WO2020052239A1 - 电磁屏蔽膜的制备方法 - Google Patents

电磁屏蔽膜的制备方法 Download PDF

Info

Publication number
WO2020052239A1
WO2020052239A1 PCT/CN2019/083183 CN2019083183W WO2020052239A1 WO 2020052239 A1 WO2020052239 A1 WO 2020052239A1 CN 2019083183 W CN2019083183 W CN 2019083183W WO 2020052239 A1 WO2020052239 A1 WO 2020052239A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
micro
conductive
preparing
Prior art date
Application number
PCT/CN2019/083183
Other languages
English (en)
French (fr)
Inventor
宋龙峰
李克贵
陈耀
Original Assignee
深圳科诺桥科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳科诺桥科技股份有限公司 filed Critical 深圳科诺桥科技股份有限公司
Publication of WO2020052239A1 publication Critical patent/WO2020052239A1/zh
Priority to US17/197,104 priority Critical patent/US20210219434A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/281Applying non-metallic protective coatings by means of a preformed insulating foil
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0086Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single discontinuous metallic layer on an electrically insulating supporting structure, e.g. metal grid, perforated metal foil, film, aggregated flakes, sintering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0094Shielding materials being light-transmitting, e.g. transparent, translucent
    • H05K9/0096Shielding materials being light-transmitting, e.g. transparent, translucent for television displays, e.g. plasma display panel
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0195Dielectric or adhesive layers comprising a plurality of layers, e.g. in a multilayer structure

