WO2020050606A1 - 배터리 상태 정보를 획득하기 위한 시스템 - Google Patents

배터리 상태 정보를 획득하기 위한 시스템 Download PDF

Info

Publication number
WO2020050606A1
WO2020050606A1 PCT/KR2019/011369 KR2019011369W WO2020050606A1 WO 2020050606 A1 WO2020050606 A1 WO 2020050606A1 KR 2019011369 W KR2019011369 W KR 2019011369W WO 2020050606 A1 WO2020050606 A1 WO 2020050606A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
junction box
impedance
analyzer
state
Prior art date
Application number
PCT/KR2019/011369
Other languages
English (en)
French (fr)
Inventor
이영재
조인환
이준희
홍성준
명희경
Original Assignee
주식회사 민테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180105884A external-priority patent/KR102000993B1/ko
Priority claimed from KR1020180105881A external-priority patent/KR101974015B1/ko
Application filed by 주식회사 민테크 filed Critical 주식회사 민테크
Priority to EP19857729.8A priority Critical patent/EP3848252A4/en
Priority to US17/273,182 priority patent/US11808816B2/en
Priority to CN201980057905.3A priority patent/CN112654536A/zh
Publication of WO2020050606A1 publication Critical patent/WO2020050606A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/0207Wire harnesses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/16Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line
    • G01R27/18Measuring resistance to earth, i.e. line to ground
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a system composed of electronic devices, and more particularly, to a system for obtaining battery status information.
  • batteries such as secondary batteries are widely used as a power source for these devices.
  • lithium-ion batteries have been widely used because of their high energy density, high operating voltage, and relatively large charging capacity and convenient portability.
  • a system for measuring battery status information may be provided.
  • a system for acquiring status information of a battery includes at least one first harness cable for acquiring data representing status information of the battery from the battery management system of the battery, and the battery management system And an analyzer for providing a driving signal for driving the vehicle, and a first junction box for transmitting the data input through the first harness cable to the analyzer, the analyzer receiving from the first junction box It can be configured to output the data to the outside.
  • the first junction box may further include a power supply for supplying power to the battery management system.
  • the state information of the battery is among the voltage, temperature, SoC (State of Charge), SoH (State of Health), SoP (State of Power), SoE (State of Energy), and SoB (State of Balance) of the battery. It may include at least one.
  • a second junction box comprising an AC impedance analyzer for detecting the AC impedance of the battery and a circuit connected to the battery through at least one second harness cable, and wherein the AC impedance analyzer is configured to detect the AC impedance. It may further include.
  • the AC impedance analyzer may measure AC impedance of the battery in a fully charged state, AC impedance of the battery in a fully discharged state, and AC impedance of the battery in a partially charged or partially discharged state.
  • the AC impedance analyzer may measure the AC impedance by measuring at least one of a resistance, an inductor, and a capacitor in a reference frequency or a reference frequency range.
  • the AC impedance analyzer measures at least one of a resistance, an inductor, and a capacitor in a reference frequency or a reference frequency range, and configures the measured resistance, the inductor, and an equivalent circuit corresponding to the capacitor to form the AC impedance Can be measured.
  • the AC impedance analyzer may output information about the AC impedance to the outside based on the TCP / IP protocol.
  • the charge / discharger may be connected to the battery through the second junction box.
  • An insulation resistor for measuring insulation resistance of the battery may be further included, and the insulation resistor may be connected to the battery through the second junction box.
  • the voltage meter may be connected to the battery through the second junction box.
  • At least one of the first junction box and the second junction box may include a temperature sensor.
  • the interface device may output the at least one digital data based on the CAN protocol.
  • a system for obtaining status information of a battery is connected to the battery, at least one first harness cable for obtaining at least one signal indicating the status information, the first A first junction box including at least one fuse configured to pass the at least one signal input through a 1 harness cable, and outputting the at least one signal passing through the fuse, and the first junction box It may include an interface device for converting the at least one signal input from the at least one digital data, and outputs the converted at least one digital data to the outside.
  • the status information includes at least one of voltage information and temperature information of the battery, and the signal may include at least one of a first signal indicating the voltage information and a second signal indicating the temperature information.
  • the battery includes a plurality of modules, and the at least one first harness cable comprises a plurality of harnesses for obtaining a plurality of signals representing the status information for each of the plurality of modules from each of the plurality of modules. Cables.
  • the interface device includes input ports for respectively receiving the plurality of signals from the first junction box, and at least one analog-to-digital converter for converting the plurality of signals into the at least one digital data, respectively. can do.
  • the interface device further outputs the at least one digital data based on the CAN protocol, and further includes a first LED indicating whether a communication is based on the CAN protocol, and a second LED indicating an operating state of the at least one analog-to-digital converter. It can contain.
  • the at least one fuse may be configured to protect the interface device from a short circuit generated from the at least one signal.
  • the first junction box is connected to the plurality of harness cables, respectively, a plurality of input ports for receiving the plurality of signals, and a plurality of output ports for respectively outputting the plurality of signals to the interface device. It may further include.
  • One end of the at least one first harness cable includes a first connector for connection with the battery, the other end includes a second connector for connection with the first junction box, and the first connector And at least one of the second connector may be a protective cap for safety.
  • a second junction box including a circuit configured to detect the AC impedance may be further included.
  • an insulation resistor for measuring the insulation resistance of the battery, and a voltage meter for measuring the voltage of the battery, wherein the insulation resistor and the voltage meter are configured to be connected to the battery through the second junction box.
  • One embodiment of the disclosed system can efficiently and accurately acquire battery status information and provide the obtained information to an external diagnostic device.
  • one embodiment of the disclosed system can efficiently and accurately diagnose a battery condition even when the battery management system (BMS) is inoperative or unavailable.
  • BMS battery management system
  • FIG. 1 is a block diagram of a system according to an embodiment.
  • FIG. 2 shows a detailed block diagram of a system according to an embodiment.
  • FIG. 3 shows a detailed block diagram of a system according to an embodiment.
  • FIG. 4 is a block diagram of a system according to another embodiment.
  • FIG. 5 shows a detailed block diagram of a system according to another embodiment.
  • FIG 6 shows one side and the other side of the junction box according to another embodiment.
  • FIG. 7 shows a state in which a harness cable is connected to a junction box according to another embodiment.
  • FIG 8 illustrates one side and the other side of an interface device according to another embodiment.
  • FIG. 9 is a detailed block diagram of a system according to another embodiment.
  • FIG. 1 is a block diagram of a system for acquiring status information of a battery according to an embodiment.
  • the system 1000 may include a battery 1200, a first junction box 1400, a power supply 1600, and an analyzer 1800.
  • the battery 1200 may refer to one battery cell or to a plurality of battery cells that are electrically connected and modularized. Further, the battery 1200 may include a plurality of battery modules. Each of the plurality of battery modules may include a plurality of cells. The plurality of battery modules may be connected to each other in series and in parallel. According to an embodiment, the plurality of battery modules may be secondary batteries such as lithium ion batteries. Also, the capacities of the plurality of battery modules may be the same or different from each other.
  • the battery 1200 may be a battery for an electric vehicle (EV).
  • the battery 1200 may have a different shape, structure, number of cells, or pin-map depending on the vehicle model.
  • the battery 1200 may include six modules, and one module may include 20 cells.
  • the battery 1200 may be configured as one module including 20 cells.
  • the battery 1200 may include a battery management system (BMS).
  • BMS battery management system
  • the battery management system (BMS) serves to increase energy efficiency and extend life by optimally managing the battery 1200.
  • the battery management system (BMS) may monitor voltage, current, and temperature of the battery 1200 in real time to prevent excessive charging or discharging in advance and increase the safety and reliability of the battery 1200.
  • the battery management system (BMS) is a device that measures voltage, current, and temperature in the battery 1200, and monitors the battery status, such as charge capacity and life, to control signals to the switch before a dangerous situation occurs due to overcharge, discharge, or voltage fluctuation You can also send a function to cut off the power.
  • the battery management system can manage various data (voltage, current, temperature, etc.) related to the state of the battery 1200, and predetermined communication protocols (eg, Wi-Fi, Bluetooth, Code Division (CDMA)) Data can be output to the outside through Multiple Access (CAN) or Control Area Network (CAN) protocol.
  • predetermined communication protocols eg, Wi-Fi, Bluetooth, Code Division (CDMA)
  • CAN Multiple Access
  • CAN Control Area Network
  • the first junction box 1400 may be connected to the battery management system (BMS) 10 through a harness cable 1300.
  • the first junction box 1400 is based on a predetermined communication protocol such as Wi-Fi, Bluetooth, CDMA, CAN protocol, and various related to the battery 1200 state from the battery management system (BMS) 10 through the harness cable 1300. Data can be received. Data received by the first junction box 1400 may be delivered to the analyzer 1800.
  • the first junction box 1400 may be configured as a communication circuit for connecting the battery management system (BMS) 10 and the analyzer 1800 to move data between them.
  • the analyzer 1800 supplies a driving signal for the battery management system (BMS) through the first junction box 1400 or receives data related to battery status information received from the battery management system (BMS) 10 in the first junction box It can be received through (1400). To this end, it may include circuitry for sending commands to the battery management system (BMS) 10 or for receiving data from the battery management system (BMS) 10.
  • the analyzer 1800 may transmit data to the diagnostic device 100 based on predetermined communication protocols such as Wi-Fi, Bluetooth, CDMA, and CAN protocol.
  • the analyzer 1800 may be a control area network (CAN) analyzer.
  • the first junction box 1400 is connected between the battery management system (BMS) 10 and the power supply 1600 so that the power of the power supply 1600 is supplied to the battery management system (BMS) 10.
  • the power supply 1600 may supply power to the battery management system (BMS) 10 of the battery 1200 through the first junction box 1400.
  • the power supply 1600 may be electrically connected to the battery management system (BMS) 10.
  • the power supply 1600 controls the battery 1200 by driving the battery management system (BMS) 10 by supplying power (eg, DC 12V) to the battery management system (BMS) 10 and controlling the battery and the battery. It is possible to obtain related information.
  • the power supply 1600 receives the external power and converts it into voltage and current required by the battery management system (BMS) 10 to supply power to the battery management system (BMS) 10. It may be a device for providing.
  • the first junction box 1400 may include a temperature sensor.
  • the first junction box 1400 may be configured to be recognized by the user through an alarm when the internal temperature of the first junction box 1400 rises above a preset temperature through an external display. .
  • FIG. 2 shows a configuration of a system for acquiring status information of a battery according to an embodiment.
  • system 2000 of FIG. 2 represents a specific embodiment of the system 1000 of FIG. 1, the description of the system 1000 of FIG. 1 can also be applied to the system 2000 of FIG. 2.
  • the system 2000 may further include a second junction box 2200, an AC impedance analyzer 2400, and a charge / discharger 2600.
  • the AC impedance analyzer 2400 may detect AC impedance of the battery 1200.
  • the AC impedance analyzer 2400 may be connected to the terminal of the battery 1200 through the second junction box 2200 to detect the AC impedance of the battery 1200.
  • the AC impedance analyzer 2400 may detect battery AC impedance by measuring at least one of a resistance R, an inductor L, and a capacitor C of the battery 1200 in a reference frequency or a reference frequency range. In this case, by measuring at least one of the resistor R, the inductor L, and the capacitor C, an equivalent circuit may be configured to detect the battery AC impedance.
  • the AC impedance analyzer 2400 may include a configuration for measuring resistance, an inductor, and a capacitor, and a calculation processing circuit or device for calculating the impedance value using the configuration.
  • the AC impedance analyzer 2400 may further include a temperature meter (not shown) that measures the temperature of the battery 1200.
  • the AC impedance analyzer 2400 may detect AC impedance in consideration of battery temperature dependence by measuring the temperature of the battery 1200 through a temperature meter (not shown).
  • the voltage range is 5 to 500 V
  • the resistance range is 100 ⁇ to 1 ⁇
  • the frequency range is 1 Hz to 1 kHz
  • the temperature range may be -40 to 80 ° C. .
  • the AC impedance analyzer 2400 may detect AC impedance of a battery in various states. Specifically, the AC impedance analyzer 2400 may detect AC impedance for a battery in a fully charged state, AC impedance for a battery in a fully discharged state, and AC impedance for a battery in a fully charged and discharged state.
  • the charge / discharger 2800 may charge or discharge the battery 1200.
  • the charge / discharger 2800 may make the battery 1200 into a fully charged state, a fully discharged state, or a partially charged state by charging or discharging the battery 1200.
  • the charge / discharger 2800 may further include a temperature meter (not shown) for measuring the temperature of the battery 1200. By measuring the temperature of the battery 1200 in the temperature meter, the AC impedance analyzer 2400 may detect AC impedance of the battery 1200 in various states in consideration of battery temperature dependence.
  • the AC impedance analyzer 2400 may transmit battery status information to the diagnostic device 100 based on a Transmission Control Protocol / Internet Protocol (TCP / IP) protocol.
  • TCP / IP Transmission Control Protocol / Internet Protocol
  • the diagnostic device 100 analyzes the resistance (R), the inductor (L), the capacitor (C), and the AC impedance received from the AC impedance analyzer 2400, so that the state of charge (SoC), SoH It can diagnose the state of the battery 1200, such as (State of Health), State of Power (SoP), State of Energy (SoE), and State of Balance (SoB), and for this, include at least one processor. You can.
  • the second junction box 2200 may be connected to the battery 1200 through a harness cable 2100.
  • the second junction box 5200 is connected to the AC impedance analyzer 5300 and the charge / discharger 5600, so that the AC impedance analyzer 5300 and the charge / discharger 5600 serve as a medium for connecting to the battery 1200. You can.
  • the second junction box 5200 may include circuitry configured to allow the AC impedance analyzer 5300 to detect AC impedance.
  • the harness cable 2100 is a passage for performing charging and discharging of the battery 1200 or measuring AC impedance.
  • FIG. 3 is a detailed block diagram of a system for acquiring status information of a battery according to an embodiment.
  • FIG. 3 shows a specific embodiment of the systems 1000 and 2000 described with reference to FIGS. 1 and 2, the description of the systems 1000 and 2000 of FIGS. 1 and 2 is the system of FIG. 3 (3000).
  • the system 3000 may further include an insulation resistor 3200 and a voltage meter 3400.
  • the insulation resistor 3200 and the voltage meter 3400 are configured to ensure safety when measuring state information of the battery 1200.
  • the insulation resistor 3200 may measure insulation resistance of the battery 1200 through the second junction box 2200.
  • the insulation resistor 3200 may be connected to the (+) terminal, the (-) terminal, and the ground terminal of the second junction box 2200.
  • the insulation resistor 3200 may be connected to either the (+) terminal or the (-) terminal of the battery 1200 and the body of the battery 1200 to measure the insulation resistance of the battery. Since it is possible to check whether the body of the battery 1200 is insulated through this, it is possible to prevent a user from having an electric shock caused by electric current flowing through the body of the battery 1200.
