WO2020054205A1 - 熱電変換素子の製造方法及び熱電変換素子 - Google Patents

熱電変換素子の製造方法及び熱電変換素子 Download PDF

Info

Publication number
WO2020054205A1
WO2020054205A1 PCT/JP2019/027530 JP2019027530W WO2020054205A1 WO 2020054205 A1 WO2020054205 A1 WO 2020054205A1 JP 2019027530 W JP2019027530 W JP 2019027530W WO 2020054205 A1 WO2020054205 A1 WO 2020054205A1
Authority
WO
WIPO (PCT)
Prior art keywords
conversion element
thermoelectric conversion
face
thermoelectric
substrate
Prior art date
Application number
PCT/JP2019/027530
Other languages
English (en)
French (fr)
Inventor
哲史 田中
福田 克史
幹夫 小矢野
下田 達也
Original Assignee
株式会社Kelk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kelk filed Critical 株式会社Kelk
Priority to CN201980059121.4A priority Critical patent/CN112703612B/xx
Priority to US17/273,516 priority patent/US11665964B2/en
Publication of WO2020054205A1 publication Critical patent/WO2020054205A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • the present invention relates to a method for manufacturing a thermoelectric conversion element and a thermoelectric conversion element.
  • thermoelectric conversion element that generates electric power using the Seebeck effect.
  • the thermoelectric conversion element generates electric power by cooling one end face of the thermoelectric conversion element and heating the other end face of the thermoelectric conversion element.
  • Patent Document 1 discloses an example of a method for manufacturing a thermoelectric conversion element.
  • thermoelectric conversion element One of the factors that determine the thermoelectric characteristics of the thermoelectric conversion element is a shape factor indicating the ratio between the height of the thermoelectric conversion element and the area of the cross section. In a thermoelectric conversion element, if an appropriate form factor can be obtained, appropriate thermoelectric characteristics can be obtained.
  • thermoelectric conversion element having an appropriate form factor.
  • thermoelectric film containing a thermoelectric material on a surface of a substrate, forming a pattern of the thermoelectric film on the surface of the substrate by pressing the thermoelectric film with a mold,
  • a method of manufacturing a thermoelectric conversion element comprising: generating a thermoelectric conversion element by heating a pattern of the thermoelectric film formed on a surface.
  • thermoelectric conversion element having an appropriate form factor is provided.
  • FIG. 1 is a perspective view schematically illustrating the thermoelectric power generation module according to the first embodiment.
  • FIG. 2 is a perspective view schematically illustrating the thermoelectric conversion element according to the first embodiment.
  • FIG. 3 is a cross-sectional view schematically illustrating the thermoelectric conversion element according to the first embodiment.
  • FIG. 4 is a plan view schematically illustrating the thermoelectric conversion element according to the first embodiment.
  • FIG. 5 is a flowchart illustrating a method for manufacturing a thermoelectric conversion element according to the first embodiment.
  • FIG. 6 is a schematic view illustrating a method for manufacturing the thermoelectric conversion element according to the first embodiment.
  • FIG. 7 is a schematic view illustrating a method for manufacturing the thermoelectric conversion element according to the first embodiment.
  • FIG. 1 is a perspective view schematically illustrating the thermoelectric power generation module according to the first embodiment.
  • FIG. 2 is a perspective view schematically illustrating the thermoelectric conversion element according to the first embodiment.
  • FIG. 3 is a cross-sectional view schematically
  • FIG. 8 is a schematic view illustrating a method for manufacturing the thermoelectric conversion element according to the first embodiment.
  • FIG. 9 is a schematic view illustrating a method for manufacturing the thermoelectric conversion element according to the first embodiment.
  • FIG. 10 is a diagram illustrating a relationship between the shape factor of the thermoelectric conversion element and the maximum current value.
  • FIG. 11 is a diagram illustrating the relationship between the shape factor of the thermoelectric conversion element and the area of the cross section.
  • FIG. 12 is a perspective view schematically showing a thermoelectric conversion element according to the second embodiment.
  • FIG. 13 is a plan view schematically showing a thermoelectric conversion element according to the second embodiment.
  • FIG. 14 is a cross-sectional view schematically illustrating a thermoelectric conversion element according to the third embodiment.
  • FIG. 15 is a cross-sectional view schematically illustrating a thermoelectric conversion element according to the fourth embodiment.
  • an XYZ rectangular coordinate system is set, and the positional relationship between the components will be described with reference to the XYZ rectangular coordinate system.
  • a direction parallel to the X axis in the predetermined plane is the X axis direction
  • a direction parallel to the Y axis perpendicular to the X axis in the predetermined plane is the Y axis direction
  • a direction parallel to the Z axis perpendicular to the predetermined plane is the Z axis direction.
  • the X axis, the Y axis, and the Z axis are orthogonal.
  • a plane including the X axis and the Y axis is defined as an XY plane
  • a plane including the Y axis and the Z axis is defined as a YZ plane
  • a plane including the Z axis and the X axis is defined as an XZ plane.
  • the XY plane is parallel to the predetermined plane.
  • the XY plane, the YZ plane, and the XZ plane are orthogonal.
  • FIG. 1 is a perspective view schematically showing a thermoelectric generation module 100 according to the present embodiment.
  • the thermoelectric generation module 100 is arranged on a plurality of thermoelectric conversion elements 10 arranged in the XY plane, a first substrate 110 arranged on the ⁇ Z side of the thermoelectric conversion element 10, and arranged on a + Z side of the thermoelectric conversion element 10.
  • the thermoelectric conversion element 10 includes a thermoelectric material such as a bismuth tellurium-based compound (Bi-Te).
  • the thermoelectric conversion element 10 includes a first thermoelectric conversion element 10P that is a P-type thermoelectric semiconductor element and a second thermoelectric conversion element 10N that is an N-type thermoelectric semiconductor element.
  • Each of the first thermoelectric conversion element 10P and the second thermoelectric conversion element 10N is arranged in a plurality on the XY plane. In the X-axis direction, the first thermoelectric conversion elements 10P and the second thermoelectric conversion elements 10N are arranged alternately. In the Y-axis direction, the first thermoelectric conversion elements 10P and the second thermoelectric conversion elements 10N are arranged alternately.
  • thermoelectric conversion elements 10 has a first end face 11 and a second end face 12.
  • the first end face 11 is an end face on the ⁇ Z side of the thermoelectric conversion element 10.
  • the second end face 12 is an end face on the + Z side of the thermoelectric conversion element 10.
  • the first end face 11 is substantially parallel to the XY plane.
  • the second end face 12 is substantially parallel to the XY plane.
  • the electrode 130 is connected to each of the pair of adjacent first thermoelectric conversion elements 10P and second thermoelectric conversion elements 10N.
  • the electrode 130 connects the first end face 11 of the adjacent first thermoelectric conversion element 10P and the first end face 11 of the second thermoelectric conversion element 10N.
  • the electrode 140 is connected to each of the pair of adjacent first thermoelectric conversion elements 10P and second thermoelectric conversion elements 10N.
  • the electrode 140 connects the second end face 12 of the adjacent first thermoelectric conversion element 10P and the second end face 12 of the second thermoelectric conversion element 10N.
  • the first substrate 110 supports the plurality of electrodes 130.
  • the first substrate 110 is formed of an electrically insulating material such as ceramics or polyimide.
  • the first substrate 110 has an upper surface 110A and a lower surface 110B. Each of the upper surface 110A and the lower surface 110B is parallel to the XY plane.
  • the first substrate 110 is disposed on the ⁇ Z side of the first thermoelectric conversion element 10P, the second thermoelectric conversion element 10N, and the electrode 130.
  • Each of the plurality of electrodes 130 is connected to upper surface 110A of first substrate 110.
  • the second substrate 120 supports the plurality of electrodes 140.
  • the second substrate 120 is formed of an electrically insulating material such as ceramics or polyimide.
  • the second substrate 120 has an upper surface 120A and a lower surface 120B. Each of the upper surface 120A and the lower surface 120B is parallel to the XY plane.
