WO2020051810A1 - 液晶显示面板、液晶显示屏及电子设备 - Google Patents

液晶显示面板、液晶显示屏及电子设备 Download PDF

Info

Publication number
WO2020051810A1
WO2020051810A1 PCT/CN2018/105301 CN2018105301W WO2020051810A1 WO 2020051810 A1 WO2020051810 A1 WO 2020051810A1 CN 2018105301 W CN2018105301 W CN 2018105301W WO 2020051810 A1 WO2020051810 A1 WO 2020051810A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
light
crystal display
layer
substrate
Prior art date
Application number
PCT/CN2018/105301
Other languages
English (en)
French (fr)
Inventor
马磊
王鹏
肖广楠
张峰
李文兵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880097238.7A priority Critical patent/CN112639594B/zh
Priority to PCT/CN2018/105301 priority patent/WO2020051810A1/zh
Publication of WO2020051810A1 publication Critical patent/WO2020051810A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present application relates to the technical field of display devices, and in particular, to a liquid crystal display panel, a liquid crystal display screen, and an electronic device.
  • the embodiments of the present application provide a liquid crystal display panel, a liquid crystal display screen, and an electronic device capable of increasing the screen ratio.
  • an embodiment of the present application provides a liquid crystal display panel.
  • the liquid crystal display panel has a light transmitting area and a display area surrounding the light transmitting area.
  • the display area is used to display an image.
  • the light transmitting region allows visible light to pass through.
  • the liquid crystal display panel includes a first polarizer, a first substrate, a color filter layer, a device array layer, a second substrate, and a second polarizer, which are sequentially stacked. Both the first substrate and the second substrate are made of a light transmitting material and cover the light transmitting region.
  • the color film layer is also called a color filter (CF), and is used to pass light in a specific wavelength range.
  • CF color filter
  • the device array layer includes a plurality of thin film transistors (TFTs) arranged in an array.
  • TFTs thin film transistors
  • a portion of the color filter layer located in the light-transmitting region and a portion of the device array layer located in the light-transmitting region allow visible light to pass through.
  • a polarization axis of the first polarizer is perpendicular to a polarization axis of the second polarizer.
  • At least one of the first polarizer and the second polarizer is hollowed out in the light transmitting region. That is, the first polarizer is hollowed out in the light transmitting area, or the second polarizer is hollowed out in the light transmitting area, or the first polarizer and the second polarizer
  • the light-transmitting regions are all hollowed out.
  • both the first substrate and the second substrate are made of a light-transmitting material, a portion of the color film layer located in the light-transmitting area and the device array layer are located in the light-transmitting area. Part of the region allows visible light to pass, and at least one of the first polarizer and the second polarizer is hollowed out in the light transmitting region, so the light transmitting region allows visible light to pass.
  • optical devices such as a camera module in the electronic device can be placed under the light-transmitting area of the liquid crystal display panel to transmit visible light through the light-transmitting area.
  • the optical device limits the arrangement space of the liquid crystal display panel, and the light-transmitting area is surrounded by the display area, so that the liquid crystal display panel can set a larger display area to reduce
  • the first substrate and the second substrate also cover the display area.
  • the first substrate and the second substrate may be made of a glass material.
  • the first substrate and the second substrate are continuous plates on the entire surface, and have sufficient structural strength, so that the overall strength of the liquid crystal display panel is high, and it is not easily broken.
  • the liquid crystal display panel has high strength, the shape, size, number of the light-transmitting area, and the design of the distance from the edge of the liquid crystal display panel are more flexible and diversified. It is beneficial to improve the overall reliability of the electronic equipment.
  • the shape of the light-transmitting area may be a circle, an oval, a polygon, a rounded rectangle, a track shape (including two parallel straight edges and an arc edge connected between the two straight edges), and the like.
  • the number of the light-transmitting regions may be one or more.
  • the multiple light-transmitting regions can respectively provide a light transmission channel for multiple optical devices.
  • the arrangement of multiple light-transmitting regions can be flexibly designed, such as array arrangement, circular arrangement, and so on.
  • the light-transmitting area of the light-transmitting area is higher, which is beneficial to improving the working quality of the optical device.
  • the liquid crystal display panel further includes a plastic frame and a liquid crystal layer.
  • the plastic frame is located between the first substrate and the second substrate.
  • the plastic frame surrounds the outer peripheral side of the display area.
  • the light transmitting region is located inside the plastic frame.
  • the liquid crystal layer is filled inside the plastic frame.
  • the liquid crystal layer can be filled in the light-transmitting area and the display area at the same time, and there is no need to additionally provide a blocking structure between the light-transmitting area and the display area, thereby simplifying the liquid crystal
  • the manufacturing process of the display panel makes the cost of the liquid crystal display panel lower.
  • a part of the device array layer in the display area can control a deflection direction of the liquid crystal layer in the display area, and a part of the color filter layer in the display area can filter light.
  • the combination of the device array layer, the color filter layer, and the liquid crystal layer enables the display area to realize display. Since the liquid crystal can transmit light, visible light can pass through a portion of the liquid crystal layer in the light-transmitting region, and the light-transmitting region can transmit visible light.
  • the color filter layer includes a black matrix (BM) and a plurality of color resistive blocks arranged alternately with the black matrix.
  • BM black matrix
  • the black matrix is integrated in the color film layer, and the black matrix and the plurality of color color resist blocks multiplex a part of the thickness space of the liquid crystal display panel.
  • the liquid crystal layer is located between the color filter layer and the device array layer.
  • the color filter layer may be fabricated on the first substrate, and together with the first substrate, a color filter substrate may be formed.
  • the device array layer may be fabricated on the second substrate, and together with the second substrate, an array substrate is formed.
  • the liquid crystal layer is located between the first substrate and the color filter layer.
  • the device array layer and the color filter layer are sequentially formed on the second substrate to form a Color Filter On Array (COA) substrate; the first substrate and the The film layers on the first substrate together form a box substrate.
  • COA Color Filter On Array
  • the liquid crystal display panel first form the color filter substrate on the array and the pair of box substrates, then color filter the substrate on the array and the pair of box substrates, and then color filter on the array.
  • Liquid crystal is filled between the substrate and the pair of cell substrates to form the liquid crystal layer.
  • the color film layer is formed on the device array layer, the problem of high alignment requirements of the liquid crystal display panel can be solved, and the aperture ratio of the liquid crystal display panel can be improved.
  • the liquid crystal display panel further includes a black matrix.
  • the color film layer includes a plurality of color color resist blocks.
  • the black matrix is independent of the color filter layer.
  • the black matrix is located on a side of the first substrate facing the color filter layer, and the liquid crystal layer is located between the black matrix and the color film layer.
  • the device array layer and the color filter layer are sequentially formed on the second substrate to form a color filter substrate on the array; the first substrate and the first substrate and the color filter substrate formed on the first substrate.
  • the black matrices together form a pair of box substrates.
  • the black matrix and the plurality of color resist blocks are arranged staggered from the light transmitting area.
  • the black matrix is patterned on the display area.
  • the black matrix is substantially frame-shaped to form a plurality of hollowed-out areas arranged in a matrix.
  • the plurality of color color resist blocks are arranged in the display area, and the plurality of color color resist blocks cover the plurality of hollowed-out areas one to one correspondingly. At this time, neither the black matrix nor the plurality of color color resist blocks will block the light-transmitting area, and the light-transmitting area has a high light transmittance, which is conducive to improving the working quality of the optical device.
  • the black matrix is staggered and arranged in the light-transmitting area, and a part of the color resist blocks are arranged in the light-transmitting area.
  • the black matrix is patterned on the display area.
  • the black matrix is substantially frame-shaped to form a plurality of hollowed-out areas arranged in a matrix. Some of the color resist blocks are arranged in the display area and cover the hollowed-out areas one-to-one correspondingly.
  • the arrangement of the color resist blocks arranged in a part of the light-transmitting area can be flexibly set, for example, the resist blocks of the same color are arranged, or the resist blocks of different colors are arranged. At this time, the black matrix does not block the light-transmitting area.
  • a portion of the color resist block arranged in the light-transmitting area filters part of the light. Although the light transmittance is reduced, the light-transmitting property of the light-transmitting area can be maintained.
  • the filtering effect formed by the color resist blocks arranged in the light-transmitting area may be compensated or corrected by an algorithm in a controller in the electronic device to ensure the working quality of the optical device.
  • the liquid crystal display panel further includes a flat layer.
  • the flat layer covers the light-transmitting area and the display area.
  • the flat layer is located between the color filter layer and the liquid crystal layer. A side of the flat layer far from the color filter layer can provide a flat molding surface, thereby reducing the subsequent molding difficulty of other layer structures.
  • the flat layer is made of a transparent material.
  • the flat layer when the color film layer is located between the first substrate and the liquid crystal layer, the flat layer is formed on a side of the color film layer away from the first substrate and covers the color film. Floor.
  • the flat layer is formed on a side of the color film layer away from the device array layer.
  • the liquid crystal display panel may further include a second flat layer, and the second flat layer is located on a side of the first substrate facing the liquid crystal layer. The second flat layer can improve the adhesion of other layer structures formed subsequently on the first substrate.
  • the liquid crystal display panel further includes a first alignment layer (also referred to as an alignment layer) and a second alignment layer.
  • the first alignment layer is located on a side of the liquid crystal layer facing the first substrate.
  • the second alignment layer is located on a side of the liquid crystal layer facing the second substrate.
  • the first alignment layer and the second alignment layer are respectively located on opposite sides of the liquid crystal layer and directly contact the liquid crystal layer.
  • the liquid crystal layer is sandwiched between the first alignment layer and the second alignment layer.
  • the first alignment layer and the second alignment layer are used to provide a pretilt angle for the liquid crystal in the liquid crystal layer. Both the first alignment layer and the second alignment layer cover the light-transmitting region and the display region.
  • the first alignment layer and the second alignment layer both cover the light-transmitting region and the display region, during the preparation of the first alignment layer and the second alignment layer In the process, the risk of depositing foreign matter in the light-transmitting area can be reduced, so that the risk of noise passing through the light-transmitting area due to the foreign matter is small, thereby ensuring the quality of the optical device.
  • the arrangement of the first alignment layer and the second alignment layer is also beneficial to control the liquid crystal located in the light-transmitting area to maintain a specific angle, so as to reduce the risk of deviation of light during transmission, thereby improving the optical device. Quality of work.
  • the first alignment layer and the second alignment layer are formed on a flat layer
  • the flat layer can provide a flat molding surface
  • the first alignment layer and the second alignment layer can be formed.
  • the flat film layer has better molding quality.
  • the device array layer includes a plurality of light-transmitting layers and a plurality of light-shielding layers arranged in a stack.
  • the plurality of light shielding layers are arranged staggered from the light transmitting region.
  • the plurality of light-shielding layers are patterned on the display area.
  • One or more of the light transmitting layers are partially arranged on the light transmitting region.
  • the plurality of light-transmitting layers are patterned on the display area.
  • the light transmitting layer allows visible light to pass through.
  • the plurality of light shielding layers block visible light.
  • the thin film transistor in the device array layer may adopt a top gate structure, for example:
  • the device array layer includes a shielding layer, a buffer layer, a semiconductor layer, a gate insulation layer, a gate, a first insulation layer, a source, a drain, a second insulation layer, a common electrode, and a third insulation. Layer and pixel electrode.
  • the shielding layer is formed on the second substrate.
  • the buffer layer is formed on the second substrate and covers the shielding layer.
  • the semiconductor layer is located on a side of the buffer layer away from the second substrate and directly faces the shielding layer.
  • the semiconductor layer may be made of low temperature poly-silicon (LTPS) material.
  • the semiconductor layer includes a channel region, two lightly doped regions, and two heavily doped regions. The two lightly doped regions are connected to opposite ends of the channel region, respectively.
  • LTPS low temperature poly-silicon
  • the heavily doped regions are respectively connected to two ends of the lightly doped regions away from the channel region.
  • the gate insulating layer is located on a side of the buffer layer away from the second substrate and covers the semiconductor layer.
  • the gate insulating layer is provided with a first hole and a second hole respectively facing the two heavily doped regions.
  • the gate is located on a side of the gate insulating layer remote from the buffer layer and is directly opposite to the channel region.
  • the first insulating layer is located on a side of the gate insulating layer remote from the buffer layer and covers the gate.
  • the first insulating layer is provided with a third hole communicating with the first hole and a fourth hole communicating with the second hole.
  • the source electrode and the drain electrode are located on a side of the first insulating layer remote from the gate insulating layer, and the source electrode is connected to one of the heavily doped via the third hole and the first hole.
  • a doped region, the drain is connected to another heavily doped region via the fourth hole and the second hole.
  • the second insulating layer is located on a side of the first insulating layer remote from the gate insulating layer and covers the source electrode and the drain electrode.
  • the second insulating layer is provided with a fifth hole facing the drain (or the source).
  • the common electrode is located on a side of the second insulating layer remote from the first insulating layer.
  • the third insulating layer is located on a side of the second insulating layer remote from the first insulating layer and covers the common electrode.
  • the third insulating layer is provided with a sixth hole communicating with the fifth hole.
  • the pixel electrode is located on a side of the third insulating layer remote from the second insulating layer, and is connected to the drain (or the source) through the sixth hole and the fifth hole.
  • the plurality of light shielding layers may include the shielding layer, the semiconductor layer, the gate electrode, the source electrode, the drain electrode, and the like.
  • the plurality of light transmitting layers may include the buffer layer, the gate insulating layer, the first insulating layer, the second insulating layer, and the third insulating layer.
  • the pixel electrode and the common electrode are made of a light transmitting material, they may also belong to the plurality of light transmitting layers.
  • the thin film transistor in the device array layer may adopt a bottom gate structure, for example:
  • the device array layer includes a gate, a gate insulating layer, a semiconductor layer, a source, a drain, an insulating layer, and a pixel electrode.
  • the gate is formed on the second substrate.
  • the gate insulating layer is formed on the second substrate and covers the gate.
  • the semiconductor layer is located on a side of the gate insulating layer remote from the gate and directly faces the gate.
  • the semiconductor layer may be made of amorphous silicon ( ⁇ -Si) material.
  • the source electrode is located on a side of the gate insulating layer away from the second substrate and connected to an end of the semiconductor layer.
  • the drain is located on a side of the gate insulating layer remote from the second substrate and is connected to the other end of the semiconductor layer.
  • the insulating layer is located on a side of the gate insulating layer remote from the second substrate and covers the source electrode, the semiconductor layer, and the drain electrode.
  • the insulating layer is provided with a through hole facing the drain (or the source).
  • the pixel electrode is located on a side of the insulating layer remote from the gate insulating layer, and is connected to the drain (or the source) through the through hole.
  • the plurality of light shielding layers may include the gate, the semiconductor layer, the source, and the drain.
  • the plurality of light transmitting layers may include the gate insulating layer and the insulating layer.
  • the pixel electrode is made of a light-transmitting material, it may also belong to the plurality of light-transmitting layers.
  • the thickness of the device array layer in the light-transmitting area (in the direction of the first substrate).
  • the size of the second substrate in the direction) is not significantly different from the thickness in the display region portion, so that the thickness of the liquid crystal layer in the light transmitting region portion is similar to the thickness in the display region portion to reduce Due to the large difference in the layer structure, there is a risk that a display abnormality (such as a Newton's ring, etc.) occurs in the display area around the light-transmitting area, thereby improving the display quality of the liquid crystal display.
  • a display abnormality such as a Newton's ring, etc.
  • the layer structure of the device array layer may be different from the previous two embodiments, that is, the device array layer may have another layer structure.
  • the plurality of light-transmitting layers and the plurality of light-shielding layers have other film layers corresponding thereto.
  • the device array layer in a direction from the first substrate to the second substrate (that is, a thickness direction of the liquid crystal display panel), the device array layer is located at a part of the display area. Consistent with the thickness of the portion located in the light transmitting region. At this time, a thickness of a part of the light transmitting layer of the same light transmitting layer in the light transmitting region may be greater than a part thickness of the display region, so that the device array layer is located on the display. The thickness of the portion of the region is the same as the thickness of the portion of the light transmitting region.
  • a thickness of a portion of the device array layer located in the display area is the same as a thickness of a portion located in the light-transmitting area, so that the layer structure of the liquid crystal display in the display area and the light-transmitting area is relatively large. Similar to ensure the display effect of the liquid crystal display panel.
  • the second alignment layer can form a relatively flat film layer to prevent liquid accumulation in the second alignment layer at the periphery of the light-transmitting region. As a result, the problem of uneven display such as yellowing and whitening in the periphery of the light transmitting region is caused.
  • the liquid crystal display panel further includes a supporting component.
  • the supporting component is located between the first substrate and the second substrate, and penetrates the liquid crystal layer in a direction from the first substrate to the second substrate, so as to hold the liquid crystal layer. A distance between the first substrate and the second substrate.
  • the supporting component is used to maintain a distance (also called a box gap) between the first substrate and the second substrate, so that the liquid crystal display panel is unlikely to occur during manufacturing or use. Deformation, thereby ensuring the display quality of the liquid crystal display panel.
  • the support assembly includes a plurality of first support pillars, and the plurality of first support pillars are arranged staggered from the light transmitting region.
  • the plurality of first support columns are arranged at intervals from each other.
  • the plurality of first support pillars are arranged facing the black matrix.
  • the projections of the plurality of first support pillars on the first substrate are covered by the projections of the black matrix on the first substrate.
  • the plurality of first support pillars may be made of a light-transmitting material or an opaque material.
  • the support assembly further includes a second support post, and the second support post is partially or entirely arranged in the light transmitting area.
  • the second support pillar is made of a light-transmitting material.
  • the second support pillar supports the first substrate and the second substrate located in the light-transmitting area, so that the liquid crystal display panel is in the light-transmitting area. Having the same box gap as the display area to avoid display abnormalities in the display area around the light-transmitting area, so that the liquid crystal display has a higher display quality.
  • the number of the second support posts is plural.
  • a plurality of the second support pillars are arranged on the light-transmitting region at intervals.
