WO2020049801A1 - 電力変換装置 - Google Patents
電力変換装置 Download PDFInfo
- Publication number
- WO2020049801A1 WO2020049801A1 PCT/JP2019/019073 JP2019019073W WO2020049801A1 WO 2020049801 A1 WO2020049801 A1 WO 2020049801A1 JP 2019019073 W JP2019019073 W JP 2019019073W WO 2020049801 A1 WO2020049801 A1 WO 2020049801A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- voltage
- power conversion
- capacitor
- conversion circuit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
- B60L53/22—Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/007—Plural converter units in cascade
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
- H02M3/33584—Bidirectional converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M7/219—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/30—AC to DC converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Definitions
- the present application relates to a power conversion device.
- electric vehicles such as plug-in hybrid electric vehicles that run by driving a motor with electric power charged in a battery have been developed.
- These electric vehicles are equipped with the following power supply device as a power conversion device having a power supply function of supplying power from an external commercial power supply or the like to a battery.
- the power supply device is connected to an AC power supply and outputs an insulated AC / DC converter that outputs a link voltage insulated from the AC power supply, and a bidirectional DC / DC converter that inputs the link voltage and charges the main battery. And an isolated DC / DC converter that inputs a link voltage and supplies power to a load.
- the control means performs a switching operation of the bidirectional DC / DC converter to maintain the link voltage at the link voltage lower limit.
- the bidirectional DC / DC converter is operated in a through manner to make the link voltage substantially equal to the voltage of the main battery.
- the threshold value is determined so that the total loss in the power supply device is reduced (for example, see Patent Document 1).
- the power converter as described above physically connects the insulated AC / DC converter to an AC power supply via a connection line such as a charging cable, and charges the main battery and the load via the charging cable. Power loss is reduced.
- the wired system in which charging is performed using a connection line such as a charging cable has a problem that, for example, workability is deteriorated when handling the charging cable in outdoor charging work in bad weather. For this reason, for example, at least one of a wireless method (non-contact method) for receiving power from a power transmission coil of a power transmission device buried under a road in a non-contact manner and a wired method (contact method) as described above is selectively used.
- a vehicle-side device as a power conversion device as described below, which is capable of supplying power using the device and reducing power loss.
- the vehicle-side device services to receive charging power from the infrastructure side via a wired connection and / or a wireless connection.
- the vehicle side includes a wired path including a main electromagnetic interference (EMI) filter and rectifier, and a PFC (Power Factor Correction) unit.
- the vehicle side further includes a wireless path including a vehicle pad, a vehicle tuning circuit, a vehicle pad decoupling rectifier, and an output filter.
- the vehicle side further includes a coupling path including a bulk capacitance, an isolated DC / DC converter, and a battery.
- the PFC unit reduces harmonic components in the AC supply current. Reducing the AC current harmonic content can help the energy supplier reduce excess grid power losses and maintain the mains voltage substantially sinusoidally.
- the PFC unit receives the signal from the main EMI filter and provides a power factor correction signal to the bulk capacitance.
- An output filter receives the signal from the vehicle pad decoupling rectifier and provides a filtered output signal to the bulk capacitance (see, for example, US Pat.
- JP-A-2015-208171 paragraphs [0020] to [0040], FIGS. 4 to 6) JP 2016-524890 A (paragraphs [0136] to [0146] [0249], FIG. 10)
- the battery can be charged from at least one of the wired path and the wireless path.
- the PFC unit is usually a booster circuit, when the voltage of the AC supply source is high, the on-vehicle bulk capacitance voltage becomes higher. In this case, if the receiving voltage on the wireless system side is low, the power supply function on either the wired system side or the wireless path side must be stopped. Therefore, for example, even when it is necessary to charge the battery from both the wired path and the wireless path at the same time in order to shorten the charging time, the charging is performed simultaneously depending on the received voltage value on the wired path side and the wireless path side. There was a problem that it was not possible to do this. Further, in a power converter that performs such power supply, higher power supply efficiency is required from the viewpoint of shortening the power supply time, reducing the number of devices on the power supply device side, and the like.
- the present application discloses a technique for solving the above-described problem, and regardless of a receiving voltage value on a wired side and a wireless side, a power supply function by a wired system and a power supply function by a wireless system
- the present invention relates to a power conversion device capable of effectively reducing power loss while improving workability by simultaneously supplying power to the power conversion device.
- the power conversion device disclosed in the present application is: A first converter circuit connected to an AC power supply via a first terminal, for converting an input voltage from the AC power supply into a DC voltage, and performing a step-up or step-down operation of the DC voltage converted by the first converter circuit; A first power conversion circuit having a second converter circuit for outputting; A non-contact power receiving coil serving as a first end for receiving power in a non-contact manner by magnetically coupling to a power transmitting coil of the power transmitting device, and converting an AC voltage received from the non-contact power receiving coil into a DC voltage to a second voltage.
- a second power conversion circuit having a third converter circuit that outputs from the end;
- a third power conversion circuit having a second end connected to the load and boosting or stepping down a DC voltage input from the first end to supply power to the load;
- a first DC capacitor and a second DC capacitor for respectively smoothing a DC voltage;
- a control circuit that controls the first power conversion circuit, the second power conversion circuit, and the third power conversion circuit, A second end of the first power conversion circuit and a second end of the second power conversion circuit are connected to a first end of the third power conversion circuit via an integrated bus, and the first DC capacitor is The second DC capacitor is connected between the first converter circuit and the second converter circuit, and the second DC capacitor is connected to the integrated bus, and is output from at least one of the first power conversion circuit and the second power conversion circuit.
- the DC power is supplied to the load via the third power conversion circuit
- the control circuit includes: The DC voltage of the first DC capacitor or the DC voltage of the second DC capacitor is reduced so as to reduce at least one power loss of the first power conversion circuit, the second power conversion circuit, and the third power conversion circuit. adjust, Things.
- the power supply function of the wired method and the power supply function of the wireless method are simultaneously performed regardless of the receiving voltage values on the wired and wireless sides. Since it is possible, workability is improved and power loss can be effectively reduced.
- FIG. 1 is a schematic configuration diagram illustrating a power conversion device according to a first embodiment.
- FIG. 4 is a flowchart showing a first mode which is an operation mode relating to power loss reduction of the control device according to the first embodiment.
- FIG. 13 is a flowchart showing a second mode which is an operation mode relating to power loss reduction of the control device according to the second embodiment.
- FIG. 13 is a flowchart showing a first example of a third mode which is an operation mode relating to power loss reduction of the control device according to the third embodiment.
- FIG. 14 is a diagram illustrating loss characteristic information of the power conversion device according to the third embodiment.
- FIG. 14 is a diagram illustrating loss characteristic information of the power conversion device according to the third embodiment.
- FIG. 14 is a diagram illustrating loss characteristic information of the power conversion device according to the third embodiment.
- FIG. 13 is a flowchart showing a second example of the third mode, which is an operation mode relating to power loss reduction, of the control device according to the third embodiment.
- FIG. 14 is a diagram illustrating loss characteristic information of the power conversion device according to the third embodiment.
- FIG. 14 is a diagram illustrating loss characteristic information of the power conversion device according to the third embodiment.
- FIG. 19 is a flowchart showing a third example of the third mode that is the operation mode related to the power loss reduction of the control device according to the third embodiment.
- FIG. 14 is a diagram illustrating loss characteristic information of the power conversion device according to the third embodiment.
- FIG. 14 is a diagram illustrating loss characteristic information of the power conversion device according to the third embodiment.
- FIG. 13 is a schematic configuration diagram illustrating a power conversion device according to a fourth embodiment.
- FIG. 1 is a schematic configuration diagram showing a power conversion device 100 according to the first embodiment.
- Power conversion device 100 in the present embodiment is a power supply system applied to a charger mounted inside an electric vehicle or the like, and converts electric power from a commercial AC system or a private generator outside the electric vehicle into electric power inside the electric vehicle.
- a load 6 such as a high-voltage battery.
- the power conversion device 100 includes a contact type charger 10 as a first power conversion circuit, a non-contact type charger 20 as a second power conversion circuit, a DC / DC converter 30 as a third power conversion circuit, And a circuit 50.
- the contact charger 10 receives power from the AC power supply 1 by being physically connected to an AC power supply 1 such as a commercial AC system or a private power generator via a connection line such as a charging cable 2.
- the non-contact type charger 20 receives electric power from an external power transmission device (not shown) in a non-contact manner.
- the DC / DC converter 30 supplies power received from the contact charger 10 and the non-contact charger 20 to the load 6.
- the control circuit 50 controls the contact type charger 10, the non-contact type charger 20, and the DC / DC converter 30.
- the output terminal 10out of the contact charger 10 and the output terminal 20out of the non-contact charger 20 are connected to the input terminal 30in of the DC / DC converter 30 via the integrated bus 7.
- the integrated bus 7 is connected to an integrated capacitor 5 as a second DC capacitor, and smoothes the DC voltage output from the contact charger 10 and the non-contact charger 20.
- the voltage applied to the integrated bus 7 is referred to as a DC voltage Vint.
- the contact type charger 10 includes an AC / DC converter 11 as a first converter circuit and an insulated DC / DC converter 15 as a second converter circuit.
- the contact type charger 10 has an input terminal 10 in as a first end connected to the AC power supply 1 via the charging cable 2, and an output terminal 10 out as a second end connected to the integrated capacitor 5 via the integrated bus 7.
- the AC voltage Vac1 from the AC power supply 1 is converted into a DC voltage Vint and output to the integrated capacitor 5.
- a connection point between the AC / DC converter 11 and the insulated DC / DC converter 15 is defined as a DC link, and a DC voltage applied to the DC link is defined as a DC voltage Vlink.
- the AC / DC converter 11 is a boost converter including a reactor 12 connected to an input terminal 10in and a full-bridge converter 13, and receives the AC voltage Vac1 of the AC power supply 1 as an input and outputs the DC voltage Vlink. I do.
- the contact charger 10 includes a DC link capacitor 4 as a first DC capacitor connected to the DC link, and smoothes the DC voltage Vlink by the DC link capacitor 4.
- the insulated DC / DC converter 15 is a step-up and step-down converter that includes an inverter 16 as an inverter circuit, an insulating transformer 18, and a converter 17 as a fourth converter circuit.
- the inverter 16 receives the DC voltage Vlink as an input and outputs an AC voltage to the first winding 18a of the insulating transformer 18.
- the insulation transformer 18 multiplies the AC voltage applied to the first winding 18a by the number of turns and outputs the same to the second winding 18b on the secondary side.
- Converter 17 receives the AC voltage output to second winding 18b of insulating transformer 18 as an input, and outputs DC voltage Vint to integrated capacitor 5.
- the non-contact charger 20 includes a non-contact power receiving coil 20in as a first end and a full-bridge converter 21 as a third converter circuit.
- the non-contact power receiving coil 20in is magnetically coupled to a power transmitting coil of an external power transmitting device (not shown) by a magnetic force, and receives power from the power transmitting coil in a non-contact manner.
- the output terminal 20out as the second end is connected to the integrated capacitor 5 via the integrated bus 7.
- non-contact type charger 20 receives the power transmitted from the external power transmission device, rectifies it with full bridge converter 21, and outputs DC voltage Vint to integrated capacitor 5.
- the DC / DC converter 30 is a step-down converter that performs step-down conversion in the direction from the integrated capacitor 5 to the load 6.
- the DC / DC converter 30 has an input terminal 30 in as a first end connected to the integrated capacitor 5 via the integrated bus 7, and an output terminal 30 out as the second end connected to the load 6.
- the DC / DC converter 30 receives the DC voltage Vint of the integrated capacitor 5 as an input and outputs the DC voltage Vbat to the load 6.
- the power conversion device 100 has a contact-type power supply function based on a wired system (contact system) physically connected to the AC power supply 1 by the charging cable 2 and a wireless system that is connected to an external power transmission device without contact. And a non-contact power supply function by a non-contact method (non-contact method). Then, the control circuit 50 can perform both types of power supply for charging using both the wired system and the wireless system, or one-side power supply for charging using one of the wired system and the wireless system. It is possible.
- power conversion device 100 includes a voltage detector 70 for detecting AC voltage Vac1 of AC power supply 1, a voltage detector 71 for detecting DC voltage Vlink of DC link capacitor 4, and an AC voltage Vac2 of non-contact power receiving coil 20in.
- a voltage detector 73 for detecting the DC voltage Vint of the integrated capacitor 5 a voltage detector 74 for detecting the DC voltage Vbat of the load 6, and a DC current Ibat output to the load 6. It includes a current detector 75 for detecting, and a power detector 76 for detecting AC power Pac from the AC power supply 1.
- the power conversion device 100 selects two charging operation modes and charges the load 6 that is a high-voltage battery for driving the vehicle.
- the first is a CC (Constant Current) mode of charging the load 6 with a constant current.
- the second is a CP (Constant Power) mode of charging the load 6 with constant power.
- the control circuit 50 uses the detection values obtained by the voltage detectors 70 to 74, the current detector 75, and the power detector 76 described above.
- DC / DC converter 30 controls DC current Ibat output to load 6.
- the control method of the DC / DC converter 30 by the control circuit 50 is a known feedback control.
- the control circuit 50 determines the ON time DUTY_CHOP of the switching element of the DC / DC converter 30 based on an error Ibat_err between an arbitrary DC current command value Ibat_ref and a detected value of the DC current Ibat.
- the control circuit 50 calculates the on-time DUTY_CHOP by amplifying the error Ibat_err by a compensator such as a proportional integrator.
- the DC / DC converter 30 controls the DC current Ibat to a desired DC current command value Ibat_ref using an arbitrary DC voltage Vint of the integrated capacitor 5 as an input voltage.
- the isolated DC / DC converter 15 controls the DC voltage Vint of the integrated capacitor 5.
- the method of controlling the isolated DC / DC converter 15 by the control circuit 50 is a known feedback control.
- the control circuit 50 determines a time DUTY_DAB for applying a voltage to the insulating transformer 18 based on an error Vint_err between an arbitrary DC voltage command value Vint_ref and a detected value of the DC voltage Vint.
- the control circuit 50 amplifies the error Vint_err with a compensator such as a proportional integrator and calculates a time DUTY_DAB for applying a voltage to the insulating transformer 18.
- the insulation type DC / DC converter 15 controls the DC voltage Vint to a desired DC voltage command value Vint_ref using an arbitrary DC voltage Vlink as an input voltage.
- the AC / DC converter 11 controls the DC voltage Vlink output to the isolated DC / DC converter 15 side.
- the control method of the AC / DC converter 11 by the control circuit 50 is a known feedback control.
- the control circuit 50 determines an ON time DUTY_PFC of the switching element of the AC / DC converter 11 based on an error Vlink_err between an arbitrary DC voltage command value Vlink_ref and a detected value of the DC voltage Vlink.
- the control circuit 50 calculates the on-time DUTY_PFC by amplifying the error Vlink_err by a compensator such as a proportional integrator.
- the AC / DC converter 11 controls the DC voltage Vlink to a desired DC voltage command value Vlink_ref using an arbitrary AC voltage Vac1 of the AC power supply 1 as an input voltage.
- the non-contact type charger 20 receives transmission energy transmitted from a power transmission side coil (not shown) and outputs DC power Pw to the integrated capacitor 5 so as to be regarded as a power source. This is the same in a CP mode described later.
- power conversion device 100 performs constant-current charging of load 6 by the above-described operation in the CC mode.
- the DC / DC converter 30 controls the DC voltage Vint of the integrated capacitor 5.
- the control method of the DC / DC converter 30 by the control circuit 50 is a known feedback control.
- the control circuit 50 determines the ON time DUTY_CHOP of the switching element of the DC / DC converter 30 based on an error Vint_err between an arbitrary DC voltage command value Vint_ref and a detected value of the DC voltage Vint.
- the control circuit 50 calculates the on-time DUTY_CHOP by amplifying the error Vint_err with a compensator such as a proportional integrator.
- the DC / DC converter 30 controls the DC voltage Vint to a desired DC voltage command value Vint_ref even in the output power Pbat to an arbitrary load 6.
- the insulation type DC / DC converter 15 controls the DC voltage Vlink at the connection point with the AC / DC converter 11.
- the method of controlling the isolated DC / DC converter 15 by the control circuit 50 is a known feedback control.
- the control circuit 50 determines a time DUTY_DAB for applying the voltage of the insulating transformer 18 based on an error Vlink_err between an arbitrary DC voltage command value Vlink_ref and a detected value of the DC voltage Vlink.
- the control circuit 50 amplifies the error Vlink_err with a compensator such as a proportional integrator and calculates a time DUTY_DAB for applying a voltage to the insulating transformer 18.
- the isolated DC / DC converter 15 controls the DC voltage Vlink as an input voltage to a desired DC voltage command value Vlink_ref, using an arbitrary DC voltage Vint of the integrated capacitor 5 as an output voltage.
- AC / DC converter 11 controls AC power Pac input from AC power supply 1.
- the control method of the AC / DC converter 11 by the control circuit 50 is a known feedback control.
- the control circuit 50 determines the ON time DUTY_PFC of the switching element of the AC / DC converter 11 based on an error Pac_err between an arbitrary AC power command value Pac_ref and a detected value of the AC power Pac.
- the control circuit 50 calculates the on-time DUTY_PFC by amplifying the error Pac_err with a compensator such as a proportional integrator.
- the AC / DC converter 11 controls the AC power Pac to a desired AC power command value Pac_ref using an arbitrary DC voltage Vlink as an output voltage.
- the non-contact type charger 20 receives transmission energy transmitted from a power transmission side coil (not shown) and outputs DC power Pw to the integrated capacitor 5 so as to be regarded as a power source. This is similar to the CC mode described above.
- power conversion device 100 performs the above-described operation in the CP mode to set the total power of DC power output from contact charger 10 and DC power Pw output from contactless charger 20 as the maximum power, and Charge 6.
