WO2020050068A1 - 乳酸吸着剤および乳酸の除去方法 - Google Patents

乳酸吸着剤および乳酸の除去方法 Download PDF

Info

Publication number
WO2020050068A1
WO2020050068A1 PCT/JP2019/033125 JP2019033125W WO2020050068A1 WO 2020050068 A1 WO2020050068 A1 WO 2020050068A1 JP 2019033125 W JP2019033125 W JP 2019033125W WO 2020050068 A1 WO2020050068 A1 WO 2020050068A1
Authority
WO
WIPO (PCT)
Prior art keywords
lactic acid
adsorbent
anion exchange
solution
glucose
Prior art date
Application number
PCT/JP2019/033125
Other languages
English (en)
French (fr)
Inventor
敏明 吉岡
知人 亀田
文彦 北川
神保 陽一
近藤 昌幸
Original Assignee
日機装株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日機装株式会社, 国立大学法人東北大学 filed Critical 日機装株式会社
Priority to EP19857178.8A priority Critical patent/EP3848115A4/en
Priority to JP2020541138A priority patent/JP7191341B2/ja
Publication of WO2020050068A1 publication Critical patent/WO2020050068A1/ja
Priority to US17/179,643 priority patent/US20210170359A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • B01D15/363Anion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • B01J41/14Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/014Ion-exchange processes in general; Apparatus therefor in which the adsorbent properties of the ion-exchanger are involved, e.g. recovery of proteins or other high-molecular compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0607Non-embryonic pluripotent stem cells, e.g. MASC

