WO2020049979A1 - ロボットの制御装置 - Google Patents

ロボットの制御装置 Download PDF

Info

Publication number
WO2020049979A1
WO2020049979A1 PCT/JP2019/032157 JP2019032157W WO2020049979A1 WO 2020049979 A1 WO2020049979 A1 WO 2020049979A1 JP 2019032157 W JP2019032157 W JP 2019032157W WO 2020049979 A1 WO2020049979 A1 WO 2020049979A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
robot arm
distance
external force
unit
Prior art date
Application number
PCT/JP2019/032157
Other languages
English (en)
French (fr)
Inventor
宗藤 康治
篤 亀山
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN201980056041.3A priority Critical patent/CN112638600B/zh
Publication of WO2020049979A1 publication Critical patent/WO2020049979A1/ja
Priority to US17/190,415 priority patent/US20210187743A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • B25J9/1676Avoiding collision or forbidden zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/085Force or torque sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/041Cylindrical coordinate type
    • B25J9/042Cylindrical coordinate type comprising an articulated arm
    • B25J9/043Cylindrical coordinate type comprising an articulated arm double selective compliance articulated robot arms [SCARA]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1651Programme controls characterised by the control loop acceleration, rate control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39109Dual arm, multiarm manipulation, object handled in cooperation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40201Detect contact, collision with human
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40202Human robot coexistence