- the control circuit 50 of the power conversion device 100 performs control so as to reduce power loss that occurs in the power conversion device 100 when performing the above-described constant current charging CC mode and constant power charging CP mode.
- control circuit 50 performs control so as to reduce power loss that occurs in the power conversion device 100 when performing the above-described constant current charging CC mode and constant power charging CP mode.
- the power conversion device 100 includes, as parameters representing operating conditions, an AC voltage Vac1 of the AC power supply 1, a DC voltage Vlink at a connection point between the AC / DC converter 11 and the insulated DC / DC converter 15, and a DC voltage of the integrated capacitor 5. It has a voltage Vint, a DC voltage Vbat of the load 6, and an AC voltage Vac2 of the non-contact power receiving coil 20in.
- the AC voltage Vac1 and the AC voltage Vac2 are determined by the state of the AC system, and the DC voltage Vbat is determined by the type and charge amount of the high-voltage battery. Therefore, the control circuit 50 arbitrarily adjusts the AC voltages Vac1, Vac2, and the DC voltage Vbat. It is difficult to do. Since the DC voltage Vlink of the DC link capacitor 4 is determined by the AC voltage Vac1 and the step-up ratio of the AC / DC converter 11, the DC voltage Vlink can be adjusted only in the range of the AC voltage Vac1 or higher. Further, since the DC voltage Vint of the integrated capacitor 5 is determined by the DC voltage Vbat of the load 6 and the step-down ratio of the DC / DC converter 30, the DC voltage Vint can be adjusted only within the range of the DC voltage Vbat or higher.
- the generated power loss may change depending on the input voltage and the output voltage. Therefore, in the circuit configuration of power conversion device 100 of the present embodiment, by adjusting DC voltage Vlink or DC voltage Vint, AC / DC converter 11, isolated DC / DC converter 15, and DC / DC converter 30 are adjusted. Since the input voltage or the output voltage changes, the power loss in the power converter 100 can be adjusted. As described above, in the present embodiment, the DC voltage command value Vlink_ref or the DC voltage command value Vint_ref is adjusted as the control of the control circuit 50 for reducing the power loss of the power converter 100.
- the control circuit 50 detects a power loss Ps of the power conversion circuits 10, 20, and 30 and performs a first mode in which the power loss is reduced based on the detected power loss Ps; A second mode in which a DC current Ibat output from the DC converter 30 to the load 6 is detected and the power loss is reduced based on the detected DC current Ibat; And a third mode in which the power loss is reduced using the loss characteristic information J in which the power loss is recorded.
- control using the first mode by the control circuit 50 will be described.
- FIG. 2 is a flowchart showing processing performed by control circuit 50 according to the first embodiment in a first mode, which is an operation mode relating to power loss reduction.
- the DC voltage command value Vlink or the DC voltage command value Vint may be adjusted.
- the DC voltage Vint is adjusted.
- the control circuit 50 has a function of calculating the power loss Ps, a function of recording the power loss Ps for at least two times, and a correction value set for the DC voltage command value Vint_ref. A function of adding ⁇ Vref.
- control circuit 50 When the control circuit 50 starts the control in the first mode related to the power loss reduction, the control circuit 50 repeatedly performs the processing from “start” to “end” shown in FIG.
- the condition for the repetition is a lapse of a first set time t1 set in advance by time measurement. That is, during the execution of the first mode, the control circuit 50 performs a series of processes from “start” to “end” at every first set time t1.
- the control circuit 50 detects a power loss Ps of the power conversion device 100 during operation of the power conversion device 100 (step S1). In step S1, the control circuit 50 detects and records the total power loss Ps of the contact charger 10, the non-contact charger 20, and the DC / DC converter 30.
- control circuit 50 sets the latest detection result Ps_moni of the power loss Ps to Ps_moni (n), and sets the detection result Ps_moni of the power loss Ps detected before the first set time t1 to Ps_moni (n ⁇ Record as 1).
- a power detector is provided on the input side of the non-contact charger 20 (not shown).
- the control circuit 50 supplies the AC power command value Pac_ref of the AC power Pac input to the contact charger 10 and the AC power command value Pac_ref to the non-contact charger 20 detected by the power detector (not shown).
- To calculate the power loss Ps by comparing the total input power of the detected AC power with the detected DC voltage Vbat of the load 6 and the output power obtained from the detected DC current Ibat to the load 6. Good.
- the control circuit 50 compares the total input power with the output power obtained from the DC current command value Ibat_ref to the load 6 and the detected DC voltage Vbat of the load 6 to determine the power.
- the loss Ps may be calculated.
- a power detector is provided on the output side of the DC / DC converter 30. Then, the control circuit 50 calculates the total input of the input power detected from the power detector 76 on the input side of the contact charger 10 and the power detector (not shown) provided on the input side of the non-contact charger 20.
- the power loss Ps may be calculated by comparing the power with the output power detected from a power detector provided on the output side of the DC / DC converter 30.
- the control circuit 50 calculates a power loss change which is a temporal change of the power loss Ps_moni thus detected. That is, the control circuit 50 compares Ps_moni (n) and Ps_moni (n-1), and determines whether Ps_moni (n) is increasing or decreasing with respect to Ps_moni (n-1). It is determined whether PS_moni is increasing or decreasing (step S2).
- step S2 When the latest power loss Ps_moni (n) detected this time becomes smaller than the power loss Ps_moni (n ⁇ 1) detected last time (step S2: Yes), the control circuit 50 changes the polarity of the preset correction value ⁇ Vref. It is maintained (step S3a), and a correction value ⁇ Vref of a preset polarity is added to the DC voltage command value Vint_ref of the integrated capacitor 5 (step S4), and the process ends.
- the control circuit 50 sets the correction value ⁇ Vref to the preset correction value ⁇ Vref.
- the polarity of the correction value ⁇ Vref is inverted by multiplying by ⁇ 1 (step S3b), and a correction value ⁇ Vref obtained by inverting a preset polarity is added to the DC voltage command value Vint_ref of the integrated capacitor 5 (step S4). ), And terminate the process.
- step S2 when the latest power loss Ps_moni (n) becomes smaller than the power loss Ps_moni (n-1) (step S2: Yes), the control circuit 50 corrects the correction value ⁇ Vref set in the previous series of processing. Is maintained (step S3a), and the previously set polarity correction value ⁇ Vref is added to the DC voltage command value Vint_ref of the integrated capacitor 5 (step S4).
- step S2 when the latest power loss Ps_moni (n) is equal to or more than the power loss Ps_moni (n-1) (step S2: No), the control circuit 50 changes the polarity of the correction value ⁇ Vref set in the previous series of processing. Invert (Step S3b), and add a correction value ⁇ Vref obtained by inverting the polarity previously set to the DC voltage command value Vint_ref of the integrated capacitor 5 (Step S4).
- the control circuit 50 detects the power loss Ps at every first set time t1, and when the power loss Ps decreases, the polarity of the previous correction value ⁇ Vref (in the first calculation, When the power loss Ps increases, the polarity of the previous correction value ⁇ Vref (the polarity set in advance at the time of the first calculation) is inverted, and the DC voltage command value Vint_ref is set to the above correction value. A new DC voltage command value Vint_ref is obtained by adding ⁇ Vref. By repeating this control, the value of the DC voltage Vint of the integrated capacitor 5 is controlled so that the power loss Ps is minimized.
- the insulation type DC / DC converter 15 is configured.
- the time DUTY_DAB for applying the voltage of the transformer 18 is determined.
- the DC voltage Vint of the integrated capacitor 5 is controlled by the insulation type DC / DC converter 15.
- the ON time DUTY_CHOP of the switching element of the DC / DC converter 30 is determined based on an error Vint_err between an arbitrary DC voltage command value Vint_ref and a detected value of the DC voltage Vint. To determine.
- the DC voltage Vint of the integrated capacitor 5 is controlled by the DC / DC converter 30.
- the isolated DC / DC converter 15 or the DC / DC converter 30 is controlled such that the DC voltage Vint follows the DC voltage command value Vint_ref corrected by the control circuit 50.
- the DC voltage Vint is controlled so as to reduce the power loss of the power converter 100.
- the ON time DUTY_PFC of the switching element of the AC / DC converter 11 is determined based on the error Vlink_err between the arbitrary DC voltage command value Vlink_ref and the detected value of the DC voltage Vlink. To determine. Thus, the DC voltage Vlink of the DC link capacitor 4 is controlled by the AC / DC converter 11.
- the insulation transformer 18 of the insulation type DC / DC converter 15 The time DUTY_DAB for applying the voltage is determined.
- the DC voltage Vlink of the DC link capacitor 4 is controlled by the insulation type DC / DC converter 15.
- step S1 the control circuit 50 determines the total power loss Ps of the three power conversion circuits of the contact charger 10, the non-contact charger 20, and the DC / DC converter 30, that is, the power conversion.
- the power loss Ps in the entire device 100 was detected.
- control circuit 50 has adjusted DC voltage Vlink or DC voltage Vint such that power loss Ps in power conversion device 100 as a whole is reduced.
- Vint_ref the DC voltage command value Vint_ref that minimizes the loss in the contact type charger 10
- the loss of the non-contact type charger 20 is reduced. Is likely to increase extremely.
- the power loss can be effectively reduced. Can be reduced.
- the control circuit 50 determines in step S1 that the total power loss of the two power conversion circuits of the contact charger 10 and the non-contact charger 20. Ps may be detected, and DC voltage Vlink or DC voltage Vint may be adjusted such that power loss Ps of the two power conversion circuits of contact type charger 10 and non-contact type charger 20 is reduced.
- the control circuit 50 adjusts the DC voltage Vlink or the DC voltage Vint such that the power loss Ps of the contact charger 10 is reduced.
- the control circuit 50 detects the power loss Ps of the contact charger 10 and the power loss Ps of the DC / DC converter 30, and reduces the power loss Ps of the contact charger 10 and the DC / DC converter 30. In this case, the DC voltage Vlink or the DC voltage Vint may be adjusted.
- the control circuit 50 adjusts the DC voltage Vlink or the DC voltage Vint such that the power loss Ps of the contactless charger 20 is reduced. Further, for example, the control circuit 50 detects the power loss Ps of the non-contact type charger 20 and the power loss Ps of the DC / DC converter 30, and detects the power loss Ps of the non-contact type charger 20 and the DC / DC converter 30. May be adjusted to reduce the DC voltage Vlink or the DC voltage Vint.
- the DC / DC converter 30 when the power loss due to the DC / DC converter 30 is dominant in the power loss in the entire power converter 100, only the power loss Ps of the DC / DC converter 30 is detected, and the DC / DC converter 30 DC voltage Vlink or DC voltage Vint may be adjusted so as to reduce power loss Ps.
- control circuit 50 reduces the power loss Ps of at least one power conversion circuit among the power conversion circuits of the contact charger 10, the non-contact charger 20, and the DC / DC converter 30.
- the DC voltage Vlink or the DC voltage Vint is adjusted.
- the output terminal 10out of the contact charger 10 and the output terminal 20out of the contactless charger 20 are connected to the DC / DC through the integrated bus 7. It is connected to the input terminal 30 in of the DC converter 30, and the integrated bus 5 is connected to the integrated capacitor 5.
- the non-contact charger 20 is configured to be connected to the output side of the insulated DC / DC converter 15 of the contact charger 10. This makes it possible to simultaneously perform the power supply function of the wired system and the power supply function of the wireless system independently of the voltage values of the AC voltage Vac1 on the wired system side and the AC voltage Vac2 on the wireless system side. , Workability is improved.
- control circuit 50 detects an increase or a decrease in the power loss Ps of the contact type charger 10, the non-contact type charger 20, and the DC / DC converter 30 in the power converter 100 having such a circuit configuration, and detects the power loss.
- the DC voltage Vlink of the DC link capacitor 4 or the DC voltage Vint of the integrated capacitor 5 is controlled so that Ps decreases.
- the input voltage or the output voltage of the AC / DC converter 11, the insulated DC / DC converter 15, the DC / DC converter 30, and the full bridge converter 21 in the contact type charger 10 is adjusted, so that the power Losses are effectively reduced.
- control circuit 50 determines that the power loss Ps of the contact type charger 10, the non-contact type charger 20, and the DC / DC converter 30 is increasing with the power loss Ps detected at each first set time t1. It is determined whether the voltage is present or on the decrease, and the DC voltage Vlink or the DC voltage Vint is controlled based on this determination. As described above, by detecting the actual power loss Ps periodically at each first set time t1, the DC voltage Vlink or the DC voltage Vint can be accurately adjusted in accordance with the actual loss state of the power converter 100. . As a result, power loss is more effectively reduced.
- control circuit 50 controls the switching element of the isolated DC / DC converter 15 in the CC mode, and controls the switching of the DC / DC converter 30 in the CP mode. Control the device. Further, when adjusting the DC voltage Vlink of the DC link capacitor 4, the control circuit 50 controls the switching element of the AC / DC converter 11 in the CC mode, and controls the switching element of the insulated DC / DC converter 15 in the CP mode. Control the switching element. As described above, in the adjustment of the DC voltage Vlink of the DC link capacitor 4 or the DC voltage Vint of the integrated capacitor 5, control can be performed using each of the two modes.
- the DC / DC converter 30 has been described as a step-down circuit, but may be a step-up circuit.
- Embodiment 2 FIG.
- the second embodiment of the present application will be described with reference to the drawings, mainly at points different from the first embodiment.
- the same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
- the first mode in which the power loss Ps of the power conversion circuits 10, 20, and 30 is detected and the power loss is reduced based on the detected power loss Ps has been described.
- a description will be given of a second mode in which a DC current Ibat output from DC / DC converter 30 to load 6 is detected, and power loss is reduced based on the detected DC current Ibat.
- FIG. 3 is a flowchart showing a process performed by control circuit 50 according to the second embodiment in a second mode, which is an operation mode relating to power loss reduction.
- a second mode which is an operation mode relating to power loss reduction.
- the control circuit 50 has a function of detecting the DC current Ibat, a function of recording the DC current Ibat for at least two times, and a function of adding the set correction value ⁇ Vref to the DC voltage command value Vint_ref.
- the control circuit 50 When the control circuit 50 starts the control in the second mode related to the power loss reduction, during the execution of the second mode, from the “start” shown in FIG. A series of processing until “end” is performed every second set time t2. Note that the time length set for the second set time t2 in the second mode may be the same as the time length set for the first set time t2 in the first mode.
- the control circuit 50 detects the DC current Ibat output from the DC / DC converter 30 to the load 6 during the operation of the power converter 100 (step S1). In step S1, the control circuit 50 detects and records the DC current Ibat.
- control circuit 50 sets the latest detection result Ibat_moni of the DC current Ibat to Ibat_moni (n), and sets the detection result Ibat_moni of the DC current Ibat detected earlier by the second set time t2 to Ibat_moni (n ⁇ Record as 1).
- the control circuit 50 calculates a DC current change which is a temporal change of the calculated DC current Ibat. That is, the control circuit 50 compares Ibat_moni (n) with Ibat_moni (n-1), and determines whether Ibat_moni (n) is increasing or decreasing with respect to Ibat_moni (n-1). , Ibat_moni are increasing or decreasing (step S2).
- step S2 When the latest detected DC current Ibat_moni (n) is greater than or equal to the previously detected DC current Ibat_moni (n-1) (step S2: Yes), the control circuit 50 maintains the polarity of the preset correction value ⁇ Vref. Then (step S3a), a preset polarity correction value ⁇ Vref is added to the DC voltage command value Vint_ref of the integrated capacitor 5 (step S4), and the process ends.
- step S2 when the latest detected DC current Ibat_moni (n) becomes smaller than the previously detected DC current Ibat_moni (n-1) (step S2: No), the control circuit 50 sets the correction value ⁇ Vref to ⁇ By multiplying by 1, the polarity of the correction value ⁇ Vref is inverted (step S3b), and the DC voltage command value Vint_ref of the integrated capacitor 5 is added with the correction value ⁇ Vref with the preset polarity inverted (step S4). , And the process ends.
- step S2 when the latest detected DC current Ibat_moni (n) becomes larger than the detected DC current Ibat_moni (n-1) in step S2 (step S2: Yes), the control circuit 50 is set in the previous series of processing.
- the polarity of the corrected value ⁇ Vref is maintained (step S3a), and the correction value ⁇ Vref of the previously set polarity is added to the DC voltage command value Vint_ref of the integrated capacitor 5 (step S4).
- step S2 when the latest detected DC current Ibat_moni (n) becomes smaller than the detected DC current Ibat_moni (n-1) (step S2: No), the control circuit 50 corrects the correction value set in the previous series of processing.
- the polarity of ⁇ Vref is inverted (step S3b), and a correction value ⁇ Vref obtained by inverting the polarity previously set is added to the DC voltage command value Vint_ref of the integrated capacitor 5 (step S4).
- the control circuit 50 detects the DC current Ibat at every second set time t2, and when the DC current Ibat increases, the polarity of the previous correction value ⁇ Vref (in the first calculation, When the DC current Ibat decreases, the polarity of the previous correction value ⁇ Vref (the polarity set in advance at the time of the first calculation) is inverted, and the DC voltage command value Vint_ref is set to the above correction value.
- a new DC voltage command value Vint_ref is obtained by adding ⁇ Vref.
- the load 6 is a voltage source such as a high-voltage battery capable of supplying power to each device in the electric vehicle. Therefore, since the load 6 maintains a substantially constant voltage regardless of the DC current Ibat, control is performed such that the value of the DC voltage Vint of the integrated capacitor 5 is maintained such that the DC current Ibat for the load 6 is maximized. Becomes possible. Thus, power loss in the entire power conversion device 100 can be minimized.
- the DC / DC converter 30 controls the DC current Ibat output to the load 6 as described above.