Definitions

  • the present invention relates to a lactic acid adsorbent and a method for removing lactic acid.
  • cells required for mass culture include antibody-producing cells such as Chinese hamster ovary cells (CHO cells) and pluripotent stem cells such as embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells). . If these cells and the like can be stably cultured in large amounts for a long period of time, it is possible to efficiently produce a biological material such as a monoclonal antibody or a differentiation-inducing tissue derived from pluripotent stem cells.
  • CHO cells Chinese hamster ovary cells
  • pluripotent stem cells such as embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells).
  • a suspension stirring culture using a culture tank such as a spinner flask can be considered.
  • the equipment scale tends to be large in suspension stirring culture. Therefore, in order to reduce costs, it is effective to increase the culture density of cells and the like.
  • increasing the culture density suppresses the growth of cells and the like. This is because the concentration of waste products (metabolites) in the culture solution (liquid medium) increases due to the densification of the cells and the like, thereby decreasing the proliferation activity of the cells and the like. Lactic acid is known as a typical waste product affecting cells and the like.
  • Patent Document 1 discloses a cell culture device in which a cell culture tank and a component adjustment liquid tank are connected by a liquid feed line provided with a culture liquid component adjustment membrane that allows components to pass through depending on the concentration difference. It has been disclosed.
  • the concentration of waste products accumulated in the culture solution decreases in the culture solution by moving to the component adjusting solution side.
  • the nutrients whose concentration has decreased during the culturing are transferred from the component adjusting solution to the culturing solution and replenished. Thereby, the environment in the culture solution is maintained in a state suitable for cell culture.
  • the culture solution itself was used as the component adjusting solution.
  • the cell culture device disclosed in Patent Document 1 removes wastes from a culture solution using the principle of dialysis. Therefore, in order to realize sufficient removal of waste products, the volume of the component adjusting liquid tank is set to be at least 10 times the volume of the cell culture tank. For this reason, there is a problem that the required amount of liquid is enormous and the cost is high. In particular, when the culture solution itself is used as the component adjusting solution, a large amount of expensive medium is consumed, and the cost is further increased. In addition, when removing waste products using dialysis technology, there is another problem that the structure of the culture device becomes complicated.
  • lactic acid is often desired to be removed not only from culture solutions of cells and the like but also from other solution systems. For this reason, a novel lactic acid removal technique using a technique other than the dialysis technique is strongly desired.
  • the present invention has been made in view of such circumstances, and one of its objects is to provide a novel lactic acid removal technology.
  • one embodiment of the present invention is a lactic acid adsorbent.
  • the lactic acid adsorbent is at least one selected from the group consisting of a layered double hydroxide, a layered double oxide, a weakly basic anion exchange resin having a styrene-based dimethylamino group, and a strongly basic anion exchange resin. Contains substances. According to this aspect, a novel lactic acid removal technique can be provided.
  • the lactic acid adsorbent may be brought into contact with a solution containing lactic acid to adsorb lactic acid in the solution.
  • the solution may be a culture solution of cells or microorganisms containing glucose.
  • the strongly basic anion exchange resin may include at least one of a strongly basic anion exchange resin having a styrene-based trimethylammonium group and a strongly basic anion exchange resin having a styrene-based dimethylethanolammonium group.
  • the weakly basic anion exchange resin may be of a porous type or an MR type.
  • the amount of the lactic acid adsorbent added to the solution may be more than 0.0005 g / mL and less than 0.2 g / mL.
  • Another embodiment of the present invention is a method for removing lactic acid.
  • the removal method includes contacting the lactic acid adsorbent of any of the above embodiments with lactic acid.
  • a novel lactic acid removal technology can be provided.
  • FIG. 1 (A) to 1 (D) are schematic diagrams for explaining a method for removing lactic acid according to an embodiment. It is a figure which shows the lactic acid adsorption rate and the glucose adsorption rate of the lactic acid adsorbent in the aqueous solution of lactic acid and glucose when a layered double hydroxide and a layered double oxide are used as a lactic acid adsorbent. It is a figure which shows the lactic acid adsorption rate and the glucose adsorption rate of a lactic acid adsorbent in a cell culture solution when a layered double hydroxide and a layered double oxide are used as a lactic acid adsorbent. FIG.
  • FIG. 4A is a diagram showing the lactic acid adsorption rate and the glucose adsorption rate of the lactic acid adsorbent in an aqueous solution of lactic acid and glucose when a layered double hydroxide is used as the lactic acid adsorbent.
  • FIG. 4B is a diagram showing the lactic acid adsorption rate and the glucose adsorption rate of the lactic acid adsorbent in the cell culture solution when a layered double hydroxide is used as the lactic acid adsorbent.
  • FIG. 4A is a diagram showing the lactic acid adsorption rate and the glucose adsorption rate of the lactic acid adsorbent in an aqueous solution of lactic acid and glucose when a layered double hydroxide is used as the lactic acid adsorbent.
  • FIG. 4B is a diagram showing the lactic acid adsorption rate and the glucose adsorption rate of the lactic acid adsorbent in the cell culture solution when
  • FIG. 5 (A) is a diagram showing the lactic acid adsorption rate of a lactic acid adsorbent in an aqueous solution of lactic acid and glucose when a weakly basic anion exchange resin and a strongly basic anion exchange resin are used as the lactic acid adsorbent. is there.
  • FIG. 5B shows lactic acid adsorption of the lactic acid adsorbent with an aqueous solution of lactic acid and glucose when a styrene-based dimethylamine-type weakly basic anion exchange resin and a strongly basic anion exchange resin are used as the lactic acid adsorbent. It is a figure which shows a rate and a glucose adsorption rate.
  • FIG. 5B shows lactic acid adsorption of the lactic acid adsorbent with an aqueous solution of lactic acid and glucose when a styrene-based dimethylamine-type weakly basic anion exchange resin and a strongly basic anion exchange resin are used as the
  • FIG. 6 is a diagram showing the lactic acid adsorption rate and glucose adsorption rate of a lactic acid adsorbent in a cell culture solution when a styrene-based dimethylamine-type weakly basic anion exchange resin and a strongly basic anion exchange resin are used as a lactic acid adsorbent. is there.
  • the present inventors have conducted intensive studies on the technology for removing lactic acid and have found an adsorbent capable of highly selectively adsorbing lactic acid.
  • the lactic acid adsorbent according to the present embodiment includes a layered double hydroxide (Layered Double Hydroxide: LDH), a layered double oxide (Layered Double Hydroxide: LDO), and a weak base having a styrene-based dimethylamino group.
  • “Styrene-based dimethylamino group” means a structure in which a dimethylamino group is bonded to a styrene skeleton as an ion exchange group (functional group).
  • the weakly basic anion exchange resin having a styrene-based dimethylamino group is appropriately referred to as a styrene-based dimethylamine-type weakly basic anion-exchange resin. The same applies to anion exchange resins having other groups.
  • the layered double hydroxide is composed of a positively charged octahedral layer host layer obtained by substituting a part of M 2+ in the divalent metal M (OH) 2 with M 3+ , and a positive charge of the host layer.
  • M 2+ is a divalent metal ion selected from the group consisting of Cu 2+ , Mn 2+ , Mg 2+ , Fe 2+ , Ca 2+ , Ni 2+ , Zn 2+ , Co 2+ and Cd 2+ .
  • M 3+ is a trivalent metal ion selected from the group consisting of Al 3+ , Cr 3+ , Fe 3+ , Co 3+ , In 3+ , Mn 3+ and V 3+ .
  • a n- is an n-valent anion selected from the group consisting of CO 3 2 ⁇ , SO 4 2 ⁇ , Cl ⁇ , OH ⁇ , SiO 4 4 ⁇ , SO 4 2 ⁇ and NO 3 ⁇ .
  • x is 0.22 to 0.3, n is 1 to 3, and y is 1 to 12.
  • the layered double oxide is an oxide of LDH.
  • LDO is obtained by firing LDH at, for example, 200 ° C. to 500 ° C. When LDO is brought into contact with an aqueous solution of lactic acid, the LDH structure is regenerated with lactic acid adsorbed between the layers.
  • Preferred layered double hydroxides and layered double oxides include Cu-Al LDH, Cu-Al LDO, Mg-Al LDH, Mg-Al LDO, and Ni-Al LDH.
  • the “system” means that the type of A n ⁇ in the above chemical formula is not limited.
  • a plurality of layered double hydroxides and / or layered double oxides having different types of constituent metal ions and anions may be used as a mixture.
  • the weakly basic anion exchange resin having a styrene-based dimethylamino group is preferably of a porous type or an MR (macro-reticular) type.
  • Examples of such a weakly basic anion exchange resin include high-porous type WA30 (Mitsubishi Chemical Corporation) and MR-type IRA96SB (Organo Corporation).
  • Preferred examples of the strongly basic anion exchange resin include a strongly basic anion exchange resin having a styrene-based trimethylammonium group and a strongly basic anion exchange resin having a styrene-based dimethylethanolammonium group.
  • Styrene-based trimethylammonium type strongly basic anion exchange resins include gel type SA10A, SA12A, SA11A, NSA100 (all manufactured by Mitsubishi Chemical Corporation) and porous type PA306S, PA308, PA312, PA316, PA318L, HPA25 (all manufactured by Mitsubishi Chemical Co., Ltd.).
  • Styrene-based dimethylethanol ammonium type strong basic anion exchange resins include SA20A and SA21A (all manufactured by Mitsubishi Chemical Corporation), PA408, PA412, and PA418 (all manufactured by Mitsubishi Chemical Corporation).
  • Anion exchange resins are classified into gel type, porous type, high porous type and MR type according to their shapes.
  • the gel type is a polymer obtained by polymerizing a resin raw material (monomer) in a solvent, and has a uniform three-dimensional structure. The gel form has only micropores.
  • the porous type and the high-porous type have a porous structure in which pores (macropores) are physically provided in a gel-type three-dimensional structure.
  • the high-porous type is more porous than the porous type.
  • the MR type is produced by improving the polymerization method when synthesizing the gel type, and has a larger specific surface area and a larger pore volume than the gel type.
  • the weakly basic anion exchange resin has a lower adsorptivity than the strongly basic anion exchange resin, a porous type or an MR type having a large adsorption area is preferable.
  • a strongly basic anion exchange resin has a higher adsorptivity than a weakly basic anion exchange resin, and may have any structure of a gel type, a porous type, a hyperporous type and an MR type.
  • lactic acid In weakly basic anion exchange resins and strongly basic anion exchange resins, free functional groups and lactate ions interact electrically, or exchange ions interacting with functional groups and lactate ions undergo ion exchange. By doing so, lactic acid can be adsorbed.
  • SA10A, SA12A, SA11A, NSA100, PA306S, PA308, PA312, PA316, PA318L, HPA25, SA20A, SA21A, PA408, PA408, PA412 and PA418 adsorb lactic acid by ion exchange between exchange ion Cl ⁇ and lactate ion. .
  • WA30 and IRA96SB adsorb lactic acid by electrical interaction between free functional groups and lactate ions.
