WO2020052220A1 - 轴流风轮及空调器 - Google Patents

轴流风轮及空调器 Download PDF

Info

Publication number
WO2020052220A1
WO2020052220A1 PCT/CN2019/080147 CN2019080147W WO2020052220A1 WO 2020052220 A1 WO2020052220 A1 WO 2020052220A1 CN 2019080147 W CN2019080147 W CN 2019080147W WO 2020052220 A1 WO2020052220 A1 WO 2020052220A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial
blade
wind wheel
segment
edge
Prior art date
Application number
PCT/CN2019/080147
Other languages
English (en)
French (fr)
Inventor
黄愉太
蔡序杰
王波
宋英杰
周何杰
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811076155.8A external-priority patent/CN108869394B/zh
Priority claimed from CN201821513717.6U external-priority patent/CN208804038U/zh
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2020052220A1 publication Critical patent/WO2020052220A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades

Definitions

  • the present disclosure relates to the technical field of household appliances, and in particular, to an axial-flow wind wheel and an air conditioner.
  • the design of the axial flow wheel of the air conditioner has an important influence on the cooling and heating capacity, energy efficiency ratio, and noise of the air conditioner.
  • the gravity of the axial flow wheel of the air conditioner is heavy, the running power of the axial flow wheel is high, and the noise is high, which seriously affects the overall performance of the air conditioner, and the user experience is not high.
  • an object of the present disclosure is to propose an axial-flow wind wheel with a simple structure and low running power.
  • the present disclosure also proposes an air conditioner having the above-mentioned axial flow wheel.
  • An axial-flow wind wheel includes: a hub; a plurality of blades, and the plurality of blades are arranged at intervals along the circumferential direction of the hub; An outer edge, a trailing edge, and a blade root, the blade root is connected to the hub, and in the rotation direction of the hub, the leading edge is located on the front side of the trailing edge, and the blade is along the center of the hub.
  • the surfaces on both sides in the axial direction are respectively formed as a suction surface and a pressure surface.
  • the suction surface is provided with at least one groove, and each of the grooves defines a thinned area, and at least part of the grooves penetrate the trailing edge. .
  • the thinned area defined by the groove can effectively improve the pressure distribution of the flow field on the suction surface and reduce the blade rotation.
  • the eddy current formed in the process can reduce the eddy current noise, and the centrifugal force of the groove is reduced during the rotation of the blade, which can increase the strength of the axial flow wheel; on the other hand, the thinning zone can also reduce the blade.
  • the weight of the axial flow wheel reduces the running power of the axial flow wheel, thereby improving the operating efficiency of the axial flow wheel.
  • At least part of the groove penetrates the trailing edge of the blade, which can reduce the thickness of the trailing edge of the blade, thereby reducing the thickness of the trailing flow on the suction side of the airflow, which can further reduce the trailing vortex of the blade and further reduce the shaft. Wind noise from the wind wheel.
  • a value range of the recessed depth h of each of the grooves is: 0.3mm ⁇ h ⁇ 2mm.
  • each of the blades is provided with one of the thinned regions, and a contour edge of the thinned regions includes a first segment and a second segment, and one end of the first segment is in contact with the The trailing edge is connected, the other end of the first segment is connected to one end of the second segment, and the other end of the second segment is connected to the leaf root.
  • the first segments are arranged parallel to and spaced from the outer edge.
  • a distance between the first segment and the outer edge is L1, and 10mm ⁇ L1 ⁇ 50mm.
  • the second segments are arranged parallel to and spaced from the leading edge.
  • a distance between the second segment and the leading edge is L2, and 10mm ⁇ L2 ⁇ 30mm.
  • the thinned area smoothly transitions to other areas of the suction surface.
  • the thinned area is a curved surface.
  • the air conditioner according to the embodiment of the present disclosure includes the axial-flow wind wheel as described above.
  • the thinned area defined by the groove can effectively improve the pressure distribution of the flow field on the suction surface and reduce the blade rotation process.
  • the eddy current formed can reduce the eddy current noise, and the centrifugal force of the groove is reduced during the rotation of the blade, which can increase the strength of the axial flow wheel; on the other hand, the thinning zone can also reduce the weight of the blade , Reduce the running power of the axial flow wheel, which can improve the operating efficiency of the axial flow wheel.
  • At least part of the groove penetrates the trailing edge of the blade, which can reduce the thickness of the trailing edge of the blade, thereby reducing the thickness of the trailing flow on the suction side of the airflow, which can further reduce the trailing vortex of the blade and further reduce the shaft. Wind noise from the wind wheel.
  • FIG. 1 is a schematic structural diagram of an axial-flow wind wheel according to an embodiment of the present disclosure
  • FIG. 2 is a partial structural schematic diagram of an axial-flow wind wheel according to an embodiment of the present disclosure
  • FIG. 3 is a cross-sectional view of an axial-flow wind wheel according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of an axial-flow wind wheel according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of an axial-flow wind wheel according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of an air volume-power curve obtained by using an axial-flow wind wheel in the related art and an axial-flow wind wheel according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of an air volume-noise curve obtained by using an axial-flow wind wheel in the related art and an axial-flow wind wheel according to an embodiment of the present disclosure.
  • Blade 20 suction surface 21, thinned area 210, first section 211, second section 212, pressure surface 22,
  • the axial flow wind wheel 1 includes a hub 10 and a plurality of blades 20. It should be noted that the “plurality” mentioned here may refer to two or more, for example, the axial flow wind wheel 1 may include a hub 10 and three blades 20.
  • the plurality of blades 20 may be arranged at intervals along the circumferential direction of the hub 10.
  • the plurality of blades 20 may be arranged at regular intervals along the circumferential direction of the hub 10.