- the control circuit 50 determines the ON time DUTY_CHOP of the switching element of the DC / DC converter 30 based on an error Ibat_err between an arbitrary DC current command value Ibat_ref and a detected value of the DC current Ibat. Therefore, even when the function of adding the correction value ⁇ Vref to the DC voltage command value Vint_ref is performed, the ON time DUTY_CHOP of the DC / DC converter 30 is adjusted so that the DC current Ibat follows the DC current command value Ibat_ref. You. Therefore, a change in the DC current Ibat cannot be extracted. Therefore, in the present embodiment, the CC mode is not applicable, and the adjustment of the DC voltage command value Vint_ref based on the DC current Ibat detection value in the CC mode is not applicable.
- the DC / DC converter 30 connected to the load 6 controls the DC voltage Vint of the integrated capacitor 5 as described above.
- the DC current Ibat of the load 6 is not controlled by the DC current command value Ibat_ref. Therefore, the adjustment of the DC voltage command value Vint_ref based on the DC current Ibat detection value described in the present embodiment is applicable.
- the transmission power to the load 6 in the CP mode is the transmission energy transmitted from a power transmission side coil (not shown) in the non-contact type charger 20, and the AC / DC converter 11 It is determined by the AC power Pac input from 1.
- the control circuit 50 sets the second set time t2, which is the interval for detecting the DC current Ibat, to be independent of the change in the DC current Ibat due to the charging rate of the load 6 (state of charge).
- the second setting time t2 may be set according to the switching interval of the switching element of the DC / DC converter 30 driven at a high frequency. More specifically, the second set time t2 may be an integral multiple of the switching interval of the switching element. In this case, the second set time t2 according to the switching interval of the switching element driven at a high frequency can be obtained, and the DC current Ibat can be detected in a short time range.
- the same effects as those of the first embodiment can be obtained, and the power supply by the wired method can be performed irrespective of the receiving voltage values on the wired and wireless sides. It is possible to simultaneously supply the power of the function and the power supply function of the wireless method. Further, the control circuit 50 controls the DC voltage Vlink or the DC voltage Vint such that the detected DC current Ibat, which is the output current from the DC / DC converter 30, is maximized. As described above, since each of the power conversion circuits 10, 20, and 30 is controlled such that the DC current Ibat is maximum, that is, the output power is maximum, it is possible to minimize the power loss Ps in the entire power conversion device 100. Becomes
- control circuit 50 detects the DC current Ibat every second set time t2, determines whether the detected DC current Ibat is increasing or decreasing, and based on the determination, the DC voltage Vlink Alternatively, the DC voltage Vint is controlled. As described above, by detecting the actual DC current Ibat periodically at every second set time t2, the DC voltage Vlink or the DC voltage Vint can be accurately adjusted in accordance with the actual loss state of the power converter 100. . As a result, power loss is more effectively reduced.
- the second set time t2 which is the detection interval of the DC current Ibat is set according to the switching interval of the switching element of the DC / DC converter 30.
- Embodiment 3 the third embodiment of the present application will be described with reference to the drawings, mainly at points different from the first embodiment.
- the same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
- the first mode and the second mode which are the operation modes related to the power loss reduction of the power converter 100 described above, the power loss Ps of the power conversion circuits 10, 20, 30 or the DC current Ibat to the load 6 is reduced. Need to detect. In any case, a power detector or a current detector is required as a detecting means.
- a third mode which is an operation mode related to power loss reduction using the loss characteristic information J, in which a power detector and a current detector are not required, will be described.
- FIG. 4 is a flowchart showing a first example of a third mode, which is an operation mode relating to power loss reduction, of control circuit 50 according to the third embodiment.
- FIG. 5 is loss characteristic information J that records the power loss characteristics of DC / DC converter 30 when DC voltage Vbat of load 6 is 100 V in power conversion device 100 according to the third embodiment.
- FIG. 6 is loss characteristic information J that records the power loss characteristic of DC / DC converter 30 when DC voltage Vbat of load 6 is 300 V in power conversion device 100 according to the third embodiment.
- FIG. 7 is a flowchart showing a second example of the third mode, which is an operation mode relating to power loss reduction, of control circuit 50 according to the third embodiment.
- FIG. 5 is loss characteristic information J that records the power loss characteristics of DC / DC converter 30 when DC voltage Vbat of load 6 is 100 V in power conversion device 100 according to the third embodiment.
- FIG. 6 is loss characteristic information J that records the power loss characteristic of DC / DC converter 30 when DC voltage Vbat of load 6 is 300 V
- FIG. 8 shows loss characteristic information in which the power loss characteristic of contact type charger 10 when AC voltage Vac1 is 100 V is recorded in power conversion device 100 according to the third embodiment.
- FIG. 9 shows loss characteristic information in which the power loss characteristic of contact type charger 10 when AC voltage Vac1 is 200 V is recorded in power conversion device 100 according to Embodiment 3.
- FIG. 10 is a flowchart showing a third example of the third mode, which is an operation mode related to power loss reduction, of control circuit 50 according to the third embodiment.
- FIG. 11 shows loss characteristic information in which the power loss characteristic of non-contact type charger 20 is recorded when AC voltage Vac2 of non-contact power receiving coil 20in is low in power conversion device 100 according to the third embodiment.
- the control circuit 50 controls the power loss characteristics of the DC / DC converter 30, the contact type charger 10, and the non-contact type charger 20, as shown in FIGS. 5 and 6, FIGS. 8 and 9, and FIGS. Has the recorded loss characteristic information J.
- the loss characteristic information J is acquired in advance and recorded in the control circuit 50 in a test stage or the like of the power conversion device 100.
- the horizontal axis is the transmission power of the power conversion circuit, and the vertical axis is the transmission power of the power conversion circuit. Indicates loss.
- the loss map M in the case where the value of the DC voltage Vint is changed to three voltage values of 100 V, 200 V, and 300 V is illustrated, for example, the value of the DC voltage Vint is 100 V, 120 V , 140 V,... 280 V, 300 V, and the loss map M in a case where the voltage is further finely changed may be recorded.
- loss maps M1, M2, and M3 of the DC / DC converter 30 are respectively recorded corresponding to the value of the DC voltage Vbat of the load 6 (100 V, when the load voltage is low). ing. As shown in FIG. 6, loss maps M4, M5, and M6 of the DC / DC converter 30 are respectively recorded corresponding to the value of the DC voltage Vbat of the load 6 (300 V, when the load voltage is high). ing.
- loss maps M corresponding to two voltage values of the DC voltage Vbat of the load 6 of 100 V and 300 V are recorded, however, the value of the DC voltage Vbat of the load 6 is changed more minutely.
- the loss map M in the case where it is made may be recorded.
- the control circuit 50 detects the DC voltage Vbat of the load 6 when starting the first example of the control in the third mode relating to the power loss reduction (step S1a).
- the control circuit 50 calculates the settable adjustable range S of the DC voltage command value Vint_ref of the integrated capacitor 5 (step S2a).
- the DC / DC converter 30 has a circuit configuration that performs step-down conversion toward the load 6, the adjustable range S of the DC voltage command value Vint_ref of the integrated capacitor 5 is obtained from DC voltage VbatbDC voltage Vint.
- the adjustable range S of the DC voltage Vint_ref of the integrated capacitor 5 is a voltage higher than 142.8 V. Range.
- the control circuit 50 refers to the loss map M corresponding to the value of the detected DC voltage Vbat.
- the loss map M of the DC / DC converter 30 includes two cases, that is, the case where the value of the DC voltage Vbat shown in FIG. 5 is 100 V and the case where the value of the DC voltage Vbat shown in FIG. It is. Since the value of the detected DC voltage Vbat is 100 V, the control circuit 50 refers to the loss characteristic information J in FIG. 5 when the DC voltage Vbat is 100 V. Then, the control circuit 50 selects a loss map M corresponding to the calculated value within the adjustable range S of the integrated capacitor 5 from the loss maps M1, M2, and M3 shown in FIG.
- the control circuit 50 refers to the DC current command value Ibat_ref related to the control of the DC / DC converter 30, and determines the DC / DC converter based on the DC current command value Ibat_ref and the detected DC voltage Vbat.
- the transmission power of 30 is calculated.
- DC current command value Ibat_ref is 8A
- the control circuit 50 adjusts the DC voltage Vint of the integrated capacitor 5 to 200 V (Step S4a). Thereby, the power loss of the DC / DC converter 30 can be reduced.
- the loss map M in the case where the value of the DC voltage Vint is changed to three voltage values of 100 V, 200 V, and 300 V is shown, as described above, the value of the DC voltage Vint is set to 100 V, 280 V, 300 V, a loss map M in the case of finer changes may be recorded, such as 120 V, 140 V,... 280 V, and 300 V. In this case, the DC voltage Vint can be finely adjusted.
- the control circuit 50 calculates the transmission power of the DC / DC converter 30 from the DC current command value Ibat_ref and the detected DC voltage Vbat, and compares the loss maps M2 and M3 in the calculated transmission power.
- the control circuit 50 performs control related to loss reduction by the first example using the loss characteristic information J of the DC / DC converter 30. For example, when the power loss due to the DC / DC converter 30 is dominant in the power loss in the entire power converter 100, only the loss characteristic information J of the DC / DC converter 30 according to the first example described above is used. By performing the control, the power loss Ps can be efficiently reduced.
- the loss maps M7, M8, and M9 of the contact charger 10 are respectively recorded corresponding to the value of the AC voltage Vac1 of the AC power supply 1 (100 V, when the receiving voltage is low). Have been.
- loss maps M10, M11, and M12 of the contact charger 10 are respectively recorded in correspondence with the value of the AC voltage Vac1 of the AC power supply 1 (200 V, when the receiving voltage is high). Have been.
- loss maps M corresponding to two voltage values of AC voltage Vac1 of AC power supply 1 of 100 V and 200 V are recorded, however, the value of AC voltage Vac1 of AC power supply 1 is further reduced.
- a loss map M in the case of fine changes may be recorded.
- control circuit 50 when the control circuit 50 starts the second example of the control in the third mode regarding the power loss reduction, the control circuit 50 detects the AC voltage Vac1 of the AC power supply 1 (step S1b).
- the control circuit 50 calculates the settable adjustable range S of the DC voltage command value Vint_ref of the integrated capacitor 5 (step S2b).
- the control circuit 50 integrates the detected AC voltage Vac1 of the AC power supply 1 and the step-up / step-down ratio of the AC / DC converter 11 and the insulated DC / DC converter 15 in the contact charger 10.
- An adjustable range S of the DC voltage command value Vint_ref of the capacitor 5 is calculated.
- the control circuit 50 refers to the loss map M corresponding to the detected value of the AC voltage Vac1 of the AC power supply 1.
- loss map M of the present embodiment is for two cases, that is, when AC voltage Vac1 shown in FIG. 8 has a value of 100 V and when AC voltage Vac1 is 200 V shown in FIG.
- the control circuit 50 changes the calculated value within the adjustable range S of the integrated capacitor 5 from the loss map M corresponding to the value of the AC voltage Vac1.
- a corresponding loss map M is selected (step S3b).
- the control circuit 50 refers to the AC power command value Pac_ref related to the control of the AC / DC converter 11. Then, the DC voltage Vint of the integrated capacitor 5 is adjusted by referring to the selected loss maps M in the AC power command value Pac_ref (transmission power), similarly to step S4a shown in FIG. 4 described above (step S4b). ). Note that, similarly to step S4a in FIG. 4 described above, the control circuit 50 may omit reference to the AC power command value Pac_ref, that is, calculation of the transmission power.
- the control circuit 50 performs control related to loss reduction according to the second example using the loss characteristic information J of the contact charger 10. For example, when the contact type charger 10 is operated between the contact type charger 10 and the non-contact type charger 20, the control using only the loss characteristic information J of the contact type charger 10 according to the second example as described above. , The control in the control circuit 50 can be simplified, and the power loss Ps can be efficiently reduced.
- loss maps M13, M14, and M15 of contact charger 10 are recorded corresponding to the case where the value of AC voltage Vac2 of non-contact power receiving coil 20in is low.
- loss maps M16, M17, and M18 of contact charger 10 are respectively recorded corresponding to the case where the value of AC voltage Vac2 of non-contact power receiving coil 20in is high.
- loss maps M corresponding to two voltage values that is, a case where the value of the AC voltage Vac2 of the non-contact power receiving coil 20in is high and a case where the value is low, are recorded, but the value of the AC voltage Vac2 is further reduced.
- a loss map M in the case of fine changes may be recorded.
- the control circuit 50 detects the AC voltage Vac2 of the non-contact power receiving coil 20in (Step S1c).
- control circuit 50 calculates an adjustable range S of the DC voltage command value Vint_ref of the integrated capacitor 5 (step S2c).
- control circuit 50 calculates the adjustable range S of the DC voltage command value Vint_ref of the integrated capacitor 5 based on the detected AC voltage Vac2 of the non-contact power receiving coil 20in.
- the control circuit 50 refers to the loss map M according to the detected value of the AC voltage Vac2 of the non-contact power receiving coil 20in.
- the loss map M according to the present embodiment includes a case where the value of the AC voltage Vac2 of the non-contact power receiving coil 20in illustrated in FIG. 11 is low and a case where the value of the AC voltage Vac2 illustrated in FIG. There are two cases.
- the control circuit 50 calculates the value within the adjustable range S of the integrated capacitor 5 calculated from the loss map M corresponding to the value of the AC voltage Vac2, similarly to step S3a shown in FIG. Is selected (step S3c).
- control circuit 50 adjusts the DC voltage Vint of the integrated capacitor 5 in the same manner as in step S4a shown in FIG. S4c).
- the control circuit 50 performs control related to loss reduction according to the third example using the loss characteristic information J of the non-contact charger 20.
- the control in the control circuit 50 can be simplified and the power loss Ps can be reduced efficiently.
- the loss map M of the loss characteristic information J is individually recorded for each DC voltage Vint of the integrated capacitor 5, but is recorded for each DC voltage Vlink of the DC link capacitor 4. There may be.
- the control circuit 50 adjusts the DC voltage Vlink of the DC link capacitor 4 based on the loss characteristic information J.
- the loss characteristic information J shown in the above description is a record of power loss characteristics for each of the contact charger 10, the non-contact charger 20, and the DC / DC converter 30.
- the loss characteristic information J is not limited to such a configuration, and may be a record of the total power loss characteristic of the contact charger 10, the non-contact charger 20, and the DC / DC converter 30.
- the non-contact type charger 20 when the contact type charger 10 and the non-contact type charger 20 are operated simultaneously, when the DC voltage command value Vint_ref that minimizes the loss in the contact type charger 10 is selected, the non-contact type charger 20 There is a possibility that the loss of this will increase extremely. In such a case, as described above, based on the loss characteristic information J in which the total power loss characteristic for reducing the total loss of the contact charger 10, the non-contact charger 20, and the DC / DC converter 30 is recorded. It is preferable to select a DC voltage command value Vint_ref that reduces the total power loss in the entire power converter 100.
- the control circuit 50 performs the same control as that in the flowchart shown in FIG.
- the control circuit 50 performs power conversion from the DC current command value Ibat_ref and the detected DC voltage Vbat in step S4 of FIG.
- the transmission power of the entire device 100 is calculated.
- loss map M is selected based on the calculated transmission power of power conversion device 100 as a whole.
- the control circuit 50 controls the non-contact power receiving coil 20in.
- the transmission power of the entire power conversion device 100 is calculated from the AC voltage Vac2 and the AC current and the AC power command value Pac_ref. Then, loss map M is selected based on the calculated transmission power of power conversion device 100 as a whole.
- the loss characteristic information J is composed of a plurality of loss maps M obtained for each value of the DC voltage Vlink of the DC link capacitor 4.
- the control circuit 50 has loss characteristic information J in which the power loss characteristics of the contact charger 10, the non-contact charger 20, and the DC / DC converter 30 are recorded.
- a third mode for adjusting the DC voltage Vlink of the DC link capacitor 4 or the DC voltage Vint of the integrated capacitor 5 is provided. Since the value of the DC voltage Vint at which the power loss is minimized is recorded in the loss characteristic information J, the time from the start of the loss reduction in the third mode to the setting of the DC voltage Vint is significantly reduced. Power loss can be minimized quickly.
- the loss characteristic information J includes the power loss characteristics of the contact charger 10 and the non-contact charger 20 corresponding to the values of the input voltages (AC voltages Vac1 and Vac2), and the output voltage (the DC voltage Vbat of the load 6). , And the power loss characteristics of the DC / DC converter 30 corresponding to the value of.
- the loss characteristic information J includes a plurality of loss maps in which the power loss characteristics of the contact type charger 10, the non-contact type charger 20, and the DC / DC converter 30 are recorded for each DC voltage Vlink or DC voltage Vint. M. Then, the control circuit 50 selects a loss map M corresponding to the DC voltage Vlink or a value within the adjustable range S of the DC voltage Vint from the plurality of loss maps M. As described above, since the DC voltage Vlink or the DC voltage Vint is adjusted based on the adjustable range S that can be actually set, the operation state of the power converter 100 can be stabilized.
- the control circuit 50 When the control circuit 50 supplies DC power to the load 6 using only the contact charger 10, the control circuit 50 uses the loss characteristic information J in which the power loss characteristics of the contact charger 10 are recorded, and When supplying DC power to the load 6 using only the contact type charger 20, the loss characteristic information J in which the power loss characteristic of the non-contact type charger 20 is recorded is used. As described above, by performing control using the loss characteristic information J of one of the contact charger 10 and the non-contact charger 20 to be operated, control in the control circuit 50 is simplified, and the DC voltage Vlink or The adjustment of the DC voltage Vint can be performed quickly.
- the total power loss characteristics of both the contact charger 10 and the non-contact charger 20 are measured. Can be used. Further, it is also possible to use the loss characteristic information J in which the total power loss characteristics of the contact type charger 10, the non-contact type charger 20, and the DC / DC converter 30 are recorded. Thus, power loss in the entire power conversion device 100 can be minimized.
- FIG. 13 is a schematic configuration diagram showing a power conversion device 400 according to the fourth embodiment.