Definitions

  • the present invention relates to a control device for a robot that coexists with a person.
  • Patent Literature 1 discloses a robot safety monitoring device that monitors an external force to monitor the safety of the robot.
  • the control device sets a predetermined region in the operation range of the robot, changes the external force determination condition when the current position of the robot is inside or outside the predetermined region, and stops the robot when the external force satisfies the determination condition. Further, when the current position of the robot is within the predetermined area, the control device limits the upper limit of the moving speed of the robot to the predetermined speed.
  • Patent Document 2 discloses a robot interference avoidance device.
  • the robot controller calculates the distance between the tip of the flange and the person, determines whether the tip of the flange is facing the person, and if so, identifies the danger target (the tip of the flange). Decelerate or make an emergency stop according to the separation distance.
  • an object of the present invention is to provide a control device suitable for a robot working in cooperation with a human.
  • a control device for a robot is a control device for controlling an operation of a robot having a first robot arm and a second robot arm, wherein a tip of the first robot arm and a second A distance calculation unit that calculates a distance between the robot arm and the tip; and a distance monitoring unit that monitors whether the distance calculated by the distance calculation unit is equal to or less than a predetermined value.
  • the two robot arms can operate independently or can operate in relation to each other.
  • the distance between the tips of the two arms is reduced, and the surrounding workers are pinched.
  • a control device can be provided.
  • the control device may control the operation speeds of the first robot arm and the second robot arm not to exceed a predetermined speed.
  • the operation of the robot arm may be controlled.
  • the control device determines whether or not the operating speeds of the first robot arm and the second robot arm have exceeded the predetermined speed when the distance calculated by the distance calculation unit is equal to or less than the predetermined value.
  • a speed monitoring unit for monitoring may be further provided, and when the operation speed exceeds the predetermined speed, the operations of the first robot arm and the second robot arm may be stopped.
  • the operation of the arm can be stopped when the operation speed exceeds a predetermined speed.
  • the safety of the person is further improved.
  • An external force detection unit configured to detect an external force acting on a tip of the first robot arm and a tip of the second robot arm, wherein the distance calculated by the distance calculation unit is equal to or less than a predetermined value;
  • a force monitoring unit that detects a collision based on a predetermined monitoring criterion, if the collision is detected, the first robot arm and the The operation of the second robot arm may be stopped.
  • the collision is detected based on the external force acting on the ends of the two arms, and the robot is detected after the collision is detected. Operation can be stopped. Worker safety can be improved.
  • An external force detection unit configured to detect an external force acting on a tip of the first robot arm and a tip of the second robot arm, wherein the distance calculated by the distance calculation unit is greater than a predetermined value; In the case, based on the external force detected by the external force detection unit, a collision is detected based on a first monitoring criterion, and when the distance calculated by the distance calculation unit is equal to or less than a predetermined value, the external force detection is performed.
  • a force monitoring unit that detects a collision with a second monitoring criterion that is a monitoring criterion different from the first monitoring criterion based on the external force detected by the unit, and when a collision is detected, The operations of the first robot arm and the second robot arm may be stopped.
  • the collision is detected by the first monitoring criterion (for example, the collision sensitivity is set low).
  • the collision is detected by the second monitoring criterion (for example, the collision sensitivity is set high). That is, since the collision sensitivity can be changed according to the interval between the two arm tips, it is possible to achieve both workability of the robot and safety of the operator.
  • the first robot arm and the second robot arm may be provided so as to be independently rotatable around the same axis.
  • the tip of the first robot arm is a tool center point of the first robot arm
  • the tip of the second robot arm is a tool center point of the second robot arm.
  • the distance calculation unit may calculate a distance between a tool center point of the first robot arm and a tool center point of the second robot arm.
  • a control device suitable for a robot working in cooperation with a person can be provided.
  • FIG. 1 is a front view schematically showing the configuration of the robot according to the first embodiment.
  • FIG. 2 is a plan view showing an example of the operation of the robot in FIG.
  • FIG. 3 is a block diagram showing the overall configuration of the robot shown in FIG.
  • FIG. 4 is a block diagram showing a configuration of the monitoring device of FIG.
  • FIG. 5 is a flowchart illustrating an example of the monitoring operation of the robot.
  • FIG. 6 is a block diagram illustrating a configuration of a monitoring device according to the second embodiment.
  • FIG. 7 is a flowchart illustrating an example of the operation of monitoring the robot.
  • FIG. 8 is a flowchart showing a modification of the monitoring operation of FIG.
  • FIG. 1 is a front view schematically showing the configuration of the robot 1 according to the first embodiment.
  • a robot 1 includes a base 9 fixed to a carriage 8, a pair of robot arms (hereinafter, sometimes simply referred to as “arms”) 2 and 2 supported by the base 9, And a control device 3 housed in the base 9.
  • the robot 1 of the present embodiment is a dual-arm robot having horizontal articulated arms 2 and 2.
  • each arm 2 includes an arm unit 20, a wrist unit 17, and an end effector (not shown).
  • the two arms 2 may have substantially the same structure. Further, the two arms 2 can operate independently or can operate in relation to each other.
  • the robot 1 according to the present embodiment is, for example, introduced into a production line, and performs work in cooperation with a worker in the same work space.
  • the robot 1 of the present embodiment is a coaxial dual-arm robot.
  • Each of the two arms 2 and 2 is coaxially arranged on a base shaft 16 perpendicular to the base 9 and is configured to be rotatable about the rotation axis A1 independently of the base 9.
  • the arm section 20 includes a first link 20a and a second link 20b.
  • the first link 20a is connected to a base shaft 16 fixed to the upper surface of the base 9 by a rotary joint J1 and is rotatable around a rotation axis A1 passing through the axis of the base shaft 16.
  • the rotation axes A1 of the first links 20a of the two arms 2 and 2 are on the same straight line, and the first link 20a of one arm 2 and the first link 20a of the other arm 2 are vertically They are arranged with a height difference.
  • the second link 20b is connected to the distal end of the first link 20a by a rotary joint J2, and is rotatable around a rotation axis A2 defined at the distal end of the first link 20a.
  • the wrist unit 17 has a translation joint J3 and a rotation joint J4.
  • the wrist unit 17 is moved up and down with respect to the second link 20b by the translation joint J3.
  • the wrist unit 17 is rotatable around a rotation axis A3 perpendicular to the second link 20b by the rotation joint J4.
  • a mechanical interface 18 is attached to a tip of the wrist unit 17.
  • the mechanical interface 18 is connected to the distal end of the second link 20b via a translation joint J3 and a rotary joint J4.
  • a working end effector (not shown) is attached to the mechanical interface 18.
  • Each arm 2 having the above configuration has each joint J1 to J4.
  • Each of the joints J1 to J4 is driven by, for example, a servo mechanism (not shown).
  • the servo mechanism includes a driving unit for driving the arm 2 for displacement, and a transmission mechanism for transmitting the power of the driving unit to the arm 2.
  • the drive unit is realized by, for example, a servomotor, and each servomotor is provided with a position sensor such as an encoder that detects a rotation angle position of the motor (not shown).
  • the rotation angle position is the position of the angle of each joint in the joint coordinate system of each servomotor.
  • the control device 3 is configured to control the operation of the left and right arms 2 at an arbitrary speed by controlling the position of the servomotor.
  • FIG. 2 is a plan view showing an example of the operation of the robot 1 in FIG.
  • the robot 1 can be installed in a limited space (for example, 610 mm ⁇ 620 mm) corresponding to one person.
  • the robot 1 is introduced into a production line, and works together with an operator on the same line.
  • the robot 1 performs the same work on the workbench 100 as the worker.
  • a working end effector 19 is connected to each end (mechanical interface 18) of each of the left and right arms 2 and 2 of the robot 1.
  • TP is a tool center point of each end effector 19.
  • the left and right end effectors 19 have the same structure.
  • the areas on the left and right sides of the work space of the robot on the work table 100 are work spaces in which each worker performs his or her own work.
  • four types of works W1, W2, W3, and W4 are arranged on the worktable 100.
  • An operator located on the left side supplies the robot 1 with a workpiece W1 as a material member.
  • the robot 1 attaches the workpiece W2 as the first component and the workpiece W3 as the second component to the supplied workpiece W1, and completes the workpiece W4.
  • the worker located on the right side performs the next work process on the completed work W4.
  • the robot 1 has a reference coordinate system (hereinafter referred to as a base coordinate system).
  • a base coordinate system In this coordinate system, for example, the intersection point between the installation surface of the base (base) 9 and the rotation axis A1 of the first joint J1 is the origin, the rotation axis of the first joint J1 is the Z axis, and is orthogonal to the Z axis.
  • the arbitrary axis is the X axis, and the axis orthogonal to the Z axis and the X axis is the Y axis.
  • the movable range of the arm 2 of the robot 1 is a circular area centered on the first joint J1 (not shown).
  • the operating range of each arm 2 is set based on this base coordinate system. In the present embodiment, the operation area is set so as to cover at least the workbench 100 arranged in front of the robot 1.
  • the two arms 2 and 2 may operate independently or may operate in relation to each other. It is possible. For this reason, depending on the positions and postures of the arms 2, 2, the distance between the tips (end effectors 19, 19) of the arms 2, 2 becomes narrower, and a worker located near the robot 1 moves the arms 2, 2. Between them.