  • the lactic acid adsorbent may contain any combination of a layered double hydroxide, a layered double oxide, a styrene-based dimethylamine type weakly basic anion exchange resin and a strongly basic anion exchange resin.
  • Lactic acid adsorbent containing at least one substance selected from the group consisting of a layered double hydroxide, a layered double oxide, a weakly basic anion exchange resin having a styrene-based dimethylamino group, and a strongly basic anion exchange resin
  • lactic acid adsorbent of the present embodiment can be suitably used when adsorbing and removing lactic acid in a solution.
  • the lactic acid in the solution can be adsorbed by bringing the lactic acid adsorbent into contact with the lactic acid-containing solution. Thereby, the lactic acid in the solution can be removed.
  • the lactic acid adsorbent is capable of highly selectively adsorbing lactic acid to be removed compared to glucose to be left in the culture solution when the solution is a culture solution of cells or microorganisms containing glucose. it can. Further, it is preferable to select a lactic acid adsorbent having low toxicity to cells and microorganisms.
  • the type of the culture solution is not particularly limited.
  • the amount of the lactic acid adsorbent added to the solution is preferably more than 0.0005 g / mL, more preferably 0.005 g / mL or more. Further, the addition amount is preferably less than 0.2 g / mL, and more preferably 0.1 g / mL or less. By setting the amount of the lactic acid adsorbent to be more than 0.0005 mg / mL, the lactic acid adsorption rate can be more reliably increased.
  • a lactic acid adsorption rate of 40% or more in an aqueous solution can be obtained.
  • a lactic acid adsorption rate of 10% or more can be obtained even in a culture solution. Thereby, the amount of lactic acid in the solution can be more reliably reduced.
  • the lactic acid adsorption rate is a ratio of the amount of lactic acid adsorbed to the total amount of lactic acid in the solution.
  • the glucose adsorption rate can be more reliably suppressed.
  • the amount of addition is 0.1 g / mL or less, a glucose adsorption rate of 20% or less can be obtained in the culture solution.
  • the glucose adsorption rate can be suppressed to about 1/3 of the lactic acid adsorption rate. This makes it possible to more reliably suppress a decrease in the amount of glucose caused by the lactic acid adsorbent. Therefore, cells and the like can be cultured more efficiently.
  • the glucose adsorption rate is the ratio of the amount of glucose adsorbed to the total amount of glucose in the solution.
  • cultured cells include pluripotent stem cells such as human iPS cells, human ES cells, and human Muse cells; somatic stem cells such as mesenchymal stem cells (MSC cells) and nephron precursor cells; human proximal tubular epithelial cells; Tissue cells such as distal tubular epithelial cells and human collecting duct epithelial cells; antibody-producing cell lines such as human embryonic kidney cells (HEK293 cells); humans such as Chinese hamster ovary cells (CHO cells) and insect cells (SF9 cells) Other antibody-derived cell lines derived from animals. Since these cells are cells for which large-scale culture is particularly desired, they are more preferable as targets to which the lactic acid adsorbent according to the present embodiment is used.
  • pluripotent stem cells such as human iPS cells, human ES cells, and human Muse cells
  • somatic stem cells such as mesenchymal stem cells (MSC cells) and nephron precursor cells
  • the method for removing lactic acid according to the present embodiment includes bringing the above-mentioned lactic acid adsorbent into contact with lactic acid (lactic acid ions).
  • the method includes contacting a lactic acid adsorbent with a solution containing lactic acid.
  • the method for bringing the lactic acid adsorbent into contact with lactic acid is not particularly limited, but the following embodiments are exemplified.
  • 1 (A) to 1 (D) are schematic diagrams for explaining a method for removing lactic acid according to an embodiment.
  • removal of lactic acid from a culture solution will be described as an example. However, removal of lactic acid from another solution can be similarly performed.
  • an adsorption module 6 in which a container 2 such as a column is filled with a lactic acid adsorbent 4 is prepared.
  • the container 2 has an inlet 2a and an outlet 2b that communicate the inside and the outside of the container 2.
  • the lactic acid adsorbent 4 is, for example, in the form of particles.
  • the adsorption module 6 is connected to a culture vessel 10 such as a spinner flask via a circulation path 8.
  • the circulation path 8 includes a forward path 8a connecting the culture container 10 and the inlet 2a of the container 2, and a return path 8b connecting the outlet 2b of the container 2 and the culture container 10.
  • the pump 12 is connected in the middle of the outward route 8a.
  • the culture vessel 10 contains a culture solution 14 and cells 16. Note that the pump 12 may be arranged on the return path 8b.
  • the culture solution 14 is sucked from the culture container 10 and sent into the container 2 of the adsorption module 6 via the outward path 8a.
  • the culture solution 14 sent into the container 2 is returned to the culture container 10 via the return path 8b.
  • the culture solution 14 comes into contact with the lactic acid adsorbent 4 filled in the container 2 in the process of circulating between the culture container 10 and the adsorption module 6.
  • the lactic acid in the culture solution 14 is adsorbed by the lactic acid adsorbent 4.
  • a filter (not shown) is provided at an end of the outward path 8a on the side connected to the culture vessel 10.
  • a medium component such as glucose or protein necessary for culturing the cells 16 may be replenished to the culture solution 14.
  • the adsorption module 6 having the lactic acid adsorbent 4, the culture container 10 in which cells or microorganisms, and the culture solution 14 are stored, and the culture solution 14 connecting the adsorption module 6 and the culture container 10 Lactic acid in the culture solution 14 is removed by using a culture apparatus having a circulation path 8 for circulation.
  • the lactic acid adsorbent 4 is supported on the inner wall surface of the culture vessel 10.
  • the culture container 10 contains a culture solution 14 and cells 16. Therefore, the culture solution 14 comes into contact with the lactic acid adsorbent 4 exposed on the inner wall surface of the culture vessel 10. Thereby, the lactic acid in the culture solution 14 can be adsorbed on the lactic acid adsorbent 4.
  • the culture vessel 10 include a spinner flask, a petri dish, a well plate, a cell culture insert, and microspheres.
  • a method of supporting the lactic acid adsorbent 4 on the inner wall surface of the culture container 10 for example, a method of adhering the lactic acid adsorbent 4 to the inner wall surface of the culture container 10, or when the culture container 10 is made of resin
  • a method of forming the culture vessel 10 with a resin mixed with the lactic acid adsorbent 4 is exemplified. That is, in the second embodiment, the lactic acid in the culture solution 14 is removed by using a culture device including the culture container 10 and the lactic acid adsorbent 4 supported on the inner wall surface of the culture container 10.
  • the culture vessel 10 has a structure in which the inside of the vessel is divided into an upper stage 10a and a lower stage 10b by a diaphragm 18 such as a porous membrane.
  • a cell culture insert is exemplified.
  • the upper stage 10a contains the culture solution 14 and the cells 16, and the lower stage 10b contains the culture solution 14 and the lactic acid adsorbent 4.
  • the culture solution 14 can pass between the upper layer 10a and the lower layer 10b through the diaphragm 18.
  • the cells 16 and the lactic acid adsorbent 4 cannot pass through the diaphragm 18.
  • the culture solution 14 comes into contact with the lactic acid adsorbent 4 stored in the lower stage 10b.
  • the lactic acid in the culture solution 14 can be adsorbed on the lactic acid adsorbent 4. That is, in the third embodiment, the culture vessel 10, the lactic acid adsorbent 4, and the diaphragm partitioning the inside of the culture vessel 10 into a first space in which the lactic acid adsorbent 4 is stored and a second space in which the cells 16 are stored. 18, the lactic acid in the culture solution 14 is removed.
  • the particulate lactic acid adsorbent 4 is dispersed, settled or suspended in the culture solution 14.
  • the lactic acid in the culture solution 14 can be adsorbed on the lactic acid adsorbent 4.
  • the lactic acid adsorbent 4 preferably has a predetermined size or more, for example, 10 ⁇ m or more, in order to prevent the cells 16 from being phagocytosed. That is, in the fourth embodiment, the lactic acid in the culture solution 14 is removed by using the culture device including the culture container 10 and the lactic acid adsorbent 4 added to the culture solution 14 in the culture container 10. .
  • the lactic acid adsorbent is coated with a resin such as polyvinyl alcohol or alginic acid, or a biological gel such as collagen or gelatin.
  • a resin such as polyvinyl alcohol or alginic acid
  • a biological gel such as collagen or gelatin.
  • the lactic acid adsorbent is formed by kneading a layered double hydroxide and / or a layered double oxide with a ceramic binder, a resin binder, a biological gel or the like. This also makes it possible to suppress the outflow of the fine particles.
  • the ceramic binder include an alumina binder and colloidal silica.
  • the resin binder include alginic acid, polyvinyl alcohol, carboxymethyl cellulose, and the like.
  • the living body-derived gel include collagen, gelatin and the like.
  • the detection method is not particularly limited, but it is preferable to use a medium component analyzer.
  • the lactic acid concentration can be detected by a colorimetric method using a predetermined measurement reagent, an enzyme electrode method utilizing the substrate specificity of the enzyme, high performance liquid chromatography (HPLC), or the like.
  • the lactic acid adsorbent according to the present embodiment includes a layered double hydroxide, a layered double oxide, a weakly basic anion exchange resin having a styrene-based dimethylamino group, and a strongly basic anion exchange resin. It contains at least one substance selected from the group consisting of resins.
  • the method for removing lactic acid according to the present embodiment includes contacting the lactic acid adsorbent with lactic acid.
  • lactic acid can be removed without using a huge amount of solution. Therefore, according to the present embodiment, it is possible to provide a novel lactic acid removal technique capable of removing lactic acid at low cost.
  • the structure of the culture device can be simplified.
  • the amount of the culture solution used can be reduced as compared with the conventional dialysis technique.
  • a culture solution is expensive, further cost reduction can be achieved.
  • cells can be cultured at high density in large quantities by removing lactic acid.
  • the pH of the medium can be prevented from lowering due to lactic acid, cells can be cultured at a high density and in a large amount also in this regard.
  • the removal of lactic acid enables high-density, large-scale culture of the cells, and the cells are in an undifferentiated state; ) Can be maintained. Therefore, it is possible to obtain a large amount of cells suitable for producing a biological material and preparing a differentiation-inducing tissue. As a result, costs required for drug production and regenerative medicine can be reduced.
  • the lactic acid adsorbent of the present embodiment can highly selectively adsorb lactic acid to glucose, which is a useful component. For this reason, more efficient cell culture becomes possible. Therefore, the lactic acid adsorbent of the present embodiment is particularly useful for removing lactic acid from a culture solution containing glucose.
  • the lactic acid adsorbent of the present embodiment may be used in combination with another cell waste adsorbent.