- the power conversion device 400 includes an environment information sensor 477 that acquires environment information such as temperature information Ta of each of the power conversion circuits 10, 20, and 30 of the power conversion device 100. Then, based on the acquired temperature information Ta, the control circuit 50 controls the first mode described in the first embodiment, the second mode described in the second embodiment, and the third mode described in the third embodiment. Mode.
- the control circuit 50 is performing control related to power loss reduction in the third mode using the loss characteristic information J.
- the control circuit 50 detects the actual power loss Ps. Then, the mode is switched to the first mode for adjusting the DC voltage Vlink or the DC voltage Vint.
- the loss characteristic information J used in the third mode is based on the power loss characteristic acquired in advance in a test stage or the like, when the temperature of the power conversion circuits 10, 20, 30 rises, the loss characteristic information J is recorded in the loss characteristic information J. There is a possibility that a difference may occur between the power loss characteristics obtained and the power loss characteristics of the actual power conversion circuits 10, 20, and 30.
- the control circuit 50 can acquire the environmental information based on the actual operation state of the power conversion device 100 and select a mode according to the acquired information, so that the power loss can be more accurately reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Dc-Dc Converters (AREA)
Abstract
交流電源1に接続され、入力電圧の昇圧あるいは降圧を行う接触方式充電器(10)の出力端子(10out)および非接触で電力を受電する非接触方式充電器(20)の出力端子(20out)とが、統合母線(7)を介してDC/DCコンバータ(30)の入力端子(30in)に接続され、接触方式充電器(10)を構成するAC/DCコンバータ(11)と絶縁型DC/DCコンバータ(15)との間に直流リンクコンデンサ(4)が接続され、統合母線(7)には統合コンデンサ(5)が接続され、制御回路(50)は、接触方式充電器(10)、非接触方式充電器(20)、DC/DCコンバータ(30)の少なくとも一つの電力損失あるいは合計電力損失を低減するように、直流リンクコンデンサ(4)あるいは統合コンデンサ(5)の直流電圧を調整する。
Description
本願は、電力変換装置に関するものである。
近年、地球環境保護の観点から、バッテリに充電された電力によりモータを駆動させて走行するプラグインハイブリッドカー(Plug-in Hybrid Electric Vehicle)等の電気自動車が開発されている。これらの電気自動車には、外部の商用電源等からの電力をバッテリに給電する電力供給機能を有する以下のような電力変換装置としての電源装置が搭載されている。
即ち、電源装置は、交流電源に接続され、この交流電源から絶縁したリンク電圧を出力する絶縁型AC/DCコンバータと、このリンク電圧を入力してメインバッテリを充電する双方向DC/DCコンバータと、リンク電圧を入力して負荷に電力供給する絶縁型DC/DCコンバータとを備える。制御手段は、メインバッテリの電圧が閾値以下の場合には、双方向DC/DCコンバータをスイッチング動作させてリンク電圧をリンク電圧下限値に維持している。メインバッテリの電圧が閾値以上の場合には双方向DC/DCコンバータをスルー動作させてリンク電圧をメインバッテリの電圧と概ね等しくしている。これにより電源装置における全体の損失が小さくなるように閾値を決定する(例えば、特許文献1参照)。
上記のような電力変換装置は、充電ケーブルなどの接続線を介して、絶縁型AC/DCコンバータを物理的に交流電源に接続させ、この充電ケーブルを介してメインバッテリおよび負荷を充電しつつ、電力損失を低減させている。しかしながら、充電ケーブル等の接続線を用いて充電を行う有線方式は、例えば、悪天候時における屋外の充電作業において充電ケーブルを取り扱う際に作業性が悪くなる等の課題がある。そのため、例えば道路下に埋設された送電装置の送電コイルから非接触で電力を受電するワイヤレス方式(非接触方式)と、前述のような有線方式(接触方式)との、少なくとも一方を選択的に用いて給電が可能で、且つ、電力損失の低減を行う、以下のような電力変換装置としての車両側装置が提案されている。
即ち、車両側装置は、有線接続および/またはワイヤレス接続を介して、インフラストラクチャ側から充電電力を受信するようにサービスする。車両側は、主電磁干渉(EMI、Electromagnetic interference)フィルタおよび整流器と、PFC(Power Factor Correction)ユニットとを含む有線経路を含む。車両側は、車両パッドと、車両同調回路と、車両パッド減結合整流器と、出力フィルタとを含むワイヤレス経路をさらに含む。車両側は、バルクキャパシタンスと、絶縁DC/DC変換器と、バッテリーとを含む結合経路をさらに含む。PFCユニットは、AC供給源の電流内の高調波成分を削減する。AC電流高調波成分を低減することは、エネルギーサプライヤが、電力網の過剰電力損失を削減して、幹線電圧を実質的に正弦的に維持するのに役立ち得る。PFCユニットは主EMIフィルタから信号を受信して、バルクキャパシタンスに力率改善信号を提供する。出力フィルタは、車両パッド減結合整流器から信号を受信して、フィルタリングされた出力信号をバルクキャパシタンスに提供する(例えば、特許文献2参照)。
上記特許文献2のような電力変換装置では、有線経路とワイヤレス経路との少なくとも一方の経路からバッテリを充電可能である。しかしながら、通常PFCユニットは昇圧回路であるため、AC供給源の電圧が高い場合は、車載バルクキャパシタンス電圧は更に高電圧となる。この場合にワイヤレス方式側の受電電圧が低いと、有線方式側あるいはワイヤレス経路側の一方の電力供給機能を停止しなければならない。そのため、例えば充電時間短縮のために、有線経路とワイヤレス経路との両方から同時にバッテリに充電を行う必要がある場合においても、有線経路側とワイヤレス経路側の受電電圧値によっては、同時に充電を行うことができない場合があるという課題があった。
更に、このような給電を行う電力変換装置では、給電時間の短縮、給電装置側の機器数の削減、等の観点から、給電効率の高効率化が求められている。
更に、このような給電を行う電力変換装置では、給電時間の短縮、給電装置側の機器数の削減、等の観点から、給電効率の高効率化が求められている。
本願は、上記のような課題を解決するための技術を開示するものであり、有線方式側およびワイヤレス方式側の受電電圧値によらず、有線方式による電力供給機能と、ワイヤレス方式による電力供給機能との電力供給を同時に行うことを可能にして作業性を向上させつつ、電力損失を効果的に低減可能な電力変換装置に関するものである。
本願に開示される電力変換装置は、
第1端により交流電源に接続され、前記交流電源からの入力電圧を直流電圧へ変換する第1コンバータ回路、前記第1コンバータ回路により変換された直流電圧の昇圧あるいは降圧を行って第2端より出力する第2コンバータ回路、を有する第1電力変換回路と、
送電装置の送電コイルと磁気的に結合することにより、非接触で電力を受電する第1端としての非接触受電コイル、前記非接触受電コイルから受電した交流電圧を直流電圧へ変換して第2端より出力する第3コンバータ回路、を有する第2電力変換回路と、
第2端が負荷に接続され、第1端から入力される直流電圧の昇圧あるいは降圧を行って前記負荷に電力供給を行う第3電力変換回路と、
それぞれ直流電圧を平滑する第1直流コンデンサ、第2直流コンデンサと、
前記第1電力変換回路、前記第2電力変換回路および前記第3電力変換回路を制御する制御回路と、を備え、
前記第1電力変換回路の第2端および前記第2電力変換回路の第2端とが、統合母線を介して前記第3電力変換回路の第1端に接続され、前記第1直流コンデンサは前記第1コンバータ回路と前記第2コンバータ回路との間に接続され、前記第2直流コンデンサは前記統合母線に接続されて、前記第1電力変換回路あるいは前記第2電力変換回路の少なくとも一方から出力された直流電力を、前記第3電力変換回路を介して前記負荷に対して供給可能に構成され、
前記制御回路は、
前記第1電力変換回路、前記第2電力変換回路、前記第3電力変換回路の少なくとも一つの電力損失を低減するように、前記第1直流コンデンサの直流電圧あるいは前記第2直流コンデンサの直流電圧を調整する、
ものである。
第1端により交流電源に接続され、前記交流電源からの入力電圧を直流電圧へ変換する第1コンバータ回路、前記第1コンバータ回路により変換された直流電圧の昇圧あるいは降圧を行って第2端より出力する第2コンバータ回路、を有する第1電力変換回路と、
送電装置の送電コイルと磁気的に結合することにより、非接触で電力を受電する第1端としての非接触受電コイル、前記非接触受電コイルから受電した交流電圧を直流電圧へ変換して第2端より出力する第3コンバータ回路、を有する第2電力変換回路と、
第2端が負荷に接続され、第1端から入力される直流電圧の昇圧あるいは降圧を行って前記負荷に電力供給を行う第3電力変換回路と、
それぞれ直流電圧を平滑する第1直流コンデンサ、第2直流コンデンサと、
前記第1電力変換回路、前記第2電力変換回路および前記第3電力変換回路を制御する制御回路と、を備え、
前記第1電力変換回路の第2端および前記第2電力変換回路の第2端とが、統合母線を介して前記第3電力変換回路の第1端に接続され、前記第1直流コンデンサは前記第1コンバータ回路と前記第2コンバータ回路との間に接続され、前記第2直流コンデンサは前記統合母線に接続されて、前記第1電力変換回路あるいは前記第2電力変換回路の少なくとも一方から出力された直流電力を、前記第3電力変換回路を介して前記負荷に対して供給可能に構成され、
前記制御回路は、
前記第1電力変換回路、前記第2電力変換回路、前記第3電力変換回路の少なくとも一つの電力損失を低減するように、前記第1直流コンデンサの直流電圧あるいは前記第2直流コンデンサの直流電圧を調整する、
ものである。
本願に開示される電力変換装置によれば、有線方式側およびワイヤレス方式側の受電電圧値によらず、有線方式による電力供給機能と、ワイヤレス方式による電力供給機能との電力供給を同時に行うことを可能であるため作業性が向上すると共に、電力損失が効果的に低減可能である。
実施の形態1.
以下、本願の実施の形態1による電力変換装置について図を用いて説明する。
図1は、実施の形態1による電力変換装置100を示す概略構成図である。
本実施の形態における電力変換装置100は、電動車両等の内部に搭載される充電器に適用される電源システムであり、電動車両外部の商用交流系統あるいは自家発電機などの電力を、電動車両内部の高圧バッテリ等の負荷6に対して供給するものである。
以下、本願の実施の形態1による電力変換装置について図を用いて説明する。
図1は、実施の形態1による電力変換装置100を示す概略構成図である。
本実施の形態における電力変換装置100は、電動車両等の内部に搭載される充電器に適用される電源システムであり、電動車両外部の商用交流系統あるいは自家発電機などの電力を、電動車両内部の高圧バッテリ等の負荷6に対して供給するものである。
電力変換装置100は、第1電力変換回路としての接触方式充電器10と、第2電力変換回路としての非接触方式充電器20と、第3電力変換回路としてのDC/DCコンバータ30と、制御回路50と、を備える。
接触方式充電器10は、充電ケーブル2等の接続線により物理的に商用交流系統あるいは自家発電機等の交流電源1に接続されることで、交流電源1から電力を受電する。
非接触方式充電器20は、図示しない外部の送電装置から非接触で電力を受電する。
DC/DCコンバータ30は、これら接触方式充電器10および非接触方式充電器20から受電する電力を負荷6に対して給電する。
制御回路50は、これら接触方式充電器10、非接触方式充電器20およびDC/DCコンバータ30を制御する。
接触方式充電器10は、充電ケーブル2等の接続線により物理的に商用交流系統あるいは自家発電機等の交流電源1に接続されることで、交流電源1から電力を受電する。
非接触方式充電器20は、図示しない外部の送電装置から非接触で電力を受電する。
DC/DCコンバータ30は、これら接触方式充電器10および非接触方式充電器20から受電する電力を負荷6に対して給電する。
制御回路50は、これら接触方式充電器10、非接触方式充電器20およびDC/DCコンバータ30を制御する。
接触方式充電器10の出力端子10out、および非接触方式充電器20の出力端子20outは、統合母線7を介してDC/DCコンバータ30の入力端子30inに接続されている。この統合母線7には、第2直流コンデンサとしての統合コンデンサ5が接続されており、接触方式充電器10および非接触方式充電器20から出力される直流電圧を平滑する。この統合母線7に掛かる電圧を直流電圧Vintとする。
なお、以降の説明において、接触方式充電器10、非接触方式充電器20、DC/DCコンバータ30のそれぞれを区別する必要がない場合は、単に電力変換回路と称す。
先ず、接触方式充電器10の詳細構成について説明する。
接触方式充電器10は、第1コンバータ回路としてのAC/DCコンバータ11と、第2コンバータ回路としての絶縁型DC/DCコンバータ15と、を備える。
接触方式充電器10は、第1端としての入力端子10inが充電ケーブル2を介して交流電源1に接続され、第2端としての出力端子10outが統合母線7を介して統合コンデンサ5に接続されており、交流電源1からの交流電圧Vac1を直流電圧Vintに変換して統合コンデンサ5に出力する。
ここで、AC/DCコンバータ11と絶縁型DC/DCコンバータ15との接続点を直流リンクと定義し、この直流リンクに掛かる直流電圧を直流電圧Vlinkとする。
接触方式充電器10は、第1コンバータ回路としてのAC/DCコンバータ11と、第2コンバータ回路としての絶縁型DC/DCコンバータ15と、を備える。
接触方式充電器10は、第1端としての入力端子10inが充電ケーブル2を介して交流電源1に接続され、第2端としての出力端子10outが統合母線7を介して統合コンデンサ5に接続されており、交流電源1からの交流電圧Vac1を直流電圧Vintに変換して統合コンデンサ5に出力する。
ここで、AC/DCコンバータ11と絶縁型DC/DCコンバータ15との接続点を直流リンクと定義し、この直流リンクに掛かる直流電圧を直流電圧Vlinkとする。
AC/DCコンバータ11は、入力端子10inに接続されるリアクトル12と、フルブリッジコンバータ13と、から構成される昇圧型コンバータであり、交流電源1の交流電圧Vac1を入力として上記直流電圧Vlinkを出力する。
接触方式充電器10は、この直流リンクに接続される第1直流コンデンサとしての直流リンクコンデンサ4を備えており、この直流リンクコンデンサ4により直流電圧Vlinkを平滑する。
接触方式充電器10は、この直流リンクに接続される第1直流コンデンサとしての直流リンクコンデンサ4を備えており、この直流リンクコンデンサ4により直流電圧Vlinkを平滑する。
絶縁型DC/DCコンバータ15は、インバータ回路としてのインバータ16と、絶縁トランス18と、第4コンバータ回路としてのコンバータ17と、から構成される昇圧型と降圧型を兼ねるコンバータである。
インバータ16は、直流電圧Vlinkを入力として交流電圧を絶縁トランス18の第1巻線18aに出力する。絶縁トランス18は、第1巻線18aに印加された交流電圧を巻き数比倍してから2次側の第2巻線18bに出力する。コンバータ17は、絶縁トランス18の第2巻線18bに出力された交流電圧を入力として、統合コンデンサ5に直流電圧Vintを出力する。
インバータ16は、直流電圧Vlinkを入力として交流電圧を絶縁トランス18の第1巻線18aに出力する。絶縁トランス18は、第1巻線18aに印加された交流電圧を巻き数比倍してから2次側の第2巻線18bに出力する。コンバータ17は、絶縁トランス18の第2巻線18bに出力された交流電圧を入力として、統合コンデンサ5に直流電圧Vintを出力する。
次に、非接触方式充電器20の詳細構成について説明する。
