WO2020052365A1 - 基于主动悬挂的车载运动模拟平台及控制方法 - Google Patents

基于主动悬挂的车载运动模拟平台及控制方法 Download PDF

Info

Publication number
WO2020052365A1
WO2020052365A1 PCT/CN2019/098904 CN2019098904W WO2020052365A1 WO 2020052365 A1 WO2020052365 A1 WO 2020052365A1 CN 2019098904 W CN2019098904 W CN 2019098904W WO 2020052365 A1 WO2020052365 A1 WO 2020052365A1
Authority
WO
WIPO (PCT)
Prior art keywords
motion simulation
simulation platform
vehicle
suspension
servo
Prior art date
Application number
PCT/CN2019/098904
Other languages
English (en)
French (fr)
Inventor
赵丁选
刘爽
巩明德
孙志国
张祝新
倪涛
杨彬
郭庆贺
杨梦轲
Original Assignee
燕山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 燕山大学 filed Critical 燕山大学
Priority to SG11202102301PA priority Critical patent/SG11202102301PA/en
Priority to KR1020207024918A priority patent/KR102366200B1/ko
Priority to US16/971,328 priority patent/US11280703B2/en
Priority to NZ773654A priority patent/NZ773654A/en
Priority to JP2020545152A priority patent/JP6845601B2/ja
Priority to CA3112372A priority patent/CA3112372C/en
Priority to AU2019339956A priority patent/AU2019339956B2/en
Priority to EP19858833.7A priority patent/EP3851302B1/en
Publication of WO2020052365A1 publication Critical patent/WO2020052365A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/04Suspension or damping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0165Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/0152Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the action on a particular type of suspension unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0161Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during straight-line motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0162Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during a motion involving steering operation, e.g. cornering, overtaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/0195Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/08Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces characterised by use of gyroscopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/41Fluid actuator
    • B60G2202/413Hydraulic actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/62Adjustable continuously, e.g. during driving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/12Cycles; Motorcycles
    • B60G2300/122Trikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/051Angle
    • B60G2400/0511Roll angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/051Angle
    • B60G2400/0512Pitch angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/102Acceleration; Deceleration vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/25Stroke; Height; Displacement
    • B60G2400/252Stroke; Height; Displacement vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2401/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60G2401/28Gyroscopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/30Height or ground clearance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/09Feedback signal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/18Automatic control means
    • B60G2600/182Active control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/44Vibration noise suppression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/60Signal noise suppression; Electronic filtering means
    • B60G2600/602Signal noise suppression; Electronic filtering means high pass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/012Rolling condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/014Pitch; Nose dive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/019Inclination due to load distribution or road gradient
    • B60G2800/0192Inclination due to load distribution or road gradient longitudinal with regard to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/019Inclination due to load distribution or road gradient
    • B60G2800/0194Inclination due to load distribution or road gradient transversal with regard to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D61/00Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern
    • B62D61/06Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern with only three wheels