  • the contour edges of the blade 20 include a leading edge 23, an outer edge 24, a trailing edge 25, and a root 26 which are connected end to end in this order. It can be understood that one end of the leading edge 23 of the blade 20 is connected to one end of the outer edge 24, the other end of the outer edge 24 is connected to one end of the trailing edge 25, and the other end of the trailing edge 25 is connected to one end of the blade root 26.
  • the other end of the root 26 is connected to the other end of the leading edge 23.
  • the blade root 26 is connected to the hub 10.
  • the blade root 26 may be snapped, welded, or connected by a fastener with the hub 10, and the blade root 26 may extend along the circumferential direction of the hub 10.
  • the wheel hub 10 can rotate around its central axis. During the rotation of the wheel hub 10, a plurality of blades 20 can be driven to rotate, and the airflow around the axial-flow wind wheel 1 can be driven.
  • the leading edge 23 is located on the front side of the trailing edge 25.
  • the axial flow wheel 1 is rotated in a clockwise direction, and the leading edge 23 is located on the front side of the trailing edge 25; Seen from the front view, that is, in the view shown in FIG. 4, the axial-flow wind wheel 1 rotates counterclockwise, and the leading edge 23 is located on the front side of the trailing edge 25.
  • both side surfaces of the blade 20 along the center axis direction of the hub 10 are formed as a suction surface 21 and a pressure surface 22, respectively.
  • suction surface 21 mentioned here may be the leeward surface of the blade 20
  • pressure surface 22 may be the windward surface of the blade 20.
  • the fluid will have a very low velocity backflow zone.
  • the suction surface 21 is provided with at least one groove, and each groove defines a thinned area 210.
  • the suction surface 21 is provided with grooves, and one or more grooves may be provided, and "multiple" means two or more.
  • the thickness of the blade 20 corresponding to the groove is smaller than the thickness of other areas of the blade 20, and the thinned region 210 is defined on the suction surface 21.
  • a partial area on the suction surface 21 may be recessed toward the pressure surface 22 to form a groove. At least part of the groove runs through the trailing edge 25.
  • the trailing edge 25 of the blade 20 may be configured to form a part of the contoured edge of the thinned region 210, and the thickness of the part of the trailing edge 25 of the blade 20 is smaller than the thickness of the area where the blade 20 is not provided with a groove.
  • the thinned area 210 defined by the groove can effectively improve the pressure of the flow field on the suction surface 21 Distribution, reducing the eddy current formed during the rotation of the blade 20, which can reduce the eddy current noise, and during the rotation of the blade 20, the centrifugal force at the position of the groove is reduced, which can increase the strength of the axial-flow wind wheel 1;
  • the setting of the area 210 can also reduce the weight of the blades 20 and reduce the running power of the axial-flow wind wheel 1, thereby improving the operating efficiency of the axial-flow wind wheel 1.
  • At least a part of the groove penetrates the trailing edge 25 of the blade 20, which can reduce the thickness of a part of the trailing edge 25 of the blade 20, thereby reducing the thickness of the trailing flow on the suction surface 21 and reducing the trailing vortex of the blade 20
  • the wind noise of the axial-flow wind wheel 1 can be further reduced.
  • the value of the recessed depth h of each groove is: 0.3mm ⁇ h ⁇ 2mm. It can be understood that the vertical distance between the bottom wall of the groove and the surface on the suction surface 21 where no groove is provided is greater than 0.3 mm and less than 2 mm. As a result, it is possible to ensure the effect of the groove under the premise that the thickness of the blade 20 is appropriate, so that the weight of the blade 20 can be comprehensively reduced, the eddy current on the blade 20 can be reduced, and the running noise of the axial-flow wind wheel 1 and the shaft can be reduced. Running power of the wind turbine 1.
  • each blade 20 is provided with a thinned region 210, and the contour edge of the thinned region 210 includes a first segment 211 and a second segment 212.
  • One end of the first section 211 is connected to the trailing edge 25, the other end of the first section 211 is connected to one end of the second section 212, and the other end of the second section 212 is connected to the root 26.
  • each blade 20 is provided with a groove, which defines a thinned area 210.
  • the contour edge of the thinned area 210 includes a first segment 211 connected in sequence from end to end, and a part of the trailing edge of the blade 20 25.
  • the setting of the thinned area 210 can be simplified, and the structure and molding of the blade 20 can be facilitated, thereby reducing the production process of the blade 20, reducing the production cost of the blade 20, and expanding the setting range of the thinned area 210, more effectively.
  • the trailing vortex of the blade 20 is reduced, and the wind noise of the axial-flow wind wheel 1 is reduced.
  • the first segments 211 are arranged parallel to and spaced from the outer edge 24.
  • the outer edge 24 may be a curved surface.
  • the outer edge 24 is convex in a direction away from the hub 10.
  • the first segment 211 is spaced from the outer edge 24.
  • the shortest distance from any point on the first segment 211 to the outer edge 24 is equal. It has been experimentally measured that the first section 211 and the outer edge 24 are arranged in parallel to optimize the flow field distribution on the suction surface 21, reduce the eddy current on the blade 20 more effectively, and reduce the operating noise of the axial-flow wind wheel 1.
  • a distance between the first segment 211 and the outer edge 24 is L1, and 10mm ⁇ L1 ⁇ 50mm.
  • the second segments 212 are arranged parallel to and spaced from the leading edge 23.
  • the leading edge 23 may be a curved surface, the leading edge 23 is convex toward the trailing edge 25, the second segment 212 is spaced from the leading edge 23, and the shortest distance from any point on the second segment 212 to the leading edge 23 is equal. It has been experimentally measured that the second segment 212 is arranged in parallel with the leading edge 23 to optimize the flow field distribution on the suction surface 21, more effectively reduce the eddy current on the blade 20, and reduce the running noise of the axial-flow wind wheel 1.
  • the distance between the second segment 213 and the leading edge 23 is L2, and 10mm ⁇ L2 ⁇ 30mm.
  • the steps formed between the groove and other areas of the suction surface 21 can be made closer to the leading edge 23, thereby further improving the pressure distribution of the flow field on the suction surface 21 of the blade 20, reducing the wake vortex of the blade 20, and reducing Wind noise from the axial flow wheel 1.