  • a plurality of the second support columns may be arranged at substantially uniform intervals, so that the entire light transmitting area of the liquid crystal display panel has a relatively uniform cell gap.
  • the number of the second support pillars it is necessary to balance support requirements and light transmission requirements, so as to have enough second support pillars to maintain a box gap, and avoid setting too many of the second support pillars.
  • the pillars are supported and the transmittance of the light-transmitting area is too low.
  • the shape and size of the second support pillar may be the same as the first support pillar.
  • the second support pillar and the first support pillar may be substantially circular truncated.
  • the second support pillar and the first support pillar can be formed in the same process.
  • the second The height of the support pillar is greater than the height of the first support pillar.
  • the height of the second support pillar is designed to be able to support the first substrate and the second substrate reasonably.
  • the shape of the second support pillar can refer to the design of the first support pillar.
  • the second support pillar and the first support pillar may be substantially circular truncated.
  • the second support pillar and the first support pillar may be formed in the same process, or may be formed in two processes.
  • the number of the second support posts is one.
  • An end surface area of the second support pillar facing the second substrate is larger than an end surface area of the first support pillar facing the second substrate.
  • an end surface area of the second support pillar facing the first substrate is larger than an end surface area of the first support pillar facing the first substrate.
  • the second support pillar can provide a larger support area, so that the number of the second support pillars enables the support component to stably support the light-transmitting area.
  • the second support pillar may be in a circular truncated shape, and two end surfaces of the second support pillar are circular. At this time, the two end surfaces of the second support pillar can cover the light transmitting area as much as possible.
  • the second support pillar is formed on the first substrate, and an end surface of the second support pillar facing the first substrate covers the light-transmitting region. At this time, the end surface of the second support pillar facing the second substrate may cover the light-transmitting area or cover a part of the light-transmitting area. Since the second support pillar occupies a large amount or even the entire space of the liquid crystal layer in the light-transmitting region, the liquid crystal layer has little or no liquid crystal in the liquid crystal region.
  • the second support pillar may be made of a highly transparent material to increase the transmittance of the transparent region.
  • the light transmittance of the material used for the second support pillar may be higher than the light transmittance of the liquid crystal material.
  • an end surface of the second support pillar facing the second substrate is annular.
  • the second support pillar has an inner annular surface and an outer annular surface disposed opposite to each other. Liquid crystal is arranged in a space surrounded by the inner torus. The support strength of the second support post having the annular end surface is high.
  • the support assembly further includes one or more third support posts, and the second support posts are disposed around the one or more third support posts.
  • the third supporting pillars by setting one or more of the third supporting pillars, one or more of the third supporting pillars are matched with the second supporting pillars to jointly support the first substrate and the The second substrate can improve the support reliability of the support component for the liquid crystal display panel in the light-transmitting region.
  • the liquid crystal display panel further has a light shielding area surrounding and adjoining the light transmitting area.
  • the second support pillar portion is located in the light shielding area.
  • the part of the second support pillar located in the light-shielding area will not reduce the light transmittance of the light-shielding area, and can also improve the support of the liquid crystal display panel in the light-transmitting area. Properties, so that the liquid crystal display panel has a higher display quality.
  • a portion of the black matrix surrounding the light-transmitting area corresponds to the light-shielding area.
  • the second support post includes a first support block and a second support block.
  • the first support block and the second support block are arranged in a direction in which the first base material faces the second base material and are opposed to each other.
  • one of the first support block and the second support block is formed on the first substrate, and the other is formed on the second substrate.
  • the height of the first support block and the second support block is equal to the height of the second support pillar.
  • dividing one of the second support pillars into the first support block and the second support block is beneficial to reduce the difficulty of forming the second support pillar, so that the second support pillar The molding quality is higher.
  • an end surface area of the first support block facing the first base material is the same as an end surface area of the second support block facing the second base material.
  • the height of the first support block and the height of the second support block may be the same or different.
  • the liquid crystal display panel further has a light shielding area surrounding and adjoining the light transmitting area.
  • the support assembly further includes a fourth support post.
  • the fourth support pillars are arranged in the light-shielding area.
  • the fourth support pillar can support a portion of the liquid crystal display panel located in the light-shielding area, thereby reducing the risk of deformation of the light-shielding area and ensuring the display quality of the liquid crystal display panel .
  • the layer structure of the part of the device array layer in the light-shielding region is the same as the layer structure of the part in the display region, and the thickness is equal.
  • the height of the fourth support pillar is the same as the height of the first support pillar.
  • the number of the fourth support pillars is multiple.
  • a plurality of the fourth support pillars are arranged around the light-transmitting region at intervals.
  • the shape and size of the fourth support post may be the same as the first support post.
  • the fourth support post may be substantially circular-conical.
  • the fourth support pillar and the first support pillar can be formed in the same process.
  • the number of the fourth support posts is one.
  • An end surface of the fourth support pillar facing the second substrate is annular.
  • the support strength of the fourth support post having an annular end surface is high.
  • an embodiment of the present application further provides a liquid crystal display (Liquid Crystal Display, LCD).
  • the liquid crystal display includes a backlight module and the liquid crystal display panel.
  • the backlight module is configured to provide a backlight source for the liquid crystal display panel.
  • the backlight module has a light transmitting portion facing the light transmitting region. The light transmitting portion allows visible light to pass through.
  • the liquid crystal display panel of the liquid crystal display has a light transmitting region
  • the light transmitting region allows visible light to pass through
  • the backlight module is provided with light transmitting facing the light transmitting region. Therefore, when the liquid crystal display panel is applied to an electronic device, optical devices such as a camera module in the electronic device can be placed below the light-transmitting area to pass through the light-transmitting area (and the light-transmitting area).
  • Part) transmits visible light, thereby reducing the limitation of the arrangement space of the liquid crystal display by the optical device, and the light transmitting area is surrounded by the display area, so that the liquid crystal display can set a larger display Area to reduce the frame area of the electronic device, increase the display area of the electronic device, and increase the screen ratio of the electronic device.
  • the backlight module further includes a light emitting portion.
  • the light emitting portion is disposed around the light transmitting portion.
  • the light emitting portion corresponds to the display area of the liquid crystal display panel.
  • the light transmitting portion is a through hole.
  • the optical device of the electronic device may be partially or completely accommodated in the through hole, so that the arrangement of the optical device and the liquid crystal display screen is more compact, and both can reuse the space in the thickness direction of the electronic device. It is beneficial to reduce the thickness of the electronic device.
  • an embodiment of the present application further provides an electronic device.
  • the electronic device includes a casing, an optical device, and the above-mentioned liquid crystal display screen.
  • the liquid crystal display is mounted on the casing.
  • the liquid crystal display screen and the casing jointly surround the entire machine cavity.
  • the optical device is housed in the inner cavity of the whole machine and directly faces the light transmitting area.
  • the optical device can transmit light through the light-transmitting area of the liquid crystal display, thereby eliminating the need to occupy the lateral peripheral space of the liquid crystal display, so that the liquid crystal display can design a larger display. Area to increase the screen ratio of the electronic device.
  • the optical device may be a camera module, an ambient light sensor, a proximity light sensor, or an optical fingerprint sensor.
  • the electronic device may include one or more of the optical devices.
  • the liquid crystal display panel may include one or more light transmitting regions.
  • the electronic device further includes a cover plate.
  • the cover is located on a side of the liquid crystal display screen away from the inner cavity of the whole machine.
  • the liquid crystal display screen may be adhered to the cover plate through an adhesive layer to form a screen assembly together.
  • the adhesive layer may be made of a transparent optical adhesive material. The position of the adhesive layer facing the light-transmitting region may be hollowed out.
  • FIG. 1 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an embodiment of a portion of the electronic device at line A-A shown in FIG. 1 in an embodiment
  • FIG. 3 is a partially exploded schematic view of the structure shown in FIG. 2;
  • FIG. 4 is a schematic structural diagram of a part of the electronic device shown in FIG. 1 at the A-A line in another embodiment
  • FIG. 5 is a partially exploded schematic diagram of the structure shown in FIG. 4;
  • FIG. 6 is a schematic structural diagram of the liquid crystal display panel shown in FIG. 3 in the first embodiment
  • FIG. 7 is a schematic structural diagram of a part of a device array layer and a second substrate of the liquid crystal display panel shown in FIG. 6 in an embodiment
  • FIG. 8 is a schematic structural view of a part of the device array layer and the second substrate of the liquid crystal display panel shown in FIG. 6 in another embodiment
  • FIG. 9 is a schematic structural diagram of a liquid crystal display panel shown in FIG. 3 in a second embodiment
  • FIG. 10 is a schematic structural diagram of a liquid crystal display panel shown in FIG. 3 in a third embodiment
  • FIG. 11 is a schematic structural diagram of a liquid crystal display panel shown in FIG. 3 in a fourth embodiment
  • FIG. 12 is a schematic structural diagram of a liquid crystal display panel shown in FIG. 3 in a fifth embodiment
  • FIG. 13 is a schematic structural diagram of a liquid crystal display panel shown in FIG. 3 in a sixth embodiment
  • FIG. 14 is a schematic structural diagram of a liquid crystal display panel shown in FIG. 3 in a seventh embodiment
  • FIG. 15 is a schematic structural diagram of a liquid crystal display panel shown in FIG. 3 in an eighth embodiment
  • FIG. 16 is a schematic structural diagram of a liquid crystal display panel shown in FIG. 3 in a ninth embodiment
  • FIG. 17 is a schematic structural diagram of a liquid crystal display panel shown in FIG. 3 in a tenth embodiment
  • FIG. 18 is a schematic structural diagram of a liquid crystal display panel shown in FIG. 3 in an eleventh embodiment
  • FIG. 19 is a schematic diagram showing a positional relationship between a second support pillar and a third support pillar of the liquid crystal display panel shown in FIG. 18;
  • FIG. 20 is a schematic structural diagram of a liquid crystal display panel shown in FIG. 3 in a twelfth embodiment
  • FIG. 21 is a schematic diagram showing a positional relationship between a second support pillar and a third support pillar of the liquid crystal display panel shown in FIG. 20;
  • FIG. 22 is a schematic structural diagram of a liquid crystal display panel shown in FIG. 3 in a thirteenth embodiment
  • FIG. 23 is a schematic structural diagram of a liquid crystal display panel shown in FIG. 3 in a fourteenth embodiment.
  • FIG. 1 is a schematic structural diagram of an electronic device 100 according to an embodiment of the present application.
  • FIG. 2 is a partial structure of the electronic device 100 at the AA line shown in FIG.
  • FIG. 3 is a schematic diagram of the structure shown in FIG. 2.
  • the electronic device 100 may be any device having communication and storage functions, such as a tablet computer, a mobile phone, an e-reader, a notebook computer, a vehicle-mounted device, a wearable device, and the like.
  • a tablet computer such as a tablet computer, a mobile phone, an e-reader, a notebook computer, a vehicle-mounted device, a wearable device, and the like.
  • the embodiment shown in FIG. 1 is described by using the electronic device 100 as a mobile phone as an example.
  • the electronic device 100 includes a housing 200, an optical device 300, and a liquid crystal display (Liquid Crystal Display, LCD) 400.
  • the liquid crystal display 400 is mounted on the casing 200.
  • the case 200 may include a bezel and a back cover.
  • the frame surrounds the periphery of the back cover.
  • the liquid crystal display 400 is disposed on a side of the frame away from the back cover.
  • the liquid crystal display screen 400 and the casing 200 jointly surround the entire machine cavity.
  • the optical device 300 is housed in the inner cavity of the whole machine.
  • the optical device 300 may be a camera module, an ambient light sensor, a proximity light sensor, or an optical fingerprint sensor.
  • the structure shown in FIG. 2 is described by taking the optical device 300 as a camera module as an example.
  • the structure shown in FIG. 2 can also be applied to other optical devices 300 that use visible light as the recognition light, such as an ambient light sensor, an optical fingerprint sensor that recognizes visible light, and the like.
  • the liquid crystal display 400 includes a backlight module 500 and a liquid crystal display panel 600.
  • the backlight module 500 is used to provide a backlight source for the liquid crystal display panel 600.
  • the liquid crystal display panel 600 includes a light transmitting region 601 and a display region 602 surrounding the light transmitting region 601.
  • the display area 602 is used to display an image.
  • the light transmitting region 601 allows visible light to pass.
  • the backlight module 500 has a light transmitting portion 501 facing the light transmitting region 601.
  • the light transmitting portion 501 allows visible light to pass through.
  • the optical device 300 is disposed facing the light-transmitting area 601.
  • the liquid crystal display panel 600 of the liquid crystal display 400 has a light transmitting region 601
  • the light transmitting region 601 allows visible light to pass through
  • the backlight module 500 has a light transmitting portion 501 facing the light transmitting region 601. Therefore, the electronic device
  • the optical device 300 such as the camera module in 100 can be placed under the light-transmitting area 601 to transmit visible light through the light-transmitting area 601 (and the light-transmitting portion 501) without occupying the lateral peripheral space of the liquid crystal display 400, thereby reducing optical
  • the limitation of the arrangement space of the liquid crystal display 400 by the device 300, and the transparent area 601 is surrounded by the display area 602, so that the liquid crystal display 400 can set a larger display area 602 to reduce the frame area of the electronic device 100, The display area of the electronic device 100 is increased, and the screen ratio of the electronic device 100 is increased.
  • the light-transmitting area of the liquid crystal display panel 400 corresponds to the light-transmitting area 601 of the liquid crystal display panel 600 thereof, and the two overlap.
  • the display area of the liquid crystal display 400 corresponds to the display area 602 of the liquid crystal display panel 600, and the two overlap.
  • the transparent portion 501 of the backlight module 500 is a through hole.
  • the optical device 300 of the electronic device 100 may be partially or completely accommodated in the through hole, so that the arrangement of the optical device 300 and the liquid crystal display screen 400 is more compact. Both can reuse the space in the thickness direction of the electronic device 100, which is beneficial to the electronics Thinning of the device 100.
  • the light transmitting portion 501 of the backlight module 500 may be made of a light guide material.
  • the light guide material may be a transparent material.
  • the optical device 300 is located on a side of the light transmitting portion 501 away from the light transmitting region 601 of the liquid crystal display panel 600.
  • the light transmitting portion 501 and the light transmitting region 601 are used to transmit visible light.
  • the liquid crystal display panel 600 includes a first polarizer 10, a liquid crystal cell 20, and a second polarizer 30 which are sequentially stacked.
  • the first polarizer 10 and the second polarizer 30 are stacked on opposite sides of the liquid crystal cell 20, respectively.
  • the liquid crystal cell 20 allows visible light to pass through a portion of the light transmitting region 601.
  • the polarization axis of the first polarizer 10 is perpendicular to the polarization axis of the second polarizer 30. At least one of the first polarizer 10 and the second polarizer 30 is hollowed out in the light transmitting region 601.
  • the first polarizer 10 is hollowed out in the light-transmitting area 601, or the second polarizer 30 is hollowed out in the light-transmitting area 601, or the first polarizer 10 and the second polarizer 30 are in the light-transmitting area 601 Both are skeletonized.
  • the liquid crystal display panel 600 allows visible light to pass through a portion of the light transmitting region 601.
  • the first polarizer 10 and the second polarizer 30 are both hollowed out in the light-transmitting area 601
  • the light-transmitting area 601 has a higher light transmittance, which is beneficial to improving the working quality of the optical device 300.
  • the structure shown in FIG. 2 and FIG. 3 is described by taking the first polarizing plate 10 and the second polarizing plate 30 both hollowed out in the light-transmitting area 601 as an example.
  • the electronic device 100 further includes a cover 700.
  • the cover plate 700 is located on a side of the liquid crystal display screen 400 far from the inner cavity of the whole machine.
  • the liquid crystal display screen 400 can be adhered to the cover plate 700 through the adhesive layer 800 to form a screen assembly together.
  • the light-transmitting area 901 of the screen assembly corresponds to the light-transmitting area 601 of the liquid crystal display panel 600 thereof, and the two overlap.
  • the display area 902 of the screen assembly corresponds to the display area 602 of its liquid crystal display panel 600, and the two are overlapped.
  • the adhesive layer 800 may be made of a transparent optical adhesive (Optically Clear Adhesive, OCA) material.
  • OCA Optically Clear Adhesive
  • the positions where the adhesive layer 800 faces the light-transmitting area 601 can be hollowed out to ensure the high light transmittance of the screen component corresponding to the light-transmitting area 601.
  • the adhesive layer 800 may also cover the light-transmitting area 601.
  • the liquid crystal display 400 may integrate a touch function.
  • the liquid crystal display 400 may further include a touch layer.
  • the touch layer may be located between the first polarizer 10 and the liquid crystal cell 20, in the liquid crystal cell 20, or between the liquid crystal cell 20 and the first polarizer 10.
  • a touch film layer may also be provided between the cover plate 700 and the liquid crystal display 400 so that the screen assembly integrates a touch function.
  • FIG. 4 is a schematic structural view of another part of the electronic device 100 at the AA line shown in FIG. 1 in another embodiment
  • FIG. 5 is a partially exploded schematic view of the structure shown in FIG. 4.
  • the structure shown in FIG. 4 is described using the optical device 300 as a proximity light sensor as an example.
  • the structure shown in FIG. 4 can also be applied to other optical devices 300 that use invisible light as identification light, such as an optical fingerprint sensor that recognizes invisible light.
  • the film layer of the liquid crystal display panel 600 located in the light-transmitting area 601 (the specific film structure will be described later) or the material of the plate can be designed by referring to the traditional solution. Since the portion of the liquid crystal display panel 600 located in the light-transmitting area 601 allows visible light Passed, so the portion of the liquid crystal display panel 600 located in the light-transmitting region 601 also allows invisible light to pass through.
  • the transparent portion 501 in the backlight module 500 also allows invisible light to pass through.
  • the optical device 300 using invisible light as the identification light can transmit light through the light transmission area 601 (and the light transmission part 501 of the backlight module 500) of the liquid crystal display panel 600.
  • first polarizer 10 and the second polarizer 30 are hollowed out in the light transmitting region 601.
  • first polarizer 10 covers the light-transmitting area 601 and the display area 602.
  • the second polarizer 30 covers the display area 602 and staggers the light-transmitting area 601. Since the optical device 300 using invisible light as the identification light has a lower requirement on the transmittance, one of the first polarizer 10 and the second polarizer 30 can be opened to meet the device requirements.
  • the adhesive layer 800 between the first polarizer 10 and the cover plate 700 may also cover the light-transmitting area 601 to form a continuous adhesive film layer.
  • both the first polarizer 10 and the second polarizer 30 may be hollowed out in the light-transmitting region 601.
  • the electronic device 100 may include one or more optical devices 300.
  • the liquid crystal display panel 600 may include one or more light-transmitting regions 601, and the light-transmitting portions 501 of the backlight module 500 are disposed corresponding to the light-transmitting regions 601.
  • the electronic device 100 includes a plurality of optical devices 300, and the liquid crystal display panel 600 includes a plurality of light-transmitting regions 601.