  • the insulation resistor 3200 is not particularly limited as long as it is an element or device capable of measuring the resistance of the battery body. Information about the resistance of the battery 1200 measured by the insulation resistor 3200 may be transmitted to the diagnostic device 100.
  • the voltage meter 3400 is connected to the battery 1200 through the second junction box 2200 to measure the voltage of the battery 1200.
  • the voltage meter 3400 may be connected to the (+) terminal and the (-) terminal of the second junction box 2200.
  • the voltage meter 3400 checks the connection state between the second junction box 2200 and the battery 1200 by measuring the voltage of the battery 1200, and determines whether the battery 1200 is disconnected from a manual service disconnect (MSD). Can be confirmed.
  • MSD functions to cut off the electrical connection of the battery 1200 to prevent electric shock of the user during inspection or maintenance.
  • the voltage meter 3400 may be connected to a terminal of the battery 1200 to measure the voltage of the battery 1200 to determine whether the battery 1200 is stably separated from the MSD, thereby ensuring safety. Information about the voltage of the battery 1200 measured by the voltage meter 3400 may be transmitted to the diagnostic device 100.
  • FIG. 4 is a block diagram of a system for acquiring status information of a battery according to another embodiment of the present invention.
  • the system 1000-1 may include a battery 1200-1, a first junction box (1400-1), and an interface device 1600-1.
  • the battery 1200-1 may refer to one battery cell or to a plurality of battery cells that are electrically connected and modularized.
  • the battery 1200-1 may include a plurality of battery modules.
  • Each of the plurality of battery modules may include a plurality of cells.
  • the plurality of battery modules may be connected to each other in series and in parallel.
  • the plurality of battery modules may be secondary batteries such as lithium ion batteries.
  • the capacities of the plurality of battery modules may be the same or different from each other.
  • the battery 1200-1 may be a battery for an electric vehicle (EV).
  • the battery 1200-1 may have a different shape, structure, number of cells, or pin-map depending on the vehicle model.
  • the battery 1200-1 may be composed of six modules, and one module may include 20 cells.
  • the battery 1200-1 may be configured as one module including 20 cells, but is not limited thereto.
  • the status information of the battery 1200-1 may include information about the voltage and temperature of the battery 1200-1.
  • the status information may include information about the voltage of each of the N battery cells of the battery 1200-1 and temperature of the M points (N and M are positive integers).
  • the system 1000-1 may acquire voltage information of each of the 120 battery cells and temperature information of 24 points.
  • the battery 1200-1 may include a battery management system (BMS) (not shown).
  • BMS battery management system
  • the battery management system serves to increase energy efficiency and extend life by optimally managing the battery 1200-1.
  • the battery management system may monitor voltage, current, and temperature of the battery 1200-1 in real time to prevent excessive charging or discharging in advance and increase safety and reliability of the battery 1200-1.
  • the battery management system is a device that measures voltage, current, and temperature in the battery 1200-1, and monitors the battery status, such as charging capacity and life, and sends a control signal to the switch before a dangerous situation occurs due to overcharge, discharge, or voltage fluctuation You can also send it to cut off the power.
  • the battery management system may manage various data (voltage, current, temperature, etc.) related to the battery 1200-1 state.
  • the system 1000-1 may be useful when the battery management system (BMS) does not work or cannot be used due to a failure.
  • the system 1000-1 may not utilize data managed by the battery management system because the protocol of the battery management system (BMS) is private or unavailable, the voltage and temperature of the battery 1200-1. It can perform the function of measuring.
  • the first junction box 1400-1 may serve as a medium for stably connecting the battery 1200-1 and the interface device 1600-1 to each other.
  • the first junction box 1400-1 may be connected to the battery 1200-1 through a harness cable 1300-1.
  • the harness cable 1300-1 is connected to the battery 1200-1 and may transmit at least one signal representing the obtained battery status information to the first junction box 1400-1.
  • One of both ends of the harness cable 1300-1 may include a first connector to be connected to the terminal of the battery 1200-1.
  • the first connector may be designed with reference to a pin map of the battery 1200-1.
  • the first connector may be designed differently according to a vehicle model in which the battery 1200-1 is used.
  • the other end of both ends of the harness cable 1300-1 may include a second connector to be connected to the first junction box 1400-1.
  • a safety cap for safety may be attached to at least one of the first connector and the second connector.
  • a rubber cap for electric vehicles may be attached to the first connector.
  • a safety cap may be attached to the second connector connected to the first junction box 1400-1. The safety cap may be used for safe storage of the harness cable 1300-1 when the harness cable 1300-1 is not connected to the first junction box 1400-1.
  • the first junction box 1400-1 may output a signal received through the harness cable 1300-1 to the interface device 1600-1.
  • the first junction box 1400-1 may include at least one fuse for protecting the interface device 1600-1 from a short circuit generated from a signal. The fuse can prevent a safety accident by preventing excessive current from flowing.
  • the signal received through the harness cable 1300-1 to the first junction box 1400-1 may be output to the interface device 1600-1 by passing a fuse in the first junction box 1400-1.
  • the interface device 1600-1 may convert at least one signal received from the first junction box 1400-1 into at least one digital data, and output the converted digital data to the outside.
  • the interface device 1600-1 may output the converted digital data to the outside through predetermined communication protocols such as Wi-Fi, Bluetooth, Code Division Multiple Access (CDMA), and Control Area Network (CAN) protocol.
  • the interface device 1600-1 may output bit information indicating the voltage of the battery 1200-1 and bit information indicating the temperature to the external diagnostic device 100-1 based on the CAN protocol. .
  • the interface device 1600-1 may include at least one micro controller unit (MCU) for converting at least one signal received from the first junction box 1400-1 into digital data.
  • the interface device 1600-1 may include at least one MCU having an analog-to-digital converter (ADC).
  • the interface device 1600-1 may include a CAN communication member corresponding to a CAN communication network.
  • the diagnostic device 100-1 is based on digital data received from the interface device 1600-1, a state of charge (SoC), a state of health (SoH), a state of power (SoP), and a state of energy (SoE). ), And battery life information such as a state of balance (SoB).
  • the diagnostic device 100-1 may include a memory (not shown) for storing program codes and algorithms for analyzing digital data, and accordingly, for executing a program or performing an algorithm It may include at least one processor.
  • FIG. 5 shows a detailed block diagram of a system according to another embodiment of the present invention.
  • the system 2000-1 of FIG. 5 shows a detailed embodiment of the system 1000-1 of FIG. 4. Therefore, even if omitted, the description of the system 1000-1 in FIG. 4 may also be applied to the system 2000-1 in FIG.
  • the system 2000-1 may include a battery 2200-1, a first junction box 2400-1, and an interface device 2600-1.
  • the battery 2200-1, the first junction box 2400-1, and the interface device 2600-1 are the battery 1200-1 of FIG. 4, the first junction box 1400-1, and the interface device ( 1600-1).
  • the battery 2200-1 may include modules 2220.
  • the battery 2200-1 may include six modules 2220. 20 cells may be included in one module.
  • the battery 2200-1 and the first junction box 2400-1 may be connected by a harness cable through a plurality of ports 2240 and 2440.
  • the six output ports 2240 of the battery 2200-1 and the six input ports 2440 of the first junction box 2400-1 may be connected to each other through a harness cable.
  • the six output ports 2240 of the battery 2200-1 may correspond to the modules 2220, respectively, and status information for the modules 2220 may be output through the corresponding output ports 2240.
  • six ports 3220 may be located on one surface 3200-1 of the first junction box 2400-1.
  • six ports 3220 located on one surface 3200-1 of the first junction box 2400-1 and second connectors of the harness cable 1300-1 are connected to each other. It shows the appearance.
  • each of the ports may include 20 voltage channels for transferring voltage information and 4 temperature channels for transferring temperature information.
  • each of the voltage channels is a channel for transmitting voltage information of one battery cell
  • each of the temperature channels can be a channel for transmitting temperature information of one point.
  • the first junction box 2400-1 may include fuses 2420 through which signals received from the input ports 2440 pass.
  • the first junction box 2400-1 may include six input ports 2440 and six fuses 2420 corresponding to each.
  • Each of the fuses 2420 may protect the interface device 2600-1 from a short circuit that may occur from a signal received by the first junction box 2400-1.
  • the first junction box 2400-1 may output a signal passing through the fuses 2420 to the interface device 2600-1.
  • the first junction box 2400-1 and the interface device 2600-1 may be connected by a physical connection through a plurality of ports 2460 and 2660.
  • the first junction box 2400-1 may output a signal passing through the fuses 2420 through six output ports 2460.
  • the interface device 2600-1 may receive a signal from the first junction box 2400-1 through six input ports 2660.
  • the other side 3400-1 of the first junction box 2400-1 may include six output ports 3420. Signals may be transmitted to the interface device 2600-1 through the six output ports 3420.
  • the interface device 2600-1 may include slave MCUs 2620 and a master MCU 2640 for converting a received signal into digital data.
  • the six slave MCUs 2620 may convert signals received from the six ports 2660 to digital data and transfer the converted digital data to the master MCU 2640.
  • the master MCU 2640 may output digital data to the diagnostic device 100-1 through the CAN protocol.
  • the interface device 2600-1 may include a CAN communication member corresponding to a CAN communication network.
  • FIG 8 shows one side and the other side of the interface device according to another embodiment of the present invention.
  • the input ports 4220 are respectively connected to the output ports 3420 of FIG. 6, and may respectively receive signals from the output ports 3420.
  • the other side 4400 of the interface device 2600-1 includes at least one LED 4420 indicating an operation state of an MCU (eg, an operation state of an analog-to-digital converter) corresponding to each port for each port. can do.
  • at least one LED 4420 may indicate an operation state of the master MCU or slave MCUs described above with reference to FIG. 5.
  • the LED 4420 may be turned on when the interface device 2600-1 is connected to the battery 2200-1 using a harness cable through the first junction box 2400-1.
  • the other side 4400 of the interface device 2600-1 may include an LED 4440 indicating whether the communication is based on the CAN protocol. For example, if the CAN communication is normally performed, the LED 4440 is turned on, otherwise, the LED 4440 may be turned off.
  • the other side 4400 may include an additional port (not shown) for performing the firmware update of the master MCU, but is not limited thereto.
  • FIG. 9 shows a detailed block diagram of a system according to another embodiment of the present invention.
  • the system 3000-1 of FIG. 9 shows a specific embodiment of the systems 1000-1 and 2000-1 of FIGS. 4 and 5, and thus the systems 1000-1 and 2000-1 of FIGS. 4 and 5
  • the contents described with respect to can be applied to the system 3000-1 of FIG.
  • the system 3000-1 further includes a second junction box 5200, an AC impedance analyzer 5300, an insulation resistor 5400, a voltage meter 5500, and a charge / discharger 5600. You can.
  • the AC impedance analyzer 5300 may detect AC impedance of the battery 1200-1.
  • the AC impedance analyzer 5300 may be connected to the terminal of the battery 1200-1 through the second junction box 5200 to detect the AC impedance of the battery 1200-1.
  • the AC impedance analyzer 5300 may detect battery AC impedance by measuring at least one of the resistance R, the inductor L, and the capacitor C of the battery 1200-1 in a reference frequency or a reference frequency range.
  • AC impedance may be detected by configuring an equivalent circuit by measuring at least one of the resistor R, the inductor L, and the capacitor C.
  • the AC impedance analyzer 5300 may include a configuration for measuring resistance, an inductor, and a capacitor, and a calculation processing circuit or device for calculating an impedance value using the configuration.
  • the AC impedance analyzer 5300 may further include a temperature meter (not shown) that measures the temperature of the battery 1200-1.
  • the AC impedance analyzer 2100 may detect AC impedance in consideration of battery temperature dependence by measuring the temperature of the battery 1200-1 through a temperature meter (not shown).
  • the voltage range is 5 to 500 V
  • the resistance range is 100 ⁇ to 1 ⁇
  • the frequency range is 1 Hz to 1 kHz
  • the temperature range may be -40 to 80 ° C.
  • the AC impedance analyzer 5300 may detect AC impedance of the battery 1200-1 in various states. Specifically, the AC impedance analyzer 5300 may detect AC impedance for a fully charged battery, AC impedance for a fully discharged battery, and AC impedance for a fully charged and discharged battery.
  • the charge / discharger 5600 may charge or discharge the battery 1200-1.
  • the charge / discharger 5600 may make the battery 1200-1 into a fully charged state, a fully discharged state, or a partially charged state by charging or discharging the battery 1200-1.
  • the charge / discharger 5600 may further include a temperature meter (not shown) for measuring the temperature of the battery 1200-1.
  • the AC impedance analyzer 5300 may detect AC impedance for the battery 1200-1 in various states in consideration of battery temperature dependence.
  • Information about the resistance (R), inductor (L), capacitor (C), voltage, temperature, and AC impedance measured and detected by the AC impedance analyzer 5300 may be transmitted to the diagnostic device 100-1.
  • the AC impedance analyzer 5300 may transmit battery status information to the diagnostic device 100-1 based on a Transmission Control Protocol / Internet Protocol (TCP / IP) protocol.
  • the diagnostic device 100-1 analyzes the resistance R, the inductor L, the capacitor C, and the AC impedance received from the AC impedance analyzer 5300, so that the SoC, SoH, SoP, The state of the battery 1200-1 such as SoE and SoB may be diagnosed, and for this, at least one processor may be included.
  • the second junction box 5200 may be connected to the battery 1200-1 through a harness cable 5100.
  • the second junction box 5200 is connected to the AC impedance analyzer 5300 and the charge / discharger 5600, and serves as a medium for connecting the AC impedance analyzer 5300 and the charge / discharger 5600 with the battery 1200-1. Can be done.
  • the second junction box 5200 may include circuitry configured to allow the AC impedance analyzer 5300 to detect AC impedance.
  • the harness cable 5100 is a path for performing charging and discharging of the battery 1200-1 or measuring AC impedance.
  • the insulation resistor 5400 and the voltage meter 5500 are configured to ensure safety when obtaining status information of the battery 1200-1.
  • the insulation resistor 5400 is connected to the battery 1200-1 through the second junction box 5200 to measure the insulation resistance of the battery 1200-1.
  • the insulation resistor 5400 may be connected to the (+) terminal, (-) terminal, and ground terminal of the second junction box 5200.
  • the insulation resistor 5400 is connected to either the (+) terminal or the (-) terminal of the battery 1200-1 and the body of the battery 1200-1 to measure the insulation resistance of the battery 1200-1. You can. Since it is possible to check whether the body of the battery 1200-1 is insulated through this, it is possible to prevent a user from having an electric shock caused by electric current flowing through the body of the battery 1200-1.
  • the insulation resistor 5400 is not particularly limited as long as it is an element or device capable of measuring the resistance of the battery body. Information about the resistance of the battery 1200-1 measured by the insulation resistor 5400 may be transmitted to the diagnostic device 100-1.
  • the voltage meter 5500 is connected to the battery 1200-1 through the second junction box 5200 to measure the voltage of the battery 1200-1.
  • the voltage meter 5500 may be connected to the (+) terminal and the (-) terminal of the second junction box 5200.
  • the voltage meter 5500 checks the connection state between the second junction box 5200 and the battery 1200-1 by measuring the voltage of the battery 1200-1, and the battery 1200-1 is a MSD (Manual Service Disconnect) ).
  • the MSD functions to cut off the electrical connection of the battery 1200-1 to prevent electric shock of the user during inspection or maintenance.
  • the voltage meter 5500 is connected to the terminal of the battery 1200-1 to measure the voltage of the battery 1200-1 to determine whether the battery 1200-1 is stably separated from the MSD, thereby ensuring safety. have. Information about the voltage of the battery 1200-1 measured by the voltage meter 5500 may be transmitted to the diagnostic device 100-1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Secondary Cells (AREA)