  • FIG. 3 is a block diagram illustrating the overall configuration of the robot 1.
  • the robot 1 includes a robot arm 2, a control device 3, and a monitoring device 4. Although there are two robot arms 2, only one is shown here for simplicity of explanation.
  • the robot arm 2 includes one or more joints J, a plurality of links connected via the joints, and a driving servomotor M provided at each joint J.
  • Each servomotor M is provided with a position sensor E such as an encoder for detecting the position of the motor (rotation angle position with respect to the reference rotation angle position of the rotor) and a current sensor 5 for detecting a current for driving the motor.
  • the control device 3 is connected to the robot arm 2 via a cable C (shown in bold).
  • the cable C is a power line for supplying power to the servomotor M and the brake (not shown) of the joint J, and a signal line for receiving a sensor signal from the position sensor E attached to the servomotor M. Etc. are included.
  • the control device 3 is connected to the monitoring device 4 via a communication cable (not shown).
  • the communication cable is a cable for serial communication such as RS422.
  • the control device 3 supplies a monitoring signal (detection signal of the position sensor) to the monitoring device 4 via a communication cable, receives a speed limit command from the monitoring device 4, It is configured to change the operation speed of the camera.
  • the operation speed of the robot arm 2 means the rotation speed of the servo motor M that configures the robot arm 2 (hereinafter, also referred to as “motor speed”).
  • the control device 3 is a robot controller including an arithmetic processing unit 6, a servo amplifier 7, a memory, an input / output interface, a communication interface, and the like.
  • the arithmetic processing unit 6 includes a current command value generation unit 61 and a speed limit value setting unit 62.
  • the current command value generating unit 61 and the speed limit value setting unit 62 are functional blocks realized by executing a predetermined program in the arithmetic processing unit 6.
  • the current command value generation unit 61 generates a position command value of the servo motor M that drives the joint J based on the operation program of the robot, and calculates a deviation between the generated position command value and a detection value (actual value) from the position sensor.
  • a speed command value is generated based on.
  • a torque command value (current command value) is generated based on the deviation between the generated speed command value and the current speed value, and is output to the servo amplifier 7.
  • the servo amplifier 7 is provided corresponding to the servomotor M, generates a current based on a given current command value, and supplies the generated current to the servomotor M via the cable C. That is, each servo amplifier 7 is an amplifier that generates a drive current for the servo motor M according to the current command value.
  • the control device 3 is configured to control the operation of each robot arm 2 by controlling the position of a servomotor M provided for each joint J based on the position command value.
  • the speed limit value setting unit 62 sets a speed limit value based on the speed limit command received from the monitoring device 4 so that the motor speed of each of the arms 2 and 2 does not exceed a predetermined speed.
  • the speed limit value setting unit 62 sets the speed limit value to the first speed (for example, 800 mm / s) as an initial value.
  • the current command value generation unit 61 restricts the generated speed command value so as not to exceed the speed limit value set by the speed limit value setting unit 62.
  • FIG. 4 is a block diagram showing the configuration of the monitoring device 4 of FIG.
  • the monitoring device 4 includes a distance calculation unit 41, a distance monitoring unit 42, a speed limit value generation unit 43, a speed calculation unit 44, a speed monitoring unit 45, a stop signal generation unit 46, , Is provided.
  • the monitoring device 4 is a computer including one or more processors, a memory, an input / output interface, a communication interface, and the like.
  • Each of the units (41 to 46) is a functional block realized by executing a predetermined program in the processor.
  • the distance calculation unit 41 is configured to calculate a distance D between the tip of one arm 2 and the tip of the other arm 2.
  • the distance calculation unit 41 determines the tip of each arm 2 based on the rotation angle position (detection signal of the position sensor E) of each servomotor M and information such as the preset length and shape of each link. Is calculated, and the distance D between the ends of both arms 2 is calculated.
  • the positions of the tips of the arms 2 and 2 are the tool center points TP and TP of the end effectors 19 and 19 (see FIG. 2).
  • the distance calculation unit 41 calculates the position coordinates of the tool center points TP, TP in the base coordinate system of the robot 1, and calculates the distance D between the tool center points TP, TP of the end effectors 19, 19.
  • the distance monitoring unit 42 is configured to monitor whether the distance D calculated by the distance calculation unit 41 is equal to or less than a predetermined value.
  • the predetermined value is set to a value that may cause a peripheral obstacle (for example, an operator) to be sandwiched by the tips of the arms 2 and 2.
  • the predetermined value is set to 10 cm.
  • the monitoring device 4 includes input means (not shown) that can adjust the set value of the distance D to be monitored to an arbitrary value by, for example, an administrator.
  • the predetermined value is set to 10 cm.
  • the predetermined value may be appropriately set according to the situation around the robot 1 and the assumed size of the obstacle.
  • the distance monitoring unit 42 may be configured to generate a three-dimensional model of the robot 1 based on information such as the rotation angle position of each servo motor and the length and shape of each link set in advance.
  • the speed limit value generation unit 43 When the distance D is equal to or less than a predetermined value, the speed limit value generation unit 43 generates a speed limit command so that the motor speed of each of the arms 2 and 2 does not exceed the predetermined speed, and transmits the command to the control device 3. It is composed of In the present embodiment, when the distance D is equal to or less than the predetermined value, the speed limit value generation unit 43 does not exceed the second speed lower than the first speed (initial value) of the motor speed of each of the arms 2 and 2. The speed limit command is generated and transmitted to the control device 3.
  • the speed calculator 44 calculates the speed (motor speed) of each servo motor M based on the rotation angle position of each servo motor M (detection signal of the position sensor E).
  • the rotation angle position of each servo motor M included in the monitoring signal is transmitted from the control device 3 to the monitoring device 4 via the communication cable, and is input to the speed calculation unit 44.
  • the speed calculation unit 44 is configured to output the calculation result to the speed monitoring unit 45.
  • the speed monitoring unit 45 monitors whether the motor speed of each of the arms 2 and 2 exceeds a predetermined speed. In the present embodiment, when the distance D calculated by the distance calculation unit 41 is equal to or smaller than a predetermined value, the speed monitoring unit 45 determines the motor speed of the servo motor M provided to the joints J1 to J4 of each robot arm 2. It monitors whether any of the motor speeds exceeds the second speed.
  • the stop signal generation unit 46 generates a stop signal for the robot 1 when the distance D is equal to or less than the predetermined value and the speed monitoring unit 45 determines that the motor speed exceeds the second speed. Is supplied to the control device 3.
  • the monitoring device 4 waits for reception of a monitoring signal transmitted from the control device 3 at predetermined intervals (step S11 in FIG. 5).
  • the monitoring signal includes a detection signal of a position sensor E provided at each joint J used in position control of the robot arm 2.
  • the distance calculating unit 41 calculates the distance D (see FIG. 2) between the two arms 2 and 2 (TP, TP) (FIG. 5). Step S12). The distance calculation unit 41 calculates the tip (TP, TP) of each arm 2 based on the rotation angle position (detection signal of the position sensor E) of each servomotor M and information such as the length and shape of each link set in advance. Is calculated, and the distance D between the ends (TP, TP) of both arms 2 is calculated.
  • the distance monitoring unit 42 monitors whether the distance D calculated by the distance calculation unit 41 is equal to or less than a predetermined value (Step S13 in FIG. 5). In the present embodiment, when the distance D is equal to or less than 10 cm, the distance monitoring unit 42 determines that there is a possibility that a peripheral figure is pinched by the tips of the arms 2 and 2. On the other hand, when the distance D is longer than 10 cm, it is determined that there is no possibility that a known worker is pinched by the tips of the arms 2 and 2.
  • the speed limit value generation unit 43 A speed limit command is generated such that the speed does not exceed the second speed lower than the first speed, and is supplied to the control device 3 (step S14 in FIG. 5).
  • the second speed is 250 mm / s defined as a low speed control in ISO10218-1.
  • the control device 3 controls the operation of the arms 2 and 2 so that the motor speed does not exceed the second speed.
  • the speed monitoring unit 45 monitors whether the operation speed of the arms 2 and 2 exceeds the second speed limited in step S14 (step S15 in FIG. 5). In the present embodiment, when the distance D is equal to or less than the predetermined value, the speed monitoring unit 45 determines that one of the servo motors M provided in the joints J1 to J4 of the arms 2 and 2 has the second speed. Monitor whether it exceeds the limit.
  • the stop signal generation unit 46 generates a stop signal of the robot 1, This is supplied to the control device 3 (step S16 in FIG. 5).
  • the control device 3 stops the operation of the robot 1.
  • the control device 3 controls the operation of the arms 2 and 2 at high speed so that the motor speed does not exceed the first speed. To control. Thereby, the ability of the robot 1 can be maximized. The control device 3 repeats the above operation until the operation of the robot 1 is completed.
  • the surrounding workers are moved by the tips of the arms 2 and 2. It is determined that there is no possibility that the arm will be pinched, and the arms 2 and 2 are operated at the highest possible speed (first speed).
  • the distance D is equal to or less than the predetermined value, it is determined that there is a possibility that the surrounding workers may be pinched by the tips of the arms 2 and 2, and the arms 2 and 2 are operated at a low speed (second speed).