  • the plurality of optical devices 300 face the plurality of light-transmitting regions 601, respectively, to transmit light through the plurality of light-transmitting regions 601.
  • one light-transmitting region 601 can provide a light transmission channel for one optical device 300, and can also provide a light transmission channel for multiple optical devices 300 at the same time.
  • FIG. 6 is a schematic structural diagram of the liquid crystal display panel 600 shown in FIG. 3 in the first embodiment.
  • the liquid crystal cell 20 includes a first base material 1, a color filter layer 2, a device array layer 3, and a second base material 4 which are stacked in this order.
  • the liquid crystal display panel 600 includes a first polarizer 10, a first substrate 1, a color filter layer 2, a device array layer 3, a second substrate 4, and a second polarizer 30 that are stacked in this order. Both the first substrate 1 and the second substrate 4 are made of a light transmitting material and cover the light transmitting region 601.
  • the color filter layer 2 is also called a color filter (CF), and is used to pass light in a specific wavelength range.
  • the device array layer 3 includes a plurality of thin film transistors (TFTs) arranged in an array. Both the portion of the color filter layer 2 located in the light-transmitting region 601 and the portion of the device array layer 3 located in the light-transmitting region 601 allow visible light to pass through.
  • TFTs thin film transistors
  • both the first substrate 1 and the second substrate 4 are made of a light-transmitting material, the portion of the color film layer 2 located in the light-transmitting area 601 and the portion of the device array layer 3 located in the light-transmitting area 601 allow visible light. Passed, and at least one of the first polarizer 10 and the second polarizer 30 is hollowed out in the light-transmitting area 601, so the light-transmitting area 601 allows visible light to pass through.
  • optical devices 300 such as a camera module in the electronic device 100 can be placed under the light-transmitting area 601 of the liquid crystal display panel 600 to transmit visible light through the light-transmitting area 601, thereby reducing optical
  • the device 300 limits the arrangement space of the liquid crystal display panel 600, and the light-transmitting area 601 is surrounded by the display area 602, so that the liquid crystal display panel 600 can set a larger display area 602 to reduce the frame area of the electronic device 100, The display area of the electronic device 100 is increased, and the screen ratio of the electronic device 100 is increased.
  • the first substrate 1 and the second substrate 4 also cover the display area 602.
  • the first substrate 1 and the second substrate 4 may be made of glass materials.
  • the first substrate 1 and the second substrate 4 are continuous plates on the entire surface, and have sufficient structural strength, so that the overall strength of the liquid crystal display panel 600 is high, and it is not easily broken.
  • the shape, size, and number of the light-transmitting regions 601 and the design of the distance from the edges of the liquid crystal display panel 600 are more flexible and diversified, which is beneficial to improve The overall reliability of the electronic device 100.
  • the shape of the light-transmitting region 601 may be a circle, an oval, a polygon, a rounded rectangle, a racetrack shape (including two parallel sides that are parallel to each other and an arc side that is oppositely connected between the two straight sides).
  • the number of the light-transmitting regions 601 may be one or more.
  • the plurality of light-transmitting regions 601 may respectively provide a light transmission channel for the plurality of optical devices 300.
  • the arrangement manner of the plurality of light-transmitting regions 601 can be flexibly designed, such as an array arrangement, a circular arrangement, and the like.
  • the liquid crystal display panel 600 further includes a plastic frame 5 and a liquid crystal layer 6.
  • the rubber frame 5 is located between the first substrate 1 and the second substrate 4.
  • the plastic frame 5 surrounds the outer peripheral side of the display area 602.
  • the light-transmitting area 601 is located inside the plastic frame 5.
  • the liquid crystal layer 6 is filled inside the plastic frame 5.
  • the liquid crystal layer 6 can be filled in the light-transmitting area 601 and the display area 602 at the same time, and there is no need to additionally provide a partition structure between the light-transmitting area 601 and the display area 602, thereby simplifying the manufacturing process of the liquid crystal display panel 600. Therefore, the cost of the liquid crystal display panel 600 is lower.
  • the part of the device array layer 3 in the display area 602 can control the deflection direction of the liquid crystal of the liquid crystal layer 6 in the display area 602, and the part of the color filter layer 2 in the display area 602 can filter light.
  • the device array layer 3, the color film layer 2 and the liquid crystal layer 6 cooperate to enable the display area 602 to display. Since the liquid crystal can transmit light, visible light can pass through the portion of the liquid crystal layer 6 in the light transmitting region 601, and the light transmitting region 601 can transmit visible light.
  • the color film layer 2 includes a black matrix (BM) 21 and a plurality of color color resist blocks 22 arranged alternately with the black matrix 21.
  • the plurality of color resists 22 include a red (R) resist, a green (G) resist, and a blue (B) resist.
  • the plurality of color resist blocks 22 may further include white (W) resist blocks or yellow (Y) resist blocks.
  • the black matrix 21 is integrated in the color filter layer 2, and the black matrix 21 and a plurality of color resist blocks 22 reuse a part of the thickness space of the liquid crystal display panel 600.
  • the liquid crystal layer 6 is located between the color filter layer 2 and the device array layer 3.
  • the color film layer 2 can be fabricated on the first substrate 1, and forms a color film substrate together with the first substrate 1.
  • the device array layer 3 may be fabricated on the second substrate 4, and together with the second substrate 4, an array substrate is formed.
  • an array substrate and a color filter substrate are respectively formed, and then the cell array substrate and the color filter substrate are filled, and then liquid crystal is filled between the array substrate and the color filter substrate to form a liquid crystal layer 6.
  • the black matrix 21 and the multiple color resist blocks 22 are staggered and arranged in a transparent region 601.
  • the black matrix 21 is patterned on the display area 602.
  • the black matrix 21 is substantially frame-shaped to form a plurality of hollowed-out areas arranged in a matrix.
  • a plurality of color resist blocks 22 are arranged in the display area 602, and a plurality of color resist blocks 22 cover a plurality of hollowed out areas one by one.
  • neither the black matrix 21 nor the multiple color resist blocks 22 will block the light-transmitting area 601, and the light-transmitting area 601 has a high light transmittance, which is beneficial to improving the working quality of the optical device 300.
  • the liquid crystal display panel 600 further includes a flat layer 7.
  • the flat layer 7 is located between the color filter layer 2 and the liquid crystal layer 6.
  • a side of the flat layer 7 far from the color filter layer 2 can provide a flat molding surface 71, thereby reducing the subsequent molding difficulty of other layer structures.
  • the flat layer 7 is made of a transparent material.
  • the flat layer 7 is arranged on the display area 602 and staggered from the light transmission area 601. That is, the flat layer 7 is hollowed out in the light transmitting region 601.
  • the liquid crystal display panel 600 further includes a first alignment layer (also referred to as an alignment layer) 8 and a second alignment layer 9.
  • the first alignment layer 8 is located on a side of the liquid crystal layer 6 facing the first substrate 1.
  • the second alignment layer 9 is located on a side of the liquid crystal layer 6 facing the second substrate 4.
  • the first alignment layer 8 and the second alignment layer 9 are respectively located on opposite sides of the liquid crystal layer 6 and directly contact the liquid crystal layer 6.
  • the liquid crystal layer 6 is interposed between the first alignment layer 8 and the second alignment layer 9.
  • the first alignment layer 8 and the second alignment layer 9 are used to provide a pretilt angle for the liquid crystal in the liquid crystal layer 6.
  • Both the first alignment layer 8 and the second alignment layer 9 cover the light-transmitting region 601 and the display region 602.
  • first alignment layer 8 and the second alignment layer 9 both cover the light-transmitting area 601 and the display area 602, during the manufacturing process of the first alignment layer 8 and the second alignment layer 9, it is possible to reduce The risk of depositing foreign matter in the light-transmitting area 601 makes the risk of noise passing through the light-transmitting area 601 due to the foreign matter smaller, thereby ensuring the working quality of the optical device 300.
  • the arrangement of the first alignment layer 8 and the second alignment layer 9 is also beneficial to controlling the liquid crystals located in the light-transmitting region 601 to maintain a specific angle, so as to reduce the risk of deviation of light during transmission, thereby improving the working quality of the optical device 300.
  • the first alignment layer 8 may be formed on the molding surface 71 of the flat layer 7 away from the color filter layer 2. Since the molding surface 71 is flat, the molding difficulty of the first alignment layer 8 is low, and the molding quality of the first alignment layer 8 is better.
  • the first alignment layer 8 may be hollowed out in the light transmitting region 601.
  • the second alignment layer 9 may be hollowed out in the light-transmitting region 601.
  • FIG. 7 is a partial structural schematic diagram of an embodiment of the device array layer 3 and the second substrate 4 of the liquid crystal display panel 600 shown in FIG. 6.
  • FIG. 6 is a schematic structural diagram of a part of the device array layer 3 and the second substrate 4 of the liquid crystal display panel 600 in another embodiment.
  • the device array layer 3 includes a plurality of light-transmitting layers 301 and a plurality of light-shielding layers 302 disposed in a stack.
  • the plurality of light shielding layers 302 are arranged staggered from the light transmitting region 601.
  • the plurality of light shielding layers 302 are patterned on the display area 602.
  • One or more light-transmitting layers 301 are partially arranged on the light-transmitting area 601.
  • the plurality of light-transmitting layers 301 are patterned on the display area 602.
  • the light transmitting layer 301 allows visible light to pass through.
  • the light shielding layer 302 blocks visible light.
  • the thickness of the device array layer 3 in the light-transmitting area 601 is not much different, so that the thickness of the liquid crystal layer 6 in the light-transmitting area 601 portion is similar to the thickness in the display area 602 portion, so as to reduce
  • a display abnormality such as a Newton's ring, etc.
  • the thin film transistor in the device array layer 3 may adopt a top gate structure.
  • the device array layer 3 includes a shielding layer 31, a buffer layer 32, a semiconductor layer 33, a gate insulation layer 34, a gate 35, a first insulation layer 36, a source 37, a drain 38, and a second insulation layer 39.
  • the shielding layer 31 is formed on the second substrate 4.
  • the shielding layer 31 may be made of a metal material.
  • the buffer layer 32 is formed on the second base material 4 and covers the shielding layer 31.
  • the semiconductor layer 33 is located on a side of the buffer layer 32 away from the second substrate 4 and directly faces the shielding layer 31.
  • the semiconductor layer 33 may be made of low temperature poly-silicon (LTPS) material.
  • the semiconductor layer 33 includes a channel region, two lightly doped regions, and two heavily doped regions.
  • the two lightly doped regions are respectively connected to opposite ends of the channel region, and the two heavily doped regions are respectively connected to The two lightly doped regions are far from both ends of the channel region.
  • the gate insulating layer 34 is located on a side of the buffer layer 32 away from the second substrate 4 and covers the semiconductor layer 33.
  • the gate insulating layer 34 is provided with a first hole and a second hole respectively facing the two heavily doped regions.
  • the gate 35 is located on a side of the gate insulating layer 34 away from the buffer layer 32 and is disposed directly opposite the channel region.
  • the first insulating layer 36 is located on a side of the gate insulating layer 34 away from the buffer layer 32 and covers the gate 35.
  • the first insulating layer 36 is provided with a third hole communicating with the first hole and a fourth hole communicating with the second hole.
  • the source electrode 37 and the drain electrode 38 are located on a side of the first insulating layer 36 away from the gate insulating layer 34.
  • the source electrode 37 is connected to one of the heavily doped regions through a third hole and the first hole.
  • the second hole is connected to another heavily doped region.
  • the second insulating layer 39 is located on a side of the first insulating layer 36 away from the gate insulating layer 34 and covers the source electrode 37 and the drain electrode 38.
  • the second insulating layer 39 is provided with a fifth hole facing the drain electrode 38 (or the source electrode 37).
  • the common electrode 310 is located on a side of the second insulating layer 39 away from the first insulating layer 36.
  • the third insulating layer 311 is located on a side of the second insulating layer 39 away from the first insulating layer 36 and covers the common electrode 310.
  • the third insulating layer 311 is provided with a sixth hole communicating with the fifth hole.
  • the pixel electrode 312 is located on a side of the third insulating layer 311 away from the second insulating layer 39, and is connected to the drain electrode 38 (or the source electrode 37) through the sixth hole and the fifth hole.
  • the plurality of light shielding layers 302 may include a shielding layer 31, a semiconductor layer 33, a gate electrode 35, a source electrode 37, a drain electrode 38, and the like.
  • the plurality of light transmitting layers 301 may include a buffer layer 32, a gate insulating layer 34, a first insulating layer 36, a second insulating layer 39, and a third insulating layer 311.
  • the pixel electrode 312 and the common electrode 310 are made of a light-transmitting material, they may belong to a plurality of light-transmitting layers 301.
  • the thin film transistor in the device array layer 3 may adopt a bottom gate structure.
  • the device array layer 3 includes a gate 35, a gate insulating layer 34, a semiconductor layer 33, a source 37, a drain 38, an insulating layer 313, and a pixel electrode 312.
  • the gate 35 is formed on the second substrate 4.
  • the gate insulating layer 34 is formed on the second substrate 4 and covers the gate 35.
  • the semiconductor layer 33 is located on a side of the gate insulating layer 34 away from the gate 35 and directly faces the gate 35.
  • the semiconductor layer 33 may be made of an amorphous silicon ( ⁇ -Si) material.
  • the source electrode 37 is located on a side of the gate insulating layer 34 away from the second substrate 4 and connected to the semiconductor layer 33.
  • the drain electrode 38 is located on one side of the gate insulating layer 34 away from the second substrate 4 and is connected to the other end of the semiconductor layer 33.
  • the insulating layer 313 is located on a side of the gate insulating layer 34 away from the second substrate 4 and covers the source electrode 37, the semiconductor layer 33 and the drain electrode 38.
  • the insulating layer 313 is provided with a through hole facing the drain electrode 38 (or the source electrode 37).
  • the pixel electrode 312 is located on a side of the insulating layer 313 away from the gate insulating layer 34, and is connected to the drain electrode 38 (or the source electrode 37) through a via.
  • the plurality of light shielding layers 302 may include a gate 35, a semiconductor layer 33, a source 37, and a drain 38.
  • the plurality of light transmitting layers 301 may include a gate insulating layer 34 and an insulating layer 313.
  • the pixel electrode 312 is made of a light-transmitting material, it may also belong to a plurality of light-transmitting layers 301.
  • the layer structure of the device array layer 3 may be different from the previous two embodiments, that is, the device array layer 3 may have other layer structures.
  • the plurality of light-transmitting layers 301 and the plurality of light-shielding layers 302 have other film layers corresponding thereto.
  • the device array layer 3 is located in the display area 602.
  • the thickness of the portion is larger than that of the portion located in the light-transmitting region 601.
  • the thickness of the same transparent layer 301 in the display region 602 and the transparent region 601 can be kept the same, so as to reduce the difficulty of preparing each layer of the transparent layer 301 and the difficulty of preparing the device array layer 3.
  • the device array layer 3 can be arranged with as many light-transmitting layers 301 as possible in the light-transmitting region 601 to reduce the thickness difference between the device array layer 3 in the display region 602 and the light-transmitting region 601.
  • the liquid crystal display panel 600 further includes a supporting component 40.
  • the support assembly 40 is located between the first substrate 1 and the second substrate 4 and penetrates the liquid crystal layer 6 in the direction Z of the first substrate 1 toward the second substrate 4 to hold the first substrate 1 and the first substrate 1. The distance between the two substrates 4.
  • the support assembly 40 is used to maintain a distance (also referred to as a cell gap) between the first substrate 1 and the second substrate 4, so that the liquid crystal display panel 600 is not easily deformed during manufacture or use, thereby ensuring that The display quality of the liquid crystal display panel 600.
  • the support assembly 40 includes a plurality of first support pillars 41, and the plurality of first support pillars 41 are arranged staggered from the light-transmitting area 601.
  • the plurality of first support posts 41 are arranged at intervals from each other.
  • the plurality of first support columns 41 are arranged opposite to the black matrix 21. In other words, the projections of the plurality of first support pillars 41 on the first substrate 1 are covered by the projections of the black matrix 21 on the first substrate 1.
  • the plurality of first support pillars 41 may be made of a light-transmitting material or an opaque material.
  • the arrangement positions of the plurality of first support pillars 41 may not be limited by the black matrix 21.
  • the liquid crystal display panel 600 further has a light-shielding region 603 surrounding and adjoining the light-transmitting region 601.
  • the light-shielding region 603 is located between the light-transmitting region 601 and the display region 602.
  • the portion of the black matrix 21 surrounding the light-transmitting area 601 corresponds to the light-shielding area 603.
  • the support assembly 40 further includes a fourth support post 44.
  • the fourth support pillar 44 is arranged in the light-shielding area 603.
  • the fourth support pillar 44 can support a portion of the liquid crystal display panel 600 located in the light-shielding region 603, thereby reducing the risk of deformation of the light-shielding region 603 to ensure the display quality of the liquid crystal display panel 600.
  • the layer structure of the device array layer 3 in the light-shielding region 603 is the same as that of the display region 602 in the same layer thickness.
  • the height of the fourth support pillar 44 is the same as the height of the first support pillar 41.
  • the number of the fourth support posts 44 is plural.
  • the plurality of fourth support pillars 44 are arranged at intervals around the light-transmitting area 601.
  • the shape and size of the fourth support post 44 may be the same as those of the first support post 41.
  • the fourth support pillar 44 may be substantially circular-conical.
  • the fourth support pillar 44 and the first support pillar 41 can be formed in the same process.
  • FIG. 9 is a schematic structural diagram of the liquid crystal display panel 600 shown in FIG. 3 in the second embodiment.
  • the flat layer 7 is located between the color filter layer 2 and the liquid crystal layer 6.
  • the flat layer 7 is made of a transparent material.
  • the flat layer 7 covers the light-transmitting area 601 and the display area 602. At this time, the side of the flat layer 7 far from the color film layer 2 can provide a complete and flat molding surface 71, thereby reducing the molding difficulty of other subsequent layer structures (such as the first alignment layer 8), which is beneficial to improving the liquid crystal display panel. Yield of 600.
  • FIG. 10 is a schematic structural diagram of a liquid crystal display panel 600 shown in FIG. 3 in a third embodiment.
  • the color filter layer 2 includes a black matrix 21 and a plurality of color color resist blocks 22 arranged alternately with the black matrix 21.
  • the liquid crystal layer 6 is located between the first substrate 1 and the color filter layer 2.
  • the device array layer 3 and the color filter layer 2 are sequentially formed on the second substrate 4 to form a color filter on array (COA) substrate; the first substrate 1 and the first substrate 1 are formed.
  • the upper film layers together form a pair of box substrates.
  • When making the liquid crystal display panel 600 firstly form a color filter substrate on the array and a pair of box substrates, then color filter substrate on the box array and a pair of box substrates, and then fill the liquid crystal between the color filter substrate and the box substrate on the array to form LCD layer 6.
  • the color film layer 2 is formed on the device array layer 3, the problem of high alignment requirements of the liquid crystal display panel 600 can be solved, and the aperture ratio of the liquid crystal display panel 600 can also be improved.
  • the color filter layer 2 is located between the liquid crystal layer 6 and the device array layer 3, and the flat layer 7 is formed on a side of the color filter layer 2 away from the device array layer 3.
  • the flat layer 7 forms a complete and flat molding surface 71 on the side far from the color film layer 2, which can reduce the subsequent molding difficulty of other layer structures (such as the second alignment layer 9), and is beneficial to improve the yield of the liquid crystal display panel 600.
  • the liquid crystal display panel 600 may further include a second flat layer 50.
  • the second flat layer 50 is located on a side of the first substrate 1 facing the liquid crystal layer 6.
  • the second flat layer 50 can improve the adhesion of other layer structures (such as the first alignment layer 8) formed on the first substrate 1 later.
  • the support assembly 40 may be formed on the second flat layer 50.
  • the liquid crystal display panel 600 is not provided with the second flat layer 50, and the supporting component 40 may be directly formed on the first substrate 1.
  • FIG. 11 is a schematic structural diagram of a liquid crystal display panel 600 shown in FIG. 3 in a fourth embodiment.