非接触方式充電器20は、第1端としての非接触受電コイル20inと、第3コンバータ回路としてのフルブリッジコンバータ21と、を備える。非接触受電コイル20inは、図示しない外部の送電装置が有する送電コイルと磁力により磁気的に結合され、この送電コイルからの電力を非接触で受電する。また、非接触方式充電器20は、第2端としての出力端子20outが、統合母線7を介して統合コンデンサ5に接続される。
こうして、非接触方式充電器20は、外部の送電装置から送られる電力を受電してフルブリッジコンバータ21で整流し、統合コンデンサ5に直流電圧Vintを出力する。
非接触方式充電器20は、第1端としての非接触受電コイル20inと、第3コンバータ回路としてのフルブリッジコンバータ21と、を備える。非接触受電コイル20inは、図示しない外部の送電装置が有する送電コイルと磁力により磁気的に結合され、この送電コイルからの電力を非接触で受電する。また、非接触方式充電器20は、第2端としての出力端子20outが、統合母線7を介して統合コンデンサ5に接続される。
こうして、非接触方式充電器20は、外部の送電装置から送られる電力を受電してフルブリッジコンバータ21で整流し、統合コンデンサ5に直流電圧Vintを出力する。
次に、DC/DCコンバータ30の詳細構成について説明する。
DC/DCコンバータ30は、統合コンデンサ5から負荷6の方向に対して降圧変換を行う降圧型コンバータである。DC/DCコンバータ30は、第1端としての入力端子30inが統合母線7を介して統合コンデンサ5に接続され、第2端としての出力端子30outが負荷6に接続される。こうして、DC/DCコンバータ30は、統合コンデンサ5の直流電圧Vintを入力として、負荷6に直流電圧Vbatを出力する。
DC/DCコンバータ30は、統合コンデンサ5から負荷6の方向に対して降圧変換を行う降圧型コンバータである。DC/DCコンバータ30は、第1端としての入力端子30inが統合母線7を介して統合コンデンサ5に接続され、第2端としての出力端子30outが負荷6に接続される。こうして、DC/DCコンバータ30は、統合コンデンサ5の直流電圧Vintを入力として、負荷6に直流電圧Vbatを出力する。
このように、電力変換装置100は、交流電源1に充電ケーブル2により物理的に接続される有線方式(接触方式)による接触方式電力供給機能と、外部の送電装置に非接触で接続されるワイヤレス方式(非接触方式)による非接触電力供給機能と、を1つに統合したものである。
そして制御回路50は、有線方式とワイヤレス方式との両方を用いて充電を行う両方式の電力供給、あるいは有線方式とワイヤレス方式の一方を用いて充電を行う片方式の電力供給、を行うことが可能である。
そして制御回路50は、有線方式とワイヤレス方式との両方を用いて充電を行う両方式の電力供給、あるいは有線方式とワイヤレス方式の一方を用いて充電を行う片方式の電力供給、を行うことが可能である。
更に、電力変換装置100は、交流電源1の交流電圧Vac1を検出する電圧検出器70と、直流リンクコンデンサ4の直流電圧Vlinkを検出する電圧検出器71と、非接触受電コイル20inの交流電圧Vac2を検出する電圧検出器72と、統合コンデンサ5の直流電圧Vintを検出する電圧検出器73と、負荷6の直流電圧Vbatを検出する電圧検出器74と、負荷6に出力される直流電流Ibatを検出する電流検出器75と、交流電源1からの交流電力Pacを検出する電力検出器76と、を備える。
次に、上記のように構成された電力変換装置100の動作モードについて説明する。
本実施の形態の電力変換装置100は、車両走行用の高圧バッテリである負荷6に対して、二つの充電動作モードを選択して充電を行う。一つ目は、負荷6に対する定電流充電のCC(Constant Current)モードである。二つ目は、負荷6に対する定電力充電のCP(Constant Power)モードである。
この動作モードにおいて、制御回路50は、前述の電圧検出器70~74、電流検出器75、電力検出器76により得られた検出値を用いる。
本実施の形態の電力変換装置100は、車両走行用の高圧バッテリである負荷6に対して、二つの充電動作モードを選択して充電を行う。一つ目は、負荷6に対する定電流充電のCC(Constant Current)モードである。二つ目は、負荷6に対する定電力充電のCP(Constant Power)モードである。
この動作モードにおいて、制御回路50は、前述の電圧検出器70~74、電流検出器75、電力検出器76により得られた検出値を用いる。
先ず、一つ目のCCモードについて説明する。
CCモードでは、DC/DCコンバータ30は、負荷6に出力する直流電流Ibatを制御する。
制御回路50によるDC/DCコンバータ30の制御方法は、公知のフィードバック制御である。制御回路50は、任意の直流電流指令値Ibat_refと、直流電流Ibatの検出値と、の誤差Ibat_errに基づいて、DC/DCコンバータ30のスイッチング素子のオン時間DUTY_CHOPを決定する。
例えば、制御回路50は、誤差Ibat_errを、比例積分器などの補償器で増幅してオン時間DUTY_CHOPを算出する。このフィードバック制御によって、DC/DCコンバータ30は、統合コンデンサ5の任意の直流電圧Vintを入力電圧として、直流電流Ibatを所望の直流電流指令値Ibat_refに制御する。
CCモードでは、DC/DCコンバータ30は、負荷6に出力する直流電流Ibatを制御する。
制御回路50によるDC/DCコンバータ30の制御方法は、公知のフィードバック制御である。制御回路50は、任意の直流電流指令値Ibat_refと、直流電流Ibatの検出値と、の誤差Ibat_errに基づいて、DC/DCコンバータ30のスイッチング素子のオン時間DUTY_CHOPを決定する。
例えば、制御回路50は、誤差Ibat_errを、比例積分器などの補償器で増幅してオン時間DUTY_CHOPを算出する。このフィードバック制御によって、DC/DCコンバータ30は、統合コンデンサ5の任意の直流電圧Vintを入力電圧として、直流電流Ibatを所望の直流電流指令値Ibat_refに制御する。
CCモードでは、絶縁型DC/DCコンバータ15は、統合コンデンサ5の直流電圧Vintを制御する。
制御回路50による絶縁型DC/DCコンバータ15の制御方法は、公知のフィードバック制御である。制御回路50は、任意の直流電圧指令値Vint_refと、直流電圧Vintの検出値と、の誤差Vint_errに基づいて、絶縁トランス18に電圧を印加する時間DUTY_DABを決定する。
例えば、制御回路50は、誤差Vint_errを、比例積分器などの補償器で増幅して絶縁トランス18に電圧を印加する時間DUTY_DABを算出する。このフィードバック制御によって、絶縁型DC/DCコンバータ15は、任意の直流電圧Vlinkを入力電圧として、直流電圧Vintを所望の直流電圧指令値Vint_refに制御する。
制御回路50による絶縁型DC/DCコンバータ15の制御方法は、公知のフィードバック制御である。制御回路50は、任意の直流電圧指令値Vint_refと、直流電圧Vintの検出値と、の誤差Vint_errに基づいて、絶縁トランス18に電圧を印加する時間DUTY_DABを決定する。
例えば、制御回路50は、誤差Vint_errを、比例積分器などの補償器で増幅して絶縁トランス18に電圧を印加する時間DUTY_DABを算出する。このフィードバック制御によって、絶縁型DC/DCコンバータ15は、任意の直流電圧Vlinkを入力電圧として、直流電圧Vintを所望の直流電圧指令値Vint_refに制御する。
CCモードでは、AC/DCコンバータ11は、絶縁型DC/DCコンバータ15側へ出力する直流電圧Vlinkを制御する。
制御回路50によるAC/DCコンバータ11の制御方法は、公知のフィードバック制御である。制御回路50は、任意の直流電圧指令値Vlink_refと、直流電圧Vlinkの検出値と、の誤差Vlink_errに基づいて、AC/DCコンバータ11のスイッチング素子のオン時間DUTY_PFCを決定する。
例えば、制御回路50は、誤差Vlink_errを、比例積分器などの補償器で増幅してオン時間DUTY_PFCを算出する。このフィードバック制御によって、AC/DCコンバータ11は、交流電源1の任意の交流電圧Vac1を入力電圧として、直流電圧Vlinkを所望の直流電圧指令値Vlink_refに制御する。
制御回路50によるAC/DCコンバータ11の制御方法は、公知のフィードバック制御である。制御回路50は、任意の直流電圧指令値Vlink_refと、直流電圧Vlinkの検出値と、の誤差Vlink_errに基づいて、AC/DCコンバータ11のスイッチング素子のオン時間DUTY_PFCを決定する。
例えば、制御回路50は、誤差Vlink_errを、比例積分器などの補償器で増幅してオン時間DUTY_PFCを算出する。このフィードバック制御によって、AC/DCコンバータ11は、交流電源1の任意の交流電圧Vac1を入力電圧として、直流電圧Vlinkを所望の直流電圧指令値Vlink_refに制御する。
CCモードでは、非接触方式充電器20は、図示しない送電側コイルから送られる伝送エネルギを受電して、電力源とみなされるように直流電力Pwを統合コンデンサ5に出力する。これは後述するCPモードにおいても同様である。
こうして、電力変換装置100は、CCモードに関する上述の動作によって、負荷6の定電流充電を行う。
こうして、電力変換装置100は、CCモードに関する上述の動作によって、負荷6の定電流充電を行う。
次に、二つ目のCPモードについて説明する。
CPモードでは、DC/DCコンバータ30は、統合コンデンサ5の直流電圧Vintを制御する。
制御回路50によるDC/DCコンバータ30の制御方法は、公知のフィードバック制御である。制御回路50は、任意の直流電圧指令値Vint_refと、直流電圧Vintの検出値と、の誤差Vint_errに基づいて、DC/DCコンバータ30のスイッチング素子のオン時間DUTY_CHOPを決定する。
例えば、制御回路50は、誤差Vint_errを、比例積分器などの補償器で増幅してオン時間DUTY_CHOPを算出する。このフィードバック制御によって、DC/DCコンバータ30は、任意の負荷6への出力電力Pbatにおいても、直流電圧Vintを所望の直流電圧指令値Vint_refに制御する。
CPモードでは、DC/DCコンバータ30は、統合コンデンサ5の直流電圧Vintを制御する。
制御回路50によるDC/DCコンバータ30の制御方法は、公知のフィードバック制御である。制御回路50は、任意の直流電圧指令値Vint_refと、直流電圧Vintの検出値と、の誤差Vint_errに基づいて、DC/DCコンバータ30のスイッチング素子のオン時間DUTY_CHOPを決定する。
例えば、制御回路50は、誤差Vint_errを、比例積分器などの補償器で増幅してオン時間DUTY_CHOPを算出する。このフィードバック制御によって、DC/DCコンバータ30は、任意の負荷6への出力電力Pbatにおいても、直流電圧Vintを所望の直流電圧指令値Vint_refに制御する。
CPモードでは、絶縁型DC/DCコンバータ15が、AC/DCコンバータ11との接続点の直流電圧Vlinkを制御する。
制御回路50による絶縁型DC/DCコンバータ15の制御方法は、公知のフィードバック制御である。制御回路50は、任意の直流電圧指令値Vlink_refと、直流電圧Vlinkの検出値と、の誤差Vlink_errに基づいて、絶縁トランス18の電圧を印加する時間DUTY_DABを決定する。
例えば、制御回路50は、誤差Vlink_errを、比例積分器などの補償器で増幅して絶縁トランス18に電圧を印加する時間DUTY_DABを算出する。このフィードバック制御によって、絶縁型DC/DCコンバータ15は、統合コンデンサ5の任意の直流電圧Vintを出力電圧として、入力電圧である直流電圧Vlinkを所望の直流電圧指令値Vlink_refに制御する。
制御回路50による絶縁型DC/DCコンバータ15の制御方法は、公知のフィードバック制御である。制御回路50は、任意の直流電圧指令値Vlink_refと、直流電圧Vlinkの検出値と、の誤差Vlink_errに基づいて、絶縁トランス18の電圧を印加する時間DUTY_DABを決定する。
例えば、制御回路50は、誤差Vlink_errを、比例積分器などの補償器で増幅して絶縁トランス18に電圧を印加する時間DUTY_DABを算出する。このフィードバック制御によって、絶縁型DC/DCコンバータ15は、統合コンデンサ5の任意の直流電圧Vintを出力電圧として、入力電圧である直流電圧Vlinkを所望の直流電圧指令値Vlink_refに制御する。
CPモードでは、AC/DCコンバータ11は、交流電源1から入力される交流電力Pacを制御する。
制御回路50によるAC/DCコンバータ11の制御方法は、公知のフィードバック制御である。制御回路50は、任意の交流電力指令値Pac_refと、交流電力Pacの検出値と、の誤差Pac_errに基づいて、AC/DCコンバータ11のスイッチング素子のオン時間DUTY_PFCを決定する。
例えば、制御回路50は、誤差Pac_errを、比例積分器などの補償器で増幅してオン時間DUTY_PFCを算出する。このフィードバック制御によって、AC/DCコンバータ11は、任意の直流電圧Vlinkを出力電圧として、交流電力Pacを所望の交流電力指令値Pac_refに制御する。
制御回路50によるAC/DCコンバータ11の制御方法は、公知のフィードバック制御である。制御回路50は、任意の交流電力指令値Pac_refと、交流電力Pacの検出値と、の誤差Pac_errに基づいて、AC/DCコンバータ11のスイッチング素子のオン時間DUTY_PFCを決定する。
例えば、制御回路50は、誤差Pac_errを、比例積分器などの補償器で増幅してオン時間DUTY_PFCを算出する。このフィードバック制御によって、AC/DCコンバータ11は、任意の直流電圧Vlinkを出力電圧として、交流電力Pacを所望の交流電力指令値Pac_refに制御する。
CPモードでは、非接触方式充電器20は、図示しない送電側コイルから送られる伝送エネルギを受電して、電力源とみなされるように直流電力Pwを統合コンデンサ5に出力する。これは前述のCCモードと同様である。
こうして、電力変換装置100は、CPモードに関する上述の動作によって、接触方式充電器10が出力する直流電力と、非接触方式充電器20が出力する直流電力Pwとの合計電力を最大電力として、負荷6を充電する。
こうして、電力変換装置100は、CPモードに関する上述の動作によって、接触方式充電器10が出力する直流電力と、非接触方式充電器20が出力する直流電力Pwとの合計電力を最大電力として、負荷6を充電する。
電力変換装置100の制御回路50は、上述の定電流充電CCモードと定電力充電CPモードとを実施する際に、電力変換装置100内において生じる電力損失を低減するように制御を行う。
以下、制御回路50による、電力損失の低減に係る動作について説明する。
以下、制御回路50による、電力損失の低減に係る動作について説明する。
電力変換装置100は、動作条件を表すパラメータとして、交流電源1の交流電圧Vac1と、AC/DCコンバータ11と絶縁型DC/DCコンバータ15との接続点の直流電圧Vlinkと、統合コンデンサ5の直流電圧Vintと、負荷6の直流電圧Vbatと、非接触受電コイル20inの交流電圧Vac2と、を持つ。
交流電圧Vac1および交流電圧Vac2は交流系統側の状態で決まり、直流電圧Vbatは高圧バッテリの種類、充電量等で決まるため、制御回路50で交流電圧Vac1、Vac2、および直流電圧Vbatを任意に調整することは困難である。
直流リンクコンデンサ4の直流電圧Vlinkは、交流電圧Vac1とAC/DCコンバータ11の昇圧比とによって決まるため、交流電圧Vac1以上の範囲に限り調整することが可能である。また、統合コンデンサ5の直流電圧Vintは、負荷6の直流電圧VbatとDC/DCコンバータ30の降圧比とによって決まるため、直流電圧Vbat以上の範囲に限り調整することが可能である。
直流リンクコンデンサ4の直流電圧Vlinkは、交流電圧Vac1とAC/DCコンバータ11の昇圧比とによって決まるため、交流電圧Vac1以上の範囲に限り調整することが可能である。また、統合コンデンサ5の直流電圧Vintは、負荷6の直流電圧VbatとDC/DCコンバータ30の降圧比とによって決まるため、直流電圧Vbat以上の範囲に限り調整することが可能である。
AC/DCコンバータ11、絶縁型DC/DCコンバータ15、DC/DCコンバータ30、等の電力変換回路は、発生する電力損失が入力電圧および出力電圧によって変化する場合がある。よって、本実施の形態の電力変換装置100における回路構成では、直流電圧Vlinkまたは直流電圧Vintを調整することで、AC/DCコンバータ11、絶縁型DC/DCコンバータ15、DC/DCコンバータ30、の入力電圧あるいは出力電圧が変化するため、これにより電力変換装置100における電力損失が調整可能となる。以上より、本実施の形態では、電力変換装置100の電力損失低減に係る制御回路50の制御として、直流電圧指令値Vlink_refあるいは直流電圧指令値Vint_refの調整を行う。
制御回路50は、この電力損失低減に係る制御において、電力変換回路10、20、30の電力損失Psを検出し、検出した電力損失Psに基づいて電力損失低減を行う第1モードと、DC/DCコンバータ30から出力される負荷6への出力電流である直流電流Ibatを検出し、検出した直流電流Ibatに基づいて電力損失低減を行う第2モードと、予め電力変換回路10、20、30の電力損失が記録された損失特性情報Jを用いた電力損失低減を行う第3モードと、を有する。
本実施の形態では、制御回路50による上記第1モードを用いた制御について説明する。
本実施の形態では、制御回路50による上記第1モードを用いた制御について説明する。
図2は、この実施の形態1による制御回路50の、電力損失低減に関する動作モードである第1モードにおいて実施される処理を示すフロー図である。
なお、前述のように、電力変換装置100の電力損失低減の制御において、直流電圧指令値Vlinkあるいは直流電圧指令値Vintの調整が考えられるが、以下の説明においては、直流電圧Vintの方を調整する制御について説明する。
