WO2020050313A1 - ファン付きヒートシンク - Google Patents

ファン付きヒートシンク Download PDF

Info

Publication number
WO2020050313A1
WO2020050313A1 PCT/JP2019/034769 JP2019034769W WO2020050313A1 WO 2020050313 A1 WO2020050313 A1 WO 2020050313A1 JP 2019034769 W JP2019034769 W JP 2019034769W WO 2020050313 A1 WO2020050313 A1 WO 2020050313A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
heat
fan
heat sink
centrifugal fan
Prior art date
Application number
PCT/JP2019/034769
Other languages
English (en)
French (fr)
Inventor
拓哉 井手
村上 政明
沼田 富行
Original Assignee
株式会社ロータス・サーマル・ソリューション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ロータス・サーマル・ソリューション filed Critical 株式会社ロータス・サーマル・ソリューション
Priority to US17/273,240 priority Critical patent/US11510337B2/en
Priority to CN201980058120.8A priority patent/CN112703830B/zh
Priority to DE112019004445.1T priority patent/DE112019004445T5/de
Publication of WO2020050313A1 publication Critical patent/WO2020050313A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20154Heat dissipaters coupled to components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • F04D29/4246Fan casings comprising more than one outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • F04D29/703Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps specially for fans, e.g. fan guards
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings

Definitions

  • the present invention relates to a heat sink with a fan which is suitable for radiating heat of a component having a large amount of heat, such as a CPU or an element used in an electronic device such as a computer or a projector.
  • a compact heat sink with high heat dissipation efficiency has been demanded.
  • a heat sink having a high heat radiation efficiency and capable of thinning for example, a heat sink with a fan has been proposed in which a heat radiation fin is provided around a centrifugal fan to reduce the thickness and increase the heat radiation efficiency as disclosed in Patent Documents 1 and 2. ing. Specifically, a plurality of plate-like fins are arranged around the centrifugal fan with a vertical interval, and air is passed through the gap to radiate heat.
  • the plate-shaped fins need to have a predetermined thickness from the viewpoint of strength and heat conduction, and the number of plates that can be arranged vertically is also limited. There is a need to. Therefore, even if the thickness can be reduced, the occupied area in the horizontal direction is widened, and the increase in size and weight of the housing cannot be avoided.
  • the centrifugal fan in order for the centrifugal fan to operate quietly, it is important that the flow velocity of the air passing between the radiation fins is uniform around the centrifugal fan, in addition to the high heat radiation efficiency that functions at low rotation. That is, even if the average flow velocity is small, the heat dissipation effect can be maintained by making the flow velocity uniform, and the fact that the average flow velocity can be reduced means that the noise of the fan is also reduced.
  • the heat radiation fins are annular as viewed in plan as in Patent Document 2, the heat radiation fins can be made uniform. .
  • the shape is limited to an annular heat dissipation fin as in Patent Literature 2, the narrow space in the housing of the electronic device cannot be efficiently used, and the degree of freedom in housing design is reduced. There is also a problem.
  • the present invention seeks to solve the problem by making it possible to make the entire device thinner and more compact, to have a high heat dissipation efficiency, to suppress the rotation speed of the centrifugal fan, and to maintain silence. Yes, it can be realized at low cost without any special processing according to the external shape of the centrifugal fan, and it is possible to prevent the reduction of heat radiation efficiency and the generation of noise without limiting the overall shape in plan view to a circle in particular.
  • An object of the present invention is to provide a heat sink with a fan that can be formed into a shape corresponding to the space in the housing of an electronic device and that can maintain a degree of freedom in housing design.
  • the present inventor has studied diligently, and instead of the conventionally proposed radiating fins around the centrifugal fan, a lotus porous having a plurality of unidirectionally extended pores formed by a metal solidification method.
  • a plate-shaped wall obtained by cutting a metal molded body, and by radiating air discharged from a centrifugal fan through the pores having a certain degree of airflow resistance, the plate-shaped wall and the heat receiving base are formed.
  • the external shape of the heat sink is not circular in plan view, the flow velocity of the pores becomes uniform around the fan, preventing the reduction of heat radiation efficiency and the generation of noise.This allows the heat sink to have various external shapes.
  • the idea is that the limited space in the housing of the electronic device can be efficiently utilized for heat radiation. Not be a type porous metal moldings, found that the same effect can be obtained, and have completed the present invention.
  • the present invention includes the following inventions.
  • a metal heat-receiving substrate having a contact surface on the lower surface for contacting the object to be cooled, through which heat of the object to be cooled is transmitted, and the contact surface of the heat-receiving substrate.
  • a centrifugal fan disposed on the opposite upper surface side, and a standing surface is provided at a position facing an outer peripheral portion having an air discharge port of the centrifugal fan on the upper surface of the heat receiving base, and a plate surface facing the centrifugal fan.
  • a heat sink with a fan comprising: a metal plate-like wall formed with a plurality of through holes that open.
  • the plate-shaped wall is a plate formed separately from the heat-receiving substrate, (1) The heat sink with a fan according to (1) or (2), wherein the end surface adjacent to the plate surface of the plate material is erected by joining the end surface to the upper surface of the heat receiving base.
  • the plate material is formed by cutting a Lotus-type porous metal molded body having a plurality of pores extending in one direction and formed by a metal solidification method, in a direction intersecting the direction in which the pores extend.
  • a skin layer without the pores is formed by the inner wall of the mold used for the molding, and the end of the plate at which the skin layer is formed is connected to the end of the heat receiving base.
  • a lid member fixed to an upper end of the plate-shaped wall and closing a space inside the plate-shaped wall in which the centrifugal fan is arranged, the lid member corresponding to an air intake port of the centrifugal fan.
  • the heat transmitted from the heat receiving base to the plate-like wall transfers the air.
  • the heat is dissipated inside and the heat radiation efficiency can be significantly improved as compared with the case where the heat is passed between the conventional fins. Therefore, the plate-like wall can be downsized as compared with the conventional radiating fins, the entire heat sink can be made thinner and more compact, and the number of revolutions of the centrifugal fan can be suppressed to keep quiet. That is, since the heat radiation efficiency is high, the number of rotations of the fan can be reduced, and the flow velocity can be reduced, so that noise can be reduced.
  • the heat is radiated through the through hole of the plate-shaped wall, even if the overall external shape of the heat sink including the plate-shaped wall and the heat receiving base is not circular in a plan view, the flow velocity passing through the through-hole is uniform around the fan.
  • the heat sink can be reduced in shape and noise generation can be prevented.Therefore, the heat sink can be made to have various external shapes. The degree of freedom can be maintained.
  • processing according to the outer shape of the centrifugal fan is not particularly required, and it can be realized at low cost.
  • FIG. 1 is an exploded perspective view showing a heat sink with a fan according to a typical embodiment of the present invention.
  • FIG. 3 is an exploded perspective view of the heat sink with a fan, except for a lid member.
  • FIG. 4 is an exploded perspective view showing a modification of the heat sink with a fan.
  • FIG. 9 is an exploded perspective view showing another modified example of the heat sink with a fan.
  • FIG. 13 is an exploded perspective view showing still another modified example of the heat sink with a fan.
  • a heat sink with a fan 1 has a contact surface 20 on its lower surface which is in contact with a not-shown object to be cooled.
  • the heat receiving base 2 made of metal to which the heat of the object to be cooled is transmitted, the centrifugal fan 3 arranged on the upper surface 21 opposite to the contact surface 20 of the heat receiving base 2, and the upper surface 21 of the heat receiving base 2
  • a metal plate having a plurality of through-holes 41 erected at a position around an outer peripheral portion having an air discharge port of the centrifugal fan 3 and opened in a plate surface 40 facing the centrifugal fan 3.
  • the apparatus includes a wall 4 and a lid member 5 fixed to an upper end 42 of the plate-shaped wall 4 and closing a space s1 inside the plate-shaped wall in which the centrifugal fan 3 is disposed.
  • the lid member 5 has an air intake hole 50 at a position corresponding to the air intake port 30 of the centrifugal fan 3. Then, as indicated by an arrow in FIG. 4, external air is forcibly taken in through the air intake hole 50 of the lid member 5 and the air intake port 30 of the centrifugal fan 3, and a plate-like shape is formed from the outer peripheral surface of the centrifugal fan 3. It is discharged to the outside in the space s1 inside the wall 4 and further discharged outside through the through hole 41 of the plate-like wall 4. The air discharged from the centrifugal fan 3 is discharged in a direction inclined from the radial direction to the rotational direction according to the rotation speed of the centrifugal fan 3.
  • the air discharged from the centrifugal fan 3 enters the through-hole 41 of the plate-shaped wall 4 while absorbing heat accumulated in the upper surface 21 of the heat-receiving substrate 2, the plate surface inside the plate-shaped wall 4, and the space s1. Then, the heat is exhausted to the outside while absorbing the heat of the plate-like wall 4 from the inner wall of the through hole.