  • the thinned region 210 transitions smoothly with other regions of the suction surface 21.
  • the “other area of the suction surface 21” mentioned here may refer to an area where the groove is not provided on the suction surface 21. It can be understood that the connection between the peripheral wall of the groove and the suction surface 21 is a smooth curved surface. As a result, the fluid can flow more smoothly from the suction surface 21 to the thinned region 210, and the fluid can be prevented from forming a vortex at the thinned region 210.
  • the thinned region 210 may be a curved surface. Understandably.
  • the bottom wall of the groove defining the thinned region 210 is a curved surface.
  • the suction surface 21 of the blade 20 may be a curved surface, and the thinned region 210 may be parallel to the suction surface 21. As a result, the blades 20 can more effectively drive the airflow movement.
  • the air conditioner according to the embodiment of the present disclosure includes the axial-flow wind wheel 1 as described above.
  • the thinned area 210 defined by the groove can effectively improve the pressure distribution of the flow field on the suction surface 21 and reduce
  • the eddy current formed during the rotation of the blade 20 can reduce the eddy noise, and during the rotation of the blade 20, the centrifugal force at the position of the groove is reduced, which can increase the strength of the axial flow wheel 1;
  • the arrangement can also reduce the weight of the blades 20 and reduce the running power of the axial-flow wind wheel 1, so that the operating efficiency of the axial-flow wind wheel 1 can be improved.
  • At least a part of the groove penetrates the trailing edge 25 of the blade 20, which can reduce the thickness of a part of the trailing edge 25 of the blade 20, thereby reducing the thickness of the trailing flow on the suction surface 21 and reducing the trailing vortex of the blade 20, The wind noise of the axial-flow wind wheel 1 can be further reduced.
  • the axial flow wind wheel 1 includes a motor, a hub 10, and three blades 20.
  • the three blades 20 may be arranged at regular intervals along the circumferential direction of the hub 10.
  • the contour edges of the blade 20 include a leading edge 23, an outer edge 24, a trailing edge 25, and a root 26 which are connected end to end in this order.
  • the blade root 26 is engaged with the hub 10, and the blade root 26 may extend along the circumferential direction of the hub 10.
  • the outer edge 24 may extend in the circumferential direction of the hub 10. The length of the outer edge 24 is greater than the length of the leaf root 26.
  • the leading edge 23 and the outer edge 24 form a tip with an acute angle.
  • the motor is connected to the hub 10, and the motor can drive the hub 10 to rotate about its central axis. During the rotation of the hub 10, it can drive the three blades 20 to rotate, thereby driving the airflow around the axial-flow wind wheel 1.
  • the leading edge 23 is located on the front side of the trailing edge 25.
  • the axial flow wheel 1 is rotated in a clockwise direction, and the leading edge 23 is located on the front side of the trailing edge 25; Seen from the front view, that is, in the view shown in FIG. 4, the axial-flow wind wheel 1 rotates counterclockwise, and the leading edge 23 is located on the front side of the trailing edge 25.
  • both side surfaces of the blade 20 along the center axis direction of the hub 10 are formed as a suction surface 21 and a pressure surface 22, respectively.
  • suction surface 21 mentioned here may be the leeward surface of the blade 20
  • pressure surface 22 may be the windward surface of the blade 20.
  • the fluid will have a very low velocity backflow zone.
  • the suction surface 21 of each blade 20 is provided with a thinned area 210.
  • the thinned area 210 transitions smoothly with other areas of the suction surface 21.
  • the difference between the thickness of the thinned region 210 and the thickness of other regions of the blade 20 is greater than 0.3 mm and less than 2 mm.
  • the outline edge of the thinned region 210 includes a first segment 211 and a second segment 212, one end of the first segment 211 is connected to the trailing edge 25, the other end of the first segment 211 is connected to one end of the second segment 212, and the second segment 212 The other end is connected to the leaf root 26.
  • the first section 211 is arranged parallel to and spaced from the outer edge 24.
  • the distance between the first segment 211 and the outer edge 24 is greater than 10 mm and less than 50 mm.
  • the second section 212 is arranged parallel to and spaced from the leading edge 23.
  • the distance between the second segment 213 and the leading edge 23 is greater than 10 mm and less than 30 mm.
  • FIG. 6 is a schematic diagram of an air volume-power curve obtained by using an axial fan in the related art and an axial fan in an embodiment of the present disclosure on the same air conditioner. It can be seen from FIG. 6 that the running power required by using the axial-flow fan according to the embodiment of the present disclosure is 5W-10W lower than the running power required by using the related-art axial-flow fan at the same wind volume.
  • FIG. 7 is a schematic diagram of an air volume-noise curve obtained by using an axial-flow air wheel in the related art and an axial-flow air wheel in an embodiment of the present disclosure on the same air conditioner.
  • the noise caused by using the axial-flow wind wheel of the embodiment of the present disclosure is 0.8dB-1dB lower than the noise caused by using the axial-flow wind wheel in the related art.
  • the thinned area 210 defined by the groove can effectively improve the pressure of the flow field on the suction surface 21 Distribution, reducing the eddy current formed during the rotation of the blade 20, which can reduce the eddy current noise, and during the rotation of the blade 20, the centrifugal force at the position of the groove is reduced, which can increase the strength of the axial flow wind wheel 1; on the other hand, reduce the thickness
  • the setting of the area 210 can also reduce the weight of the blades 20 and reduce the running power of the axial-flow wind wheel 1, thereby improving the operating efficiency of the axial-flow wind wheel 1.
  • At least a part of the groove penetrates the trailing edge 25 of the blade 20, which can reduce the thickness of a part of the trailing edge 25 of the blade 20, thereby reducing the thickness of the trailing flow on the suction surface 21 and reducing the trailing vortex of the blade 20, The wind noise of the axial-flow wind wheel 1 can be further reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