  • the liquid crystal display panel 600 further includes a black matrix 21.
  • the color filter layer 2 includes a plurality of color resist blocks 22.
  • the black matrix 21 is independent of the color filter layer 2.
  • the black matrix 21 is located on the side of the first substrate 1 facing the color filter layer 2, and the liquid crystal layer 6 is located between the black matrix 21 and the color filter layer 2.
  • the device array layer 3 and the color filter layer 2 are sequentially formed on the second substrate 4 to form a color filter substrate on the array; the first substrate 1 and the black matrix 21 formed on the first substrate 1 are jointly formed.
  • the box substrate On the box substrate.
  • the liquid crystal display panel 600 When making the liquid crystal display panel 600, firstly form a color filter substrate on the array and a pair of box substrates, then color filter substrate on the box array and a pair of box substrates, and then fill the liquid crystal between the color filter substrate and the box substrate on the array to form LCD layer 6.
  • the color film layer 2 is formed on the device array layer 3, the problem of high alignment requirements of the liquid crystal display panel 600 can be solved, and the aperture ratio of the liquid crystal display panel 600 can also be improved.
  • the color filter layer 2 is located between the liquid crystal layer 6 and the device array layer 3, and the flat layer 7 is formed on a side of the color filter layer 2 away from the device array layer 3.
  • the flat layer 7 forms a complete and flat molding surface 71 on the side far from the color film layer 2, which can reduce the subsequent molding difficulty of other layer structures (such as the second alignment layer 9), and is beneficial to improve the yield of the liquid crystal display panel 600.
  • the flat layer 7 may partially fill the gap.
  • the liquid crystal display panel 600 may further include a second flat layer 50.
  • the second flat layer 50 is located on a side of the black matrix 21 away from the first substrate 1 and covers the black matrix 21.
  • the second flat layer 50 may partially fill the gaps in the black matrix 21.
  • the second flat layer 50 can improve the adhesion of other layer structures (such as the first alignment layer 8) formed on the first substrate 1 later.
  • the support assembly 40 may be formed on the second flat layer 50.
  • the liquid crystal display panel 600 is not provided with the second flat layer 50, and the supporting component 40 may be directly formed on the black matrix 21.
  • FIG. 12 is a schematic structural diagram of a liquid crystal display panel 600 shown in FIG. 3 in a fifth embodiment.
  • the color filter layer 2 includes a black matrix 21 and a plurality of color color resist blocks 22 arranged alternately with the black matrix 21.
  • the black matrix 21 is arranged staggered from the light-transmitting area 601.
  • the main difference between this embodiment and the foregoing embodiment is that a part of the color resist blocks 22 are arranged on the light-transmitting area 601.
  • the black matrix 21 is patterned on the display area 602.
  • the black matrix 21 is substantially frame-shaped to form a plurality of hollowed-out areas arranged in a matrix.
  • Part of the color resist blocks 22 are arranged on the display area 602 and cover a plurality of hollowed-out areas one-to-one correspondingly.
  • the arrangement of the partial color resist blocks 22 arranged in the light-transmitting area 601 can be flexibly set, for example, the color resist blocks of the same color are arranged, or the color resist blocks of different colors are arranged. At this time, the black matrix 21 does not block the light-transmitting area 601.
  • Part of the color resist block 22 arranged in the light-transmitting area 601 filters part of the light. Although the light transmittance is reduced, the light-transmitting property of the light-transmitting area 601 can be maintained. Among them, the filtering effect formed by the color resist blocks 22 arranged in the light-transmitting area 601 can be compensated or corrected by an algorithm in the controller in the electronic device 100 to ensure the working quality of the optical device 300.
  • FIG. 13 is a schematic structural diagram of a liquid crystal display panel 600 shown in FIG. 3 in a sixth embodiment.
  • the main difference between this embodiment and the previous embodiment is that in the direction Z of the first substrate 1 toward the second substrate 4 (that is, the thickness direction of the liquid crystal display panel 600), the device array layer 3 is located at a portion of the display area 602
  • the thickness is the same as that of the portion located in the light-transmitting region 601.
  • a part of the thickness of the same light-transmitting layer 301 in the plurality of light-transmitting layers 301 (see FIGS. 7 and 8) in the light-transmitting area 601 may be greater than a part of the thickness in the display area 602 so that the device array layer 3
  • the thickness of a portion of the display region 602 is the same as that of a portion of the display region 601.
  • the thickness of the portion of the device array layer 3 in the display area 602 is the same as that of the portion in the light-transmitting area 601, so that the layer structure of the liquid crystal display 400 in the display area 602 and the light-transmitting area 601 is similar, so as to ensure the liquid crystal display Display effect of panel 600.
  • the second alignment layer 9 can form a relatively flat film layer, so as to avoid liquid accumulation in the second alignment layer 9 at the periphery of the light-transmitting area 601 and causing the light-transmitting area 601 The problem of uneven display such as yellowing and whitening around the periphery.
  • FIG. 14 is a schematic structural diagram of a liquid crystal display panel 600 shown in FIG. 3 in a seventh embodiment.
  • the liquid crystal display panel 600 further includes a support assembly 40.
  • the support assembly 40 is located between the first substrate 1 and the second substrate 4 and penetrates the liquid crystal layer 6 in the direction Z of the first substrate 1 toward the second substrate 4 to hold the first substrate 1 and the The distance between the two substrates 4.
  • the support assembly 40 includes a plurality of first support pillars 41, and the plurality of first support pillars 41 are arranged staggered from the light-transmitting area 601.
  • the support assembly 40 further includes a second support post 42.
  • the second supporting pillars 42 are partially or entirely arranged in the light transmitting region 601.
  • the second supporting pillars 42 are all arranged in the light transmitting region 601.
  • the second support pillar 42 is made of a light-transmitting material.
  • the second support post 42 supports the first substrate 1 and the second substrate 4 located in the light-transmitting area 601, so that the liquid crystal display panel 600 has the same light-transmitting area 601 and the display area 602 In order to avoid display abnormalities in the display area 602 around the light-transmitting area 601, the liquid crystal display 400 has a higher display quality.
  • the number of the second support posts 42 is plural.
  • the plurality of second support pillars 42 are arranged at a distance from each other in the light transmitting region 601.
  • the plurality of second support columns 42 may be arranged at substantially uniform intervals, so that the entire light-transmitting area 601 of the liquid crystal display panel 600 has a relatively uniform cell gap.
  • the transmittance of the light-transmitting region 601 is too low.
  • the thickness of the portion of the device array layer 3 located in the display region 602 is greater than the thickness of the portion located in the light-transmitting region 601.
  • the second support pillar 42 The height is greater than the height of the first support pillar 41.
  • the height of the second support pillar 42 is designed to be able to support the first substrate 1 and the second substrate 4 reasonably.
  • the shape of the second support post 42 can be designed with reference to the first support post 41.
  • the second support pillar 42 and the first support pillar 41 may be substantially circular-conical.
  • the second support post 42 and the first support post 41 may be formed in the same process, or may be formed in two processes.
  • the shape and size of the second support pillar 42 may be the same as the first support Column 41 is the same.
  • the second support pillar 42 and the first support pillar 41 may be substantially circular-conical.
  • the second support pillar 42 and the first support pillar 41 can be formed in the same process.
  • FIG. 15 is a schematic structural diagram of the liquid crystal display panel 600 shown in FIG. 3 in the eighth embodiment.
  • the liquid crystal display panel 600 further includes a support assembly 40.
  • the support assembly 40 is located between the first substrate 1 and the second substrate 4 and penetrates the liquid crystal layer 6 in the direction Z of the first substrate 1 toward the second substrate 4.
  • the support assembly 40 includes a plurality of first support pillars 41, and the plurality of first support pillars 41 are arranged staggered from the light-transmitting area 601.
  • the support assembly 40 further includes a second support post 42.
  • the second supporting pillars 42 are arranged on the light-transmitting area 601.
  • the main difference between this embodiment and the foregoing embodiment is that the number of the second support posts 42 is one.
  • the area of the end surface 421 of the second support pillar 42 facing the second substrate 4 is larger than the area of the end surface 411 of the first support pillar 41 facing the second substrate 4.
  • the area of the end surface 422 of the second support pillar 42 facing the first substrate 1 is larger than the area of the end surface 412 of the first support pillar 41 facing the first substrate 1.
  • the second support post 42 can provide a larger support area, so that the number of the second support posts 42 enables the support assembly 40 to stably support the light-transmitting area 601.
  • the second support post 42 may have a circular truncated shape, and two end surfaces (421, 422) of the second support post 42 are circular. At this time, the two end surfaces (421, 422) of the second support post 42 can cover the light-transmitting area 601 as much as possible.
  • the second support pillar 42 is formed on the first substrate 1, and the end surface 422 of the second support pillar 42 facing the first substrate 1 covers the light-transmitting area 601. At this time, the end surface 421 of the second support pillar 42 facing the second substrate 4 may cover the light-transmitting area 601 or cover a part of the light-transmitting area 601. Since the second support pillar 42 occupies a large amount or even the entire space of the liquid crystal layer 6 in the light-transmitting region 601, the liquid crystal layer 6 has little or no liquid crystal in the liquid crystal region.
  • the second support pillar 42 may be made of a highly transparent material to increase the transmittance of the transparent region 601.
  • the light transmittance of the material used for the second support pillar 42 may be higher than the light transmittance of the liquid crystal material.
  • FIG. 16 is a schematic structural diagram of a liquid crystal display panel 600 shown in FIG. 3 in a ninth embodiment.
  • the liquid crystal display panel 600 further includes a support assembly 40.
  • the support assembly 40 is located between the first substrate 1 and the second substrate 4 and penetrates the liquid crystal layer 6 in the direction Z of the first substrate 1 toward the second substrate 4.
  • the support assembly 40 includes a plurality of first support pillars 41, and the plurality of first support pillars 41 are arranged staggered from the light-transmitting area 601.
  • the support assembly 40 further includes a second support post 42.
  • the number of the second support posts 42 is one.
  • the area of the end surface 421 of the second support pillar 42 facing the second substrate 4 is larger than the area of the end surface 411 of the first support pillar 41 facing the second substrate 4.
  • the second support post 42 may be in the shape of a circular truncated cone.
  • the liquid crystal display panel 600 further includes a light blocking region 603 surrounding and adjoining the light transmitting region 601.
  • the main difference between this embodiment and the foregoing embodiment is that the second support pillar 42 is partially arranged in the light-transmitting area 601.
  • the second support pillar 42 is partially located in the light-shielding region 603.
  • Part of the second support pillar 42 located in the light-shielding area 603 will not reduce the light transmittance of the light-shielding area 603, but can also improve the support reliability of the liquid crystal display panel 600 in the light-permeable area 601, so that the liquid crystal display panel 600 has a higher Display quality.
  • the central region of the second support pillar 42 is arranged in the light-transmitting region 601, and the peripheral region of the second support pillar 42 is arranged in the light-shielding region 603.
  • the thickness of the device array layer 3 in the portion of the light-shielding region 603 is the same as the thickness of the portion in the display region 602. In this embodiment, the thickness of the device array layer 3 in the light-transmitting region 601 is smaller than that of the display region 602, and the second support pillar 42 does not contact the device array layer 3 in the display region 602, and liquid crystal is filled therebetween. .
  • the second support pillar 42 simultaneously contacts the device array layer 3 in the light-shielding region 603 and the device array layer 3
  • the light-transmitting region 601 can better support the first substrate 1 and the second substrate 4 to maintain the cell gap of the liquid crystal display panel 600.
  • FIG. 17 is a schematic structural diagram of a liquid crystal display panel 600 shown in FIG. 3 in a tenth embodiment.
  • the liquid crystal display panel 600 further includes a support assembly 40.
  • the support assembly 40 is located between the first substrate 1 and the second substrate 4 and penetrates the liquid crystal layer 6 in the direction Z of the first substrate 1 toward the second substrate 4.
  • the support assembly 40 includes a plurality of first support pillars 41, and the plurality of first support pillars 41 are arranged staggered from the light-transmitting area 601.
  • the support assembly 40 further includes a second support post 42.
  • the number of the second support posts 42 is one.
  • the area of the end surface 421 of the second support pillar 42 facing the second substrate 4 is larger than the area of the end surface 411 of the first support pillar 41 facing the second substrate 4.
  • the second supporting pillars 42 are arranged on the light-transmitting area 601.
  • the main difference between this embodiment and the previous embodiment is that the end surface 421 of the second support post 42 facing the second substrate 4 is annular. An end surface 422 of the second support post 42 facing the first base material 1 is annular. At this time, the second support pillar 42 has an inner annular surface and an outer annular surface disposed opposite to each other. Liquid crystals are arranged in the space surrounded by the inner torus. The support strength of the second support post 42 having the annular end surface is high.
  • FIG. 18 is a schematic structural diagram of the liquid crystal display panel 600 shown in FIG. 3 in the eleventh embodiment
  • FIG. 19 is the second support column 42 and A schematic diagram of the positional relationship of the third support post 43.
  • the liquid crystal display panel 600 further includes a support assembly 40.
  • the support assembly 40 is located between the first substrate 1 and the second substrate 4 and penetrates the liquid crystal layer 6 in the direction Z of the first substrate 1 toward the second substrate 4.
  • the support assembly 40 includes a plurality of first support pillars 41, and the plurality of first support pillars 41 are arranged staggered from the light-transmitting area 601.
  • the support assembly 40 further includes a second support post 42.
  • the number of the second support posts 42 is one.
  • the area of the end surface 421 of the second support pillar 42 facing the second substrate 4 is larger than the area of the end surface 411 of the first support pillar 41 facing the second substrate 4.
  • the second supporting pillars 42 are arranged on the light-transmitting area 601.
  • An end surface 421 of the second support post 42 facing the second base material 4 is annular.
  • the support assembly 40 further includes one or more third support posts 43.
  • the second support post 42 is disposed around one or more third support posts 43.
  • one or more third support pillars 43 are matched with the second support pillars 42 to support the first substrate 1 and the second substrate 4 together, It is possible to improve the support reliability of the support assembly 40 for the liquid crystal display panel 600 in the light transmitting region 601 portion.
  • the plurality of third supporting pillars 43 may be arranged in an array.
  • the second supporting pillars 42 are arranged on the light-transmitting area 601.
  • the second support pillar 42 and the third support pillar 43 have the same height in the direction Z of the first base material 1 toward the second base material 4.
  • FIG. 20 is a schematic structural diagram of the liquid crystal display panel 600 shown in FIG. 3 in the twelfth embodiment
  • FIG. 21 is the second support column 42 and A schematic diagram of the positional relationship of the third support post 43.
  • the liquid crystal display panel 600 further includes a support assembly 40.
  • the support assembly 40 is located between the first substrate 1 and the second substrate 4 and penetrates the liquid crystal layer 6 in the direction Z of the first substrate 1 toward the second substrate 4.
  • the support assembly 40 includes a plurality of first support pillars 41, and the plurality of first support pillars 41 are arranged staggered from the light-transmitting area 601.
  • the support assembly 40 further includes a second support post 42.
  • the number of the second support posts 42 is one.
  • the area of the end surface 421 of the second support pillar 42 facing the second substrate 4 is larger than the area of the end surface 411 of the first support pillar 41 facing the second substrate 4.
  • An end surface 421 of the second support post 42 facing the second base material 4 is annular.
  • the support assembly 40 further includes one or more third support posts 43.
  • the second support post 42 is disposed around one or more third support posts 43.
  • the main difference between this embodiment and the foregoing embodiment is that the second support pillar 42 is partially arranged in the light-transmitting area 601 and partially arranged in the light-shielding area 603. At this time, a larger end surface (421/422) area may be provided on the second support post 42 to improve the support strength of the second support post 42.
  • more third support pillars 43 can be arranged in the light-transmitting area 601, so that the support assembly 40 can support the liquid crystal. The support strength of the light-transmitting area 601 of the display panel 600 is higher.
  • FIG. 22 is a schematic structural diagram of a liquid crystal display panel 600 shown in FIG. 3 in a thirteenth embodiment.
  • the liquid crystal display panel 600 further includes a support assembly 40.
  • the support assembly 40 is located between the first substrate 1 and the second substrate 4 and penetrates the liquid crystal layer 6 in the direction Z of the first substrate 1 toward the second substrate 4.
  • the support assembly 40 includes a plurality of first support pillars 41, and the plurality of first support pillars 41 are arranged staggered from the light-transmitting area 601.
  • the support assembly 40 further includes a second support post 42.
  • the second support post 42 includes a first support block 423 and a second support block 424.
  • the first support block 423 and the second support block 424 are arranged in the direction Z of the first base material 1 toward the second base material 4 and resist each other. At this time, one of the first support block 423 and the second support block 424 is formed on the first base material 1 and the other is formed on the second base material 4.
  • the height of the first support block 423 and the second support block 424 are equal to the height of the second support column 42.
  • dividing a second support pillar 42 into a first support block 423 and a second support block 424 is beneficial to reduce the difficulty of forming the second support pillar 42 and make the forming quality of the second support pillar 42 high. .
  • the end surface area of the first support block 423 facing the first base material 1 is the same as the end surface area of the second support block 424 facing the second base material 4.
  • one of the end surface of the first support block 423 facing the first base material 1 and the end surface of the second support block 424 facing the second base material 4 may have a larger area and a smaller area. Make the resistance between the two more solid.
  • the height of the first support block 423 and the height of the second support block 424 may be the same or different.
  • the method of disassembling the second support post 42 into the first support block 423 and the second support block 424 in this embodiment can also be applied to the structures shown in FIGS. 15 to 20.
  • FIG. 23 is a schematic structural diagram of a liquid crystal display panel 600 shown in FIG. 3 in a fourteenth embodiment.
  • the liquid crystal display panel 600 further includes a light blocking region 603 surrounding and adjoining the light transmitting region 601.
  • the liquid crystal display panel 600 further includes a support assembly 40.
  • the support assembly 40 is located between the first substrate 1 and the second substrate 4 and penetrates the liquid crystal layer 6 in the direction Z of the first substrate 1 toward the second substrate 4.
  • the support assembly 40 includes a plurality of first support pillars 41, and the plurality of first support pillars 41 are arranged staggered from the light-transmitting area 601.
  • the support assembly 40 further includes a fourth support post 44.
  • the fourth support pillar 44 is arranged in the light-shielding area 603.
  • the main difference between this embodiment and the foregoing embodiment is that the number of the fourth support posts 44 is one.
  • An end surface 441 of the fourth support post 44 facing the second base material 4 is annular.
  • An end surface 442 of the fourth support post 44 facing the first base material 1 is annular.
  • the support strength of the fourth support post 44 having the annular end surface is high.
  • the fourth support pillar 44 surrounds the light-transmitting area 601.
  • the fourth support pillar 44 may be connected with the second support pillars 42 and the third pillars of various shapes arranged in the light-transmitting area 601.
  • the supporting pillars 43 are combined.
  • liquid crystal display panel 600 having various structures shown in FIGS. 6 to 23 may be applied to the structures shown in FIGS. 4 and 5.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶显示面板(600)和一种液晶显示屏(400)及电子设备(100),液晶显示面板(600)具有透光区域(601)和环绕透光区域(601)的显示区域(602),显示区域(602)用于显示图像。液晶显示面板(600)包括依次层叠设置的第一偏光片(10)、第一基材(1)、彩膜层(2)、器件阵列层(3)、第二基材(4)及第二偏光片(30)。第一基材(1)和第二基材(4)均采用透光材料并覆盖透光区域(601)。彩膜层(2)位于透光区域(601)的部分和器件阵列层(3)位于透光区域(601)的部分均允许可见光通过。第一偏光片(10)的偏光轴垂直于第二偏光片(30)的偏光轴,第一偏光片(10)和第二偏光片(30)中的至少一者在透光区域(601)中镂空设置。上述液晶显示面板(600)能够提高屏占比。