Definitions

  • the invention belongs to the technical field of electromagnetic shielding films, in particular to a method for preparing an electromagnetic shielding film.
  • a shielding film layer is provided on the surface of the FPC.
  • the shielding film includes: a separation film; a coating film provided on one surface of the separation film; and each functional layer is formed by printing.
  • the shielding film can be used to protect the circuit of the circuit board, and shield the interference electromagnetic signals at the same time.
  • the shielding effect of such shielding films in high-frequency circuit boards is not optimistic.
  • the purpose of the present invention is to provide a method for preparing an electromagnetic shielding film, which aims to solve the problems of poor shielding efficiency and poor conductivity of the existing electromagnetic shielding film on a high-frequency circuit board.
  • An aspect of the present invention provides a method for preparing an electromagnetic shielding film, including the following steps:
  • the metal shielding layer treated with the alkali solution is placed in a micro-etching solution, and the surface is micro-etched to obtain a micro-etching layer;
  • a conductive adhesive layer and a protective film layer are sequentially prepared on the surface of the foamed metal layer to obtain an electromagnetic shielding film.
  • an electromagnetic shielding film According to the method for preparing an electromagnetic shielding film provided by the present invention, after conducting an insulation treatment on an insulating layer, it is placed in an alkaline electrolyte, and the surface of the conductive layer is sedimented multiple times by an alkaline solution sedimentation method to obtain a metal shielding layer; Further, the metal shielding layer is placed in an acidic electrolytic solution, and the surface of the metal shielding layer is treated by an acid solution sedimentation method to obtain a foamed metal layer.
  • the electromagnetic shielding film thus obtained has a three-dimensional porous rough surface structure.
  • a conductive adhesive layer is further deposited on the basis of the foamed metal layer.
  • the material of the conductive adhesive layer can penetrate into the pits of the foamed metal layer to form a double-layer bite structure to avoid the occurrence of the foamed metal layer and the conductive adhesive layer.
  • Non-conductive gap effectively prevents electromagnetic leakage, thereby improving electromagnetic shielding performance.
  • a porous structure is prepared in the middle of the metal shielding layer, which can effectively reduce the phenomenon of bubbles in the use of the electromagnetic shielding film and improve the reliability of the use of the shielding film.
  • acid solution sedimentation after alkali solution sedimentation at least three times can increase the thickness of the deposited metal layer, further enhance the conductivity, and improve the electromagnetic shielding effect.
  • the shielding effectiveness of the obtained electromagnetic shielding film can be as high as 70dB.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present invention, the meaning of "plurality” is two or more, unless specifically defined otherwise.
  • An embodiment of the present invention provides a method for preparing an electromagnetic shielding film, including the following steps:
  • the metal shielding layer is placed in a micro-etching solution, and the surface is micro-etched to obtain a micro-etched layer;
  • a conductive adhesive layer and a protective film layer are sequentially prepared on the surface of the foamed metal layer to obtain an electromagnetic shielding film.
  • an electromagnetic shielding film In the method for preparing an electromagnetic shielding film provided by the embodiment of the present invention, after conducting an insulation treatment on an insulating layer, it is placed in an alkaline electrolyte, and the surface of the conductive layer is sedimented multiple times by using an alkaline solution sedimentation method to obtain a metal shield.
  • the metal shield layer is placed in a micro-etching solution, and the surface is micro-etched to obtain a micro-etched layer; the metal shield layer is further placed in an acidic electrolyte solution, and the surface of the metal shield layer is treated by an acid solution sedimentation method To obtain a foamed metal layer.
  • the electromagnetic shielding film thus obtained has a three-dimensional porous rough surface structure.
  • a conductive adhesive layer is further deposited on the basis of the foamed metal layer.
  • the material of the conductive adhesive layer can penetrate into the pits of the foamed metal layer to form a double-layer bite structure to avoid the occurrence of the foamed metal layer and the conductive adhesive layer.
  • Non-conductive gap effectively prevents electromagnetic leakage, thereby improving electromagnetic shielding performance.
  • a porous structure is prepared in the middle of the metal shielding layer, which can effectively reduce the phenomenon of bubbles in the use of the electromagnetic shielding film and improve the reliability of the use of the shielding film.
  • acid solution sedimentation after alkali solution sedimentation at least three times can increase the thickness of the deposited metal layer, further enhance the conductivity, and improve the electromagnetic shielding effect.
  • the shielding effectiveness of the obtained electromagnetic shielding film can be as high as 70dB.
  • the carrier film layer may be a conventional carrier film layer in the art.
  • the carrier film layer is formed by applying a silicone oil release agent or a silicone-free release agent on the surface of the base film, and further forming the carrier film by UV curing.
  • the base film may be selected from one of a polyimide film, a polyphenylene sulfide (PPS) film, and a polyester film.
  • the thickness of the base film is 15 ⁇ m to 200 ⁇ m; the silicone oil release agent or The thickness of the silicon-free release agent is 0.1 ⁇ m to 30 ⁇ m.
  • the curing method is as follows: after the base film coated with the silicone oil release agent or the silicone-free release agent is UV-cured, and then baked and cured at 50-180 ° C. to form a carrier film layer containing a release layer.
  • depositing an insulating layer on the carrier film layer is preferably achieved by a solution processing method, that is, the insulating layer is made by a solution processing method.
  • the solution processing method is preferably, but not limited to, a coating method.
  • the material of the insulating layer is selected from a modified epoxy resin glue or a high temperature resistant ink.
  • the carrier film layer is coated with a modified epoxy resin adhesive or a high-temperature-resistant ink having a thickness of 1 ⁇ m to 50 ⁇ m, and baked and cured at a temperature of 50 ° C. to 180 ° C. to obtain an insulating layer.