一种轴流风轮(1)及空调器,其中,轴流风轮(1)包括轮毂(10)和多个叶片(20),叶片(20)沿轮毂(10)的周向方向间隔排布,叶片(20)的轮廓边缘包括依次首尾相连的前缘(23)、外缘(24)、尾缘(25)和叶根(26),在轮毂(10)的转动方向上,前缘(23)位于尾缘(25)的前侧,叶片(20)沿轮毂(10)的中心轴方向的两侧表面分别形成为吸力面(21)和压力面(22),吸力面(21)上设有至少一个凹槽,每个凹槽限定出减薄区(210),至少部分凹槽贯穿尾缘。减薄区可以减少涡流,从而降低涡流噪音;凹槽所在位置的离心力降低,可以提高轴流风轮的强度;减薄区还可以减小叶片的重量。

Description

轴流风轮及空调器
相关申请的交叉引用
本申请要求广东美的制冷设备有限公司、美的集团股份有限公司、2018年09月14日提交的、名称为“轴流风轮及空调器”的、中国专利申请号“201811076155.8”、“201821513717.6”的优先权。
技术领域
本公开涉及家用电器技术领域,尤其是涉及一种轴流风轮及空调器。
背景技术
随着制冷制热技术领域的发展,空调器的市场竞争愈演愈烈。低功耗、低噪音及用户体验感成为空调器的主要竞争点。其中,空调器的轴流风轮设计的好坏,对空调整机的制冷制热能力、能效比,噪音等具有重要影响。相关技术中,空调器的轴流风轮重力偏重且轴流风轮的运行功率高、噪音大,严重影响空调器的整体性能,用户的体验感不高。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本公开的一个目的在于提出一种结构简单、运行功率低的轴流风轮。
本公开还提出一种具有上述轴流风轮的空调器。
根据本公开实施例的轴流风轮,包括:轮毂;多个叶片,多个所述叶片沿所述轮毂的周向方向间隔排布,所述叶片的轮廓边缘包括依次首尾相连的前缘、外缘、尾缘和叶根,所述叶根与所述轮毂连接,在所述轮毂的转动方向上,所述前缘位于所述尾缘的前侧,所述叶片沿所述轮毂的中心轴方向的两侧表面分别形成为吸力面和压力面,所述吸力面上设有至少一个凹槽,每个所述凹槽限定出减薄区,至少部分所述凹槽贯穿所述尾缘。
根据本公开实施例的轴流风轮,通过在叶片的吸力面上设置凹槽,一方面,凹槽所限定出的减薄区可以有效地改善吸力面上的流场压力分布,减少叶片转动过程中形成的涡流,从而可以降低涡流噪音,而且叶片在旋转过程,凹槽所在位置的离心力降低,进而可以提高轴流风轮的强度;另一方面,减薄区的设置还可以减小叶片的重量,降低轴流风轮的运行功率,从而可以提高轴流风轮的运行效率。另外,至少部分凹槽贯穿叶片的尾缘,可以减薄叶片的部分尾缘厚度,从而可以降低吸力面上气流出风端尾迹流厚度,进而可以降低叶片的尾迹涡流,可以进一步地减小轴流风轮的出风噪音。
根据本公开的一些实施例,每个所述凹槽的凹入深度h的取值范围为:0.3㎜<h<2㎜。
根据本公开的一些实施例,每个所述叶片上设有一个所述减薄区,所述减薄区的轮廓边缘包括第一段和第二段,所述第一段的一端与所述尾缘连接,所述第一段的另一端与所述第二段的一端连接,所述第二段的另一端与所述叶根连接。
在本公开的一些实施例中,所述第一段与所述外缘平行且间隔排布。
在本公开的一些实施例中,所述第一段与所述外缘之间的间距为L1,10㎜<L1<50㎜。
在本公开的一些实施例中,所述第二段与所述前缘平行且间隔排布。
在本公开的一些实施例中,所述第二段与所述前缘之间的间距为L2,10㎜<L2<30㎜。
在本公开的一些实施例中,所述减薄区与所述吸力面的其它区域圆滑过渡。
根据本公开的一些实施例,所述减薄区为曲面。
根据本公开实施例的空调器,包括如上所述的轴流风轮。
根据本公开实施例的空调器,通过在叶片的吸力面上设置凹槽,一方面,凹槽所限定出的减薄区可以有效地改善吸力面上的流场压力分布,减少叶片转动过程中形成的涡流,从而可以降低涡流噪音,而且叶片在旋转过程,凹槽所在位置的离心力降低,进而可以提高轴流风轮的强度;另一方面,减薄区的设置还可以减小叶片的重量,降低轴流风轮的运行功率,从而可以提高轴流风轮的运行效率。另外,至少部分凹槽贯穿叶片的尾缘,可以减薄叶片的部分尾缘厚度,从而可以降低吸力面上气流出风端尾迹流厚度,进而可以降低叶片的尾迹涡流,可以进一步地减小轴流风轮的出风噪音。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本公开实施例的轴流风轮的结构示意图;
图2是根据本公开实施例的轴流风轮的局部结构示意图;