  • the plate-like wall 4 is a heat-dissipating wall, and the heat-receiving base 2 and the plate-like wall 4 constitute a heat sink for dissipating heat into the air. Since heat is radiated into the air in the process of passing through the plurality of through holes 41 of the plate-like wall 4 as described above, it is possible to significantly improve the heat radiation efficiency as compared with the case where the heat passes between the conventional fins. is there. That is, due to the presence of the plurality of through holes 41, the air contact area per volume can be several tens of times larger than that of a normal radiating fin, and the radiating effect can be significantly increased. For this reason, the plate-shaped wall can be reduced in size as compared with the conventional radiating fins, the entire heat sink can be made thinner and more compact, and the number of rotations of the centrifugal fan 3 can be suppressed to maintain silence. .
  • the heat receiving base 2 is a solid flat plate made of metal, but is not limited to such a configuration. It is also preferable to use a convex lens shape to reduce the heat transfer resistance from the center to the end. Further, it may be hollow instead of solid, and it is also preferable to make the hollow part a heat pipe.
  • the materials used for conventional heat sinks, such as aluminum, iron, and copper, can be widely applied.
  • the heat receiving base 2 is formed in a rectangular shape in a plan view, and the contact surface 20 protruding in a block shape is formed at the center of the lower surface and the four corners.
  • a contact surface can be set to a shape that can be in close contact with the surface to be cooled of the object to be cooled.
  • a known thermal grease having excellent thermal conductivity heat conductive grease is appropriately interposed between the contact surface 20 and the object to be cooled.
  • centrifugal fan 3 a well-known one such as a sirocco fan or a turbo fan, which is suitable for conditions such as an air volume and a size depending on an object to be cooled and an installation environment, can be widely used. Can be attached with adhesive or screws.
  • the fan motor of the centrifugal fan 3 receives heat from the heat receiving base 2 and becomes high in temperature, this causes a reduction in the life of the fan. In such a case, heat from the heat receiving base 2 is less likely to be transmitted to the fan motor by interposing a spacer member having a lower thermal conductivity than the heat receiving base 2 between the fan motor and the heat receiving base 2. It is also desirable.
  • the plate-shaped wall 4 is a plate material formed separately from the heat-receiving base 2, and the metal material forming the plate-shaped wall 4 is a plate-shaped fin of a conventional heat sink such as aluminum, iron, or copper similarly to the heat-receiving base 2. Can be widely applied.
  • the plate-shaped wall 4 is erected by joining an end surface 43 adjacent to the plate surface of the plate material to the upper surface 21 of the heat receiving base 2.
  • a known intermetallic joining method such as brazing or caulking can be used.
  • the plate-like wall 4 of this example is formed separately from the heat receiving substrate 2, it is of course possible to form the plate wall 4 integrally with the heat receiving substrate 2 by using a mold or the like. In this case, a through hole may be formed in the plate-like wall after the integral formation.
  • the plate material constituting the plate-like wall 4 is formed by cutting a Lotus-type porous metal molded body having a plurality of unidirectionally extended pores formed by a metal coagulation method in a direction intersecting the direction in which the pores extend. It was done.
  • a Lotus-type porous metal compact can be formed by a known method such as a high-pressure gas method (Pressurized Gas Method) (for example, a method disclosed in Japanese Patent No. 4235813) or a thermal decomposition method (Thermal Decomposition Method). it can.
  • the pores divided by the cutting become the through holes 41 of the plate-like wall 4.
  • the metal plate-shaped wall 4 having the through holes 41 can be easily provided at low cost. Further, a skin layer 45 having no pores is formed at the peripheral end of each plate material cut out from the Lotus-type porous metal molded body by the inner wall of the die used for molding. By joining and standing the end (end surface 43) of the plate material on which the skin layer 45 is formed on the upper surface 21 of the heat receiving base 2, a bonding area between the end surface 43 and the upper surface 21 of the heat receiving base is ensured, and sufficient. And the heat transfer from the heat receiving base 2 to the plate material (plate-like wall 4) is efficiently performed, and the heat radiation efficiency can be further improved.
  • the plate thickness, shape (constant plate thickness / change in taper shape, etc.) and size of the plate-like wall 4, the axial direction of the through-hole 41 (whether or not there is inclination with respect to the normal to the plate surface 40, direction), the hole diameter (average), The number per area, the opening (porosity) ratio, and the like can be set to appropriate values in consideration of thermal design, noise, and the like.
  • the air enters the through-hole 41 the flow velocity increases, and when the air exits the through-hole 41, the flow velocity decreases.
  • a Karman vortex is generated microscopically. It is a source of noise. This can be considered together with the thermal design, and an appropriate value can be set.
  • the axial direction of the through hole 41 be set in a direction inclined in the same direction as the rotation direction of the fan with respect to the normal line of the plate surface 40 in that noise can be further reduced.
  • the through hole 41 may be formed by machining such as drilling.
  • the lid member 5 is adhered to the upper end 42 of the plate-like wall 4, closes the inner space s ⁇ b> 1 to prevent leakage, and allows air to be efficiently taken into the air intake port 30 of the centrifugal fan 3.
  • a low-cost synthetic resin molded product can be used.
  • the heat sink may be made of any other material, and may be made of metal, and a heat sink that radiates the heat transferred from the plate-like wall 4 may be used.
  • FIG. 5 shows a modification in which the plate-like wall 4 is provided intermittently around the centrifugal fan 3 with an interval (gap 11) therebetween.
  • the present invention does not need to provide the plate-shaped wall 4 continuously over the entire circumference of the centrifugal fan 3 as in the representative examples of FIGS. Including.
  • the gap 11 By providing the gap 11 in this manner, the heat transmitted from the heat receiving base 2 to the plate-like wall 45 is radiated by the airflow through the through hole 41 as described above, and relatively cool air that does not pass through the through hole 41 from the gap 11. Is discharged, and it is also possible to supply the cold air to the surrounding area to cool it. More specifically, when the heat sink cools an object to be cooled, such as a CPU inside an electronic device housing, for example, there are electronic components and the like that require small cooling in addition to the object. By providing the gap 11 without the plate-like wall 4 as described above, it is possible to apply cold air to these parts in a spot manner.
  • a holding frame 44 connecting the upper ends is provided in order to stably hold the plate-shaped walls 4 erected at intervals.
  • a notch or a hole larger than a through hole for heat radiation is provided in a part of one plate-shaped wall 4 to allow air to flow.
  • FIG. 6 shows a modified example in which the external shape of the heat sink formed of the plate-like wall 4 is circular when viewed in plan.
  • the outer shape of the heat sink is not limited to a rectangular shape in a plan view, but may be a circular shape as in the present embodiment, a polygon, or an irregular shape. These circles and other shapes can be easily formed only by bending the plate material.
  • FIG. 7 shows a modification in which the plate-like wall 4 is provided so as to be a double or triple or more wall with a gap 12 in the radial direction (inside and outside). Thus, the heat radiation effect can be easily increased.
  • one or both of the inside and outside of the plate-shaped wall provided in the inside and outside are formed as intermittent walls in the circumferential direction, so that relatively cool air can be supplied to the surroundings.
  • both the inside and the outside may be intermittent plate-shaped walls, and the arrangement may be such that the plate-shaped walls are alternately arranged in a staggered manner in the circumferential direction.
  • the heat sink with a fan according to the representative embodiment shown in FIGS. 1 to 4 is used as a model, and pores pass even if the outer shape of the entire heat sink including the plate-shaped wall and the heat receiving base is not circular in plan view. An analysis result that confirms that the flow velocity is uniform around the fan will be described.
  • FIG. 8 (Analysis model) The model shown in FIG. 8 was used. The lid is closed with a lid material (not shown) having an open upper suction port. Inner diameter of upper suction port (air intake hole) ⁇ 60mm, Inside of the plate-like wall (plate material): 4 pieces of 30 mm in length (height) x 70 mm in width x 3 mm in thickness, Outside: 4 pieces of 30 mm length x 80 mm width x 3 mm thickness, 2mm gap between inner and outer plate, Inner diameter (average) of through hole ⁇ 1.05 mm, porosity 60%, Centrifugal fan: Discharged from exhaust ports equally divided into 16 and discharged from each surface of a regular hexagon. The discharge direction from each surface is assumed to be inclined in the rotation direction due to the rotation. Specifically, the discharge is performed in an oblique direction inclined by 30 ° in the rotation direction from the normal direction of the surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Cookers (AREA)