  • a control device 3 suitable for a robot working in cooperation with a person can be provided.
  • FIG. 6 is a block diagram showing the configuration of the monitoring device according to the second embodiment.
  • the monitoring device 4A includes a drive instead of the speed limit value generation unit 43, the speed calculation unit 44, and the speed monitoring unit 45.
  • the difference is that a torque estimating unit 47, an external force detecting unit 48, and a force monitoring unit 49 are provided.
  • the monitoring device 4A of the present embodiment has a force monitoring function instead of the speed monitoring function.
  • the monitoring signal transmitted from the control device 3 to the monitoring device 4 includes the detection signal of the position sensor E and the sensor current value detected by the current sensor 5.
  • the drive torque estimating unit 47 estimates a drive torque required to drive the servo motor of the joint of the robot 1 from the rotation angle position calculated by the position sensor E.
  • the drive torque estimating unit 47 calculates the gravitational torque, the inertial force torque, and the friction force torque, and calculates an estimated value of the drive torque by adding these.
  • the gravitational torque is a torque for overcoming the weight of each link and maintaining the posture.
  • Inertia torque is the torque required to overcome the inertia of the link.
  • Friction torque is the torque required to overcome the friction of the reducer.
  • the drive torque estimating unit 47 is configured to be mounted on the monitoring device 4, but may be mounted on the control device 3.
  • the drive torque estimation value may be transmitted from the control device 3 to the monitoring device 4 as a monitoring signal together with a sensor signal including the sensor current value detected by the current sensor 5 and the rotation angle position detected by the position sensor E.
  • the external force detector 48 detects an external force acting on the distal ends of the arms 2 and 2.
  • the external force detection unit 48 converts a sensor current value flowing through each servomotor M detected by the current sensor 5 into a torque value. Then, the estimated value of the driving torque input from the driving torque estimating unit 47 is subtracted from the torque value converted from the sensor current value, and this is calculated as a disturbance torque. Then, an external force acting on the tip of the arm 2 is calculated using the disturbance torque value, and the calculated external force is output to the force monitoring unit 49.
  • the external force detection unit 48 obtains an external force f d acting on the tip (TP in FIG. 2) of each arm 2 from the disturbance torque ⁇ d according to the principle of virtual work as in the following equation (3).
  • K is a Jacobian matrix, which is a matrix expressing a minute displacement relationship between the base coordinate system and the joint coordinate system of the robot 1.
  • the relationship represented by the equation (4) is established between the error ⁇ x and the joint angle difference ⁇ .
  • the force monitoring unit 49 determines that a collision has occurred based on the external force detected by the external force detection unit 48 based on the first monitoring criterion. It is configured to detect.
  • the force monitoring unit 49 calculates a value f ′ d proportional to a differential value of the external force value f d input from the external force detection unit 48 as an impact force acting on the tip of the robot arm 2, and the value of the impact force acting on the second tip
  • of the impact force to be compared with the first threshold value f th1 is a scalar value of the external force f ′ d .
  • the force monitoring unit 49 may detect a collision by determining whether the external force value
  • the monitoring device 4 includes an input unit (not shown) capable of adjusting a threshold value at the time of collision detection to an arbitrary value by, for example, an administrator.
  • the stop signal generation unit 46 When the collision detection signal is input from the force monitoring unit 49, the stop signal generation unit 46 generates a stop signal of the robot 1 and outputs this to the control device 3.
  • the force monitoring unit 49 sets the first monitoring criterion based on the external force detected by the external force detection unit 48. To detect a collision (step S24 in FIG. 7). Specifically, the force monitoring unit 49 determines whether the external force value
  • the distance monitoring unit 42 determines that there is a possibility that the obstacle (for example, a worker) existing around the robot 1 may be pinched by the distal ends of the arms 2 and 2, The collision is detected based on the external force acting on the vehicle.
  • the stop signal generation unit 46 When the collision detection signal is input from the force monitoring unit 49 (YES in step S24 in FIG. 7), the stop signal generation unit 46 generates a stop signal for the robot 1 (step S25 in FIG. 7). Is output to the control device 3. Thereby, the control device 3 can stop the operation of the robot 1.
  • the robot 1 when there is a possibility that surrounding objects may be pinched by the ends of the arms 2 and 2, a collision is detected based on an external force acting on the ends of the arms 2 and 2, and after the collision is detected, the robot 1 Can be stopped, so that the safety of the worker can be improved.
  • a collision is detected based on two different monitoring criteria according to the distance D.
  • the force monitoring unit 49 of FIG. 6 uses the first monitoring criterion based on the external force detected by the external force detection unit 48. Is configured to detect a collision.
  • the force monitoring unit 49 determines whether the external force value
  • the first threshold value f th1 is set to 100N.
  • of the external force to be compared with the first threshold value f th1 is a scalar value of the external force f d .
  • the force monitoring unit 49 sets a first monitoring criterion based on the external force detected by the external force detection unit 48. Are configured to detect a collision with a second monitoring criterion, which is a different monitoring criterion.
  • the force monitoring unit 49 calculates a value f ′ d proportional to a differential value of the external force value f d input from the external force detection unit 48 as an impact force acting on the tip of the robot arm 2, and It is determined whether the value
  • of the impact force to be compared with the second threshold value f th2 is a scalar value of the external force f ′ d .
  • FIG. 8 is a flowchart illustrating a monitoring operation according to the present modification.
  • the force monitoring unit 49 sets the first force based on the external force detected by the external force detection unit 48.
  • a collision is detected based on the monitoring standard (step S24-1 in FIG. 8). Specifically, the force monitoring unit 49 determines whether the external force value
  • the force monitoring unit 49 performs the collision. Set a lower sensitivity to detect collision.
  • the force monitoring unit 49 uses a monitoring criterion different from the first monitoring criterion based on the external force detected by the external force detecting unit 48.
  • the collision is detected based on the second monitoring criterion (step S24-2 in FIG. 8).
  • the force monitoring unit 49 calculates a value f ′ d proportional to a differential value of the external force value f d input from the external force detection unit 48 as an impact force acting on the tip of the robot arm 2, and the value of the impact force acting on the second tip
  • the distance monitoring unit 49 determines that the obstacle (for example, an operator) existing around the robot 1 may be pinched by the distal ends of the arms 2 and 2, the force monitoring unit 49 may perform the collision. Set a high sensitivity to detect collision.
  • the stop signal generation unit 46 generates a stop signal for the robot 1 (step S25 in FIG. 8), and outputs this to the control device 3. Thereby, the control device 3 can stop the operation of the robot 1.
  • the collision is detected by the first monitoring criterion (collision sensitivity is set low).
  • the collision is detected by the second monitoring standard (collision sensitivity is set high). That is, since the collision sensitivity can be changed according to the interval between the tips of the two arms 2, 2, both the workability of the robot and the safety of the operator can be achieved.
  • the operation of the robot is stopped after the collision is detected.
  • the operation may be notified to surrounding workers or managers.
  • the monitoring device 4A of the present embodiment has a force monitoring function of performing collision detection based on an external force acting on the robot arms 2 and 2 according to the distance D, but is combined with the speed monitoring function of the first embodiment. You may.
  • the external force acting on the tip of the robot arm 2 is calculated based on the current value of the servomotor without using a force sensor, a collision can be detected at low cost and with high accuracy. Thereby, the convenience in the joint work of the robot and the workers working therearound is further improved.
  • the distance calculation unit 41 uses the information such as the rotation angle position (detection signal of the position sensor E) of each servomotor M and the preset length and shape of each link.
  • the position of the tip of each arm 2 is calculated based on the calculated distance D and the distance D between the ends of both arms 2 is calculated, the present invention is not limited to this.
  • a distance sensor may be attached to the ends of both arms 2 and the distance D between the ends of both arms 2 may be calculated based on the detection value of the distance sensor.
  • the positions of the tips of the arms 2 and 2 are the tool center points TP and TP of the end effectors 19 and 19, and the distance D is between the tool center points TP and TP of the end effectors 19 and 19. (See FIG. 2), but is not limited to this.
  • the positions of the tips of the arms 2 and 2 may be any points other than the tool center point. Also, any point (for example, the origin) of the flange coordinate system defined on the flange provided at the tip of the arm may be used.
  • the robot 1 in each of the above embodiments is a dual-arm robot having a horizontal articulated arm, but may be a dual-arm robot having a vertical articulated arm.
  • the robot 1 of each of the above embodiments is a single dual-arm robot having two arms 2 and 2, it is not limited to this as long as the distance between the tip ends of the arms can be defined.
  • the distance between the arm tips of two single-arm robots may be monitored, or the distance between at least two arm tips in a robot system having three or more robot arms may be monitored. .
  • monitoring devices 4 and 4A of the above embodiments are provided separately from the control device 3, they may be included in the control device 3.
  • the processing unit 6 of the control device 3 may be configured to execute the functional blocks of the respective units of the monitoring device 4.
  • the present invention is useful for robots that work with humans.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)