  • the insulating layer is subjected to a conductive treatment in a vacuum plating manner to prepare for obtaining a metal plating layer on the insulating layer.
  • the conductive layer obtained is at least one of silver, copper, gold, aluminum, tungsten, zinc, nickel, iron, platinum, and titanium, or is formed of at least two of the above-listed metal elements. Alloy.
  • the process parameters for conducting the insulation treatment on the insulating layer by means of vacuum plating are:
  • Working vacuum plating pressure 0.1 ⁇ 100Pa, speed: 0.5 ⁇ 50m / min; resistance value: ⁇ 200 ⁇ , working voltage: 500 ⁇ 1000V, working current: 50 ⁇ 500A, argon volume: 10 ⁇ 500SCCM.
  • the conductive substrate is placed in an alkaline electrolyte, and the surface of the conductive substrate is subjected to electrolytic copper plating at least three times by using an alkaline copper precipitation method to obtain a metal shielding layer.
  • electrolytic copper plating a relatively suitable thickness can be achieved, which can complete the requirements of shielding effectiveness greater than 60dB and surface resistance less than 50m ⁇ . If the copper is deposited once or copper plating is performed only twice, the surface of the shielding film semi-finished product cannot be completely covered, and a relatively good metal layer cannot be obtained.
  • the process parameters for obtaining the metal shielding layer by lye precipitation are:
  • the insulating layer substrate subjected to the vacuum plating pretreatment is placed in an alkaline electrolyte having a metal ion concentration of 1-30 g / L and a pH of 7-13, and an alkali liquid sedimentation treatment is performed under the condition of a current of 1-50A.
  • a current of 1-50A a better deposited film layer can be obtained.
  • the current is too high, it will cause film burning phenomenon.
  • the current is too low, it will affect the deposition of metal on the film surface.
  • Appropriate metal ion concentration is beneficial to obtain a uniform and dense film layer. If the concentration of metal ions is too low, metal deposition will be affected. If the concentration of metal ions is too high, the thickness of the metal layer cannot be controlled, resulting in uneven thickness.
  • the metal ions in the solution have the strongest activity, which is beneficial to the deposition of the film layer.
  • the metal shielding layer obtained by the alkali liquid sedimentation treatment is usually very bright, which is not conducive to the combination of the conductive adhesive layer, and limits the thickness of the conductive adhesive layer, which further limits the conductive performance and shielding of the electromagnetic shielding film. performance.
  • the substrate of the metal shielding layer which has been subjected to the alkali solution sedimentation treatment is placed in a micro-etching solution to perform surface micro-etching.
  • the surface of the metal plating layer is micro-etched by using an acidic, first-grade electrolyte with a micro-etching agent to make the surface appear porous, which is conducive to the subsequent preparation of a conductive adhesive layer on the surface of the obtained foamed metal layer. Inter-air bubbles are eliminated, thereby improving the adhesion between layers.
  • the micro-etching solution includes an inorganic acid and a micro-etching agent, and the micro-etching agent is used as a main micro-etching functional component, and the inorganic
  • the acid acts as a catalyst, so that the micro-etching agent exerts better performance and effectively controls the degree of micro-etching.
  • the inorganic acid includes, but is not limited to, nitric acid, hydrochloric acid, and sulfuric acid.
  • the mass concentration of the inorganic acid is 150-300 g / L, and the mass concentration of the micro-etching agent is 100-200 g / L. If the mass concentration of the micro-etching agent is too low, the difficulty of micro-etching will increase, and even micro-etching cannot be achieved; if the mass concentration of the micro-etching agent is too high, it will easily cause excessive corrosion, cause large voids or form unevenness. Surface, the plating layer cannot be used as the metal layer of the battery shielding film. If the concentration of the organic acid is too high, it will affect the chemical balance during the reaction of the micro-etching agent, affect the effect, and even cause other chemical reactions other than the micro-etching effect. Only under the conditions that the above-mentioned suitable concentration of the inorganic acid and the micro-etching agent are fine, the surface of the surface metal plating layer can be micro-etched to form a uniform porous structure.
  • the micro-etching treatment conditions using the first-stage electrolytic solution are: current intensity 10-50A, temperature 15-35 ° C, and the surface roughness Ra of the micro-etched layer obtained is 5-20.
  • the micro-etched metal shielding layer will have a porous structure with a pore size of less than 0.1 mm.
  • step S05 after the micro-etching treatment, the metal shielding layer is placed in an acidic electrolyte solution, and a foamed metal layer is prepared on the surface of the metal shielding layer by an acid solution sedimentation method.
  • the foamed metal layer is directly made with the metal shielding layer.
  • the surface is rough and loose and porous.
  • the metal shielding layer is first placed in an acidic electrolytic solution, and the acid solution is subjected to at least one sedimentation treatment, and the metal shielding layer with a bright surface is pretreated by controlling an appropriate ion concentration and current magnitude.
  • the concentration of metal ions in the acidic electrolyte is 10-150 g / L
  • the concentration of hydrogen ions is 100-500 g / L
  • the current is 10-200 A.
  • a relatively rough foamed metal layer is obtained by using a strongly acidic and large current electrolytic condition.
  • the substrate subjected to the acid solution sedimentation treatment is placed in an acidic electrolyte solution for re-precipitation treatment, so that the surface of the obtained metal layer is partially doped with zinc and nickel ions, thereby reducing its surface activity and preventing surface oxidation from affecting performance.
  • the precipitation treatment performed this time is only the surface ion doping of the foamed metal layer, rather than forming a zinc-nickel alloy layer to avoid the uniformity of the foamed metal layer being affected. Effect, resulting in decreased product conductivity.
  • the acid electrolyte has a zinc ion concentration of 1-30 g / L, a nickel ion concentration of 0.1-50 g / L, and a pH of 0-6.