Abstract

【課題】全体の薄型化およびコンパクト化が可能で、放熱効率が高く、静寂を保つことが可能であり、また、低コストで実現でき、平面視の全体形状も円形にとくに限定することなく放熱効率の低下や騒音の発生を防止でき、これにより電子機器筐体内のスペースに応じた形状にすることができ、筐体設計の自由度を維持できる、ファン付きヒートシンクを提供せんとする。 【解決手段】金属製の受熱基体2と、受熱基体2の上面21側に配される遠心ファン3と、受熱基体2の上面21における遠心ファン3の空気の吐出口を有する外周部に対向する周りの位置に立設され、遠心ファン3に対向する板面40に開口する複数の貫通孔41が形成されている金属製の板状壁4と、板状壁4の上端42に固定され、板状壁内側の空間s1を塞ぐ蓋部材5とを備える。

Description

ファン付きヒートシンク
 本発明は、例えばコンピュータやプロジェクタ等の電子機器に使用されるCPUや素子などの発熱量の多い部品の放熱に好適なファン付きヒートシンクに関する。
 近年、電子機器の内部のCPUや素子などの発熱量が増えると同時に、筐体のコンパクト化、薄型化が求められており、それに伴い、コンパクトで放熱効率の高いヒートシンクが求められている。放熱効率が高く薄型化が可能なヒートシンクとして、例えば、特許文献1、2のように、遠心ファンの周囲に放熱フィンを設けることで、厚みを抑えつつ放熱効率を高めたファン付きヒートシンクが提案されている。具体的には、遠心ファンの周りに板状フィンを上下に間隔をあけて複数枚配置し、当該隙間に空気を通過させて放熱するものである。
 しかしながら、板状フィンには強度および熱伝導の観点から所定の厚みが必要であり、上下に配置できる枚数も限られることから、放熱効率を高めるためには、各板状フィンを広く大きなものにする必要がある。したがって、薄型化が可能であるとしても横方向の占有面積が広くなり、筐体の大型化、重量アップが避けられない。また、放熱効率を得るためには、各放熱フィンを遠心ファンの吐出口がある外側面にできるだけ近づけることが重要であり、遠心ファンの種類に応じて、その外側面に対向する部分の形状加工が必要となり、コスト高の原因にもなる。
 さらに、遠心ファンの静寂な回転のためには、低回転で機能する高い放熱効率以外に、各放熱フィンの間を通過する空気の流速が遠心ファンの周囲で均等であることが重要である。すなわち、前記流速を均等にすることで平均流速が小さくても放熱効果を維持でき、平均流速を小さくできるということはファンの騒音も小さくなる。特許文献2のような平面視円環状の放熱フィンであれば均等にできるが、方形その他異形になると前記流速が不均一になり、騒音が発生したり放熱効率が低下してしまうという虞がある。他方、特許文献2のような円環状の放熱フィンに形状が限定されると、電子機器の筐体内の狭いスペースを効率よく利用することができず、筐体設計の自由度を低減させてしまうといった問題もある。
特開2007-234957号公報 特開2006-279004号公報
 そこで、本発明が前述の状況に鑑み、解決しようとするところは、全体の薄型化およびコンパクト化が可能で、かつ放熱効率が高く、遠心ファンの回転数を抑えて静寂を保つことが可能であり、また、遠心ファンの外形に応じた加工もとくに必要なく、低コストで実現でき、平面視の全体形状も円形にとくに限定することなく放熱効率の低下や騒音の発生を防止でき、これにより電子機器筐体内のスペースに応じた形状にすることができ、筐体設計の自由度を維持できる、ファン付きヒートシンクを提供する点にある。
 本発明者は、かかる現況に鑑み、鋭意検討し、従来提案されている遠心ファンの周囲の放熱フィンの代わりに、金属凝固法で成形された一方向に延びた複数の気孔を有するロータス型ポーラス金属成形体を切断した板状壁を設け、遠心ファンから吐出される空気を、ある程度通気抵抗のある当該気孔を通過させて放熱させるように構成することで、当該板状壁および受熱基体からなるヒートシンク全体の外形形状が平面視円形でなくても、気孔通過流速がファン周囲で均一化し、放熱効率の低下や騒音の発生が防止されること、これによりヒートシンクを様々な外形形状にすることができ、限られた電子機器筐体内のスペースを効率よく放熱に活用できることを着想し、更に、上記気孔と同じような貫通孔を有する板状壁であれば、ロータス型ポーラス金属成形体でなくても、同様の効果が得られることを見出し、本発明を完成するに至った。
 すなわち本発明は、以下の発明を包含する。
 (1) 下面側に冷却対象物に当接される当接面を有し、該当接面を通じて冷却対象物の熱が伝達される金属製の受熱基体と、該受熱基体の前記当接面の反対側となる上面側に配される遠心ファンと、前記受熱基体の上面における前記遠心ファンの空気の吐出口を有する外周部に対向する位置に立設され、前記遠心ファンに対向する板面に開口する複数の貫通孔が形成されている金属製の板状壁とを備えることを特徴とするファン付きヒートシンク。
 (2) 前記板状壁が、前記遠心ファンの周りに全周にわたって連続的に、または間隔をあけて部分的に設けられている、(1)記載のファン付きヒートシンク。
 (3) 前記板状壁が、前記受熱基体とは別に形成された板材であり、
 該板材の板面に隣接する端面を前記受熱基体の前記上面に接合することにより立設されている、(1)又は(2)記載のファン付きヒートシンク。
 (4) 前記板材が、金属凝固法で成形された一方向に延びた複数の気孔を有するロータス型ポーラス金属成形体を、気孔の伸びる方向に交差する方向に切断加工してなるものであり、前記切断により分断された前記気孔が、前記板状壁の前記貫通孔となる、(3)記載のファン付きヒートシンク。
 (5) 前記板材の端部には、前記成形に用いられる型内壁によって前記気孔の存在しないスキン層が形成されており、前記板材の前記スキン層が形成されている端部を前記受熱基体の前記上面に接合することにより立設されている、(4)記載のファン付きヒートシンク。
 (6) 前記板状壁の上端に固定され、前記遠心ファンが配置されている前記板状壁の内側の空間を塞ぐ蓋部材を備え、該蓋部材は、遠心ファンの空気取り込み口に対応する位置に空気取り込み穴を有している、(1)~(5)の何れかに記載のファン付きヒートシンク。