  • the second substrate 120 is disposed on the + Z side of the first thermoelectric conversion element 10P, the second thermoelectric conversion element 10N, and the electrode 140.
  • Each of the plurality of electrodes 140 is connected to lower surface 120B of second substrate 120.
  • thermoelectric conversion element 10 In the Z-axis direction, the thermoelectric conversion element 10 is disposed between the first substrate 110 and the second substrate 120.
  • a temperature difference is given between the first end face 11 and the second end face 12 of the thermoelectric conversion element 10.
  • the first thermoelectric conversion element 10P which is a P-type thermoelectric semiconductor element
  • the first thermoelectric conversion element 10P changes from the second end face 12 to the first end face.
  • the holes move toward 11.
  • thermoelectric conversion element 10N When a temperature difference is given between the first end face 11 and the second end face 12 of the second thermoelectric conversion element 10N, which is an N-type thermoelectric semiconductor element, the second thermoelectric conversion element 10N switches from the second end face 12 to the first end face. Electrons move toward 11. The movement of holes and electrons generates a potential difference between the first end face 11 and the second end face 12. In the thermoelectric conversion element 10, a potential difference occurs between the first end face 11 and the second end face 12 due to a temperature difference between the first end face 11 and the second end face 12.
  • the first thermoelectric conversion element 10P and the second thermoelectric conversion element 10N are connected via the electrode 130 and the electrode 140.
  • the thermoelectric generation module 100 When a potential difference is generated between the first end face 11 and the second end face 12 and a potential difference is generated between the electrode 130 and the electrode 140, the thermoelectric generation module 100 generates electric power.
  • the lead wire 150 is connected to the electrode 130.
  • the thermoelectric generation module 100 outputs electric power via the lead wire 150.
  • FIG. 2 is a perspective view schematically illustrating the thermoelectric conversion element 10 according to the present embodiment.
  • FIG. 3 is a cross-sectional view schematically illustrating the thermoelectric conversion element 10 according to the present embodiment.
  • FIG. 3 is a cross-sectional view of the thermoelectric conversion element 10 parallel to the YZ plane.
  • FIG. 4 is a plan view schematically showing the thermoelectric conversion element 10 according to the present embodiment. As shown in FIGS. 2, 3, and 4, the thermoelectric conversion element 10 connects the first end face 11, the second end face 12, the peripheral edge of the first end face 11, and the peripheral edge of the second end face 12. And a side surface 13.
  • the first end face 11 is an end face on the ⁇ Z side of the thermoelectric conversion element 10.
  • the second end face 12 is an end face on the + Z side of the thermoelectric conversion element 10.
  • the first end face 11 is parallel to the XY plane.
  • the second end face 12 is parallel to the XY plane. Due to the temperature difference between the first end face 11 and the second end face 12, a potential difference occurs between the first end face 11 and the second end face 12. The current flows in the Z-axis direction between the first end face 11 and the second end face 12 inside the thermoelectric conversion element 10.
  • thermoelectric conversion element 10 The area of the cross section (first cross section) of the thermoelectric conversion element 10 parallel to the first end face 11 (XY plane) is S, and the distance between the first end face 11 and the second end face 12 in the Z-axis direction orthogonal to the first end face 11. Is L, the thermoelectric conversion element 10 according to the present embodiment satisfies the conditions of the following equations (1) and (2).
  • the outer shape of the cross section (first cross section) of the thermoelectric conversion element 10 parallel to the XY plane is substantially a square. 2, 3, and 4, two of the four sides of the cross-sectional outline of the thermoelectric conversion element 10 parallel to the XY plane are parallel to the X axis, and the two sides are parallel to the Y axis. is there.
  • the outer shape of the second end surface 12 is smaller than the outer shape of the first end surface 11.
  • the side surface 13 is inclined with respect to the first end surface 11.
  • the side surface 13 is linear.
  • a corner is formed between the side surface 13 and the first end surface 11, and a corner is formed between the side surface 13 and the second end surface 12.
  • thermoelectric conversion element 10 when the internal angle between the first end face 11 and the side face 13 is ⁇ 1, the thermoelectric conversion element 10 according to the present embodiment satisfies the condition of the following equation (3).
  • thermoelectric conversion element 10 has a tapered shape in which the cross-sectional area S gradually decreases from the first end face 11 to the second end face 12.
  • the outer shape and size of the cross section of the thermoelectric conversion element 10 parallel to the XZ plane are substantially equal to the outer shape and size of the cross section of the thermoelectric conversion element 10 parallel to the YZ plane.
  • the area S of the cross section of the thermoelectric conversion element 10 refers to the area of the cross section of the thermoelectric conversion element 10 at the center in the Z-axis direction. That is, the area S refers to the area of the cross section at a position separated from the first end face 11 by [L / 2] in the + Z direction.
  • FIG. 5 is a flowchart illustrating a method for manufacturing the thermoelectric conversion element 10 according to the present embodiment.
  • 6, 7, 8, and 9 are schematic diagrams illustrating a method for manufacturing the thermoelectric conversion element 10 according to the present embodiment.
  • thermoelectric ink LQ for manufacturing the thermoelectric conversion element 10 is generated.
  • the thermoelectric ink LQ is generated by dispersing fine particles of a thermoelectric material in a solvent.
  • thermoelectric materials bismuth (Bi), bismuth tellurium-based compound (Bi-Te), bismuth antimony-based compound (Bi-Sb), lead tellurium-based compound (Pb-Te), cobalt antimony-based compound (Co-Sb), iridium Antimony compounds (Ir—Sb), cobalt arsenic compounds (Co—As), silicon germanium compounds (Si—Ge), copper selenium compounds (Cu—Se), gadolinium selenium compounds (Gd—Se), Examples thereof include boron carbide compounds, tellurium perovskite oxides, rare earth sulfides, TAGS compounds (GeTe-AgSbTe 2 ), Heusler-type TiNiSn, FeNbSb, and TiCoSb materials.
  • the solvent examples include organic solvents such as methanol, ethanol, isopropyl alcohol, propanol, acetone, toluene, and hexane.
  • the solvent may be a mixed solvent of a plurality of organic solvents, or may be used alone. Further, the solvent may include water.
  • thermoelectric ink LQ is generated by dispersing bismuth telluride-based compound fine particles in an organic solvent.
  • Step S2 Cleaning the substrate
  • the substrate W is prepared, and the surface of the substrate W is cleaned.
  • the surface of the substrate W is cleaned by a plasma ashing process.
  • the substrate W for example, a silicon wafer is exemplified.
  • the substrate W may be a ceramic substrate such as alumina (Al 2 O 3 ) or aluminum nitride (AlN), or an insulating substrate formed of an electrically insulating material such as polyimide.
  • substrate W may be formed of an insulating material such as silicon carbide (SiC) or berilia (BeO) having good thermal conductivity.
  • Step S3 forming a polymer film
  • the polymer film include a film containing polymethyl methacrylate (PMMA).
  • PMMA polymethyl methacrylate
  • a polymer ink containing a polymer and a solvent is coated on the surface of the substrate W based on a spin coating method. After the polymer ink is coated on the surface of the substrate W, the polymer ink is dried to form a polymer film on the surface of the substrate W.
  • the thickness of the polymer film may be adjusted by plasma etching, or the surface of the polymer film may be flattened by pressing the polymer film with a roller. By forming the polymer film on the surface of the substrate W, generation of cracks in the thermoelectric film F formed later is suppressed. Note that the polymer film need not be formed on the surface of the substrate W.
  • Step S4 coating with thermoelectric ink
  • the surface of the substrate W is coated with the thermoelectric ink LQ generated in step S1.
  • the surface of the substrate W is a concept including the surface of the material film.
  • the thermoelectric ink LQ is coated on the surface of the substrate W based on a coating method such as a spin coating method or a roll coating method.
  • the substrate W is held by the substrate holder 20A.
  • the substrate holder 20A holds the substrate W such that the surface of the substrate W and the XY plane are parallel.