  • the concentration of the adsorbent is 0.025 g / mL. And it shook at 37 degreeC and 150 rpm for 24 hours.
  • spherical activated carbon SAC: Kureha
  • metal oxide MgO: Kanto Kagaku
  • ceramics SiO 2 : Kanto Kagaku
  • Cu-Al LDH, Cu-Al LDO and Mg-Al LDO are used.
  • Adsorption rate (%) [concentration before adsorption ⁇ concentration after adsorption] / concentration before adsorption ⁇ 100
  • FIG. 2 is a diagram showing the lactic acid adsorption rate and glucose adsorption rate of a lactic acid adsorbent in an aqueous solution of lactic acid and glucose when a layered double hydroxide and a layered double oxide are used as the lactic acid adsorbent. As shown in FIG.
  • the glucose adsorption rate of spherical activated carbon (SAC) and metal oxide (MgO) was 35% or more, whereas the glucose adsorption rate of layered double hydroxide and layered double oxide was 10% or less. From this, it was confirmed that the layered double hydroxide and the layered double oxide highly selectively adsorb lactic acid to glucose.
  • Cu-Al ⁇ LDH and Mg-Al LDO were subjected to the above-mentioned adsorption test by changing the amount of addition to the aqueous solution.
  • the lactic acid adsorption rate and the glucose adsorption rate were calculated.
  • the addition amount (concentration) is 0.01 g (0.0005 g / mL), 0.1 g (0.005 g / mL), 0.5 g (0.025 g / mL), 1.0 g (0.05 g / mL). , 2.0 g (0.1 g / mL).
  • the results are shown in FIG.
  • lactic acid could be adsorbed at any of the adsorbent concentrations. Further, it was confirmed that a better lactic acid adsorption rate was obtained when the concentration was more than 0.0005 g / mL, and more preferably 0.005 g / mL or more. In addition, it was confirmed that the lactic acid adsorption rate increases as the concentration of the adsorbent increases, but the glucose adsorption rate also tends to increase at the same time.
  • the lactic acid adsorption rate was almost three times that of the adsorbent at a concentration of 0.1 g / mL at which the glucose adsorption rate was 33.7%, which was the maximum.
  • the lactic acid adsorption rate was nearly three times that of the adsorbent at a concentration of 0.1 g / mL where the glucose adsorption rate was the maximum of 27.3%. From this, it was confirmed that the layered double hydroxide and the layered double oxide highly selectively adsorb lactic acid to glucose.
  • the amount (concentration) of the adsorbent was 0.01 g (0.0005 g / mL), 0.1 g (0.005 g / mL), 0.5 g (0.025 g / mL), 1.0 g (0.05 g / mL). / ML), 2.0 g (0.1 g / mL), and 4.0 g (0.2 g / mL). Then, it was shaken at 37 ° C., 60 times / minute for 24 hours.
  • the culture solution and the adsorbent were separated with a 0.22 ⁇ m filter.
  • the lactate concentration and glucose concentration in the cell culture were measured using a blood gas analyzer (ABL800 @ FLEX: Radiometer). Further, based on the above formula, the lactic acid adsorption rate and glucose adsorption rate of each adsorbent were calculated.
  • FIG. 3 is a diagram showing the lactic acid adsorption rate and glucose adsorption rate of a lactic acid adsorbent in a cell culture solution when a layered double hydroxide and a layered double oxide are used as a lactic acid adsorbent.
  • FIG. 3 it was confirmed that the layered double hydroxide and the layered double oxide were able to adsorb lactic acid even in the cell culture solution, although the amount was slightly reduced as compared with the case of the aqueous solution.
  • the adsorbent concentration was more than 0.0005 g / mL, and more preferably 0.005 g / mL or more.
  • the glucose adsorption rate was 26% at the maximum. From this, it was confirmed that the layered double hydroxide and the layered double oxide were suitable for removing lactic acid in a medium containing glucose.
  • the lactic acid adsorption rate increased as the adsorbent concentration increased, but the glucose adsorption rate also increased at the same time.
  • the adsorbent concentration was less than 0.2 g / mL, and more preferably 0.1 g / mL or less, the glucose adsorption rate could be more favorably reduced.
  • the aqueous solution and the adsorbent were separated by a 0.1 ⁇ m filter. Then, the lactic acid concentration and the glucose concentration in the aqueous solution were measured using HPLC (JASCO). Further, based on the above formula, the lactic acid adsorption rate and glucose adsorption rate of each adsorbent were calculated.
  • FIG. 4A is a diagram showing the lactic acid adsorption rate and the glucose adsorption rate of the lactic acid adsorbent in an aqueous solution of lactic acid and glucose when a layered double hydroxide is used as the lactic acid adsorbent.
  • the lactic acid adsorption rates of Mg—Al LDH and Ni—Al LDH were as high as 67.5% or more.
  • the glucose adsorption rates of Mg-Al @ LDH and Ni-Al @ LDH were 8.7% or less, which were extremely low values. From this, it was confirmed that the layered double hydroxide had excellent lactic acid adsorption ability, and highly selectively adsorbed lactic acid to glucose.
  • the culture solution and the adsorbent were separated with a 0.22 ⁇ m filter.
  • the lactate concentration and glucose concentration in the cell culture were measured using a blood gas analyzer (ABL800 @ FLEX: Radiometer). Further, based on the above formula, the lactic acid adsorption rate and glucose adsorption rate of each adsorbent were calculated.
  • FIG. 4B is a diagram showing the lactic acid adsorption rate and the glucose adsorption rate of the lactic acid adsorbent in the cell culture solution when a layered double hydroxide is used as the lactic acid adsorbent.
  • Mg-Al @ LDH and Ni-Al @ LDH were able to adsorb lactic acid even in the cell culture solution, although the amount was slightly decreased as compared with the case of the aqueous solution.
  • the glucose adsorption rate of Mg-Al @ LDH and Ni-Al @ LDH was at most 8.3%. From this, it was confirmed that the layered double hydroxide was suitable for removing lactic acid from the medium containing glucose.
  • ⁇ Weakly basic anion exchange resin and strongly basic anion exchange resin> [Analysis of adsorbent performance in aqueous solution (aqueous solution) of lactic acid and glucose 1] Lithium lactate (Fuji Film Wako Pure Chemical) and glucose (Kanto Chemical) were added to pure water to prepare an aqueous solution having a lactic acid concentration of 10 mM and a glucose concentration of 1000 ppm. An aqueous solution of sodium hydroxide was added to this aqueous solution to adjust the pH of the aqueous solution to 7.2. Then, 20 mL of the aqueous solution was dispensed into a plurality of 50 mL Erlenmeyer flasks.
  • the concentration of the adsorbent is 0.025 g / mL. And it shook at 37 degreeC and 150 rpm for 24 hours.
  • the adsorbents used are as follows. Metal oxide: ⁇ -Fe 2 O 3 (Soekawa Chemical Co., Ltd.) ⁇ -Fe 2 O 3 (Soekawa Chemical Co., Ltd.) Al 2 O 3 (Kanto Chemical Company) Al (OH) 3 (Kanto Chemical)
  • WA20 is a porous type
  • WA30 is a porous type
  • IRA67 is a gel type
  • IRA96SB is an MR type
  • SA10A is a gel type
  • SA20A is a gel type.
  • the aqueous solution and the adsorbent were separated by a 0.1 ⁇ m filter. Then, the lactic acid concentration and the glucose concentration in the aqueous solution were measured using HPLC (JASCO). Further, based on the above formula, the adsorption rate of lactic acid on each adsorbent was calculated.
  • FIG. 5 (A) is a diagram showing the lactic acid adsorption rate of a lactic acid adsorbent in an aqueous solution of lactic acid and glucose when a weakly basic anion exchange resin and a strongly basic anion exchange resin are used as the lactic acid adsorbent. is there. As shown in FIG.
  • a styrene-based dimethylamine type weakly basic anion exchange resin WA30 and IRA96SB
  • SA10A a styrene-based trimethylammonium type strongly basic anion exchange resin
  • SA20A a styrene-based dimethylethanolammonium type strongly basic anion exchange resin
  • SA20A a good lactic acid adsorption rate of 20% or more was obtained.
  • SA10A and SA20A a better lactic acid adsorption rate of 49% or more was obtained. From these results, it was confirmed that the styrene-based dimethylamine-type weakly basic anion exchange resin and the strongly basic anion exchange resin had excellent lactic acid adsorption ability.
  • FIG. 5B shows lactic acid adsorption of the lactic acid adsorbent with an aqueous solution of lactic acid and glucose when a styrene-based dimethylamine-type weakly basic anion exchange resin and a strongly basic anion exchange resin are used as the lactic acid adsorbent. It is a figure which shows a rate and a glucose adsorption rate. As shown in FIG. 5 (B), it was confirmed that lactic acid could be adsorbed at any adsorbent concentration. Further, it was confirmed that a better lactic acid adsorption rate was obtained when the concentration was more than 0.0005 g / mL, and more preferably 0.005 g / mL or more.
  • the lactic acid adsorption rate increased as the concentration of the adsorbent increased, but the glucose adsorption rate also tended to increase at the same time. However, even at an adsorbent concentration of 0.2 g / mL where the glucose adsorption rate was 56%, which was the maximum, the lactic acid adsorption rate was nearly 1.5 times the value. At an adsorbent concentration of 0.1 g / mL, the lactic acid adsorption rate increased to 2.7 times or more the glucose adsorption rate.
  • the adsorbent concentration was less than 0.2 g / mL, and more preferably 0.1 g / mL or less, the adsorption selectivity to lactic acid was further improved.
  • adsorbent performance in cell culture medium Sodium lactate (Fujifilm Wako Pure Chemical Industries, Ltd.) was added to a pluripotent stem cell medium (StemFit AK02N: Ajinomoto Co.) to prepare a medium having a glucose concentration of 250 mg / mL and a lactic acid concentration of 10 mM. 10 mL of this medium was dispensed into a plurality of 15 mL tubes (ThermoFisher Scientific). In addition, various adsorbents were added to the culture medium of each tube. WA30 and SA10A were used as adsorbents.
  • the addition amount (concentration) of the adsorbent is 0.005 g (0.0005 g / mL), 0.05 g (0.005 g / mL), 0.25 g (0.025 g / mL), 0.5 g (0.05 g / ML), 1.0 g (0.1 g / mL), and 2.0 g (0.2 g / mL). Then, it was shaken at 37 ° C., 60 times / minute for 24 hours.
  • the culture solution and the adsorbent were separated with a 0.22 ⁇ m filter.
  • the lactate concentration and glucose concentration in the cell culture were measured using a blood gas analyzer (ABL800 @ FLEX: Radiometer). Further, based on the above formula, the lactic acid adsorption rate and glucose adsorption rate of each adsorbent were calculated.
  • FIG. 6 shows the lactic acid adsorption rate and glucose adsorption rate of a lactic acid adsorbent in a cell culture solution when a styrene-based dimethylamine-type weakly basic anion exchange resin and a strongly basic anion exchange resin are used as the lactic acid adsorbent.
  • FIG. 6 shows the styrene-based dimethylamine-type weakly basic anion exchange resin (WA30) and the strongly basic anion exchange resin (SA10A) are used in the cell culture medium, though slightly reduced as compared with the case of the aqueous solution. Was able to adsorb lactic acid.
  • the styrene-based dimethylamine type weakly basic anion exchange resin and the strongly basic anion exchange resin had a maximum glucose adsorption rate of 25%. From this, it was confirmed that the styrene-based dimethylamine-type weakly basic anion exchange resin and the strongly basic anion exchange resin were suitable for removing lactic acid in a medium containing glucose.
  • the lactic acid adsorption rate increased as the adsorbent concentration increased, but the glucose adsorption rate also increased at the same time.
  • the adsorbent concentration was less than 0.2 g / mL, and more preferably 0.1 g / mL or less, the glucose adsorption rate could be more favorably reduced.
  • the present invention can be used for a lactic acid adsorbent and a method for removing lactic acid.
  • ⁇ 2 ⁇ container ⁇ 4 ⁇ lactic acid adsorbent, ⁇ 6 ⁇ adsorption module, ⁇ 8 ⁇ circulation path, ⁇ 10 ⁇ culture vessel, ⁇ 12 ⁇ pump, ⁇ 14 ⁇ culture solution, ⁇ 16 ⁇ cell, ⁇ 18 ⁇ diaphragm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