Abstract

배터리의 상태 정보를 획득하기 위한 시스템이 개시될 수 있다. 시스템은, CAN 프로토콜에 기반하여, 배터리의 배터리 관리 시스템으로부터 배터리의 상태 정보를 나타내는 데이터를 획득하기 위한 적어도 하나의 제1하네스 케이블, 배터리 관리 시스템을 구동시키기 위한 구동 신호를 제공하기 위한 분석기, 제1하네스 케이블을 통해 입력되는 데이터를 분석기로 전달하기 위한 제1정션 박스를 포함하고, 분석기는 제1정션 박스로부터 수신되는 데이터를 외부로 출력하도록 구성될 수 있다.

Description

배터리 상태 정보를 획득하기 위한 시스템
본 발명은 전자 장치들로 구성되는 시스템에 관한 것으로, 보다 구체적으로는 배터리 상태 정보를 획득하기 위한 시스템에 관한 것이다.
자동차 및 기타 휴대용 전자기기의 수요가 증가함에 따라 이들 장치들의 전력원으로 이차전지 등의 배터리가 많이 사용되고 있다. 특히, 리튬 이온 배터리는 종래 전지에 대하여 에너지 밀도가 높고 작동 전압이 높으며, 충전 용량이 상대적으로 크고 휴대가 편리하여 폭넓게 사용되고 있다.
이러한 배터리는 충전 및 방전을 지속적으로 수행함에 따라 내구성이 감소하여 폭발 등의 사고 발생의 위험이 존재한다. 또한, 충전 및 방전을 반복함에 따라 충전 용량이 감소하여 사용시간이 줄어드는 문제점이 있다. 이러한 문제점을 해결하기 위해, 배터리의 온도, 전압과 같은 상태 정보를 획득함으로써 배터리의 이상 여부 및 수명 예측을 수행할 필요가 있다.
배터리의 상태 정보를 측정하기 위한 시스템이 제공될 수 있다.
본 실시 예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제로 한정되지 않으며, 이하의 실시 예들로부터 또 다른 기술적 과제들이 유추될 수 있다.
본 발명의 일 실시예에 따른 배터리의 상태 정보를 획득하기 위한 시스템은, 상기 배터리의 배터리 관리 시스템으로부터 상기 배터리의 상태 정보를 나타내는 데이터를 획득하기 위한 적어도 하나의 제1하네스 케이블, 상기 배터리 관리 시스템을 구동시키기 위한 구동 신호를 제공하기 위한 분석기, 및 상기 제1하네스 케이블을 통해 입력되는 상기 데이터를 상기 분석기로 전달하기 위한 제1정션 박스를 포함하고, 상기 분석기는, 상기 제1정션 박스로부터 수신되는 상기 데이터를 외부로 출력하도록 구성될 수 있다.
상기 제1정션 박스와 연결되어, 상기 배터리 관리 시스템에 전원을 공급하기 위한 전원 공급기를 더 포함할 수 있다.
상기 배터리의 상태 정보는, 상기 배터리의 전압, 온도, SoC(State of Charge), SoH(State of Health), SoP(State of Power), SoE(State of Energy), 및 SoB(State of Balance) 중 적어도 하나를 포함할 수 있다.
상기 배터리의 교류 임피던스를 검출하기 위한 교류 임피던스 분석기 및 상기 배터리와 적어도 하나의 제2하네스 케이블을 통해 연결되고, 상기 교류 임피던스 분석기가 상기 교류 임피던스를 검출하도록 구성되는 회로를 포함하는 제2정션 박스를 더 포함할 수 있다.
상기 교류 임피던스 분석기는, 완전 충전 상태의 상기 배터리의 교류 임피던스, 완전 방전 상태의 상기 배터리의 교류 임피던스, 및 부분 충전 또는 부분 방전 상태의 상기 배터리의 교류 임피던스를 측정할 수 있다.
상기 교류 임피던스 분석기는 기준 주파수 또는 기준 주파수 범위에서의 저항, 인덕터, 및 커패시터 중 적어도 하나를 측정함으로써 상기 교류 임피던스를 측정할 수 있다.
상기 교류 임피던스 분석기는, 기준 주파수 또는 기준 주파수 범위에서의 저항, 인덕터, 및 커패시터 중 적어도 하나를 측정하고, 상기 측정된 상기 저항, 상기 인덕터, 및 상기 커패시터에 대응되는 등가회로를 구성함으로써 상기 교류 임피던스를 측정할 수 있다.
상기 교류 임피던스 분석기는, 상기 교류 임피던스에 대한 정보를 TCP/IP 프로토콜에 기반하여 외부로 출력할 수 있다.
상기 배터리를 충전 또는 방전시키기 위한 충방전기를 더 포함하고, 상기 충방전기는 상기 제2정션 박스를 통해 상기 배터리와 연결될 수 있다.
상기 배터리의 절연 저항을 측정하기 위한 절연 저항기를 더 포함하고, 상기 절연 저항기는 상기 제2정션 박스를 통해 상기 배터리와 연결될 수 있다.
상기 배터리의 전압을 측정하기 위한 전압 측정기를 더 포함하고, 상기 전압 측정기는 상기 제2정션 박스를 통해 상기 배터리와 연결될 수 있다.
상기 제1정션 박스와 상기 제2정션 박스 중 적어도 하나는 온도 센서를 포함할 수 있다.
상기 인터페이스 장치는, 상기 적어도 하나의 디지털 데이터를 CAN 프로토콜에 기반하여 출력할 수 있다.
또한, 본 발명의 다른 실시예에 따른 배터리의 상태 정보를 획득하기 위한 시스템은, 상기 배터리와 연결되어, 상기 상태 정보를 나타내는 적어도 하나의 신호를 획득하기 위한 적어도 하나의 제1하네스 케이블, 상기 제1하네스 케이블을 통해 입력되는 상기 적어도 하나의 신호가 통과하도록 구성되는 적어도 하나의 퓨즈를 포함하고, 상기 퓨즈를 통과한 상기 적어도 하나의 신호를 출력하기 위한 제1정션 박스, 및 상기 제1정션 박스로부터 입력되는 상기 적어도 하나의 신호를 적어도 하나의 디지털 데이터로 변환하고, 변환된 상기 적어도 하나의 디지털 데이터를 외부로 출력하기 위한 인터페이스 장치를 포함할 수 있다.
상기 상태 정보는 상기 배터리의 전압 정보와 온도 정보 중 적어도 하나를 포함하고, 상기 신호는 상기 전압 정보를 나타내는 제1신호와 상기 온도 정보를 나타내는 제2신호 중 적어도 하나를 포함할 수 있다.
상기 배터리는 복수의 모듈들을 포함하고, 상기 적어도 하나의 제1하네스 케이블은, 상기 복수의 모듈들 각각으로부터 상기 복수의 모듈들 각각에 대한 상기 상태 정보를 나타내는 복수의 신호들을 획득하기 위한 복수의 하네스 케이블들을 포함할 수 있다.
상기 인터페이스 장치는, 상기 제1정션 박스로부터 상기 복수의 신호들을 각각 입력 받기 위한 입력 포트들, 및 상기 복수의 신호들을 상기 적어도 하나의 디지털 데이터로 각각 변환하기 위한 적어도 하나의 아날로그-디지털 컨버터를 포함할 수 있다.
상기 인터페이스 장치는, 상기 적어도 하나의 디지털 데이터를 CAN 프로토콜에 기반하여 출력하고, CAN 프로토콜 기반의 통신 상태 여부를 나타내는 제1LED, 및 상기 적어도 하나의 아날로그-디지털 컨버터의 동작 상태를 나타내는 제2LED를 더 포함할 수 있다.
상기 적어도 하나의 퓨즈는, 상기 적어도 하나의 신호로부터 발생되는 단락으로부터 상기 인터페이스 장치를 보호하도록 구성될 수 있다.
상기 제1정션 박스는, 상기 복수의 하네스 케이블들과 각각 연결되어 상기 복수의 신호들을 각각 수신하기 위한 복수의 입력 포트들, 및 상기 복수의 신호들을 상기 인터페이스 장치로 각각 출력하기 위한 복수의 출력 포트들을 더 포함할 수 있다.
상기 적어도 하나의 제1하네스 케이블의 일 단은 상기 배터리와의 연결을 위한 제1커넥터를 포함하고, 타 단은 상기 제1정션 박스와의 연결을 위한 제2커넥터를 포함하고, 상기 제1커넥터와 상기 제2커넥터 중 적어도 하나는 안전을 위한 보호 캡이 부착될 수 있다.
상기 배터리와 적어도 하나의 제2하네스 케이블을 통해 연결되는 제2정션 박스, 및 상기 제2정션 박스를 통해 상기 배터리의 교류 임피던스를 검출하기 위한 교류 임피던스 분석기를 더 포함하고, 상기 제2정션 박스는, 상기 교류 임피던스를 검출하도록 구성되는 회로를 포함하는 제2정션 박스를 더 포함할 수 있다.
상기 배터리의 절연 저항을 측정하기 위한 절연 저항기, 및 상기 배터리의 전압을 측정하기 위한 전압 측정기를 더 포함하고, 상기 절연 저항기와 상기 전압 측정기는 상기 제2정션 박스를 통해 상기 배터리와 연결되도록 구성될 수 있다.
개시된 시스템의 일 실시예는 효율적이고 정확하게 배터리의 상태 정보를 획득하고 획득된 정보를 외부 진단 장치로 제공할 수 있다.
또한, 개시된 시스템의 일 실시예는 배터리 관리시스템(BMS)이 작동하지 않거나 이용할 수 없는 상태에서도 효율적이고 정확하게 배터리의 상태를 진단할 수 있다.
도1은 일 실시 예에 따른 시스템의 블록도를 나타낸다.
도2는 일 실시 예에 따른 시스템의 상세한 블록도를 나타낸다.
도3은 일 실시 예에 따른 시스템의 상세한 블록도를 나타낸다.
도4는 다른 실시 예에 따른 시스템의 블록도를 나타낸다.
도 5는 다른 실시 예에 따른 시스템의 상세한 블록도를 나타낸다.
도6은 다른 실시 예를 따른 정션 박스의 일 면과 타 면을 나타낸다.
도 7은 다른 실시 예에 따라, 하네스 케이블을 정션 박스에 연결한 모습을 나타낸다.
도 8은 다른 실시 예를 따른 인터페이스 장치의 일 면과 타 면을 나타낸다.
도 9는 다른 실시 예에 따른 시스템의 상세한 블록도를 나타낸다.
아래에서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자들(이하, 통상의 기술자들)이 본 발명을 용이하게 실시할 수 있도록, 첨부되는 도면들을 참조하여 몇몇 실시 예가 명확하고 상세하게 설명될 것이다.
도1은 일 실시 예에 따라 배터리의 상태 정보를 획득하기 위한 시스템의 블록도를 나타낸다.
도1을 참조하면, 시스템(1000)은 배터리(1200), 제1정션 박스(Junction Box, 1400), 전원 공급기(1600), 및 분석기(1800)를 포함할 수 있다.
배터리(1200)는 하나의 배터리 셀을 지칭하거나, 복수의 배터리 셀들이 전기적으로 연결되어 모듈화된 것을 지칭할 수 있다. 또한, 배터리(1200)는 복수의 배터리 모듈들을 포함할 수 있다. 복수의 배터리 모듈들 각각은 복수의 셀들을 포함할 수 있다. 복수의 배터리 모듈 상호 간은 직렬 및 병렬로 혼합 연결될 수 있다. 일 실시 예에 따라, 복수의 배터리 모듈들은 리튬 이온 배터리와 같은 2차 전지일 수 있다. 또한, 복수의 배터리 모듈들의 용량은 서로 동일할 수도 있고 서로 상이할 수도 있다.
배터리(1200)는 전기자동차(EV)용 배터리일 수 있다. 이러한 경우, 배터리(1200)는 차종에 따라 상이한 형상, 구조, 셀의 개수, 또는 핀 맵(pin-map)을 가질 수 있다. 일 실시 예에 따라, 배터리(1200)는 6개의 모듈들로 구성될 수 있으며 하나의 모듈은 20개의 셀을 포함할 수 있다. 다른 실시 예에 따라, 배터리(1200)는 20개의 셀을 포함하는 하나의 모듈로 구성될 수도 있다.
