくとも一部に対して重畳する位置に配置される第4の導体を備える
 前記(1)または(2)に記載の回路基板。
(4)
 前記第4の導体は、制御線または信号線である
 前記(3)に記載の回路基板。
(5)
 前記第4の導体は、前記第2の方向よりも前記第1の方向に長い2つ以上の導体を、第4の周期幅で前記第2の方向へ周期的に配置した第4の導体群である
 前記(3)または(4)に記載の回路基板。
(6)
 前記第4の導体群を構成する2つ以上の導体の中から1つ以上の導体を選択的に切り替える回路を備える
 前記(5)に記載の回路基板。
(7)
 前記網目状導体の間隙領域内の少なくとも一部に、非網目状導体をさらに備える
 前記(1)乃至(6)のいずれかに記載の回路基板。
(8)
 前記網目状導体に接続される電源と前記非網目状導体に接続される電源とで電圧値が異なる
 前記(7)に記載の回路基板。
(9)
 所定範囲内の前記網目状導体の導体面積は、前記所定範囲内の前記非網目状導体の導体面積と同じか、または、それより大きい
 前記(7)または(8)に記載の回路基板。
(10)
 所定範囲内の前記網目状導体の導体面積と、前記所定範囲内の前記非網目状導体の導体面積とが、略同一である
 前記(7)乃至(9)のいずれかに記載の回路基板。
(11)
 前記非網目状導体の前記第1の方向の導体幅×{前記網目状導体の行数-(前記網目状導体の前記第2の方向の導体幅+前記網目状導体の前記第2の方向の第1間隙幅+前記網目状導体の前記第2の方向の第2間隙幅)÷前記網目状導体の前記第2の導体幅}=(前記網目状導体の前記第1の導体幅×前記行数+前記非網目状導体の前記第1の方向の導体幅+前記網目状導体の前記第1の方向の第1間隙幅+前記網目状導体の前記第1の方向の第2間隙幅)
 前記(7)乃至(10)のいずれかに記載の回路基板。
(12)
 前記第3の周期幅×前記網目状導体の行数=整数N×(前記網目状導体の前記第2の導体幅+前記網目状導体の第2の方向の第1間隙幅+前記非網目状導体の第2の方向の導体幅+前記網目状導体の第2の方向の第2間隙幅)
 前記(7)乃至(11)のいずれかに記載の回路基板。
(13)
 前記第3の周期幅と前記第2の周期幅÷2とが異なる
 前記(1)乃至(12)のいずれかに記載の回路基板。
(14)
 前記第3の周期幅と前記第2の周期幅÷3とが異なる
 前記(1)乃至(13)のいずれかに記載の回路基板。
(15)
 前記第3の周期幅と前記第2の周期幅÷4とが異なる
 前記(1)乃至(14)のいずれかに記載の回路基板。
(16)
 前記第2の周期幅と前記第2の導体幅との差分である前記網目状導体の前記第2の方向の間隙幅は、前記第2の導体幅より大きく、
 前記第3の周期幅と、前記第2の導体幅の整数倍とが、略同一である
 前記(1)乃至(15)のいずれかに記載の回路基板。
(17)
 前記第2の周期幅と前記第2の導体幅との差分である前記網目状導体の前記第2の方向の間隙幅は、前記第2の導体幅より小さく、
 前記第3の周期幅と、前記第2の方向の間隙幅の整数倍とが、略同一である
 前記(1)乃至(15)のいずれかに記載の回路基板。
(18)
 前記第2の周期幅と前記第2の導体幅との差分である前記網目状導体の前記第2の方向の間隙幅は、前記第2の導体幅と等しく、
 前記第3の周期幅と、前記第2の周期幅÷偶数の整数とが、略同一である
 前記(1)乃至(15)のいずれかに記載の回路基板。
(19)
 第1の方向へ第1の周期幅で配置された第1の導体幅の2本以上の導体で構成される第1の導体群と、
 前記第1の方向に直交する第2の方向へ第2の周期幅で配置された第2の導体幅の2本以上の導体で構成される第2の導体群と、
 前記第2の導体群の少なくとも一部を、前記第1の方向へ前記第1の周期幅の1倍を移動させて、かつ、前記第2の方向へ第3の周期幅の1倍を移動させた位置に配置される第1の移動導体群と
 を含む網目状導体を備え、
 前記第3の周期幅と前記第2の周期幅とが異なる
 回路基板を備える半導体装置。
(20)
 第1の方向へ第1の周期幅で配置された第1の導体幅の2本以上の導体で構成される第1の導体群と、
 前記第1の方向に直交する第2の方向へ第2の周期幅で配置された第2の導体幅の2本以上の導体で構成される第2の導体群と、
 前記第2の導体群の少なくとも一部を、前記第1の方向へ前記第1の周期幅の1倍を移動させて、かつ、前記第2の方向へ第3の周期幅の1倍を移動させた位置に配置される第1の移動導体群と
 を含む網目状導体を備え、
 前記第3の周期幅と前記第2の周期幅とが異なる
 回路基板を備える半導体装置
 を備える電子機器。
 10 ピクセル基板, 11 Victim導体ループ, 20 ロジック基板, 21 電源配線, 100 固体撮像装置, 101 第1の半導体基板, 102 第2の半導体基板, 111 画素・アナログ処理部, 112 デジタル処理部, 121 画素アレイ, 122 A/D変換部, 123 垂直走査部, 131 画素, 132 信号線, 133 制御線, 141 フォトダイオード, 216,217 網目状導体, 221 面状導体, 222 網目状導体, 231,232 網目状導体, 241,242 網目状導体, 251,252 網目状導体, 261 面状導体, 262 網目状導体, 271,272 網目状導体, 281,282 網目状導体, 291,292 網目状導体,301乃至306 中継導体,311,312 網目状導体, 321,322 網目状導体, 331,332 網目状導体, 700 撮像装置, 701 固体撮像素子, 702 光学系, 703 シャッタ機構, 704 駆動回路, 705 信号処理回路, 1601 網目状導体, 1602 中継導体, 1611 導体層, 1651 導体, 1652 導体, 1661第1の導体群 , 1662 第2の導体群, 1663 第1の移動体群, 1701 網目状導体, 1702 中継導体, 1711 導体層, 1721 網目状導体, 1722 中継導体, 1731 導体層, 1761 網目状導体, 1762 中継導体, 1771 導体層, 1801 網目状導体, 1802 中継導体, 1811 導体層