图3是根据本公开实施例的轴流风轮的剖视图;
图4是根据本公开实施例的轴流风轮的结构示意图;
图5是根据本公开实施例的轴流风轮的结构示意图;
图6是采用相关技术中的轴流风轮和采用本公开实施例的轴流风轮所得的风量-功率曲线示意图;
图7是采用相关技术中的轴流风轮和采用本公开实施例的轴流风轮所得的风量-噪音曲 线示意图。
附图标记:
轴流风轮1,
轮毂10,
叶片20,吸力面21,减薄区210,第一段211,第二段212,压力面22,
前缘23,外缘24,尾缘25,叶根26。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
如图1、图3-图5所示,根据本公开实施例的轴流风轮1,包括轮毂10和多个叶片20。需要说明的是,这里所提到的“多个”可以是指两个及两个以上,例如,轴流风轮1可以包括一个轮毂10和三个叶片20。
具体而言,如图1及图4所示,多个叶片20可以沿轮毂10的周向方向间隔排布。例如,多个叶片20可以沿着轮毂10的周向方向均匀间隔排布。叶片20的轮廓边缘包括依次首尾相连的前缘23、外缘24、尾缘25和叶根26。可以理解的是,叶片20的前缘23的一端与外缘24的一端连接,外缘24的另一端与尾缘25的一端连接,尾缘25的另一端与叶根26的一端连接,叶根26的另一端与前缘23的另一端连接。叶根26与轮毂10连接。例如,叶根26可以与轮毂10卡接、焊接或是通过紧固件连接,叶根26可以沿着轮毂10的周向方向延伸。
轮毂10可以绕其中心轴转动,在轮毂10转动过程中,可以带动多个叶片20转动,进而可以带动轴流风轮1周围的气流流动。在轮毂10的转动方向上,前缘23位于尾缘25的前侧。例如,从轴流风轮1的后视图看,即图1所示的视图,轴流风轮1沿着顺时针方向转动,前缘23位于尾缘25的前侧;从轴流风轮1的主视图看,即图4所示的视图中,轴流风轮1沿着逆时针方向转动,前缘23位于尾缘25的前侧。
如图3所示,叶片20沿轮毂10的中心轴方向的两侧表面分别形成为吸力面21和压力面22。需要说明的是,这里所提到的“吸力面21”可以为叶片20的背风面,“压力面22”可以为叶片20的迎风面。大部分气流沿叶片20的吸力面21流动,叶片20的压力面22上气流的相对速度较低。流体在压力面22尾缘25会出现速度很低的回流区。
如图1-图3及图5所示,吸力面21上设有至少一个凹槽,每个凹槽限定出减薄区210。可以理解的是,吸力面21上设有凹槽,凹槽的可以为一个或多个,“多个”即为两个或两个 以上。凹槽所对应的叶片20的厚度小于叶片20其它区域的厚度,以吸力面21上限定出减薄区210。例如,吸力面21上部分区域可以朝向压力面22凹陷以构造形成凹槽。至少部分所述凹槽贯穿尾缘25。可以理解的是,叶片20的尾缘25可以构造形成减薄区210的部分轮廓边缘,叶片20的部分尾缘25的厚度小于叶片20不设有凹槽的区域的厚度。
根据本公开实施例的轴流风轮1,通过在叶片20的吸力面21上设置凹槽,一方面,凹槽所限定出的减薄区210可以有效地改善吸力面21上的流场压力分布,减少叶片20转动过程中形成的涡流,从而可以降低涡流噪音,而且叶片20在旋转过程,凹槽所在位置的离心力降低,进而可以提高轴流风轮1的强度;另一方面,减薄区210的设置还可以减小叶片20的重量,降低轴流风轮1的运行功率,从而可以提高轴流风轮1的运行效率。另外,至少部分凹槽贯穿叶片20的尾缘25,可以减薄叶片20的部分尾缘25厚度,从而可以降低吸力面21上气流出风端尾迹流厚度,进而可以降低叶片20的尾迹涡流,可以进一步地减小轴流风轮1的出风噪音。
根据本公开的一些实施例,每个凹槽的凹入深度h的取值范围为:0.3㎜<h<2㎜。可以理解的是,凹槽的底壁与吸力面21上不设凹槽的表面之间的垂直距离大于0.3毫米且小于2毫米。由此,可以确保在叶片20厚度适当的前提下,保证凹槽的作用效果,从而可以综合降低叶片20的重量,减少叶片20上的涡流,以降低轴流风轮1的运行噪音、降低轴流风轮1的运行功率。
如图1、图2及图5所示,根据本公开的一些实施例,每个叶片20上设有一个减薄区210,减薄区210的轮廓边缘包括第一段211和第二段212,第一段211的一端与尾缘25连接,第一段211的另一端与第二段212的一端连接,第二段212的另一端与叶根26连接。可以理解的是,每个叶片20上设有一个凹槽,该凹槽限定出一个减薄区210,减薄区210的轮廓边缘包括依次首尾连接的第一段211、叶片20的部分尾缘25、叶片20的部分叶根26及第二段212。由此,可以简化减薄区210的设置,方便叶片20的构造与成型,从而可以减少叶片20的生产工序、降低叶片20的生产成本,还可以扩大减薄区210的设置范围,更有效地降低叶片20的尾迹涡流、减小轴流风轮1的出风噪音。