일 실시 예에 따라, 배터리(1200)는 배터리 관리 시스템(Battery Management System, BMS) 을 포함할 수 있다. 배터리 관리 시스템(BMS)은, 배터리(1200)를 최적으로 관리하여 에너지 효율을 높이고 수명을 연장해주는 역할을 한다. 예를 들어, 배터리 관리 시스템(BMS)은, 배터리(1200)의 전압, 전류와 온도를 실시간으로 모니터링하여 과도한 충전 또는 방전을 미연에 방지하고 배터리(1200)의 안전성과 신뢰성을 높일 수 있다. 배터리 관리 시스템(BMS)은 배터리(1200) 내의 전압, 전류및 온도 등을 측정하는 장치로 충전 용량, 수명 등 배터리 상태를 모니터링해서 과충전이나 방전 혹은 전압 변동으로 위험한 상황이 발생하기 전에 스위치에 제어 신호를 보내 전원을 차단하는 기능을 수행할 수도 있다. 따라서, 배터리 관리 시스템(BMS)은 배터리(1200) 상태와 관련된 여러가지 데이터들(전압, 전류, 온도 등)를 관리할 수 있으며, 소정의 통신 규약(예를 들어, 와이파이, 블루투스, CDMA(Code Division Multiple Access), 또는 CAN (Control Area Network) 프로토콜)을 통해 데이터를 외부로 출력할 수 있다.
제1정션 박스(1400)는 하네스 케이블(1300)을 통해 배터리 관리시스템(BMS)(10)과 연결될 수 있다. 제1정션 박스(1400)는 와이파이, 블루투스, CDMA, CAN 프로토콜과 같은 소정의 통신 규약에 기반하여 하네스 케이블(1300)을 통해 배터리 관리 시스템(BMS)(10)로부터 배터리(1200) 상태와 관련된 여러가지 데이터들을 수신할 수 있다. 제1정션 박스(1400)에 의해 수신되는 데이터는 분석기(1800)로 전달될 수 있다. 제1정션 박스(1400)는 배터리 관리시스템(BMS)(10) 및 분석기(1800)를 연결하여 상호간에 데이터가 이동하기 위한 통신 회로로서 구성될 수 있다. 분석기(1800)는 배터리 관리 시스템(BMS)에 대한 구동 신호를 제1정션 박스(1400)를 통해 공급하거나 배터리 관리 시스템(BMS)(10)로부터 수신되는 배터리 상태 정보와 관련된 데이터를 제1정션 박스(1400)를 통해 수신할 수 있다. 이를 위해, 배터리 관리 시스템(BMS)(10)에 커맨드를 송신하거나 배터리 관리 시스템(BMS)(10)로부터 데이터를 수신하기 위한 회로를 포함할 수 있다. 분석기(1800)는 와이파이, 블루투스, CDMA, CAN 프로토콜과 같은 소정의 통신 규약에 기반하여 진단 장치(100)로 데이터를 전달할 수 있다. 예를 들어, 분석기(1800)는 CAN(Control Area Network) 분석기일 수 있다.
또한, 제1정션 박스(1400)는 배터리 관리시스템(BMS)(10)과 전원 공급기(1600) 사이를 연결함으로써, 전원 공급기(1600)의 전원이 배터리 관리시스템(BMS)(10)으로 공급되도록 구성될 수 있다. 전원 공급기(1600)는 제1정션 박스(1400)를 통해, 배터리(1200)의 배터리 관리시스템(BMS)(10)에 전원을 공급할 수 있다. 이를 위해 전원 공급기(1600)는 배터리 관리시스템(BMS)(10)에 전기적으로 연결될 수 있다. 전원 공급기(1600)는 배터리 관리시스템(BMS)(10)에 전원(예를 들어, DC 12V)을 공급함으로써 배터리 관리시스템(BMS)(10)을 구동하도록 함으로써 배터리(1200)를 제어하고 배터리와 관련된 정보를 획득할 수 있도록 할 수 있다. 일 실시 예에 따라, 전원 공급기(1600)는 외부의 전원을 인가 받은 후 이를 배터리 관리시스템(BMS)(10)에서 요구하는 전압 및 전류로 변환하여 배터리 관리시스템(BMS)(10)에 전원을 제공하기 위한 장치일 수 있다.
일 실시 예에 따라 제1정션 박스(1400)는 온도 센서를 포함할 수 있다. 예를 들어, 제1정션 박스(1400)는, 외부의 디스플레이를 통해 기 설정된 온도 이상으로 제1정션 박스(1400)의 내부 온도가 상승하면 알람 발생을 통해 사용자가 인지할 수 있도록 구성될 수 있다.
도2는 일 실시 예에 따라 배터리의 상태 정보를 획득하기 위한 시스템의 구성을 나타낸다.
도2의 시스템(2000)은 도1의 시스템(1000)의 구체적인 실시 예를 나타내므로, 도1의 시스템(1000)에 관하여 설명한 내용은 도2의 시스템(2000)에도 적용될 수 있다.
도2를 참조하면, 시스템(2000)은 제2정션 박스(2200), 교류 임피던스 분석기(2400), 및 충방전기(2600)를 더 포함할 수 있다.
교류 임피던스 분석기(2400)는 배터리(1200)의 교류 임피던스를 검출할 수 있다. 예를 들어, 교류 임피던스 분석기(2400)는 제2정션 박스(2200)를 통해 배터리(1200)의 단자에 연결되어 배터리(1200)의 교류 임피던스를 검출할 수 있다.
교류 임피던스 분석기(2400)는 기준 주파수 또는 기준 주파수 범위에서의 배터리(1200)의 저항(R), 인덕터(L) 및 커패시터(C) 중 적어도 하나를 측정하여 배터리 교류 임피던스를 검출할 수 있다. 이러한 경우, 저항(R), 인덕터(L) 및 커패시터(C) 중 적어도 하나를 측정하여 등가회로를 구성함으로써 배터리 교류 임피던스를 검출할 수 있다.
교류 임피던스 분석기(2400)는 저항, 인덕터, 및 커패시터를 측정하는 구성 및, 이를 이용하여 임피던스 값을 산출하기 위한 연산 처리 회로 또는 장치를 포함할 수 있다.
또한, 일 실시 예에 따라, 교류 임피던스 분석기(2400)는 배터리(1200)의 온도를 측정하는 온도 측정기(미도시)를 더 포함할 수 있다.
교류 임피던스 분석기(2400)는, 온도 측정기(미도시)를 통해 배터리(1200)의 온도를 측정함으로써 배터리 온도 의존성을 고려하여 교류 임피던스를 검출할 수 있다.
일 실시 예에서, 교류 임피던스 분석기(2400)에서 측정 시 전압의 범위는 5 내지 500V, 저항의 범위는 100μΩ 내지 1Ω, 주파수의 범위는 1Hz 내지 1kHz, 온도의 범위는 -40 내지 80℃일 수 있다.
교류 임피던스 분석기(2400)는 다양한 상태의 배터리의 교류 임피던스를 검출할 수 있다. 구체적으로, 교류 임피던스 분석기(2400)는 완전 충전 상태의 배터리에 대한 교류 임피던스, 완전 방전 상태의 배터리에 대한 교류 임피던스, 및 완전 부분 충방전 상태의 배터리에 대한 교류 임피던스를 검출할 수 있다.
충방전기(2800)는 배터리(1200)를 충전 또는 방전시킬 수 있다. 충방전기(2800)는 배터리(1200)를 충전 또는 방전시킴으로써, 배터리(1200)를 완전 충전 상태, 완전 방전 상태, 부분 충전 상태로 만들 수 있다. 일 실시 예에 따라, 충방전기(2800)는 배터리(1200)의 온도를 측정하는 온도 측정기(미도시)를 더 포함할 수 있다. 온도 측정기에서 배터리(1200)의 온도를 측정함으로써, 교류 임피던스 분석기(2400)는 배터리 온도 의존성을 고려하여 다양한 상태의 배터리(1200)에 대한 교류 임피던스를 검출할 수 있다.
교류 임피던스 분석기(2400)에서 측정되어 검출된 저항(R), 인덕터(L), 커패시터(C), 전압, 온도, 및 교류 임피던스에 대한 정보는 진단 장치(100)로 전달될 수 있다. 일 실시 예에 따라, 교류 임피던스 분석기(2400)는 TCP/IP(Transmission Control Protocol/Internet Protocol) 프로토콜에 기반하여 진단 장치(100)로 배터리 상태 정보를 전달할 수 있다. 일 실시 예에 따라, 진단 장치(100)는 교류 임피던스 분석기(2400)로부터 수신된 저항(R), 인덕터(L), 커패시터(C), 및 교류 임피던스를 분석함으로써 SoC(State of Charge), SoH(State of Health), SoP(State of Power), SoE(State of Energy), 및 SoB(State of Balance)와 같은 배터리(1200)의 상태를 진단할 수 있으며, 이를 위해 적어도 하나의 프로세서를 포함할 수 있다.
제2정션 박스(2200)는 하네스 케이블(2100)을 통해 배터리(1200)와 연결될 수 있다. 제2정션 박스(5200)는 교류 임피던스 분석기(5300) 및 충방전기(5600)에 연결되어, 교류 임피던스 분석기(5300)와 충방전기(5600)가 배터리(1200)와 연결되기 위한 매개체 역할을 수행할 수 있다. 예를 들어, 제2정션 박스(5200)는 교류 임피던스 분석기(5300)가 교류 임피던스를 검출할 수 있도록 구성되는 회로를 포함할 수 있다. 하네스 케이블(2100)은 배터리(1200)의 충전 및 방전을 수행하거나 교류 임피던스를 측정하기 위한 통로이다.
도3은 일 실시 예에 따라 배터리의 상태 정보를 획득하기 위한 시스템의 상세한 블록도를 나타낸다.
도3의 시스템(3000)은 도1 및 2를 참조하여 설명한 시스템(1000, 2000)의 구체적인 실시 예를 나타내므로, 도1 및 2의 시스템(1000, 2000)에 관하여 설명한 내용은 도3의 시스템(3000)에도 적용될 수 있다.
도3을 참조하면, 시스템(3000)은 절연 저항기(3200) 및 전압 측정기(3400)를 더 포함할 수 있다. 절연 저항기(3200)와 전압 측정기(3400)는 배터리(1200)의 상태 정보를 측정 시 안전을 확보하기 위한 구성이다.
절연 저항기(3200)는 제2정션 박스(2200)를 통해 배터리(1200)의 절연 저항을 측정할 수 있다. 예를 들어, 절연 저항기(3200)는 제2정션 박스(2200)의 (+)단자, (-)단자, 접지 단자와 연결될 수 있다. 절연 저항기(3200)는 배터리(1200)의 (+)단자 또는 (-)단자 중 어느 하나, 및 배터리(1200)의 몸체에 연결되어 배터리의 절연 저항을 측정할 수 있다. 이를 통해 배터리(1200)의 몸체가 절연되어 있는지 여부를 확인할 수 있기 때문에 사용자가 배터리(1200)의 몸체에 흐르는 전류에 의해 감전되는 사고가 발생하는 것을 방지할 수 있다. 절연 저항기(3200)는 배터리 몸체의 저항을 측정할 수 있는 소자 또는 장치이면 특별히 제한되지 않는다. 절연 저항기(3200)에 의해 측정된 배터리(1200)의 저항에 대한 정보는 진단 장치(100)로 전달될 수 있다.
전압 측정기(3400)는 제2정션 박스(2200)를 통해 배터리(1200)와 연결되어, 배터리(1200)의 전압을 측정할 수 있다. 예를 들어, 전압 측정기(3400)는 제2정션 박스(2200)의 (+)단자, (-)단자와 연결될 수 있다. 전압 측정기(3400)는 배터리(1200)의 전압을 측정함으로써 제2정션 박스(2200) 및 배터리(1200)와의 연결 상태를 확인하고, 배터리(1200)가 MSD(Manual Service Disconnect)로부터 분리되었는지 여부를 확인할 수 있다. MSD는 점검 또는 관리 시 사용자의 감전 사고를 방지하기 위해 배터리(1200)를 전기적 연결을 차단하는 기능을 하는 것이다. 전압 측정기(3400)는 배터리(1200)의 단자에 연결되어 배터리(1200)의 전압을 측정함으로써 배터리(1200)가 MSD로부터 안정적으로 분리되었는지 여부를 판단함으로써 안전성을 확보할 수 있다. 전압 측정기(3400)에 의해 측정된 배터리(1200)의 전압에 대한 정보는 진단 장치(100)로 전달될 수 있다.