Description

液晶显示面板、液晶显示屏及电子设备 技术领域
本申请涉及显示设备技术领域,尤其涉及一种液晶显示面板、一种液晶显示屏以及一种电子设备。
背景技术
传统手机需要在手机屏幕的周边放置摄像头模组、环境光传感器等器件,导致手机屏幕的排布空间受到限制,手机的屏占比较小。
发明内容
本申请实施例提供一种能够提高屏占比的液晶显示面板、液晶显示屏及电子设备。
第一方面,本申请实施例提供了一种液晶显示面板。所述液晶显示面板具有透光区域和环绕所述透光区域的显示区域。所述显示区域用于显示图像。所述透光区域允许可见光通过。所述液晶显示面板包括依次层叠设置的第一偏光片、第一基材、彩膜层、器件阵列层、第二基材及第二偏光片。所述第一基材和所述第二基材均采用透光材料并覆盖所述透光区域。所述彩膜层又称彩色滤光层(color filter,CF),用于通过特定波段范围内的光线。所述器件阵列层包括阵列设置的多个薄膜晶体管(thin film transistor,TFT)。所述彩膜层位于所述透光区域的部分和所述器件阵列层位于所述透光区域的部分均允许可见光通过。所述第一偏光片的偏光轴垂直于所述第二偏光片的偏光轴。所述第一偏光片和所述第二偏光片中的至少一者在所述透光区域中镂空设置。也即,所述第一偏光片在所述透光区域中镂空设置,或者所述第二偏光片在所述透光区域中镂空设置,或者所述第一偏光片和所述第二偏光片在所述透光区域中均镂空设置。
在本实施例中,由于所述第一基材和所述第二基材均采用透光材料,所述彩膜层位于所述透光区域的部分和所述器件阵列层位于所述透光区域的部分均允许可见光通过,且所述第一偏光片和所述第二偏光片中的至少一者在所述透光区域中镂空设置,因此所述透光区域允许可见光通过。当所述液晶显示面板应用于电子设备时,所述电子设备中的摄像头模组等光学器件能够放置在所述液晶显示面板的所述透光区域下方,以通过所述透光区域传输可见光,从而减少所述光学器件对所述液晶显示面板的排布空间的限制,并且所述透光区域被所述显示区域所环绕,使得所述液晶显示面板能够设置更大的显示区域,以减小所述电子设备的边框面积、增大所述电子设备的显示面积,提高所述电子设备的屏占比。
其中,所述第一基材和所述第二基材同样覆盖所述显示区域。所述第一基材和所述第二基材可采用玻璃材料。所述第一基材和所述第二基材为整面连续的板材,具有足够的结构强度,使得所述液晶显示面板的整体强度较高,不易碎裂。本申请中,由于所述液晶显示面板具有较高的强度,因此所述透光区域的形状、大小、数量及与所述液晶显示面板的边缘之间的间距的设计更为灵活、多样化,有利于提高所述电子设备的整机可靠性。例如,所述透光区域的形状可以为圆形、椭圆形、多边形、圆角矩形、跑道形(包括两条相互平行的直边和相对地连接在两条直边之间的弧边)等。所述透光区域的数量可以为一个或多 个。多个透光区域可以分别为多个光学器件提供光线传输通道。多个透光区域的排布方式可以灵活设计,例如阵列排布、环形排列等。
其中,所述第一偏光片和所述第二偏光片在所述透光区域中均镂空设置时,所述透光区域的透光率更高,有利于提高所述光学器件的工作质量。
一种可选实施例中,所述液晶显示面板还包括胶框和液晶层(liquid crystal layer)。所述胶框位于所述第一基材与所述第二基材之间。所述胶框环绕于所述显示区域外周侧。所述透光区域位于所述胶框内侧。所述液晶层填充于所述胶框内侧。
在本实施例中,所述液晶层能够同时填充于所述透光区域和所述显示区域中,所述透光区域与所述显示区域之间无需额外设置隔断结构,从而简化了所述液晶显示面板的制作工艺,使得所述液晶显示面板的成本较低。
其中,所述器件阵列层在所述显示区域中的部分能够控制所述液晶层的位于所述显示区域的液晶的偏转方向,所述彩膜层在所述显示区域中的部分能够过滤光线。所述器件阵列层、所述彩膜层及所述液晶层相配合,使得所述显示区域能够实现显示。由于液晶能够传输光线,因此可见光能够穿过所述液晶层在所述透光区域的部分,所述透光区域能够传输可见光。
一种可选实施例中,所述彩膜层包括黑色矩阵(black matrix,BM)和与所述黑色矩阵交替设置的多个彩色色阻块。本实施例中,所述黑色矩阵集成在所述彩膜层中,所述黑色矩阵与所述多个彩色色阻块复用所述液晶显示面板的部分厚度空间。
其中,所述液晶层位于所述彩膜层与所述器件阵列层之间。所述彩膜层可以制作在所述第一基材上,而与所述第一基材共同形成彩膜基板。所述器件阵列层可以制作在所述第二基材上,而与所述第二基材共同形成阵列基板。制作所述液晶显示面板时,先分别形成所述阵列基板和所述彩膜基板,然后对盒所述阵列基板与所述彩膜基板,接着在所述阵列基板与所述彩膜基板之间填充液晶以形成所述液晶层。
或者,所述液晶层位于所述第一基材与所述彩膜层之间。此时,所述器件阵列层和所述彩膜层依次形成在所述第二基材上,以形成阵列上彩膜(Color Filter On Array,COA)基板;所述第一基材及形成在所述第一基材上的膜层共同形成对盒基板。制作所述液晶显示面板时,先分别形成所述阵列上彩膜基板和所述对盒基板,然后对盒所述阵列上彩膜基板和所述对盒基板,接着在所述阵列上彩膜基板和所述对盒基板之间填充液晶以形成所述液晶层。本实施例中,由于所述彩膜层形成在所述器件阵列层上,因此能够解决所述液晶显示面板对位要求高的问题,同时也能够提高所述液晶显示面板的开口率。
另一种可选实施例中,所述液晶显示面板还包括黑色矩阵。所述彩膜层包括多个彩色色阻块。本实施例中,所述黑色矩阵独立于所述彩膜层。
所述黑色矩阵位于所述第一基材朝向彩膜层的一侧,所述液晶层位于所述黑色矩阵与所述彩膜层之间。此时,所述器件阵列层和所述彩膜层依次形成在所述第二基材上,以形成阵列上彩膜基板;所述第一基材及形成在所述第一基材上的黑色矩阵共同形成对盒基板。制作所述液晶显示面板时,先分别形成所述阵列上彩膜基板和所述对盒基板,然后对盒所述阵列上彩膜基板和所述对盒基板,接着在所述阵列上彩膜基板和所述对盒基板之间填充液晶以形成所述液晶层。本实施例中,由于所述彩膜层形成在所述器件阵列层上,因此能 够解决所述液晶显示面板对位要求高的问题,同时也能够提高所述液晶显示面板的开口率。
一种可选实施例中,所述黑色矩阵和所述多个彩色色阻块均错开所述透光区域排布。所述黑色矩阵图案化地排布于所述显示区域。所述黑色矩阵大致呈框架形,以形成呈矩阵排布的多个镂空区。所述多个彩色色阻块排布于所述显示区域,所述多个彩色色阻块一一对应地覆盖所述多个镂空区。此时,所述黑色矩阵和所述多个彩色色阻块均不会遮挡所述透光区域,所述透光区域的透光率较高,有利于提高所述光学器件的工作质量。
或者,所述黑色矩阵错开所述透光区域排布,部分所述彩色色阻块排布于所述透光区域。所述黑色矩阵图案化地排布于所述显示区域。所述黑色矩阵大致呈框架形,以形成呈矩阵排布的多个镂空区。部分所述彩色色阻块排布于所述显示区域,并一一对应地覆盖所述多个镂空区。排布于所述透光区域的部分所述彩色色阻块的排布方式可以灵活设置,例如排布同一种颜色的色阻块,或排布不同颜色的色阻块。此时,所述黑色矩阵不会遮挡所述透光区域。排布于所述透光区域的部分所述彩色色阻块会过滤部分光线,虽然降低了透光率,但仍能够保持所述透光区域的透光性。其中,可通过所述电子设备中的控制器中的算法补偿或修正排布于所述透光区域的部分所述彩色色阻块所形成的过滤作用,以保证所述光学器件的工作质量。
一种可选实施例中,所述液晶显示面板还包括平坦层。所述平坦层覆盖所述透光区域和所述显示区域。所述平坦层位于所述彩膜层与所述液晶层之间。所述平坦层远离所述彩膜层的一侧能够提供一个平整的成型面,从而降低后续的其他层结构的成型难度。所述平坦层采用透明材料。
其中,所述彩膜层位于所述第一基材与所述液晶层之间时,所述平坦层形成在所述彩膜层远离所述第一基材的一侧且覆盖所述彩膜层。所述彩膜层位于所述液晶层与所述器件阵列层之间时,所述平坦层形成在所述彩膜层远离所述器件阵列层的一侧。此时,所述液晶显示面板还可包括第二平坦层,所述第二平坦层位于所述第一基材朝向所述液晶层的一侧。所述第二平坦层能够提高后续形成在所述第一基材上的其他层结构的附着力。
一种可选实施例中,所述液晶显示面板还包括第一取向层(alignment layer,又称配向层)和第二取向层。所述第一取向层位于所述液晶层朝向所述第一基材的一侧。所述第二取向层位于所述液晶层朝向所述第二基材的一侧。换言之,所述第一取向层和所述第二取向层分别位于所述液晶层的相背两侧,且直接接触所述液晶层。所述液晶层夹设在所述第一取向层和所述第二取向层之间。所述第一取向层和所述第二取向层用于为所述液晶层中的液晶提供预倾角。所述第一取向层及所述第二取向层均覆盖所述透光区域和所述显示区域。
在本实施例中,由于所述第一取向层及所述第二取向层均覆盖所述透光区域和所述显示区域,因此在所述第一取向层和所述第二取向层的制备工艺中,能够降低在所述透光区域沉积异物的风险,使得经过所述透光区域的光线因异物产生噪音的风险较小,从而保证所述光学器件的工作质量。所述第一取向层及所述第二取向层的设置也有利于控制位于所述透光区域内的液晶保持特定角度,以减少光线在传输过程中发生偏离的风险,从而提高所述光学器件的工作质量。
其中,当所述第一取向层和所述第二取向层形成在平坦层上时,由于平坦层能够提供 一个平整的成型面,因此所述第一取向层和所述第二取向层能够形成平整的膜层,成型质量更佳。
一种可选实施例中,所述器件阵列层包括层叠设置的多个透光层和多个遮光层。所述多个遮光层错开所述透光区域排布。所述多个遮光层图案化地排布于所述显示区域。一个或多个所述透光层部分排布于所述透光区域。所述多个透光层图案化地排布于所述显示区域。所述透光层允许可见光通过。所述多个遮光层遮挡可见光。
其中,所述器件阵列层中的所述薄膜晶体管可采用顶栅结构,例如:
所述器件阵列层包括遮挡层、缓冲层、半导体层、栅极绝缘层(gate insulator layer)、栅极、第一绝缘层、源极、漏极、第二绝缘层、公共电极、第三绝缘层及像素电极。所述遮挡层形成在所述第二基材上。所述缓冲层形成在所述第二基材上且覆盖所述遮挡层。所述半导体层位于所述缓冲层远离所述第二基材的一侧且正对所述遮挡层。所述半导体层可采用低温多晶硅(low temperature poly-silicon,LTPS)材料。所述半导体层包括位于沟道区、两个轻掺杂区和两个重掺杂区,两个所述轻掺杂区分别连接于所述沟道区的相背两端,两个所述重掺杂区分别连接于两个所述轻掺杂区远离所述沟道区的两端。所述栅极绝缘层位于所述缓冲层远离所述第二基材的一侧且覆盖所述半导体层。所述栅极绝缘层设有分别正对两个所述重掺杂区的第一孔和第二孔。所述栅极位于所述栅极绝缘层远离所述缓冲层的一侧且正对所述沟道区设置。所述第一绝缘层位于所述栅极绝缘层远离所述缓冲层的一侧且覆盖所述栅极。所述第一绝缘层设有连通所述第一孔的第三孔和连通所述第二孔的第四孔。所述源极和所述漏极位于所述第一绝缘层远离所述栅极绝缘层的一侧,所述源极经所述第三孔和所述第一孔连接其中一个所述重掺杂区,所述漏极经所述第四孔和所述第二孔连接另一个所述重掺杂区。所述第二绝缘层位于所述第一绝缘层远离所述栅极绝缘层的一侧且覆盖所述源极和所述漏极。所述第二绝缘层设有正对所述漏极(或所述源极)的第五孔。所述公共电极位于所述第二绝缘层远离所述第一绝缘层的一侧。所述第三绝缘层位于所述第二绝缘层远离所述第一绝缘层的一侧且覆盖所述公共电极。所述第三绝缘层设有连通所述第五孔的第六孔。所述像素电极位于所述第三绝缘层远离所述第二绝缘层的一侧,且通过所述第六孔和所述第五孔连接所述漏极(或所述源极)。
此时,所述多个遮光层可以包括所述遮挡层、所述半导体层、所述栅极、所述源极、所述漏极等。所述多个透光层可以包括所述缓冲层、所述栅极绝缘层、所述第一绝缘层、所述第二绝缘层及所述第三绝缘层。所述像素电极和所述公共电极采用透光材料时,也可以属于所述多个透光层。
或者,所述器件阵列层中的所述薄膜晶体管可采用底栅结构,例如:
所述器件阵列层包括栅极、栅极绝缘层、半导体层、源极、漏极、绝缘层及像素电极。所述栅极形成在所述第二基材上。所述栅极绝缘层形成在所述第二基材上且覆盖所述栅极。所述半导体层位于所述栅极绝缘层远离所述栅极的一侧且正对所述栅极。所述半导体层可采用非晶硅(amorphous silicon,α-Si)材料。所述源极位于所述栅极绝缘层远离所述第二基材的一侧且连接所述半导体层的一端。所述漏极位于所述栅极绝缘层远离所述第二基材的一侧且连接所述半导体层的另一端。所述绝缘层位于所述栅极绝缘层远离所述第二基材的一侧且覆盖所述源极、所述半导体层及所述漏极。所述绝缘层设有正对所述漏极(或所 述源极)的通孔。所述像素电极位于所述绝缘层远离所述栅极绝缘层的一侧,且通过所述通孔连接所述漏极(或所述源极)。
此时,所述多个遮光层可以包括所述栅极、所述半导体层、所述源极及所述漏极。所述多个透光层可以包括所述栅极绝缘层和所述绝缘层。所述像素电极采用透光材料时,也可以属于所述多个透光层。
在本实施例中,由于一个或多个所述透光层部分排布于所述透光区域,因此所述器件阵列层在所述透光区域部分的厚度(在所述第一基材向所述第二基材的方向上的尺寸)与在所述显示区域部分的厚度差异不大,使得液晶层在所述透光区域部分的厚度与在所述显示区域部分的厚度相近,以降低由于层结构差异过大而导致所述透光区域周围的所述显示区域出现显示异常(如牛顿环等)问题的风险,从而提高所述液晶显示屏的显示质量。
其他实施例中,所述器件阵列层的层结构可以与前面两种实施例有所区别,也即所述器件阵列层可以是其他层结构。所述多个透光层和所述多个遮光层对应的具有其他膜层。
一种可选实施例中,在所述第一基材向所述第二基材的方向(也即所述液晶显示面板的厚度方向)上,所述器件阵列层位于所述显示区域的部分与位于所述透光区域的部分厚度一致。此时,所述多个透光层中的同一层所述透光层在所述透光区域的部分厚度可以大于在所述显示区域的部分厚度,以使所述器件阵列层位于所述显示区域的部分与位于所述透光区域的部分厚度一致。本实施例中,所述器件阵列层位于所述显示区域的部分与位于所述透光区域的部分厚度一致,使得所述液晶显示屏在所述显示区域和所述透光区域的层结构较为相近,以保证所述液晶显示面板的显示效果。当所述第二取向层形成在所述器件阵列层上时,所述第二取向层能够形成较为平坦的膜层,避免所述第二取向层在所述透光区域的周缘处发生液体堆积而导致所述透光区域出现周边发黄、发白等显示不均的问题。
一种可选实施例中,所述液晶显示面板还包括支撑组件。所述支撑组件位于所述第一基材与所述第二基材之间,且在所述第一基材向所述第二基材的方向上贯穿所述液晶层,用以保持所述第一基材与所述第二基材之间的间距。
在本申请中,所述支撑组件用于保持所述第一基材与所述第二基材之间的间距(又称盒间隙),使得所述液晶显示面板在制作或使用过程中不易发生形变,从而保证所述液晶显示面板的显示质量。
一种可选实施例中,所述支撑组件包括多个第一支撑柱,所述多个第一支撑柱错开所述透光区域排布。所述多个第一支撑柱彼此间隔排布。所述多个第一支撑柱正对所述黑色矩阵排布。换言之,所述多个第一支撑柱在所述第一基材上的投影被所述黑色矩阵在所述第一基材上的投影覆盖。所述多个第一支撑柱可采用透光材料或不透光材料。
一种可选实施例中,所述支撑组件还包括第二支撑柱,所述第二支撑柱部分或全部排布于所述透光区域。所述第二支撑柱采用透光材料。在本实施例中,通过所述第二支撑柱对位于所述透光区域内的所述第一基材和所述第二基材的支撑,使得所述液晶显示面板在所述透光区域与所述显示区域具有相同的盒间隙,以避免在所述透光区域周边的显示区域中发生显示异常,使得所述液晶显示屏具有较高的显示质量。
一种可选实施例中,所述第二支撑柱的数量为多个。多个所述第二支撑柱彼此间隔地排布于所述透光区域。本实施例中,多个所述第二支撑柱可大致均匀地间隔排布,使所述 液晶显示面板的整个所述透光区域具有较为均匀的盒间隙。
其中,对所述第二支撑柱的数量进行设计时,要平衡支撑需求和透光需求,以具有足够的所述第二支撑柱用于保持盒间隙,又避免设置过多的所述第二支撑柱而导致所述透光区域的透过率过低。
其中,当所述器件阵列层位于所述显示区域的部分与位于所述透光区域的部分厚度一致时,所述第二支撑柱的形状及尺寸可以与所述第一支撑柱相同。所述第二支撑柱和所述第一支撑柱可以大致呈圆台状。所述第二支撑柱与所述第一支撑柱可在同一道工序中成型。
当所述器件阵列层位于所述显示区域的部分的厚度大于位于所述透光区域的部分的厚度时,在所述第一基材向所述第二基材的方向上,所述第二支撑柱的高度大于所述第一支撑柱的高度。所述第二支撑柱的高度以能够合理支撑所述第一基材及所述第二基材为准进行设计。此时,所述第二支撑柱的形状可参考所述第一支撑柱设计。所述第二支撑柱和所述第一支撑柱可以大致呈圆台状。所述第二支撑柱与所述第一支撑柱可以在同一道工序中成型,也可以在两道工序中成型。
一种可选实施例中,所述第二支撑柱的数量为一个。所述第二支撑柱朝向所述第二基材的端面面积大于所述第一支撑柱朝向所述第二基材的端面面积。其中,所述第二支撑柱朝向所述第一基材的端面面积大于所述第一支撑柱朝向所述第一基材的端面面积。
在本实施例中,所述第二支撑柱能够提供更大的支撑面积,从而在所述第二支撑柱的数量的情况下,使得所述支撑组件能够稳定支撑所述透光区域。
一种可选实施例中,所述第二支撑柱可以呈圆台形,所述第二支撑柱的两个端面呈圆形。此时,所述第二支撑柱的两个端面可以尽量覆盖所述透光区域。例如,所述第二支撑柱形成在所述第一基材上,所述第二支撑柱朝向所述第一基材的端面覆盖所述透光区域。此时,所述第二支撑柱朝向所述第二基材的端面可以覆盖所述透光区域或覆盖部分所述透光区域。由于所述第二支撑柱占用了所述液晶层在所述透光区域的大量空间、甚至全部空间,因此所述液晶层在所述液晶区域中的液晶很少、甚至没有。
本实施例中,所述第二支撑柱可采用高透光材料,以提高所述透光区域的透过率。例如,所述第二支撑柱所采用的材料的透光率可高于液晶材料的透光率。
一种可选实施例中,所述第二支撑柱朝向所述第二基材的端面呈环形。此时,所述第二支撑柱具有相背设置的内侧环面和外侧环面。所述内侧环面所环绕出的空间中排布有液晶。具有环形端面的所述第二支撑柱的支撑强度较高。
一种可选实施例中,所述支撑组件还包括一个或多个第三支撑柱,所述第二支撑柱环绕所述一个或多个第三支撑柱设置。本实施例中,通过设置一个或多个所述第三支撑柱,使一个或多个所述第三支撑柱与所述第二支撑柱相配合,共同支撑所述第一基材和所述第二基材,能够提高所述支撑组件对所述液晶显示面板在所述透光区域部分的支撑可靠性。
一种可选实施例中,所述液晶显示面板还具有环绕并邻接所述透光区域的遮光区域。所述第二支撑柱部分位于所述遮光区域。在本申请中,位于所述遮光区域的部分所述第二支撑柱既不会降低所述遮光区域的透光率,还能够提高对所述液晶显示面板在所述透光区域部分的支撑可靠性,使得所述液晶显示面板具有较高的显示质量。
其中,所述黑色矩阵环绕所述透光区域的部分对应于所述遮光区域。
一种可选实施例中,所述第二支撑柱包括第一支撑块和第二支撑块。所述第一支撑块和所述第二支撑块在所述第一基材向所述第二基材的方向上排布,且彼此抵持。此时,所述第一支撑块和所述第二支撑块中的一者形成在所述第一基材上,另一者形成在所述第二基材上。在所述第一基材向所述第二基材的方向上,所述第一支撑块与所述第二支撑块的高度和等于所述第二支撑柱的高度。在本实施例中,将一个所述第二支撑柱分割成所述第一支撑块和所述第二支撑块,有利于降低所述第二支撑柱的成型难度,使得所述第二支撑柱的成型质量较高。
其中,所述第一支撑块朝向所述第一基材的端面面积与所述第二支撑块朝向所述第二基材的端面面积相同。所述第一支撑块的高度与所述第二支撑块的高度可以一致,也可以不一致。
一种可选实施例中,所述液晶显示面板还具有环绕并邻接所述透光区域的遮光区域。所述支撑组件还包括第四支撑柱。所述第四支撑柱排布于所述遮光区域。在本实施例中,所述第四支撑柱能够对所述液晶显示面板位于所述遮光区域的部分进行支撑,从而降低所述遮光区域发生形变的风险,以保证所述液晶显示面板的显示质量。
其中,所述器件阵列层在所述遮光区域的部分的层结构与在所述显示区域的部分的层结构相同,厚度相等。所述第四支撑柱的高度与所述第一支撑柱的高度相同。
一种可选实施例中,所述第四支撑柱的数量为多个。多个所述第四支撑柱彼此间隔地环绕所述透光区域排布。所述第四支撑柱的形状及尺寸可以与所述第一支撑柱相同。所述第四支撑柱可以大致呈圆台状。所述第四支撑柱与所述第一支撑柱可在同一道工序中成型。
一种可选实施例中,所述第四支撑柱的数量为一个。所述第四支撑柱朝向所述第二基材的端面呈环形。具有环形端面的所述第四支撑柱的支撑强度较高。
第二方面,本申请实施例还提供了一种液晶显示屏(Liquid Crystal Display,LCD)。所述液晶显示屏包括背光模组(backlight module)和上述液晶显示面板。所述背光模组用于为所述液晶显示面板提供背光源。所述背光模组具有正对所述透光区域的透光部。所述透光部允许可见光通过。
在本实施例中,由于所述液晶显示屏的所述液晶显示面板具有透光区域,所述透光区域允许可见光通过,且所述背光模组设有正对所述透光区域的透光部,因此当所述液晶显示面板应用于电子设备时,所述电子设备中的摄像头模组等光学器件能够放置在所述透光区域下方,以通过所述透光区域(及所述透光部)传输可见光,从而减少所述光学器件对所述液晶显示屏的排布空间的限制,并且所述透光区域被所述显示区域所环绕,使得所述液晶显示屏能够设置更大的显示区域,以减小所述电子设备的边框面积、增大所述电子设备的显示面积,提高所述电子设备的屏占比。
其中,所述背光模组还包括发光部。所述发光部环绕所述透光部设置。所述发光部与所述液晶显示面板的所述显示区域相对应。
一种可选实施例中,所述透光部为通孔。电子设备的光学器件可以部分或全部收容于所述通孔,以使所述光学器件与所述液晶显示屏的排布更为紧凑,两者能够复用所述电子设备厚度方向上的空间,有利于所述电子设备的轻薄化。
第三方面,本申请实施例还提供了一种电子设备。所述电子设备包括壳体、光学器件 及上述液晶显示屏。所述液晶显示屏安装于所述壳体。所述液晶显示屏与所述壳体共同围设出整机内腔。所述光学器件收容于所述整机内腔且正对所述透光区域。
在本实施例中,所述光学器件能够通过所述液晶显示屏的透光区域传输光线,从而无需占用所述液晶显示屏的侧向周边空间,使所述液晶显示屏能够设计更大的显示区域,以提高所述电子设备的屏占比。
其中,所述光学器件可以是摄像头模组、环境光传感器、接近光传感器或光学指纹传感器。所述电子设备可以包括一个或多个所述光学器件。所述液晶显示面板可以包括一个或多个透光区域。
其中,所述电子设备还包括盖板。所述盖板位于所述液晶显示屏远离所述整机内腔的一侧。所述液晶显示屏可通过粘接层粘接于所述盖板,以共同形成屏组件。所述粘接层可采用透明光学胶材料。所述粘接层正对所述透光区域的位置可以镂空设置。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种电子设备的结构示意图;