Definitions

  • the invention relates to the technical field of motion control, and in particular to an on-board motion simulation platform and control method based on active suspension.
  • the motion simulation platform is widely used in flight simulation, vehicle road simulation, navigation equipment sway simulation and entertainment facilities. It generally consists of a base, a motion platform and a driving mechanism connecting the two. Because the simulation cabin loaded on the motion simulation platform is generally heavy, it has a large inertia during movement, and there is a risk of tipping. Therefore, the base is generally fixed on the ground, and it is difficult to migrate after fixed installation. However, some sports simulation facilities and entertainment facilities sometimes need to be continuously migrated. For example, some military training sports simulation facilities often need to move with the station, and some entertainment sports simulation facilities need to be continuously migrated with the assembly. It is difficult for the existing motion simulation platforms. Make it happen.
  • the technical problem to be solved by the present invention is to provide an on-board motion simulation platform and control method based on active suspension.
  • the invention integrates a vehicle and a motion simulation platform into one.
  • the motion simulation platform follows the vehicle to move freely, and realizes pitching and rolling on uneven ground. Simulation with heave three degrees of freedom.
  • the technical solutions adopted by the present invention are:
  • An on-board motion simulation platform based on active suspension includes a vehicle body, a motion simulation platform fixedly connected to the vehicle body, a host computer for posture control, a gyroscope, an electric control unit, a servo controller group, multiple wheels, and each Suspension servo cylinders and displacement sensors corresponding to wheels one by one.
  • the gyroscope is fixed on the motion simulation platform.
  • the electric control unit and servo controller group are fixed on the vehicle body.
  • the wheels are connected to the vehicle body through the suspension servo cylinder.
  • the displacement sensor is used to measure the stroke of the suspension servo cylinder.
  • the electric control unit is communicatively connected to the gyroscope and the servo controller group.
  • the servo controller group is communicatively connected to the displacement sensor.
  • the electric control unit is based on the input platform of the host computer.
  • the pose command and the platform pose information measured by the gyroscope calculate the pose control parameters, and then output the pose control parameters to the servo controller group.
  • the servo controller group controls the expansion and contraction of each suspension servo cylinder according to the pose control parameters. Achieve follow-up control of platform posture.
  • the control method of the vehicle motion simulation platform based on active suspension includes the following processes:
  • the electronic control unit accepts the pose command from the host computer.
  • the pose command includes the pitch angle ⁇ 1 and the roll angle.
  • ⁇ 1 heave displacement w 1
  • the values of ⁇ 0 and ⁇ 0 obtained by process 2) with ⁇ 1 - ⁇ 0 , ⁇ 1 - ⁇ 0 and w 1 as the relative pose target values, through the inverse motion of the vehicle suspension mechanism
  • the algorithm calculates the target value of the telescopic amount of each suspension servo actuation cylinder, and transmits the target value to the servo controller group to perform displacement servo control on each suspension servo actuation cylinder, so that the motion simulation platform can simulate the predetermined movement. .
  • a further improvement of the simulation method of the present invention is that the coordinate origin O is taken at the centroid of the vehicle body.
  • the invention integrates a vehicle and a motion simulation platform, and uses a wheel suspension mechanism as a servo actuator of the motion simulation platform, and can control the posture of the vehicle body according to different gradients.
  • This type of motion simulation platform can be moved with the vehicle and anywhere, and can be parked on uneven ground or on a certain slope.
  • the invention overcomes the disadvantages of the inconvenient movement of the existing motion simulation platform, and can meet the needs of some military training and sports simulation facilities that need to move with the premises, and some civilian entertainment and sports simulation facilities that need to move with the assembly, etc., so it has a wide application prospect.
  • FIG. 1 is a structural schematic diagram of a vehicle motion simulation platform and control system based on active suspension
  • Figure 2 is a schematic diagram of the structure of a four-wheel mobile motion simulation platform and control system based on active suspension;
  • Figure 3 is a schematic diagram of the tri-axle used in the test.
  • FIG. 4 is a comparison curve chart of the actual pitch angle and the commanded pitch angle of the platform measured when the three-axis vehicle motion simulation platform simulates the pitch movement;
  • FIG. 5 is a comparison curve diagram of the actual roll angle of the platform and the commanded roll angle measured when the three-axis vehicle motion simulation platform simulates roll motion;
  • FIG. 6 is a comparison curve diagram of the actual heave amount and the commanded heave amount of the platform measured when the three-axis vehicle motion simulation platform simulates the heave motion;
  • FIG. 7 is a comparison curve diagram of the actual pitch angle and the commanded pitch angle of the platform measured when the three-axis vehicle motion simulation platform simulates a pitch motion on a 3 ° longitudinal slope road surface;
  • FIG. 8 is a comparison graph of the actual roll angle of the platform and the commanded roll angle measured when the three-axis vehicle motion simulation platform simulates roll motion on a 2 ° cross-slope road surface.
  • the invention provides a vehicle-mounted motion simulation platform and a control method based on active suspension.
  • the vehicle and the motion simulation platform are integrated into one body, and a wheel suspension mechanism is used as a servo actuator of the motion simulation platform, which can simulate pitch, roll, and heave. Degrees of freedom.
  • Embodiment 1 Three-wheeled vehicle mobile motion simulation platform and control method based on active suspension
  • the system includes a vehicle body 13, a motion simulation platform 14 fixedly connected to the vehicle body 13, a position control upper computer 15, a gyroscope 1, wheels 2, 3, 4 and wheels 2, 3, 4 One-to-one corresponding suspension servo actuation cylinders 5, 6, 7 and corresponding displacement sensors 8, 9, 10, an electric control unit 11 and a servo controller group 12.
  • the gyroscope 1 is fixed on the motion simulation platform 14. Wheels 2, 3, and 4 are connected to the vehicle body 13 via suspension servo actuation cylinders 5, 6, and 7, respectively. Displacement sensors 8, 9, and 10 are used to measure the suspension servo, respectively.
  • the strokes of the actuation cylinders 5, 6, and 7, the electric control unit 11 and the servo controller group 12 are fixed on the vehicle body 13, the electric control unit 11 is communicatively connected with the gyroscope 1 and the servo controller group 12, and the servo controller group 12 Communicate with displacement sensors 8, 9, and 10.
  • the electronic control unit 11 calculates the posture control parameters based on the posture instruction of the motion simulation platform 14 input by the host computer 15 and the posture information of the motion simulation platform measured by the gyroscope 1, and then outputs the posture control parameters to the servo
  • the controller group 12 and the servo controller group 12 control the suspension of the suspension servo actuation cylinders 5, 6, and 7 according to the posture control parameters to realize the follow-up control of the 14-position posture of the motion simulation platform.
  • This embodiment is a three-wheeled vehicle.
  • Each wheel and its suspension servo-actuating cylinder can form a fulcrum to the vehicle body, so the posture of the vehicle body can be controlled by determining a plane according to the three points.
  • the established coordinate system OXYZ is fixedly connected to the vehicle body.
  • the coordinate origin O is taken at the centroid of the vehicle body 13 (or any point fixed to the vehicle body). It is defined as passing through the coordinate origin O and perpendicular to the motion simulation platform 14
  • the plane upward direction is the positive Z-axis direction
  • the vehicle is moving forward directly as the Y-axis positive direction
  • the vehicle is moving rightward as the X-axis positive direction.
  • the heave displacement of the motion simulation platform along the Z axis direction is defined as w, the rotation angle around the X axis, ie, the elevation angle, is ⁇ , and the rotation angle around the Y axis, ie, the roll angle, is ⁇ .