 以上にしてなる本願発明のファン付きヒートシンクによれば、遠心ファンから吐出される空気が、板状壁の複数の貫通孔を通過する過程で、受熱基体から板状壁へ伝わった熱が前記空気中に放熱され、従来のフィン間を通過させる場合に比べて、格段に放熱効率を高めることが可能となる。したがって、板状壁も従来の放熱フィンに比べて小型化でき、ヒートシンク全体をより薄型化、コンパクト化することが可能となり、遠心ファンの回転数を抑えて静寂を保つことも可能となる。すなわち、放熱効率が高いのでファンの回転数を落とし、流速を遅くすることができるので騒音を小さくすることが可能となる。
 また、板状壁の貫通孔を通して放熱するものであるため、当該板状壁および受熱基体からなるヒートシンクの全体外形形状が平面視円形でなくても、貫通孔を通過する流速がファン周囲で均一化し、放熱効率の低下や騒音の発生が防止され、したがってヒートシンクを様々な外形形状にすることが可能であり、限られた電子機器筐体内のスペースを効率よく放熱に活用でき、筐体設計の自由度を維持できる。また、遠心ファンの外形に応じた加工もとくに必要なく、低コストで実現することができる。
本発明の代表的実施形態にかかるファン付きヒートシンクを示す分解斜視図。 同じくファン付きヒートシンクを底側から見た斜視図。 同じくファン付きヒートシンクの蓋部材を除いた分解斜視図。 同じくファン付きヒートシンクの縦断面図。 同じくファン付きヒートシンクの変形例を示す分解斜視図。 同じくファン付きヒートシンクの他の変形例を示す分解斜視図。 同じくファン付きヒートシンクの更に他の変形例を示す分解斜視図。 実施例の計算シミュレーションで用いた解析モデルを示す図。 実施例の解析結果を示す図。
 次に、本発明の実施形態を添付図面に基づき詳細に説明する。
 本発明の代表的実施形態にかかるファン付きヒートシンク1は、図1~図4に示すように、下面側に図示しない冷却対象物に当接される当接面20を有し、該当接面20を通じて冷却対象物の熱が伝達される金属製の受熱基体2と、受熱基体2の当接面20の反対側となる上面21側に配される遠心ファン3と、受熱基体2の上面21における遠心ファン3の空気の吐出口を有する外周部に対向する周りの位置に立設され、遠心ファン3に対向する板面40に開口する複数の貫通孔41が形成されている金属製の板状壁4と、板状壁4の上端42に固定され、遠心ファン3が配置されている板状壁内側の空間s1を塞ぐ蓋部材5とを備えている。
 蓋部材5は、遠心ファン3の空気取り込み口30に対応する位置に空気取り込み穴50を有している。そして、図4中にて矢印で示すように、蓋部材5の空気取り込み穴50および遠心ファン3の空気取り込み口30を通じて外部の空気が強制的に取り込まれ、遠心ファン3の外周面から板状壁4の内側の空間s1内に外側に吐出されて、さらに板状壁4の貫通孔41を通って外部に排出される。遠心ファン3から吐出される空気は、遠心ファン3の回転速度に応じて、放射方向から回転方向に傾斜した方向に吐出される。
 遠心ファン3から吐出された空気は、受熱基体2の上面21や板状壁4の内側の板面、空間s1内に溜まった熱を吸収しながら、板状壁4の貫通孔41内に入り、さらに当該貫通孔の内壁から板状壁4の熱を吸熱しながら外部に排気される。
 すなわち、板状壁4は放熱壁であり、受熱基体2と板状壁4とにより熱を空気中に放熱するヒートシンクが構成されている。このように板状壁4の複数の貫通孔41を通過する過程で熱が空気中に放熱されることから、従来のフィン間を通過させる場合に比べ、格段に放熱効率を高めることが可能である。すなわち、複数の貫通孔41の存在により、体積当たりの空気接触面積が通常の放熱フィンに比べて数十倍大きくでき、放熱効果が格別に高くなる。このため板状壁を従来の放熱フィンに比べて小型化でき、ヒートシンク全体をより薄型化、コンパクト化することができ、遠心ファン3の回転数を抑えて静寂を保つことも可能となるのである。
 受熱基体2は、金属製の中実扁平な板状とされているが、このような構成に何ら限定されるものではない。凸レンズ状にして中央部から端部への伝熱抵抗を小さくしたものも好ましい。さらに中実ではなく中空としてもよく、中空部をヒートパイプ化することも好ましい。材料はアルミニウムや鉄、銅など従来のヒートシンクに使用されるものを広く適用できる。
 本例では、受熱基体2は平面視矩形に構成され、その下面の中央部と四方の隅部にブロック状に突出した当接面20が形成されている。このような当接面は冷却対象物の被着面に応じて密着できる形状に設定することができる。当接面20と冷却対象物の間には、適宜、公知の熱伝導性に優れるサーマルグリース(熱伝導グリース)を介在させることが好ましい。
 遠心ファン3は、シロッコファンやターボファンなど、公知のものから冷却対象物、取り付けの環境などに応じて風量、寸法など条件に適したものを広く採用することができ、受熱基体2の上面21に接着剤やビス等で取り付けられる。遠心ファン3のファンモータが受熱基体2からの熱を受けて高温になるとファン寿命減少の要因になる。このような場合には、ファンモータと受熱基体2の間に、受熱基体2に比べて熱伝導性の低いスペーサ部材を介装する等して受熱基体2からの熱がファンモータに伝わりにくくすることも望ましい。
 板状壁4は、受熱基体2とは別に形成された板材であり、板状壁4を構成する金属材料としては、受熱基体2と同様、アルミや鉄、銅など従来のヒートシンクの板状フィンに使用されるものを広く適用できる。板状壁4は、当該板材の板面に隣接する端面43を受熱基体2の上面21に接合することにより立設されている。接合方法はロー付けやカシメなど、公知の金属間接合方法を用いることができる。本例の板状壁4は受熱基体2とは別に形成されているが、鋳型等により受熱基体2と一体形成されたものでも勿論可能である。この場合、一体形成の後、板状壁に貫通孔を穿設加工すればよい。
 板状壁4を構成する上記板材は、本例では金属凝固法で成形された一方向に伸びた複数の気孔を有するロータス型ポーラス金属成形体を、気孔の伸びる方向に交差する方向に切断加工したものである。このようなロータス型ポーラス金属成形体は、高圧ガス法(Pressurized Gas Method)(例えば特許第4235813号公報開示の方法)や、熱分解法(Thermal Decomposition Method)など、公知の方法で成形することができる。切断により分断された前記気孔が、板状壁4の前記貫通孔41となる。