Claims (20)

  1.  第1の方向へ第1の周期幅で配置された第1の導体幅の2本以上の導体で構成される第1の導体群と、
     前記第1の方向に直交する第2の方向へ第2の周期幅で配置された第2の導体幅の2本以上の導体で構成される第2の導体群と、
     前記第2の導体群の少なくとも一部を、前記第1の方向へ前記第1の周期幅の1倍を移動させて、かつ、前記第2の方向へ第3の周期幅の1倍を移動させた位置に配置される第1の移動導体群と
     を含む網目状導体を備え、
     前記第3の周期幅と前記第2の周期幅とが異なる
     回路基板。
  2.  前記網目状導体は、前記第2の導体群の少なくとも一部を、前記第1の方向へ前記第1の周期幅のM倍を移動させて、かつ、前記第2の方向へ第3の周期幅のM倍を移動させた位置に配置される第Mの移動導体群を含む
     (M=2,3,4,5,・・,L(Lは2以上の整数))
     請求項1に記載の回路基板。
  3.  前記第1の方向および前記第2の方向に直交する第3の方向から見て、
     前記網目状導体の少なくとも一部に対して重畳する位置に配置される第4の導体を備える
     請求項1に記載の回路基板。
  4.  前記第4の導体は、制御線または信号線である
     請求項3に記載の回路基板。
  5.  前記第4の導体は、前記第2の方向よりも前記第1の方向に長い2つ以上の導体を、第4の周期幅で前記第2の方向へ周期的に配置した第4の導体群である
     請求項3に記載の回路基板。
  6.  前記第4の導体群を構成する2つ以上の導体の中から1つ以上の導体を選択的に切り替える回路を備える
     請求項5に記載の回路基板。
  7.  前記網目状導体の間隙領域内の少なくとも一部に、非網目状導体をさらに備える
     請求項1に記載の回路基板。
  8.  前記網目状導体に接続される電源と前記非網目状導体に接続される電源とで電圧値が異なる
     請求項7に記載の回路基板。
  9.  所定範囲内の前記網目状導体の導体面積は、前記所定範囲内の前記非網目状導体の導体面積と同じか、または、それより大きい
     請求項7に記載の回路基板。
  10.  所定範囲内の前記網目状導体の導体面積と、前記所定範囲内の前記非網目状導体の導体面積とが、略同一である
     請求項7に記載の回路基板。
  11.  前記非網目状導体の前記第1の方向の導体幅×{前記網目状導体の行数-(前記網目状導体の前記第2の方向の導体幅+前記網目状導体の前記第2の方向の第1間隙幅+前記網目状導体の前記第2の方向の第2間隙幅)÷前記網目状導体の前記第2の導体幅}=(前記網目状導体の前記第1の導体幅×前記行数+前記非網目状導体の前記第1の方向の導体幅+前記網目状導体の前記第1の方向の第1間隙幅+前記網目状導体の前記第1の方向の第2間隙幅)
     請求項7に記載の回路基板。
  12.  前記第3の周期幅×前記網目状導体の行数=整数N×(前記網目状導体の前記第2の導体幅+前記網目状導体の第2の方向の第1間隙幅+前記非網目状導体の第2の方向の導体幅+前記網目状導体の第2の方向の第2間隙幅)
     請求項7に記載の回路基板。
  13.  前記第3の周期幅と前記第2の周期幅÷2とが異なる
     請求項1に記載の回路基板。
  14.  前記第3の周期幅と前記第2の周期幅÷3とが異なる
     請求項1に記載の回路基板。
  15.  前記第3の周期幅と前記第2の周期幅÷4とが異なる
     請求項1に記載の回路基板。