  • the thermoelectric ink LQ is supplied from the dispenser 25 to the surface of the substrate W held by the substrate holder 20A. With the thermoelectric ink LQ being supplied from the dispenser 25, the substrate holder 20A rotates. Thus, the thermoelectric ink LQ is coded on the surface of the substrate W based on the spin coating method.
  • Step S5 forming a thermoelectric film
  • the thermoelectric ink LQ is dried to remove at least a part of the solvent contained in the thermoelectric ink LQ.
  • a thermoelectric film F containing a thermoelectric material is formed on the surface of the substrate W as shown in FIG.
  • a method for drying the thermoelectric ink LQ at least one of heating drying, natural drying, and reduced pressure drying is exemplified.
  • the substrate W is held by the substrate holder 20B, and is set in an atmosphere of 20 ° C. or more and 50 ° C. or less. Thereby, the thermoelectric ink LQ is dried, and the thermoelectric film F is formed on the surface of the substrate W.
  • the roller may press the thermoelectric film F to flatten the surface of the thermoelectric film F.
  • Step S6 coating with release agent
  • Step S7 Form a pattern with a mold
  • the pattern PA of the thermoelectric film F is formed on the surface of the substrate W by the mold 30 pressing the thermoelectric film F while the substrate W is held by the substrate holder 20C.
  • the mold 30 is made of a metal such as stainless steel, for example.
  • the mold 30 has a concavo-convex mold that matches the target shape of the thermoelectric conversion element 10.
  • the substrate holder 20C holds the substrate W such that the surface of the substrate W (the surface of the thermoelectric film F) and the XY plane are parallel. After the mold 30 is arranged at a position facing the surface of the thermoelectric film F, it moves in the ⁇ Z direction and pushes the thermoelectric film F.
  • the pattern PA is formed in an atmosphere of, for example, 85 [° C.].
  • the substrate holder 20C holding the substrate W may be heated to 85 ° C., or the mold 30 may be heated to 85 ° C.
  • the mold 30 presses the thermoelectric film F with a force of 20 [MPa] for 5 minutes the pattern PA of the thermoelectric film F is formed.
  • the pattern PA may be formed, for example, in an inert gas atmosphere at 85 [° C.].
  • step S7 the pattern PA is formed so as to satisfy the above-described equations (1) and (2).
  • the area S of the thermoelectric conversion element 10 indicates the area of a cross section (first cross section) parallel to the surface of the substrate W.
  • the height L of the thermoelectric conversion element 10 indicates the dimension of the thermoelectric conversion element 10 in the Z-axis direction orthogonal to the surface of the substrate W.
  • the pattern PA is formed so as to satisfy the condition of the above equation (3). That is, the pattern PA is formed in a tapered shape in which the area S of the cross section gradually decreases from the first end face 11 to the second end face 12.
  • the mold 30 has a concavo-convex mold that matches the target shape of the pattern PA. Since the concave and convex mold and the pattern PA of the mold 30 are tapered, after the pattern PA is formed on the thermoelectric film F by the mold 30, the mold 30 and the thermoelectric film F can be separated smoothly.
  • Step S8 heating
  • the substrate W is carried out of the substrate holder 20C.
  • the substrate W carried out of the substrate holder 20C is carried to the annealing device 50.
  • the pattern PA of the thermoelectric film F formed on the surface of the substrate W is heated.
  • the heating of the pattern PA includes a rapid thermal annealing (RTA) by radiant heat.
  • RTA rapid thermal annealing
  • the substrate W is housed in the chamber 52 of the annealing apparatus 50, and the heating by the radiant heat of the lamp 54 is performed for 5 minutes in an inert gas atmosphere of an argon gas of 400 ° C. or more and 550 ° C. or less. You.
  • thermoelectric film F is baked by heating, so that the thermoelectric conversion elements 10 are generated on the surface of the substrate W.
  • thermoelectric conversion element 10 The heating including the high-speed heat treatment is performed, and the pattern PA is fired, so that the thermoelectric characteristics and the mechanical characteristics (rigidity) of the manufactured thermoelectric conversion element 10 are improved. Further, by performing the high-speed heat treatment, growth (enlargement) of crystal grains in the thermoelectric conversion element 10 is suppressed, and the thermoelectric conversion element 10 having a fine crystal grain size of 50 [nm] or more and 1 [ ⁇ m] or less. Is generated. Further, by heating the pattern PA of the thermoelectric film F in an inert gas atmosphere, oxidation of the manufactured thermoelectric conversion element 10 is suppressed.
  • thermoelectric conversion element 10 when the area of the cross section of the thermoelectric conversion element 10 parallel to the XY plane is S and the height of the thermoelectric conversion element 10 in the Z-axis direction is L, the conditions of the expressions (1) and (2) are satisfied. Is satisfied, the thermoelectric conversion element 10 is manufactured.
  • the ratio of the height L to the area S (L / S) is called the form factor.
  • the shape factor determines the maximum current value Imax of the thermoelectric conversion element 10.
  • the maximum current value Imax refers to a maximum value of a current that can flow between the first end face 11 and the second end face 12 when a temperature difference is given between the first end face 11 and the second end face 12. As the temperature difference between the first end face 11 and the second end face 12 increases, the value of the current flowing inside the thermoelectric conversion element 10 increases, but when the temperature difference between the first end face 11 and the second end face 12 exceeds a predetermined value. , The current value is saturated and maintained at a constant value (maximum value).
  • the maximum current value Imax refers to the maximum value of the current value that saturates when the temperature difference between the first end face 11 and the second end face 12 becomes a predetermined value or more.
  • FIG. 10 is a diagram showing the relationship between the shape factor y of the thermoelectric conversion element 10 and the maximum current value Imax.
  • the maximum current value Imax increases as the shape factor y decreases, and the maximum current value Imax decreases as the shape factor y increases.
  • the maximum current value Imax increases as the area S increases, and the maximum current value Imax decreases as the area S decreases.
  • the maximum current value Imax increases as the height L decreases, and the maximum current value Imax decreases as the height L increases.
  • FIG. 11 is a diagram showing the relationship between the shape factor y of the thermoelectric conversion element 10 and the area S of the cross section.
  • FIG. 11 shows the relationship between the shape factor y and the area S of the thermoelectric conversion element 10 when the thermoelectric conversion element 10 is formed of a thermoelectric material of a bismuth telluride-based compound (Bi-Te).
  • thermoelectric conversion element 10 when drawing a diagram with the area S [ ⁇ m 2 ] on the horizontal axis and the shape factor y [1 / cm] on the vertical axis, the thermoelectric conversion element 10 has the following equation (4): The condition that the area S and the shape factor y exist in the range A surrounded by the line represented by the equations (5), (6), and (7) is satisfied.
  • line La is represented by equation (4).
  • the line Lb is represented by equation (5).
  • the line Lc is represented by Expression (6).
  • the line Ld is represented by Expression (7).
  • the range A is a range surrounded by the line La, the line Lb, the line Lc, and the line Ld.
  • the pattern PA of the thermoelectric film F is formed on the surface of the substrate W by pressing the thermoelectric film F formed on the substrate W with the mold 30, so that the area S and the shape factor y are within the range A.
  • the thermoelectric conversion element 10 can be formed to be present.
  • thermoelectric conversion element 10 capable of obtaining a maximum current value Imax of 5 [mA] or more and 50 [A] or less is necessary. It is said that a thermoelectric conversion element 10 capable of obtaining a maximum current value Imax of 50 [A] or more is required when adjusting the temperature of a general heat exchanger requiring an endothermic amount.
  • thermoelectric conversion element 10 having a shape factor y of less than 0.1 can also be manufactured.
  • the maximum current value Imax exceeds 500 A, the Joule heat between the thermoelectric elements and in the wiring portion is high.
  • y 0.1 as the lower limit.