如图1及图2所示,在本公开的一些实施例中,第一段211与外缘24平行且间隔排布。例如,外缘24可以为曲面,外缘24朝向远离轮毂10的方向凸起,第一段211与外缘24间隔开,第一段211上任意一点至外缘24的最短距离均相等。经实验测得,将第一段211与外缘24平行设置可以优化吸力面21上的流场分布,更有效地降低叶片20上的涡流,降低轴流风轮1的运行噪音。
在本公开的一些实施例中,第一段211与外缘24之间的间距为L1,10㎜<L1<50㎜。由此,可以延长叶片20的尾缘25被凹槽贯穿的区域,从而可以有效地降低叶片20的尾迹涡流, 进而可以减小轴流风轮1的出风噪音。
如图1及图2所示,在本公开的一些实施例中,第二段212与前缘23平行且间隔排布。例如,前缘23可以为曲面,前缘23朝向尾缘25凸起,第二段212与前缘23间隔开,第二段212上任意一点至前缘23的最短距离均相等。经实验测得,将第二段212与前缘23平行设置可以优化吸力面21上的流场分布,更有效地降低叶片20上的涡流,降低轴流风轮1的运行噪音。
在本公开的一些实施例中,第二段213与前缘23之间的间距为L2,10㎜<L2<30㎜。由此,可以使得凹槽与吸力面21的其它区域之间形成的台阶靠近前缘23,从而可以进一步地改善叶片20吸力面21上的流场压力分布,降低叶片20的尾迹涡流,减小轴流风轮1的出风噪音。
在本公开的一些实施例中,减薄区210与吸力面21的其它区域圆滑过渡。需要说明的是,这里所提到的“吸力面21的其它区域”可以指吸力面21上不设有凹槽的区域。可以理解的是,凹槽的周壁与吸力面21的连接处为圆滑曲面。由此,流体可以更顺畅地从吸力面21流向减薄区210,可以避免流体在减薄区210处形成涡流。
根据本公开的一些实施例,减薄区210可以为曲面。可以理解的是。限定出减薄区210的凹槽的底壁为曲面。例如,叶片20的吸力面21可以为曲面,减薄区210可以与吸力面21平行。由此,叶片20可以更有效地带动气流运动。
根据本公开实施例的空调器,包括如上所述的轴流风轮1。
根据本公开实施例的空调器,通过在叶片20的吸力面21上设置凹槽,一方面,凹槽所限定出的减薄区210可以有效地改善吸力面21上的流场压力分布,减少叶片20转动过程中形成的涡流,从而可以降低涡流噪音,而且叶片20在旋转过程,凹槽所在位置的离心力降低,进而可以提高轴流风轮1的强度;另一方面,减薄区210的设置还可以减小叶片20的重量,降低轴流风轮1的运行功率,从而可以提高轴流风轮1的运行效率。另外,至少部分凹槽贯穿叶片20的尾缘25,可以减薄叶片20的部分尾缘25厚度,从而可以降低吸力面21上气流出风端尾迹流厚度,进而可以降低叶片20的尾迹涡流,可以进一步地减小轴流风轮1的出风噪音。
下面参考图1-图7详细描述根据本公开实施例的轴流风轮1。值得理解的是,下述描述仅是示例性说明,而不是对本公开的具体限制。
如图1、图3-图5所示,根据本公开实施例的轴流风轮1,包括电机、轮毂10和三个叶片20。
如图1、图4及图5所示,三个叶片20可以沿轮毂10的周向方向均匀间隔排布。叶片20的轮廓边缘包括依次首尾相连的前缘23、外缘24、尾缘25和叶根26。叶根26与轮毂10卡接,叶根26可以沿着轮毂10的周向方向延伸。外缘24可以沿着轮毂10的周向方向延伸。外缘24 的长度大于叶根26的长度。前缘23与外缘24形成夹角为锐角的尖端。
电机与轮毂10连接,电机可以驱动轮毂10可以绕其中心轴转动,在轮毂10转动过程中,可以带动三个叶片20转动,进而可以带动轴流风轮1周围的气流流动。在轮毂10的转动方向上,前缘23位于尾缘25的前侧。例如,从轴流风轮1的后视图看,即图1所示的视图,轴流风轮1沿着顺时针方向转动,前缘23位于尾缘25的前侧;从轴流风轮1的主视图看,即图4所示的视图中,轴流风轮1沿着逆时针方向转动,前缘23位于尾缘25的前侧。
如图3所示,叶片20沿轮毂10的中心轴方向的两侧表面分别形成为吸力面21和压力面22。需要说明的是,这里所提到的“吸力面21”可以为叶片20的背风面,“压力面22”可以为叶片20的迎风面。大部分气流沿叶片20的吸力面21流动,叶片20的压力面22上气流的相对速度较低。流体在压力面22尾缘25会出现速度很低的回流区。