  • the first step is to measure the initial slope of the vehicle motion simulation platform. Because the slope of the uneven road stopped by the mobile motion simulation platform will not change during work, the pitch angle ⁇ 0 and roll angle ⁇ 0 measured by the gyroscope only need to be measured once. Before the start of the motion simulation, the telescopic amounts of the three wheel suspension servo actuation cylinders were all reached halfway, that is, the middle of the stroke. The pitch angle ⁇ 0 and roll angle ⁇ 0 of the motion simulation platform were measured with a gyroscope and output to Electric control unit for motion simulation;
  • the second step is to perform motion simulation.
  • a scanning cycle is set inside the control program of the electronic control unit 11. Within each scanning cycle, the electronic control unit 11 receives a target posture instruction from the upper computer 15 for posture control.
  • the posture instruction includes the pitch angle ⁇ of the motion simulation platform. 1. Roll angle ⁇ 1 , heave displacement w 1 and the values of ⁇ 0 and ⁇ 0 obtained in the previous step.
  • ⁇ 1 - ⁇ 0 , ⁇ 1 - ⁇ 0 and w 1 as the relative pose target values to calculate Target values l5, l6, l7 of the telescopic amount of each suspension servo actuation cylinder 5 , 6 , 7 and transmit this target value to the servo controller group 12 for each suspension servo actuation cylinder 5, 6, 7 Perform displacement servo control so that the motion simulation platform can simulate the predetermined motion.
  • the target value of the telescopic amount of the suspension servo actuation cylinder it can be calculated by the inverse kinematics algorithm of the vehicle suspension mechanism; when the servo controller group controls the displacement of each suspension servo actuation cylinder, it is measured based on the displacement sensor.
  • the target values of the stroke and telescopic amount of the suspension servo actuation cylinder control the telescope of the suspension servo actuation cylinder.
  • the situation where the mobile motion simulation platform stops working on the horizontal ground is the most commonly used situation. Since the situation of working on the horizontal ground is a special case when working on uneven ground, the above control method can naturally be used.
  • Embodiment 2 Four-wheel mobile motion simulation platform and control method based on active suspension
  • the system includes a vehicle body 13, a motion simulation platform 14 fixedly connected to the vehicle body 13, an upper computer 15 for posture control, a gyroscope 1, wheels 2, 3, 4.1, 4.2, and wheels 2 and 3. 3, 4.1, 4.2 One-to-one corresponding suspension servo actuation cylinders 5, 6, 7.1, 7.2 and corresponding displacement sensors 8, 9, 10.1, 10.2, electric control unit 11 and servo controller group 12.
  • the gyroscope 1 is fixed on the motion simulation platform 14.
  • the wheels 2, 3, 4.1, and 4.2 are connected to the vehicle body 13 through suspension servo actuation cylinders 5, 6, 7.1, and 7.2, respectively.
  • the displacement sensors 8, 9, 10.1, and 10.2 It is used to measure the travel of the suspension servo cylinders 5, 6, 7.1, and 7.2, respectively.
  • the electric control unit 11 and the servo controller group 12 are fixed on the vehicle body 13.
  • the electric control unit 11 and the gyroscope 1 and the servo controller Group 12 communicates with each other.
  • Servo controller group 12 communicates with displacement sensors 8, 9, 10.1, and 10.2.
  • this embodiment is a four-wheeled vehicle, in order to control the posture of the vehicle, this embodiment regards wheels 4.1 and 4.2 as an equivalent fulcrum, that is, the upper cavity of the suspension servo actuation cylinders 7.1 and 7.2 corresponding to the wheels 4.1 and 4.2. It communicates with the lower cavity respectively, that is, the upper cavity of the suspension servo cylinders 7.1 and 7.2 is connected through the upper cavity connection pipe 16.1, and the lower cavity is connected through the lower cavity connection pipe 16.2, so that the wheels 4.1 and 4.2 and their suspensions are connected to the vehicle body.
  • the supporting effect is equivalent to one fulcrum, and the other two wheels 2 and 3 and their suspension servo actuating cylinders each form a fulcrum to the car body 13, which has three fulcrum points.
  • the two rear wheels and their suspension servo actuation cylinders usually adopt the exact same structure, so the aforementioned equivalent fulcrum can be considered as the upper hinge point of the suspension servo actuation cylinders 7.1 and 7.2 corresponding to the wheels 4.1 and 4.2. Midpoint. Controlling the equivalent pivot point average height actuating cylinder by controlling the amount of 7.1, 7.2 telescopic suspension servo (FIG. 2 to l 7 shown) is achieved.
  • the control method of this embodiment is exactly the same as that of the first embodiment, and details are not described herein again.
  • the number of wheels in a certain wheel group may be one or more.
  • One wheel group constitutes a fulcrum supporting the vehicle body, and three wheel groups form three fulcrum points. These three fulcrum points can determine a plane, and the posture of the vehicle body is controlled based on the principle of three points determining a plane.
  • the fulcrum of each wheel group supporting the vehicle body is the geometric center point of each suspension servo actuation cylinder in the group's support point to the vehicle body. The height of this fulcrum is controlled by controlling the average telescopic amount of each suspension servo actuation cylinder in the wheel group. achieve.
  • the invention provides a control method of a vehicle motion simulation platform with more than three wheels, which can convert a vehicle motion simulation platform with more than three wheels into three wheel groups, and expands the application range of the control method in the field of vehicle motion simulation platform control.
  • the wheels that are close to each other are selected to form a wheel group, which facilitates the communication between the upper and lower chambers of the wheel suspension servo cylinder in the group.
  • the active suspension-based three-axis six-wheel vehicle motion simulation platform of the present invention is subjected to sinusoidal pitch motion simulation, sinusoidal roll motion simulation, and Sine heave motion simulation.
  • a three-axis vehicle motion simulation platform based on active suspension is shown in Figure 3.
  • the total vehicle length is 10m
  • the wheelbase is (2.95 + 1.65) m
  • the total weight is 36t
  • the axle load is 12t
  • the suspension stroke is ⁇ 0.11m.
  • the upper and lower chambers of the suspension servo-actuating cylinders corresponding to the two front wheels of the three-axle six-wheel vehicle of the present invention are communicated through the connecting pipelines respectively, so that the two front wheels and their suspension support the vehicle body.
  • the function is equivalent to a fulcrum; the upper and lower chambers of the suspension servo-actuating cylinders corresponding to the two wheels on the right side of the two rear axles of the vehicle are connected through the connecting pipelines respectively, so that the two wheels on the right side on the rear face the vehicle body.
  • the supporting effect of the vehicle forms a fulcrum; the upper and lower chambers of the suspension servo-actuating cylinders corresponding to the two wheels on the left side of the two rear axles of the vehicle are connected through connecting pipes, so that the two wheels on the left side of the rear face the vehicle body.
  • the supporting function of the vehicle forms a fulcrum; so the car body has three fulcrum.
  • the four wheels on the rear of the vehicle and their suspension servo cylinders have the exact same structure.
  • FIG. 4 shows a comparison curve between the actual pitch angle of the platform and the commanded pitch angle when the three-axis vehicle motion simulation platform is docked on a horizontal pavement to simulate the pitching motion.
  • FIG. 5 shows a comparison curve between the actual roll angle of the platform and the commanded roll angle when the three-axis vehicle motion simulation platform is docked on a horizontal pavement to simulate a roll motion.
  • Figure 6 shows the comparison curve between the actual heave amount of the platform and the commanded heave amount when the three-axis vehicle motion simulation platform simulates the heave motion.
  • Figure 7 shows the comparison curve between the actual pitch angle of the platform and the commanded pitch angle when the three-axis vehicle motion simulation platform is docked on a 3 ° longitudinal slope to simulate the pitch movement
  • Figure 8 shows the three-axis vehicle motion simulation platform docked at 2 ° Comparison curve of the actual roll angle of the platform and the commanded roll angle when the roll motion is simulated on a cross-slope road.
  • Figs. 7 and 8 when a three-axis vehicle motion simulation platform based on active suspension is docked on a non-horizontal road to simulate pitching and roll motion, the actual pitch and roll angles and attitude control output by the host computer
  • the commanded pitch angle and commanded roll angle are basically the same except for a small amount of time lag.
  • the vehicle-mounted motion simulation platform based on active suspension can well achieve effective simulation of various motions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Vehicle Body Suspensions (AREA)
  • Theoretical Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)