도 4는 본 발명의 다른 실시 예에 따라 배터리의 상태 정보를 획득하기 위한 시스템의 블록도를 나타낸다.
도 4를 참조하면, 시스템(1000-1)은 배터리(1200-1), 제1정션 박스(Junction Box, 1400-1), 및 인터페이스 장치(1600-1)를 포함할 수 있다.
배터리(1200-1)는 하나의 배터리 셀을 지칭하거나, 복수의 배터리 셀이 전기적으로 연결되어 모듈화된 것을 지칭할 수 있다. 또한, 배터리(1200-1)는 복수의 배터리 모듈들을 포함할 수 있다. 복수의 배터리 모듈들 각각은 복수의 셀을 포함할 수 있다. 복수의 배터리 모듈 상호 간은 직렬 및 병렬로 혼합 연결될 수 있다. 일 실시 예에 따라, 복수의 배터리 모듈은 리튬 이온 배터리와 같은 2차 전지일 수 있다. 또한, 복수의 배터리 모듈의 용량은 서로 동일할 수도 있고 서로 상이할 수도 있다.
배터리(1200-1)는 전기자동차(EV)용 배터리일 수 있다. 이러한 경우, 배터리(1200-1)는 차종에 따라 상이한 형상, 구조, 셀의 개수, 또는 핀 맵(pin-map)을 가질 수 있다. 일 예에 따라, 배터리(1200-1)는 6개의 모듈들로 구성될 수 있으며 하나의 모듈은 20개의 셀을 포함할 수 있다. 다른 예에 따라, 배터리(1200-1)는 20개의 셀을 포함하는 하나의 모듈로 구성될 수도 있으나 이에 제한되지 않는다.
일 실시 예에 따라, 배터리(1200-1)의 상태 정보는 배터리(1200-1)의 전압에 대한 정보와 온도에 대한 정보를 포함할 수 있다. 일 실시 예에 따라, 상태 정보는, 배터리(1200-1)의 N 개 배터리 셀들 각각의 전압에 대한 정보와 M 개 지점의 온도에 대한 정보를 포함할 수 있다(N과 M은 양의 정수). 예를 들어, 시스템(1000-1)은 120개의 배터리 셀들 각각의 전압과 24개 지점의 온도 정보를 획득할 수 있다.
일 실시 예에 따라, 배터리(1200-1)는 배터리 관리 시스템(Battery Management System, BMS)(미도시)을 포함할 수 있다. 배터리 관리 시스템은, 배터리(1200-1)를 최적으로 관리하여 에너지 효율을 높이고 수명을 연장해주는 역할을 한다. 예를 들어, 배터리 관리 시스템은, 배터리(1200-1)의 전압, 전류와 온도를 실시간으로 모니터링하여 과도한 충전 또는 방전을 미연에 방지하고 배터리(1200-1)의 안전성과 신뢰성을 높일 수 있다. 배터리 관리 시스템은 배터리(1200-1) 내의 전압·전류·온도 등을 측정하는 장치로 충전 용량, 수명 등 배터리 상태를 모니터링해서 과충전이나 방전 혹은 전압 변동으로 위험한 상황이 발생하기 전에 스위치에 제어 신호를 보내 전원을 차단하는 기능을 수행할 수도 있다. 따라서, 배터리 관리 시스템은 배터리(1200-1) 상태와 관련된 여러가지 데이터들(전압, 전류, 온도 등)를 관리할 수 있다.
시스템(1000-1)은 배터리 관리시스템(BMS)이 고장 등에 의해 작동하지 않거나 사용할 수 없는 경우에 유용할 수 있다. 예를 들어, 시스템(1000-1)은 배터리 관리 시스템(BMS)의 프로토콜이 비공개이거나 사용할 수 없음으로 인해 배터리 관리 시스템에서 관리되는 데이터를 활용할 수 없는 경우, 배터리(1200-1)의 전압 및 온도를 측정하는 기능을 수행할 수 있다.
제1정션 박스(1400-1)는 배터리(1200-1)와 인터페이스 장치(1600-1)가 안정적으로 서로 연결되기 위한 매개체 역할을 수행할 수 있다. 제1정션 박스(1400-1)는 하네스 케이블(harness cable, 1300-1)을 통해 배터리(1200-1)와 연결될 수 있다. 하네스 케이블(1300-1)은 배터리(1200-1)와 연결되어, 획득된 배터리의 상태 정보를 나타내는 적어도 하나의 신호를 제1정션 박스(1400-1)로 전달할 수 있다.
하네스 케이블(1300-1)의 양 단 중 일 단에는 배터리(1200-1)의 단자에 연결되기 위한 제1커넥터를 포함할 수 있다. 제1커넥터는 배터리(1200-1)의 핀 맵을 참조하여 설계될 수 있다. 예를 들어, 배터리(1200-1)가 사용되는 차종에 따라 제1커넥터가 다르게 설계될 수 있다. 하네스 케이블(1300-1)의 양 단 중 타 단에는 제1정션 박스(1400-1)에 연결되기 위한 제2커넥터를 포함할 수 있다. 제1커넥터와 제2커넥터 중 적어도 하나에 안전을 위한 보호 캡이 부착될 수 있다. 예를 들어, 제1커넥터에는 전기자동차 전용 고무 캡이 부착되어 있을 수 있다. 또한, 제1정션 박스(1400-1)에 연결되는 제2커넥터에도 안전 캡이 부착되어 있을 수 있다. 안전 캡은 하네스 케이블(1300-1)이 제1정션 박스(1400-1)와 접속되어 있지 않은 경우, 하네스 케이블(1300-1)의 안전 보관을 위해 사용될 수 있다.
제1정션 박스(1400-1)는 하네스 케이블(1300-1)을 통해 수신되는 신호를 인터페이스 장치(1600-1)로 출력할 수 있다. 제1정션 박스(1400-1)는 신호로부터 발생되는 단락으로부터 인터페이스 장치(1600-1)를 보호하기 위한 적어도 하나의 퓨즈를 포함할 수 있다. 퓨즈는 과도한 전류가 흐르는 것을 방지함으로써 안전 사고를 방지할 수 있다. 하네스 케이블(1300-1)을 통해 제1정션 박스(1400-1)로 수신된 신호는 제1정션 박스(1400-1) 내의 퓨즈를 통과함으로써 인터페이스 장치(1600-1)로 출력될 수 있다.
인터페이스 장치(1600-1)는 제1정션 박스(1400-1)로부터 수신되는 적어도 하나의 신호를 적어도 하나의 디지털 데이터로 변환하고, 변환된 디지털 데이터를 외부로 출력할 수 있다. 예를 들어, 인터페이스 장치(1600-1)는 변환된 디지털 데이터를 와이파이, 블루투스, CDMA(Code Division Multiple Access), CAN(Control Area Network) 프로토콜과 같은 소정의 통신 규약을 통해 외부로 출력할 수 있다. 예를 들어, 인터페이스 장치(1600-1)는 배터리(1200-1)의 전압을 나타내는 비트 정보와 온도를 나타내는 비트 정보를 CAN 프로토콜에 기반하여 외부의 진단 장치(100-1)로 출력할 수 있다.
인터페이스 장치(1600-1)는 제1정션 박스(1400-1)로부터 수신되는 적어도 하나의 신호를 디지털 데이터로 변환하기 위한 적어도 하나의 MCU(Micro Controller Unit)를 포함할 수 있다. 일 실시 예에 따라, 인터페이스 장치(1600-1)는 아날로그-디지털 컨버터(ADC)가 내장된 MCU를 적어도 하나 포함할 수 있다. 또한, 인터페이스 장치(1600-1)는 CAN 통신망에 대응하는 CAN 통신 부재를 포함할 수 있다.
진단 장치(100-1)는 인터페이스 장치(1600-1)로부터 수신된 디지털 데이터에 기초하여, SoC(State of Charge), SoH(State of Health), SoP(State of Power), SoE(State of Energy), 및 SoB(State of Balance)와 같은 배터리의 수명 정보를 결정할 수 있다. 일 실시 예에 따라, 진단 장치(100-1)는 디지털 데이터를 분석하기 위한 프로그램 코드 및 알고리즘을 저장하기 위한 메모리(미도시)를 포함할 수 있으며, 이에 따라 프로그램을 실행하거나 알고리즘을 수행하기 위한 적어도 하나의 프로세서를 포함할 수 있다.
도 5는 본 발명의 다른 실시 예에 따른 시스템의 상세한 블록도를 나타낸다.
도 5의 시스템(2000-1)은 도 4의 시스템(1000-1)의 상세한 실시 예를 나타낸다. 따라서, 이하 생략되는 내용이라 하더라도, 도 4의 시스템(1000-1)에 관하여 설명한 내용은 도 5의 시스템(2000-1)에도 적용될 수 있다.
도 5를 참조하면, 시스템(2000-1)은 배터리(2200-1), 제1정션 박스(2400-1), 및 인터페이스 장치(2600-1)를 포함할 수 있다. 배터리(2200-1), 제1정션 박스(2400-1), 및 인터페이스 장치(2600-1)는 도 4의 배터리(1200-1), 제1정션 박스(1400-1), 및 인터페이스 장치(1600-1)와 각각 대응될 수 있다.
배터리(2200-1)는 모듈들(2220)을 포함할 수 있다. 예를 들어, 배터리(2200-1)는 6개의 모듈들(2220)을 포함할 수 있다. 하나의 모듈에는 20개의 셀들이 포함될 수 있다.
배터리(2200-1)와 제1정션 박스(2400-1)는 복수의 포트들(2240, 2440)을 통해 하네스 케이블에 의해 연결될 수 있다. 예를 들어, 배터리(2200-1)의 여섯 개의 출력 포트들(2240)과 제1정션 박스(2400-1)의 여섯 개의 입력 포트들(2440)은 각각 서로 하네스 케이블을 통해 연결될 수 있다. 배터리(2200-1)의 여섯 개의 출력 포트들(2240)은 모듈들(2220)과 각각 대응될 수 있으며, 모듈들(2220)에 대한 상태 정보는 대응되는 출력 포트들(2240)을 통해 출력되어 하네스 케이블을 통과함으로써 제1정션 박스(2400-1)의 입력 포트들(2440)로 도달할 수 있다.
도 6를 참조하면, 일 실시 예에 따라, 제1정션 박스(2400-1)의 일 면(3200-1)에는 여섯 개의 포트들(3220)이 위치할 수 있다. 도 7은, 일례에 따라, 제1정션 박스(2400-1)의 일 면(3200-1)에 위치한 여섯 개의 포트들(3220)과 하네스 케이블(1300-1)의 제2커넥터들이 각각 서로 연결된 모습을 나타낸다.
일례에 따라, 포트들 각각은 전압 정보가 전달되기 위한 20개의 전압 채널과, 온도 정보가 전달되기 위한 4개의 온도 채널들을 포함할 수 있다. 예를 들어, 전압 채널들 각각은 하나의 배터리 셀의 전압 정보를 전송하기 위한 채널이며, 온도 채널들 각각은 하나의 지점의 온도 정보를 전송하기 위한 채널일 수 있다.
다시 도 5를 참조하면, 제1정션 박스(2400-1)는 입력 포트들(2440)로부터 수신되는 신호가 통과하는 퓨즈들(2420)을 포함할 수 있다. 예를 들어, 제1정션 박스(2400-1)는 여섯 개의 입력 포트들(2440)과 각각 대응되는 여섯 개의 퓨즈들(2420)을 포함할 수 있다. 퓨즈들(2420) 각각은 제1정션 박스(2400-1)에 의해 수신되는 신호로부터 발생될 수 있는 단락으로부터 인터페이스 장치(2600-1)를 보호할 수 있다. 제1정션 박스(2400-1)는 퓨즈들(2420)을 통과한 신호를 인터페이스 장치(2600-1)로 출력할 수 있다.