  • the sedimentation treatment is performed under the condition of a current of 1-50A. Because the foamed metal layer is loose and porous, it is easily oxidized during the production of semi-finished products, which causes the surface resistance to increase, the binding force to decline, the subsequent production of the conductive adhesive layer, and the conductivity of the finished product to decrease. By treating the foamed metal layer in this way, the surface activity can be reduced so that it does not undergo an oxidation reaction with air.
  • the electromagnetic shielding film is combined with a foamed metal layer on one surface of the metal shielding layer, and the metal shielding layer and the foamed metal layer are adhered to each other to achieve tight bonding.
  • the distribution of the metal shielding layer is very dense, and a very excellent shielding effect and conductive effect can be achieved.
  • a metal foam layer with a loose surface is formed, and the metal foam layer is tightly combined with the metal shielding layer, so that the conductive adhesive layer provided on the surface of the metal foam layer can penetrate into it, thereby enhancing the bonding property.
  • the metal shielding layer is tightly combined with the metal foam layer, which can further enhance the shielding and conductivity of the metal layer.
  • the conductive adhesive layer of the shielding film provided by the present invention contains metal conductive particles, which can effectively achieve good conductive performance and meet the development needs of high-speed and high-frequency electronic products.
  • the conductive adhesive layer is prepared on the surface of the foamed metal layer, preferably by a solution processing method.
  • the solution processing method includes, but is not limited to, doctor blade coating, doctor blade coating, and reversing stick. formula.
  • the conductive adhesive layer is made of a mixed conductive material formed by compounding a modified epoxy resin and metal conductive particles, and the modified epoxy resin is a thermosetting epoxy resin. Resin. The epoxy resin itself cannot conduct electricity.
  • the metal conductive particles are mixed in the resin and used as a conductive substrate to build a conductive network to complete the connection between the ground point and the metal layer to avoid the blocking caused by the adhesive layer. The conductivity is reduced, thereby improving the conductivity.
  • the weight percentage content of the metal conductive particles is 0.1% -50%. If the weight percentage of the metal conductive particles is too high, the conductive material cannot be used to perform a good electrical conductivity because the conductive materials are too dense, occupying each other's space, and even filling the contacts.
  • the metal conductive particles can be selected from at least one of silver, copper, gold, aluminum, tungsten, zinc, nickel, iron, platinum, and titanium.
  • the metal conductive particles are selected from at least one of silver, copper, gold, aluminum, tungsten, zinc, nickel, iron, platinum, and titanium.
  • the metal conductive particles are selected from alloys formed by at least two of silver, copper, gold, aluminum, tungsten, zinc, nickel, iron, platinum, and titanium.
  • the metal conductive particles are core-shell structure metal conductive particles, wherein the shell material of the core-shell structure metal conductive particles is selected from silver, copper, gold, aluminum, tungsten, zinc, nickel, iron, At least one of platinum and titanium; the core material of the core-shell structure metal conductive particles is selected from at least one of silver, copper, gold, aluminum, tungsten, zinc, nickel, iron, platinum, and titanium, or The core material is selected from glass beads and ceramics, specifically one or more of silver-clad copper, silver-clad nickel, silver-clad iron, silver-clad glass beads, and silver-clad ceramics.
  • the shape of the metal powder is not specifically limited, and includes, but is not limited to, spherical, columnar, tapered, and irregular prismatic shapes.
  • the method for preparing the modified epoxy resin is:
  • an epoxy resin and a carboxyl nitrile rubber dissolve and mix the epoxy resin and the carboxyl nitrile rubber to obtain a mixture, and heat the mixture to perform a graft reaction to obtain a flexible epoxy resin; after cooling, A latent curing agent is added to prepare a heat-cured modified epoxy resin.
  • the epoxy resin can be selected from bisphenol A, bisphenol F, phenolic and / or finger ring epoxy resins, and the epoxy equivalent is 120-1000 g / eq, preferably 190-500 g / eq.
  • the toughening resin may be selected from thermoplastic resins such as nitrile rubber, styrene-butadiene rubber, butyl rubber, natural rubber, acrylate rubber, ABS, and polyimide, and carboxyl nitrile rubber is preferred.
  • the latent curing agent can be selected from imidazole, acid anhydride, aromatic amine, dicyandiamide and its compound.
  • the thickness of the conductive adhesive layer in the embodiment of the present invention is 1 ⁇ m to 200 ⁇ m.
  • a protective film layer is prepared on the conductive adhesive layer to obtain an electromagnetic shielding film.
  • the protective film layer may be performed by cold pressing and hot bonding.
  • the protective film layer may be a polyester film, a polyester release film, or a silicone protective film, but is not limited thereto, and its thickness is 15 ⁇ m to 200 ⁇ m. between.
  • a method for preparing an electromagnetic shielding film includes the following steps:
  • a carrier film containing a release layer is formed; a modified epoxy resin adhesive or a high-temperature-resistant ink having a thickness of 1 ⁇ m to 50 ⁇ m is uniformly coated on the carrier film layer, and the insulating layer is formed after baking and curing at a temperature of 50 ° C. to 180 ° C.
  • the conductive substrate is placed in an alkaline electrolyte, and an alkaline solution sedimentation method is used to perform at least three electroplating sedimentation on the surface of the conductive layer to obtain a semi-finished metal layer.
  • the alkali shielding-treated metal shielding layer is placed in a micro-etching solution to perform micro-etching treatment to obtain a metal shielding layer having a porous structure;
  • the metal shielding layer after the micro-etching treatment is placed in an acidic electrolytic solution, and an acid copper precipitation method is used to perform an acidic sedimentation treatment on the surface of the metal shielding layer at least once to obtain a foamed metal layer.
  • the surface of the conductive adhesive layer is cold-pressed or hot-laminated and a protective film layer is obtained to obtain an electromagnetic shielding film.
  • the electromagnetic shielding film prepared in Example 1 of the present invention has a shielding effectiveness of up to 70dB, which can meet a bending life of more than 100,000 times, and the resistance value is less than 1 ⁇ .