乳酸吸着剤4は、層状複水酸化物、層状複酸化物、スチレン系ジメチルアミノ基を有する弱塩基性陰イオン交換樹脂、および強塩基性陰イオン交換樹脂からなる群から選択される少なくとも一種の物質を含む。

Description

乳酸吸着剤および乳酸の除去方法
 本発明は、乳酸吸着剤および乳酸の除去方法に関する。
 近年、医薬品製造や再生医療などの分野において、細胞や微生物を人工的に効率よく大量培養することが求められている。大量培養が求められる細胞としては、チャイニーズハムスター卵巣細胞(CHO細胞)等の抗体産生細胞、胚性幹細胞(ES細胞)や人工多能性幹細胞(iPS細胞)等の多能性幹細胞等が挙げられる。これらの細胞等を長期間安定的に大量培養できれば、モノクローナル抗体等の生体物質や多能性幹細胞由来の分化誘導組織を効率よく生産することができる。
 細胞等を工業的に大量培養する方法としては、スピナーフラスコ等の培養槽を用いた浮遊攪拌培養が考えられる。一方、浮遊攪拌培養では設備規模が大きくなる傾向がある。したがって、コストの削減を図るために、細胞等の培養密度を高めることが有効である。しかしながら、培養密度を高めていくと、細胞等の増殖が抑えられることが知られている。これは、細胞等の高密度化によって培養液(液体培地)中の老廃物(代謝物)の濃度が上昇し、これにより細胞等の増殖活性が低下するためである。細胞等に影響を与える老廃物の代表的なものとしては、乳酸が知られている。
 したがって、細胞等を高密度状態で安定的に増殖させるためには、培養液中に蓄積する乳酸を除去することが望ましい。これに対し、例えば特許文献1には、濃度差に依存して成分を透過させる培養液成分調整膜を設けた送液ラインによって、細胞培養槽と成分調整液槽とを接続した細胞培養装置が開示されている。この細胞培養装置では、培養液中に蓄積した老廃物は、成分調整液側に移動することで培養液中での濃度が低下する。同時に、培養中に濃度が低下した栄養分は、成分調整液から培養液へ移動して補充される。これにより、培養液中の環境が細胞培養に適した状態に維持される。なお、成分調整液には、培養液そのものが用いられていた。
国際公開第2015/122528号
 特許文献1に開示される細胞培養装置は、透析の原理を利用して培養液から老廃物を除去していた。したがって、十分な老廃物の除去を実現するために、成分調整液槽の容積を細胞培養槽の容積の10倍以上に設定していた。このため、必要な液量が莫大でコストがかかるという課題があった。特に、成分調整液に培養液そのものを用いる場合には、高価な培地を大量に消費することになり、より一層のコストがかかってしまう。また、透析技術を利用して老廃物を除去する場合、培養装置の構造が複雑になるという課題もあった。
 また、乳酸は、細胞等の培養液に限らず、他の溶液系においても除去が望まれることが多い。このため、透析技術以外の手法を用いた新規な乳酸除去技術が強く望まれる。
 本発明はこうした状況に鑑みてなされたものであり、その目的の1つは、新規な乳酸除去技術を提供することにある。
 上記課題を解決するために、本発明のある態様は乳酸吸着剤である。この乳酸吸着剤は、層状複水酸化物、層状複酸化物、スチレン系ジメチルアミノ基を有する弱塩基性陰イオン交換樹脂、および強塩基性陰イオン交換樹脂からなる群から選択される少なくとも一種の物質を含む。この態様によれば、新規な乳酸除去技術を提供することができる。
 上記態様において、乳酸吸着剤は、乳酸を含有する溶液に接触して、溶液中の乳酸を吸着してもよい。また、溶液は、グルコースを含有する、細胞または微生物の培養液であってもよい。また、強塩基性陰イオン交換樹脂は、スチレン系トリメチルアンモニウム基を有する強塩基性陰イオン交換樹脂、およびスチレン系ジメチルエタノールアンモニウム基を有する強塩基性陰イオン交換樹脂の少なくとも一方を含んでもよい。また、弱塩基性陰イオン交換樹脂は、ハイポーラス型またはMR型であってもよい。また、乳酸吸着剤の溶液への添加量は、0.0005g/mL超0.2g/mL未満であってもよい。
 本発明の別の態様は、乳酸の除去方法である。当該除去方法は、上記いずれかの態様の乳酸吸着剤を、乳酸に接触させることを含む。
 なお、以上の構成要素の任意の組み合わせや、本発明の構成要素や表現を方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。
 本発明によれば、新規な乳酸除去技術を提供することができる。
図1(A)~図1(D)は、実施の形態に係る乳酸の除去方法を説明するための模式図である。 乳酸吸着剤として層状複水酸化物および層状複酸化物を用いた場合における、乳酸およびグルコースの水溶液での乳酸吸着剤の乳酸吸着率およびグルコース吸着率を示す図である。 乳酸吸着剤として層状複水酸化物および層状複酸化物を用いた場合における、細胞培養液での乳酸吸着剤の乳酸吸着率およびグルコース吸着率を示す図である。 図4(A)は、乳酸吸着剤として層状複水酸化物を用いた場合における、乳酸およびグルコースの水溶液での乳酸吸着剤の乳酸吸着率およびグルコース吸着率を示す図である。図4(B)は、乳酸吸着剤として層状複水酸化物を用いた場合における、細胞培養液での乳酸吸着剤の乳酸吸着率およびグルコース吸着率を示す図である。 図5(A)は、乳酸吸着剤として弱塩基性陰イオン交換樹脂および強塩基性陰イオン交換樹脂を用いた場合における、乳酸およびグルコースの水溶液での乳酸吸着剤の乳酸吸着率を示す図である。図5(B)は、乳酸吸着剤としてスチレン系ジメチルアミン型弱塩基性陰イオン交換樹脂および強塩基性陰イオン交換樹脂を用いた場合における、乳酸およびグルコースの水溶液での乳酸吸着剤の乳酸吸着率およびグルコース吸着率を示す図である。 乳酸吸着剤としてスチレン系ジメチルアミン型弱塩基性陰イオン交換樹脂および強塩基性陰イオン交換樹脂を用いた場合における、細胞培養液での乳酸吸着剤の乳酸吸着率およびグルコース吸着率を示す図である。
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。各図面に示される同一又は同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図に示す各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。また、本明細書または請求項中に「第1」、「第2」等の用語が用いられる場合には、この用語はいかなる順序や重要度を表すものでもなく、ある構成と他の構成とを区別するためのものである。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。
 本発明者らは、乳酸の除去技術について鋭意検討を重ね、乳酸を高選択的に吸着することができる吸着剤を見出した。具体的には、本実施の形態に係る乳酸吸着剤は、層状複水酸化物(Layered Double Hydroxide:LDH)、層状複酸化物(Layered Double oxide:LDO)、スチレン系ジメチルアミノ基を有する弱塩基性陰イオン交換樹脂、および強塩基性陰イオン交換樹脂からなる群から選択される少なくとも一種の物質を含む。「スチレン系ジメチルアミノ基」とは、スチレン骨格にイオン交換基(官能基)としてジメチルアミノ基が結合した構造を意味する。以下では適宜、スチレン系ジメチルアミノ基を有する弱塩基性陰イオン交換樹脂を、スチレン系ジメチルアミン型弱塩基性陰イオン交換樹脂と称する。他の基を有する陰イオン交換樹脂についても同様である。
 層状複水酸化物は、二価金属のM(OH)におけるM2+の一部がM3+に置換されることにより正電荷を帯びた八面体層のホスト層と、ホスト層の正電荷を補償するアニオンおよび層間水からなるゲスト層と、で構成される。乳酸(乳酸イオン)は、ゲスト層の陰イオンとイオン交換されることで、LDHに吸着される。
 層状複水酸化物は、以下の化学式で表される。
 [M2+ 1-X3+ (OH)][An- x/n・yHO]
 上記式中、M2+は、Cu2+、Mn2+、Mg2+、Fe2+、Ca2+、Ni2+、Zn2+、Co2+およびCd2+からなる群から選択される2価の金属イオンである。M3+は、Al3+、Cr3+、Fe3+、Co3+、In3+、Mn3+およびV3+からなる群から選択される3価の金属イオンである。An-は、CO 2-、SO 2-、Cl、OH、SiO 4-、SO 2-およびNO からなる群から選択されるn価の陰イオンである。xは0.22~0.3であり、nは1~3であり、yは1~12である。
 層状複酸化物は、LDHの酸化物である。LDOは、LDHを例えば200℃~500℃で焼成して得られる。LDOを乳酸水溶液に接触させると、乳酸を層間に吸着した状態でLDH構造を再生する。
 好ましい層状複水酸化物および層状複酸化物としては、Cu-Al系LDH、Cu-Al系LDO、Mg-Al系LDH、Mg-Al系LDO、Ni-Al系LDHが例示される。前記「系」は、上記化学式におけるAn-の種類を問わないことを意味する。構成する金属イオンや陰イオンの種類が異なる複数種の層状複水酸化物および/または層状複酸化物を混合して用いてもよい。
 スチレン系ジメチルアミノ基を有する弱塩基性陰イオン交換樹脂は、好ましくはハイポーラス型またはMR(macro-retucilar:巨大網状)型である。このような弱塩基性陰イオン交換樹脂としては、ハイポーラス型のWA30(三菱ケミカル社)や、MR型のIRA96SB(オルガノ社)等が挙げられる。
 強塩基性陰イオン交換樹脂としては、スチレン系トリメチルアンモニウム基を有する強塩基性陰イオン交換樹脂や、スチレン系ジメチルエタノールアンモニウム基を有する強塩基性陰イオン交換樹脂が好ましい例として挙げられる。
 スチレン系トリメチルアンモニウム型強塩基性陰イオン交換樹脂としては、ゲル型のSA10A、SA12A、SA11A、NSA100(全て三菱ケミカル社)や、ポーラス型のPA306S、PA308、PA312、PA316、PA318L、HPA25(全て三菱ケミカル社)等が挙げられる。スチレン系ジメチルエタノールアンモニウム型強塩基性陰イオン交換樹脂としては、SA20A、SA21A(全て三菱ケミカル社)や、PA408、PA412、PA418(全て三菱ケミカル社)等が挙げられる。
 陰イオン交換樹脂は、その形状により、ゲル型、ポーラス型、ハイポーラス型およびMR型に分類される。ゲル型は、樹脂原料(モノマー)を溶媒中で重合させた重合体であり、均一な三次元構造を有する。ゲル型は、ミクロポアのみを有する。ポーラス型やハイポーラス型は、ゲル型の三次元構造に物理的に孔(マクロポア)を設けた多孔質構造で構成される。ハイポーラス型は、ポーラス型よりも高多孔質である。MR型は、ゲル型を合成する際の重合方法を改良して作製されたものであり、ゲル型よりも比表面積、細孔容積が大きい。弱塩基性陰イオン交換樹脂は、強塩基性陰イオン交換樹脂に比べて吸着能が低いため、吸着面積の大きいハイポーラス型やMR型が好ましい。一方、強塩基性陰イオン交換樹脂は、弱塩基性陰イオン交換樹脂に比べて吸着能が高いため、ゲル型、ポーラス型、ハイポーラス型およびMR型のいずれの構造であってもよい。
 弱塩基性陰イオン交換樹脂および強塩基性陰イオン交換樹脂は、遊離官能基と乳酸イオンとが電気的に相互作用するか、官能基と相互作用している交換イオンと乳酸イオンとがイオン交換することで、乳酸を吸着することができる。上記のSA10A、SA12A、SA11A、NSA100、PA306S、PA308、PA312、PA316、PA318L、HPA25、SA20A、SA21A、PA408、PA412およびPA418は、交換イオンClと乳酸イオンとのイオン交換により、乳酸を吸着する。WA30およびIRA96SBは、遊離官能基と乳酸イオンとの電気的相互作用により、乳酸を吸着する。乳酸吸着剤は、層状複水酸化物、層状複酸化物、スチレン系ジメチルアミン型弱塩基性陰イオン交換樹脂および強塩基性陰イオン交換樹脂の任意の組み合わせを含有してもよい。
 層状複水酸化物、層状複酸化物、スチレン系ジメチルアミノ基を有する弱塩基性陰イオン交換樹脂、および強塩基性陰イオン交換樹脂からなる群から選択される少なくとも一種の物質を含む乳酸吸着剤を乳酸に接触させることで、乳酸をこれらの物質に吸着させることができる。特に、本実施の形態の乳酸吸着剤は、溶液中の乳酸を吸着除去する場合に、好適に用いることができる。この場合、乳酸吸着剤を乳酸含有溶液に接触させることで、溶液中の乳酸を吸着させることができる。これにより、溶液中の乳酸を除去することができる。
 また、乳酸吸着剤は、溶液が、グルコースを含有する細胞または微生物の培養液であった場合に、培養液中に残すべきグルコースに比べて除去対象である乳酸を高選択的に吸着することができる。また、乳酸吸着剤は、細胞や微生物に対する毒性が低いものを選択することが好ましい。なお、培養液の種類は特に限定されない。
 また、溶液への乳酸吸着剤の添加量、言い換えれば溶液中の乳酸吸着剤の濃度は、好ましくは0.0005g/mL超であり、より好ましくは0.005g/mL以上である。また、当該添加量は、好ましくは0.2g/mL未満であり、より好ましくは0.1g/mL以下である。乳酸吸着剤の添加量を0.0005mg/mL超とすることで、乳酸吸着率をより確実に高めることができる。また、添加量を0.005g/mL以上とすることで、水系溶液中で40%以上の乳酸吸着率を得ることができる。また、培養液中でも10%以上の乳酸吸着率を得ることができる。これにより、より確実に溶液中の乳酸量を低減させることができる。乳酸吸着率は、溶液中の全乳酸量に対する吸着した乳酸量の割合である。
 また、乳酸吸着剤の添加量を0.2g/mL未満とすることで、グルコース吸着率をより確実に抑制することができる。また、添加量を0.1g/mL以下とすることで、培養液において20%以下のグルコース吸着率を得ることができる。また、水系溶液においては、乳酸吸着率に対してグルコース吸着率を1/3程度に抑制することができる。これにより、乳酸吸着剤に起因するグルコース量の低減をより確実に抑制することができる。よって、より効率よく細胞等を培養することができる。グルコース吸着率は、溶液中の全グルコース量に対する吸着したグルコース量の割合である。