  16.  前記第2の周期幅と前記第2の導体幅との差分である前記網目状導体の前記第2の方向の間隙幅は、前記第2の導体幅より大きく、
     前記第3の周期幅と、前記第2の導体幅の整数倍とが、略同一である
     請求項1に記載の回路基板。
  17.  前記第2の周期幅と前記第2の導体幅との差分である前記網目状導体の前記第2の方向の間隙幅は、前記第2の導体幅より小さく、
     前記第3の周期幅と、前記第2の方向の間隙幅の整数倍とが、略同一である
     請求項1に記載の回路基板。
  18.  前記第2の周期幅と前記第2の導体幅との差分である前記網目状導体の前記第2の方向の間隙幅は、前記第2の導体幅と等しく、
     前記第3の周期幅と、前記第2の周期幅÷偶数の整数とが、略同一である
     請求項1に記載の回路基板。
  19.  第1の方向へ第1の周期幅で配置された第1の導体幅の2本以上の導体で構成される第1の導体群と、
     前記第1の方向に直交する第2の方向へ第2の周期幅で配置された第2の導体幅の2本以上の導体で構成される第2の導体群と、
     前記第2の導体群の少なくとも一部を、前記第1の方向へ前記第1の周期幅の1倍を移動させて、かつ、前記第2の方向へ第3の周期幅の1倍を移動させた位置に配置される第1の移動導体群と
     を含む網目状導体を備え、
     前記第3の周期幅と前記第2の周期幅とが異なる
     回路基板を備える半導体装置。
  20.  第1の方向へ第1の周期幅で配置された第1の導体幅の2本以上の導体で構成される第1の導体群と、
     前記第1の方向に直交する第2の方向へ第2の周期幅で配置された第2の導体幅の2本以上の導体で構成される第2の導体群と、
     前記第2の導体群の少なくとも一部を、前記第1の方向へ前記第1の周期幅の1倍を移動させて、かつ、前記第2の方向へ第3の周期幅の1倍を移動させた位置に配置される第1の移動導体群と
     を含む網目状導体を備え、
     前記第3の周期幅と前記第2の周期幅とが異なる
     回路基板を備える半導体装置
     を備える電子機器。
PCT/JP2019/033637 2018-09-11 2019-08-28 回路基板、半導体装置、および、電子機器 WO2020054414A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/250,765 US20210352801A1 (en) 2018-09-11 2019-08-28 Circuit board, semiconductor device, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018169405A JP2020043219A (ja) 2018-09-11 2018-09-11 回路基板、半導体装置、および、電子機器
JP2018-169405 2018-09-11

Publications (1)

Publication Number Publication Date
WO2020054414A1 true WO2020054414A1 (ja) 2020-03-19

Family

ID=69777578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033637 WO2020054414A1 (ja) 2018-09-11 2019-08-28 回路基板、半導体装置、および、電子機器

Country Status (3)