Abstract

本发明提供了一种电磁屏蔽膜的制备方法,包括以下步骤:提供载体膜层,在所述载体膜层上制备绝缘层;采用真空镀的方式对所述绝缘层进行导电化处理;将经导电化处理的绝缘层基体置于碱性电解液中,采用碱液沉淀法在所述导电化的基体表面进行至少三次电镀沉降,制备金属屏蔽层;将金属屏蔽层置于微蚀液中,进行表面微蚀,得到微蚀层;将经微蚀处理后的所述金属屏蔽层置于酸性电解液中,进行至少一次酸液沉降处理,制备发泡金属层;在所述发泡金属层表面依次制备导电胶层和保护膜层,得到电磁屏蔽膜。

Description

电磁屏蔽膜的制备方法 技术领域
本发明属于电磁屏蔽膜技术领域,尤其涉及一种电磁屏蔽膜的制备方法。
背景技术
随着现代电子工业的快速发展,大量电器和电子设备广泛应用于工业生产和人们日常生活,促进了工业技术的发展,改善了人们的生活,提升了人们的生活质量。但电器和电子设备在使用过程中会辐射出大量的电磁波,电磁波对电子设备的正常安全运行和人类的生存环境造成了不可忽视的危害。随着各种无线通信系统和高频电子器件数量的急剧增加,电磁干扰现象和电磁污染问题日渐突出。人类生存环境中的电磁能量逐年增加,21世纪电磁环境恶化难以避免。
现有挠性线路板(FPC)产品中,为了选择性地覆盖保护线路、消除外源性干扰电磁信号的影响、并露出焊点,在FPC的表面均设置有屏蔽膜层。比如公开号为CN101176388的发明专利中公开了一种屏蔽膜,其屏蔽膜包括:分离膜;设于该分离膜的一个表面上的覆膜;各功能层采用印制方式形成。使用该屏蔽膜可对线路板的线路进行保护,同时对干扰电磁信号进行屏蔽。但是由于屏蔽膜层材质和工艺性能限制,此类屏蔽膜在高频线路板中屏蔽效果很不乐观。
发明内容
本发明的目的在于提供一种电磁屏蔽膜的制备方法,旨在解决现有电磁屏蔽膜在高频线路板上屏蔽效能和导电性能差的问题。
为实现上述发明目的,本发明采用的技术方案如下:
本发明一方面提供一种电磁屏蔽膜的制备方法,包括以下步骤:
提供载体膜层,在所述载体膜层上制备绝缘层;
采用真空镀的方式对所述绝缘层进行导电化处理;
将经导电化处理的绝缘层基体置于碱性电解液中,采用碱液沉淀法在所述导电化的基体表面进行至少三次电镀沉降,制备金属屏蔽层;
将经过碱液处理的金属屏蔽层置于微蚀液中,进行表面微蚀,得到微蚀层;
将经微蚀处理后的所述金属屏蔽层置于酸性电解液中,进行至少一次酸液沉降处理,制备发泡金属层;
在所述发泡金属层表面依次制备导电胶层和保护膜层,得到电磁屏蔽膜。
本发明提供的电磁屏蔽膜的制备方法,在对绝缘层进行导电化处理后,置于碱性电解液中,采用碱液沉降法在所述导电层表面进行多次沉降,得到金属屏蔽层;并进一步将金属屏蔽层置于酸性电解液中,采用酸液沉降法在所述金属屏蔽层表面进行处理,得到发泡金属层。由此得到的电磁屏蔽膜,具有三维多孔的粗糙表面结构。首先,在发泡金属层的基础上进一步沉积导电胶层,导电胶层的材料能够渗透到发泡金属层的凹点中,形成双层咬合结构,避免发泡金属层和导电胶层中产生不导电缝隙,有效防止电磁泄露,从而提高电磁屏蔽性能。其次,其中制备微蚀层这一步,在金属屏蔽层中间制备获得多孔结构,可以有效减少电磁屏蔽膜使用中出现气泡的现象,增进屏蔽膜的使用可靠性。再次,至少三次的碱液沉降后进行酸液沉降,可提高沉积的金属层的厚度,进一步增强导电性能,提高电磁屏蔽效果。由此得到的电磁屏蔽膜,其屏蔽效能可高达70dB。
具体实施方式
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
本发明实施例提供了一种电磁屏蔽膜的制备方法,包括以下步骤:
S01.提供载体膜层,在所述载体膜层上制备绝缘层;
S02.采用真空镀的方式对所述绝缘层进行导电化处理;
S03.将经导电化处理的绝缘层基体置于碱性电解液中,采用碱液沉淀法在所述导电化的基体表面进行至少三次电镀沉降,制备金属屏蔽层;
S04.将金属屏蔽层置于微蚀液中,进行表面微蚀,得到微蚀层;
S05.将经微蚀处理后的所述金属屏蔽层置于酸性电解液中,进行至少一次酸液沉降处理,制备发泡金属层;
S06.在所述发泡金属层表面依次制备导电胶层和保护膜层,得到电磁屏蔽膜。
本发明实施例提供的电磁屏蔽膜的制备方法,在对绝缘层进行导电化处理后,置于碱性电解液中,采用碱液沉降法在所述导电层表面进行多次沉降,得 到金属屏蔽层;将金属屏蔽层置于微蚀液中,进行表面微蚀,得到微蚀层;并进一步将金属屏蔽层置于酸性电解液中,采用酸液沉降法在所述金属屏蔽层表面进行处理,得到发泡金属层。由此得到的电磁屏蔽膜,具有三维多孔的粗糙表面结构。首先,在发泡金属层的基础上进一步沉积导电胶层,导电胶层的材料能够渗透到发泡金属层的凹点中,形成双层咬合结构,避免发泡金属层和导电胶层中产生不导电缝隙,有效防止电磁泄露,从而提高电磁屏蔽性能。其次,其中制备微蚀层这一步,在金属屏蔽层中间制备获得多孔结构,可以有效减少电磁屏蔽膜使用中出现气泡的现象,增进屏蔽膜的使用可靠性。再次,至少三次的碱液沉降后进行酸液沉降,可提高沉积的金属层的厚度,进一步增强导电性能,提高电磁屏蔽效果。由此得到的电磁屏蔽膜,其屏蔽效能可高达70dB。
具体的,上述步骤S01中,所述载体膜层可以选择本领域常规的载体膜层。具体的,所述载体膜层通过在基膜表面涂布硅油离型剂或无硅离型剂,进一步经UV固化形成。其中,所述基膜可选自聚酰亚胺薄膜、聚苯硫醚(PPS)薄膜、聚酯薄膜中的一种,所述基膜的厚度为15μm~200μm;所述硅油离型剂或无硅离型剂的厚度为0.1μm~30μm。所述固化方法为:将涂布有硅油离型剂或无硅离型剂的基膜进行UV固化后,再经50-180℃烘烤固化处理,形成含有离型层的载体膜层。
进一步的,在所述载体膜层上沉积绝缘层,优选采用溶液加工法实现,即所述绝缘层采用溶液加工法制成。所述溶液加工法优选但不限于涂布法。所述绝缘层材料选自改性环氧树脂胶或耐高温油墨。具体的,在所述载体膜层上涂布厚度为1μm~50μm的改性环氧树脂胶或耐高温油墨,在50℃~180℃温度 下烘烤固化,得到绝缘层。
上述步骤S02中,采用真空镀的方式对所述绝缘层进行导电化处理,为在绝缘层上获得金属镀层做准备。所述导电化处理,获得的导电层为银、铜、金、铝、钨、锌、镍、铁、铂、钛金属中的至少一种,或者为以上所列金属单质中的至少两种形成的合金。
优选的,采用真空镀的方式对所述绝缘层进行导电化处理的工艺参数为:
工作真空镀压强:0.1~100Pa,速度:0.5~50m/min;阻值:≤200Ω,工作电压:500~1000V,工作电流:50~500A,氩气量:10~500SCCM。
上述步骤S03中,将经导电化处理的基体置于碱性电解液中,采用碱铜沉淀法在所述导电化的基体表面至少进行三次电镀沉铜,得到金属屏蔽层。通过至少三次电镀沉铜,可以达到比较合适的厚度,能够完成屏蔽效能大于60dB,表面电阻小于50mΩ的要求。若单次沉铜或只进行两次镀铜,无法完全覆盖屏蔽膜半成品的表面,无法得到比较完好的金属层。