Abstract

一种基于主动悬挂的车载运动模拟平台及控制方法,车载运动模拟平台包括车体(13)、与车体(13)固连的运动模拟平台(14)、位姿控制用上位机(15)、陀螺仪(1)、多个车轮(2、3、4)、与车轮(2、3、4)一一对应的悬挂伺服作动油缸(5、6、7)和位移传感器(8、9、10)、电控单元(11)及伺服控制器组(12);电控单元(11)基于位姿控制用上位机(15)输入的运动模拟平台(14)的位姿指令和陀螺仪(1)测得的运动模拟平台(14)位姿信息计算位姿控制参数,然后输出位姿控制参数至伺服控制器组(12),伺服控制器组(12)根据位姿控制参数控制各悬挂伺服作动油缸(5、6、7)的伸缩来实现对运动模拟平台(14)位姿的随动控制。

Description

基于主动悬挂的车载运动模拟平台及控制方法 技术领域
本发明涉及运动控制技术领域,尤其是一种基于主动悬挂的车载运动模拟平台及控制方法。
背景技术
运动模拟平台被广泛应用于飞行模拟、车辆道路模拟、航海设备摇摆模拟以及娱乐设施中,它一般由底座、运动平台及连接二者的驱动机构构成。因运动模拟平台上装载的模拟舱一般较重,运动起来惯量较大,有出现倾翻的危险,为此底座一般固定在地面上,固定安装后迁移比较困难。但是一些运动模拟设施、娱乐设施等有时需要不断迁移,例如一些军事训练用运动模拟设施常常需要随驻地移动,一些娱乐用运动模拟设施多需要随集会而不断迁移等,现有的运动模拟平台难以做到这一点。
发明内容
本发明需要解决的技术问题是提供一种基于主动悬挂的车载运动模拟平台及控制方法,本发明将车辆与运动模拟平台融合为一体,运动模拟平台跟随车辆自由移动,不平地面上实现俯仰、滚动与升沉三个自由度的模拟。
为解决上述技术问题,本发明所采用的技术方案是:
一种基于主动悬挂的车载运动模拟平台,包括车体、与车体固定连接的运动模拟平台、位姿控制用上位机、陀螺仪、电控单元、伺服控制器组、多个车轮、与各个车轮一一对应的悬挂伺服作动油缸和位移传感器,其中陀螺仪固定于运动模拟平台上,电控单元以及伺服控制器组固定于车体上,车轮通过悬挂伺服作动油缸连接于车体下方,位移传感器用于测量悬挂伺服作动油缸的行程,所述电控单元分别与陀螺仪以及伺服控制器组通讯连接,伺服控制器组与位移传感器通讯连接,电控单元基于上位机输入的平台位姿指令和陀螺仪测得的平台位姿信息计算位姿控制参数,然后输出位姿控制参数至伺服控制器组,伺服 控制器组根据位姿控制参数控制各悬挂伺服作动油缸的伸缩来实现对平台位姿的随动控制。
基于主动悬挂的车载运动模拟平台的控制方法,包括以下过程:
1)建立与车体固连的坐标系OXYZ。坐标原点O取与车体固连的任意一点,定义经过坐标原点O且垂直于运动模拟平台所在平面向上的方向为Z轴正方向、车辆前进的正前方为Y轴正方向、车辆前进的右侧方向为X轴正方向,定义运动模拟平台沿Z轴方向的升沉位移为w,绕X轴的旋转角即俯仰角为α,绕Y轴的旋转角即侧倾角为β;
2)测量车载运动模拟平台所处的初始坡度,在运动模拟开始之前,控制车辆各悬挂伺服作动油缸伸缩至行程的中位,陀螺仪预先测出运动模拟平台俯仰角α 0和侧倾角β 0并输出至电控单元,供运动模拟时使用;
3)进行运动模拟,在电控单元控制程序内部设置扫描周期,在每个扫描周期内,电控单元接受上位机传来的位姿指令,所述位姿指令包括俯仰角α 1、侧倾角β 1、升沉位移w 1和过程2)得到的α 0、β 0值,以α 10、β 10和w 1作为相对位姿目标值,通过车辆悬挂机构的逆运动学算法计算出各个悬挂伺服作动油缸的伸缩量的目标值,并将该目标值传输至伺服控制器组对各个悬挂伺服作动油缸进行位移伺服控制,使运动模拟平台实现对预定运动的模拟。
本发明模拟方法的进一步改进在于:坐标原点O取在车体的形心处。
由于采用了上述技术方案,本发明取得的技术进步是:
本发明将车辆与运动模拟平台融为一体,以车轮悬挂机构作为运动模拟平台的伺服作动器,并可以依据所处的坡度不同对车体的位姿进行控制。此种运动模拟平台可以随车辆随地移动,且可以停放在不平地面上或一定坡度地面上使用。本发明克服了现有运动模拟平台不便移动的弊端,可满足一些军事训练运动模拟设施需要不断随驻地移动,一些民用娱乐运动模拟设施需要随集会不断迁移等的需求,因而具有广泛的应用前景。
附图说明
图1为基于主动悬挂的车载运动模拟平台及控制系统结构原理图;
图2为基于主动悬挂的四轮移动式运动模拟平台及控制系统结构原理图;
图3是试验所使用三轴车示意图;
图4为三轴车载运动模拟平台模拟俯仰运动时测得的平台实际俯仰角与指令俯仰角对比曲线图;
图5为三轴车载运动模拟平台模拟侧倾运动时测得的平台实际侧倾角与指令侧倾角对比曲线图;
图6为三轴车载运动模拟平台模拟升沉运动时测得的平台实际升沉量与指令升沉量对比曲线图;
图7为三轴车载运动模拟平台在3°纵坡路面上模拟俯仰运动时测得的平台实际俯仰角与指令俯仰角对比曲线图;
图8为三轴车载运动模拟平台在2°横坡路面上模拟侧倾运动时测得的平台实际侧倾角与指令侧倾角对比曲线图。
具体实施方式
下面结合实施例对本发明做进一步详细说明:
本发明提供一种基于主动悬挂的车载运动模拟平台及控制方法,将车辆与运动模拟平台融合为一体,以车轮悬挂机构作为运动模拟平台的伺服作动器,可以模拟俯仰、滚动与升沉三个自由度。
下面以常见的三轮车辆和四轮车辆为例,来说明移动式运动模拟平台的构建方法以及停于有坡度不平路面上工作时的控制方法。三轮以上的其它移动式运动模拟平台构建方法和控制方法可依据相同的原理来实现。
实施例一:基于主动悬挂的三轮车辆移动式运动模拟平台及控制方法
如图1所示,系统包括:车体13、与车体13固连的运动模拟平台14、位姿控制用上位机15、陀螺仪1,车轮2、3、4及与车轮2、3、4一一对应的悬 挂伺服作动油缸5、6、7和对应的位移传感器8、9、10,电控单元11以及伺服控制器组12。其中陀螺仪1固定于运动模拟平台14上,车轮2、3、4分别通过悬挂伺服作动油缸5、6、7连接于车体13下方,位移传感器8、9、10分别用于测量悬挂伺服作动油缸5、6、7的行程,电控单元11以及伺服控制器组12固定于车体13上,电控单元11与陀螺仪1以及伺服控制器组12通讯连接,伺服控制器组12与位移传感器8、9、10通讯连接。
电控单元11基于位姿控制用上位机15输入的运动模拟平台14的位姿指令和陀螺仪1测得的运动模拟平台位姿信息计算其位姿控制参数,然后输出位姿控制参数至伺服控制器组12,伺服控制器组12根据位姿控制参数控制各悬挂伺服作动油缸5、6、7的伸缩来实现对运动模拟平台14位姿的随动控制。
本实施例为三轮车辆,每个车轮及其悬挂伺服作动油缸可形成对车体的一个支点,所以可以根据三点决定一个平面的方式对车体的位姿进行控制。
本实施例的具体控制方法包括以下内容:
1)建立坐标系