 培養液を用いて培養される細胞および微生物は、特に限定されない。例えば培養細胞は、ヒトiPS細胞、ヒトES細胞、ヒトMuse細胞等の多能性幹細胞;間葉系幹細胞(MSC細胞)、ネフロン前駆細胞等の体性幹細胞;ヒト近位尿細管上皮細胞、ヒト遠位尿細管上皮細胞、ヒト集合管上皮細胞等の組織細胞;ヒト胎児腎細胞(HEK293細胞)等の抗体産生細胞株;チャイニーズハムスター卵巣細胞(CHO細胞)、昆虫細胞(SF9細胞)等のヒト以外の動物由来の抗体産生細胞株等が挙げられる。これらの細胞は、大量培養が特に望まれる細胞であるため、本実施の形態に係る乳酸吸着剤の使用対象としてより好ましい。
(乳酸の除去方法)
 本実施の形態に係る乳酸の除去方法は、上述した乳酸吸着剤を乳酸(乳酸イオン)に接触させることを含む。好ましくは、乳酸を含有する溶液に乳酸吸着剤を接触させることを含む。乳酸吸着剤を乳酸に接触させる方法は特に限定されないが、以下の態様が例示される。図1(A)~図1(D)は、実施の形態に係る乳酸の除去方法を説明するための模式図である。以下では、培養液からの乳酸除去を例に挙げて説明するが、他の溶液からの乳酸除去についても同様に実施することができる。
 図1(A)に示すように、第1の態様では、カラム等の容器2に乳酸吸着剤4が充填された吸着モジュール6が用意される。容器2は、容器2の内外を連通する入口2aと出口2bとを有する。乳酸吸着剤4は、例えば粒子状である。吸着モジュール6は、循環路8を介して、スピナーフラスコ等の培養容器10に接続される。循環路8は、培養容器10と容器2の入口2aとを接続する往路8aと、容器2の出口2bと培養容器10とを接続する復路8bとを含む。往路8aの途中には、ポンプ12が接続される。培養容器10中には、培養液14と、細胞16とが収容される。なお、ポンプ12は復路8bに配置されてもよい。
 ポンプ12が駆動すると、培養液14は培養容器10から吸引され、往路8aを介して吸着モジュール6の容器2内に送られる。容器2内に送り込まれた培養液14は、復路8bを介して培養容器10内に戻される。培養液14は、培養容器10と吸着モジュール6との間を循環する過程で、容器2に充填された乳酸吸着剤4と接触する。このとき、培養液14中の乳酸は、乳酸吸着剤4に吸着される。この結果、培養液14中の乳酸が除去される。往路8aにおける培養容器10に接続される側の端部には、図示しないフィルタが設けられる。これにより、細胞16が吸着モジュール6側に流れることが抑制される。なお、培養容器10と吸着モジュール6との間で培養液14を循環させる過程で、細胞16の培養に必要なグルコースやタンパク質等の培地成分が培養液14に補充されてもよい。
 つまり、第1の態様では、乳酸吸着剤4を有する吸着モジュール6と、細胞または微生物、および培養液14が収容される培養容器10と、吸着モジュール6と培養容器10とをつなぎ培養液14を循環させる循環路8と、を備える培養装置を用いることで、培養液14中の乳酸が除去される。
 図1(B)に示すように、第2の態様では、培養容器10の内壁面に乳酸吸着剤4が支持されている。培養容器10中には、培養液14と、細胞16とが収容されている。したがって、培養液14は、培養容器10の内壁面において露出する乳酸吸着剤4に接触する。これにより、培養液14中の乳酸を乳酸吸着剤4に吸着させることができる。培養容器10としては、スピナーフラスコ、シャーレ、ウェルプレート、セルカルチャーインサート、マイクロスフェア等が例示される。
 培養容器10の内壁面に乳酸吸着剤4を支持させる方法としては、例えば、乳酸吸着剤4を培養容器10の内壁面に接着させる方法や、培養容器10が樹脂製である場合には、予め乳酸吸着剤4を混合した樹脂で培養容器10を成形する方法が挙げられる。つまり、第2の態様では、培養容器10と、培養容器10の内壁面に支持される乳酸吸着剤4と、を備える培養装置を用いることで、培養液14中の乳酸が除去される。
 図1(C)に示すように、第3の態様では、培養容器10は、多孔質膜等の隔膜18によって容器内部が上段10aと下段10bに区切られた構造を有する。このような培養容器10としては、セルカルチャーインサートが例示される。上段10aには培養液14と細胞16が収容され、下段10bには培養液14と乳酸吸着剤4が収容される。培養液14は、隔膜18を通過して上段10aと下段10bとの間を行き来することができる。一方、細胞16および乳酸吸着剤4は、隔膜18を通過することができない。
 このような構造において、培養液14は、下段10bに収容された乳酸吸着剤4に接触する。これにより、培養液14中の乳酸を乳酸吸着剤4に吸着させることができる。つまり、第3の態様では、培養容器10と、乳酸吸着剤4と、培養容器10内を乳酸吸着剤4が収容される第1空間と細胞16が収容される第2空間とに区画する隔膜18と、を備える培養装置を用いることで、培養液14中の乳酸が除去される。
 図1(D)に示すように、第4の態様では、粒子状の乳酸吸着剤4を培養液14中に分散、沈降あるいは浮遊させる。これにより、培養液14中の乳酸を乳酸吸着剤4に吸着させることができる。なお、乳酸吸着剤4は、細胞16に貪食されることを防ぐために、所定サイズ以上、例えば10μm以上の大きさであることが好ましい。つまり、第4の態様では、培養容器10と、培養容器10内の培養液14に添加される乳酸吸着剤4と、を備える培養装置を用いることで、培養液14中の乳酸が除去される。
 好ましくは、乳酸吸着剤は、ポリビニルアルコールやアルギン酸等の樹脂、コラーゲンやゼラチン等の生体由来ゲル等で被覆される。これにより、細胞等に影響を与え得る微粒子が乳酸吸着剤から培養液中に流出することを抑制することができる。あるいは、乳酸吸着剤は、セラミックスバインダー、樹脂バインダー、生体由来ゲル等と層状複水酸化物および/または層状複酸化物とを混練して成形される。これによっても、微粒子の流出を抑制することができる。セラミックスバインダーとしては、アルミナバインダー、コロイダルシリカ等が例示される。樹脂バインダーとしては、アルギン酸、ポリビニルアルコール、カルボキシメチルセルロース等が例示される。生体由来ゲルとしては、コラーゲン、ゼラチン等が例示される。
 溶液中の乳酸濃度を検出する場合、その検出方法は特に限定されないが、培地成分アナライザーを使用することが好ましい。また、所定の測定試薬を用いた比色法、酵素の基質特異性を利用する酵素電極法、高速液体クロマトグラフィー(HPLC)等を利用して、乳酸濃度を検出することができる。
 以上説明したように、本実施の形態に係る乳酸吸着剤は、層状複水酸化物、層状複酸化物、スチレン系ジメチルアミノ基を有する弱塩基性陰イオン交換樹脂、および強塩基性陰イオン交換樹脂からなる群から選択される少なくとも一種の物質を含む。また、本実施の形態に係る乳酸の除去方法は、この乳酸吸着剤を、乳酸に接触させることを含む。これにより、従来の透析技術を用いて乳酸を除去する場合とは異なり、莫大な量の溶液を使用せずに乳酸を除去することができる。したがって、本実施の形態によれば、低コストに乳酸を除去できる新規な乳酸除去技術を提供することができる。また、乳酸吸着剤を乳酸含有溶液に接触させるだけで乳酸を除去できるため、本実施の形態によれば培養装置の構造の簡略化を図ることができる。
 また、溶液が細胞等の培養液である場合には、従来の透析技術に比べて培養液の使用量を減らすことができる。一般的に培養液は高価であるため、より一層の低コスト化が可能である。また、乳酸の除去により細胞等を高密度に大量培養することができる。また、乳酸によって培地のpHが低下することも抑制できるため、この点でも細胞を高密度に大量培養することが可能となる。さらに、細胞が多能性幹細胞である場合には、乳酸の除去によって細胞の高密度大量培養が可能となることに加え、細胞が未分化の状態、つまり細胞の多分化能(分化多能性)を維持することができる。したがって、生体物質生産や分化誘導組織作製に好適な細胞を大量に得ることができる。これにより、医薬品製造や再生医療に要するコストを削減することができる。
 また、本実施の形態の乳酸吸着剤は、有用成分であるグルコースに対して乳酸を高選択的に吸着することができる。このため、より効率的な細胞培養が可能となる。よって、本実施の形態の乳酸吸着剤は、グルコースを含有する培養液における乳酸の除去に特に有用である。なお、本実施の形態の乳酸吸着剤は、他の細胞老廃物の吸着剤と併用してもよい。
 以上、本発明の実施の形態について詳細に説明した。前述した実施の形態は、本発明を実施するにあたっての具体例を示したものにすぎない。実施の形態の内容は、本発明の技術的範囲を限定するものではなく、請求の範囲に規定された発明の思想を逸脱しない範囲において、構成要素の変更、追加、削除等の多くの設計変更が可能である。設計変更が加えられた新たな実施の形態は、組み合わされる実施の形態および変形それぞれの効果をあわせもつ。前述の実施の形態では、このような設計変更が可能な内容に関して、「本実施の形態の」、「本実施の形態では」等の表記を付して強調しているが、そのような表記のない内容でも設計変更が許容される。以上の構成要素の任意の組み合わせも、本発明の態様として有効である。
 以下、本発明の実施例を説明するが、実施例は本発明を好適に説明するための例示に過ぎず、なんら本発明を限定するものではない。
<層状複水酸化物および層状複酸化物>
[乳酸吸着剤の合成]
(層状複水酸化物Cu-Al LDHの合成)
 まず、イオン交換水の入った五口丸底フラスコを用意し、窒素流通下において30℃、300rpmの条件で撹拌した。また、1.0mol/L NaOH溶液(関東化学社)をイオン交換水に滴下し、pH8.0に上昇させた。次に、五口丸底フラスコを30℃、300rpmの条件で撹拌しながら、Cu-Al混合溶液250mLを10mL/分の速度でイオン交換水に滴下した。その際、1.0mol/L NaOH溶液もフラスコ中に滴下し、水溶液のpHを8.0に保持した。Cu-Al混合溶液の滴下が終了した後、1時間撹拌し、懸濁液を吸引ろ過した。続いて、ろ液が中性になるまでイオン交換水で洗浄した。得られた生成物を40℃、40時間減圧乾燥し、粉砕してCu-Al LDHを得た。
(層状複酸化物Cu-Al LDOの合成)
 上述の手順で作製したCu-Al LDHを電気炉で200℃、4時間仮焼して、Cu-Al LDOを得た。
(層状複酸化物Mg-Al LDOの合成)
 まず、NaCO水溶液500mLの入った五口丸底フラスコを用意した。そして、30℃、300rpmの条件で撹拌した。撹拌中に、Mg-Al混合溶液500mLを15mL/分の速度でフラスコ中の水溶液に滴下した。その際、1.25 mol/L NaOH水溶液もフラスコ中に滴下し、水溶液のpHを10.5±0.1に保持した。Mg-Al混合溶液の滴下が終了した後、1時間撹拌し、懸濁液を吸引ろ過した。得られた生成物を40℃、40時間減圧乾燥、粉砕した後、電気炉で500℃、2時間仮焼して、Mg-Al LDOを得た。
(層状複水酸化物Mg-Al LDHの合成)
 まず、イオン交換水の入った五口丸底フラスコを用意した。そして、窒素流通下において30℃、300rpmの条件で撹拌した。撹拌中に、Mg-Al混合溶液500mLを15mL/分の速度でフラスコ中のイオン交換水に滴下した。その際、1.25 mol/L NaOH水溶液もフラスコ中に滴下し、水溶液のpHを10.5±0.1に保持した。Mg-Al混合溶液の滴下が終了した後、1時間撹拌し、懸濁液を吸引ろ過した。得られた生成物を40℃、40時間減圧乾燥、粉砕して、Mg-Al LDHを得た。
(層状複水酸化物Ni-Al LDHの合成)
 まず、イオン交換水の入った五口丸底フラスコを用意した。そして、窒素流通下において30℃、300rpmの条件で撹拌した。また、1.0mol/L NaOH溶液(関東化学社)をイオン交換水に滴下し、pH10.5に上昇させた。次に、五口丸底フラスコを30℃、300rpmの条件で撹拌しながら、Ni-Al混合溶液250mLを10mL/分の速度でイオン交換水に滴下した。その際、1.0mol/L NaOH溶液もフラスコ中に滴下し、水溶液のpHを10.5に保持した。Ni-Al混合溶液の滴下が終了した後、1時間撹拌し、懸濁液を吸引ろ過した。続いて、ろ液が中性になるまでイオン交換水で洗浄した。得られ生成物を40℃、40時間減圧乾燥し、粉砕してNi-Al LDHを得た。
[乳酸およびグルコースの水溶液(水系溶液)における吸着剤性能の解析1]
 乳酸(関東化学社)とグルコース(関東化学社)とを純水に添加し、グルコース濃度1000ppm、乳酸濃度10mMの水溶液を作製した。さらに、この水溶液に水酸化ナトリウム水溶液を添加し、水溶液のpHを7.2に調整した。そして、水溶液20mLを複数の50mL三角フラスコに分注した。また、各種の吸着剤0.5gを各フラスコの水溶液に添加した。したがって、吸着剤の濃度は0.025g/mLである。そして、37℃、150rpmで24時間振とうした。
 吸着剤には、球状活性炭(SAC:クレハ社)、酸化金属(MgO:関東化学社)、セラミックス(SiO:関東化学社)、Cu-Al LDH、Cu-Al LDOおよびMg-Al LDOを用いた。
 24時間経過後、0.1μmフィルタで水溶液と吸着剤とを分離した。そして、HPLC(日本分光社)を用いて水溶液中の乳酸濃度およびグルコース濃度を測定した。また、以下の数式に基づいて、各吸着剤における乳酸の吸着率およびグルコースの吸着率を算出した。
 吸着率(%)=[吸着前濃度-吸着後濃度]/吸着前濃度×100
 結果を図2に示す。図2は、乳酸吸着剤として層状複水酸化物および層状複酸化物を用いた場合における、乳酸およびグルコースの水溶液での乳酸吸着剤の乳酸吸着率およびグルコース吸着率を示す図である。図2に示すように、吸着剤濃度0.025g/mLにおいて、球状活性炭(SAC)、酸化金属(MgO)およびセラミックス(SiO)は乳酸を全く吸着しなかったのに対し、層状複水酸化物であるCu-Al LDHと、層状複酸化物であるCu-Al LDOおよびMg-Al LDOとでは50%以上の乳酸吸着率が得られた。このことから、層状複水酸化物および層状複酸化物が優れた乳酸吸着能を有することが確認された。
 また、球状活性炭(SAC)および酸化金属(MgO)ではグルコース吸着率が35%以上であったのに対し、層状複水酸化物および層状複酸化物ではグルコース吸着率が10%以下であった。このことから、層状複水酸化物および層状複酸化物がグルコースに対して乳酸を高選択的に吸着することが確認された。