优选的,碱液沉降获得金属屏蔽层的工艺参数为:
将经真空镀预处理的绝缘层基体置于金属离子浓度为1-30g/L、pH为7-13的碱性电解液中,在电流为1-50A的条件下,进行碱液沉降处理。具体的,在若电流为1-50A的条件,可以获得较好的沉积膜层。若电流过高,会导致膜面发生烧膜现象,电流过低会影响金属在膜面的沉积。合适的金属离子的浓度,有利于得到均匀致密的膜层。若金属离子的浓度过低会影响金属的沉积,金属离子的浓度过高会导致金属层的厚度无法控制,导致厚度不均匀。在pH为7-13的条件下,溶液中的金属离子具有最强的活性,有利于膜层的沉积。
本发明实施例中,经过碱液沉降处理得到的金属屏蔽层通常光亮度很高,不利于导电胶层的结合,并限定了导电胶层的厚度,进一步限制了电磁屏蔽膜的导电性能和屏蔽性能。
有鉴于此,本发明实施例上述步骤S04中,将经碱液沉降处理的所述金属屏蔽层基体置于置于微蚀液中,进行表面微蚀。通过酸性、带有微蚀剂的第一级电解液对表面金属镀层进行微蚀处理,使其表面出现多孔结构,有利于后续在得到的发泡金属层表面制备导电胶层时,有利于层间气泡的排除,从而提高层与层之间的附着力。
优选的,采用微蚀液对所述表面金属镀层进行微蚀处理的步骤中,所述微蚀液包括无机酸和微蚀剂,所述微蚀剂作为主要的微蚀功能成分,所述无机酸作为催化剂,使所述微蚀剂发挥更好的性能,并有效把控微蚀程度。其中,所述无机酸包括但不限于硝酸、盐酸、硫酸。
进一步优选的,所述微蚀液中,所述无机酸的质量浓度为150-300g/L,所述微蚀剂的质量浓度100-200g/L。若所述微蚀剂的质量浓度过低,则微蚀难度增加,甚至不能实现微蚀;若所述微蚀剂的质量浓度过高,则容易造成过度腐蚀,造成空洞过大或形成凹凸不平的表面,使得镀层无法作为电池屏蔽膜的金属层使用。而有机酸的浓度若过高,会影响微蚀剂反应过程中的化学平衡,影响可是效果,甚至引发微蚀作用以外的其他化学反应。只有在上述合适的无机酸和微蚀剂浓度的条件细,可以在所述表面金属镀层表面进行微蚀,形成均匀的多孔结构。
在上述第一级电解液条件下,采用所述第一级电解液进行微蚀处理的处理 条件为:电流强度10-50A,温度15-35℃,获得的微蚀层的表面粗糙度Ra为5-20。经过微蚀处理的金属屏蔽层会出现多孔结构,其孔径为小于0.1mm。
此后,在上述步骤S05种,在经过微蚀处理之后,将金属屏蔽层置于酸性电解液中,采用酸液沉降法在所述金属屏蔽层表面制备发泡金属层。该发泡金属层直接制作与金属屏蔽层,表面粗糙而且疏松多孔,在之后设置导电胶层时,胶水可以渗透进入其中,使得金属层与导电胶层的结合可以更加紧密。
优选的,先将金属屏蔽层置于酸性电解液中,进行至少一次酸液沉降处理,通过控制合适的离子浓度和电流大小,对表面光亮的所述金属屏蔽层进行预处理。优选的,所述酸性电解液中的金属离子浓度为10-150g/L、氢离子浓度为100-500g/L,所述电流为10-200A。通过采用强酸性、大电流的电解条件,获得比较粗糙的发泡金属层。
进一步优选的,将经酸液沉降处理的基体置于酸性电解液中进行再次沉淀处理,使得到的金属层表面掺杂部分锌、镍离子,从而降低其表面活性,防止表面氧化影响性能。此处,值得注意的是,此次进行的沉淀处理,只是对所述发泡金属层进行表面离子掺杂,而并非形成一层锌镍合金层,以避免发泡金属层的均匀度会受影响,导致产品导电性下降。为了控制锌、镍离子的掺杂,同时控制掺杂浓度,优选的,所述酸性电解液中锌离子浓度为1-30g/L、镍离子浓度为0.1-50g/L、pH为0-6,同时在电流为1-50A的条件下进行沉降处理。由于发泡金属层因其疏松多孔,在半成品制作期间极易氧化,造成表面电阻变大,结合力下降,影响后续导电胶层的生产,以及导致成品的导电性下降。通过此种方式对发泡金属层进行处理,可以降低表面活性,使其不与空气发生氧 化反应。
由此,所述电磁屏蔽膜在金属屏蔽层一表面结合有发泡金属层,金属屏蔽层与发泡金属层贴合设置,实现紧密结合。所述金属屏蔽层的分布非常致密,可以实现非常出色的屏蔽作用与导电作用。在此基础上形成表面疏松的金属发泡层,所述金属发泡层与金属屏蔽层结合紧密,使得设置在所述金属发泡层表面的导电胶层可以渗透进入其中,从而增强结合性。此外,金属屏蔽层与金属发泡层紧密结合,可以进一步增强金属层的屏蔽性和导电性。此外,本发明提供的屏蔽膜的导电胶层中含有金属导电粒子,可有效实现良好的导电性能,满足电子产品高速高频化的发展需求。
上述步骤S06中,在所述发泡金属层表面制备导电胶层,优选采用溶液加工法制备,具体的,所述溶液加工法包括但不限于刮刀式涂布、刮棒式涂布、逆转棍式。为了提高所述导电胶层的导电效果,优选的,所述导电胶层由改性环氧树脂和金属导电粒子复合形成的混合导电材料制成,且所述改性环氧树脂为热固性环氧树脂。环氧树脂本身无法导电,通过掺杂金属导电粒子,金属导电粒子混合在树脂中,作为导电基体构建导电网络中,完成接地点与金属层之间的连接,避免因为胶层的阻隔而导致的导电性能降低,从而提高导电性能。
优选的,以所述混合导电材料的总重量为100%计,所述金属导电粒子的重量百分含量为0.1%-50%。若所述金属导电粒子的重量百分含量过高,则由于导电材料过于密集,挤占相互空间,甚至填充触点,导致无法起到良好的导电作用。
进一步优选的,所述金属导电粒子可选用银、铜、金、铝、钨、锌、镍、 铁、铂、钛金属中的至少一种。作为一种实施方式,所述金属导电粒子选用银、铜、金、铝、钨、锌、镍、铁、铂、钛金属单质粉体中的至少一种。作为另一种实施方式,所述金属导电粒子选自银、铜、金、铝、钨、锌、镍、铁、铂、钛金属中的至少两种形成的合金。作为再一种实施方式,所述金属导电粒子为核壳结构金属导电粒子,其中,核壳结构金属导电粒子的壳层材料选自银、铜、金、铝、钨、锌、镍、铁、铂、钛金属中的至少一种;核壳结构金属导电粒子的内核材料选自银、铜、金、铝、钨、锌、镍、铁、铂、钛金属中的至少一种,或所述内核材料选自玻璃珠、陶瓷,具体如银包铜、银包镍、银包铁、银包玻璃珠、银包陶瓷中的一种或几种复配。其中,金属粉体形状的形状没有明确限定,包括但不限于球状、柱状、锥状、不规则棱状中。
优选的,所述改性环氧树脂的制备方法为:
提供环氧树脂和羧基丁腈橡胶,将所述环氧树脂和所述羧基丁腈橡胶溶解、混合得到混合物,将所述混合物加热进行接枝反应,得到柔韧性环氧树脂;待冷却后,加入潜伏性固化剂,制备得到热固化的改性环氧树脂。
其中,所述环氧树脂可选用双酚A型、双酚F型、酚醛型和/或指环型环氧树脂,环氧当量为120~1000g/eq,优选190~500g/eq。所述增韧树脂可选择丁腈橡胶、丁苯橡胶、丁基橡胶、天然橡胶、丙烯酸酯橡胶、ABS、聚酰亚胺等热塑性树脂,优选羧基丁腈橡胶。所述潜伏性固化剂可选择咪唑、酸酐、芳香胺、双氰胺及其复配物。