 このようにロータス型ポーラス金属成形体から切り出した板材を用いることで、貫通孔41を有する金属製の板状壁4を低コスト且つ容易に設けることができる。また、ロータス型ポーラス金属成形体から切り出した各板材の周端部には、成形に用いられる型内壁によって前記気孔の存在しないスキン層45が形成されている。このスキン層45が形成されている板材の端部(端面43)を受熱基体2の上面21に接合・立設することで、当該端面43と受熱基体上面21との接合面積が確保され、十分な接合強度を維持できるとともに受熱基体2から板材(板状壁4)への伝熱も効率よく行われ、放熱効率をより向上させることができる。
 板状壁4の板厚、形状(板厚一定/テーパー状に変化など)、大きさ、貫通孔41の軸方向(板面40の法線に対する傾斜の有無、方向)や孔径(平均)、面積あたりの数、開口(気孔)率などは、熱設計や騒音などを考慮して適宜な値に設定できる。空気が貫通孔41に入るときには流速が大きくなり、貫通孔41から出るときは流速が小さくなるが、このように流速が急激に変換すると殆どの場合、ミクロ的にカルマン渦が発生するが、これが騒音の元になる。これを熱設計とあわせて考慮し、適宜な値を設定することができる。
 特に、貫通孔41の軸方向は、板面40の法線に対して前記ファンの回転方向と同じ方向に傾斜した方向に設定することが騒音をより低減できる点で好ましい。貫通孔41はドリル加工などの機械加工で穿設したものでもよい。
 蓋部材5は、板状壁4の上端42に接着され、内側の空間s1を塞いで漏れをなくし、遠心ファン3の空気取り込み口30に効率よく空気を取り込ませるためのものであり、軽量で低コストな合成樹脂成形品を用いることができる。勿論、それ以外の材料で構成してもよく、金属製とし、板状壁4から伝熱された熱を放熱するヒートシンクを構成することも可能である。
 図5は、板状壁4が遠心ファン3の周りに間隔(隙間11)をあけて断続的に設けられた変形例を示している。このように、本発明は図1~図4の代表例のように板状壁4を遠心ファン3の周囲全周にわたって連続的に設ける必要はなく、図5のように部分的に設けられるものも含む。
 このように隙間11を設けることで、受熱基体2から板状壁45に伝わった熱は上述のとおり貫通孔41を通じた気流により放熱し、隙間11からは貫通孔41を通過しない比較的冷たい空気が排出され、周辺の部位に当該冷たい空気を供給して冷却することも可能となる。より具体的には、本ヒートシンクにより例えば電子機器筐体の内部のCPU等の冷却対象物を冷却する場合、当該対象物以外にも、小さな冷却が必要な電子部品などが存在するため、本例のように板状壁4のない隙間11を設けてこれらの部品にスポット的に冷風を当てることが可能となる。
 本例では、図5に示すように間隔をあけて立設された板状壁4を安定保持するために上端間を連結する保持枠44が設けられている。このように間隔をあけて立設することで隙間11を形成すること以外に、一枚の板状壁4の一部に切欠きや放熱用の貫通孔よりも大きな穴を設けて、空気を冷たいまま通過させる隙間11と同様の隙間又は開口を構成することも勿論可能である。
 図6は、板状壁4からなるヒートシンク外形形状を、平面視円形にした変形例を示している。このようにヒートシンク外形形状は平面視で矩形でなくても、本例のような円形やその他、多角形、異形な形状を採用できる。これら円形その他の形状は板材を湾曲させるだけで容易に構成できる。また、図7は、板状壁4を、放射方向(内外)に隙間12をあけて二重又は三重以上の壁になるように設けた変形例である。このようにして容易に放熱効果を高めることができる。
 以上の変形例を組み合わせて種々の形態で実施することも可能である。すなわち、図示しないが内外二重に設けられる板状壁の内側、外側の一方又は双方を周方向に断続的な壁とし、比較的冷たい空気を周囲に供給することが可能となるように構成してもよい。たとえば内外いずれも断続的な板状壁とし、かつその配置を周方向に千鳥状に交互に板状壁を立設するように構成してもよい。
 以上、本発明の実施形態および変形例について説明したが、本発明はこうした実施形態や変形例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる形態で実施し得ることは勿論である。
 以下、計算シミュレーションを用い、図1~図4で示した代表的実施形態のファン付きヒートシンクをモデルに、板状壁および受熱基体からなるヒートシンク全体の外形形状が平面視円形でなくても気孔通過流速がファン周囲で均一化していることを確認した解析結果について説明する。
(解析モデル)
 図8に示すモデルを用いた。
 上吸込口が開放された図示しない蓋材で蓋をする。
 上吸込口(空気取り込み穴)の内径φ60mm、
 板状壁(板材)内側:縦(高さ)30mm×横70mm×厚み3mmを4枚、
        外側:縦(高さ)30mm×横80mm×厚み3mmを4枚、
        内外の板材間の隙間 2mm、
        貫通孔の内径(平均)φ1.05mm、気孔率60%、
 遠心ファン:均等に16等分された排気口から吐出するものとし、正16角形の各面からの吐出とした。各面からの吐出方向は回転により回転方向に傾斜して吐出されるとし、具体的には面の法線方向から回転方向に30°傾いた方向の斜め方向に吹出するものとした。
(計算シミュレーションソフト)
 株式会社アドバンスドナレッジ研究所製「Flow Designer 2018」を用いた。
(解析結果)
 図9に示すように、ほぼ均一の孔通過流速が得られた。
(考察)
 遠心ファンからの流れはファン外周から離れる程、空間が大きくなるので流速が減少する。本モデルのように平面視四角形状のものでは、辺部(板状壁の中央位置付近)は比較的に遠心ファンに近く流速も大きいが、角部の流速は辺部より小さくなる。しかし、角部は流体漏斗のように角部に追いやられる結果、気孔に対して無限空間時の流速より大きい流速を流すことができる。すなわち、辺部も角部も同じような気孔通過流速を得ることができる。このような結果は、搭載する機器に応じた種々の形状に構成しても、気孔通過流速を均一化することができ、放熱効率を向上することができることを示している。
 1 ヒートシンク
 2 受熱基体
 3 遠心ファン
 4 板状壁
 5 蓋部材
 11 隙間
 12 隙間
 20 当接面
 21 上面
 30 空気取り込み口
 40 板面
 41 貫通孔
 42 上端
 43 端面
 44 保持枠
 45 スキン層
 50 空気取り込み穴
 s1 空間