また、以下において詳細を説明するように、制御回路50は、電力損失Psを算出する機能と、少なくとも2回分の電力損失Psを記録する機能と、直流電圧指令値Vint_refに、設定された補正値ΔVrefを加算する機能と、を備える。
なお、前述のように、電力変換装置100の電力損失低減の制御において、直流電圧指令値Vlinkあるいは直流電圧指令値Vintの調整が考えられるが、以下の説明においては、直流電圧Vintの方を調整する制御について説明する。
また、以下において詳細を説明するように、制御回路50は、電力損失Psを算出する機能と、少なくとも2回分の電力損失Psを記録する機能と、直流電圧指令値Vint_refに、設定された補正値ΔVrefを加算する機能と、を備える。
制御回路50は、電力損失低減に関する第1モードによる制御を開始すると、図2に示す「開始」から「終了」までの処理を繰り返し実施する。繰り返しの条件は、時間計測による予め設定された第1設定時間t1の経過とする。即ち、制御回路50は、第1モードの実行中において、「開始」から「終了」までの一連の処理を、第1設定時間t1毎に実施する。
制御回路50は、電力変換装置100の動作中における電力変換装置100の電力損失Psを検出する(ステップS1)。
このステップS1において、制御回路50は、接触方式充電器10、非接触方式充電器20、および、DC/DCコンバータ30の合計の電力損失Psを検出して記録する。そして、制御回路50は、最新の電力損失Psの検出結果Ps_moniを、Ps_moni(n)とし、上記第1設定時間t1分だけ前に検出された電力損失Psの検出結果Ps_moniを、Ps_moni(n-1)として記録する。
制御回路50は、電力変換装置100の動作中における電力変換装置100の電力損失Psを検出する(ステップS1)。
このステップS1において、制御回路50は、接触方式充電器10、非接触方式充電器20、および、DC/DCコンバータ30の合計の電力損失Psを検出して記録する。そして、制御回路50は、最新の電力損失Psの検出結果Ps_moniを、Ps_moni(n)とし、上記第1設定時間t1分だけ前に検出された電力損失Psの検出結果Ps_moniを、Ps_moni(n-1)として記録する。
なお、電力損失Psの検出方法としては、例えば非接触方式充電器20の入力側に電力検出器を設ける(図示せず)。そして、CPモードにおいては、制御回路50が、接触方式充電器10に入力される交流電力Pacの交流電力指令値Pac_ref、および図示しない上記電力検出器により検出された非接触方式充電器20に入力される交流電力、の合計入力電力と、検出される負荷6の直流電圧Vbatおよび検出される負荷6への直流電流Ibatから得られる出力電力と、を比較して電力損失Psを算出するものでもよい。
また例えば、CCモードにおいては、制御回路50が、上記合計入力電力と、負荷6への直流電流指令値Ibat_refおよび検出される負荷6の直流電圧Vbatから得られる出力電力と、を比較して電力損失Psを算出するものでもよい。
また、例えば、DC/DCコンバータ30の出力側に電力検出器を設ける。そして、制御回路50が、接触方式充電器10の入力側の電力検出器76、および非接触方式充電器20の入力側に設けられた図示しない電力検出器から検出された入力電力の、合計入力電力と、DC/DCコンバータ30の出力側に設けられた電力検出器から検出された出力電力と、を比較して電力損失Psを算出してもよい。
また例えば、CCモードにおいては、制御回路50が、上記合計入力電力と、負荷6への直流電流指令値Ibat_refおよび検出される負荷6の直流電圧Vbatから得られる出力電力と、を比較して電力損失Psを算出するものでもよい。
また、例えば、DC/DCコンバータ30の出力側に電力検出器を設ける。そして、制御回路50が、接触方式充電器10の入力側の電力検出器76、および非接触方式充電器20の入力側に設けられた図示しない電力検出器から検出された入力電力の、合計入力電力と、DC/DCコンバータ30の出力側に設けられた電力検出器から検出された出力電力と、を比較して電力損失Psを算出してもよい。
次に、制御回路50は、このようにして検出された電力損失Ps_moniの時間的な変化である電力損失変化を算出する。即ち、制御回路50は、Ps_moni(n)とPs_moni(n-1)とを比較して、Ps_moni(n)がPs_moni(n-1)に対して増加しているか、減少しているか、即ち、PS_moniが増加傾向であるか減少傾向であるか、を判断する(ステップS2)。
制御回路50は、今回検出した最新の電力損失Ps_moni(n)が、前回検出した電力損失Ps_moni(n-1)より小さくなると(ステップS2:Yes)、予め設定されている補正値ΔVrefの極性を維持し(ステップS3a)、統合コンデンサ5の直流電圧指令値Vint_refに対して予め設定された極性の補正値ΔVrefを加算し(ステップS4)、処理を終了する。
一方、制御回路50は、今回検出した最新の電力損失Ps_moni(n)が、前回検出した電力損失Ps_moni(n-1)以上となると(ステップS2:No)、予め設定されている補正値ΔVrefに-1を乗算して補正値ΔVrefの極性を反転させ(ステップS3b)、統合コンデンサ5の直流電圧指令値Vint_refに対して、予め設定された極性を反転させた補正値ΔVrefを加算し(ステップS4)、処理を終了する。
そして、制御回路50は、再度、「開始」から「終了」までの一連の処理を実施する。そして制御回路50は、ステップS2において、最新の電力損失Ps_moni(n)が、電力損失Ps_moni(n-1)より小さくなると(ステップS2:Yes)、前回の一連の処理において設定された補正値ΔVrefの極性を維持し(ステップS3a)、統合コンデンサ5の直流電圧指令値Vint_refに対して前回設定された極性の補正値ΔVrefを加算する(ステップS4)。
一方、制御回路50は、最新の電力損失Ps_moni(n)が、電力損失Ps_moni(n-1)以上となると(ステップS2:No)、前回の一連の処理において設定された補正値ΔVrefの極性を反転させ(ステップS3b)、統合コンデンサ5の直流電圧指令値Vint_refに対して前回設定された極性を反転させた補正値ΔVrefを加算する(ステップS4)。
このように制御回路50は、第1モードにおいて、第1設定時間t1毎に電力損失Psを検出し、電力損失Psが減少した場合には、前回の補正値ΔVrefの極性(初回演算時は予め設定された極性)を保持し、電力損失Psが増加した場合には前回の補正値ΔVrefの極性(初回演算時は予め設定された極性)を反転させて、直流電圧指令値Vint_refに上記補正値ΔVrefを加算することで新たな直流電圧指令値Vint_refを得る。
この制御を繰り返す事で、電力損失Psが最小となるように、統合コンデンサ5の直流電圧Vintの値が制御される。
この制御を繰り返す事で、電力損失Psが最小となるように、統合コンデンサ5の直流電圧Vintの値が制御される。
ここで、CCモードの場合は、既に説明したように、任意の直流電圧指令値Vint_refと、直流電圧Vintの検出値と、の誤差Vint_errに基づいて、絶縁型DC/DCコンバータ15を構成する絶縁トランス18の電圧を印加する時間DUTY_DABを決定する。こうして絶縁型DC/DCコンバータ15により統合コンデンサ5の直流電圧Vintを制御する。
また、CPモードの場合は、既に説明したように、任意の直流電圧指令値Vint_refと、直流電圧Vintの検出値と、の誤差Vint_errに基づいて、DC/DCコンバータ30のスイッチング素子のオン時間DUTY_CHOPを決定する。こうして、DC/DCコンバータ30により統合コンデンサ5の直流電圧Vintを制御する。
また、CPモードの場合は、既に説明したように、任意の直流電圧指令値Vint_refと、直流電圧Vintの検出値と、の誤差Vint_errに基づいて、DC/DCコンバータ30のスイッチング素子のオン時間DUTY_CHOPを決定する。こうして、DC/DCコンバータ30により統合コンデンサ5の直流電圧Vintを制御する。
これにより、制御回路50が修正した直流電圧指令値Vint_refに直流電圧Vintが追従するように、絶縁型DC/DCコンバータ15またはDC/DCコンバータ30が制御される。結果として、電力変換装置100の電力損失低減となるように直流電圧Vintが制御される。
以上では、統合コンデンサ5の直流電圧Vintを調整する例を示したが、直流リンクコンデンサ4の直流電圧Vlinkについても上記と同様の制御が可能である。
直流リンクコンデンサ4の直流電圧Vlinkを調整する場合は、ステップS4において、直流リンクコンデンサ4に対する直流電圧指令値Vlink_refに補正値ΔVrefを加算する。
直流リンクコンデンサ4の直流電圧Vlinkを調整する場合は、ステップS4において、直流リンクコンデンサ4に対する直流電圧指令値Vlink_refに補正値ΔVrefを加算する。
そして、CCモードの場合は、既に説明したように、任意の直流電圧指令値Vlink_refと、直流電圧Vlinkの検出値と、の誤差Vlink_errに基づいて、AC/DCコンバータ11のスイッチング素子のオン時間DUTY_PFCを決定する。
こうしてAC/DCコンバータ11により直流リンクコンデンサ4の直流電圧Vlinkを制御する。
また、CPモードの場合は、既に説明したように、任意の直流電圧指令値Vlink_refと、直流電圧Vlinkの検出値と、の誤差Vlink_errに基づいて、絶縁型DC/DCコンバータ15の絶縁トランス18の電圧を印加する時間DUTY_DABを決定する。こうして絶縁型DC/DCコンバータ15により直流リンクコンデンサ4の直流電圧Vlinkを制御する。
こうしてAC/DCコンバータ11により直流リンクコンデンサ4の直流電圧Vlinkを制御する。
また、CPモードの場合は、既に説明したように、任意の直流電圧指令値Vlink_refと、直流電圧Vlinkの検出値と、の誤差Vlink_errに基づいて、絶縁型DC/DCコンバータ15の絶縁トランス18の電圧を印加する時間DUTY_DABを決定する。こうして絶縁型DC/DCコンバータ15により直流リンクコンデンサ4の直流電圧Vlinkを制御する。
また以上では、ステップS1において制御回路50は、接触方式充電器10、非接触方式充電器20、および、DC/DCコンバータ30、の3つの電力変換回路の合計の電力損失Ps、即ち、電力変換装置100全体での電力損失Psを検出した。そして制御回路50は、電力変換装置100全体での電力損失Psが低減するように、直流電圧Vlinkあるいは直流電圧Vintを調節した。
接触方式充電器10と非接触方式充電器20とを同時に動作させる場合では、接触方式充電器10において損失が最小となる直流電圧指令値Vint_refを選択した場合に、非接触方式充電器20の損失が極端に増大する可能性が想定される。このような場合、上記のように、接触方式充電器10と非接触方式充電器20とDC/DCコンバータ30の合計損失を減少させる直流電圧指令値Vint_refを選択することで、効果的に電力損失の低減が可能である。
接触方式充電器10と非接触方式充電器20とを同時に動作させる場合では、接触方式充電器10において損失が最小となる直流電圧指令値Vint_refを選択した場合に、非接触方式充電器20の損失が極端に増大する可能性が想定される。このような場合、上記のように、接触方式充電器10と非接触方式充電器20とDC/DCコンバータ30の合計損失を減少させる直流電圧指令値Vint_refを選択することで、効果的に電力損失の低減が可能である。
なお、DC/DCコンバータ30の電力損失の影響が少ない場合では、制御回路50は、ステップS1において、接触方式充電器10と非接触方式充電器20との2つの電力変換回路の合計の電力損失Psを検出して、これら接触方式充電器10および非接触方式充電器20の2つの電力変換回路の電力損失Psが低減するように、直流電圧Vlinkあるいは直流電圧Vintを調節してもよい。
また例えば、接触方式充電器10の方を動作させ、非接触方式充電器20の方を動作させない電力供給動作を行う場合では、接触方式充電器10のみの電力損失Psを検出してもよい。この場合、制御回路50は、接触方式充電器10の電力損失Psが低減するように、直流電圧Vlinkあるいは直流電圧Vintを調節する。
また例えば、制御回路50は、接触方式充電器10の電力損失PsおよびDC/DCコンバータ30の電力損失Psを検出して、これら接触方式充電器10およびDC/DCコンバータ30の電力損失Psが低減するように、直流電圧Vlinkあるいは直流電圧Vintを調節してもよい。
また例えば、制御回路50は、接触方式充電器10の電力損失PsおよびDC/DCコンバータ30の電力損失Psを検出して、これら接触方式充電器10およびDC/DCコンバータ30の電力損失Psが低減するように、直流電圧Vlinkあるいは直流電圧Vintを調節してもよい。
また例えば、非接触方式充電器20の方を動作させ、接触方式充電器10の方を動作させない電力供給動作を行う場合では、非接触方式充電器20のみの電力損失Psを検出してもよい。この場合、制御回路50は、非接触方式充電器20の電力損失Psが低減するように、直流電圧Vlinkあるいは直流電圧Vintを調節する。
また例えば、制御回路50は、非接触方式充電器20の電力損失PsおよびDC/DCコンバータ30の電力損失Psを検出して、これら非接触方式充電器20およびDC/DCコンバータ30の電力損失Psが低減するように、直流電圧Vlinkあるいは直流電圧Vintを調節してもよい。
また例えば、制御回路50は、非接触方式充電器20の電力損失PsおよびDC/DCコンバータ30の電力損失Psを検出して、これら非接触方式充電器20およびDC/DCコンバータ30の電力損失Psが低減するように、直流電圧Vlinkあるいは直流電圧Vintを調節してもよい。
また例えば、DC/DCコンバータ30による電力損失が、電力変換装置100全体での電力損失において支配的である場合は、DC/DCコンバータ30の電力損失Psのみを検出して、DC/DCコンバータ30の電力損失Psが低減するように、直流電圧Vlinkあるいは直流電圧Vintを調節してもよい。
即ち、制御回路50は、接触方式充電器10、非接触方式充電器20、DC/DCコンバータ30、の各電力変換回路の内、少なくとも一つの電力変換回路の電力損失Psを低減するように、直流電圧Vlinkあるいは直流電圧Vintの調節を行うものである。
上記のように構成された本実施の形態の電力変換装置100によると、接触方式充電器10の出力端子10outと非接触方式充電器20の出力端子20outとが、統合母線7を介してDC/DCコンバータ30の入力端子30inに接続されており、この統合母線7には統合コンデンサ5が接続されている。このように、非接触方式充電器20は、接触方式充電器10の絶縁型DC/DCコンバータ15の出力側に接続される構成となる。 これにより、有線方式側の交流電圧Vac1およびワイヤレス方式側の交流電圧Vac2の電圧値に依らず、有線方式による電力供給機能と、ワイヤレス方式による電力供給機能との電力供給を同時に行うことが可能となり、作業性が向上する。
更に、制御回路50は、このような回路構成の電力変換装置100において、接触方式充電器10、非接触方式充電器20、DC/DCコンバータ30の電力損失Psの増減を検出し、この電力損失Psが減少するように、直流リンクコンデンサ4の直流電圧Vlinkあるいは統合コンデンサ5の直流電圧Vintを制御する。このように、接触方式充電器10内のAC/DCコンバータ11、絶縁型DC/DCコンバータ15、DC/DCコンバータ30、フルブリッジコンバータ21、の入力電圧あるいは出力電圧が調整されることにより、電力損失が効果的に低減される。
また、制御回路50は、接触方式充電器10、非接触方式充電器20、および、DC/DCコンバータ30の電力損失Psを、第1設定時間t1毎に検出された電力損失Psが増加傾向であるか減少傾向であるかを判断し、この判断に基づいて直流電圧Vlinkあるいは直流電圧Vintを制御する。
このように、第1設定時間t1毎に定期的に実際の電力損失Psを検出することで、電力変換装置100の実際の損失状態に合わせて、精度良く直流電圧Vlinkあるいは直流電圧Vintを調整できる。これにより電力損失が更に効果的に低減される。
このように、第1設定時間t1毎に定期的に実際の電力損失Psを検出することで、電力変換装置100の実際の損失状態に合わせて、精度良く直流電圧Vlinkあるいは直流電圧Vintを調整できる。これにより電力損失が更に効果的に低減される。
また、制御回路50は、統合コンデンサ5の直流電圧Vintを調整する場合、CCモードにおいては、絶縁型DC/DCコンバータ15のスイッチング素子を制御し、CPモードにおいては、DC/DCコンバータ30のスイッチング素子を制御する。
また、制御回路50は、直流リンクコンデンサ4の直流電圧Vlinkを調整する場合、CCモードにおいては、AC/DCコンバータ11のスイッチング素子を制御し、CPモードにおいては、絶縁型DC/DCコンバータ15のスイッチング素子を制御する。
このように、直流リンクコンデンサ4の直流電圧Vlinkあるいは統合コンデンサ5の直流電圧Vintの調整において、それぞれ2つのモードを用いて制御が可能であるため、負荷6がバッテリであり、満充電付近においてCCモードが必要な場合と、満充電付近でなく供給電力が最大電力となるようにCPモードが必要な場合と、に対応させることが可能となる。
また、DC/DCコンバータ30は、降圧回路を示したが、昇圧回路でもよい。
また、制御回路50は、直流リンクコンデンサ4の直流電圧Vlinkを調整する場合、CCモードにおいては、AC/DCコンバータ11のスイッチング素子を制御し、CPモードにおいては、絶縁型DC/DCコンバータ15のスイッチング素子を制御する。
このように、直流リンクコンデンサ4の直流電圧Vlinkあるいは統合コンデンサ5の直流電圧Vintの調整において、それぞれ2つのモードを用いて制御が可能であるため、負荷6がバッテリであり、満充電付近においてCCモードが必要な場合と、満充電付近でなく供給電力が最大電力となるようにCPモードが必要な場合と、に対応させることが可能となる。
また、DC/DCコンバータ30は、降圧回路を示したが、昇圧回路でもよい。
実施の形態2.