  • thermoelectric semiconductor device When manufacturing a thermoelectric semiconductor device based on an existing thin film manufacturing method such as a vapor deposition method or a sputtering method without using the mold 30, it is difficult to make the height L sufficiently large. It is said that the maximum value of the height L of the thermoelectric conversion element that can be manufactured based on the existing thin film manufacturing method is about 0.1 [ ⁇ m].
  • the area S of the thermoelectric conversion element is reduced. It needs to be 100 [ ⁇ m 2 ] or less. That is, in the existing thin film manufacturing method, in FIG.
  • thermoelectric conversion element that satisfies the condition that the area S and the shape factor y exist in the enclosed range B can be manufactured.
  • thermoelectric conversion element having an area S of 100 [ ⁇ m 2 ] or less has a size that is very small with respect to a laser diode to be temperature-controlled.
  • a thermoelectric conversion element that is too small must be sparsely mounted when making a thermoelectric conversion module, which may impair the reliability of the thermoelectric conversion module.
  • a thermoelectric conversion element having a large height L is to be manufactured based on the existing thin film manufacturing method, a considerable time is required for the film formation time, which is not practical.
  • thermoelectric semiconductor element When a thermoelectric semiconductor element is manufactured based on, for example, an ink-jet method without using the mold 30, the height L can be made larger than the existing thin film manufacturing method, but a desired height L is obtained. It is difficult. It is said that the maximum value of the height L of the thermoelectric conversion element that can be manufactured based on the inkjet method is about 5 [ ⁇ m].
  • the area S of the thermoelectric conversion element is 5000 [ ⁇ m 2 ] or less.
  • thermoelectric conversion element having an area S of not more than 5000 [ ⁇ m 2 ] is also extremely small in size with respect to a laser diode to be temperature-controlled.
  • thermoelectric conversion element having a large height L is to be manufactured based on the ink-jet method, it is necessary to repeat the ejection and drying of the ink a plurality of times, which requires a considerable amount of time for the film formation. Not a target.
  • thermoelectric conversion element a method of manufacturing a bulk of a thermoelectric material, cutting the bulk, and manufacturing a thermoelectric conversion element is known.
  • a method of manufacturing a thermoelectric conversion element by cutting a bulk it is difficult to reduce the size of the thermoelectric conversion element, and the minimum value of the height L of the thermoelectric conversion element that can be manufactured is about 100 [ ⁇ m].
  • Imax the maximum current value
  • thermoelectric conversion element in the case of a method of manufacturing a thermoelectric conversion element by cutting a bulk, a large amount of kerf loss is generated. Therefore, it is disadvantageous from the viewpoint of material use efficiency.
  • thermoelectric film F is pressed by the mold 30 to form the pattern PA of the thermoelectric film F on the surface of the substrate W, whereby the thermoelectric conversion element 10 is manufactured.
  • the thermoelectric conversion element 10 having a height L of 5 ⁇ m or more and 100 ⁇ m or less and an area S of 100 ⁇ m 2 or more can be efficiently manufactured. That is, in the present embodiment, it is possible to efficiently manufacture the thermoelectric conversion element 10 having the shape factor y adapted to the application.
  • thermoelectric film F formed on the surface of the substrate W is pressed by the mold 30 to form the pattern PA, and the thermoelectric conversion element 10 is generated. And the thermoelectric conversion element 10 having an appropriate shape factor y represented by the equation (2) can be efficiently manufactured.
  • thermoelectric conversion element 10 having high shape accuracy can be manufactured.
  • thermoelectric film F formed on the surface of the substrate W is heated and baked by rapid thermal processing (RTA) using radiant heat.
  • RTA rapid thermal processing
  • the thermoelectric conversion element 10 having a small crystal grain size is generated.
  • the thermoelectric conversion element 10 has a small thermal conductivity and a small crystal grain size.
  • the crystal grain size can be reduced by rapid thermal processing (RTA).
  • thermoelectric material The figure of merit Z of the thermoelectric material is expressed by the following equation (10).
  • is the Seebeck coefficient
  • is the specific resistance
  • is the thermal conductivity.
  • thermoelectric conversion element 10 By reducing the crystal grain size, the thermal conductivity ⁇ can be reduced. According to this embodiment, by performing the rapid thermal processing (RTA), it is possible to manufacture the thermoelectric conversion element 10 having a fine crystal grain size of 50 [nm] or more and 1 [ ⁇ m] or less.
  • RTA rapid thermal processing
  • thermoelectric conversion element 10 satisfies the condition of the expression (3). That is, the thermoelectric conversion element 10 has a tapered shape in which the cross-sectional area S decreases from the surface of the substrate W toward the + Z direction. Thus, after the pattern PA is formed on the thermoelectric film F by the mold 30, the mold 30 and the thermoelectric film F can be separated smoothly.
  • each of the first end face 11 and the second end face 12 is substantially square, and connects four sides of the first end face 11 and four sides of the second end face 12. All four side surfaces 13 are inclined with respect to the first end surface 11.
  • FIG. 12 is a perspective view schematically showing the thermoelectric conversion element 10B according to the present embodiment.
  • FIG. 13 is a plan view schematically showing the thermoelectric conversion element 10B according to the present embodiment.
  • the first end face 11 may have a rectangular shape that is long in the Y-axis direction
  • the second end face 12 may have a rectangular shape that is long in the X-axis direction.
  • a side surface 13 connecting the + Y side of the first end surface 11 to the + Y side of the second end surface 12 and a side surface connecting the -Y side of the first end surface 11 and the -Y side of the second end surface 12 13 are inclined with respect to the first end face 11, and the side face 13 connecting the + X side of the first end face 11 and the + X side of the second end face 12 and the -X side of the first end face 11
  • Each of the side surfaces 13 connecting the first end surface 11 and the ⁇ X side of the second end surface 12 may be orthogonal to each other.
  • FIG. 14 is a cross-sectional view schematically showing a thermoelectric conversion element 10C according to the present embodiment.
  • the second end face 12 and the side face 13 may be connected by a curve. That is, the corner between the second end face 12 and the side face 13 may be rounded (R chamfered).
  • FIG. 15 is a cross-sectional view schematically showing a thermoelectric conversion element 10D according to the present embodiment.
  • the second end surface 12 and the side surface 13 may be connected by a straight line 15. That is, the corner between the second end surface 12 and the side surface 13 may be chamfered (C chamfer).
  • thermoelectric conversion element 10 (10B, 10C, 10D) has a tapered shape in which the cross-sectional area S gradually decreases from the first end face 11 to the second end face 12.
  • the outer shape and size of the first end face 11 may be equal to the outer shape and size of the second end face 12. That is, the thermoelectric conversion element 10 does not have to be tapered.
  • the outer shape of the cross section of the thermoelectric conversion element 10 (10B, 10C, 10D) parallel to the surface of the substrate W is a quadrangle (square or rectangular).
  • the outer shape of the cross section of the thermoelectric conversion element 10 can be set arbitrarily.
  • the outer shape of the cross section of the thermoelectric conversion element 10 may be, for example, a rhombus or a parallelogram.
  • the outer shape of the cross section of the thermoelectric conversion element 10 is not limited to a square.
  • the outer shape of the cross section of the thermoelectric conversion element 10 may be, for example, a pentagon, a hexagon, an octagon, a circle, or an ellipse.
  • thermoelectric conversion element 10 ... thermoelectric conversion element, 10B ... thermoelectric conversion element, 10C ... thermoelectric conversion element, 10D ... thermoelectric conversion element, 10P ... 1st thermoelectric conversion element, 10N ... 2nd thermoelectric conversion element, 11 ... 1st end surface, 12 ... 2nd End face, 13 ... side face, 14 ... curve, 15 ... straight line, 20A ... substrate holder, 20B ... substrate holder, 20C ... substrate holder, 25 ... dispenser, 30 ... mold, 50 ... annealing apparatus, 52 ... chamber, 54 ...
  • thermoelectric power generation module 110 first substrate, 110A upper surface, 110B lower surface, 120 second substrate, 120A upper surface, 120B lower surface, 130 electrode, 140 electrode, 150 lead wire,