所建坐标系OXYZ与车体固连,坐标原点O取在车体13的形心处(也可以是与车体固连的任意一点),定义经过坐标原点O且垂直于运动模拟平台14所在平面向上的方向为Z轴正方向、车辆前进的正前方为Y轴正方向、车辆前进的右侧方向为X轴正方向。定义运动模拟平台沿Z轴方向的升沉位移为w,绕X轴的旋转角即俯仰角为α,绕Y轴的旋转角即侧倾角为β。
2)运动模拟控制过程
第一步,测量车载运动模拟平台所处的初始坡度。因移动式运动模拟平台所停不平路面的坡度在工作中不会发生变化,所以在用陀螺仪测量的俯仰角α 0和侧倾角β 0只需要测量一次即可。在运动模拟开始之前,控制三个车轮悬挂伺服作动油缸的伸缩量均到达半程即到达行程的中位,用陀螺仪测出运动模拟平台的俯仰角α 0和侧倾角β 0并输出至电控单元,供运动模拟时使用;
第二步,进行运动模拟。在电控单元11控制程序内部设置扫描周期,在每个扫描周期内,电控单元11接受位姿控制用上位机15传来的目标位姿指令,位姿指令包括运动模拟平台的俯仰角α 1、侧倾角β 1、升沉位移w 1和前面第一步得到的α 0、β 0值,以α 10、β 10和w 1作为相对位姿目标值,计算出各个悬挂伺服作动油缸5、6、7的伸缩量的目标值l 5、l 6、l 7,并将该目标值传输至伺服控制器组12对各个悬挂伺服作动油缸5、6、7进行位移伺服控制,使运动模拟平台实现对预定运动的模拟。在计算悬挂伺服作动油缸的伸缩量的目标值时,可以通过车辆悬挂机构的逆运动学算法进行计算;在伺服控制器组对各悬挂伺服作动油缸进行位移控制时,根据位移传感器测量的悬挂伺服作动油缸的行程和伸缩量的目标值控制悬挂伺服作动油缸伸缩。
移动式运动模拟平台停在水平地面上工作的情况是使用最多的一种情形,因在水平地面工作的情况是在不平地面工作时的一个特例,所以自然地可以使用上面的控制方法。
实施例二:基于主动悬挂的四轮移动式运动模拟平台及控制方法
如图2所示,系统包括:车体13、与车体13固连的运动模拟平台14、位姿控制用上位机15,陀螺仪1,车轮2、3、4.1、4.2及与车轮2、3、4.1、4.2一一对应的悬挂伺服作动油缸5、6、7.1、7.2和对应的位移传感器8、9、10.1、10.2,电控单元11以及伺服控制器组12。其中陀螺仪1固定于运动模拟平台14上,车轮2、3、4.1、4.2分别通过悬挂伺服作动油缸5、6、7.1、7.2连接于车体13下方,位移传感器8、9、10.1、10.2分别用于测量悬挂伺服作动油缸5、6、7.1、7.2的行程,电控单元11以及伺服控制器组12固定于车体13上,所述电控单元11与陀螺仪1以及伺服控制器组12通讯连接,伺服控制器组12与位移传感器8、9、10.1、10.2通讯连接。
因本实施例为四轮车辆,为了对车辆进行位姿控制,本实施例将车轮4.1和4.2看做一个等价支点,即将车轮4.1和4.2对应的悬挂伺服作动油缸7.1、 7.2的上腔和下腔各自连通,即悬挂伺服作动油缸7.1、7.2的上腔通过上腔连接管路16.1连接,下腔通过下腔连接管路16.2连接,这样使车轮4.1和4.2及其悬挂对车体的支撑作用等价于一个支点,而另外两个车轮2与3及其悬挂伺服作动油缸对车体13又各形成一个支点,车体13共有三个支点。对于一般车辆来说,两后轮及其悬挂伺服作动油缸通常采用完全相同的结构,所以前述等价支点可认为位于车轮4.1和4.2所对应的悬挂伺服作动油缸7.1、7.2的上铰点的中点。控制该等价支点的高度可以通过控制悬挂伺服作动油缸7.1、7.2伸缩量的平均值(图2中以l 7表示)来实现。接下来本实施例的控制方法就与实施例一完全相同,这里不再赘述。
当车轮数量大于4时,某车轮组内的车轮数量可以是一个或更多个。一个车轮组构成支撑车体的一个支点,三个车轮组形成三个支点,这三个支点可以决定一个平面,基于三点决定一个平面的原理对车体的位姿进行控制。各车轮组支撑车体的支点为组内各个悬挂伺服作动油缸对车体的支撑点的几何中心点,对该支点高度的控制通过控制车轮组内各个悬挂伺服作动油缸的平均伸缩量来实现。本发明给出了三轮以上车载运动模拟平台的控制方法,可以将超过三轮的车载运动模拟平台转化为三个车轮组,扩大了控制方法在车载运动模拟平台控制领域的适用范围。同时选择位置接近的车轮组成车轮组,便于组内车轮悬挂伺服作动油缸的上下腔的连通。
为了更好地体现本发明的基于主动悬挂的车载运动模拟平台可实现对预定运动的模拟,对本发明的基于主动悬挂的三轴六轮车载运动模拟平台进行正弦俯仰运动模拟、正弦侧倾运动模拟和正弦升沉运动模拟。
基于主动悬挂的三轴车载运动模拟平台如图3所示。整车长10m,轴距(2.95+1.65)m,总重量36t,轴荷12t,悬挂行程±0.11m。试验过程中将本发明的三轴六轮车辆的两个前车轮对应的悬挂伺服作动油缸的上腔和下腔分别通过连接管路连通,这样使两个前车轮及其悬挂对车体的支撑作用等价于一个支 点;车辆后面的两根轴右侧的两个车轮对应的悬挂伺服作动油缸的上腔和下腔分别通过连接管路连通,使后右侧的两个车轮对车体的支撑作用形成一个支点;车辆后面的两根轴左侧的两个车轮对应的悬挂伺服作动油缸的上腔和下腔分别通过连接管路连通,使后左侧的两个车轮对车体的支撑作用形成一个支点;这样车体共有三个支点。车辆后面的四个轮及其悬挂伺服作动油缸采用完全相同的结构。
图4所示为三轴车载运动模拟平台停靠在水平路面模拟俯仰运动时的平台实际俯仰角与指令俯仰角的对比曲线。图5所示为三轴车载运动模拟平台停靠在水平路面模拟侧倾运动时的平台实际侧倾角与指令侧倾角的对比曲线。图6所示为三轴车载运动模拟平台模拟升沉运动时的平台实际升沉量与指令升沉量的对比曲线。从图4、图5和图6可以看出,基于主动悬挂的三轴车载运动模拟平台停靠在水平路面模拟俯仰运动、侧倾运动和升沉运动时,其实际俯仰角、侧倾角和升沉量与位姿控制用上位机输出的指令俯仰角、指令侧倾角和指令升沉量相比,除有少量时间滞后外基本一致。
图7所示为三轴车载运动模拟平台停靠在3°纵坡路面上模拟俯仰运动时的平台实际俯仰角与指令俯仰角的对比曲线;图8所示为三轴车载运动模拟平台停靠在2°横坡路面上模拟侧倾运动时的平台实际侧倾角与指令侧倾角的对比曲线图。
从图7和图8可以看出,基于主动悬挂的三轴车载运动模拟平台停靠在非水平路面模拟俯仰运动和侧倾运动时,其实际俯仰角和侧倾角与位姿控制用上位机输出的指令俯仰角和指令侧倾角相比除有少量时间滞后外基本一致。
无论停靠在水平路面还是非水平路面,基于主动悬挂的车载运动模拟平台均能较好地实现各种运动的有效模拟。
最后应说明的是:以上所述的各实施例仅用于说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通 技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分或全部技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (3)