图2是图1所示电子设备在A-A线处的部分结构在一种实施例中的结构示意图;
图3是图2所示结构的部分分解示意图;
图4是图1所示电子设备在A-A线处的部分结构在另一种实施例中的结构示意图;
图5是图4所示结构的部分分解示意图;
图6是图3所示液晶显示面板在第一实施例中的结构示意图;
图7是图6所示液晶显示面板的器件阵列层与第二基材在一种实施例中的部分结构示意图;
图8是图6所示液晶显示面板的器件阵列层与第二基材在另一种实施例中的部分结构示意图;
图9是图3所示液晶显示面板在第二实施例中的结构示意图;
图10是图3所示液晶显示面板在第三实施例中的结构示意图;
图11是图3所示液晶显示面板在第四实施例中的结构示意图;
图12是图3所示液晶显示面板在第五实施例中的结构示意图;
图13是图3所示液晶显示面板在第六实施例中的结构示意图;
图14是图3所示液晶显示面板在第七实施例中的结构示意图;
图15是图3所示液晶显示面板在第八实施例中的结构示意图;
图16是图3所示液晶显示面板在第九实施例中的结构示意图;
图17是图3所示液晶显示面板在第十实施例中的结构示意图;
图18是图3所示液晶显示面板在第十一实施例中的结构示意图;
图19是图18所示液晶显示面板的第二支撑柱和第三支撑柱的位置关系示意图;
图20是图3所示液晶显示面板在第十二实施例中的结构示意图;
图21是图20所示液晶显示面板的第二支撑柱和第三支撑柱的位置关系示意图;
图22是图3所示液晶显示面板在第十三实施例中的结构示意图;
图23是图3所示液晶显示面板在第十四实施例中的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
请一并参阅图1至图3,图1是本申请实施例提供的一种电子设备100的结构示意图,图2是图1所示电子设备100在A-A线处的部分结构在一种实施例中的结构示意图,图3是图2所示结构的部分分解示意图。
电子设备100可以是任何具备通信和存储功能的设备,例如:平板电脑、手机、电子阅读器、笔记本电脑、车载设备、可穿戴设备等。图1所示实施例以电子设备100是手机为例进行说明。
电子设备100包括壳体200、光学器件300及液晶显示屏(Liquid Crystal Display,LCD)400。液晶显示屏400安装于壳体200。壳体200可包括边框和后盖。边框环绕设于后盖的周缘。液晶显示屏400盖设于边框远离后盖的一侧。液晶显示屏400与壳体200共同围设出整机内腔。光学器件300收容于整机内腔。光学器件300可以是摄像头模组、环境光传感器、接近光传感器或光学指纹传感器。
图2所示结构以光学器件300为摄像头模组为例进行说明。图2所示结构还可以适用于其他以可见光为识别光线的光学器件300,例如环境光传感器、识别可见光的光学指纹传感器等。
液晶显示屏400包括背光模组(backlight module)500和液晶显示面板600。背光模组500用于为液晶显示面板600提供背光源。液晶显示面板600具有透光区域601和环绕透光区域601的显示区域602。显示区域602用于显示图像。透光区域601允许可见光通过。背光模组500具有正对透光区域601的透光部501。透光部501允许可见光通过。光学器件300正对透光区域601设置。
在本实施例中,由于液晶显示屏400的液晶显示面板600具有透光区域601,透光区域601允许可见光通过,背光模组500具有正对透光区域601的透光部501,因此电子设备100中的摄像头模组等光学器件300能够放置在透光区域601下方,以通过透光区域601(及透光部501)传输可见光,无需占用液晶显示屏400的侧向周边空间,从而减少光学器件300对液晶显示屏400的排布空间的限制,并且透光区域601被显示区域602所环绕,使得液晶显示屏400能够设置更大的显示区域602,以减小电子设备100的边框面积、增大电子设备100的显示面积,提高电子设备100的屏占比。
本申请中,液晶显示屏400的透光区对应于其液晶显示面板600的透光区域601,两者重合。液晶显示屏400的显示区对应于其液晶显示面板600的显示区域602,两者重合。
一种可选实施例中,请一并参阅图2和图3,背光模组500的透光部501为通孔。电子设备100的光学器件300可以部分或全部收容于通孔,以使光学器件300与液晶显示屏400的排布更为紧凑,两者能够复用电子设备100厚度方向上的空间,有利于电子设备100的轻薄化。
其他实施例中,背光模组500的透光部501可以采用导光材料制成。导光材料可以为透明材料。光学器件300位于透光部501远离液晶显示面板600的透光区域601的一侧,透光部501与透光区域601共同用于传输可见光线。
一种可选实施例中,请一并参阅图2和图3,液晶显示面板600包括依次层叠设置的第一偏光片10、液晶盒20及第二偏光片30。换言之,第一偏光片10和第二偏光片30分别层叠于液晶盒20的相背两侧。液晶盒20在透光区域601的部分允许可见光通过。第一偏光片10的偏光轴垂直于第二偏光片30的偏光轴。第一偏光片10和第二偏光片30中的至少一者在透光区域601中镂空设置。也即,第一偏光片10在透光区域601中镂空设置,或者第二偏光片30在透光区域601中镂空设置,或者第一偏光片10和第二偏光片30在透光区域601中均镂空设置。此时,液晶显示面板600在透光区域601的部分允许可见光通过。其中,第一偏光片10和第二偏光片30在透光区域601中均镂空设置时,透光区域601的透光率更高,有利于提高光学器件300的工作质量。图2和图3所示结构以第一偏光片10和第二偏光片30在透光区域601中均镂空设置为例进行说明。
一种可选实施例中,请一并参阅图1至图3,电子设备100还包括盖板700。盖板700位于液晶显示屏400远离整机内腔的一侧。液晶显示屏400可通过粘接层800粘接于盖板700,以共同形成屏组件。本申请中,屏组件的透光区901对应于其液晶显示面板600的透光区域601,两者重合。屏组件的显示区902对应于其液晶显示面板600的显示区域602,两者重合。
粘接层800可采用透明光学胶(Optically Clear Adhesive,OCA)材料。粘接层800与透光区域601正对的位置可以镂空设置,以保证屏组件对应于透光区域601部分的高透光率。其他实施例中,粘接层800也可覆盖透光区域601。
可选的,液晶显示屏400可以集成触控功能。例如,液晶显示屏400还可包括触控层。触控层可以位于第一偏光片10与液晶盒20之间、液晶盒20中或液晶盒20与第一偏光片10之间。其他实施例中,也可以在盖板700与液晶显示屏400之间设置触控膜层,以使屏组件集成触控功能。
请一并参阅图4和图5,图4是图1所示电子设备100在A-A线处的部分结构在另一种实施例中的结构示意图,图5是图4所示结构的部分分解示意图。图4所示结构以光学器件300为接近光传感器为例进行说明。图4所示结构还可以适用于其他以不可见光为识别光线的光学器件300,例如识别不可见光的光学指纹传感器。
传统液晶屏中,允许可见光通过的膜层或板材也都允许不可见光通过。本申请中液晶显示面板600位于透光区域601的膜层(后文中会介绍具体膜层结构)或板材的材料可参阅传统方案进行设计,由于液晶显示面板600位于透光区域601的部分允许可见光通过,因此液晶显示面板600位于透光区域601的部分同样允许不可见光通过。背光模组500中的透光部501同样允许不可见光通过。本申请中以不可见光为识别光线的光学器件300能够通过液晶显示面板600的透光区域601(及背光模组500的透光部501)传输光线。
本实施例与前述实施例的主要区别是,第一偏光片10和第二偏光片30中的一者在透光区域601镂空设置。例如,第一偏光片10覆盖透光区域601和显示区域602。第二偏光片30覆盖显示区域602且错开透光区域601。由于以不可见光为识别光线的光学器件300对透过率的要求较低,因此第一偏光片10和第二偏光片30中的一者开孔即可满足器件要求。此时,位于第一偏光片10与盖板700之间的粘接层800也可覆盖透光区域601,以形成连续的粘接膜层。当然,在其他实施例中,第一偏光片10和第二偏光片30也可以均在 透光区域601中镂空设置。
本申请中,电子设备100可以包括一个或多个光学器件300。液晶显示面板600可以包括一个或多个透光区域601,背光模组500的透光部501与透光区域601对应设置。例如,电子设备100包括多个光学器件300,液晶显示面板600包括多个透光区域601,多个光学器件300分别正对多个透光区域601,以通过多个透光区域601传输光线。其中,一个透光区域601可以为一个光学器件300提供光线传输通道,也可以同时为多个光学器件300提供光线传输通道。
请一并参阅图3和图6,图6是图3所示液晶显示面板600在第一实施例中的结构示意图。
液晶盒20包括依次层叠设置的第一基材1、彩膜层2、器件阵列层3及第二基材4。换言之,液晶显示面板600包括依次层叠设置的第一偏光片10、第一基材1、彩膜层2、器件阵列层3、第二基材4及第二偏光片30。第一基材1和第二基材4均采用透光材料并覆盖透光区域601。彩膜层2又称彩色滤光层(color filter,CF),用于通过特定波段范围内的光线。器件阵列层3包括阵列设置的多个薄膜晶体管(thin film transistor,TFT)。彩膜层2位于透光区域601的部分和器件阵列层3位于透光区域601的部分均允许可见光通过。
在本实施例中,由于第一基材1和第二基材4均采用透光材料,彩膜层2位于透光区域601的部分和器件阵列层3位于透光区域601的部分均允许可见光通过,且第一偏光片10和第二偏光片30中的至少一者在透光区域601中镂空设置,因此透光区域601允许可见光通过。当液晶显示面板600应用于电子设备100时,电子设备100中的摄像头模组等光学器件300能够放置在液晶显示面板600的透光区域601下方,以通过透光区域601传输可见光,从而减少光学器件300对液晶显示面板600的排布空间的限制,并且透光区域601被显示区域602所环绕,使得液晶显示面板600能够设置更大的显示区域602,以减小电子设备100的边框面积、增大电子设备100的显示面积,提高电子设备100的屏占比。
其中,第一基材1和第二基材4同样覆盖显示区域602。第一基材1和第二基材4可采用玻璃材料。第一基材1和第二基材4为整面连续的板材,具有足够的结构强度,使得液晶显示面板600的整体强度较高,不易碎裂。本申请中,由于液晶显示面板600具有较高的强度,因此透光区域601的形状、大小、数量及与液晶显示面板600的边缘之间的间距的设计更为灵活、多样化,有利于提高电子设备100的整机可靠性。例如,透光区域601的形状可以为圆形、椭圆形、多边形、圆角矩形、跑道形(包括两条相互平行的直边和相对地连接在两条直边之间的弧边)等。透光区域601的数量可以为一个或多个。多个透光区域601可以分别为多个光学器件300提供光线传输通道。多个透光区域601的排布方式可以灵活设计,例如阵列排布、环形排列等。
可选的,请参阅图6,液晶显示面板600还包括胶框5和液晶层(liquid crystal layer)6。胶框5位于第一基材1与第二基材4之间。胶框5环绕于显示区域602外周侧。透光区域601位于胶框5内侧。液晶层6填充于胶框5内侧。
在本实施例中,液晶层6能够同时填充于透光区域601和显示区域602中,透光区域601与显示区域602之间无需额外设置隔断结构,从而简化了液晶显示面板600的制作工 艺,使得液晶显示面板600的成本较低。
其中,器件阵列层3在显示区域602中的部分能够控制液晶层6的位于显示区域602的液晶的偏转方向,彩膜层2在显示区域602中的部分能够过滤光线。器件阵列层3、彩膜层2及液晶层6相配合,使得显示区域602能够实现显示。由于液晶能够传输光线,因此可见光能够穿过液晶层6在透光区域601的部分,透光区域601能够传输可见光。
可选的,请参阅图6,彩膜层2包括黑色矩阵(black matrix,BM)21和与黑色矩阵21交替设置的多个彩色色阻块22。多个彩色色阻块22包括红色(R)色阻块、绿色(G)色阻块及蓝色(B)色阻块。一种实施例中,多个彩色色阻块22还可包括白色(W)色阻块或黄色(Y)色阻块。本实施例中,黑色矩阵21集成在彩膜层2中,黑色矩阵21与多个彩色色阻块22复用液晶显示面板600的部分厚度空间。
其中,液晶层6位于彩膜层2与器件阵列层3之间。彩膜层2可以制作在第一基材1上,而与第一基材1共同形成彩膜基板。器件阵列层3可以制作在第二基材4上,而与第二基材4共同形成阵列基板。制作液晶显示面板600时,先分别形成阵列基板和彩膜基板,然后对盒阵列基板与彩膜基板,接着在阵列基板与彩膜基板之间填充液晶以形成液晶层6。
可选的,请参阅图6,黑色矩阵21和多个彩色色阻块22均错开透光区域601排布。黑色矩阵21图案化地排布于显示区域602。黑色矩阵21大致呈框架形,以形成呈矩阵排布的多个镂空区。多个彩色色阻块22排布于显示区域602,多个彩色色阻块22一一对应地覆盖多个镂空区。此时,黑色矩阵21和多个彩色色阻块22均不会遮挡透光区域601,透光区域601的透光率较高,有利于提高光学器件300的工作质量。
可选的,请参阅图6,液晶显示面板600还包括平坦层7。平坦层7位于彩膜层2与液晶层6之间。平坦层7远离彩膜层2的一侧能够提供平整的成型面71,从而降低后续的其他层结构的成型难度。平坦层7采用透明材料。本实施例中,平坦层7排布于显示区域602并错开透光区域601。也即,平坦层7在透光区域601镂空设置。
可选的,请参阅图6,液晶显示面板600还包括第一取向层(alignment layer,又称配向层)8和第二取向层9。第一取向层8位于液晶层6朝向第一基材1的一侧。第二取向层9位于液晶层6朝向第二基材4的一侧。换言之,第一取向层8和第二取向层9分别位于液晶层6的相背两侧,且直接接触液晶层6。液晶层6夹设在第一取向层8和第二取向层9之间。第一取向层8和第二取向层9用于为液晶层6中的液晶提供预倾角。第一取向层8及第二取向层9均覆盖透光区域601和显示区域602。
在本实施例中,由于第一取向层8及第二取向层9均覆盖透光区域601和显示区域602,因此在第一取向层8和第二取向层9的制备工艺中,能够降低在透光区域601沉积异物的风险,使得经过透光区域601的光线因异物产生噪音的风险较小,从而保证光学器件300的工作质量。第一取向层8及第二取向层9的设置也有利于控制位于透光区域601内的液晶保持特定角度,以减少光线在传输过程中发生偏离的风险,从而提高光学器件300的工作质量。
其中,第一取向层8可以形成在平坦层7远离彩膜层2的成型面71上。由于该成型面71平整,因此第一取向层8的成型难度较低,第一取向层8的成型质量较佳。
其他实施例中,第一取向层8在透光区域601中也可镂空设置。第二取向层9在透光 区域601中也可镂空设置。
可选的,请一并参阅图6至图8,图7是图6所示液晶显示面板600的器件阵列层3与第二基材4在一种实施例中的部分结构示意图,图8是图6所示液晶显示面板600的器件阵列层3与第二基材4在另一种实施例中的部分结构示意图。
器件阵列层3包括层叠设置的多个透光层301和多个遮光层302。多个遮光层302错开透光区域601排布。多个遮光层302图案化地排布于显示区域602。一个或多个透光层301部分排布于透光区域601。多个透光层301图案化地排布于显示区域602。透光层301允许可见光通过。遮光层302遮挡可见光。
在本实施例中,由于一个或多个透光层301部分排布于透光区域601,因此器件阵列层3在透光区域601部分的厚度(在第一基材1向第二基材4的方向Z上的尺寸)与在显示区域602部分的厚度差异不大,使得液晶层6在透光区域601部分的厚度与在显示区域602部分的厚度相近,以降低由于层结构差异过大而导致透光区域601周围的显示区域602出现显示异常(如牛顿环等)问题的风险,从而提高液晶显示屏400的显示质量。
举例而言:
一种实施例中,请一并参阅图6和图7,器件阵列层3中的薄膜晶体管可采用顶栅结构。器件阵列层3包括遮挡层31、缓冲层32、半导体层33、栅极绝缘层(gate insulator layer)34、栅极35、第一绝缘层36、源极37、漏极38、第二绝缘层39、公共电极310、第三绝缘层311及像素电极312。遮挡层31形成在第二基材4上。遮挡层31可采用金属材料。缓冲层32形成在第二基材4上且覆盖遮挡层31。半导体层33位于缓冲层32远离第二基材4的一侧且正对遮挡层31。半导体层33可采用低温多晶硅(low temperature poly-silicon,LTPS)材料。半导体层33包括位于沟道区、两个轻掺杂区和两个重掺杂区,两个轻掺杂区分别连接于沟道区的相背两端,两个重掺杂区分别连接于两个轻掺杂区远离沟道区的两端。栅极绝缘层34位于缓冲层32远离第二基材4的一侧且覆盖半导体层33。栅极绝缘层34设有分别正对两个重掺杂区的第一孔和第二孔。栅极35位于栅极绝缘层34远离缓冲层32的一侧且正对沟道区设置。第一绝缘层36位于栅极绝缘层34远离缓冲层32的一侧且覆盖栅极35。第一绝缘层36设有连通第一孔的第三孔和连通第二孔的第四孔。源极37和漏极38位于第一绝缘层36远离栅极绝缘层34的一侧,源极37经第三孔和第一孔连接其中一个重掺杂区,漏极38经第四孔和第二孔连接另一个重掺杂区。第二绝缘层39位于第一绝缘层36远离栅极绝缘层34的一侧且覆盖源极37和漏极38。第二绝缘层39设有正对漏极38(或源极37)的第五孔。公共电极310位于第二绝缘层39远离第一绝缘层36的一侧。第三绝缘层311位于第二绝缘层39远离第一绝缘层36的一侧且覆盖公共电极310。第三绝缘层311设有连通第五孔的第六孔。像素电极312位于第三绝缘层311远离第二绝缘层39的一侧,且通过第六孔和第五孔连接漏极38(或源极37)。
此时,多个遮光层302可以包括遮挡层31、半导体层33、栅极35、源极37、漏极38等。多个透光层301可以包括缓冲层32、栅极绝缘层34、第一绝缘层36、第二绝缘层39及第三绝缘层311。像素电极312和公共电极310采用透光材料时,也可以属于多个透光层301。
另一种实施例中,请一并参阅图6和图8,器件阵列层3中的薄膜晶体管可采用底栅 结构。器件阵列层3包括栅极35、栅极绝缘层34、半导体层33、源极37、漏极38、绝缘层313及像素电极312。栅极35形成在第二基材4上。栅极绝缘层34形成在第二基材4上且覆盖栅极35。半导体层33位于栅极绝缘层34远离栅极35的一侧且正对栅极35。半导体层33可采用非晶硅(amorphous silicon,α-Si)材料。源极37位于栅极绝缘层34远离第二基材4的一侧且连接半导体层33的一端。漏极38位于栅极绝缘层34远离第二基材4的一侧且连接半导体层33的另一端。绝缘层313位于栅极绝缘层34远离第二基材4的一侧且覆盖源极37、半导体层33及漏极38。绝缘层313设有正对漏极38(或源极37)的通孔。像素电极312位于绝缘层313远离栅极绝缘层34的一侧,且通过通孔连接漏极38(或源极37)。
此时,多个遮光层302可以包括栅极35、半导体层33、源极37及漏极38。多个透光层301可以包括栅极绝缘层34和绝缘层313。像素电极312采用透光材料时,也可以属于多个透光层301。
其他实施例中,器件阵列层3的层结构可以与前面两种实施例有所区别,也即器件阵列层3可以是其他层结构。多个透光层301和多个遮光层302对应的具有其他膜层。
可选的,请一并参阅图6至图8,在第一基材1向第二基材4的方向Z(也即液晶显示面板600的厚度方向)上,器件阵列层3位于显示区域602的部分的厚度大于位于透光区域601的部分的厚度。此时,同一层透光层301在显示区域602的部分和在透光区域601部分的厚度可以保持一致,以降低各层透光层301的制备难度,也降低器件阵列层3的制备难度。
其中,器件阵列层3可以在透光区域601排布尽量多的透光层301,以降低器件阵列层3在显示区域602部分与在透光区域601部分的厚度差异。
可选的,请参阅图6,液晶显示面板600还包括支撑组件40。支撑组件40位于第一基材1与第二基材4之间,且在第一基材1向第二基材4的方向Z上贯穿液晶层6,用以保持第一基材1与第二基材4之间的间距。
在本申请中,支撑组件40用于保持第一基材1与第二基材4之间的间距(又称盒间隙),使得液晶显示面板600在制作或使用过程中不易发生形变,从而保证液晶显示面板600的显示质量。
其中,支撑组件40包括多个第一支撑柱41,多个第一支撑柱41错开透光区域601排布。多个第一支撑柱41彼此间隔排布。多个第一支撑柱41正对黑色矩阵21排布。换言之,多个第一支撑柱41在第一基材1上的投影被黑色矩阵21在第一基材1上的投影覆盖。多个第一支撑柱41可采用透光材料或不透光材料。
其他实施例中,多个第一支撑柱41采用透明材料时,多个第一支撑柱41的排布位置也可以不收黑色矩阵21限定。
可选的,请参阅图6,液晶显示面板600还具有环绕并邻接透光区域601的遮光区域603。遮光区域603位于透光区域601与显示区域602之间。其中,黑色矩阵21环绕透光区域601的部分对应于遮光区域603。
支撑组件40还包括第四支撑柱44。第四支撑柱44排布于遮光区域603。在本实施例中,第四支撑柱44能够对液晶显示面板600位于遮光区域603的部分进行支撑,从而降低 遮光区域603发生形变的风险,以保证液晶显示面板600的显示质量。
其中,器件阵列层3在遮光区域603的部分的层结构与在显示区域602的部分的层结构相同,厚度相等。第四支撑柱44的高度与第一支撑柱41的高度相同。
其中,第四支撑柱44的数量为多个。多个第四支撑柱44彼此间隔地环绕透光区域601排布。第四支撑柱44的形状及尺寸可以与第一支撑柱41相同。第四支撑柱44可以大致呈圆台状。第四支撑柱44与第一支撑柱41可在同一道工序中成形。
请参阅图9,图9是图3所示液晶显示面板600在第二实施例中的结构示意图。
平坦层7位于彩膜层2与液晶层6之间。平坦层7采用透明材料。
本实施例与前述实施例的主要区别是:平坦层7覆盖透光区域601和显示区域602。此时,平坦层7远离彩膜层2的一侧能够提供一个完整且平整的成型面71,从而降低后续的其他层结构(例如第一取向层8)的成型难度,有利于提高液晶显示面板600的良品率。
请参阅图10,图10是图3所示液晶显示面板600在第三实施例中的结构示意图。
彩膜层2包括黑色矩阵21和与黑色矩阵21交替设置的多个彩色色阻块22。