以下、本願の実施の形態2を、上記実施の形態1と異なる箇所を中心に図を用いて説明する。上記実施の形態1と同様の部分は同一符号を付して説明を省略する。
実施の形態1では、電力変換回路10、20、30の電力損失Psを検出し、検出した電力損失Psに基づいて電力損失低減を行う第1モードについて説明した。
本実施の形態では、DC/DCコンバータ30から出力される負荷6への出力電流である直流電流Ibatを検出し、検出した直流電流Ibatに基づいて電力損失低減を行う第2モードについて説明する。
以下、本願の実施の形態2を、上記実施の形態1と異なる箇所を中心に図を用いて説明する。上記実施の形態1と同様の部分は同一符号を付して説明を省略する。
実施の形態1では、電力変換回路10、20、30の電力損失Psを検出し、検出した電力損失Psに基づいて電力損失低減を行う第1モードについて説明した。
本実施の形態では、DC/DCコンバータ30から出力される負荷6への出力電流である直流電流Ibatを検出し、検出した直流電流Ibatに基づいて電力損失低減を行う第2モードについて説明する。
図3は、本実施の形態2による制御回路50の、電力損失低減に関する動作モードである第2モードにおいて実施される処理を示すフロー図である。なお、以下の説明において、統合コンデンサ5の直流電圧Vintを調整する例を用いて説明する。
制御回路50は、直流電流Ibatを検出する機能と、少なくとも2回分の直流電流Ibatを記録する機能と、直流電圧指令値Vint_refに、設定された補正値ΔVrefを加算する機能と、を備える。
制御回路50は、電力損失低減に関する第2モードによる制御を開始すると、実施の形態1の図2に示した処理と同様に、第2モードの実行中において、図3に示す「開始」から「終了」までの一連の処理を第2設定時間t2毎に実施する。
なお、この第2モードの第2設定時間t2に対して設定される時間長は、第1モードの第1設定時間t2に対して設定される時間長と同じでもよい。
図3に示すように、制御回路50は、電力変換装置100の動作中において、DC/DCコンバータ30から負荷6に対して出力する直流電流Ibatを検出する(ステップS1)。
このステップS1において、制御回路50は、直流電流Ibatを検出して記録する。そして、制御回路50は、最新の直流電流Ibatの検出結果Ibat_moniを、Ibat_moni(n)とし、上記第2設定時間t2分だけ前に検出された直流電流Ibatの検出結果Ibat_moniを、Ibat_moni(n-1)として記録する。
なお、この第2モードの第2設定時間t2に対して設定される時間長は、第1モードの第1設定時間t2に対して設定される時間長と同じでもよい。
図3に示すように、制御回路50は、電力変換装置100の動作中において、DC/DCコンバータ30から負荷6に対して出力する直流電流Ibatを検出する(ステップS1)。
このステップS1において、制御回路50は、直流電流Ibatを検出して記録する。そして、制御回路50は、最新の直流電流Ibatの検出結果Ibat_moniを、Ibat_moni(n)とし、上記第2設定時間t2分だけ前に検出された直流電流Ibatの検出結果Ibat_moniを、Ibat_moni(n-1)として記録する。
次に、制御回路50は、算出された直流電流Ibatの時間的な変化である直流電流変化を算出する。即ち、制御回路50は、Ibat_moni(n)とIbat_moni(n-1)とを比較して、Ibat_moni(n)がIbat_moni(n-1)に対して、増加しているか、減少しているか、即ち、Ibat_moniが増加傾向であるか減少傾向であるか、を判断する(ステップS2)。
制御回路50は、検出した最新の直流電流Ibat_moni(n)が、前回検出した直流電流Ibat_moni(n-1)以上大きくなると(ステップS2:Yes)、予め設定されている補正値ΔVrefの極性を維持し(ステップS3a)、統合コンデンサ5の直流電圧指令値Vint_refに対して予め設定された極性の補正値ΔVrefを加算し(ステップS4)、処理を終了する。
一方、制御回路50は、検出した最新の直流電流Ibat_moni(n)が、前回検出した直流電流Ibat_moni(n-1)未満となると(ステップS2:No)、予め設定されている補正値ΔVrefに-1を乗算して補正値ΔVrefの極性を反転させ(ステップS3b)、統合コンデンサ5の直流電圧指令値Vint_refに対して、予め設定された極性を反転させた補正値ΔVrefを加算し(ステップS4)、処理を終了する。
そして、制御回路50は、再度、「開始」から「終了」までの一連の処理を実施する。そして制御回路50は、ステップS2において、検出した最新の直流電流Ibat_moni(n)が、検出した直流電流Ibat_moni(n-1)以上大きくなると(ステップS2:Yes)、前回の一連の処理において設定された補正値ΔVrefの極性を維持し(ステップS3a)、統合コンデンサ5の直流電圧指令値Vint_refに対して前回設定された極性の補正値ΔVrefを加算する(ステップS4)。
一方、制御回路50は、検出した最新の直流電流Ibat_moni(n)が、検出した直流電流Ibat_moni(n-1)未満となると(ステップS2:No)、前回の一連の処理において設定された補正値ΔVrefの極性を反転させ(ステップS3b)、統合コンデンサ5の直流電圧指令値Vint_refに対して前回設定された極性を反転させた補正値ΔVrefを加算する(ステップS4)。
このように制御回路50は、第2モードにおいて、第2設定時間t2毎に直流電流Ibatを検出し、直流電流Ibatが増加した場合には、前回の補正値ΔVrefの極性(初回演算時は予め設定された極性)を保持し、直流電流Ibatが減少した場合には前回の補正値ΔVrefの極性(初回演算時は予め設定された極性)を反転させて、直流電圧指令値Vint_refに上記補正値ΔVrefを加算することで新たな直流電圧指令値Vint_refを得る。
負荷6は、電動車両内の各機器に対して電力供給可能な高圧バッテリ等の電圧源である。よって、負荷6は、直流電流Ibatに依らずほぼ一定の電圧を維持するため、このように負荷6に対する直流電流Ibatが最大となるように、統合コンデンサ5の直流電圧Vintの値が維持する制御が可能となる。これにより、電力変換装置100全体での電力損失を最小化できる。
ここで、CCモードの場合は、既に説明したように、DC/DCコンバータ30は、負荷6に出力する直流電流Ibatを制御する。制御回路50は、任意の直流電流指令値Ibat_refと、直流電流Ibatの検出値と、の誤差Ibat_errに基づいて、DC/DCコンバータ30のスイッチング素子のオン時間DUTY_CHOPを決定する。そのため、上記の直流電圧指令値Vint_refに補正値ΔVrefを加算する機能を実行しても、直流電流Ibatは直流電流指令値Ibat_refに追従するように、DC/DCコンバータ30のオン時間DUTY_CHOPが調整される。よって、直流電流Ibatの変化を抽出することはできない。そのため、本実施の形態では、CCモードは適用対象外であり、CCモードにおける直流電流Ibat検出値による直流電圧指令値Vint_refの調整は実施対象外である。
一方、CPモードの場合は、既に説明しているように負荷6に接続されるDC/DCコンバータ30は、統合コンデンサ5の直流電圧Vintを制御する。負荷6の直流電流Ibatは直流電流指令値Ibat_refには制御されていない。よって、本実施の形態に記載する、直流電流Ibat検出値による直流電圧指令値Vint_refの調整は適用対象となる。なお、すでに説明しているように、CPモードにおける負荷6への伝送電力は、非接触方式充電器20では図示しない送電側コイルから送られる伝送エネルギ、および、AC/DCコンバータ11は、交流電源1から入力する交流電力Pac、によって決まる。
なお、前述のように負荷6は電圧源でありほぼ一定の電圧を維持するが、特にCPモードにおいて一定の電力で長い時間レンジで負荷6を充電している場合は、直流電圧Vbatが上昇すれば直流電流Ibatは減少する。そのため、本実施の形態では、制御回路50が、直流電流Ibatを検出する間隔である第2設定時間t2を、負荷6の充電率(state of charge)に依る直流電流Ibatの変化に依らない、短い時間レンジに設定している。例えば、この第2設定時間t2を、高周波駆動されるDC/DCコンバータ30のスイッチング素子のスイッチング間隔に応じて設定してもよい。更に具体的には、第2設定時間t2を、スイッチング素子のスイッチング間隔の整数倍としてもよい。この場合、高周波駆動されるスイッチング素子のスイッチング間隔に準じた第2設定時間t2を得ることができ、短い時間レンジでの直流電流Ibatの検出が可能となる。
上記のように構成された本実施の形態の電力変換装置100によると、実施の形態1と同様の効果を奏し、有線方式側とワイヤレス方式側の受電電圧値によらず、有線方式による電力供給機能と、ワイヤレス方式による電力供給機能との電力供給を同時に行うことが可能である。
更に、制御回路50は、検出されたDC/DCコンバータ30からの出力電流である直流電流Ibatが最大となるように、直流電圧Vlinkあるいは直流電圧Vintを制御する。このように直流電流Ibatが最大、即ち、出力電力が最大となるように各電力変換回路10、20、30が制御されるため、電力変換装置100全体における電力損失Psを最小化することが可能となる。
更に、制御回路50は、検出されたDC/DCコンバータ30からの出力電流である直流電流Ibatが最大となるように、直流電圧Vlinkあるいは直流電圧Vintを制御する。このように直流電流Ibatが最大、即ち、出力電力が最大となるように各電力変換回路10、20、30が制御されるため、電力変換装置100全体における電力損失Psを最小化することが可能となる。
また、制御回路50は、直流電流Ibatを第2設定時間t2毎に検出し、検出された直流電流Ibatが増加傾向であるか減少傾向であるかを判断し、この判断に基づいて直流電圧Vlinkあるいは直流電圧Vintを制御する。
このように、第2設定時間t2毎に定期的に実際の直流電流Ibatを検出することで、電力変換装置100の実際の損失状態に合わせて、精度良く直流電圧Vlinkあるいは直流電圧Vintを調整できる。これにより電力損失が更に効果的に低減される。
このように、第2設定時間t2毎に定期的に実際の直流電流Ibatを検出することで、電力変換装置100の実際の損失状態に合わせて、精度良く直流電圧Vlinkあるいは直流電圧Vintを調整できる。これにより電力損失が更に効果的に低減される。
さらに、直流電流Ibatの検出間隔である第2設定時間t2は、DC/DCコンバータ30のスイッチング素子のスイッチング間隔に応じて設定されている。こうして第2設定時間t2を短い時間レンジに設定することにより、負荷6の充電率に依る直流電流Ibatの変化に依らずに直流電流Ibatの変化を検出して、精度よく直流電圧Vlinkあるいは直流電圧Vintを調整できる。
実施の形態3.
以下、本願の実施の形態3を、上記実施の形態1と異なる箇所を中心に図を用いて説明する。上記実施の形態1と同様の部分は同一符号を付して説明を省略する。
これまでに記載した電力変換装置100の電力損失低減に係る動作モードである第1モードおよび第2モードでは、電力変換回路10、20、30の電力損失Ps、または負荷6への直流電流Ibatを検出する必要がある。いずれも検出手段として電力検出器もしくは電流検出器が必要である。
本実の形態では、電力検出器および電流検出器が不要となる、損失特性情報Jを用いた電力損失低減に係る動作モードである第3モードについて説明する。
以下、本願の実施の形態3を、上記実施の形態1と異なる箇所を中心に図を用いて説明する。上記実施の形態1と同様の部分は同一符号を付して説明を省略する。
これまでに記載した電力変換装置100の電力損失低減に係る動作モードである第1モードおよび第2モードでは、電力変換回路10、20、30の電力損失Ps、または負荷6への直流電流Ibatを検出する必要がある。いずれも検出手段として電力検出器もしくは電流検出器が必要である。
本実の形態では、電力検出器および電流検出器が不要となる、損失特性情報Jを用いた電力損失低減に係る動作モードである第3モードについて説明する。
図4は、本実施の形態3による制御回路50の、電力損失低減に関する動作モードである第3モードの第1例を示すフロー図である。
図5は、本実施の形態3による電力変換装置100において、負荷6の直流電圧Vbatが100Vの時のDC/DCコンバータ30の電力損失特性を記録した損失特性情報Jである。
図6は、本実施の形態3による電力変換装置100において、負荷6の直流電圧Vbatが300Vの時のDC/DCコンバータ30の電力損失特性を記録した損失特性情報Jである。
図7は、本実施の形態3による制御回路50の、電力損失低減に関する動作モードである第3モードの第2例を示すフロー図である。
図8は、本実施の形態3による電力変換装置100において、交流電圧Vac1が100Vの時の接触方式充電器10の電力損失特性を記録した損失特性情報である。
図9は、本実施の形態3による電力変換装置100において、交流電圧Vac1が200Vの時の接触方式充電器10の電力損失特性を記録した損失特性情報である。
図10は、本実施の形態3による制御回路50の、電力損失低減に関する動作モードである第3モードの第3例を示すフロー図である。
図11は、本実施の形態3による電力変換装置100において、非接触受電コイル20inの交流電圧Vac2が低い時の非接触方式充電器20の電力損失特性を記録した損失特性情報である。
図12は、本実施の形態3による電力変換装置100において、非接触受電コイル20inの交流電圧Vac2が高い時の非接触方式充電器20の電力損失特性を記録した損失特性情報である。
なお、これら図4~図12は、統合コンデンサ5の直流電圧Vintの方を調整する場合の制御に対応している。
図5は、本実施の形態3による電力変換装置100において、負荷6の直流電圧Vbatが100Vの時のDC/DCコンバータ30の電力損失特性を記録した損失特性情報Jである。
図6は、本実施の形態3による電力変換装置100において、負荷6の直流電圧Vbatが300Vの時のDC/DCコンバータ30の電力損失特性を記録した損失特性情報Jである。
図7は、本実施の形態3による制御回路50の、電力損失低減に関する動作モードである第3モードの第2例を示すフロー図である。
図8は、本実施の形態3による電力変換装置100において、交流電圧Vac1が100Vの時の接触方式充電器10の電力損失特性を記録した損失特性情報である。
図9は、本実施の形態3による電力変換装置100において、交流電圧Vac1が200Vの時の接触方式充電器10の電力損失特性を記録した損失特性情報である。
図10は、本実施の形態3による制御回路50の、電力損失低減に関する動作モードである第3モードの第3例を示すフロー図である。
図11は、本実施の形態3による電力変換装置100において、非接触受電コイル20inの交流電圧Vac2が低い時の非接触方式充電器20の電力損失特性を記録した損失特性情報である。
図12は、本実施の形態3による電力変換装置100において、非接触受電コイル20inの交流電圧Vac2が高い時の非接触方式充電器20の電力損失特性を記録した損失特性情報である。
なお、これら図4~図12は、統合コンデンサ5の直流電圧Vintの方を調整する場合の制御に対応している。
制御回路50は、図5および図6、図8および図9、図11および図12に示すような、DC/DCコンバータ30、接触方式充電器10、非接触方式充電器20、の電力損失特性が記録された損失特性情報Jを有する。
これら損失特性情報Jは、電力変換装置100の試験段階等において予め取得されて制御回路50に記録されるものであり、横軸は電力変換回路の伝送電力であり、縦軸は電力変換回路の損失を示す。
これら損失特性情報Jは、電力変換装置100の試験段階等において予め取得されて制御回路50に記録されるものであり、横軸は電力変換回路の伝送電力であり、縦軸は電力変換回路の損失を示す。
損失特性情報Jは、統合コンデンサ5の直流電圧Vintの値(ここでは、Vint=100、200V、300V)毎に取得された複数の損失マップM(M1、M2・・・M17、M18)から構成される。
なお、ここでは、直流電圧Vintの値を、100V、200V、300V、の3つの電圧値に変化させた場合における損失マップMを図示しているが、例えば、直流電圧Vintの値を100V、120V、140V・・・280V、300Vと、更に細かく変化させた場合の損失マップMが記録されてもよい。
なお、ここでは、直流電圧Vintの値を、100V、200V、300V、の3つの電圧値に変化させた場合における損失マップMを図示しているが、例えば、直流電圧Vintの値を100V、120V、140V・・・280V、300Vと、更に細かく変化させた場合の損失マップMが記録されてもよい。
また、図5に示すように、DC/DCコンバータ30の損失マップM1、M2、M3は、負荷6の直流電圧Vbatの値(100V、負荷電圧が低い時を想定)に対応してそれぞれ記録されている。
また、図6に示すように、DC/DCコンバータ30の損失マップM4、M5、M6は、負荷6の直流電圧Vbatの値(300V、負荷電圧が高い時を想定)に対応してそれぞれ記録されている。
なお、ここでは、負荷6の直流電圧Vbatの値が100V、300V、の2つの電圧値に対応するそれぞれの損失マップMが記録されているが、負荷6の直流電圧Vbatの値を更に細かく変化させた場合の損失マップMが記録されてもよい。
また、図6に示すように、DC/DCコンバータ30の損失マップM4、M5、M6は、負荷6の直流電圧Vbatの値(300V、負荷電圧が高い時を想定)に対応してそれぞれ記録されている。
なお、ここでは、負荷6の直流電圧Vbatの値が100V、300V、の2つの電圧値に対応するそれぞれの損失マップMが記録されているが、負荷6の直流電圧Vbatの値を更に細かく変化させた場合の損失マップMが記録されてもよい。
先ず、DC/DCコンバータ30の電力損失を低減する制御について、図4のフロー図、および図5、図6に示すDC/DCコンバータ30の損失特性情報Jを用いて説明する。
制御回路50は、電力損失低減に関する第3モードによる制御の第1例を開始すると、負荷6の直流電圧Vbatを検出する(ステップS1a)。
制御回路50は、電力損失低減に関する第3モードによる制御の第1例を開始すると、負荷6の直流電圧Vbatを検出する(ステップS1a)。
次に、制御回路50は、統合コンデンサ5の直流電圧指令値Vint_refの設定可能な調整可能範囲Sを演算する(ステップS2a)。
ここで、DC/DCコンバータ30は、負荷6に向かって降圧変換を行う回路構成であるため、統合コンデンサ5の直流電圧指令値Vint_refの調整可能範囲Sは、直流電圧Vbat÷直流電圧Vintから得られるDC/DCコンバータ30の降圧比と、検出された直流電圧Vbatと、から求められる。
ここで検出された直流電圧Vbatが100Vであるとし、DC/DCコンバータ30の最大降圧比を7/10とすると、統合コンデンサ5の直流電圧Vint_refの調整可能範囲Sは142.8Vより上の電圧範囲となる。
ここで、DC/DCコンバータ30は、負荷6に向かって降圧変換を行う回路構成であるため、統合コンデンサ5の直流電圧指令値Vint_refの調整可能範囲Sは、直流電圧Vbat÷直流電圧Vintから得られるDC/DCコンバータ30の降圧比と、検出された直流電圧Vbatと、から求められる。
ここで検出された直流電圧Vbatが100Vであるとし、DC/DCコンバータ30の最大降圧比を7/10とすると、統合コンデンサ5の直流電圧Vint_refの調整可能範囲Sは142.8Vより上の電圧範囲となる。