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

熱電変換素子(10)の製造方法は、基板(W)の表面に熱電材料を含む熱電膜(F)を形成することと、熱電膜をモールド(30)で押して基板の表面に熱電膜のパターン(PA)を形成することと、基板の表面に形成された熱電膜のパターンを加熱して熱電変換素子を生成することと、を含む。

Description

熱電変換素子の製造方法及び熱電変換素子
 本発明は、熱電変換素子の製造方法及び熱電変換素子に関する。
 ゼーベック効果を利用して電力を発生する熱電変換素子が知られている。熱電変換素子の一方の端面が冷却され熱電変換素子の他方の端面が加熱されることによって、熱電変換素子は電力を発生する。熱電変換素子の製造方法の一例が特許文献1に開示されている。
特開2010-040998号公報
 熱電変換素子の熱電特性を決定する要因の一つとして、熱電変換素子の高さと断面の面積との比を示す形状因子が挙げられる。熱電変換素子において、適切な形状因子を得ることができれば適切な熱電特性を得ることができる。
 本発明の態様は、適切な形状因子を有する熱電変換素子を提供することを目的とする。
 本発明の態様に従えば、基板の表面に熱電材料を含む熱電膜を形成することと、前記熱電膜をモールドで押して前記基板の表面に前記熱電膜のパターンを形成することと、前記基板の表面に形成された前記熱電膜のパターンを加熱して熱電変換素子を生成することと、を含む熱電変換素子の製造方法が提供される。
 本発明の態様によれば、適切な形状因子を有する熱電変換素子が提供される。
図1は、第1実施形態に係る熱電発電モジュールを模式的に示す斜視図である。 図2は、第1実施形態に係る熱電変換素子を模式的に示す斜視図である。 図3は、第1実施形態に係る熱電変換素子を模式的に示す断面図である。 図4は、第1実施形態に係る熱電変換素子を模式的に示す平面図である。 図5は、第1実施形態に係る熱電変換素子の製造方法を示すフローチャートである。 図6は、第1実施形態に係る熱電変換素子の製造方法を示す模式図である。 図7は、第1実施形態に係る熱電変換素子の製造方法を示す模式図である。 図8は、第1実施形態に係る熱電変換素子の製造方法を示す模式図である。 図9は、第1実施形態に係る熱電変換素子の製造方法を示す模式図である。 図10は、熱電変換素子の形状因子と最大電流値との関係を示す図である。 図11は、熱電変換素子の形状因子と断面の面積との関係を示す図である。 図12は、第2実施形態に係る熱電変換素子を模式的に示す斜視図である。 図13は、第2実施形態に係る熱電変換素子を模式的に示す平面図である。 図14は、第3実施形態に係る熱電変換素子を模式的に示す断面図である。 図15は、第4実施形態に係る熱電変換素子を模式的に示す断面図である。
 以下、本発明に係る実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。以下で説明する実施形態の構成要素は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。
 以下の説明においては、XYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部の位置関係について説明する。所定面内のX軸と平行な方向をX軸方向、所定面内においてX軸と直交するY軸と平行な方向をY軸方向、所定面と直交するZ軸と平行な方向をZ軸方向とする。X軸とY軸とZ軸とは直交する。また、X軸及びY軸を含む平面をXY平面、Y軸及びZ軸を含む平面をYZ平面、Z軸及びX軸を含む平面をXZ平面とする。XY平面は所定面と平行である。XY平面とYZ平面とXZ平面とは直交する。
[第1実施形態]
<熱電発電モジュール>
 図1は、本実施形態に係る熱電発電モジュール100を模式的に示す斜視図である。熱電発電モジュール100は、XY平面内に配置される複数の熱電変換素子10と、熱電変換素子10の-Z側に配置される第1基板110と、熱電変換素子10の+Z側に配置される第2基板120と、熱電変換素子10と第1基板110との間に配置される電極130と、熱電変換素子10と第2基板120との間に配置される電極140と、リード線150とを備える。
 熱電変換素子10は、例えばビスマステルル系化合物(Bi-Te)のような熱電材料を含む。熱電変換素子10は、P型熱電半導体素子である第1熱電変換素子10Pと、N型熱電半導体素子である第2熱電変換素子10Nとを含む。第1熱電変換素子10P及び第2熱電変換素子10Nのそれぞれは、XY平面内に複数配置される。X軸方向において、第1熱電変換素子10Pと第2熱電変換素子10Nとは交互に配置される。Y軸方向において、第1熱電変換素子10Pと第2熱電変換素子10Nとは交互に配置される。
 複数の熱電変換素子10のそれぞれは、第1端面11及び第2端面12を有する。第1端面11は、熱電変換素子10の-Z側の端面である。第2端面12は、熱電変換素子10の+Z側の端面である。第1端面11は、XY平面と実質的に平行である。第2端面12は、XY平面と実質的に平行である。
 電極130は、隣接する一対の第1熱電変換素子10P及び第2熱電変換素子10Nのそれぞれに接続される。電極130は、隣接する第1熱電変換素子10Pの第1端面11と第2熱電変換素子10Nの第1端面11とを接続する。
 電極140は、隣接する一対の第1熱電変換素子10P及び第2熱電変換素子10Nのそれぞれに接続される。電極140は、隣接する第1熱電変換素子10Pの第2端面12と第2熱電変換素子10Nの第2端面12とを接続する。
 第1基板110は、複数の電極130を支持する。第1基板110は、セラミックス又はポリイミドのような電気絶縁材料によって形成される。第1基板110は、上面110A及び下面110Bを有する。上面110A及び下面110Bのそれぞれは、XY平面と平行である。第1基板110は、第1熱電変換素子10P、第2熱電変換素子10N、及び電極130の-Z側に配置される。複数の電極130のそれぞれは、第1基板110の上面110Aに接続される。
 第2基板120は、複数の電極140を支持する。第2基板120は、セラミックス又はポリイミドのような電気絶縁材料によって形成される。第2基板120は、上面120A及び下面120Bを有する。上面120A及び下面120Bのそれぞれは、XY平面と平行である。第2基板120は、第1熱電変換素子10P、第2熱電変換素子10N、及び電極140の+Z側に配置される。複数の電極140のそれぞれは、第2基板120の下面120Bに接続される。
 Z軸方向において、熱電変換素子10は、第1基板110と第2基板120との間に配置される。第1基板110が冷却され、第2基板120が加熱されることによって、熱電変換素子10の第1端面11と第2端面12との間に温度差が与えられる。P型熱電半導体素子である第1熱電変換素子10Pの第1端面11と第2端面12との間に温度差が与えられると、第1熱電変換素子10Pにおいて、第2端面12から第1端面11に向かって正孔が移動する。N型熱電半導体素子である第2熱電変換素子10Nの第1端面11と第2端面12との間に温度差が与えられると、第2熱電変換素子10Nにおいて、第2端面12から第1端面11に向かって電子が移動する。正孔及び電子の移動により、第1端面11と第2端面12との間に電位差が発生する。熱電変換素子10において、第1端面11と第2端面12との温度差により、第1端面11と第2端面12との間に電位差が発生する。
 第1熱電変換素子10Pと第2熱電変換素子10Nとは電極130及び電極140を介して接続される。第1端面11と第2端面12との間に電位差が発生し、電極130と電極140との間に電位差が発生することにより、熱電発電モジュール100は電力を発生する。電極130にリード線150が接続される。熱電発電モジュール100は、リード線150を介して電力を出力する。
<熱電変換素子>
 図2は、本実施形態に係る熱電変換素子10を模式的に示す斜視図である。図3は、本実施形態に係る熱電変換素子10を模式的に示す断面図である。図3は、YZ平面と平行な熱電変換素子10の断面図である。図4は、本実施形態に係る熱電変換素子10を模式的に示す平面図である。図2、図3、及び図4に示すように、熱電変換素子10は、第1端面11と、第2端面12と、第1端面11の周縁部と第2端面12の周縁部とを結ぶ側面13とを備える。
 第1端面11は、熱電変換素子10の-Z側の端面である。第2端面12は、熱電変換素子10の+Z側の端面である。第1端面11は、XY平面と平行である。第2端面12は、XY平面と平行である。第1端面11と第2端面12との温度差により、第1端面11と第2端面12との間に電位差が発生する。電流は、熱電変換素子10の内部において、第1端面11と第2端面12との間をZ軸方向に流れる。
 第1端面11(XY平面)と平行な熱電変換素子10の断面(第1断面)の面積をS、第1端面11と直交するZ軸方向における第1端面11と第2端面12との距離を示す高さをL、としたとき、本実施形態に係る熱電変換素子10は、以下の(1)式及び(2)式の条件を満足する。
 100[μm] ≦ S   …(1)
 5[μm] ≦ L ≦ 100[μm]   …(2)
 本実施形態において、XY平面と平行な熱電変換素子10の断面(第1断面)の外形は、実質的に正方形である。図2、図3、及び図4において、XY平面と平行な熱電変換素子10の断面の外形の4つの辺のうち2つの辺はX軸と並行であり、2つの辺はY軸と平行である。
 XY平面内において、第2端面12の外形は、第1端面11の外形よりも小さい。YZ平面と平行な熱電変換素子10の断面(第2断面)において、側面13は第1端面11に対して傾斜する。YZ平面内において、側面13は、直線状である。また、YZ平面内において、側面13と第1端面11との間に角部が形成され、側面13と第2端面12との間に角部が形成される。
 図3に示すように、第1端面11と側面13とがなす内角をθ1、としたとき、本実施形態に係る熱電変換素子10は、以下の(3)式の条件を満足する。
 25[°] ≦ θ1 < 90[°]   …(3)
 熱電変換素子10は、第1端面11から第2端面12に向かって断面の面積Sが徐々に小さくなるテーパ状である。
 なお、XZ平面と平行な熱電変換素子10の断面の外形及び大きさは、YZ平面と平行な熱電変換素子10の断面の外形及び大きさと実質的に等しい。
 本実施形態において、熱電変換素子10の断面の面積Sとは、Z軸方向の中央における熱電変換素子10の断面の面積をいう。すなわち、面積Sは、第1端面11から+Z方向に[L/2]だけ離れた位置における断面の面積をいう。