本实施例与前述实施例的主要区别是:液晶层6位于第一基材1与彩膜层2之间。此时,器件阵列层3和彩膜层2依次形成在第二基材4上,以形成阵列上彩膜(Color Filter OnArray,COA)基板;第一基材1及形成在第一基材1上的膜层共同形成对盒基板。制作液晶显示面板600时,先分别形成阵列上彩膜基板和对盒基板,然后对盒阵列上彩膜基板和对盒基板,接着在阵列上彩膜基板和对盒基板之间填充液晶以形成液晶层6。本实施例中,由于彩膜层2形成在器件阵列层3上,因此能够解决液晶显示面板600对位要求高的问题,同时也能够提高液晶显示面板600的开口率。
其中,彩膜层2位于液晶层6与器件阵列层3之间,平坦层7形成在彩膜层2远离器件阵列层3的一侧。平坦层7远离彩膜层2的一侧形成完整且平整的成型面71,能够降低后续的其他层结构(例如第二取向层9)的成型难度,有利于提高液晶显示面板600的良品率。
液晶显示面板600还可包括第二平坦层50,第二平坦层50位于第一基材1朝向液晶层6的一侧。第二平坦层50能够提高后续形成在第一基材1上的其他层结构(例如第一取向层8)的附着力。
其中,支撑组件40可以形成在第二平坦层50上。其他实施例中,液晶显示面板600不设置第二平坦层50,支撑组件40可以直接形成在第一基材1上。
请参阅图11,图11是图3所示液晶显示面板600在第四实施例中的结构示意图。
本实施例与前述实施例的主要区别是:液晶显示面板600还包括黑色矩阵21。彩膜层2包括多个彩色色阻块22。本实施例中,黑色矩阵21独立于彩膜层2。黑色矩阵21位于第一基材1朝向彩膜层2的一侧,液晶层6位于黑色矩阵21与彩膜层2之间。此时,器件阵列层3和彩膜层2依次形成在第二基材4上,以形成阵列上彩膜基板;第一基材1及形成在第一基材1上的黑色矩阵21共同形成对盒基板。制作液晶显示面板600时,先分别形成阵列上彩膜基板和对盒基板,然后对盒阵列上彩膜基板和对盒基板,接着在阵列上彩膜基板和对盒基板之间填充液晶以形成液晶层6。本实施例中,由于彩膜层2形成在器件阵列层3上,因此能够解决液晶显示面板600对位要求高的问题,同时也能够提高液晶显示 面板600的开口率。
其中,彩膜层2位于液晶层6与器件阵列层3之间,平坦层7形成在彩膜层2远离器件阵列层3的一侧。平坦层7远离彩膜层2的一侧形成完整且平整的成型面71,能够降低后续的其他层结构(例如第二取向层9)的成型难度,有利于提高液晶显示面板600的良品率。彩膜层2中的各彩色色阻块22之间形成间隙时,平坦层7可部分填充于该间隙。
其中,液晶显示面板600还可包括第二平坦层50。第二平坦层50位于黑色矩阵21远离第一基材1的一侧且覆盖黑色矩阵21。第二平坦层50可部分填充于黑色矩阵21中的空隙处。第二平坦层50能够提高后续形成在第一基材1上的其他层结构(例如第一取向层8)的附着力。支撑组件40可以形成在第二平坦层50上。其他实施例中,液晶显示面板600不设置第二平坦层50,支撑组件40可以直接形成在黑色矩阵21上。
请参阅图12,图12是图3所示液晶显示面板600在第五实施例中的结构示意图。
彩膜层2包括黑色矩阵21和与黑色矩阵21交替设置的多个彩色色阻块22。黑色矩阵21错开透光区域601排布。
本实施例与前述实施例的主要区别是:部分彩色色阻块22排布于透光区域601。黑色矩阵21图案化地排布于显示区域602。黑色矩阵21大致呈框架形,以形成呈矩阵排布的多个镂空区。部分彩色色阻块22排布于显示区域602,并一一对应地覆盖多个镂空区。排布于透光区域601的部分彩色色阻块22的排布方式可以灵活设置,例如排布同一种颜色的色阻块,或排布不同颜色的色阻块。此时,黑色矩阵21不会遮挡透光区域601。排布于透光区域601的部分彩色色阻块22会过滤部分光线,虽然降低了透光率,但仍能够保持透光区域601的透光性。其中,可通过电子设备100中的控制器中的算法补偿或修正排布于透光区域601的部分彩色色阻块22所形成的过滤作用,以保证光学器件300的工作质量。
请参阅图13,图13是图3所示液晶显示面板600在第六实施例中的结构示意图。
本实施例与前述实施例的主要区别是:在第一基材1向第二基材4的方向Z(也即液晶显示面板600的厚度方向)上,器件阵列层3位于显示区域602的部分与位于透光区域601的部分厚度一致。此时,多个透光层301(参阅图7和图8)中的同一层透光层301在透光区域601的部分厚度可以大于在显示区域602的部分厚度,以使器件阵列层3位于显示区域602的部分与位于透光区域601的部分厚度一致。
本实施例中,器件阵列层3位于显示区域602的部分与位于透光区域601的部分厚度一致,使得液晶显示屏400在显示区域602和透光区域601的层结构较为相近,以保证液晶显示面板600的显示效果。当第二取向层9形成在器件阵列层3上时,第二取向层9能够形成较为平坦的膜层,避免第二取向层9在透光区域601的周缘处发生液体堆积而导致透光区域601出现周边发黄、发白等显示不均的问题。
请参阅图14,图14是图3所示液晶显示面板600在第七实施例中的结构示意图。
液晶显示面板600还包括支撑组件40。支撑组件40位于第一基材1与第二基材4之间,且在第一基材1向第二基材4的方向Z上贯穿液晶层6,用以保持第一基材1与第二基材4之间的间距。支撑组件40包括多个第一支撑柱41,多个第一支撑柱41错开透光区域601排布。
本实施例与前述实施例的主要区别是:支撑组件40还包括第二支撑柱42。第二支撑 柱42部分或全部排布于透光区域601。图14中,第二支撑柱42全部排布于透光区域601。第二支撑柱42采用透光材料。在本实施例中,通过第二支撑柱42对位于透光区域601内的第一基材1和第二基材4的支撑,使得液晶显示面板600在透光区域601与显示区域602具有相同的盒间隙,以避免在透光区域601周边的显示区域602中发生显示异常,使得液晶显示屏400具有较高的显示质量。
其中,第二支撑柱42的数量为多个。多个第二支撑柱42彼此间隔地排布于透光区域601。本实施例中,多个第二支撑柱42可大致均匀地间隔排布,使液晶显示面板600的整个透光区域601具有较为均匀的盒间隙。
其中,对第二支撑柱42的数量进行设计时,要平衡支撑需求和透光需求,以具有足够的第二支撑柱42用于保持盒间隙,又避免设置过多的第二支撑柱42而导致透光区域601的透过率过低。
本实施例中,器件阵列层3位于显示区域602的部分的厚度大于位于透光区域601的部分的厚度,在第一基材1向第二基材4的方向Z上,第二支撑柱42的高度大于第一支撑柱41的高度。第二支撑柱42的高度以能够合理支撑第一基材1及第二基材4为准进行设计。此时,第二支撑柱42的形状可参考第一支撑柱41设计。第二支撑柱42和第一支撑柱41可以大致呈圆台状。第二支撑柱42与第一支撑柱41可以在同一道工序中成形,也可以在两道工序中成形。
其他实施例中,器件阵列层3位于显示区域602的部分与位于透光区域601的部分厚度一致时(可以参阅图13所示结构),第二支撑柱42的形状及尺寸可以与第一支撑柱41相同。第二支撑柱42和第一支撑柱41可以大致呈圆台状。第二支撑柱42与第一支撑柱41可在同一道工序中成形。
请参阅图15,图15是图3所示液晶显示面板600在第八实施例中的结构示意图。
液晶显示面板600还包括支撑组件40。支撑组件40位于第一基材1与第二基材4之间,且在第一基材1向第二基材4的方向Z上贯穿液晶层6。支撑组件40包括多个第一支撑柱41,多个第一支撑柱41错开透光区域601排布。支撑组件40还包括第二支撑柱42。第二支撑柱42排布于透光区域601。
本实施例与前述实施例的主要区别是:第二支撑柱42的数量为一个。第二支撑柱42朝向第二基材4的端面421面积大于第一支撑柱41朝向第二基材4的端面411面积。其中,第二支撑柱42朝向第一基材1的端面422面积大于第一支撑柱41朝向第一基材1的端面412面积。
在本实施例中,第二支撑柱42能够提供更大的支撑面积,从而在第二支撑柱42的数量的情况下,使得支撑组件40能够稳定支撑透光区域601。
其中,第二支撑柱42可以呈圆台形,第二支撑柱42的两个端面(421、422)呈圆形。此时,第二支撑柱42的两个端面(421、422)可以尽量覆盖透光区域601。例如,第二支撑柱42形成在第一基材1上,第二支撑柱42朝向第一基材1的端面422覆盖透光区域601。此时,第二支撑柱42朝向第二基材4的端面421可以覆盖透光区域601或覆盖部分透光区域601。由于第二支撑柱42占用了液晶层6在透光区域601的大量空间、甚至全部空间,因此液晶层6在液晶区域中的液晶很少、甚至没有。
本实施例中,第二支撑柱42可采用高透光材料,以提高透光区域601的透过率。例如,第二支撑柱42所采用的材料的透光率可高于液晶材料的透光率。
请参阅图16,图16是图3所示液晶显示面板600在第九实施例中的结构示意图。
液晶显示面板600还包括支撑组件40。支撑组件40位于第一基材1与第二基材4之间,且在第一基材1向第二基材4的方向Z上贯穿液晶层6。支撑组件40包括多个第一支撑柱41,多个第一支撑柱41错开透光区域601排布。支撑组件40还包括第二支撑柱42。第二支撑柱42的数量为一个。第二支撑柱42朝向第二基材4的端面421面积大于第一支撑柱41朝向第二基材4的端面411面积。第二支撑柱42可以呈圆台形。液晶显示面板600还具有环绕并邻接透光区域601的遮光区域603。
本实施例与前述实施例的主要区别是:第二支撑柱42部分排布于透光区域601。第二支撑柱42部分位于遮光区域603。位于遮光区域603的部分第二支撑柱42既不会降低遮光区域603的透光率,还能够提高对液晶显示面板600在透光区域601部分的支撑可靠性,使得液晶显示面板600具有较高的显示质量。
其中,第二支撑柱42的中心区域排布于透光区域601,第二支撑柱42的周缘区域排布于遮光区域603。器件阵列层3位于遮光区域603部分的厚度与位于显示区域602部分的厚度相同。本实施例中,器件阵列层3位于透光区域601部分的厚度小于位于显示区域602部分的厚度,第二支撑柱42没有接触器件阵列层3位于显示区域602的部分,两者之间填充液晶。
其他实施例中,器件阵列层3位于透光区域601部分的厚度与位于显示区域602部分的厚度相同时,第二支撑柱42同时接触器件阵列层3位于遮光区域603部分和器件阵列层3位于透光区域601部分,能够更好地支撑第一基材1与第二基材4,以保持液晶显示面板600的盒间隙。
请参阅图17,图17是图3所示液晶显示面板600在第十实施例中的结构示意图。
液晶显示面板600还包括支撑组件40。支撑组件40位于第一基材1与第二基材4之间,且在第一基材1向第二基材4的方向Z上贯穿液晶层6。支撑组件40包括多个第一支撑柱41,多个第一支撑柱41错开透光区域601排布。支撑组件40还包括第二支撑柱42。第二支撑柱42的数量为一个。第二支撑柱42朝向第二基材4的端面421面积大于第一支撑柱41朝向第二基材4的端面411面积。第二支撑柱42排布于透光区域601。
本实施例与前述实施例的主要区别是:第二支撑柱42朝向第二基材4的端面421呈环形。第二支撑柱42朝向第一基材1的端面422呈环形。此时,第二支撑柱42具有相背设置的内侧环面和外侧环面。内侧环面所环绕出的空间中排布有液晶。具有环形端面的第二支撑柱42的支撑强度较高。
请一并参阅图18和图19,图18是图3所示液晶显示面板600在第十一实施例中的结构示意图,图19是图18所示液晶显示面板600的第二支撑柱42和第三支撑柱43的位置关系示意图。
液晶显示面板600还包括支撑组件40。支撑组件40位于第一基材1与第二基材4之间,且在第一基材1向第二基材4的方向Z上贯穿液晶层6。支撑组件40包括多个第一支撑柱41,多个第一支撑柱41错开透光区域601排布。支撑组件40还包括第二支撑柱42。 第二支撑柱42的数量为一个。第二支撑柱42朝向第二基材4的端面421面积大于第一支撑柱41朝向第二基材4的端面411面积。第二支撑柱42排布于透光区域601。第二支撑柱42朝向第二基材4的端面421呈环形。
本实施例与前述实施例的主要区别是:支撑组件40还包括一个或多个第三支撑柱43。第二支撑柱42环绕一个或多个第三支撑柱43设置。本实施例中,通过设置一个或多个第三支撑柱43,使一个或多个第三支撑柱43与第二支撑柱42相配合,共同支撑第一基材1和第二基材4,能够提高支撑组件40对液晶显示面板600在透光区域601部分的支撑可靠性。
其中,多个第三支撑柱43可阵列排布。第二支撑柱42排布于透光区域601。第二支撑柱42和第三支撑柱43在第一基材1向第二基材4的方向Z上高度相同。
请一并参阅图20和图21,图20是图3所示液晶显示面板600在第十二实施例中的结构示意图,图21是图20所示液晶显示面板600的第二支撑柱42和第三支撑柱43的位置关系示意图。
液晶显示面板600还包括支撑组件40。支撑组件40位于第一基材1与第二基材4之间,且在第一基材1向第二基材4的方向Z上贯穿液晶层6。支撑组件40包括多个第一支撑柱41,多个第一支撑柱41错开透光区域601排布。支撑组件40还包括第二支撑柱42。第二支撑柱42的数量为一个。第二支撑柱42朝向第二基材4的端面421面积大于第一支撑柱41朝向第二基材4的端面411面积。第二支撑柱42朝向第二基材4的端面421呈环形。支撑组件40还包括一个或多个第三支撑柱43。第二支撑柱42环绕一个或多个第三支撑柱43设置。
本实施例与前述实施例的主要区别是:第二支撑柱42部分排布于透光区域601、部分排布于遮光区域603。此时,第二支撑柱42可以设置较大的端面(421/422)面积,以提高第二支撑柱42的支撑强度。并且,相对于第十一实施例(参阅图18和图19),在同等排布密度的情况下,透光区域601中可以排布更多的第三支撑柱43,使得支撑组件40对液晶显示面板600的透光区域601的支撑强度更高。
请参阅图22,图22是图3所示液晶显示面板600在第十三实施例中的结构示意图。
液晶显示面板600还包括支撑组件40。支撑组件40位于第一基材1与第二基材4之间,且在第一基材1向第二基材4的方向Z上贯穿液晶层6。支撑组件40包括多个第一支撑柱41,多个第一支撑柱41错开透光区域601排布。支撑组件40还包括第二支撑柱42。
本实施例与前述实施例的主要区别是:第二支撑柱42包括第一支撑块423和第二支撑块424。第一支撑块423和第二支撑块424在第一基材1向第二基材4的方向Z上排布,且彼此抵持。此时,第一支撑块423和第二支撑块424中的一者形成在第一基材1上,另一者形成在第二基材4上。在第一基材1向第二基材4的方向Z上,第一支撑块423与第二支撑块424的高度和等于第二支撑柱42的高度。在本实施例中,将一个第二支撑柱42分割成第一支撑块423和第二支撑块424,有利于降低第二支撑柱42的成形难度,使得第二支撑柱42的成形质量较高。
其中,第一支撑块423朝向第一基材1的端面面积与第二支撑块424朝向第二基材4的端面面积相同。其他实施例中,第一支撑块423朝向第一基材1的端面和第二支撑块424 朝向第二基材4的端面中,也可以一者面积较大,另一者面积较小,以使两者之间的抵持更稳固。
其中,第一支撑块423的高度与第二支撑块424的高度可以一致,也可以不一致。
本实施例中将第二支撑柱42拆成第一支撑块423和第二支撑块424的方式,也可以应用于图15至图20所示结构中。
请参阅图23,图23是图3所示液晶显示面板600在第十四实施例中的结构示意图。
液晶显示面板600还具有环绕并邻接透光区域601的遮光区域603。液晶显示面板600还包括支撑组件40。支撑组件40位于第一基材1与第二基材4之间,且在第一基材1向第二基材4的方向Z上贯穿液晶层6。支撑组件40包括多个第一支撑柱41,多个第一支撑柱41错开透光区域601排布。支撑组件40还包括第四支撑柱44。第四支撑柱44排布于遮光区域603。
本实施例与前述实施例的主要区别是:第四支撑柱44的数量为一个。第四支撑柱44朝向第二基材4的端面441呈环形。第四支撑柱44朝向第一基材1的端面442呈环形。具有环形端面的第四支撑柱44的支撑强度较高。第四支撑柱44环绕透光区域601。
其中,在不冲突的情况下,本实施例可以与前述各个实施例进行组合,例如,第四支撑柱44可以与排布于透光区域601的各种形状的第二支撑柱42和第三支撑柱43相组合。
在本申请中,图6至图23中所示出的各种结构的液晶显示面板600均可应用于图4和图5所示结构中。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内;在不冲突的情况下,本申请的实施方式及实施方式中的特征可以相互组合。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种液晶显示面板,其特征在于,具有透光区域和环绕所述透光区域的显示区域,所述显示区域用于显示图像;
    所述液晶显示面板包括依次层叠设置的第一偏光片、第一基材、彩膜层、器件阵列层、第二基材及第二偏光片,所述第一基材和所述第二基材均采用透光材料并覆盖所述透光区域,所述彩膜层位于所述透光区域的部分和所述器件阵列层位于所述透光区域的部分均允许可见光通过,所述第一偏光片的偏光轴垂直于所述第二偏光片的偏光轴,所述第一偏光片和所述第二偏光片中的至少一者在所述透光区域中镂空设置。
  2. 如权利要求1所述的液晶显示面板,其特征在于,所述液晶显示面板还包括胶框和液晶层,所述胶框位于所述第一基材与所述第二基材之间,所述胶框环绕于所述显示区域外周侧,所述透光区域位于所述胶框内侧,所述液晶层填充于所述胶框内侧。
  3. 如权利要求2所述的液晶显示面板,其特征在于,所述彩膜层包括黑色矩阵和与所述黑色矩阵交替设置的多个彩色色阻块;所述液晶层位于所述彩膜层与所述器件阵列层之间,或者位于所述第一基材与所述彩膜层之间。
  4. 如权利要求2所述的液晶显示面板,其特征在于,所述液晶显示面板还包括黑色矩阵,所述彩膜层包括多个彩色色阻块;所述黑色矩阵位于所述第一基材朝向彩膜层的一侧,所述液晶层位于所述黑色矩阵与所述彩膜层之间。
  5. 如权利要求3或4所述的液晶显示面板,其特征在于,所述黑色矩阵和所述多个彩色色阻块均错开所述透光区域排布;
    或者,所述黑色矩阵错开所述透光区域排布,部分所述彩色色阻块排布于所述透光区域。
  6. 如权利要求3或4所述的液晶显示面板,其特征在于,所述液晶显示面板还包括平坦层,所述平坦层覆盖所述透光区域和所述显示区域,所述平坦层位于所述彩膜层与所述液晶层之间。
  7. 如权利要求3或4所述的液晶显示面板,其特征在于,所述液晶显示面板还包括第一取向层和第二取向层,所述第一取向层位于所述液晶层朝向所述第一基材的一侧,所述第二取向层位于所述液晶层朝向所述第二基材的一侧,所述第一取向层及所述第二取向层均覆盖所述透光区域和所述显示区域。
  8. 如权利要求1至7中任意一项所述的液晶显示面板,其特征在于,所述器件阵列层包括层叠设置的多个透光层和多个遮光层,所述多个遮光层错开所述透光区域排布,一个或多个所述透光层部分排布于所述透光区域。
  9. 如权利要求8所述的液晶显示面板,其特征在于,在所述第一基材向所述第二基材的方向上,所述器件阵列层位于所述显示区域的部分与位于所述透光区域的部分厚度一致。
  10. 如权利要求2至9中任意一项所述的液晶显示面板,其特征在于,所述液晶显示面板还包括支撑组件,所述支撑组件位于所述第一基材与所述第二基材之间,且在所述第一基材向所述第二基材的方向上贯穿所述液晶层,用以保持所述第一基材与所述第二基材之间的间距。
  11. 如权利要求10所述的液晶显示面板,其特征在于,所述支撑组件包括多个第一支撑柱,所述多个第一支撑柱错开所述透光区域排布。
  12. 如权利要求11所述的液晶显示面板,其特征在于,所述支撑组件还包括第二支撑柱,所述第二支撑柱部分或全部排布于所述透光区域。
  13. 如权利要求12所述的液晶显示面板,其特征在于,所述第二支撑柱的数量为多个,多个所述第二支撑柱彼此间隔地排布于所述透光区域。
  14. 如权利要求12所述的液晶显示面板,其特征在于,所述第二支撑柱的数量为一个,所述第二支撑柱朝向所述第二基材的端面面积大于所述第一支撑柱朝向所述第二基材的端面面积。
  15. 如权利要求14所述的液晶显示面板,其特征在于,所述第二支撑柱朝向所述第二基材的端面呈环形。
  16. 如权利要求15所述的液晶显示面板,其特征在于,所述支撑组件还包括一个或多个第三支撑柱,所述第二支撑柱环绕所述一个或多个第三支撑柱设置。
  17. 如权利要求14至16中任意一项所述的液晶显示面板,其特征在于,所述液晶显示面板还具有环绕并邻接所述透光区域的遮光区域,所述第二支撑柱部分位于所述遮光区域。
  18. 如权利要求12至17中任意一项所述的液晶显示面板,其特征在于,所述第二支撑柱包括第一支撑块和第二支撑块,所述第一支撑块和所述第二支撑块在所述第一基材向所述第二基材的方向上排布,且彼此抵持。
  19. 如权利要求11所述的液晶显示面板,其特征在于,所述液晶显示面板还具有环绕并邻接所述透光区域的遮光区域,所述支撑组件还包括第四支撑柱,所述第四支撑柱排布于所述遮光区域。
  20. 如权利要求19所述的液晶显示面板,其特征在于,所述第四支撑柱的数量为多个,多个所述第四支撑柱彼此间隔地环绕所述透光区域排布。
  21. 如权利要求19所述的液晶显示面板,其特征在于,所述第四支撑柱的数量为一个,所述第四支撑柱朝向所述第二基材的端面呈环形。
  22. 一种液晶显示屏,其特征在于,包括背光模组和如权利要求1至21中任意一项所述的液晶显示面板,所述背光模组用于为所述液晶显示面板提供背光源,所述背光模组具有正对所述透光区域的透光部。
  23. 一种电子设备,其特征在于,包括壳体、光学器件及如权利要求22所述的液晶显示屏,所述液晶显示屏安装于所述壳体,所述液晶显示屏与所述壳体共同围设出整机内腔,所述光学器件收容于所述整机内腔且正对所述透光区域。
PCT/CN2018/105301 2018-09-12 2018-09-12 液晶显示面板、液晶显示屏及电子设备 WO2020051810A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880097238.7A CN112639594B (zh) 2018-09-12 2018-09-12 液晶显示面板、液晶显示屏及电子设备
PCT/CN2018/105301 WO2020051810A1 (zh) 2018-09-12 2018-09-12 液晶显示面板、液晶显示屏及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/105301 WO2020051810A1 (zh) 2018-09-12 2018-09-12 液晶显示面板、液晶显示屏及电子设备