  1. 一种基于主动悬挂的车载运动模拟平台,其特征在于:包括车体、与车体固定连接的运动模拟平台、位姿控制用上位机、陀螺仪、电控单元、伺服控制器组、多个车轮、与各个车轮一一对应的悬挂伺服作动油缸和位移传感器,其中陀螺仪固定于运动模拟平台上,电控单元以及伺服控制器组固定于车体上,车轮通过悬挂伺服作动油缸连接于车体下方,位移传感器用于测量悬挂伺服作动油缸的行程,所述电控单元分别与陀螺仪以及伺服控制器组通讯连接,伺服控制器组与位移传感器通讯连接,电控单元基于上位机输入的平台位姿指令和陀螺仪测得的平台位姿信息计算位姿控制参数,然后输出位姿控制参数至伺服控制器组,伺服控制器组根据位姿控制参数控制各悬挂伺服作动油缸的伸缩来实现对平台位姿的随动控制。
  2. 根据权利要求1所述的基于主动悬挂的车载运动模拟平台的控制方法,其特征在于包括以下过程:
    1)建立与车体固连的坐标系OXYZ,坐标原点O取与车体固连的任意一点,定义经过坐标原点O且垂直于运动模拟平台所在平面向上的方向为Z轴正方向、车辆前进的正前方为Y轴正方向、车辆前进的右侧方向为X轴正方向,定义运动模拟平台沿Z轴方向的升沉位移为w,绕X轴的旋转角即俯仰角为α,绕Y轴的旋转角即侧倾角为β;
    2)测量车载运动模拟平台所处的初始坡度,在运动模拟开始之前,控制车辆各悬挂伺服作动油缸伸缩至行程的中位,陀螺仪预先测出运动模拟平台俯仰角α 0和侧倾角β 0并输出至电控单元,供运动模拟时使用;
    3)进行运动模拟,在电控单元控制程序内部设置扫描周期,在每个扫描周期内,电控单元接受上位机传来的位姿指令,所述位姿指令包括俯仰角α 1、侧倾角β 1、升沉位移w 1和过程2)得到的α 0、β 0值,以α 10、β 10和w 1作为相对位姿目标值,通过车辆悬挂机构的逆运动学算法计算出各个悬挂伺服作动油缸的伸缩量的目标值,并将该目标值传输至伺服控制器组对各个悬挂伺服作动 油缸进行位移伺服控制,使运动模拟平台实现对预定运动的模拟。
  3. 根据权利要求2所述的基于主动悬挂的车载运动模拟平台的控制方法,其特征在于:坐标原点O取在车体的形心处。
PCT/CN2019/098904 2018-09-10 2019-08-01 基于主动悬挂的车载运动模拟平台及控制方法 WO2020052365A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
SG11202102301PA SG11202102301PA (en) 2018-09-10 2019-08-01 Vehicle-mounted motion simulation platform based on active suspension, and control method therefor
KR1020207024918A KR102366200B1 (ko) 2018-09-10 2019-08-01 액티브 서스펜션을 기반으로 한 차량 탑재 모션 시뮬레이션 플랫폼 및 제어 방법
US16/971,328 US11280703B2 (en) 2018-09-10 2019-08-01 Vehicle-mounted motion simulation platform based on active suspension, and control method thereof
NZ773654A NZ773654A (en) 2018-09-10 2019-08-01 Vehicle-mounted motion simulation platform based on active suspension, and control method therefor
JP2020545152A JP6845601B2 (ja) 2018-09-10 2019-08-01 アクティブサスペンションに基づく車載運動シミュレーションステージ及びその制御方法
CA3112372A CA3112372C (en) 2018-09-10 2019-08-01 Vehicle-mounted motion simulation platform based on active suspension, and control method thereof
AU2019339956A AU2019339956B2 (en) 2018-09-10 2019-08-01 Vehicle-mounted motion simulation platform based on active suspension, and control method therefor
EP19858833.7A EP3851302B1 (en) 2018-09-10 2019-08-01 Vehicle-mounted motion simulation platform based on active suspension, and control method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811051382.5A CN109109601A (zh) 2018-09-10 2018-09-10 基于车辆位姿偏差的惯性调控主动悬挂控制系统及控制方法
CN201811051382.5 2018-09-10
CN201910708295.0 2019-08-01
CN201910708295.0A CN110370877B (zh) 2018-09-10 2019-08-01 基于主动悬挂的车载运动模拟平台及控制方法

Publications (1)

Publication Number Publication Date
WO2020052365A1 true WO2020052365A1 (zh) 2020-03-19

Family

ID=64859026

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2019/098906 WO2020052366A1 (zh) 2018-09-10 2019-08-01 基于主动悬挂的车载稳定平台系统及其控制方法
PCT/CN2019/098904 WO2020052365A1 (zh) 2018-09-10 2019-08-01 基于主动悬挂的车载运动模拟平台及控制方法
PCT/CN2019/098908 WO2020052367A1 (zh) 2018-09-10 2019-08-01 基于车辆位姿偏差的惯性调控主动悬挂系统及控制方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098906 WO2020052366A1 (zh) 2018-09-10 2019-08-01 基于主动悬挂的车载稳定平台系统及其控制方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098908 WO2020052367A1 (zh) 2018-09-10 2019-08-01 基于车辆位姿偏差的惯性调控主动悬挂系统及控制方法

Country Status (10)