Abstract

本発明のロボットの制御装置は、第1のロボットアーム及び第2のロボットアームを有するロボットの動作を制御する制御装置である。ロボットの制御装置は、前記第1のロボットアームの先端と第2のロボットアームの先端との間の距離を算出する距離算出部と、前記距離算出部により算出された前記距離が所定値以下であるか否かを監視する距離監視部と、を備える。

Description

ロボットの制御装置
 本発明は、人と共存して作業するロボットの制御装置に関する。
 近年では、生産性向上の観点から、ロボットと作業者が同じ作業空間内で共同して作業を行うことが提案されている。このため、従来から、人と共存して作業するロボットの安全性を監視する技術の開発が進められている。
 例えば特許文献1には、外力を監視してロボットの安全性を監視するロボットの安全監視装置が開示されている。制御装置は、ロボットの動作範囲において所定領域を設定し、ロボットの現在位置が所定領域の内外で外力の判定条件を変更し、外力が判定条件を満たす場合はロボットを停止させる。また、制御装置は、ロボットの現在位置が所定領域内に在る場合には、ロボットの移動速度の上限を所定速度に制限する。
 特許文献2にはロボットの干渉回避装置が開示されている。ロボットの制御装置は、フランジの先端と人との間の距離を計算するとともに、フランジの先端が人に向かっているかを判断し、人に向かっている場合は、危険対象部(フランジ先端)を離間距離に応じて減速又は緊急停止させる。
特開2017-77608号公報 特許第5370127号
 しかし、ロボットと人が共存して作業をする場合、周囲の人間に与える影響を最小限にするためにロボットのアームの位置や姿勢を適切に監視する必要がある。このため、上記従来のロボットの監視装置では、必ずしも人と共同して作業するロボットに最適とは言えないことがあった。
 そこで本発明は、人と共同して作業するロボットに適した制御装置を提供することを目的とする。
 本発明の一態様に係るロボットの制御装置は、第1のロボットアーム及び第2のロボットアームを有するロボットの動作を制御する制御装置であって、前記第1のロボットアームの先端と第2のロボットアームの先端との間の距離を算出する距離算出部と、前記距離算出部により算出された前記距離が所定値以下であるか否かを監視する距離監視部と、を備えるものである。
 例えば双腕ロボットが作業者と同じ作業空間内で共同して作業する場合、2本のロボットアームは独立して動作することや、互いに関連して動作することが可能であるため、作業内容によっては、2本のアームの先端の間隔が狭くなり、周囲の作業者を挟み込んでしまう可能性がある。上記構成によれば、2本のアームの先端により周囲の障害物(例えば作業者)を挟み込む可能性があるか否かを監視することができるので、人と共同して作業するロボットに適した制御装置を提供できる。
 上記制御装置が、前記距離算出部により算出された前記距離が前記所定値以下である場合には、前記第1のロボットアーム及び第2のロボットアームの動作速度が所定速度を超えないように前記ロボットアームの動作を制御してもよい。
 例えば双腕ロボットが作業者と同じ作業空間内で共同して作業する場合、ロボットアームの動作を速くすると作業性は向上するが、作業者の安全性の確保が問題になる場合がある。一方、ロボットアームの動作を遅くすると作業者の安全性は確保できるが、作業性は低下する。このようにロボットの作業性と作業者の安全性は、トレードオフの関係にある。上記構成によれば、2本のアームの先端により周囲の障害物を挟み込む可能性が場合には、動作速度が所定速度を超えないようにアームの動作を制御する。一方で、2本のアームの先端により周囲の物を挟み込む可能性がある場合にはこれらのアームを可能な限り高速度で動作させることができる。これにより、例えばロボットの近くの作業者が2本のアームの先端に挟まれた場合でも、リンクが高速で衝突することはない。従って、ロボットの作業性と作業者の安全性の両立を図ることができる。
 上記制御装置が、前記距離算出部により算出された前記距離が前記所定値以下である場合に、前記第1のロボットアーム及び第2のロボットアームの動作速度が前記所定速度を超えたか否かを監視する速度監視部を更に備え、前記動作速度が前記所定速度を超えた場合は、前記第1のロボットアーム及び第2のロボットアームの動作を停止させてもよい。
 上記構成によれば、2本のアームの先端により周囲の障害物を挟み込む可能性がある場合には、動作速度が所定速度を超えた場合は、アームの動作を停止させることができるので、作業者の安全性が更に向上する。
 上記制御装置が、前記第1のロボットアームの先端及び前記第2のロボットアームの先端に作用する外力を検出する外力検出部と、前記距離算出部により算出された前記距離が所定値以下である場合に、前記外力検出部によって検出された外力に基づいて、所定の監視基準で衝突を検知する力監視部と、を更に備え、衝突が検知された場合は、前記第1のロボットアーム及び前記第2のロボットアームの動作を停止させてもよい。
 上記構成によれば、2本のアームの先端により周囲の物を挟み込む可能性がある場合には2本のアームの先端に作用する外力に基づいて衝突を検知し、衝突を検知した後はロボットの動作を停止させることができる。作業者の安全性を向上させることができる。
 上記制御装置が、前記第1のロボットアームの先端及び前記第2のロボットアームの先端に作用する外力を検出する外力検出部と、前記距離算出部により算出された前記距離が所定値よりも大きい場合に、前記外力検出部によって検出された外力に基づいて、第1の監視基準で衝突を検知するとともに、前記距離算出部により算出された前記距離が所定値以下である場合に、前記外力検出部によって検出された外力に基づいて、前記第1の監視基準とは異なる監視基準である第2の監視基準で衝突を検知する力監視部と、を更に備え、衝突が検知された場合は、前記第1のロボットアーム及び前記第2のロボットアームの動作を停止させてもよい。
 上記構成によれば、2本のアームの先端により周囲の物を挟み込む可能性がない場合には第1の監視基準(例えば衝突感度を低く設定)で衝突を検知する。一方、2本のアームの先端により周囲の物を挟み込む可能性がある場合には第2の監視基準(例えば衝突感度を高く設定)で衝突を検知する。つまり、2本のアーム先端の間隔に応じて衝突感度を変更することができるので、ロボットの作業性と作業者の安全性の両立を図ることができる。
 尚、前記第1ロボットアーム、および、前記第2ロボットアームが、同軸まわりにそれぞれ独立して回転可能に設けられてもよい。
 尚、前記第1のロボットアームの先端は、前記第1のロボットアームのツールセンターポイントであり、前記第2のロボットアームの先端は、前記第2のロボットアームのツールセンターポイントであって、前記距離算出部が、前記第1のロボットアームのツールセンターポイントと前記第2のロボットアームのツールセンターポイントとの間の距離を算出してもよい。
 本発明によれば、人と共同して作業するロボットに適した制御装置を提供することができる。
図1は、第1実施形態に係るロボットの構成を概略的に示す正面図である。 図2は、図1のロボットの作業の一例を示す平面図である。 図3は、図1のロボットの全体構成を示すブロック図である。 図4は、図3の監視装置の構成を示すブロック図である。 図5は、ロボットの監視動作の一例を示すフローチャートである。 図6は、第2実施形態に係る監視装置の構成を示すブロック図である。 図7は、ロボットの監視の動作の一例を示すフローチャートである。 図8は、図7の監視動作の変形例を示すフローチャートである。
 本発明の実施の形態について、図面を参照しつつ説明する。以下では全ての図を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。
(第1実施形態)
 図1は、第1実施形態に係るロボット1の構成を概略的に示す正面図である。図1に示すように、ロボット1は、台車8に固定されたベース9と、ベース9に支持された一対のロボットアーム(以下、単に「アーム」と記載する場合がある)2、2と、ベース9内に収納された、制御装置3と、を備えている。本実施形態のロボット1は水平多関節型のアーム2,2を備えた双腕ロボットである。以下では、一対のアーム2,2を広げた方向を左右方向と称し、基軸16の軸心に平行な方向を上下方向と称し、左右方向および上下方向に直交する方向を前後方向と称する。各アーム2は、アーム部20と、リスト部17と、エンドエフェクタ(図示せず)と、を備えている。なお、2本のアーム2は、実質的に同じ構造であってもよい。また、2本のアーム2は、独立して動作したり、互いに関連して動作したりすることができる。本実施形態のロボット1は、例えば、生産ラインに導入され、作業者と同じ作業空間で共同して作業を行う。
 本実施形態のロボット1は同軸双腕型のロボットである。2本のアーム2,2のそれぞれは、ベース9に垂直な基軸16に同軸に配置されかつベース9に対して独立して回転軸線A1回りに回動可能に構成される。アーム部20は、本例では、第1リンク20aおよび第2リンク20bとで構成されている。第1リンク20aは、ベース9の上面に固定された基軸16と回転関節J1により連結され、基軸16の軸心を通る回転軸線A1まわりに回動可能である。つまり、2本のアーム2、2の第1リンク20a、20aの回転軸線A1は同一直線上にあり、一方のアーム2の第1リンク20aと他方のアーム2の第1リンク20aとは上下に高低差を設けて配置されている。第2リンク20bは、第1リンク20aの先端と回転関節J2により連結され、第1リンク20aの先端に規定された回転軸線A2まわりに回動可能である。
 リスト部17は、直動関節J3及び回転関節J4を有する。リスト部17は、直動関節J3によって、第2リンク20bに対し昇降移動である。リスト部17は、回転関節J4によって、第2リンク20bに対し垂直な回転軸線A3まわりに回動可能である。リスト部17の先端には、メカニカルインターフェース18が取り付けられる。メカニカルインターフェース18は、直動関節J3及び回転関節J4を介して、第2リンク20bの先端と連結されている。メカニカルインターフェース18には作業用のエンドエフェクタ(図示せず)が取り付けられる。
 上記構成の各アーム2は、各関節J1~J4を有する。各関節J1~J4は、例えばサーボ機構(図示しない)により駆動される。サーボ機構は、アーム2を変位駆動するための駆動部と、駆動部の動力をアーム2に伝達するための伝達機構とを含む。本実施の形態では、駆動部は、例えばサーボモータによって実現され、各サーボモータにはモータの回転角度位置を検出するエンコーダ等の位置センサがそれぞれ設けられる(図示しない)。ここで回転角度位置とは、各サーボモータの関節座標系における各関節の角度の位置である。制御装置3は、サーボモータを位置制御することにより、左右のアーム2の動作を任意の速度で制御するように構成される。
 図2は、図1のロボット1の作業の一例を示す平面図である。このロボット1は、人一人分に相当する限られたスペース(例えば610mm×620mm)に設置することができる。図2に示すように、ロボット1は、生産ラインに導入され、作業者と同じラインで共同して作業をする。ロボット1は、作業台100の上で作業者と同様な作業を行う。ロボット1の左右のアーム2,2の各々の先端(メカニカルインターフェース18)には作業用のエンドエフェクタ19がそれぞれ連結されている。TPは各エンドエフェクタ19のツールセンターポイントである。本実施形態では、左右のエンドエフェクタ19は、同じ構造である。作業台100上のロボットの作業スペースの左右両側の領域は、それぞれ作業者が各自の作業を行う作業スペースである。本実施形態では、作業台100の上には、4種類のワークW1、W2,W3,W4が配置されている。左側に位置する作業者が、ロボット1に材料部材であるワークW1を供給する。ロボット1は供給されたワークW1に対して、第1の部品であるワークW2及び第2の部品であるワークW3を取り付けて、ワークW4を完成させる。右側に位置する作業者は、完成されたワークW4に対して次の作業行程を行う。
 ロボット1は基準座標系(以下、ベース座標系という)を持っている。この座標系は、例えば、ベース(基台)9の設置面と第1関節J1の回転軸線A1との交点が原点であり、第1関節J1の回転軸線がZ軸であり、Z軸に直交する任意の軸がX軸であり、Z軸及びX軸に直交する軸がY軸である。ロボット1のアーム2の可動範囲は、第1関節J1を中心とした円形領域である(図示せず)。各アーム2の動作範囲は、このベース座標系を基準として設定される。本実施形態では、動作領域は、少なくとも、ロボット1の正面に配置された作業台100を覆うように設定される。