如图1-图3及图5所示,每个叶片20的吸力面21上设有一个减薄区210。减薄区210与吸力面21的其它区域圆滑过渡。减薄区210的厚度与叶片20其它区域的厚度差大于0.3毫米且小于2毫米。减薄区210的轮廓边缘包括第一段211和第二段212,第一段211的一端与尾缘25连接,第一段211的另一端与第二段212的一端连接,第二段212的另一端与叶根26连接。第一段211与外缘24平行且间隔排布。第一段211与外缘24之间的间距大于10毫米且小于50毫米。第二段212与前缘23平行且间隔排布。第二段213与前缘23之间的间距大于10毫米且小于30毫米。
图6为在同一台空调器上采用相关技术中的轴流风轮和采用本公开实施例的轴流风轮所得的风量-功率曲线示意图。从图6可知,同风量下,采用本公开实施例的轴流风轮所需的运行功率比采用相关技术中的轴流风轮所需的运行功率低5W-10W。
图7为在同一台空调器上采用相关技术中的轴流风轮和采用本公开实施例的轴流风轮所得的风量-噪音曲线示意图。从图7可知,同风量下,采用本公开实施例的轴流风轮所造成的噪音比采用相关技术中的轴流风轮所造成的噪音低0.8dB-1dB。
根据本公开实施例的轴流风轮1,通过在叶片20的吸力面21上设置凹槽,一方面,凹槽所限定出的减薄区210可以有效地改善吸力面21上的流场压力分布,减少叶片20转动过程中形成的涡流,从而可以降低涡流噪音,而且叶片20在旋转过程,凹槽所在位置的离心力降低,进而可以提高轴流风轮1的强度;另一方面,减薄区210的设置还可以减小叶片20的重量,降低轴流风轮1的运行功率,从而可以提高轴流风轮1的运行效率。另外,至少部分凹槽贯穿叶片20的尾缘25,可以减薄叶片20的部分尾缘25厚度,从而可以降低吸力面21上气流出风端尾迹流厚度,进而可以降低叶片20的尾迹涡流,可以进一步地减小轴流风轮1的出风噪音。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、 “示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种轴流风轮,其特征在于,包括:
    轮毂;
    多个叶片,多个所述叶片沿所述轮毂的周向方向间隔排布,所述叶片的轮廓边缘包括依次首尾相连的前缘、外缘、尾缘和叶根,所述叶根与所述轮毂连接,在所述轮毂的转动方向上,所述前缘位于所述尾缘的前侧,所述叶片沿所述轮毂的中心轴方向的两侧表面分别形成为吸力面和压力面,所述吸力面上设有至少一个凹槽,每个所述凹槽限定出减薄区,至少部分所述凹槽贯穿所述尾缘。
  2. 根据权利要求1所述的轴流风轮,其特征在于,每个所述凹槽的凹入深度h的取值范围为:0.3㎜<h<2㎜。
  3. 根据权利要求1或2所述的轴流风轮,其特征在于,每个所述叶片上设有一个所述减薄区,所述减薄区的轮廓边缘包括第一段和第二段,所述第一段的一端与所述尾缘连接,所述第一段的另一端与所述第二段的一端连接,所述第二段的另一端与所述叶根连接。
  4. 根据权利要求3所述的轴流风轮,其特征在于,所述第一段与所述外缘平行且间隔排布。
  5. 根据权利要求4所述的轴流风轮,其特征在于,所述第一段与所述外缘之间的间距为L1,10㎜<L1<50㎜。
  6. 根据权利要求3所述的轴流风轮,其特征在于,所述第二段与所述前缘平行且间隔排布。
  7. 根据权利要求6所述的轴流风轮,其特征在于,所述第二段与所述前缘之间的间距为L2,10㎜<L2<30㎜。
  8. 根据权利要求7所述的轴流风轮,其特征在于,所述减薄区与所述吸力面的其它区域圆滑过渡。
  9. 根据权利要求1-8中任一项所述的轴流风轮,其特征在于,所述减薄区为曲面。
  10. 一种空调器,其特征在于,包括权利要求1-9中任一项所述的轴流风轮。
PCT/CN2019/080147 2018-09-14 2019-03-28 轴流风轮及空调器 WO2020052220A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811076155.8 2018-09-14
CN201811076155.8A CN108869394B (zh) 2018-09-14 轴流风轮及空调器
CN201821513717.6 2018-09-14
CN201821513717.6U CN208804038U (zh) 2018-09-14 2018-09-14 轴流风轮及空调器