제1정션 박스(2400-1)와 인터페이스 장치(2600-1)는 복수의 포트들(2460, 2660)을 통해 물리적 결선에 의해 연결될 수 있다. 예를 들어, 제1정션 박스(2400-1)는 퓨즈들(2420)을 통과한 신호를 여섯 개의 출력 포트들(2460)을 통해 출력할 수 있다. 인터페이스 장치(2600-1)는 여섯 개의 입력 포트들(2660)을 통해 제1정션 박스(2400-1)로부터 신호를 수신할 수 있다. 도 6을 참조하면, 제1정션 박스(2400-1)의 타 면(3400-1)에는 여섯 개의 출력 포트들(3420)을 포함할 수 있다. 여섯 개의 출력 포트들(3420)을 통해 인터페이스 장치(2600-1)로 신호가 전송될 수 있다.
다시 도 5를 참조하면, 인터페이스 장치(2600-1)는 수신된 신호를 디지털 데이터로 변환하기 위한 슬레이브 MCU들(2620) 및 마스터 MCU(2640) 를 포함할 수 있다.
예를 들어, 여섯 개의 슬레이브 MCU들(2620)은 여섯 개의 포트들(2660)로부터 수신되는 신호를 디지털 데이터로 변환하고 변환된 디지털 데이터를 마스터 MCU(2640)로 전달할 수 있다. 마스터 MCU(2640)는 CAN 프로토콜을 통해 진단 장치(100-1)로 디지털 데이터를 출력할 수 있다. 이를 위해, 인터페이스 장치(2600-1)는 CAN 통신망에 대응하는 CAN 통신 부재를 포함할 수 있다.
도 8은 본 발명의 다른 실시 예에 따른 인터페이스 장치의 일 면과 타 면을 나타낸다.
인터페이스 장치(2600-1)의 일 면(4200)에는 제1정션 박스(2400-1)로부터 신호를 수신하기 위한 여섯 개의 입력 포트들(4220)과 외부와의 CAN 통신을 수행하기 위한 CAN 포트(4240)를 포함할 수 있다. 입력 포트들(4220)은 도 6의 출력 포트들(3420)과 각각 연결되며, 출력 포트들(3420)로부터 신호를 각각 수신할 수 있다.
인터페이스 장치(2600-1)의 타 면(4400)에는 포트 별로 포트들 각각과 대응되는 MCU의 동작 상태(예를 들어, 아날로그-디지털 컨버터의 동작 상태)를 나타내는 적어도 하나의 LED(4420)를 포함할 수 있다. 예를 들어, 적어도 하나의 LED(4420)는 도 5를 참조하여 상술한 마스터 MCU 또는 슬레이브 MCU 들의 동작 상태를 나타낼 수 있다. LED(4420)는, 인터페이스 장치(2600-1)가 제1정션 박스(2400-1)를 통해 하네스 케이블을 이용해서 배터리(2200-1)와 연결될 때 턴 온될 수 있다.
또한, 인터페이스 장치(2600-1)의 타 면(4400)에는 CAN 프로토콜 기반의 통신 상태 여부를 나타내는 LED(4440)를 포함할 수 있다. 예를 들어, CAN 통신이 정상적으로 수행되면 LED(4440)가 턴 온되고, 그렇지 않은 경우에는 LED(4440)가 턴 오프될 수 있다. 타 면(4400)에는 마스터 MCU 의 펌웨어 업데이트를 수행하기 위한 추가 포트(미도시)를 포함할 수 있으나 이에 제한되지 않는다.
도 9는 본 발명의 다른 실시 예에 따른 시스템의 상세한 블록도를 나타낸다.
도 9의 시스템(3000-1)은 도 4 및 도 5의 시스템(1000-1, 2000-1)의 구체적인 실시 예를 나타내므로, 도 4 및 도 5의 시스템(1000-1, 2000-1)에 관하여 설명한 내용은 도 9의 시스템(3000-1)에도 적용될 수 있다.
도 9를 참조하면, 시스템(3000-1)은 제2정션 박스(5200), 교류 임피던스 분석기(5300), 절연 저항기(5400), 전압 측정기(5500), 및 충방전기(5600)를 더 포함할 수 있다.
교류 임피던스 분석기(5300)는 배터리(1200-1)의 교류 임피던스를 검출할 수 있다. 예를 들어, 교류 임피던스 분석기(5300)는 제2정션 박스(5200)를 통해 배터리(1200-1)의 단자에 연결되어 배터리(1200-1)의 교류 임피던스를 검출할 수 있다.
교류 임피던스 분석기(5300)는 기준 주파수 또는 기준 주파수 범위에서의 배터리(1200-1)의 저항(R), 인덕터(L) 및 커패시터(C) 중 적어도 하나를 측정하여 배터리 교류 임피던스를 검출할 수 있다. 이러한 경우, 저항(R), 인덕터(L) 및 커패시터(C) 중 적어도 하나를 측정하여 등가회로를 구성함으로써 교류 임피던스를 검출할 수 있다.
교류 임피던스 분석기(5300)는 저항, 인덕터, 및 커패시터를 측정하는 구성 및, 이를 이용하여 임피던스 값을 산출하기 위한 연산 처리 회로 또는 장치를 포함할 수 있다. 또한, 일 실시 예에 따라, 교류 임피던스 분석기(5300)는 배터리(1200-1)의 온도를 측정하는 온도 측정기(미도시)를 더 포함할 수 있다. 교류 임피던스 분석기(2100)는, 온도 측정기(미도시)를 통해 배터리(1200-1)의 온도를 측정함으로써 배터리 온도 의존성을 고려하여 교류 임피던스를 검출할 수 있다.
일 예에서, 교류 임피던스 분석기(5300)에서 측정 시 전압의 범위는 5 내지 500V, 저항의 범위는 100μΩ 내지 1Ω, 주파수의 범위는 1Hz 내지 1kHz, 온도의 범위는 -40 내지 80℃일 수 있다.
교류 임피던스 분석기(5300)는 다양한 상태의 배터리(1200-1)의 교류 임피던스를 검출할 수 있다. 구체적으로, 교류 임피던스 분석기(5300)는 완전 충전 상태의 배터리에 대한 교류 임피던스, 완전 방전 상태의 배터리에 대한 교류 임피던스, 및 완전 부분 충방전 상태의 배터리에 대한 교류 임피던스를 검출할 수 있다.
충방전기(5600)는 배터리(1200-1)를 충전 또는 방전시킬 수 있다. 충방전기(5600)는 배터리(1200-1)를 충전 또는 방전시킴으로써, 배터리(1200-1)를 완전 충전 상태, 완전 방전 상태, 부분 충전 상태로 만들 수 있다. 일 실시 예에 따라, 충방전기(5600)는 배터리(1200-1)의 온도를 측정하는 온도 측정기(미도시)를 더 포함할 수 있다. 온도 측정기에서 배터리의 온도를 측정함으로써, 교류 임피던스 분석기(5300)는 배터리 온도 의존성을 고려하여 다양한 상태의 배터리(1200-1)에 대한 교류 임피던스를 검출할 수 있다.
교류 임피던스 분석기(5300)에서 측정되어 검출된 저항(R), 인덕터(L), 커패시터(C), 전압, 온도, 및 교류 임피던스에 대한 정보는 진단 장치(100-1)로 전달될 수 있다. 일 실시 예에 따라, 교류 임피던스 분석기(5300)는 TCP/IP(Transmission Control Protocol/Internet Protocol) 프로토콜에 기반하여 진단 장치(100-1)로 배터리 상태 정보를 전달할 수 있다. 일 실시 예에 따라, 진단 장치(100-1)는 교류 임피던스 분석기(5300)로부터 수신된 저항(R), 인덕터(L), 커패시터(C), 및 교류 임피던스를 분석함으로써 SoC, SoH, SoP, SoE, 및 SoB 와 같은 배터리(1200-1)의 상태를 진단할 수 있으며, 이를 위해 적어도 하나의 프로세서를 포함할 수 있다.
제2정션 박스(5200)는 하네스 케이블(5100)을 통해 배터리(1200-1)와 연결될 수 있다. 제2정션 박스(5200)는 교류 임피던스 분석기(5300) 및 충방전기(5600)에 연결되어, 교류 임피던스 분석기(5300)와 충방전기(5600)가 배터리(1200-1)와 연결되기 위한 매개체 역할을 수행할 수 있다. 예를 들어, 제2정션 박스(5200)는 교류 임피던스 분석기(5300)가 교류 임피던스를 검출할 수 있도록 구성되는 회로를 포함할 수 있다. 하네스 케이블(5100)은 배터리(1200-1)의 충전 및 방전을 수행하거나 교류 임피던스를 측정하기 위한 통로이다.
절연 저항기(5400)와 전압 측정기(5500)는 배터리(1200-1)의 상태 정보를 획득 시에 안전을 확보하기 위한 구성이다.
절연 저항기(5400)는 제2정션 박스(5200)를 통해 배터리(1200-1)와 연결되어, 배터리(1200-1)의 절연 저항을 측정할 수 있다. 예를 들어, 절연 저항기(5400)는 제2정션 박스(5200)의 (+)단자, (-)단자, 접지 단자와 연결될 수 있다. 절연 저항기(5400)는 배터리(1200-1)의 (+)단자 또는 (-)단자 중 어느 하나, 및 배터리(1200-1)의 몸체에 연결되어 배터리(1200-1)의 절연 저항을 측정할 수 있다. 이를 통해 배터리(1200-1)의 몸체가 절연되어 있는지 여부를 확인할 수 있기 때문에 사용자가 배터리(1200-1)의 몸체에 흐르는 전류에 의해 감전되는 사고가 발생하는 것을 방지할 수 있다. 절연 저항기(5400)는 배터리 몸체의 저항을 측정할 수 있는 소자 또는 장치이면 특별히 제한되지 않는다. 절연 저항기(5400)에 의해 측정된 배터리(1200-1)의 저항에 대한 정보는 진단 장치(100-1)로 전달될 수 있다.
전압 측정기(5500)는 제2정션 박스(5200)를 통해 배터리(1200-1)와 연결되어, 배터리(1200-1)의 전압을 측정할 수 있다. 예를 들어, 전압 측정기(5500)는 제2정션 박스(5200)의 (+)단자, (-)단자와 연결될 수 있다. 전압 측정기(5500)는 배터리(1200-1)의 전압을 측정함으로써 제2정션 박스(5200) 및 배터리(1200-1)와의 연결 상태를 확인하고, 배터리(1200-1)가 MSD(Manual Service Disconnect)로부터 분리되었는지 여부를 확인할 수 있다. MSD는 점검 또는 관리 시 사용자의 감전 사고를 방지하기 위해 배터리(1200-1)를 전기적 연결을 차단하는 기능을 하는 것이다. 전압 측정기(5500)는 배터리(1200-1)의 단자에 연결되어 배터리(1200-1)의 전압을 측정함으로써 배터리(1200-1)가 MSD로부터 안정적으로 분리되었는지 여부를 판단함으로써 안전성을 확보할 수 있다. 전압 측정기(5500)에 의해 측정된 배터리(1200-1)의 전압에 대한 정보는 진단 장치(100-1)로 전달될 수 있다.
본 발명은 상술한 실시 형태 및 첨부된 도면에 의해 한정되는 것이 아니며 첨부된 청구 범위에 의해 한정하고자 한다. 따라서, 청구 범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 당 기술분야의 통상의 지식을 가진 자에 의해 다양한 형태의 치환, 변형 및 변경이 가능할 것이며, 이 또한 본 발명의 범위에 속한다고 할 것이다.