<熱電変換素子の製造方法>
 図5は、本実施形態に係る熱電変換素子10の製造方法を示すフローチャートである。図6、図7、図8、及び図9のそれぞれは、本実施形態に係る熱電変換素子10の製造方法を示す模式図である。
(ステップS1:熱電インクを生成)
 熱電変換素子10を製造するための熱電インクLQが生成される。熱電インクLQは、熱電材料の微粒子を溶媒に分散することによって生成される。
 熱電材料として、ビスマス(Bi)、ビスマステルル系化合物(Bi-Te)、ビスマスアンチモン系化合物(Bi-Sb)、鉛テルル系化合物(Pb-Te)、コバルトアンチモン系化合物(Co-Sb)、イリジウムアンチモン系化合物(Ir-Sb)、コバルト砒素系化合物(Co-As)、シリコンゲルマニウム系化合物(Si-Ge)、銅セレン系化合物(Cu-Se)、ガドリウムセレン系化合物(Gd-Se)、炭化ホウ素系化合物、テルル系ペロブスカイト酸化物、希土類硫化物、TAGS系化合物(GeTe-AgSbTe)、ホイスラー型TiNiSn、FeNbSb、TiCoSb系物質等が例示される。
 溶媒として、メタノール、エタノール、イソプロピルアルコール、プロパノール、アセトン、トルエン、及びヘキサンのような有機溶媒が例示される。溶媒は、複数の有機溶媒の混合溶媒でもよいし、単独で使用されてもよい。また、溶媒は水を含んでもよい。
 本実施形態において、熱電インクLQは、ビスマステルル系化合物の微粒子を有機溶媒に分散することによって生成される。
(ステップS2:基板を洗浄)
 基板Wが準備され、基板Wの表面が洗浄される。例えばプラズマアッシング処理により基板Wの表面が洗浄される。
 基板Wとして、例えばシリコンウェハが例示される。なお、基板Wは、アルミナ(Al)又は窒化アルミニウム(AlN)のようなセラミックス基板でもよいし、ポリイミドのような電気絶縁材料で形成された絶縁基板でもよい。また、基板Wは、熱伝導性のよい炭化珪素(SiC)やべリリア(BeO)のような絶縁材料で形成されてもよい。
(ステップS3:ポリマー膜を形成)
 基板Wの表面にポリマー膜が生成される。ポリマー膜として、例えばポリメタクリル酸メチル(PMMA:polymethyl methacrylate)を含む膜が例示される。例えばスピンコート法に基づいて、ポリマーと溶媒とを含むポリマーインクが基板Wの表面にコーティングされる。ポリマーインクが基板Wの表面にコーティングされた後、ポリマーインクが乾燥されることにより、基板Wの表面にポリマー膜が形成される。なお、ポリマー膜が形成された後、プラズマエッチング処理によりポリマー膜の厚さが調整されてもよいし、ローラでポリマー膜を加圧して、ポリマー膜の表面が平坦化されてもよい。基板Wの表面にポリマー膜が形成されることにより、後に形成される熱電膜Fにクラックが発生することが抑制される。なお、ポリマー膜は基板Wの表面に形成されなくてもよい。
(ステップS4:熱電インクをコーティング)
 次に、図6に示すように、ステップS1で生成された熱電インクLQが基板Wの表面にコーティングされる。なお、基板Wの表面にポリマー膜のような材料膜が形成されている場合、基板Wの表面とは、材料膜の表面を含む概念である。例えばスピンコート法又はロールコート法のようなコーティング方法に基づいて、熱電インクLQが基板Wの表面にコーティングされる。
 図6に示す例においては、基板Wが基板ホルダ20Aに保持される。基板ホルダ20Aは、基板Wの表面とXY平面とが平行となるように、基板Wを保持する。基板ホルダ20Aに保持されている基板Wの表面にディスペンサ25から熱電インクLQが供給される。ディスペンサ25から熱電インクLQが供給されている状態で、基板ホルダ20Aが回転する。これにより、スピンコート法に基づいて、熱電インクLQが基板Wの表面にコーディングされる。
(ステップS5:熱電膜を形成)
 熱電インクLQが基板Wの表面にコーティングされた後、熱電インクLQに含まれる溶媒の少なくとも一部を除去するために、熱電インクLQが乾燥される。熱電インクLQが乾燥されることにより、図7に示すように、基板Wの表面に熱電材料を含む熱電膜Fが形成される。熱電インクLQを乾燥する方法として、加熱乾燥、自然乾燥、及び減圧乾燥の少なくとも一つが例示される。本実施形態においては、基板Wが基板ホルダ20Bに保持され、20[℃]以上50[℃]以下の雰囲気に設置される。これにより、熱電インクLQが乾燥され、基板Wの表面に熱電膜Fが形成される。なお、熱電膜Fが形成された後、ローラが熱電膜Fを加圧して、熱電膜Fの表面を平坦化してもよい。
(ステップS6:離型剤をコーティング)
 熱電膜Fが形成された後、熱電膜Fの表面に離型剤がコーティングされる。
(ステップS7:モールドでパターンを形成)
 次に、図8に示すように、基板Wが基板ホルダ20Cに保持されている状態で、モールド30が熱電膜Fを押すことにより、基板Wの表面に熱電膜FのパターンPAが形成される。モールド30は、例えばステンレス鋼のような金属製である。モールド30は、熱電変換素子10の目標形状に合わせた凹凸状の型を有する。基板ホルダ20Cは、基板Wの表面(熱電膜Fの表面)とXY平面とが平行となるように、基板Wを保持する。モールド30は、熱電膜Fの表面と対向する位置に配置された後、-Z方向に移動して、熱電膜Fを押す。
 本実施形態において、パターンPAの形成は、例えば85[℃]の大気雰囲気において実施される。なお、基板Wを保持する基板ホルダ20Cが85[℃]に加熱されてもよいし、モールド30が85[℃]に加熱されてもよい。モールド30が熱電膜Fを20[MPa]の力で5分間押すことによって、熱電膜FのパターンPAが形成される。なお、パターンPAの形成は、例えば85[℃]の不活性ガス雰囲気において実施されてもよい。
 ステップS7において、上述の(1)式及び(2)式の条件を満足するように、パターンPAが形成される。熱電変換素子10の面積Sは、基板Wの表面と平行な断面(第1断面)の面積を示す。熱電変換素子10の高さLは、基板Wの表面と直交するZ軸方向における熱電変換素子10の寸法を示す。
 また、ステップS7において、上述の(3)式の条件を満足するように、パターンPAが形成される。すなわち、パターンPAは、第1端面11から第2端面12に向かって断面の面積Sが徐々に小さくなるテーパ状に形成される。モールド30は、パターンPAの目標形状に合わせた凹凸状の型を有する。モールド30の凹凸状の型及びパターンPAがテーパ状なので、モールド30で熱電膜FにパターンPAを形成した後、モールド30と熱電膜Fとを円滑に離すことができる。
(ステップS8:加熱)
 熱電膜FのパターンPAが形成された後、基板Wが基板ホルダ20Cから搬出される。図9に示すように、基板ホルダ20Cから搬出された基板Wは、アニール装置50に搬送される。アニール装置50において、基板Wの表面に形成された熱電膜FのパターンPAが加熱される。パターンPAの加熱は、輻射熱による高速熱処理(RTA:Rapid Thermal Annealing)を含む。
 本実施形態においては、基板Wがアニール装置50のチャンバ52に収容され、400[℃]以上550[℃]以下のアルゴンガスの不活性ガス雰囲気において、ランプ54の輻射熱による加熱が5分間実施される。
 加熱によって熱電膜FのパターンPAが焼成されることにより、基板Wの表面に熱電変換素子10が生成される。
 高速熱処理を含む加熱が実施され、パターンPAが焼成されることにより、製造される熱電変換素子10の熱電特性及び機械特性(剛性)が向上する。また、高速熱処理が実施されることにより、熱電変換素子10における結晶粒の成長(巨大化)が抑制され、50[nm]以上1[μm]以下の微小な結晶粒径を有する熱電変換素子10が生成される。また、熱電膜FのパターンPAが不活性ガス雰囲気において加熱されることにより、製造される熱電変換素子10の酸化が抑制される。
<形状因子>
 上述のように、XY平面と平行な熱電変換素子10の断面の面積をS、Z軸方向における熱電変換素子10の高さをL、としたとき、(1)式及び(2)式の条件を満足するように、熱電変換素子10が製造される。高さLと面積Sとの比(L/S)は、形状因子と呼ばれる。
 形状因子は、熱電変換素子10の最大電流値Imaxを決定する。最大電流値Imaxとは、第1端面11と第2端面12とに温度差を与えた場合に第1端面11と第2端面12との間に流れることができる電流の最大値をいう。第1端面11と第2端面12との温度差が大きいほど熱電変換素子10の内部を流れる電流値は大きくなるものの、第1端面11と第2端面12との温度差が所定値以上になると、電流値は飽和して一定値(最大値)に維持される。最大電流値Imaxとは、第1端面11と第2端面12との温度差が所定値以上になったときに飽和する電流値の最大値をいう。
 図10は、熱電変換素子10の形状因子yと最大電流値Imaxとの関係を示す図である。形状因子yは、高さLと面積Sとの比(L/S)である(y=L/S)。熱電変換素子10の熱電材料が同じである場合、図10に示すように、形状因子yが小さいほど最大電流値Imaxは大きくなり、形状因子yが大きいほど最大電流値Imaxは小さくなる。例えば、面積Sが大きいほど最大電流値Imaxは大きくなり、面積Sが小さいほど最大電流値Imaxは小さくなる。高さLが小さいほど最大電流値Imaxは大きくなり、高さLが大きいほど最大電流値Imaxは小さくなる。
 図11は、熱電変換素子10の形状因子yと断面の面積Sとの関係を示す図である。図11は、熱電変換素子10がビスマステルル系化合物(Bi-Te)の熱電材料によって形成されているときの熱電変換素子10の形状因子yと面積Sとの関係を示す。
 図11に示すように、面積S[μm]を横軸とし、形状因子y[1/cm]を縦軸としたダイアグラムを描いたとき、熱電変換素子10は、以下の(4)式、(5)式、(6)式、及び(7)式で示されるラインで囲まれた範囲Aに面積S及び形状因子yが存在する条件を満足する。
 y=50000/S   …(4)
 y=1000000/S   …(5)
 S=100[μm]   …(6)
 y=0.1[1/cm]   …(7)
 図11において、ラインLaは、(4)式で示される。ラインLbは、(5)式で示される。ラインLcは、(6)式で示される。ラインLdは、(7)式で示される。範囲Aは、ラインLaと、ラインLbと、ラインLcと、ラインLdとで囲まれた範囲である。