Publications (1)

Publication Number Publication Date
WO2020052220A1 true WO2020052220A1 (zh) 2020-03-19

Family

ID=69776618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080147 WO2020052220A1 (zh) 2018-09-14 2019-03-28 轴流风轮及空调器

Country Status (1)

Country Link
WO (1) WO2020052220A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256997A (ja) * 1996-03-25 1997-09-30 Senshin Zairyo Riyou Gas Jienereeta Kenkyusho:Kk 軸流圧縮機の動翼
JP2000110782A (ja) * 1998-09-30 2000-04-18 Fujitsu General Ltd ターボファン
CN101050771A (zh) * 2007-05-11 2007-10-10 北京航空航天大学 一种利用抽吸提高压气机叶栅负荷的方法
CN103511340A (zh) * 2012-06-28 2014-01-15 珠海格力电器股份有限公司 轴流风叶及包括该轴流风叶的空调
CN204175644U (zh) * 2014-09-30 2015-02-25 美的集团武汉制冷设备有限公司 轴流风轮和具有其的轴流风机
CN206159115U (zh) * 2016-10-28 2017-05-10 广东美的环境电器制造有限公司 风叶结构及风扇
CN107850083A (zh) * 2015-08-10 2018-03-27 三菱电机株式会社 送风机和搭载有该送风机的空调装置
CN107975494A (zh) * 2017-11-22 2018-05-01 广东美的暖通设备有限公司 轴流风轮和空调
CN108869394A (zh) * 2018-09-14 2018-11-23 广东美的制冷设备有限公司 轴流风轮及空调器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256997A (ja) * 1996-03-25 1997-09-30 Senshin Zairyo Riyou Gas Jienereeta Kenkyusho:Kk 軸流圧縮機の動翼
JP2000110782A (ja) * 1998-09-30 2000-04-18 Fujitsu General Ltd ターボファン
CN101050771A (zh) * 2007-05-11 2007-10-10 北京航空航天大学 一种利用抽吸提高压气机叶栅负荷的方法
CN103511340A (zh) * 2012-06-28 2014-01-15 珠海格力电器股份有限公司 轴流风叶及包括该轴流风叶的空调
CN204175644U (zh) * 2014-09-30 2015-02-25 美的集团武汉制冷设备有限公司 轴流风轮和具有其的轴流风机
CN107850083A (zh) * 2015-08-10 2018-03-27 三菱电机株式会社 送风机和搭载有该送风机的空调装置
CN206159115U (zh) * 2016-10-28 2017-05-10 广东美的环境电器制造有限公司 风叶结构及风扇
CN107975494A (zh) * 2017-11-22 2018-05-01 广东美的暖通设备有限公司 轴流风轮和空调
CN108869394A (zh) * 2018-09-14 2018-11-23 广东美的制冷设备有限公司 轴流风轮及空调器

Similar Documents

Publication Publication Date Title
JP4388992B1 (ja) プロペラファン、流体送り装置および成型金型
JP6022941B2 (ja) 自動車等のファン用プロペラ
JP5003198B2 (ja) 空気調和機の室外機
AU2008363120B2 (en) Propeller fan, fluid feeder and mold
WO2015146013A1 (ja) 扇風機用のプロペラファン、扇風機
WO2018123519A1 (ja) プロペラファン
CN113719471A (zh) 一种具有仿生型尾缘叶片的呼吸机降噪离心叶轮
CN202326414U (zh) 轴流风扇
JP2016070089A (ja) ファン
JP3677214B2 (ja) 軸流ファン
CN103486081A (zh) 轴流风叶、风机及空调器室外机
CN105240317A (zh) 一种风叶
CN102644623A (zh) 一种轴流风轮
CN103122872A (zh) 轴流风扇
JP2011179331A (ja) 送風機とその送風機を用いた空気調和機
CN113738694A (zh) 一种具有圆头形前缘叶型的高性能呼吸机离心叶轮
CN202628612U (zh) 轴流风叶、风机及空调器室外机
CN205639069U (zh) 轴流柜机的动叶、导流组件和轴流柜机
WO2020052220A1 (zh) 轴流风轮及空调器
CN108953222B (zh) 一种离心叶轮
JP6544463B2 (ja) プロペラファン
WO2018228066A1 (zh) 轴流风轮及空调器
WO2021233483A1 (zh) 风轮、风扇及空调器室外机
CN108869394B (zh) 轴流风轮及空调器
CN113738695A (zh) 一种具有抛物线型前缘叶片的高性能呼吸机离心叶轮

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19861227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19861227

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19861227

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.05.2021)