Publications (1)

Publication Number Publication Date
WO2020051810A1 true WO2020051810A1 (zh) 2020-03-19

Family

ID=69777942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105301 WO2020051810A1 (zh) 2018-09-12 2018-09-12 液晶显示面板、液晶显示屏及电子设备

Country Status (2)

Country Link
CN (1) CN112639594B (zh)
WO (1) WO2020051810A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111929936A (zh) * 2020-08-25 2020-11-13 上海中航光电子有限公司 一种显示面板及显示装置
CN112838112A (zh) * 2021-01-11 2021-05-25 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN114258218A (zh) * 2020-09-25 2022-03-29 北京小米移动软件有限公司 电子设备和电子设备中框
CN115718386A (zh) * 2022-11-17 2023-02-28 武汉华星光电技术有限公司 显示模组及显示装置
CN114258218B (zh) * 2020-09-25 2024-06-04 北京小米移动软件有限公司 电子设备和电子设备中框

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113991037B (zh) * 2021-10-25 2023-11-14 昆山国显光电有限公司 显示面板及其制作方法、显示装置
CN113990186B (zh) * 2021-10-25 2023-11-07 昆山国显光电有限公司 显示面板及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070077502A1 (en) * 2005-09-30 2007-04-05 Dai Nippon Printing Co., Ltd. Color filter, semi-transmissive semi-reflective liquid-crystal display device, method for forming phase difference control layer, and method for manufacturing color filter
CN105446042A (zh) * 2015-12-30 2016-03-30 上海天马微电子有限公司 阵列基板、显示面板和显示装置
CN106019614A (zh) * 2016-07-28 2016-10-12 京东方科技集团股份有限公司 3d显示面板及其制备方法、3d显示装置
CN106773229A (zh) * 2017-03-10 2017-05-31 京东方科技集团股份有限公司 一种指纹识别显示装置及其驱动方法
CN106773273A (zh) * 2017-03-09 2017-05-31 京东方科技集团股份有限公司 显示装置和显示装置的驱动方法
CN106981503A (zh) * 2017-04-27 2017-07-25 上海天马微电子有限公司 一种显示面板及电子设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011089443B4 (de) * 2011-02-14 2016-12-01 Lg Display Co., Ltd. Anzeigevorrichtung
CN104199213A (zh) * 2014-08-18 2014-12-10 京东方科技集团股份有限公司 一种半透半反式液晶显示面板及液晶显示器
KR102388846B1 (ko) * 2015-10-05 2022-04-20 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
CN107272242B (zh) * 2017-07-28 2020-09-29 维沃移动通信有限公司 一种显示屏制造方法及显示屏
CN207264062U (zh) * 2017-09-26 2018-04-20 昆山龙腾光电有限公司 显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070077502A1 (en) * 2005-09-30 2007-04-05 Dai Nippon Printing Co., Ltd. Color filter, semi-transmissive semi-reflective liquid-crystal display device, method for forming phase difference control layer, and method for manufacturing color filter
CN105446042A (zh) * 2015-12-30 2016-03-30 上海天马微电子有限公司 阵列基板、显示面板和显示装置
CN106019614A (zh) * 2016-07-28 2016-10-12 京东方科技集团股份有限公司 3d显示面板及其制备方法、3d显示装置
CN106773273A (zh) * 2017-03-09 2017-05-31 京东方科技集团股份有限公司 显示装置和显示装置的驱动方法
CN106773229A (zh) * 2017-03-10 2017-05-31 京东方科技集团股份有限公司 一种指纹识别显示装置及其驱动方法
CN106981503A (zh) * 2017-04-27 2017-07-25 上海天马微电子有限公司 一种显示面板及电子设备

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111929936A (zh) * 2020-08-25 2020-11-13 上海中航光电子有限公司 一种显示面板及显示装置
CN114258218A (zh) * 2020-09-25 2022-03-29 北京小米移动软件有限公司 电子设备和电子设备中框
CN114258218B (zh) * 2020-09-25 2024-06-04 北京小米移动软件有限公司 电子设备和电子设备中框
CN112838112A (zh) * 2021-01-11 2021-05-25 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN115718386A (zh) * 2022-11-17 2023-02-28 武汉华星光电技术有限公司 显示模组及显示装置
CN115718386B (zh) * 2022-11-17 2023-11-28 武汉华星光电技术有限公司 显示模组及显示装置

Also Published As

Publication number Publication date
CN112639594B (zh) 2022-03-29
CN112639594A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
WO2020051810A1 (zh) 液晶显示面板、液晶显示屏及电子设备
TWI714990B (zh) 顯示裝置
TWI719738B (zh) 顯示面板及顯示裝置
CN109307962B (zh) 一种液晶显示面板、液晶显示屏及电子设备
EP3690529B1 (en) Liquid crystal display panel
TWI629623B (zh) Display device
US8994909B2 (en) Liquid crystal display panel and liquid crystal display device
US10025143B2 (en) Array substrate and fabrication method thereof, and display device
KR20180037047A (ko) Va형 coa 액정 디스플레이 패널
US9904096B2 (en) Liquid crystal panel and dual-vision liquid crystal display device
JP2019525256A (ja) 液晶表示パネル及び液晶表示装置
KR20090041337A (ko) 액정 디스플레이 패널
US20190049804A1 (en) Active switch array substrate, manufacturing method therfor, and display panel
US11966124B2 (en) Display panel and display device with particular arrangement of spacers in a photoelectric sensing region
KR20130013110A (ko) 액정표시장치 및 그 제조방법
WO2020051809A1 (zh) 液晶显示面板、液晶显示屏及电子设备
US20050275775A1 (en) Liquid crystal display device and electronic apparatus
KR101760849B1 (ko) 액정 표시 장치
US20140036373A1 (en) Lens substrate and electrooptic device including lens substrate
US20190049803A1 (en) Active switch array substrate, manufacturing method therefor same, and display device using same
KR20150097889A (ko) 액정표시장치
US10317722B2 (en) Display device
JP3200298U (ja) 表示パネル
JP2009122644A (ja) 液晶表示パネル
KR20160083996A (ko) 액정 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933424

Country of ref document: EP

Kind code of ref document: A1