Claims (6)

  1.  下面側に冷却対象物に当接される当接面を有し、該当接面を通じて冷却対象物の熱が伝達される金属製の受熱基体と、
     該受熱基体の前記当接面の反対側となる上面側に配される遠心ファンと、
     前記受熱基体の上面における前記遠心ファンの空気の吐出口を有する外周部に対向する位置に立設され、前記遠心ファンに対向する板面に開口する複数の貫通孔が形成されている金属製の板状壁と、
     を備えることを特徴とするファン付きヒートシンク。
  2.  前記板状壁が、前記遠心ファンの周りに全周にわたって連続的に、または間隔をあけて部分的に設けられている、請求項1記載のファン付きヒートシンク。
  3.  前記板状壁が、前記受熱基体とは別に形成された板材であり、
     該板材の板面に隣接する端面を前記受熱基体の前記上面に接合することにより立設されている、請求項1又は2記載のファン付きヒートシンク。
  4.  前記板材が、金属凝固法で成形された一方向に延びた複数の気孔を有するロータス型ポーラス金属成形体を、気孔の伸びる方向に交差する方向に切断加工してなるものであり、
     前記切断により分断された前記気孔が、前記板状壁の前記貫通孔となる、請求項3記載のファン付きヒートシンク。
  5.  前記板材の端部には、前記成形に用いられる型内壁によって前記気孔の存在しないスキン層が形成されており、
     前記板材の前記スキン層が形成されている端部を前記受熱基体の前記上面に接合することにより立設されている、請求項4記載のファン付きヒートシンク。
  6.  前記板状壁の上端に固定され、前記遠心ファンが配置されている前記板状壁の内側の空間を塞ぐ蓋部材を備え、該蓋部材は、遠心ファンの空気取り込み口に対応する位置に空気取り込み穴を有している、請求項1~5の何れか1項に記載のファン付きヒートシンク。
PCT/JP2019/034769 2018-09-05 2019-09-04 ファン付きヒートシンク WO2020050313A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/273,240 US11510337B2 (en) 2018-09-05 2019-09-04 Fan-equipped heatsink
CN201980058120.8A CN112703830B (zh) 2018-09-05 2019-09-04 带风扇的散热器
DE112019004445.1T DE112019004445T5 (de) 2018-09-05 2019-09-04 Mit gebläse ausgestattete wärmesenke

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018165762A JP7113504B2 (ja) 2018-09-05 2018-09-05 ファン付きヒートシンク
JP2018-165762 2018-09-05

Publications (1)

Publication Number Publication Date
WO2020050313A1 true WO2020050313A1 (ja) 2020-03-12

Family

ID=69723204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034769 WO2020050313A1 (ja) 2018-09-05 2019-09-04 ファン付きヒートシンク