Country Link
US (3) US11326985B2 (zh)
EP (3) EP3851303A4 (zh)
JP (3) JP6845601B2 (zh)
KR (3) KR102331677B1 (zh)
CN (4) CN109109601A (zh)
AU (3) AU2019339956B2 (zh)
CA (3) CA3112415C (zh)
NZ (3) NZ773654A (zh)
SG (3) SG11202102302YA (zh)
WO (3) WO2020052366A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022194661A1 (de) * 2021-03-15 2022-09-22 Deckel Maho Pfronten Gmbh Transportfahrzeug für schwerlasttransporte und transportvorrichtung zum transport und zur handhabung schwerer lasten

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109109601A (zh) * 2018-09-10 2019-01-01 燕山大学 基于车辆位姿偏差的惯性调控主动悬挂控制系统及控制方法
US11305602B2 (en) * 2019-11-04 2022-04-19 GM Global Technology Operations LLC Vehicle detection and isolation system for detecting spring and stabilizing bar associated degradation and failures
CN111123706B (zh) * 2019-12-26 2022-05-27 湖南工业大学 高速列车半主动悬挂系统控制方法
CN111506098A (zh) * 2020-05-08 2020-08-07 新石器慧通(北京)科技有限公司 一种自动驾驶车辆和车厢位姿调控方法
CN112255915A (zh) * 2020-09-30 2021-01-22 南京航空航天大学 一种汽车底盘解耦滑模控制器的构建及参数整定方法
CN112477853B (zh) * 2020-11-11 2022-06-28 南京航空航天大学 一种装备非充气车轮的车辆纵-垂集成控制系统及方法
CN113370734B (zh) * 2021-06-26 2022-02-11 燕山大学 基于车前地形的主动悬挂惯性调控方法和控制系统
CN113370735B (zh) * 2021-06-26 2022-02-11 燕山大学 基于车轮支持力的车辆主动悬挂惯性调控方法及控制系统
CN113963597A (zh) * 2021-10-18 2022-01-21 郑州爱普锐科技有限公司 一种新型机车模拟驾驶装置
CN114019965A (zh) * 2021-10-28 2022-02-08 山东亚历山大智能科技有限公司 一种室内机器人用自稳定平衡全向移动机构及方法
CN114312198B (zh) * 2022-01-30 2024-06-14 中国第一汽车股份有限公司 车身高度控制方法、系统、车辆及存储介质
US11993122B1 (en) * 2022-02-14 2024-05-28 Zoox, Inc Updating vehicle models for improved suspension control
US11938776B1 (en) 2022-02-14 2024-03-26 Zoox, Inc. Multiple model active suspension control
CN114307015B (zh) * 2022-02-22 2022-06-07 徐工消防安全装备有限公司 消防车及其控制方法
CN114619828B (zh) * 2022-03-11 2024-01-12 上海新纪元机器人有限公司 一种自适应减振驱控装置
WO2024085849A1 (en) * 2022-12-28 2024-04-25 Oyak Renault Otomobi̇l Fabri̇kalari Anoni̇m Şi̇rketi̇ Suspension system control method for vehicles
KR102606246B1 (ko) * 2023-06-02 2023-11-29 (주)제이.케이.에스 대형 중량물 운반시 자동 수평 이송장치 및 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014008454A (ja) * 2012-06-29 2014-01-20 Ishigaki Co Ltd フィルタープレスにおける開閉ろ板の姿勢制御装置並びに姿勢制御方法
CN107576517A (zh) * 2017-08-31 2018-01-12 燕山大学 一种车辆主动悬架性能测试平台
CN108382473A (zh) * 2018-02-13 2018-08-10 中国农业大学 一种非道路作业底盘主动平衡装置及其使用方法
CN108501650A (zh) * 2017-02-28 2018-09-07 通用汽车环球科技运作有限责任公司 用于机动车辆的动态可调车身座架
CN109109601A (zh) * 2018-09-10 2019-01-01 燕山大学 基于车辆位姿偏差的惯性调控主动悬挂控制系统及控制方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5097419A (en) * 1990-06-08 1992-03-17 Monroe Auto Equipment Company Method and apparatus for dynamic leveling
JP3069408B2 (ja) * 1991-08-09 2000-07-24 株式会社ブリヂストン 高さセンサ及び空気ばね
JPH07195923A (ja) * 1993-12-29 1995-08-01 Toyota Motor Corp バネ下状態検出装置
US5510986A (en) * 1994-03-14 1996-04-23 Trw Inc. Method and apparatus for controlling an active suspension system
US5684698A (en) * 1994-04-15 1997-11-04 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Vehicle attitude and average height control apparatus
GB2309014A (en) * 1996-01-13 1997-07-16 New Holland Nv Utility vehicle suspension having controllably fixed or oscillating axles
DE10112082B4 (de) * 2001-03-12 2009-05-07 Carl Freudenberg Kg Hydropneumatische niveaugeregelte Achsfederung an Fahrzeugen insbesondere für vollgefederte Fahrzeuge
US6834736B2 (en) * 2002-12-17 2004-12-28 Husco International, Inc. Active vehicle suspension with a hydraulic spring
JP2004352056A (ja) * 2003-05-28 2004-12-16 Denso Corp サスペンション制御装置
US20050206099A1 (en) 2004-03-17 2005-09-22 Visteon Global Technologies, Inc. Frequency domain ride control for low bandwidth active suspension systems
EP1776687B1 (de) * 2004-08-12 2017-12-27 Stephan Rudolph Fahrsimulator zum einsatz in fahrbereiten und nicht fahrbereiten kraftfahrzeugen
JP4471103B2 (ja) * 2004-10-07 2010-06-02 トヨタ自動車株式会社 車両の制駆動力制御装置
KR100993168B1 (ko) * 2004-11-22 2010-11-10 주식회사 만도 차량의 가변 댐퍼 제어방법
DE102006001436B4 (de) * 2006-01-10 2009-08-13 Zf Friedrichshafen Ag Verfahren zum Bestimmen wenigstens eines Bewegungszustands eines Fahrzeugaufbaus
JP2007314004A (ja) * 2006-05-25 2007-12-06 Hino Motors Ltd 作業車両の姿勢制御装置
KR20080107171A (ko) * 2007-06-05 2008-12-10 현대자동차주식회사 차량의 자세 조정장치
JP5224048B2 (ja) * 2008-09-30 2013-07-03 日立オートモティブシステムズ株式会社 サスペンション制御装置
US8108103B2 (en) 2008-10-01 2012-01-31 GM Global Technology Operations LLC Nonlinear frequency dependent filtering for vehicle ride/stability control
CN101767617A (zh) * 2008-12-30 2010-07-07 上海市七宝中学 车辆的平衡保持机构
US8700260B2 (en) * 2009-03-30 2014-04-15 Lord Corporation Land vehicles and systems with controllable suspension systems
CN101966804B (zh) * 2010-10-27 2012-11-07 江苏大学 基于自治体技术的车辆悬架控制装置及方法
CN102390231B (zh) * 2011-08-23 2013-08-21 中国北方车辆研究所 一种车姿调节系统轮胎载荷控制方法
CN102495641A (zh) * 2011-12-15 2012-06-13 朱留存 一种六自由度摇摆台高精度姿态控制系统
CN103182916B (zh) * 2011-12-28 2016-11-02 长春孔辉汽车科技股份有限公司 多轴车辆油气悬架调平装置及方法
JP5533903B2 (ja) * 2012-01-27 2014-06-25 トヨタ自動車株式会社 車両制御装置
CN104057797B (zh) * 2013-03-22 2016-03-30 刘胜 智能液压悬架单元及其控制方法
CN104442268B (zh) * 2014-11-26 2017-01-11 北京特种机械研究所 一种液压驱动的独立平衡悬架装置
DE102015002603B4 (de) * 2015-02-28 2017-08-17 Audi Ag Verfahren zum Kompensieren einer Neigung
KR102096334B1 (ko) * 2015-06-03 2020-04-02 클리어모션, 아이엔씨. 차체 모션 및 승객 경험을 제어하기 위한 방법 및 시스템
CN205009910U (zh) * 2015-08-31 2016-02-03 方磅礴 主动抗侧倾、前倾液压系统
DE102015011517B3 (de) * 2015-09-03 2016-09-08 Audi Ag Verfahren zum Bestimmen einer aktuellen Niveaulage eines Fahrzeugs
JP6623782B2 (ja) 2016-01-20 2019-12-25 いすゞ自動車株式会社 車両の重心位置推定装置および重心位置推定方法
CN205930107U (zh) * 2016-07-29 2017-02-08 中冶宝钢技术服务有限公司 运输车调平控制系统
CN107168397B (zh) 2017-04-22 2019-11-19 三明学院 汽车四轮系独立并行振动控制方法
CN107791773B (zh) * 2017-09-04 2020-04-07 昆明理工大学 一种基于规定性能函数的整车主动悬架系统振动控制方法
CN108501944A (zh) * 2018-05-14 2018-09-07 吕杉 汽车爆胎安全稳定控制方法
CN109108601B (zh) 2018-09-17 2024-01-05 北京好运达智创科技有限公司 轨枕吹气、滴油、盖盖自动设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014008454A (ja) * 2012-06-29 2014-01-20 Ishigaki Co Ltd フィルタープレスにおける開閉ろ板の姿勢制御装置並びに姿勢制御方法
CN108501650A (zh) * 2017-02-28 2018-09-07 通用汽车环球科技运作有限责任公司 用于机动车辆的动态可调车身座架
CN107576517A (zh) * 2017-08-31 2018-01-12 燕山大学 一种车辆主动悬架性能测试平台
CN108382473A (zh) * 2018-02-13 2018-08-10 中国农业大学 一种非道路作业底盘主动平衡装置及其使用方法
CN109109601A (zh) * 2018-09-10 2019-01-01 燕山大学 基于车辆位姿偏差的惯性调控主动悬挂控制系统及控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022194661A1 (de) * 2021-03-15 2022-09-22 Deckel Maho Pfronten Gmbh Transportfahrzeug für schwerlasttransporte und transportvorrichtung zum transport und zur handhabung schwerer lasten