Claims (23)

  1. 배터리의 상태 정보를 획득하기 위한 시스템에 있어서,
    상기 배터리의 배터리 관리 시스템으로부터 상기 배터리의 상태 정보를 나타내는 데이터를 획득하기 위한 적어도 하나의 제1하네스 케이블;
    상기 배터리 관리 시스템을 구동시키기 위한 구동 신호를 제공하기 위한 분석기; 및
    상기 제1하네스 케이블을 통해 입력되는 상기 데이터를 상기 분석기로 전달하기 위한 제1정션 박스를 포함하고,
    상기 분석기는, 상기 제1정션 박스로부터 수신되는 상기 데이터를 외부로 출력하도록 구성되는 시스템.
  2. 제1항에 있어서,
    상기 제1정션 박스와 연결되어, 상기 배터리 관리 시스템에 전원을 공급하기 위한 전원 공급기를 더 포함하는 시스템.
  3. 제1항에 있어서,
    상기 배터리의 상태 정보는, 상기 배터리의 전압, 온도, SoC(State of Charge), SoH(State of Health), SoP(State of Power), SoE(State of Energy), 및 SoB(State of Balance) 중 적어도 하나를 포함하는 시스템.
  4. 제1항에 있어서,
    상기 배터리와 적어도 하나의 제2하네스 케이블을 통해 연결되는 제2정션 박스; 및
    상기 제2정션 박스를 통해 상기 배터리의 교류 임피던스를 검출하기 위한 교류 임피던스 분석기를 더 포함하고,
    상기 제2정션 박스는, 상기 교류 임피던스를 검출하도록 구성되는 회로를 포함하는 제2정션 박스를 더 포함하는 시스템.
  5. 제4항에 있어서,
    상기 교류 임피던스 분석기는, 완전 충전 상태의 상기 배터리의 교류 임피던스, 완전 방전 상태의 상기 배터리의 교류 임피던스, 및 부분 충전 또는 부분 방전 상태의 상기 배터리의 교류 임피던스를 측정하는 시스템.
  6. 제4항에 있어서,
    상기 교류 임피던스 분석기는 기준 주파수 또는 기준 주파수 범위에서의 저항, 인덕터, 및 커패시터 중 적어도 하나를 측정함으로써 상기 교류 임피던스를 측정하는 시스템.
  7. 제4항에 있어서,
    상기 교류 임피던스 분석기는, 기준 주파수 또는 기준 주파수 범위에서의 저항, 인덕터, 및 커패시터 중 적어도 하나를 측정하고, 상기 측정된 상기 저항, 상기 인덕터, 및 상기 커패시터에 대응되는 등가회로를 구성함으로써 상기 교류 임피던스를 측정하는 시스템.
  8. 제4항에 있어서,
    상기 교류 임피던스 분석기는, 상기 교류 임피던스에 대한 정보를 TCP/IP 프로토콜에 기반하여 외부로 출력하는 시스템.
  9. 제4항에 있어서,
    상기 배터리를 충전 또는 방전시키기 위한 충방전기를 더 포함하고,
    상기 충방전기는 상기 제2정션 박스를 통해 상기 배터리와 연결되는 시스템.
  10. 제4항에 있어서,
    상기 배터리의 절연 저항을 측정하기 위한 절연 저항기를 더 포함하고,
    상기 절연 저항기는 상기 제2정션 박스를 통해 상기 배터리와 연결되는 시스템.
  11. 제4항에 있어서,
    상기 배터리의 전압을 측정하기 위한 전압 측정기를 더 포함하고,
    상기 전압 측정기는 상기 제2정션 박스를 통해 상기 배터리와 연결되는 시스템.
  12. 제4항에 있어서,
    상기 제1정션 박스는, 상기 제1정션 박스 내부의 온도를 측정하기 위한 온도 센서를 포함하는 시스템.
  13. 제1항에 있어서,
    상기 분석기는, CAN(Control Area Network) 프로토콜에 기반하여 상기 데이터를 출력하는 시스템.
  14. 배터리의 상태 정보를 획득하기 위한 시스템에 있어서,
    상기 배터리와 연결되어, 상기 상태 정보를 나타내는 적어도 하나의 신호를 획득하기 위한 적어도 하나의 제1하네스 케이블;
    상기 제1하네스 케이블을 통해 입력되는 상기 적어도 하나의 신호가 통과하도록 구성되는 적어도 하나의 퓨즈를 포함하고, 상기 퓨즈를 통과한 상기 적어도 하나의 신호를 출력하기 위한 제1정션 박스; 및
    상기 제1정션 박스로부터 입력되는 상기 적어도 하나의 신호를 적어도 하나의 디지털 데이터로 변환하고, 변환된 상기 적어도 하나의 디지털 데이터를 외부로 출력하기 위한 인터페이스 장치를 포함하는 시스템.
  15. 제14항에 있어서,
    상기 상태 정보는 상기 배터리의 전압 정보와 온도 정보 중 적어도 하나를 포함하고,
    상기 신호는 상기 전압 정보를 나타내는 제1신호와 상기 온도 정보를 나타내는 제2신호 중 적어도 하나를 포함하는 시스템.
  16. 제14항에 있어서,
    상기 배터리는 복수의 모듈들을 포함하고,
    상기 적어도 하나의 제1하네스 케이블은, 상기 복수의 모듈들 각각으로부터 상기 복수의 모듈들 각각에 대한 상기 상태 정보를 나타내는 복수의 신호들을 획득하기 위한 복수의 하네스 케이블들을 포함하는 시스템.
  17. 제16항에 있어서,
    상기 인터페이스 장치는,
    상기 제1정션 박스로부터 상기 복수의 신호들을 각각 입력 받기 위한 입력 포트들; 및
    상기 복수의 신호들을 상기 적어도 하나의 디지털 데이터로 각각 변환하기 위한 적어도 하나의 아날로그-디지털 컨버터를 포함하는 시스템.
  18. 제17항에 있어서,
    상기 인터페이스 장치는, 상기 적어도 하나의 디지털 데이터를 CAN(Control Area Network) 프로토콜에 기반하여 출력하고,
    상기 CAN 프로토콜 기반의 통신 상태 여부를 나타내는 제1LED; 및
    상기 적어도 하나의 아날로그-디지털 컨버터의 동작 상태를 나타내는 제2LED를 더 포함하는 시스템.
  19. 제14항에 있어서,
    상기 적어도 하나의 퓨즈는, 상기 적어도 하나의 신호로부터 발생되는 단락으로부터 상기 인터페이스 장치를 보호하도록 구성되는 시스템.
  20. 제16항에 있어서,
    상기 제1정션 박스는,
    상기 복수의 하네스 케이블들과 각각 연결되어 상기 복수의 신호들을 각각 수신하기 위한 복수의 입력 포트들; 및
    상기 복수의 신호들을 상기 인터페이스 장치로 각각 출력하기 위한 복수의 출력 포트들을 더 포함하는 시스템.
  21. 제14항에 있어서,
    상기 적어도 하나의 제1하네스 케이블의 일 단은 상기 배터리와의 연결을 위한 제1커넥터를 포함하고, 타 단은 상기 제1정션 박스와의 연결을 위한 제2커넥터를 포함하고,
    상기 제1커넥터와 상기 제2커넥터 중 적어도 하나는 안전을 위한 보호 캡이 부착되는 시스템.
  22. 제14항에 있어서,
    상기 배터리와 적어도 하나의 제2하네스 케이블을 통해 연결되는 제2정션 박스; 및
    상기 제2정션 박스를 통해 상기 배터리의 교류 임피던스를 검출하기 위한 교류 임피던스 분석기를 더 포함하고,
    상기 제2정션 박스는, 상기 교류 임피던스를 검출하도록 구성되는 회로를 포함하는 제2정션 박스를 더 포함하는 시스템.
  23. 제22항에 있어서,
    상기 배터리의 절연 저항을 측정하기 위한 절연 저항기; 및
    상기 배터리의 전압을 측정하기 위한 전압 측정기를 더 포함하고,
    상기 절연 저항기와 상기 전압 측정기는 상기 제2정션 박스를 통해 상기 배터리와 연결되도록 구성되는 시스템.
PCT/KR2019/011369 2018-09-05 2019-09-04 배터리 상태 정보를 획득하기 위한 시스템 WO2020050606A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19857729.8A EP3848252A4 (en) 2018-09-05 2019-09-04 BATTERY STATUS INFORMATION OBTAINING SYSTEM
US17/273,182 US11808816B2 (en) 2018-09-05 2019-09-04 System for obtaining battery state information
CN201980057905.3A CN112654536A (zh) 2018-09-05 2019-09-04 用于获得电池的状态信息的系统