本发明实施例所述导电胶层的厚度为1μm-200μm。
本发明实施例中,在所述导电胶层上制备保护膜层,得到电磁屏蔽膜。所 述保护膜层可采用冷压贴合及热贴合方式进行,所述保护膜层可以是聚脂薄膜、聚脂离型膜、硅胶保护膜,但不限于此,其厚度在15μm~200μm之间。
下面结合具体实施例进行说明。
实施例1
一种电磁屏蔽膜的制备方法,包括以下步骤:
S11.提供厚度为15μm~200μm的基膜,在基膜表面均匀涂布0.1μm~30μm的硅油离型剂或无硅离型剂,经UV固化,再经过50℃~180℃烘烤固化后形成含有离型层的载体膜;在载体膜层上均匀涂布厚度为1μm~50μm的改性环氧树脂胶或耐高温油墨,50℃~180℃温度下烘烤固化后形成绝缘层。
S12.采用真空镀的方式对所述绝缘层进行导电化处理。
S13.将经导电化处理的基体置于碱性电解液中,采用碱液沉降法在所述导电层表面进行至少三次电镀沉降,得到半成品金属层;
S14.将经过碱液处理的金属屏蔽层置于微蚀液中进行微蚀处理,获得具有多孔结构的金属屏蔽层;
S15.将经微蚀处理后的金属屏蔽层置于酸性电解液中,采用酸铜沉淀法在所述金属屏蔽层表面进行至少一次酸性沉降处理,得到发泡金属层。
S16.在热固型环氧树脂胶中混入重量百分含量为0.1%~50%的金属导电粒子,制备导电胶材料,在所述发泡金属层表面依次涂布导电胶层;
在所述导电胶层表面冷压贴合或热贴合和保护膜层,得到电磁屏蔽膜。
本发明实施例1制备的电磁屏蔽膜,屏蔽效能高达70dB,能够满足10万次以上的弯曲寿命,阻值小于1Ω
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发 明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种电磁屏蔽膜的制备方法,其特征在于,包括以下步骤:
    提供载体膜层,在所述载体膜层上制备绝缘层;
    采用真空镀的方式对所述绝缘层进行导电化处理;
    将经导电化处理的绝缘层基体置于碱性电解液中,采用碱液沉淀法在所述导电化的基体表面进行至少三次电镀沉降,制备金属屏蔽层;
    将金属屏蔽层置于微蚀液中,进行表面微蚀,得到微蚀层;
    将经微蚀处理后的所述金属屏蔽层置于酸性电解液中,进行至少一次酸液沉降处理,制备发泡金属层;
    在所述发泡金属层表面依次制备导电胶层和保护膜层,得到电磁屏蔽膜。
  2. 如权利要求1所述的电磁屏蔽膜的制备方法,其特征在于,将经导电化处理的绝缘层基体置于碱性电解液中,采用碱液沉淀法在所述导电化的基体表面进行至少三次电镀沉降,制备金属屏蔽层,包括:
    将经真空镀预处理的绝缘层基体置于金属离子浓度为1-30g/L、pH为7-13的碱性电解液中,在电流为1-50A的条件下,进行碱液沉降处理。
  3. 如权利要求2所述的电磁屏蔽膜的制备方法,其特征在于,将金属屏蔽层置于微蚀液中,进行表面微蚀的方法为:在经过碱性电解液的沉降处理之后,将所述金属屏蔽层置于无机酸浓度为150-300g/L,微蚀剂浓度100-200g/L的电解液中,在电流强度10-50A的条件下,进行表面微蚀,获得微蚀层。
  4. 如权利要求2所述的电磁屏蔽膜的制备方法,其特征在于,将经微蚀处理后的所述金属屏蔽层置于酸性电解液中,进行至少一次酸液沉降处理,制备发泡金属层,包括:
    将经微蚀处理后的所述金属屏蔽层置于金属离子浓度为10-150g/L、氢离子浓度为100-500g/L的酸性电解液中,在电流为10-200A的条件下,进行酸液沉降处理。
  5. 如权利要求3所述的电磁屏蔽膜的制备方法,其特征在于,将经微蚀处理后的所述金属屏蔽层置于酸性电解液中,进行至少一次酸液沉降处理,制备发泡金属层,还包括:
    将经至少一次酸液沉降处理的金属屏蔽层基体置于锌离子浓度为 1-30g/L、镍离子浓度为0.1-50g/L、pH为0-6的第三酸性电解液中,在电流为1-50A的条件下,进行沉降处理。
  6. 如权利要求1-4任一项所述的电磁屏蔽膜的制备方法,其特征在于,所述导电胶层由改性环氧树脂和金属导电粒子复合形成的混合导电材料制成,且所述改性环氧树脂为热固性环氧树脂。
  7. 如权利要求5所述所述的电磁屏蔽膜的制备方法,其特征在于,所述改性环氧树脂的制备方法为:
    提供环氧树脂和增韧树脂,将所述环氧树脂和所述增韧树脂溶解、混合得到混合物,将所述混合物加热进行接枝反应,得到柔韧性环氧树脂;待冷却后,加入潜伏性固化剂,制备得到热固化的改性环氧树脂。
  8. 如权利要求5所述的电磁屏蔽膜的制备方法,其特征在于,所述导电化处理,获得的导电层为银、铜、金、铝、钨、锌、镍、铁、铂、钛金属中的至少一种,或者为以上所列金属单质中的至少两种形成的合金。
  9. 如权利要求5所述的电磁屏蔽膜的制备方法,其特征在于,所述混合导电材料的总重量为100%计,所述金属导电粒子的重量百分含量为0.1%-50%。
  10. 如权利要求1-4任一项所述的电磁屏蔽膜的制备方法,其特征在于,采用真空镀的方式对所述绝缘层进行导电化处理的工艺参数为:
    工作真空镀压强:0.1~100Pa,速度:0.5~50m/min;阻值:≤200Ω,工作电压:500~1000V,工作电流:50~500A,氩气量:10~500SCCM。
PCT/CN2019/083183 2018-09-10 2019-04-18 电磁屏蔽膜的制备方法 WO2020052239A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/197,104 US20210219434A1 (en) 2018-09-10 2021-03-10 Method for preparing electromagnetic shielding film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811049491.3A CN109392296B (zh) 2018-09-10 2018-09-10 电磁屏蔽膜的制备方法
CN201811049491.3 2018-09-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/197,104 Continuation US20210219434A1 (en) 2018-09-10 2021-03-10 Method for preparing electromagnetic shielding film