 乳酸吸着剤として好適であることが確認された層状複水酸化物および層状複酸化物のうち、Cu-Al LDHおよびMg-Al LDOについて、水溶液への添加量を異ならせて上記の吸着試験を実施し、乳酸吸着率およびグルコース吸着率を算出した。添加量(濃度)は、0.01g(0.0005g/mL)、0.1g(0.005g/mL)、0.5g(0.025g/mL)、1.0g(0.05g/mL)、2.0g(0.1g/mL)とした。結果を図2に示す。
 図2に示すように、いずれの吸着剤濃度においても乳酸を吸着できることが確認された。また、濃度が0.0005g/mL超、さらには0.005g/mL以上のときに、より良好な乳酸吸着率が得られることが確認された。また、吸着剤の濃度が増加するにつれて乳酸吸着率は上昇するが、同時にグルコース吸着率も上昇する傾向にあることが確認された。しかしながら、Cu-Al LDHでは、グルコース吸着率が最大の33.7%であった吸着剤濃度0.1g/mLにおいても、乳酸吸着率はその3倍近い値であった。同様に、Mg-Al LDOでも、グルコース吸着率が最大の27.3%であった吸着剤濃度0.1g/mLにおいて、乳酸吸着率はその3倍近い値であった。このことから、層状複水酸化物および層状複酸化物がグルコースに対して乳酸を高選択的に吸着することが確認された。
[細胞培養液における吸着剤性能の解析1]
 多能性幹細胞用培地(StemFit AK02N:味の素社)に乳酸ナトリウム(富士フイルム和光純薬社)を添加し、グルコース濃度250mg/mL、乳酸濃度10mMの培地を作製した。この培地20mLを複数の50mLチューブ(ThermoFisher Scientific社)に分注した。また、各種の吸着剤を各チューブの培地に添加した。吸着剤には、Cu-Al LDH、Cu-Al LDOおよびMg-Al LDOを用いた。吸着剤の添加量(濃度)は、0.01g(0.0005g/mL)、0.1g(0.005g/mL)、0.5g(0.025g/mL)、1.0g(0.05g/mL)、2.0g(0.1g/mL)、4.0g(0.2g/mL)とした。そして、37℃、60回/分で24時間振とうした。
 24時間経過後、0.22μmフィルタで培養液と吸着剤とを分離した。そして、血液ガス分析装置(ABL800 FLEX:ラジオメーター社)を用いて、細胞培養液中の乳酸濃度およびグルコース濃度を測定した。また、上記数式に基づいて、各吸着剤における乳酸の吸着率およびグルコースの吸着率を算出した。
 結果を図3に示す。図3は、乳酸吸着剤として層状複水酸化物および層状複酸化物を用いた場合における、細胞培養液での乳酸吸着剤の乳酸吸着率およびグルコース吸着率を示す図である。図3に示すように、水系溶液の場合に比べて多少は減少するものの、細胞培養液中でも層状複水酸化物および層状複酸化物が乳酸を吸着できることが確認された。特に、吸着剤濃度が0.0005g/mL超、さらには0.005g/mL以上のときに、より良好な乳酸吸着率が得られることが確認された。また、層状複水酸化物および層状複酸化物ではグルコース吸着率が最大でも26%であった。このことから、層状複水酸化物および層状複酸化物がグルコースを含む培地中の乳酸除去に好適であることが確認された。
 細胞培養液中においても、吸着剤濃度が増加するにつれて乳酸吸着率は上昇するが、同時にグルコース吸着率も上昇することが確認された。これに対し、吸着剤濃度が0.2g/mL未満、さらには0.1g/mL以下のときに、グルコース吸着率をより良好に低減できることが確認された。
[乳酸およびグルコースの水溶液(水系溶液)における吸着剤性能の解析2]
 上述の解析1で用いなかった層状複酸化物Mg-Al LDHおよびNi-Al LDHについて、吸着剤性能の解析を実施した。まず、乳酸ナトリウム(富士フイルム和光純薬社)とグルコース(関東化学社)とをそれぞれ純水に添加し、乳酸濃度10mMの乳酸水溶液と、グルコース濃度1000ppmのグルコース水溶液とを作製した。そして、各水溶液20mLを別々の50mL三角フラスコに分注した。また、各種の吸着剤0.5gを各フラスコの水溶液に添加した。したがって、吸着剤の濃度は0.025g/mLである。そして、37℃、150rpmで24時間振とうした。吸着剤には、Mg-Al LDHおよびNi-Al LDHを用いた。
 24時間経過後、0.1μmフィルタで水溶液と吸着剤とを分離した。そして、HPLC(日本分光社)を用いて水溶液中の乳酸濃度およびグルコース濃度を測定した。また、上記数式に基づいて、各吸着剤における乳酸の吸着率およびグルコースの吸着率を算出した。
 結果を図4(A)に示す。図4(A)は、乳酸吸着剤として層状複水酸化物を用いた場合における、乳酸およびグルコースの水溶液での乳酸吸着剤の乳酸吸着率およびグルコース吸着率を示す図である。図4に示すように、吸着剤濃度0.025g/mLにおいて、Mg-Al LDHおよびNi-Al LDHの乳酸吸着率は67.5%以上と非常に高い値であった。また、Mg-Al LDHおよびNi-Al LDHのグルコース吸着率は8.7%以下と非常に低い値であった。このことから、層状複水酸化物が優れた乳酸吸着能を有し、且つグルコースに対して乳酸を高選択的に吸着することが確認された。
[細胞培養液における吸着剤性能の解析2]
 多能性幹細胞用培地(StemFit AK02N:味の素社)に乳酸ナトリウム(富士フイルム和光純薬社)を添加し、グルコース濃度250mg/mL、乳酸濃度10mMの培地を作製した。この培地10mLを複数の15mLチューブ(ThermoFisher Scientific社)に分注した。また、各種の吸着剤を各チューブの培地に添加した。吸着剤には、Mg-Al LDHおよびNi-Al LDHを用いた。吸着剤の添加量(濃度)は、0.25g(0.025g/mL)とした。そして、37℃、60回/分で24時間振とうした。
 24時間経過後、0.22μmフィルタで培養液と吸着剤とを分離した。そして、血液ガス分析装置(ABL800 FLEX:ラジオメーター社)を用いて、細胞培養液中の乳酸濃度およびグルコース濃度を測定した。また、上記数式に基づいて、各吸着剤における乳酸の吸着率およびグルコースの吸着率を算出した。
 結果を図4(B)に示す。図4(B)は、乳酸吸着剤として層状複水酸化物を用いた場合における、細胞培養液での乳酸吸着剤の乳酸吸着率およびグルコース吸着率を示す図である。図4(B)に示すように、水系溶液の場合に比べて多少は減少するものの、細胞培養液中でもMg-Al LDHおよびNi-Al LDHが乳酸を吸着できることが確認された。また、Mg-Al LDHおよびNi-Al LDHのグルコース吸着率は最大でも8.3%であった。このことから、層状複水酸化物がグルコースを含む培地中の乳酸除去に好適であることが確認された。
<弱塩基性陰イオン交換樹脂および強塩基性陰イオン交換樹脂>
[乳酸およびグルコースの水溶液(水系溶液)における吸着剤性能の解析1]
 乳酸リチウム(富士フィルム和光純薬社)とグルコース(関東化学社)とを純水に添加し、乳酸濃度10mM、グルコース濃度1000ppmの水溶液を作製した。この水溶液に水酸化ナトリウム水溶液を添加し、水溶液のpHを7.2に調整した。そして、水溶液20mLを複数の50mL三角フラスコに分注した。また、各種の吸着剤0.5gを各フラスコの水溶液に添加した。したがって、吸着剤の濃度は0.025g/mLである。そして、37℃、150rpmで24時間振とうした。
 使用した吸着剤は、以下の通りである。
 酸化金属:
  α-Fe(添川理化学社)
  γ-Fe(添川理化学社)
  Al(関東化学社)
  Al(OH)(関東化学社)
 弱塩基性陰イオン交換樹脂:
  スチレン系ポリアミン型 WA20(三菱ケミカル社)
  スチレン系ジメチルアミン型 WA30(三菱ケミカル社)
  アクリル系ジメチルアミン型 IRA67(オルガノ社)
  スチレン系ジメチルアミン型 IRA96SB(オルガノ社)
 強塩基性陰イオン交換樹脂:
  スチレン系トリメチルアンモニウム型 SA10A(三菱ケミカル社)
  スチレン系ジメチルエタノールアンモニウム型 SA20A(三菱ケミカル社)
 なお、WA20はハイポーラス型、WA30はハイポーラス型、IRA67はゲル型、IRA96SBはMR型、SA10Aはゲル型、SA20Aはゲル型である。
 24時間経過後、0.1μmフィルタで水溶液と吸着剤とを分離した。そして、HPLC(日本分光社)を用いて水溶液中の乳酸濃度およびグルコース濃度を測定した。また、上記数式に基づいて、各吸着剤における乳酸の吸着率を算出した。
 結果を図5(A)に示す。図5(A)は、乳酸吸着剤として弱塩基性陰イオン交換樹脂および強塩基性陰イオン交換樹脂を用いた場合における、乳酸およびグルコースの水溶液での乳酸吸着剤の乳酸吸着率を示す図である。図5(A)に示すように、吸着剤濃度0.025g/mLにおいて、酸化金属(α-Fe、γ-Fe、Al、Al(OH))、スチレン系ポリアミン型弱塩基陰イオン交換樹脂(WA20)、およびアクリル系ジメチルアミン型弱塩基陰イオン交換樹脂(IRA67)では、乳酸はほとんど吸着されなかった。
 これに対し、スチレン系ジメチルアミン型弱塩基性陰イオン交換樹脂(WA30およびIRA96SB)、スチレン系トリメチルアンモニウム型強塩基性陰イオン交換樹脂(SA10A)およびスチレン系ジメチルエタノールアンモニウム型強塩基性陰イオン交換樹脂(SA20A)では、20%以上の良好な乳酸吸着率が得られた。特に、WA30、SA10AおよびSA20Aでは、49%以上のより良好な乳酸吸着率が得られた。これらの結果より、スチレン系ジメチルアミン型弱塩基性陰イオン交換樹脂および強塩基性陰イオン交換樹脂が優れた乳酸吸着能を有することが確認された。
[乳酸およびグルコースの水溶液(水系溶液)における吸着剤性能の解析2]
 上述の解析1で良好な乳酸吸着能を示したWA30、IRA96SB、SA10AおよびSA20Aについて、水溶液への添加量(濃度)を異ならせて上記の吸着試験を実施し、乳酸吸着率およびグルコース吸着率を算出した。濃度は、0.01g(0.0005g/mL)、0.1g(0.005g/mL)、0.5g(0.025g/mL)、2.0g(0.1g/mL)とした。
 結果を図5(B)に示す。図5(B)は、乳酸吸着剤としてスチレン系ジメチルアミン型弱塩基性陰イオン交換樹脂および強塩基性陰イオン交換樹脂を用いた場合における、乳酸およびグルコースの水溶液での乳酸吸着剤の乳酸吸着率およびグルコース吸着率を示す図である。図5(B)に示すように、いずれの吸着剤濃度においても乳酸を吸着できることが確認された。また、濃度が0.0005g/mL超、さらには0.005g/mL以上のときに、より良好な乳酸吸着率が得られることが確認された。
 また、弱塩基性陰イオン交換樹脂(WA30およびIRA96SB)では、吸着剤の濃度が増加するにつれて乳酸吸着率は上昇するが、同時にグルコース吸着率も上昇する傾向にあることが確認された。しかしながら、グルコース吸着率が最大の56%であった吸着剤濃度0.2g/mLにおいても、乳酸吸着率はその1.5倍近い値であった。また、吸着剤濃度0.1g/mLでは、グルコース吸着率に対して乳酸吸着率が2.7倍以上の値に上昇した。したがって、弱塩基性陰イオン交換樹脂では、吸着剤濃度が0.2g/mL未満、さらには0.1g/mL以下のときに、乳酸に対する吸着選択性がより向上した。
 一方、強塩基性陰イオン交換樹脂(SA10A、SA20A)では、吸着剤の濃度が増加するにつれて乳酸吸着率は上昇するが、グルコース吸着率はほとんど上昇しないことが確認された。グルコース吸着率が最大の4%であった吸着剤濃度0.2g/mLにおいて、乳酸吸着率はその20倍近い値であった。これらのことから、スチレン系ジメチルアミン型弱塩基性陰イオン交換樹脂および強塩基性陰イオン交換樹脂がグルコースに対して乳酸を高選択的に吸着することが確認された。
[細胞培養液における吸着剤性能の解析]
 多能性幹細胞用培地(StemFit AK02N:味の素社)に乳酸ナトリウム(富士フイルム和光純薬社)を添加し、グルコース濃度250mg/mL、乳酸濃度10mMの培地を作製した。この培地10mLを複数の15mLチューブ(ThermoFisher Scientific社)に分注した。また、各種の吸着剤を各チューブの培地に添加した。吸着剤には、WA30およびSA10Aを用いた。吸着剤の添加量(濃度)は、0.005g(0.0005g/mL)、0.05g(0.005g/mL)、0.25g(0.025g/mL)、0.5g(0.05g/mL)、1.0g(0.1g/mL)、2.0g(0.2g/mL)とした。そして、37℃、60回/分で24時間振とうした。
 24時間経過後、0.22μmフィルタで培養液と吸着剤とを分離した。そして、血液ガス分析装置(ABL800 FLEX:ラジオメーター社)を用いて、細胞培養液中の乳酸濃度およびグルコース濃度を測定した。また、上記数式に基づいて、各吸着剤における乳酸の吸着率およびグルコースの吸着率を算出した。
 結果を図6に示す。図6は、乳酸吸着剤としてスチレン系ジメチルアミン型弱塩基性陰イオン交換樹脂および強塩基性陰イオン交換樹脂を用いた場合における、細胞培養液での乳酸吸着剤の乳酸吸着率およびグルコース吸着率を示す図である。図6に示すように、水系溶液の場合に比べて多少は減少するものの、細胞培養液中でもスチレン系ジメチルアミン型弱塩基性陰イオン交換樹脂(WA30)および強塩基性陰イオン交換樹脂(SA10A)が乳酸を吸着できることが確認された。特に、吸着剤濃度が0.0005g/mL超、さらには0.005g/mL以上、さらには0.025g/mL以上のときに、より良好な乳酸吸着率が得られることが確認された。また、スチレン系ジメチルアミン型弱塩基性陰イオン交換樹脂および強塩基性陰イオン交換樹脂ではグルコース吸着率が最大でも25%であった。このことから、スチレン系ジメチルアミン型弱塩基性陰イオン交換樹脂および強塩基性陰イオン交換樹脂がグルコースを含む培地中の乳酸除去に好適であることが確認された。
 細胞培養液中においても、吸着剤濃度が増加するにつれて乳酸吸着率は上昇するが、同時にグルコース吸着率も上昇することが確認された。これに対し、吸着剤濃度が0.2g/mL未満、さらには0.1g/mL以下のときに、グルコース吸着率をより良好に低減できることが確認された。
 本発明は、乳酸吸着剤および乳酸の除去方法に利用することができる。
 2 容器、 4 乳酸吸着剤、 6 吸着モジュール、 8 循環路、 10 培養容器、 12 ポンプ、 14 培養液、 16 細胞、 18 隔膜。