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020180105884A KR102000993B1 (ko) 2018-09-05 2018-09-05 배터리 상태 정보를 획득하기 위한 시스템
KR10-2018-0105884 2018-09-05
KR1020180105881A KR101974015B1 (ko) 2018-09-05 2018-09-05 배터리 상태 정보를 획득하기 위한 시스템
KR10-2018-0105881 2018-09-05

Publications (1)

Publication Number Publication Date
WO2020050606A1 true WO2020050606A1 (ko) 2020-03-12

Family

ID=69723145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/011369 WO2020050606A1 (ko) 2018-09-05 2019-09-04 배터리 상태 정보를 획득하기 위한 시스템

Country Status (4)

Country Link
US (1) US11808816B2 (ko)
EP (1) EP3848252A4 (ko)
CN (1) CN112654536A (ko)
WO (1) WO2020050606A1 (ko)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011018532A (ja) * 2009-07-08 2011-01-27 Toyota Motor Corp 二次電池の温度推定装置
KR101160545B1 (ko) * 2011-01-31 2012-06-27 주식회사티움리서치 이차전지 건강상태 진단장치
KR20150104669A (ko) * 2014-03-05 2015-09-16 삼성에스디아이 주식회사 배터리 검사 장치 및 배터리 검사 장치 제어방법
KR20170035229A (ko) * 2015-09-22 2017-03-30 중소기업은행 배터리 진단 장치 및 방법
KR20170060882A (ko) * 2015-11-25 2017-06-02 현대자동차주식회사 배터리 점프 시동 방법
KR20170067322A (ko) * 2015-12-08 2017-06-16 현대자동차주식회사 차량의 서비스 플러그 탈부착 검출 모듈 및 검출 방법
KR20180084523A (ko) * 2017-01-17 2018-07-25 주식회사 엘지화학 배터리 모듈을 위한 외부 진단기 및 모듈 상태 변경 장치
KR101974015B1 (ko) * 2018-09-05 2019-05-02 주식회사 민테크 배터리 상태 정보를 획득하기 위한 시스템
KR102000993B1 (ko) * 2018-09-05 2019-07-17 주식회사 민테크 배터리 상태 정보를 획득하기 위한 시스템

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000000993A (ko) 1998-06-05 2000-01-15 김영환 데이타 입력버퍼
US20080042615A1 (en) * 2006-07-24 2008-02-21 Serrels Richard K Method for improving fuel economy of a hybrid vehicle
KR101649642B1 (ko) * 2010-01-26 2016-08-19 엘지전자 주식회사 배터리 제어 장치 및 그 방법
US10046649B2 (en) * 2012-06-28 2018-08-14 Midtronics, Inc. Hybrid and electric vehicle battery pack maintenance device
WO2014103707A1 (ja) * 2012-12-26 2014-07-03 三菱自動車工業株式会社 電動車両を用いた電力供給装置
US20150285867A1 (en) * 2014-04-08 2015-10-08 Ford Global Technologies, Llc Model-based diagnosis for battery voltage
JP5872128B1 (ja) * 2014-04-23 2016-03-01 三菱電機株式会社 太陽電池モジュールの診断方法、太陽電池モジュールの診断用回路および診断システム
DE102015209996A1 (de) * 2014-05-30 2015-12-17 Yazaki Corporation Fahrzeug-Kabelbaumstruktur und zusätzliches Verbindungselement
JP6490624B2 (ja) * 2016-06-29 2019-03-27 矢崎総業株式会社 ワイヤハーネス
JP6777849B2 (ja) * 2016-07-13 2020-10-28 ミツミ電機株式会社 車載用充電コネクタの充電制御回路、車載用充電コネクタ、及び外部機器への車両内データ転送・充電システム
KR20180020931A (ko) * 2016-08-19 2018-02-28 주식회사 민테크 외부 밸런싱이 가능한 배터리 급속 밸런싱 장치, 및 이를 이용한 배터리 급속 밸런싱 방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011018532A (ja) * 2009-07-08 2011-01-27 Toyota Motor Corp 二次電池の温度推定装置
KR101160545B1 (ko) * 2011-01-31 2012-06-27 주식회사티움리서치 이차전지 건강상태 진단장치
KR20150104669A (ko) * 2014-03-05 2015-09-16 삼성에스디아이 주식회사 배터리 검사 장치 및 배터리 검사 장치 제어방법
KR20170035229A (ko) * 2015-09-22 2017-03-30 중소기업은행 배터리 진단 장치 및 방법
KR20170060882A (ko) * 2015-11-25 2017-06-02 현대자동차주식회사 배터리 점프 시동 방법
KR20170067322A (ko) * 2015-12-08 2017-06-16 현대자동차주식회사 차량의 서비스 플러그 탈부착 검출 모듈 및 검출 방법
KR20180084523A (ko) * 2017-01-17 2018-07-25 주식회사 엘지화학 배터리 모듈을 위한 외부 진단기 및 모듈 상태 변경 장치
KR101974015B1 (ko) * 2018-09-05 2019-05-02 주식회사 민테크 배터리 상태 정보를 획득하기 위한 시스템
KR102000993B1 (ko) * 2018-09-05 2019-07-17 주식회사 민테크 배터리 상태 정보를 획득하기 위한 시스템

Also Published As

Publication number Publication date
EP3848252A1 (en) 2021-07-14
US11808816B2 (en) 2023-11-07
US20210325472A1 (en) 2021-10-21
EP3848252A4 (en) 2022-06-15
CN112654536A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
KR101974015B1 (ko) 배터리 상태 정보를 획득하기 위한 시스템
WO2013147494A1 (ko) 배터리의 절연 저항 측정 장치 및 방법
WO2012165879A2 (en) Secondary battery management system and method for exchanging battery cell information
WO2019022378A1 (ko) 배터리 관리 유닛 및 이를 포함하는 배터리팩
WO2011083993A2 (ko) 배터리 제어 장치 및 방법
WO2011102576A1 (ko) 셀 밸런싱 회로의 이상 진단 장치 및 방법
WO2018038348A1 (ko) 배터리 관리 시스템
WO2018021661A1 (ko) 션트저항을 이용한 전류 측정 장치
WO2018105874A1 (ko) 배터리 팩 충전 시스템
WO2019221368A1 (ko) 메인 배터리와 서브 배터리를 제어하기 위한 장치, 배터리 시스템 및 방법
WO2021049753A1 (ko) 배터리 진단 장치 및 방법
WO2010062141A2 (ko) 배터리 셀 전압 측정 장치 및 방법
WO2022019481A1 (ko) 통신 오류의 원인을 진단하기 위한 슬레이브 bms, 마스터 bms 및 배터리 팩
WO2014084628A1 (ko) 배터리 전류 측정 장치 및 그 방법
WO2021002658A1 (ko) 배터리 관리 시스템 및 관리 방법
WO2021101059A1 (ko) 절연저항 측정 장치 및 그 장치를 적용하는 배터리 시스템
WO2015056999A1 (ko) 동기화된 유닛들 가진 통신 시스템 및 그 유닛들의 동기화 방법
WO2020242131A1 (ko) 배터리 관리 시스템 및 상위 시스템으로 데이터를 송신하는 방법
KR20110059318A (ko) 배터리의 셀 전압 측정 장치
WO2017090978A1 (ko) 배터리 팩 상태 병렬 모니터링 장치
WO2017090980A1 (ko) 고전압 이차전지의 퓨즈 진단 장치
WO2018088685A1 (ko) 배터리 팩
WO2021085808A1 (ko) 온도 측정 장치, 이를 포함하는 배터리 장치 및 온도 측정 방법
WO2018030636A1 (ko) 배터리 팩
WO2020050606A1 (ko) 배터리 상태 정보를 획득하기 위한 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019857729

Country of ref document: EP

Effective date: 20210406