Country Link
US (1) US20210352801A1 (ja)
JP (1) JP2020043219A (ja)
WO (1) WO2020054414A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11611716B2 (en) 2021-03-11 2023-03-21 SK Hynix Inc. Image sensing device
US11736827B2 (en) 2020-12-07 2023-08-22 SK Hynix Inc. Image sensing device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021197488A (ja) * 2020-06-17 2021-12-27 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置
WO2022118538A1 (ja) * 2020-12-01 2022-06-09 ソニーセミコンダクタソリューションズ株式会社 受光素子及び電子機器
WO2023171431A1 (ja) * 2022-03-08 2023-09-14 株式会社ジャパンディスプレイ 検出装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110214A (ja) * 1991-10-14 1993-04-30 Tokyo Electron Yamanashi Kk 配線基板
JPH0653351A (ja) * 1992-05-20 1994-02-25 Internatl Business Mach Corp <Ibm> 多層配線を有する電子パッケージ基板及び方法
JPH06326476A (ja) * 1993-05-13 1994-11-25 Sony Corp 多層配線基板
US5929375A (en) * 1996-05-10 1999-07-27 Ford Motor Company EMI protection and CTE control of three-dimensional circuitized substrates
JP2001308540A (ja) * 2000-04-21 2001-11-02 Shinko Electric Ind Co Ltd 多層配線基板及びその製造方法
JP2003051543A (ja) * 2001-08-03 2003-02-21 Matsushita Electric Ind Co Ltd 半導体集積回路
JP2008124237A (ja) * 2006-11-13 2008-05-29 Sony Corp 撮像装置およびカメラ
JP2012094646A (ja) * 2010-10-26 2012-05-17 Daisho Denshi Co Ltd 特性インピーダンスコントロール対応プリント配線基板
JP2015142149A (ja) * 2014-01-27 2015-08-03 ルネサスエレクトロニクス株式会社 半導体装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100371877B1 (ko) * 1997-04-16 2003-02-11 가부시끼가이샤 도시바 배선기판과 배선기판의 제조방법 및 반도체 패키지
US6608335B2 (en) * 2000-05-25 2003-08-19 Sun Microsystems, Inc. Grounded fill in a large scale integrated circuit
US7943436B2 (en) * 2002-07-29 2011-05-17 Synopsys, Inc. Integrated circuit devices and methods and apparatuses for designing integrated circuit devices
US20070257339A1 (en) * 2006-05-08 2007-11-08 Taiwan Semiconductor Manufacturing Co., Ltd. Shield structures

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110214A (ja) * 1991-10-14 1993-04-30 Tokyo Electron Yamanashi Kk 配線基板
JPH0653351A (ja) * 1992-05-20 1994-02-25 Internatl Business Mach Corp <Ibm> 多層配線を有する電子パッケージ基板及び方法
JPH06326476A (ja) * 1993-05-13 1994-11-25 Sony Corp 多層配線基板
US5929375A (en) * 1996-05-10 1999-07-27 Ford Motor Company EMI protection and CTE control of three-dimensional circuitized substrates
JP2001308540A (ja) * 2000-04-21 2001-11-02 Shinko Electric Ind Co Ltd 多層配線基板及びその製造方法
JP2003051543A (ja) * 2001-08-03 2003-02-21 Matsushita Electric Ind Co Ltd 半導体集積回路
JP2008124237A (ja) * 2006-11-13 2008-05-29 Sony Corp 撮像装置およびカメラ
JP2012094646A (ja) * 2010-10-26 2012-05-17 Daisho Denshi Co Ltd 特性インピーダンスコントロール対応プリント配線基板
JP2015142149A (ja) * 2014-01-27 2015-08-03 ルネサスエレクトロニクス株式会社 半導体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11736827B2 (en) 2020-12-07 2023-08-22 SK Hynix Inc. Image sensing device
US11611716B2 (en) 2021-03-11 2023-03-21 SK Hynix Inc. Image sensing device

Also Published As

Publication number Publication date
US20210352801A1 (en) 2021-11-11
JP2020043219A (ja) 2020-03-19

Similar Documents

Publication Publication Date Title
WO2020054414A1 (ja) 回路基板、半導体装置、および、電子機器
JP7134967B2 (ja) 半導体装置および電子機器
US11508773B2 (en) Image pickup device and electronic apparatus
CN110574164B (zh) 固态摄像装置和电子设备
US20230020137A1 (en) Solid-state imaging device and electronic apparatus
WO2020137606A1 (ja) 半導体装置および電子機器
US11411037B2 (en) Solid-state imaging device and electronic apparatus including coupling structures for electrically interconnecting stacked semiconductor substrates
US11804507B2 (en) Solid-state imaging device and electronic apparatus
KR20210104675A (ko) 이면 조사형의 고체 촬상 장치 및 이면 조사형의 고체 촬상 장치의 제조 방법, 촬상 장치 및 전자 기기
US20220359603A1 (en) Solid-state imaging device and electronic apparatus
WO2020085113A1 (ja) 回路基板、半導体装置、および、電子機器
WO2019181548A1 (ja) 回路基板、半導体装置、および、電子機器
WO2020004012A1 (ja) 回路基板、半導体装置、および、電子機器
WO2020153129A1 (ja) 回路基板、半導体装置、および、電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859329

Country of ref document: EP

Kind code of ref document: A1