 このように、双腕型のロボット1が作業者と同じ作業空間内で共同して作業する場合、2本のアーム2,2は独立して動作することや、互いに関連して動作することが可能である。このため、アーム2,2の位置や姿勢によっては、アーム2,2の先端(エンドエフェクタ19,19)の間隔が狭くなり、ロボット1の近くに位置する作業者が、アーム2,2の先端の間に挟まれる可能性がある。
 そこで、本実施形態の制御装置3は、周辺の作業者の安全を確保するために、ロボット1の動作を監視する監視機能を備えている。図3は、ロボット1の全体構成を示すブロック図である。図3に示すように、ロボット1は、ロボットアーム2と、制御装置3と、監視装置4を備える。なお、ロボットアーム2は2本であるが、ここでは、説明の簡単化のために、1本のみ示している。ロボットアーム2は、1以上の関節Jと、関節を介して連結された複数のリンクと、各関節Jに設けられた駆動用のサーボモータMを備える。各サーボモータMには、モータの位置(回転子の基準回転角度位置に対する回転角度位置)を検出するエンコーダ等の位置センサEと、モータを駆動する電流を検出する電流センサ5が取り付けられる。
 制御装置3は、ロボットアーム2とケーブルC(太字で図示)を介して接続される。ここでケーブルCは関節JのサーボモータMやブレーキ(図示せず)等に電源を供給するための電源ライン、サーボモータMに取り付けられた位置センサEからのセンサ信号を受信するための信号ライン等が含まれる。また、制御装置3は監視装置4と通信ケーブル(図示しない)を介して接続される。ここで通信ケーブルは、例えばRS422等のシリアル通信用のケーブルである。本実施形態では、制御装置3は、通信ケーブルを介して、監視装置4に監視信号(位置センサの検出信号)を供給するとともに、監視装置4から速度制限指令を受信し、これに従ってロボットアーム2の動作速度を変更するように構成される。ここでロボットアーム2の動作速度とは、ロボットアーム2を構成するサーボモータMの回転速度(以下、「モータ速度」ともいう)を意味する。
 制御装置3は、演算処理器6、サーボアンプ7、メモリ、入出力インタフェース、通信インタフェース等を備えたロボットコントローラである。演算処理器6は、電流指令値生成部61と、速度制限値設定部62とを備える。ここで電流指令値生成部61及び速度制限値設定部62は、演算処理器6において、所定のプログラムが実行されることによって、実現される機能ブロックである。電流指令値生成部61は、ロボットの動作プログラムに基づいて、関節Jを駆動するサーボモータMの位置指令値を生成し、生成した位置指令値と位置センサからの検出値(実際値)の偏差に基づいて速度指令値を生成する。そして、生成した速度指令値と速度現在値の偏差に基づいてトルク指令値(電流指令値)を生成し、サーボアンプ7に出力する。サーボアンプ7は、サーボモータMに対応して設けられ、与えられる電流指令値に基づいて電流を発生し、ケーブルCを介して発生した電流をサーボモータMに供給する。つまり、各サーボアンプ7は電流指令値に応じてサーボモータMの駆動電流を発生する増幅器である。制御装置3は、位置指令値に基づいて各関節Jに設けられたサーボモータMを位置制御することにより、各ロボットアーム2の動作を制御するように構成される。
 速度制限値設定部62は、監視装置4から受信した速度制限指令に基づいて、各アーム2,2のモータ速度が所定の速度を超えないように速度制限値を設定する。本実施形態では、速度制限値設定部62は、初期値として、速度制限値を第1速度(例えば800mm/s)に設定している。電流指令値生成部61は、速度制限値設定部62により設定された速度制限値を超えないように、生成した速度指令値に制約を与える。
 図4は、図3の監視装置4の構成を示すブロック図である。図4に示すように、監視装置4は、距離算出部41と、距離監視部42と、速度制限値生成部43と、速度算出部44と、速度監視部45と、停止信号生成部46と、を備える。ここで監視装置4は、1以上のプロセッサ、メモリ、入出力インタフェース、通信インタフェース等を備えたコンピュータである。各部(41~46)は、プロセッサにおいて、所定のプログラムが実行されることによって、実現される機能ブロックである。
 距離算出部41は、一方のアーム2の先端と他方のアーム2の先端との間の距離Dを算出するように構成される。本実施形態では、距離算出部41は、各サーボモータMの回転角度位置(位置センサEの検出信号)及び予め設定された各リンクの長さや形状等の情報に基づいて、各アーム2の先端の位置を算出し、両アーム2先端の間の距離Dを算出する。本実施形態では、アーム2,2の先端の位置は、エンドエフェクタ19,19のツールセンターポイントTP,TPである(図2参照)。距離算出部41は、ロボット1のベース座標系におけるツールセンターポイントTP,TPの各位置座標を算出し、エンドエフェクタ19,19のツールセンターポイントTP,TP間の距離Dを算出する。
 距離監視部42は、距離算出部41により算出された距離Dが所定値以下であるか否かを監視するように構成される。ここで所定値は、アーム2,2の先端によって周囲の障害物(例えば作業者)を挟み込む可能性のある値に設定される。本実施形態では所定値は10cmに設定される。尚、監視装置4は、監視対象である距離Dの設定値を、例えば管理者により任意の値に調整可能な入力手段(図示せず)を備える。本実施形態では所定値は10cmに設定されるが、ロボット1の周囲の状況や想定される障害物の大きさによって適宜設定されてもよい。距離監視部42は、各サーボモータの回転角度位置及び予め設定された各リンクの長さや形状等の情報に基づいて、ロボット1の3次元モデルを生成するように構成されていてもよい。
 速度制限値生成部43は、距離Dが所定値以下である場合には、各アーム2,2のモータ速度が所定速度を超えないように速度制限指令を生成し、制御装置3に送信するように構成される。本実施形態では、速度制限値生成部43は、距離Dが所定値以下である場合には、各アーム2,2のモータ速度が第1速度(初期値)よりも低い第2速度を超えないような速度制限指令を生成し、制御装置3に送信するように構成される。
 速度算出部44は、各サーボモータMの回転角度位置(位置センサEの検出信号)に基づいて、各サーボモータMの速度(モータ速度)を演算する。ここでは監視信号に含まれる各サーボモータMの回転角度位置が、通信ケーブルを介して制御装置3から監視装置4に送信され、速度算出部44に入力される。速度算出部44は、算出結果を速度監視部45に出力するように構成されている。
 速度監視部45は、各アーム2,2のモータ速度が所定の速度を超えているか否かを監視する。本実施形態では、速度監視部45は、距離算出部41により算出された距離Dが所定値以下である場合に、各ロボットアーム2の関節J1~J4に設けられたサーボモータMのモータ速度のうち、いずれかのモータ速度が第2速度を超えているか否かを監視する。
 停止信号生成部46は、距離Dが所定値以下である場合に、速度監視部45によりモータ速度が第2速度を超えていると判定された場合にはロボット1の停止信号を生成し、これを制御装置3に供給する。
 次に、監視装置4によるロボット1の監視動作について図5のフローチャートを参照しつつ説明する。図5に示すように、まず、監視装置4は、制御装置3から所定期間ごとに送信される監視信号の受信を待機する(図5のステップS11)。本実施形態では、監視信号は、ロボットアーム2の位置制御において使用される各関節Jに設けられた位置センサEの検出信号を含む。
 次に、監視装置4は、監視信号を受信したときは、距離算出部41により2本のアーム2,2先端(TP,TP)の間の距離D(図2参照)を算出する(図5のステップS12)。距離算出部41は、各サーボモータMの回転角度位置(位置センサEの検出信号)及び予め設定された各リンクの長さや形状等の情報に基づいて、各アーム2の先端(TP,TP)の位置を算出し、両アーム2先端(TP,TP)の間の距離Dを算出する。
 次に、距離監視部42は、距離算出部41により算出された距離Dが所定値以下であるか否かを監視する(図5のステップS13)。本実施形態では、距離監視部42は、距離監視部42は、距離Dが10cm以下である場合にはアーム2,2の先端によって周囲の阿形者を挟み込む可能性があると判定する。一方、距離Dが10cmよりも長い場合にはアーム2,2の先端によって周知の作業者を挟み込む可能性はないと判定する。
 次に、速度制限値生成部43は、距離監視部42によりアーム2,2の先端によって周囲の作業者を挟み込む可能性があると判定された場合(図5のステップS13でYES)は、モータ速度が第1速度よりも低い第2速度を超えないような速度制限指令を生成し、これを制御装置3に供給する(図5のステップS14)。ここで第2速度は、ISO10218-1に低速制御として規定されている250mm/sである。制御装置3は、モータ速度が第2速度を超えないようにアーム2,2の動作を制御する。これにより、例えばロボットの近くの作業者の一部(例えば手首)がアーム2,2の先端の間に挟まれた場合でも、エンドエフェクタ19,19が高速で衝突することはない。
 更に、本実施形態では、速度監視部45は、アーム2,2の動作速度がステップS14で制限された第2速度を超えているか否かを監視する(図5のステップS15)。本実施形態では、速度監視部45は、距離Dが所定値以下である場合に、アーム2,2の関節J1~J4に設けられたサーボモータMのうち、いずれかのモータ速度が第2速度を超えているか否かを監視する。
 次に、停止信号生成部46は、速度監視部45によりモータ速度が第2速度を超えていると判定された場合(図5のステップS15でNO)にはロボット1の停止信号を生成し、これを制御装置3に供給する(図5のステップS16)。制御装置3はロボット1の動作を停止させる。
 一方、速度制限値生成部43は、距離監視部42により、アーム2,2の先端によって周囲の作業者を挟み込む可能性はないと判定された場合(図5のステップS13でNO)には、速度制限指令を生成しない。ここで速度制限値の初期値は、第1速度(例えば800mm/s)に設定されているので、制御装置3は、モータ速度が第1速度を超えないようにアーム2,2の動作を高速で制御する。これにより、ロボット1の能力を最大限発揮させることができる。制御装置3は、以上のような動作をロボット1の作業が終了するまで繰り返し行う。
 一般に、図2に示すように、ロボット1と作業者が同じ作業空間内で共同して作業する場合、アーム2,2の動作を速くすると作業性は向上するが、作業者の安全性の確保が問題になる場合がある。一方、アーム2,2の動作を遅くすると作業者の安全性は確保できるが、作業性は低下する。このようにロボット1の作業性と作業者の安全性は、トレードオフの関係にある。
 そこで、本実施形態によれば、アーム2,2の先端の間の距離Dが所定値よりも大きい場合(図5のステップS13でNO)には、アーム2,2の先端により周囲の作業者を挟み込む可能性が無いと判断しアーム2,2を可能な限り高速度(第1速度)で動作させる。一方で、距離Dが所定値以下では、アーム2,2の先端により周囲の作業者を挟み込む可能性が有ると判断しアーム2,2を低速度(第2速度)で動作させる。これにより、ロボット1の周囲の作業者の一部(例えば手首)がロボットアーム2,2の先端に挟まれた場合でも、エンドエフェクタ19,19が高速で衝突することはない。従って、ロボットの作業性と作業者の安全性の両立を図ることができる。
 さらに、本実施形態では、距離Dが所定値以下である場合に、ロボットアーム2の動作速度が第2速度を超えた場合は、ロボットアーム2の動作を停止させるので、作業者の安全性が更に向上する。人と共同して作業するロボットに適した制御装置3を提供することができる。
(第2実施形態)
 次に、第2実施形態について説明する。以下では、第1実施形態と共通する構成の説明は省略し、相違する構成についてのみ説明する。
 図6は、第2実施形態に係る監視装置の構成を示すブロック図である。図6に示すように、本実施形態では、第1実施形態(図4)と比較すると、監視装置4Aが、速度制限値生成部43、速度算出部44及び速度監視部45の代わりに、駆動トルク推定部47、外力検出部48及び力監視部49を備える点が異なる。本実施形態の監視装置4Aは、速度監視機能に代えて、力監視機能を備えている。このため、本実施形態では、制御装置3から監視装置4に送信される監視信号は、位置センサEの検出信号、及び、電流センサ5で検出されたセンサ電流値を含む。