Country Status (6)

Country Link
US (1) US11510337B2 (ja)
JP (1) JP7113504B2 (ja)
CN (1) CN112703830B (ja)
DE (1) DE112019004445T5 (ja)
TW (1) TWI805837B (ja)
WO (1) WO2020050313A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117400A (ja) * 1992-02-25 1994-04-26 Asahi Kogyosha:Kk フィルター付き送風機ユニット
JPH10294582A (ja) * 1997-02-24 1998-11-04 Fujitsu Ltd ヒートシンクとそれを使用する情報処理装置
JP2002518861A (ja) * 1998-06-16 2002-06-25 レイセオン カンパニー 空気流を制御するための方法及び装置
JP2005328011A (ja) * 2004-05-13 2005-11-24 Mitac Technology Corp 導熱被覆板を具えたヒートシンクモジュール
JP2018073869A (ja) * 2016-10-24 2018-05-10 株式会社ロータス・サーマル・ソリューション ヒートシンク、該ヒートシンクを備えた冷却装置及び該ヒートシンクの製造方法、並びに冷却対象物の冷却方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE509718T1 (de) 2002-02-22 2011-06-15 Hideo Nakajima Verfahren zur herstellung poröser metallkörper
US6924980B2 (en) * 2003-06-27 2005-08-02 International Business Machines Corporation Vibration isolation of computing device heat sink fans from attached fan shrouds and heat sinks
TWM246694U (en) * 2003-11-11 2004-10-11 Hon Hai Prec Ind Co Ltd Heat dissipation device
US6945318B2 (en) * 2004-01-26 2005-09-20 Giga-Byte Technology Co., Ltd. Heat-dissipating device
JP4550664B2 (ja) 2005-03-02 2010-09-22 古河電気工業株式会社 ヒートパイプ付ヒートシンク
JP4532422B2 (ja) 2006-03-02 2010-08-25 古河電気工業株式会社 遠心ファン付ヒートシンク
US20070215336A1 (en) * 2006-03-17 2007-09-20 Inventec Corporation Mesh-type heat dissipating structure
US7697293B1 (en) * 2008-09-26 2010-04-13 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat dissipation device
CN101737340B (zh) * 2008-11-17 2011-12-28 建准电机工业股份有限公司 超薄散热风扇
CN101835363B (zh) * 2009-03-10 2013-06-05 鸿富锦精密工业(深圳)有限公司 散热结构
JP5127902B2 (ja) * 2010-09-21 2013-01-23 レノボ・シンガポール・プライベート・リミテッド 電子機器の放熱装置および電子機器
TWI543693B (zh) * 2014-12-04 2016-07-21 Yen Sun Technology Corp Cooling fan frame

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117400A (ja) * 1992-02-25 1994-04-26 Asahi Kogyosha:Kk フィルター付き送風機ユニット
JPH10294582A (ja) * 1997-02-24 1998-11-04 Fujitsu Ltd ヒートシンクとそれを使用する情報処理装置
JP2002518861A (ja) * 1998-06-16 2002-06-25 レイセオン カンパニー 空気流を制御するための方法及び装置
JP2005328011A (ja) * 2004-05-13 2005-11-24 Mitac Technology Corp 導熱被覆板を具えたヒートシンクモジュール
JP2018073869A (ja) * 2016-10-24 2018-05-10 株式会社ロータス・サーマル・ソリューション ヒートシンク、該ヒートシンクを備えた冷却装置及び該ヒートシンクの製造方法、並びに冷却対象物の冷却方法

Also Published As

Publication number Publication date
US20210274679A1 (en) 2021-09-02
TWI805837B (zh) 2023-06-21
DE112019004445T5 (de) 2021-07-08
JP7113504B2 (ja) 2022-08-05
US11510337B2 (en) 2022-11-22
JP2020038918A (ja) 2020-03-12
CN112703830B (zh) 2023-09-26
TW202017460A (zh) 2020-05-01
CN112703830A (zh) 2021-04-23

Similar Documents

Publication Publication Date Title
JP4532422B2 (ja) 遠心ファン付ヒートシンク
JP5470392B2 (ja) 電子機器の冷却構造
JP4550664B2 (ja) ヒートパイプ付ヒートシンク
CN109673139B (zh) 散热系统及具有散热系统的飞行器
TWI811504B (zh) 散熱裝置
JP2000244159A (ja) 冷却装置
JP2002368468A (ja) ヒートシンクとその製造方法およびそれを用いた冷却装置
US20100103616A1 (en) Electronic device with centrifugal fan
KR101610044B1 (ko) 히트 싱크
JP2007247495A (ja) 遠心ファン装置及びそれを備えた電子機器
US8562291B2 (en) Heat dissipation device and centrifugal fan thereof
US10948240B2 (en) Vapor chamber structure
US10816011B2 (en) Fan housing with metal foam and fan having the fan housing
TW201213760A (en) Heat dissipation device with multiple heat pipes
US20060011330A1 (en) Heat dissipating device
JP5117287B2 (ja) 電子機器の冷却装置
JP6562885B2 (ja) ヒートシンク、該ヒートシンクを備えた冷却装置及び該ヒートシンクの製造方法、並びに冷却対象物の冷却方法
JP2005528805A (ja) 電子装置用冷却エレメント
WO2020050313A1 (ja) ファン付きヒートシンク
WO2021220570A1 (ja) 電子制御装置
JP2009239166A (ja) 薄型ヒートシンク
JP2007042724A (ja) ヒートシンク
JP2012023146A (ja) ヒートシンク
JP2005032771A (ja) 電子素子の冷却装置
JP2003198170A (ja) 冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856553

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19856553

Country of ref document: EP

Kind code of ref document: A1