 本実施形態においては、基板W上に形成された熱電膜Fをモールド30で押すことによって基板Wの表面に熱電膜FのパターンPAが形成されるので、面積S及び形状因子yが範囲Aに存在するように、熱電変換素子10を形成することができる。
 例えば、熱電変換素子10を用いて光通信におけるレーザダイオードを温度調整する場合、5[mA]以上50[A]以下の最大電流値Imaxを得ることができる熱電変換素子10が必要であり、大吸熱量が要求される一般の熱交換器を温度調整する場合、50[A]以上の最大電流値Imaxを得ることができる熱電変換素子10が必要であると言われている。
 本実施形態においては、形状因子yが0.1未満の熱電変換素子10も製作可能であるが、最大電流値Imaxが500Aを超える場合には、熱電素子間や配線部分でのジュール熱が高くなることを考慮すると、y=0.1を下限値とするのが現実的である。
 モールド30を使用せずに、例えば蒸着法又はスパッタリング法のような既存の薄膜製造方法に基づいて熱電半導体素子を製造する場合、高さLを十分に大きくすることが困難である。既存の薄膜製造方法に基づいて製造可能な熱電変換素子の高さLの最大値は0.1[μm]程度と言われている。高さLが0.1[μm]であり、500[mA]以上50[A]以下の最大電流値Imaxを得ることができる熱電変換素子を製造しようとする場合、熱電変換素子の面積Sを100[μm]以下にする必要がある。すなわち、既存の薄膜製造方法では、図11において、以下の(8)式で示されるラインLeと、(9)式で示されるラインLfと、上述の(7)式で示されるラインLdとで囲まれた範囲Bに面積S及び形状因子yが存在する条件を満足する熱電変換素子しか製造することができない。
 y=1000/S   …(8)
 S=1[μm]   …(9)
 面積Sが100[μm]以下である熱電変換素子は、温度調整対象であるレーザダイオードに対して非常に小さい寸法である。小さ過ぎる熱電変換素子は、熱電変換モジュールにする際に疎らに実装しなければならず,熱電変換モジュールの信頼性を損ねる可能性がある。また、既存の薄膜製造方法に基づいて大きい高さLの熱電変換素子を製造しようとする場合、成膜時間に相当の時間を要してしまい,現実的ではない。
 また、モールド30を使用せずに、例えばインクジェット法に基づいて熱電半導体素子を製造する場合、既存の薄膜製造方法よりは高さLを大きくすることができるものの、所望の高さLを得ることは困難である。インクジェット法に基づいて製造可能な熱電変換素子の高さLの最大値は5[μm]程度と言われている。高さLが5[μm]であり、500[mA]以上50[A]以下の最大電流値Imaxを得ることができる熱電変換素子を製造しようとする場合、熱電変換素子の面積Sを5000[μm]以下にする必要がある。すなわち、インクジェット法では、上述の(8)式で示されるラインLeと、(4)式で示されるラインLaと、(9)式で示されるラインLdと、(7)式で示されるラインLfとで囲まれた範囲Cに面積S及び形状因子yが存在する条件を満足する熱電変換素子しか製造することができない。
 面積Sが5000[μm]以下である熱電変換素子も、温度調整対象であるレーザダイオードに対して非常に小さい寸法である。また、インクジェット法に基づいて大きい高さLの熱電変換素子を製造しようとする場合、インクの吐出と乾燥とを複数回繰り返す必要があり、成膜時間に相当の時間を要してしまい,現実的ではない。
 また、従来から、熱電変換素子の製造方法として、熱電材料のバルク(bulk:塊)を製造し、バルクを切削加工して、熱電変換素子を製造する方法が知られている。バルクを切削加工することによって熱電変換素子を製造する方法では、熱電変換素子の小型化が困難であり、製造可能な熱電変換素子の高さLの最小値は100[μm]程度であると言われている。高さLが100[μm]であり、500[mA]以上50[A]以下の最大電流値Imaxを得ることができる熱電変換素子を製造しようとする場合、図11において、範囲Dに面積S及び形状因子yが存在する条件を満足する熱電変換素子しか製造することができない。
 また、バルクを切削加工して熱電変換素子を製造する方法の場合、多量のカーフロスが発生する。したがって、材料使用効率の観点からも不利である。
 本実施形態においては、熱電膜Fをモールド30で押して基板Wの表面に熱電膜FのパターンPAを形成することによって、熱電変換素子10が製造される。本実施形態に係る製造方法によれば、高さLが5[μm]以上100[μm]以下で、面積Sが100[μm]以上の熱電変換素子10を効率良く製造することができる。すなわち、本実施形態においては、用途に適応する形状因子yを有する熱電変換素子10を効率良く製造することができる。
<効果>
 以上説明したように、本実施形態によれば、基板Wの表面に形成された熱電膜Fをモールド30で押してパターンPAを形成することによって、熱電変換素子10を生成するので、(1)式及び(2)式で示される適切な形状因子yを有する熱電変換素子10を効率良く製造することができる。
 また、例えば熱電材料のバルクを切削加工することにより熱電変換素子を製造する方法に比べて、カーフロスの発生を抑制することができ、高い形状精度を有する熱電変換素子10を製造することができる。
 また、本実施形態においては、輻射熱による高速熱処理(RTA)によって、基板Wの表面に形成された熱電膜Fが加熱され焼成される。高速熱処理により、焼成後の結晶粒の成長が抑制され、微小な結晶粒径を有する熱電変換素子10が生成される。一般に、熱電変換素子10においては、熱伝導率が小さく結晶粒径が小さいことが好ましい。高速熱処理(RTA)により、結晶粒径を小さくすることができる。
 熱電材料の性能指数Zは、以下の(10)式で示される。なお、(10)式において、αはゼーベック計数、ρは比抵抗、κは熱伝導率である。
 Z=α/ρκ   …(10)
 結晶粒径を小さくすることにより、熱伝導率κを小さくすることができる。本実施形態によれば、高速熱処理(RTA)を実施することにより、50[nm]以上1[μm]以下の微小な結晶粒径の熱電変換素子10を製造することができる。
 また、本実施形態においては、熱電変換素子10は、(3)式の条件を満たす。すなわち、熱電変換素子10は、基板Wの表面から+Z方向に向かって断面の面積Sが小さくなるテーパ状である。これにより、モールド30で熱電膜FにパターンPAを形成した後、モールド30と熱電膜Fとを円滑に離すことができる。
[第2実施形態]
 第2実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成要素については同一の符号を付し、その説明を簡略又は省略する。
 上述の第1実施形態においては、第1端面11及び第2端面12のそれぞれが実質的に正方形であり、第1端面11の4つの辺と第2端面12の4つの辺とのそれぞれを結ぶ4つの側面13が全て、第1端面11に対して傾斜することとした。
 図12は、本実施形態に係る熱電変換素子10Bを模式的に示す斜視図である。図13は、本実施形態に係る熱電変換素子10Bを模式的に示す平面図である。図12及び図13に示すように、第1端面11がY軸方向に長い長方形状であり、第2端面12がX軸方向に長い長方形状でもよい。第1端面11の+Y側の辺と第2端面12の+Y側の辺とを結ぶ側面13及び第1端面11の-Y側の辺と第2端面12の-Y側の辺とを結ぶ側面13のそれぞれが、第1端面11に対して傾斜し、第1端面11の+X側の辺と第2端面12の+X側の辺とを結ぶ側面13及び第1端面11の-X側の辺と第2端面12の-X側の辺とを結ぶ側面13のそれぞれが、第1端面11に対して直交してもよい。
[第3実施形態]
 第3実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成要素については同一の符号を付し、その説明を簡略又は省略する。
 図14は、本実施形態に係る熱電変換素子10Cを模式的に示す断面図である。図14に示すように、YZ平面と平行な熱電変換素子10Cの断面において、第2端面12と側面13とは曲線14で結ばれてもよい。すなわち、第2端面12と側面13との間の角部が丸み面取り(R面取り)されてもよい。
[第4実施形態]
 第4実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成要素については同一の符号を付し、その説明を簡略又は省略する。
 図15は、本実施形態に係る熱電変換素子10Dを模式的に示す断面図である。図15に示すように、YZ平面と平行な熱電変換素子10Dの断面において、第2端面12と側面13とは直線15で結ばれてもよい。すなわち、第2端面12と側面13との間の角部が角面取り(C面取り)されてもよい。
[他の実施形態]
 上述の実施形態においては、熱電変換素子10(10B,10C,10D)は、第1端面11から第2端面12に向かって断面の面積Sが徐々に小さくなるテーパ状であることとした。熱電変換素子10において、第1端面11の外形及び大きさと第2端面12の外形及び大きさとは、等しくてもよい。すなわち、熱電変換素子10は、テーパ状でなくてもよい。
 上述の実施形態においては、基板Wの表面と平行な熱電変換素子10(10B,10C,10D)の断面の外形は、四角形(正方形状又は長方形状)であることとした。熱電変換素子10の断面の外形は、任意に設定可能である。熱電変換素子10の断面の外形は、例えば菱形でもよいし、平行四辺形でもよい。また、熱電変換素子10の断面の外形は、四角形に限定されない。熱電変換素子10の断面の外形は、例えば五角形でもよいし、六角形でもよいし、八角形でもよいし、円形でもよいし、楕円形でもよい。なお、熱電変換素子10の断面の外形を四角形にすることにより、基板Wの表面における熱電変換素子10の占有率を高く保つことができるため有利である。
 10…熱電変換素子、10B…熱電変換素子、10C…熱電変換素子、10D…熱電変換素子、10P…第1熱電変換素子、10N…第2熱電変換素子、11…第1端面、12…第2端面、13…側面、14…曲線、15…直線、20A…基板ホルダ、20B…基板ホルダ、20C…基板ホルダ、25…ディスペンサ、30…モールド、50…アニール装置、52…チャンバ、54…ランプ、100…熱電発電モジュール、110…第1基板、110A…上面、110B…下面、120…第2基板、120A…上面、120B…下面、130…電極、140…電極、150…リード線、A…範囲、B…範囲、C…範囲、D…範囲、F…熱電膜、Imax…最大電流値、L…高さ、La…ライン、Lb…ライン、Lc…ライン、Ld…ライン、Le…ライン、Lf…ライン、LQ…熱電インク、PA…パターン、S…面積、W…基板。