 駆動トルク推定部47は、位置センサEにより算出された回転角度位置から、ロボット1の関節のサーボモータを駆動するのに必要な駆動トルクを推定する。駆動トルク推定部47は、本実施形態では、重力トルク、慣性力トルク、及び摩擦力トルクをそれぞれ算出し、これらを加算することにより、駆動トルクの推定値を算出する。ここで重力トルクは各リンクの重量に打ち勝って姿勢を維持するためのトルクである。慣性力トルクはリンクの慣性に打ち勝つために必要なトルクである。摩擦力トルクは減速機の摩擦に打ち勝つために必要なトルクである。尚、本実施形態では、駆動トルク推定部47は監視装置4に実装されるような構成であるが、制御装置3に実装されてもよい。駆動トルク推定値は、電流センサ5で検出されたセンサ電流値及び位置センサEで検出された回転角度位置を含むセンサ信号とともに、監視信号として制御装置3から監視装置4に送信されてもよい。
 外力検出部48は、アーム2,2の先端に作用する外力を検出する。本実施形態では外力検出部48は、電流センサ5で検出された各サーボモータMを流れるセンサ電流値をトルク値に変換する。そして、センサ電流値から変換されたトルク値から、駆動トルク推定部47から入力された駆動トルクの推定値を減算し、これを外乱トルクとして算出する。そして、この外乱トルク値を用いてアーム2の先端に働く外力を算出し、これを力監視部49に出力する。具体的には、外力検出部48は、外乱トルクτから各アーム2の先端(図2のTP)に働く外力fを、仮想仕事の原理によって次式(3)のように求める。
      f=(K-1τ・・・(3)
ここでKはヤコビ行列であり、ロボット1のベース座標系と関節座標系との間の微小変位関係を表現した行列である。ヤコビ行列Kについて、誤差Δxと関節角差分Δθには式(4)の関係が成立している。
      Δx=KΔθ・・・・・・(4)
 このように外力検出部48は、式(3)のように外乱トルクτにヤコビ行列Kの転置行列Jの逆行列を乗じることによりアーム2,2の先端に作用する外力fを算出し、これを力監視部49に出力する。尚、式(3)の外力fはロボットアーム2の先端で作用していると想定したときの外力である。外力fがアーム2の先端以外を作用点としている場合は、外力fを実際の作用点での外力に座標変換してもよい。
 力監視部49は、距離算出部41により算出された距離D(図2参照)が所定値よりも大きい場合、外力検出部48によって検出された外力に基づいて、第1の監視基準で衝突を検知するように構成される。具体的には、力監視部49は、外力検出部48から入力された外力の値fの微分値に比例した値f’をロボットアーム2の先端に働く衝撃力として算出し、ロボットアーム2の先端に働く衝撃力の値|f’|が予め設定された第1閾値fth1を超えたか否かを判定し、第1閾値fth1を超えたときにロボットアーム2の先端に障害物が衝突したと判定して衝突検知信号を生成し、これを停止信号生成部46に出力するように構成されている。第1閾値fth1との比較対象である衝撃力の値|f’|は外力f’のスカラ値である。尚、力監視部49は、外力検出部48から入力された外力の値|f|が予め設定された閾値を超えたか否かを判定して衝突を検知してもよい。尚、監視装置4は、例えば管理者により、衝突検知の際の閾値を任意の値に調整可能な入力手段(図示せず)を備える。
 停止信号生成部46は、力監視部49から衝突検知信号が入力された場合にはロボット1の停止信号を生成し、これを制御装置3に出力する。
 次に、監視装置4Aによるロボット1の監視動作について図7のフローチャートを参照しつつ説明する。図7のステップS21からステップS23までの距離算出部41及び距離監視部42の動作は、図5のステップS11からステップS13までの動作と同じであるので、説明を省略する。
 図7に示すように、力監視部49は、距離Dが所定値以下である場合(図7のステップS23でYES)、外力検出部48によって検出された外力に基づいて、第1の監視基準で衝突を検知する(図7のステップS24)。具体的には、力監視部49は、外力検出部48から入力された外力の値|f|が予め設定された第1閾値fth1を超えたか否かを判定し、第1閾値fth1を超えたときにロボットアーム2の先端に障害物が衝突したと判定して衝突検知信号を生成し、これを停止信号生成部46に出力する。このように、力監視部49は、距離監視部42によりアーム2,2の先端によってロボット1の周囲に存在する障害物(例えば作業者)を挟み込む可能性があると判断された場合、アーム先端に作用する外力に基づいて衝突を検知する。
 そして、停止信号生成部46は、力監視部49から衝突検知信号が入力された場合(図7のステップS24でYES)にはロボット1の停止信号を生成し(図7のステップS25)、これを制御装置3に出力する。これにより、制御装置3は、ロボット1の動作を停止させることができる。
 本実施形態によれば、アーム2,2先端により周囲の物を挟み込む可能性のある場合にはアーム2,2先端に作用する外力に基づいて衝突を検知し、衝突を検知した後はロボット1の動作を停止させることができるので、作業者の安全性を向上させることができる。
<変形例>
 次に、本実施形態の力監視機能の変形例について説明する。本変形例では、距離Dに応じて2つの異なる監視基準で衝突を検知する。具体的には、図6の力監視部49が、距離算出部41により算出された距離Dが所定値よりも大きい場合、外力検出部48によって検出された外力に基づいて、第1の監視基準で衝突を検知するように構成される。具体的には、力監視部49は、外力検出部48から入力された外力の値|f|が予め設定された第1閾値fth1を超えたか否かを判定し、第1閾値fth1を超えたときにロボットアーム2の先端が障害物に衝突したと判定して衝突検知信号を生成し、これを停止信号生成部46に出力するように構成されている。本実施形態では第1閾値fth1は100Nに設定される。第1閾値fth1との比較対象である外力の値|f|は外力fのスカラ値である。
 一方、力監視部49は、力監視部49は距離算出部41により算出された距離Dが所定値以下である場合、外力検出部48によって検出された外力に基づいて、第1の監視基準とは異なる監視基準である第2の監視基準で衝突を検知するように構成される。具体的には、力監視部49は、外力検出部48から入力された外力の値fの微分値に比例した値f’をロボットアーム2の先端に働く衝撃力として算出し、ロボットアーム2の先端に働く衝撃力の値|f’|が予め設定された第2閾値fth2超えたか否かを判定し、第2閾値fth2を超えたときにロボットアーム2の先端が障害物に衝突したと判定して衝突検知信号を生成し、これを停止信号生成部46に出力するように構成されている。第2閾値fth2との比較対象である衝撃力の値|f’|は外力f’のスカラ値である。
 図8は、本変形例の監視動作を示すフローチャートである。図8に示すように、力監視部49は、距離Dが所定値を超えた場合には(図8のステップS23でNO)、外力検出部48によって検出された外力に基づいて、第1の監視基準で衝突を検知する(図8のステップS24-1)。具体的には、力監視部49は、外力検出部48から入力された外力の値|f|が予め設定された第1閾値fth1を超えたか否かを判定し、第1閾値fth1を超えたときにロボット1が衝突したと判定して衝突検知信号を生成し、これを停止信号生成部46に出力する。このように、力監視部49は、距離監視部42によりアーム2,2の先端によってロボット1の周囲に存在する障害物(例えば作業者)を挟み込む可能性はないと判断された場合は、衝突感度を低く設定し衝突を検知する。
 一方、力監視部49は、距離Dが所定値以下である場合(図8のステップS23でYES)、外力検出部48によって検出された外力に基づいて、第1の監視基準とは異なる監視基準である第2の監視基準で衝突を検知する(図8のステップS24-2)。具体的には、力監視部49は、外力検出部48から入力された外力の値fの微分値に比例した値f’をロボットアーム2の先端に働く衝撃力として算出し、ロボットアーム2の先端に働く衝撃力の値|f’|が予め設定された第2閾値fth2を超えたか否かを判定し、第2閾値fth2を超えたときにロボットアーム2の先端が障害物に衝突したと判定して衝突検知信号を生成し、これを停止信号生成部46に出力する。このように、力監視部49は、距離監視部42によりアーム2,2の先端によってロボット1の周囲に存在する障害物(例えば作業者)を挟み込む可能性があると判断された場合は、衝突感度を高く設定し衝突を検知する。
 そして、停止信号生成部46は力監視部49から衝突検知信号が入力された場合には、ロボット1の停止信号を生成し(図8のステップS25)、これを制御装置3に出力する。これにより、制御装置3は、ロボット1の動作を停止させることができる。
 本変形例によれば、2本のアーム2,2の先端により周囲の物を挟み込む可能性がない場合には第1の監視基準(衝突感度を低く設定)で衝突を検知する。一方、2本のアーム2,2の先端により周囲の物を挟み込む可能性がある場合には第2の監視基準(衝突感度を高く設定)で衝突を検知する。つまり、2本のアーム2,2の先端の間隔に応じて衝突感度を変更することができるので、ロボットの作業性と作業者の安全性の両立を図ることができる。
 尚、本実施形態では、衝突を検知した後はロボットの動作を停止させるようにしたが、周囲の作業者又は管理者に報知するようにしてもよい。
 また、本実施形態の監視装置4Aは、距離Dに応じてロボットアーム2,2に作用する外力に基づいて衝突検知を行う力監視機能を備えたが、第1実施形態の速度監視機能を組み合わせてもよい。
 尚、本実施形態では、力センサを用いることなく、サーボモータの電流値に基づいてロボットアーム2の先端に働く外力を計算するので、安価且つ高精度に衝突を検知することができる。これにより、ロボットとその周辺で作業する作業者の共同作業における利便性が更に向上する。
(その他の実施形態)
 尚、上記各実施形態では、本実施形態では、距離算出部41は、各サーボモータMの回転角度位置(位置センサEの検出信号)及び予め設定された各リンクの長さや形状等の情報に基づいて、各アーム2の先端の位置を算出し、両アーム2先端の間の距離Dを算出するように構成されたが、これに限られない。例えば両アーム2先端に距離センサを取り付けて、距離センサの検出値に基づいて両アーム2先端の間の距離Dを算出するようにしてもよい。
 尚、上記各実施形態では、アーム2,2の先端の位置は、エンドエフェクタ19,19のツールセンターポイントTP,TPであり、距離Dは、エンドエフェクタ19,19のツールセンターポイントTP,TP間の距離であったが(図2参照)、これに限られない。アーム2,2の先端の位置は、ツールセンターポイント以外の任意の点でもよい。また、アーム先端に設けられたフランジ上に定義されたフランジ座標系の任意の点(例えば原点)でもよい。
 尚、上記各実施形態のロボット1は、水平多関節型のアームを備えた双腕ロボットであったが、垂直多関節型のアームを備えた双腕ロボットであってもよい。
 尚、上記各実施形態のロボット1は、2本のアーム2,2を備えた1台の双腕ロボットであったが、アーム先端の間の距離を定義することができれば、これに限られない。例えば2台の単腕ロボットのアーム先端の間の距離を監視してもよいし、3本以上のロボットアームを備えたロボットシステムにおいて少なくとも2本のアーム先端の間の距離を監視してもよい。
 尚、上記各実施形態の監視装置4,4Aは制御装置3と別々に設けたが、制御装置3に含まれていてもよい。例えば制御装置3の演算処理器6において、監視装置4の各部の機能ブロックが実行されるように構成されていてもよい。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び機能の双方又は一方の詳細を実質的に変更できる。
 本発明は、人と共存して作業するロボットに有用である。
1 ロボット
2 ロボットアーム
3 制御装置
4,4A 監視装置
5 電流センサ
6 演算処理器
7 サーボアンプ
8 台車
9 ベース
17 リスト部
18 メカニカルインターフェース
19 エンドエフェクタ
20 アーム部
20a 第1リンク
20b 第2リンク
41 距離検出部
42 距離監視部
43 速度制限値生成部
44 速度算出部
45 速度監視部
46 停止信号生成部
47 駆動トルク推定部
48 外力検出部
49 力監視部
61 電流指令値生成部
62 速度制限値設定部
100 作業台
J 関節
M サーボモータ
E エンコーダ(位置センサ)
C ケーブル
TP ツールセンターポイント
D アーム先端の間の距離