Publications (1)

Publication Number Publication Date
WO2020052239A1 true WO2020052239A1 (zh) 2020-03-19

Family

ID=65418738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083183 WO2020052239A1 (zh) 2018-09-10 2019-04-18 电磁屏蔽膜的制备方法

Country Status (3)

Country Link
US (1) US20210219434A1 (zh)
CN (1) CN109392296B (zh)
WO (1) WO2020052239A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109392296B (zh) * 2018-09-10 2019-11-15 深圳科诺桥科技股份有限公司 电磁屏蔽膜的制备方法
CN112437598B (zh) * 2019-08-26 2022-12-09 昆山雅森电子材料科技有限公司 一种多孔径铜箔的高遮蔽电磁干扰屏蔽膜及其制备方法
CN111826617A (zh) * 2019-11-06 2020-10-27 深圳科诺桥科技股份有限公司 电磁波屏蔽膜及其制备方法
CN114786453A (zh) * 2022-04-02 2022-07-22 昆明理工大学 一种Mg-Li合金/硅钢板电磁屏蔽材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080297021A1 (en) * 2007-05-31 2008-12-04 Samsung Sdi Co., Ltd. Film-type filter, plasma display apparatus comprising the film-type filter, and method of manufacturing the plasma display apparatus
CN203015375U (zh) * 2012-12-20 2013-06-19 深圳科诺桥科技有限公司 印刷电路板及高填充性电磁屏蔽膜
CN103879119A (zh) * 2012-12-20 2014-06-25 深圳科诺桥科技有限公司 印刷电路板、高填充性电磁屏蔽膜及其制造方法
CN109392296A (zh) * 2018-09-10 2019-02-26 深圳科诺桥科技股份有限公司 电磁屏蔽膜的制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308761A (ja) * 2006-05-18 2007-11-29 Fujifilm Corp めっき処理方法、導電性金属膜およびその製造方法、並びに透光性電磁波シールド膜
CN103129048B (zh) * 2011-12-02 2015-07-29 鸿富锦精密工业(深圳)有限公司 金属与塑料的复合体的制备方法及复合体
CN107553815B (zh) * 2014-05-20 2020-01-10 广东长盈精密技术有限公司 一种金属树脂复合体的制备方法
CN106555214B (zh) * 2015-09-25 2019-05-17 比亚迪股份有限公司 金属表面微孔化处理方法以及金属树脂复合体的制备方法
CN106801159A (zh) * 2015-11-26 2017-06-06 常德力元新材料有限责任公司 一种泡沫镍或泡沫镍基合金的制备方法
CN106061103A (zh) * 2016-07-21 2016-10-26 东莞市航晨纳米材料有限公司 一种高柔软性电磁屏蔽膜及其制造方法
CN106217754B (zh) * 2016-08-09 2019-02-12 南京大学 表面处理的金属及其表面处理方法与金属树脂复合体
CN106696170A (zh) * 2016-11-23 2017-05-24 苏州焕欣化工科技有限公司 一种金属与树脂结合的制备工艺
CN108018555A (zh) * 2017-10-17 2018-05-11 广东长盈精密技术有限公司 一种金属的表面处理方法、金属制品及金属塑料复合体
CN108327167A (zh) * 2018-03-07 2018-07-27 广州凯腾新材料科技有限公司 金属和塑胶结合的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080297021A1 (en) * 2007-05-31 2008-12-04 Samsung Sdi Co., Ltd. Film-type filter, plasma display apparatus comprising the film-type filter, and method of manufacturing the plasma display apparatus
CN203015375U (zh) * 2012-12-20 2013-06-19 深圳科诺桥科技有限公司 印刷电路板及高填充性电磁屏蔽膜
CN103879119A (zh) * 2012-12-20 2014-06-25 深圳科诺桥科技有限公司 印刷电路板、高填充性电磁屏蔽膜及其制造方法
CN109392296A (zh) * 2018-09-10 2019-02-26 深圳科诺桥科技股份有限公司 电磁屏蔽膜的制备方法

Also Published As

Publication number Publication date
US20210219434A1 (en) 2021-07-15
CN109392296A (zh) 2019-02-26
CN109392296B (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
WO2020052239A1 (zh) 电磁屏蔽膜的制备方法
JP5712095B2 (ja) Fpc用電磁波シールド材
TWI699787B (zh) 導電性黏著劑組成物
KR20160013048A (ko) 전자파 실드 필름, 이것을 사용한 프린트 배선판, 및 압연 동박
WO2019144564A1 (zh) 一种电磁波屏蔽膜及其制备方法和应用
JP5215631B2 (ja) 表面処理銅箔
KR101695236B1 (ko) 동박, 이를 포함하는 전기부품 및 전지
CN109168313A (zh) 电磁屏蔽膜以及包含屏蔽膜的线路板
CN109104851B (zh) 电磁屏蔽膜的制备方法
TW201325425A (zh) 電磁波屏蔽複合膜及具有該複合膜之軟性印刷電路板
CN112111233A (zh) 一种热固性导电屏蔽胶膜及其制备方法
KR101411978B1 (ko) 금속화 고분자필름에 착색층이 형성된 전자파 차폐용 접착테이프의 제조방법 및 그에 의한 접착테이프
JPS6350878B2 (zh)
CN113192665B (zh) 一种电子器件及其制作方法
JP5692501B2 (ja) 導電性塗膜の製造方法
CN110149790B (zh) 一种石墨烯电磁屏蔽膜及其制备方法
CN109338363B (zh) 绝缘层薄膜表面的导电化处理工艺
WO2020162068A1 (ja) 表面処理銅箔、並びに、それを用いた銅張積層板、樹脂付銅箔および回路基板
US20140308538A1 (en) Surface treated aluminum foil for electronic circuits
CN109338448B (zh) 对金属薄膜表面进行发泡处理的方法
JPH0680894B2 (ja) 金属コアプリント基板の製造方法
CN104582278A (zh) 一种电路板及其制备方法
JP3833538B2 (ja) Ptc伝導性ポリマーを含む電気装置
CN217936058U (zh) 一种导电结构
US20210002779A1 (en) Collector plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859146

Country of ref document: EP

Kind code of ref document: A1