Claims (8)

  1.  基板の表面に熱電材料を含む熱電膜を形成することと、
     前記熱電膜をモールドで押して前記基板の表面に前記熱電膜のパターンを形成することと、
     前記基板の表面に形成された前記熱電膜のパターンを加熱して熱電変換素子を生成することと、
    を含む熱電変換素子の製造方法。
  2.  前記加熱は、輻射熱による高速熱処理(Rapid Thermal Annealing)を含む、
    請求項1に記載の熱電変換素子の製造方法。
  3.  前記基板の表面と平行な前記熱電変換素子の第1断面の面積をS、
     前記基板の表面と直交する方向における前記熱電変換素子の寸法を示す高さをL、としたとき、
     100[μm] ≦ S、
     5[μm] ≦ L ≦ 100[μm]、
    の条件を満足するように、前記熱電膜のパターンを形成する、
    請求項1又は請求項2に記載の熱電変換素子の製造方法。
  4.  第1端面と、
     第2端面と、
     前記第1端面の周縁部と前記第2端面の周縁部とを結ぶ側面と、を備え、
     前記第1端面と前記第2端面との温度差により前記第1端面と前記第2端面との間に電位差が発生し、
     前記第1端面と平行な第1断面の面積をS、
     前記第1端面と直交する方向における前記第1端面と前記第2端面との距離を示す高さをL、としたとき、
     100[μm] ≦ S、
     5[μm] ≦ L ≦ 100[μm]、
    の条件を満足する、
    熱電変換素子。
  5.  高さLと面積Sとの比L/Sを形状因子y[1/cm]、としたとき、
     y=50000/S
     y=1000000/S
     S=100[μm]、
     y=0.1[1/cm]、
    のラインで囲まれた範囲に前記面積S及び前記形状因子yが存在する条件を満足する、
    請求項4に記載の熱電変換素子。
  6.  前記第2端面の外形は、前記第1端面の外形よりも小さく、
     前記第1端面と直交する第2断面において、前記側面は前記第1端面に対して傾斜し、
     前記第1端面と前記側面とがなす内角をθ1、としたとき、
     25[°] ≦ θ1 < 90[°]、
    の条件を満足する、
    請求項4又は請求項5に記載の熱電変換素子。
  7.  前記第1端面と直交する第2断面において、前記第2端面と前記側面とは曲線で結ばれる、
    請求項4から請求項6のいずれか一項に記載の熱電変換素子。
  8.  前記第1端面と直交する第2断面において、前記第2端面と前記側面とは直線で結ばれる、
    請求項4から請求項6のいずれか一項に記載の熱電変換素子。
PCT/JP2019/027530 2018-09-10 2019-07-11 熱電変換素子の製造方法及び熱電変換素子 WO2020054205A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980059121.4A CN112703612B (en) 2018-09-10 2019-07-11 Method for manufacturing thermoelectric conversion element, and thermoelectric conversion element
US17/273,516 US11665964B2 (en) 2018-09-10 2019-07-11 Method for manufacturing thermoelectric conversion element and thermoelectric conversion element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018168741A JP7362062B2 (ja) 2018-09-10 2018-09-10 熱電変換素子の製造方法及び熱電変換素子
JP2018-168741 2018-09-10

Publications (1)

Publication Number Publication Date
WO2020054205A1 true WO2020054205A1 (ja) 2020-03-19

Family

ID=69778519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027530 WO2020054205A1 (ja) 2018-09-10 2019-07-11 熱電変換素子の製造方法及び熱電変換素子

Country Status (3)

Country Link
US (1) US11665964B2 (ja)
JP (1) JP7362062B2 (ja)
WO (1) WO2020054205A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023122510A1 (en) * 2021-12-20 2023-06-29 Adeia Semiconductor Bonding Technologies Inc. Thermoelectric cooling in microelectronics

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068746A (ja) * 1999-08-24 2001-03-16 Seiko Instruments Inc 熱電変換素子とその製造方法
JP2009043808A (ja) * 2007-08-07 2009-02-26 Sony Corp 熱電装置及び熱電装置の製造方法
JP2012175781A (ja) * 2011-02-21 2012-09-10 Sony Corp 無線電力供給装置及び無線電力供給方法
JP2017135361A (ja) * 2016-01-26 2017-08-03 現代自動車株式会社Hyundai Motor Company 熱電素子及びこれを含む熱電モジュール

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040988A (ja) 2008-08-08 2010-02-18 Nsk Ltd 真空チャンバー
US20150136192A1 (en) * 2012-04-30 2015-05-21 Universite Catholique De Louvain Thermoelectric Conversion Module and Method for Making it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068746A (ja) * 1999-08-24 2001-03-16 Seiko Instruments Inc 熱電変換素子とその製造方法
JP2009043808A (ja) * 2007-08-07 2009-02-26 Sony Corp 熱電装置及び熱電装置の製造方法
JP2012175781A (ja) * 2011-02-21 2012-09-10 Sony Corp 無線電力供給装置及び無線電力供給方法
JP2017135361A (ja) * 2016-01-26 2017-08-03 現代自動車株式会社Hyundai Motor Company 熱電素子及びこれを含む熱電モジュール

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023122510A1 (en) * 2021-12-20 2023-06-29 Adeia Semiconductor Bonding Technologies Inc. Thermoelectric cooling in microelectronics

Also Published As

Publication number Publication date
CN112703612A (zh) 2021-04-23
US11665964B2 (en) 2023-05-30
US20210202820A1 (en) 2021-07-01
JP2020043191A (ja) 2020-03-19
JP7362062B2 (ja) 2023-10-17

Similar Documents

Publication Publication Date Title
US10749094B2 (en) Thermoelectric devices, systems and methods
US20120152295A1 (en) Arrays of filled nanostructures with protruding segments and methods thereof
US20160322554A1 (en) Electrode structures for arrays of nanostructures and methods thereof
US20120295074A1 (en) Arrays of long nanostructures in semiconductor materials and methods thereof
US20110000224A1 (en) Metal-core thermoelectric cooling and power generation device
WO2009014985A2 (en) Methods and devices for controlling thermal conductivity and thermoelectric power of semiconductor nanowires
US20110083712A1 (en) Thermoelectric Module
JP2013513960A (ja) 絶縁材料を介して行と列に並べた導電性材料製又は半導体材料製の平行なナノワイヤを具備したセーベック/ペルティエ効果を利用した熱電気変換装置とその製造方法
KR101680766B1 (ko) 열전 소자 및 열전 소자 어레이
US11572275B2 (en) Aluminum nitride film, method of manufacturing aluminum nitride film, and high withstand voltage component
JP5316912B2 (ja) フレキシブル熱電発電デバイスの高速製造方法
CA2825888A1 (en) Electrode structures for arrays of nanostructures and methods thereof
JP2006319210A (ja) 熱電変換素子の製造方法
US20160056363A1 (en) Freestanding Thermoelectric Energy Conversion Device
WO2020054205A1 (ja) 熱電変換素子の製造方法及び熱電変換素子
JP6460386B2 (ja) 熱電変換素子
CN112703612B (en) Method for manufacturing thermoelectric conversion element, and thermoelectric conversion element
CN107534077B (zh) 热电元件、热电模块及包括该热电模块的热转换装置
JP5373225B2 (ja) 熱電変換素子モジュールの製造方法
JP2005294538A (ja) 熱電素子、その製造方法及び熱電モジュール
KR101153720B1 (ko) 열전모듈 및 이의 제조방법
JP6559438B2 (ja) 熱電素子及びそれを用いた熱電モジュール並びに熱電素子の製造方法
WO2016075733A1 (ja) 熱電変換デバイスおよびその製造方法
Mortazavinatanzi On the Manufacturing Processes of Flexible Thermoelectric Generators
CN112038478A (zh) 一种半导体制冷元件的制造工艺及元件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859861

Country of ref document: EP

Kind code of ref document: A1