Claims (7)

  1.  層状複水酸化物、層状複酸化物、スチレン系ジメチルアミノ基を有する弱塩基性陰イオン交換樹脂、および強塩基性陰イオン交換樹脂からなる群から選択される少なくとも一種の物質を含むことを特徴とする乳酸吸着剤。
  2.  乳酸を含有する溶液に接触して、前記溶液中の乳酸を吸着する請求項1に記載の乳酸吸着剤。
  3.  前記溶液は、グルコースを含有する、細胞または微生物の培養液である請求項2に記載の乳酸吸着剤。
  4.  前記強塩基性陰イオン交換樹脂は、スチレン系トリメチルアンモニウム基を有する強塩基性陰イオン交換樹脂、およびスチレン系ジメチルエタノールアンモニウム基を有する強塩基性陰イオン交換樹脂の少なくとも一方を含む請求項1乃至3のいずれか1項に記載の乳酸吸着剤。
  5.  前記弱塩基性陰イオン交換樹脂は、ハイポーラス型またはMR型である請求項1乃至4のいずれか1項に記載の乳酸吸着剤。
  6.  前記溶液への添加量は、0.0005g/mL超0.2g/mL未満である請求項2または3に記載の乳酸吸着剤。
  7.  請求項1乃至6のいずれか1項に記載の乳酸吸着剤を、乳酸に接触させることを含むことを特徴とする乳酸の除去方法。
PCT/JP2019/033125 2018-09-06 2019-08-23 乳酸吸着剤および乳酸の除去方法 WO2020050068A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19857178.8A EP3848115A4 (en) 2018-09-06 2019-08-23 LACTIC ACID ABSORBERS AND METHODS FOR REMOVAL OF LACTIC ACID
JP2020541138A JP7191341B2 (ja) 2018-09-06 2019-08-23 乳酸除去方法および乳酸除去装置
US17/179,643 US20210170359A1 (en) 2018-09-06 2021-02-19 Lactic acid adsorbent and method for removing lactic acid

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-166842 2018-09-06
JP2018166842 2018-09-06
JP2018-209884 2018-11-07
JP2018209884 2018-11-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/179,643 Continuation US20210170359A1 (en) 2018-09-06 2021-02-19 Lactic acid adsorbent and method for removing lactic acid

Publications (1)

Publication Number Publication Date
WO2020050068A1 true WO2020050068A1 (ja) 2020-03-12

Family

ID=69723237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033125 WO2020050068A1 (ja) 2018-09-06 2019-08-23 乳酸吸着剤および乳酸の除去方法

Country Status (4)

Country Link
US (1) US20210170359A1 (ja)
EP (1) EP3848115A4 (ja)
JP (1) JP7191341B2 (ja)
WO (1) WO2020050068A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020184979A (ja) * 2019-05-17 2020-11-19 日機装株式会社 被処理液の再生方法
WO2021095691A1 (ja) * 2019-11-13 2021-05-20 日機装株式会社 乳酸吸着剤および乳酸の除去方法
WO2021095692A1 (ja) * 2019-11-13 2021-05-20 日機装株式会社 乳酸吸着剤および乳酸の除去方法
WO2022050373A1 (ja) * 2020-09-03 2022-03-10 学校法人自治医科大学 間葉系幹細胞又はそれに由来する前駆細胞の培養上清の浄化濃縮物、及びその製造方法
WO2022050271A1 (ja) * 2020-09-03 2022-03-10 日機装株式会社 被処理液の再生方法および被処理液の再生剤

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214338A (ja) * 1982-06-04 1983-12-13 Kyowa Chem Ind Co Ltd 複合吸着剤
JPS63188632A (ja) * 1987-01-30 1988-08-04 Shimadzu Corp 有機酸の精製方法およびその装置
JPH1132724A (ja) * 1997-07-18 1999-02-09 Snow Brand Milk Prod Co Ltd ビフィズス菌の生残性の高い飲食品の製造方法
JP2001095487A (ja) * 1999-09-29 2001-04-10 Japan Organo Co Ltd 酸性ホエーの精製方法
JP2006212617A (ja) * 2005-02-04 2006-08-17 Hiroyuki Yoshida リン酸、有機酸、アミノ酸の分離・回収方法、および有機物の処理方法
JP2014039505A (ja) * 2012-08-23 2014-03-06 Asahi Glass Co Ltd 有機酸の製造方法
WO2015122528A1 (ja) 2014-02-17 2015-08-20 旭化成株式会社 細胞培養装置
JP2017000567A (ja) * 2015-06-12 2017-01-05 東亞合成株式会社 体臭用消臭剤組成物、及びそれを用いた消臭性加工品

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0520160Y2 (ja) * 1987-01-30 1993-05-26
FI102474B (fi) * 1996-12-30 1998-12-15 Neste Oy Menetelmä moniarvoisten alkoholien valmistamiseksi
DK1300461T3 (da) * 2000-07-11 2009-03-16 Sapporo Breweries Fremgangsmåde til fremstilling af malt-alkoholisk drikkevare
JP4662419B2 (ja) * 2004-04-07 2011-03-30 旭化成ケミカルズ株式会社 有機酸を分離製造する方法
CA2709885A1 (en) * 2007-12-21 2009-07-02 Akzo Nobel N.V. A process to make a clay comprising charge-balancing organic ions, clays thus obtained, and nanocomposite materials comprising the same
FI20095502A0 (fi) * 2009-05-04 2009-05-04 Licentia Oy Uudet epäorgaaniset-bio-orgaaniset nanokomposiittimateriaalit, niiden valmistus ja käyttö
JP2011174043A (ja) * 2010-01-29 2011-09-08 National Institute Of Advanced Industrial Science & Technology 層状複水酸化物含有ゲル状組成物
CN104478131B (zh) * 2014-12-09 2016-01-06 山东大学 一种快速处理六价铬的方法
JP2017000951A (ja) * 2015-06-09 2017-01-05 国立研究開発法人産業技術総合研究所 層状複水酸化物含有高分子ゲル複合体乾燥体の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214338A (ja) * 1982-06-04 1983-12-13 Kyowa Chem Ind Co Ltd 複合吸着剤
JPS63188632A (ja) * 1987-01-30 1988-08-04 Shimadzu Corp 有機酸の精製方法およびその装置
JPH1132724A (ja) * 1997-07-18 1999-02-09 Snow Brand Milk Prod Co Ltd ビフィズス菌の生残性の高い飲食品の製造方法
JP2001095487A (ja) * 1999-09-29 2001-04-10 Japan Organo Co Ltd 酸性ホエーの精製方法
JP2006212617A (ja) * 2005-02-04 2006-08-17 Hiroyuki Yoshida リン酸、有機酸、アミノ酸の分離・回収方法、および有機物の処理方法
JP2014039505A (ja) * 2012-08-23 2014-03-06 Asahi Glass Co Ltd 有機酸の製造方法
WO2015122528A1 (ja) 2014-02-17 2015-08-20 旭化成株式会社 細胞培養装置
JP2017000567A (ja) * 2015-06-12 2017-01-05 東亞合成株式会社 体臭用消臭剤組成物、及びそれを用いた消臭性加工品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3848115A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020184979A (ja) * 2019-05-17 2020-11-19 日機装株式会社 被処理液の再生方法
JP7274170B2 (ja) 2019-05-17 2023-05-16 日機装株式会社 被処理液の再生方法および被処理液の再生装置
WO2021095691A1 (ja) * 2019-11-13 2021-05-20 日機装株式会社 乳酸吸着剤および乳酸の除去方法
WO2021095692A1 (ja) * 2019-11-13 2021-05-20 日機装株式会社 乳酸吸着剤および乳酸の除去方法
JPWO2021095692A1 (ja) * 2019-11-13 2021-05-20
JP2021074697A (ja) * 2019-11-13 2021-05-20 日機装株式会社 乳酸吸着剤および乳酸の除去方法
JP7236120B2 (ja) 2019-11-13 2023-03-09 日機装株式会社 乳酸吸着剤および乳酸の除去方法
JP7264397B2 (ja) 2019-11-13 2023-04-25 日機装株式会社 乳酸吸着剤および乳酸の除去方法
WO2022050373A1 (ja) * 2020-09-03 2022-03-10 学校法人自治医科大学 間葉系幹細胞又はそれに由来する前駆細胞の培養上清の浄化濃縮物、及びその製造方法
WO2022050271A1 (ja) * 2020-09-03 2022-03-10 日機装株式会社 被処理液の再生方法および被処理液の再生剤

Also Published As

Publication number Publication date
US20210170359A1 (en) 2021-06-10
EP3848115A4 (en) 2022-05-25
JPWO2020050068A1 (ja) 2021-10-21
JP7191341B2 (ja) 2022-12-19
EP3848115A1 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
WO2020050068A1 (ja) 乳酸吸着剤および乳酸の除去方法
US20220266216A1 (en) Lactic acid adsorbent and method for removing lactic acid
US20210178359A1 (en) Ammonia adsorbent and method for removing ammonia
US20230211313A1 (en) Method for regenerating liquid to be treated, and regenerating agent for liquid to be treated
JP7274170B2 (ja) 被処理液の再生方法および被処理液の再生装置
CN102500159B (zh) 具有吸附与离子交换过滤特性的深层过滤介质的制备方法
JP6530171B2 (ja) 培養産生物の回収方法
CN111889077A (zh) 改性磁性沸石咪唑骨架材料制备及吸附水中痕量头孢他啶
CN109621910A (zh) 纳米零价铁-金属有机框架核壳材料的制备方法及其应用
WO2021152536A1 (en) Methods and devices for filtering cell culture media
JP2012187083A (ja) 微生物の濃縮装置及び濃縮方法
CN108889285B (zh) 限进型色谱填料及其制备方法和包含其的固定相以及应用
CN114288998A (zh) 一种吸附树脂其制备方法和应用
CN108017740B (zh) 球形多孔介孔复合材料和负载型催化剂及其制备方法
US20220266220A1 (en) Lactic acid adsorbent and method for removing lactic acid
CN104607162B (zh) 一种阳离子交换嵌合型晶胶分离介质及其制备方法
CN212322648U (zh) 一种放射性含锶废水处理装置
JP2022524935A (ja) デプスフィルタ用のヘッドスペースおよびその使用方法
CN112635091A (zh) 一种放射性含锶废水的处理装置
JP2022042731A (ja) フェノールレッド吸着剤およびフェノールレッドの除去方法
CN103065753A (zh) 一种磁性纳米颗粒及其制备方法
CN112899132B (zh) 一种用于核酸提取与纯化的硅胶过滤吸头
CN209618934U (zh) 一种利用硅藻土和硅土多孔滤料的水体除磷装置
Quigley Prefiltration in biopharmaceutical processes
JP2022141197A (ja) アンモニウムイオンの吸着材料及び培養液の再生方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857178

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020541138

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019857178

Country of ref document: EP

Effective date: 20210406