Claims (7)

  1.  第1のロボットアーム及び第2のロボットアームを有するロボットの動作を制御する制御装置であって、
     前記第1のロボットアームの先端と第2のロボットアームの先端との間の距離を算出する距離算出部と、
     前記距離算出部により算出された前記距離が所定値以下であるか否かを監視する距離監視部と、
    を備える、ロボットの制御装置。
  2.  前記距離算出部により算出された前記距離が前記所定値以下である場合には、前記第1のロボットアーム及び第2のロボットアームの動作速度が所定速度を超えないように前記ロボットアームの動作を制御する、請求項1に記載のロボットの制御装置。
  3.  前記距離算出部により算出された前記距離が前記所定値以下である場合に、前記第1のロボットアーム及び第2のロボットアームの動作速度が前記所定速度を超えたか否かを監視する速度監視部を更に備え、
     前記動作速度が前記所定速度を超えた場合は、前記第1のロボットアーム及び第2のロボットアームの動作を停止させる、請求項2に記載のロボットの制御装置。
  4.  前記第1のロボットアームの先端及び前記第2のロボットアームの先端に作用する外力を検出する外力検出部と、
     前記距離算出部により算出された前記距離が所定値以下である場合に、前記外力検出部によって検出された外力に基づいて、所定の監視基準で衝突を検知する力監視部と、
    を更に備え、
     衝突が検知された場合は、前記第1のロボットアーム及び前記第2のロボットアームの動作を停止させる、請求項1乃至3のいずれか一項に記載のロボットの制御装置。
  5.  前記第1のロボットアームの先端及び前記第2のロボットアームの先端に作用する外力を検出する外力検出部と、
     前記距離算出部により算出された前記距離が所定値よりも大きい場合に、前記外力検出部によって検出された外力に基づいて、第1の監視基準で衝突を検知するとともに、前記距離算出部により算出された前記距離が所定値以下である場合に、前記外力検出部によって検出された外力に基づいて、前記第1の監視基準とは異なる監視基準である第2の監視基準で衝突を検知する力監視部と、
    を更に備え、
     衝突が検知された場合は、前記第1のロボットアーム及び前記第2のロボットアームの動作を停止させる、請求項1乃至4のいずれか一項に記載のロボットの制御装置。
  6.  前記第1ロボットアーム、および、前記第2ロボットアームは、同軸まわりにそれぞれ独立して回転可能に設けられる、請求項1乃至5のいずれか一項に記載のロボットの制御装置。
  7.  前記第1のロボットアームの先端の位置は、前記第1のロボットアームのツールセンターポイントであり、
     前記第2のロボットアームの先端の位置は、前記第2のロボットアームのツールセンターポイントであって、
     前記距離算出部は、前記第1のロボットアームのツールセンターポイントと前記第2のロボットアームのツールセンターポイントとの間の距離を算出する、請求項1乃至6のいずれか一項に記載のロボットの制御装置。
PCT/JP2019/032157 2018-09-03 2019-08-16 ロボットの制御装置 WO2020049979A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980056041.3A CN112638600B (zh) 2018-09-03 2019-08-16 机器人的控制装置
US17/190,415 US20210187743A1 (en) 2018-09-03 2021-03-03 Robot controlling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018164762A JP7144247B2 (ja) 2018-09-03 2018-09-03 ロボットの制御装置
JP2018-164762 2018-09-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/190,415 Continuation US20210187743A1 (en) 2018-09-03 2021-03-03 Robot controlling device

Publications (1)

Publication Number Publication Date
WO2020049979A1 true WO2020049979A1 (ja) 2020-03-12

Family

ID=69721517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032157 WO2020049979A1 (ja) 2018-09-03 2019-08-16 ロボットの制御装置

Country Status (5)

Country Link
US (1) US20210187743A1 (ja)
JP (1) JP7144247B2 (ja)
CN (1) CN112638600B (ja)
TW (1) TWI753287B (ja)
WO (1) WO2020049979A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09319420A (ja) * 1996-05-31 1997-12-12 Ricoh Co Ltd 組立ロボット
JP2001225287A (ja) * 2000-02-10 2001-08-21 Mitsubishi Heavy Ind Ltd マニピュレータの位置決め装置
JP2012006132A (ja) * 2010-06-28 2012-01-12 Hitachi Constr Mach Co Ltd 双腕作業機械
JP2015526116A (ja) * 2012-06-01 2015-09-10 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 零空間を使用して操作アーム間の衝突を回避するためのシステム及び方法
WO2017094240A1 (ja) * 2015-12-01 2017-06-08 川崎重工業株式会社 ロボットシステムの監視装置
JP2017177321A (ja) * 2016-03-23 2017-10-05 セイコーエプソン株式会社 制御装置及びロボットシステム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07200016A (ja) * 1993-12-28 1995-08-04 Kobe Steel Ltd 産業用ロボットの制御方法
JP2008188722A (ja) * 2007-02-06 2008-08-21 Fanuc Ltd ロボット制御装置
US7843158B2 (en) * 2008-03-31 2010-11-30 Intuitive Surgical Operations, Inc. Medical robotic system adapted to inhibit motions resulting in excessive end effector forces
US8386080B2 (en) * 2009-09-15 2013-02-26 Harris Corporation Robotic apparatus implementing collision avoidance scheme and associated methods
JP2015074052A (ja) * 2013-10-09 2015-04-20 日立建機株式会社 双腕作業機
WO2015120864A1 (en) * 2014-02-13 2015-08-20 Abb Technology Ag Robot system and method for controlling the robot system
EP3238893B1 (en) * 2014-12-26 2022-04-13 Kawasaki Jukogyo Kabushiki Kaisha Robot system
US10329042B2 (en) * 2015-03-20 2019-06-25 Seiko Epson Corporation Packing apparatus and packing method
JP2017077608A (ja) * 2015-10-21 2017-04-27 ファナック株式会社 ロボットの安全監視装置
US10219868B2 (en) * 2016-01-06 2019-03-05 Ethicon Llc Methods, systems, and devices for controlling movement of a robotic surgical system
US10065316B2 (en) * 2016-02-05 2018-09-04 Rethink Robotics, Inc. Systems and methods for safe robot operation
US10213916B2 (en) * 2016-03-23 2019-02-26 Seiko Epson Corporation Control apparatus and robot system
US10182875B2 (en) * 2016-08-16 2019-01-22 Ethicon Llc Robotic visualization and collision avoidance
JP6585574B2 (ja) * 2016-09-30 2019-10-02 ファナック株式会社 作業者とロボットとの協働作業を行う生産システム
JP6866673B2 (ja) * 2017-02-15 2021-04-28 オムロン株式会社 監視システム、監視装置、および監視方法
JP6712583B2 (ja) * 2017-10-20 2020-06-24 ヤマハ発動機株式会社 駐車装置および発進補助装置
JP6680752B2 (ja) * 2017-11-28 2020-04-15 ファナック株式会社 ロボットの速度を制限する制御装置
JP6770025B2 (ja) * 2018-07-12 2020-10-14 ファナック株式会社 ロボット

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09319420A (ja) * 1996-05-31 1997-12-12 Ricoh Co Ltd 組立ロボット
JP2001225287A (ja) * 2000-02-10 2001-08-21 Mitsubishi Heavy Ind Ltd マニピュレータの位置決め装置
JP2012006132A (ja) * 2010-06-28 2012-01-12 Hitachi Constr Mach Co Ltd 双腕作業機械
JP2015526116A (ja) * 2012-06-01 2015-09-10 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 零空間を使用して操作アーム間の衝突を回避するためのシステム及び方法
WO2017094240A1 (ja) * 2015-12-01 2017-06-08 川崎重工業株式会社 ロボットシステムの監視装置
JP2017177321A (ja) * 2016-03-23 2017-10-05 セイコーエプソン株式会社 制御装置及びロボットシステム

Also Published As

Publication number Publication date
TWI753287B (zh) 2022-01-21
US20210187743A1 (en) 2021-06-24
CN112638600B (zh) 2024-03-29
JP7144247B2 (ja) 2022-09-29
JP2020037144A (ja) 2020-03-12
TW202122228A (zh) 2021-06-16
CN112638600A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
JP6860498B2 (ja) ロボットシステムの監視装置
JP7141232B2 (ja) ロボットの制御装置
JP3223826U (ja) 産業用ロボット
JP6924146B2 (ja) ロボットシステムの監視装置
US9821459B2 (en) Multi-joint robot having function for repositioning arm
US11548153B2 (en) Robot comprising safety system ensuring stopping time and distance
JP6364096B2 (ja) ロボットシステム
EP2925493B1 (en) Teleoperation of machines having at least one actuated mechanism and a fault detection and recovery system
JP5904445B2 (ja) ロボット用制御装置
WO2020049979A1 (ja) ロボットの制御装置
JPH0985658A (ja) ロボットの制御システム
Kinugawa et al. Collision risk reduction system for assembly task partner robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19856525

Country of ref document: EP

Kind code of ref document: A1