Also Published As

Publication number Publication date
CA3112407A1 (en) 2020-03-19
AU2019339956A1 (en) 2021-04-08
SG11202102301PA (en) 2021-04-29
NZ773654A (en) 2022-05-27
CA3112372A1 (en) 2020-03-19
US20200398629A1 (en) 2020-12-24
AU2019340500A1 (en) 2021-04-08
JP2021508644A (ja) 2021-03-11
JP7031905B2 (ja) 2022-03-08
EP3851303A1 (en) 2021-07-21
CN109109601A (zh) 2019-01-01
SG11202102304QA (en) 2021-04-29
KR20200116997A (ko) 2020-10-13
EP3851302A4 (en) 2022-03-23
SG11202102302YA (en) 2021-04-29
KR102391326B1 (ko) 2022-04-26
EP3851302B1 (en) 2023-12-13
KR102366200B1 (ko) 2022-02-23
US11280703B2 (en) 2022-03-22
KR20200124696A (ko) 2020-11-03
CA3112415C (en) 2022-07-12
US11906392B2 (en) 2024-02-20
CN110370877A (zh) 2019-10-25
AU2019340500B2 (en) 2022-02-24
KR102331677B1 (ko) 2021-12-01
JP6845601B2 (ja) 2021-03-17
JP6957769B2 (ja) 2021-11-02
CN110281726B (zh) 2020-08-04
CN110281727A (zh) 2019-09-27
AU2019339956B2 (en) 2022-02-24
CN110281726A (zh) 2019-09-27
CA3112372C (en) 2022-07-12
EP3851302A1 (en) 2021-07-21
KR20200115612A (ko) 2020-10-07
NZ773674A (en) 2022-05-27
WO2020052366A1 (zh) 2020-03-19
JP2021509098A (ja) 2021-03-18
CN110281727B (zh) 2020-08-21
AU2019338507B2 (en) 2022-02-24
US11326985B2 (en) 2022-05-10
EP3851302C0 (en) 2023-12-13
US20210008941A1 (en) 2021-01-14
NZ773751A (en) 2022-07-01
AU2019338507A1 (en) 2021-04-08
EP3851304A1 (en) 2021-07-21
CN110370877B (zh) 2020-08-04
WO2020052367A1 (zh) 2020-03-19
JP2021522096A (ja) 2021-08-30
US20200393330A1 (en) 2020-12-17
EP3851303A4 (en) 2021-11-03
CA3112415A1 (en) 2020-03-19
CA3112407C (en) 2023-01-03
EP3851304A4 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
WO2020052365A1 (zh) 基于主动悬挂的车载运动模拟平台及控制方法
JP7456696B2 (ja) 車前地形に基づくアクティブサスペンション慣性制御方法及び制御システム
CN113370735B (zh) 基于车轮支持力的车辆主动悬挂惯性调控方法及控制系统
CN116749697A (zh) 非道路多轴车辆的车高车姿与车轮支反力耦合控制方法
CN116882096A (zh) 一种轮腿式多模态无人平台减振控制方法、系统及设备
CN116766853A (zh) 主动悬架车辆及其控制方法
Ayalew et al. Minimum Jerk Traction Control of a Wheeled Mobile Robot Moving Over a Hump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19858833

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020545152

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207024918

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2101001322

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 3112372

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019339956

Country of ref document: AU

Date of ref document: 20190801

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019858833

Country of ref document: EP

Effective date: 20210412