次に、制御回路50は、検出した直流電圧Vbatの値に応じた損失マップMを参照する。本実施の形態のDC/DCコンバータ30の損失マップMは、図5に示す直流電圧Vbatの値が100Vの場合と、図6に示す直流電圧Vbatの値が300Vの場合との、2つの場合である。検出された直流電圧Vbatの値が100Vであるため、制御回路50は、直流電圧Vbatが100Vの場合の図5の方の損失特性情報Jを参照する。
そして制御回路50は、図5に示す損失マップM1、M2、M3の内から、演算された統合コンデンサ5の調整可能範囲S内の値に対応する損失マップMを選出する。即ち、前述のように、統合コンデンサ5の直流電圧Vint_refの調整可能範囲Sは142.8Vより上の電圧範囲であるため、直流電圧Vint=200Vの損失マップM2と、直流電圧Vint=300Vの損失マップM3の2つを選出する(ステップS3a)。
そして制御回路50は、図5に示す損失マップM1、M2、M3の内から、演算された統合コンデンサ5の調整可能範囲S内の値に対応する損失マップMを選出する。即ち、前述のように、統合コンデンサ5の直流電圧Vint_refの調整可能範囲Sは142.8Vより上の電圧範囲であるため、直流電圧Vint=200Vの損失マップM2と、直流電圧Vint=300Vの損失マップM3の2つを選出する(ステップS3a)。
次に、制御回路50は、CCモードでは、DC/DCコンバータ30の制御に係る直流電流指令値Ibat_refを参照し、この直流電流指令値Ibat_refと、検出した直流電圧Vbatと、からDC/DCコンバータ30の伝送電力を算出する。
ここで、直流電流指令値Ibat_refを8Aとすると、伝送電力は、直流電流指令値Ibat_ref(8A)×直流電圧Vbat(100V)=800Wとなる。
図5において、伝送電力800Wにおける損失マップM2、M3をそれぞれ参照すると、損失が小さくなるのは、直流電圧Vintを200Vに制御したM2の場合である。
よって、制御回路50は、統合コンデンサ5の直流電圧Vintを200Vに調整する(ステップS4a)。これにより、DC/DCコンバータ30の電力損失を低減できる。
ここで、直流電流指令値Ibat_refを8Aとすると、伝送電力は、直流電流指令値Ibat_ref(8A)×直流電圧Vbat(100V)=800Wとなる。
図5において、伝送電力800Wにおける損失マップM2、M3をそれぞれ参照すると、損失が小さくなるのは、直流電圧Vintを200Vに制御したM2の場合である。
よって、制御回路50は、統合コンデンサ5の直流電圧Vintを200Vに調整する(ステップS4a)。これにより、DC/DCコンバータ30の電力損失を低減できる。
なお、ここでは、直流電圧Vintの値を、100V、200V、300V、の3つの電圧値に変化させた場合における損失マップMを図示したが、前述のように、直流電圧Vintの値を100V、120V、140V・・・280V、300Vと、更に細かく変化させた場合の損失マップMが記録されてもよく、この場合、直流電圧Vintの微調整が可能となる。
なお、ここでは、制御回路50は、DC/DCコンバータ30の伝送電力を直流電流指令値Ibat_refと、検出した直流電圧Vbatから算出し、算出した伝送電力における損失マップM2、M3の比較を行って統合コンデンサ5の直流電圧Vintを制御した。
しかしながら図5に示すように、直流電圧Vbat=100Vでは、伝送電力の値によらず、統合コンデンサ5の直流電圧Vintが低いほうが損失は小さくなる。よって、制御回路50は、前述の伝送電力の算出を省略してもよい。
しかしながら図5に示すように、直流電圧Vbat=100Vでは、伝送電力の値によらず、統合コンデンサ5の直流電圧Vintが低いほうが損失は小さくなる。よって、制御回路50は、前述の伝送電力の算出を省略してもよい。
上記のように、制御回路50は、損失特性情報Jを用いる第3モードにおいて、DC/DCコンバータ30の損失特性情報Jを用いる第1例により損失低減に係る制御を行う。
例えば、DC/DCコンバータ30による電力損失が、電力変換装置100全体での電力損失において支配的である場合は、上記のような第1例によるDC/DCコンバータ30の損失特性情報Jのみを用いる制御を行うことで、効率良く電力損失Psを低減できる。
例えば、DC/DCコンバータ30による電力損失が、電力変換装置100全体での電力損失において支配的である場合は、上記のような第1例によるDC/DCコンバータ30の損失特性情報Jのみを用いる制御を行うことで、効率良く電力損失Psを低減できる。
次に、接触方式充電器10の電力損失を低減する制御について、図7のフロー図、および図8、図9に示す接触方式充電器10の損失特性情報Jを用いて説明する。
なお、図8に示すように、接触方式充電器10の損失マップM7、M8、M9は、交流電源1の交流電圧Vac1の値(100V、受電電圧が低い時を想定)に対応してそれぞれ記録されている。
また、図9に示すように、接触方式充電器10の損失マップM10、M11、M12は、交流電源1の交流電圧Vac1の値(200V、受電電圧が高い時を想定)に対応してそれぞれ記録されている。
なお、ここでは、交流電源1の交流電圧Vac1の値が100V、200V、の2つの電圧値に対応するそれぞれの損失マップMが記録されているが、交流電源1の交流電圧Vac1の値を更に細かく変化させた場合の損失マップMが記録されてもよい。
なお、図8に示すように、接触方式充電器10の損失マップM7、M8、M9は、交流電源1の交流電圧Vac1の値(100V、受電電圧が低い時を想定)に対応してそれぞれ記録されている。
また、図9に示すように、接触方式充電器10の損失マップM10、M11、M12は、交流電源1の交流電圧Vac1の値(200V、受電電圧が高い時を想定)に対応してそれぞれ記録されている。
なお、ここでは、交流電源1の交流電圧Vac1の値が100V、200V、の2つの電圧値に対応するそれぞれの損失マップMが記録されているが、交流電源1の交流電圧Vac1の値を更に細かく変化させた場合の損失マップMが記録されてもよい。
図7に示すように、制御回路50は、電力損失低減に関する第3モードによる制御の第2例を開始すると、交流電源1の交流電圧Vac1を検出する(ステップS1b)。
次に、制御回路50は、統合コンデンサ5の直流電圧指令値Vint_refの設定可能な調整可能範囲Sを演算する(ステップS2b)。
ここで、制御回路50は、検出された交流電源1の交流電圧Vac1と、接触方式充電器10内のAC/DCコンバータ11および絶縁型DC/DCコンバータ15の昇降圧比と、に基づいて、統合コンデンサ5の直流電圧指令値Vint_refの調整可能範囲Sを算出する。
ここで、制御回路50は、検出された交流電源1の交流電圧Vac1と、接触方式充電器10内のAC/DCコンバータ11および絶縁型DC/DCコンバータ15の昇降圧比と、に基づいて、統合コンデンサ5の直流電圧指令値Vint_refの調整可能範囲Sを算出する。
次に、制御回路50は、検出した交流電源1の交流電圧Vac1の値に応じた損失マップMを参照する。具体的には、本実施の形態の損失マップMは、図8に示す交流電圧Vac1の値が100Vの場合と、図9に示す交流電圧Vac1が200Vの場合との、2つの場合である。そして、制御回路50は、前述の図4に示したステップS3aと同様に、交流電圧Vac1の値に応じた損失マップMの中から、演算された統合コンデンサ5の調整可能範囲S内の値に対応する損失マップMを選出する(ステップS3b)。
次に、制御回路50は、CPモードでは、AC/DCコンバータ11の制御に係る交流電力指令値Pac_refを参照する。そして、この交流電力指令値Pac_ref(伝送電力)における、選出された損失マップMをそれぞれ参照し、前述の図4に示すステップS4aと同様に、統合コンデンサ5の直流電圧Vintを調整する(ステップS4b)。
なお、前述の図4におけるステップS4aと同様に、制御回路50は、交流電力指令値Pac_refの参照、即ち、伝送電力の算出を省略してもよい。
なお、前述の図4におけるステップS4aと同様に、制御回路50は、交流電力指令値Pac_refの参照、即ち、伝送電力の算出を省略してもよい。
上記のように、制御回路50は、損失特性情報Jを用いる第3モードにおいて、接触方式充電器10の損失特性情報Jを用いる第2例により損失低減に係る制御を行う。
例えば、接触方式充電器10と非接触方式充電器20のうち、接触方式充電器10を動作させる場合に、上記のような第2例による接触方式充電器10の損失特性情報Jのみを用いる制御を行うことで、制御回路50における制御を簡素化して、効率良く電力損失Psを低減できる。
例えば、接触方式充電器10と非接触方式充電器20のうち、接触方式充電器10を動作させる場合に、上記のような第2例による接触方式充電器10の損失特性情報Jのみを用いる制御を行うことで、制御回路50における制御を簡素化して、効率良く電力損失Psを低減できる。
次に、非接触方式充電器20の電力損失を低減する制御について、図10のフロー図、および図11、図12に示す非接触方式充電器20の損失特性情報Jを用いて説明する。
なお、図11に示すように、接触方式充電器10の損失マップM13、M14、M15は、非接触受電コイル20inの交流電圧Vac2の値が低い場合に対応してそれぞれ記録されている。
また、図12に示すように、接触方式充電器10の損失マップM16、M17、M18は、非接触受電コイル20inの交流電圧Vac2の値が高い場合に対応してそれぞれ記録されている。
なお、ここでは、非接触受電コイル20inの交流電圧Vac2の値が高い場合と低い場合との2つの電圧値に対応するそれぞれの損失マップMが記録されているが、交流電圧Vac2の値を更に細かく変化させた場合の損失マップMが記録されてもよい。
なお、図11に示すように、接触方式充電器10の損失マップM13、M14、M15は、非接触受電コイル20inの交流電圧Vac2の値が低い場合に対応してそれぞれ記録されている。
また、図12に示すように、接触方式充電器10の損失マップM16、M17、M18は、非接触受電コイル20inの交流電圧Vac2の値が高い場合に対応してそれぞれ記録されている。
なお、ここでは、非接触受電コイル20inの交流電圧Vac2の値が高い場合と低い場合との2つの電圧値に対応するそれぞれの損失マップMが記録されているが、交流電圧Vac2の値を更に細かく変化させた場合の損失マップMが記録されてもよい。
図10に示すように、制御回路50は、電力損失低減に関する第3モードによる制御の第3例を開始すると、非接触受電コイル20inの交流電圧Vac2を検出する(ステップS1c)。
次に、制御回路50は、統合コンデンサ5の直流電圧指令値Vint_refの設定可能な調整可能範囲Sを演算する(ステップS2c)。
ここで、制御回路50は、検出された非接触受電コイル20inの交流電圧Vac2に基づいて、統合コンデンサ5の直流電圧指令値Vint_refの調整可能範囲Sを算出する。
ここで、制御回路50は、検出された非接触受電コイル20inの交流電圧Vac2に基づいて、統合コンデンサ5の直流電圧指令値Vint_refの調整可能範囲Sを算出する。
次に、制御回路50は、検出した非接触受電コイル20inの交流電圧Vac2の値に応じた損失マップMを参照する。具体的には、本実施の形態の損失マップMは、図11に示す非接触受電コイル20inの交流電圧Vac2の値が低い場合と、図12に示す交流電圧Vac2の値が高い場合との、2つの場合である。ここで、制御回路50は、前述の図4に示したステップS3aと同様に、交流電圧Vac2の値に応じた損失マップMの中から、演算された統合コンデンサ5の調整可能範囲S内の値に対応する損失マップMを選出する(ステップS3c)。
次に、制御回路50は、選出された非接触方式充電器20の損失マップMをそれぞれ参照し、前述の図4に示すステップS4aと同様に、統合コンデンサ5の直流電圧Vintを調整する(ステップS4c)。
上記のように、制御回路50は、損失特性情報Jを用いる第3モードにおいて、非接触方式充電器20の損失特性情報Jを用いる第3例により損失低減に係る制御を行う。
例えば、接触方式充電器10と非接触方式充電器20のうち、非接触方式充電器20を動作させる場合に、上記のような第3例による非接触方式充電器20の損失特性情報Jのみを用いる制御を行うことで、制御回路50における制御を簡素化して、効率良く電力損失Psを低減できる。
例えば、接触方式充電器10と非接触方式充電器20のうち、非接触方式充電器20を動作させる場合に、上記のような第3例による非接触方式充電器20の損失特性情報Jのみを用いる制御を行うことで、制御回路50における制御を簡素化して、効率良く電力損失Psを低減できる。
なお、以上では、損失特性情報Jの損失マップMは、統合コンデンサ5の直流電圧Vintごとに個別に記録されたものであったが、直流リンクコンデンサ4の直流電圧Vlinkごとに記録されたものであってもよい。この場合、制御回路50は、この損失特性情報Jに基づき、直流リンクコンデンサ4の直流電圧Vlinkを調整する。
なお、以上の説明において示した損失特性情報Jは、接触方式充電器10、非接触方式充電器20、DC/DCコンバータ30、ごとに電力損失特性が記録されたものであった。しかしながら、損失特性情報Jは、このような構成に限定するものではなく、接触方式充電器10と非接触方式充電器20とDC/DCコンバータ30の合計の電力損失特性を記録したものでもよい。
例えば、接触方式充電器10と非接触方式充電器20とを同時に動作させる場合では、接触方式充電器10において損失が最小となる直流電圧指令値Vint_refを選択した場合に、非接触方式充電器20の損失が極端に増大する可能性が想定される。このような場合、上記のように、接触方式充電器10、非接触方式充電器20、DC/DCコンバータ30、の合計損失を減少させる合計電力損失特性が記録された損失特性情報Jに基づいて、電力変換装置100全体での合計電力損失を低減するような直流電圧指令値Vint_refを選択するとよい。
なお、CCモードにおいて、このように合計電力損失を記録した損失特性情報Jを用る場合、制御回路50は、図4に示したフロー図と同様の制御を行う。この場合、伝送電力を用いて損失マップMを選出する場合では、CCモードでは、制御回路50は、図4のステップS4において、直流電流指令値Ibat_refと、検出した直流電圧Vbatと、から電力変換装置100全体の伝送電力を算出する。そして、算出された電力変換装置100全体の伝送電力に基づき、損失マップMを選出する。
また、CPモードにおいて、このように合計電力損失を記録した損失特性情報Jを用いる場合で、更に、伝送電力を用いて損失マップMを選出する場合では、制御回路50は、非接触受電コイル20inの交流電圧Vac2および交流電流と、交流電力指令値Pac_refと、から、電力変換装置100全体の伝送電力を算出する。そして、算出された電力変換装置100全体の伝送電力に基づき、損失マップMを選出する。
以上では、統合コンデンサ5の直流電圧Vintを調整する例を示したが、直流リンクコンデンサ4の直流電圧Vlinkについても同様の制御が可能である。この場合、損失特性情報Jは、直流リンクコンデンサ4の直流電圧Vlinkの値毎に取得された複数の損失マップMから構成される。
上記のように構成された本実施の形態の電力変換装置100によると、実施の形態1と同様の効果を奏し、有線方式側およびワイヤレス方式側の受電電圧値によらず、有線方式による電力供給機能と、ワイヤレス方式による電力供給機能との電力供給を同時に行うことが可能である。
更に、制御回路50は、接触方式充電器10、非接触方式充電器20、DC/DCコンバータ30の電力損失特性が記録された損失特性情報Jを有しており、この損失特性情報Jに基づいて、直流リンクコンデンサ4の直流電圧Vlinkあるいは統合コンデンサ5の直流電圧Vintを調整する第3モードを有している。このように、電力損失が最小となる直流電圧Vintの値が損失特性情報Jにおいて記録されているため、第3モードによる損失低減の開始から直流電圧Vintの設定に至るまでの時間を大幅に短縮でき、迅速に電力損失を最小化できる。
更に、制御回路50は、接触方式充電器10、非接触方式充電器20、DC/DCコンバータ30の電力損失特性が記録された損失特性情報Jを有しており、この損失特性情報Jに基づいて、直流リンクコンデンサ4の直流電圧Vlinkあるいは統合コンデンサ5の直流電圧Vintを調整する第3モードを有している。このように、電力損失が最小となる直流電圧Vintの値が損失特性情報Jにおいて記録されているため、第3モードによる損失低減の開始から直流電圧Vintの設定に至るまでの時間を大幅に短縮でき、迅速に電力損失を最小化できる。
また、損失特性情報Jは、入力電圧(交流電圧Vac1、Vac2)の値に対応する接触方式充電器10および非接触方式充電器20の電力損失特性と、出力電圧(負荷6の直流電圧Vbat)の値に対応するDC/DCコンバータ30の電力損失特性と、が記録されたものである。このように、入出力電圧によって変化するコンバータの性質に基づいた損失特性情報Jを構成することで、更に精度よく直流電圧Vlinkあるいは直流電圧Vintを制御できる。
また損失特性情報Jは、接触方式充電器10、非接触方式充電器20、DC/DCコンバータ30の電力損失特性を、直流電圧Vlinkあるいは直流電圧Vintごとに対応して記録された複数の損失マップMから構成されている。そして、制御回路50は、これら複数の損失マップMの内から、直流電圧Vlinkあるいは直流電圧Vintの調整可能範囲S内の値に対応した損失マップMを選出する。このように、実際に設定可能な調整可能範囲Sに基づいて直流電圧Vlinkあるいは直流電圧Vintの調整を行うため、電力変換装置100の運転状態を安定化させることができる。
また制御回路50は、接触方式充電器10のみを用いて負荷6に対して直流電力の供給を行う場合では、接触方式充電器10の電力損失特性が記録された損失特性情報Jを用い、非接触方式充電器20のみを用いて負荷6に対して直流電力の供給を行う場合では、非接触方式充電器20の電力損失特性が記録された損失特性情報Jを用いる。
このように、接触方式充電器10および非接触方式充電器20の内、動作させる方の損失特性情報Jを用いた制御をすることで、制御回路50における制御を簡素化させ、直流電圧Vlinkあるいは直流電圧Vintの調整を迅速に行うことができる。
このように、接触方式充電器10および非接触方式充電器20の内、動作させる方の損失特性情報Jを用いた制御をすることで、制御回路50における制御を簡素化させ、直流電圧Vlinkあるいは直流電圧Vintの調整を迅速に行うことができる。
また、接触方式充電器10および非接触方式充電器20の両方から負荷6に対して直流電力の供給を行う場合では、接触方式充電器10および非接触方式充電器20の両方の合計電力損失特性が記録された損失特性情報Jを用いることができる。更に、接触方式充電器10、非接触方式充電器20およびDC/DCコンバータ30の合計電力損失特性が記録された損失特性情報Jを用いることもできる。これにより、電力変換装置100全体での電力損失を最小化できる。
実施の形態4.
以下、本願の実施の形態4を、上記実施の形態1~3と異なる箇所を中心に図を用いて説明する。上記実施の形態1と同様の部分は同一符号を付して説明を省略する。
図13は、実施の形態4による電力変換装置400を示す概略構成図である。
図に示すように、電力変換装置400は、当該電力変換装置100の各電力変換回路10、20、30の温度情報Ta等の環境情報を取得する環境情報センサ477を備える。
そして制御回路50は、この取得された温度情報Taに基づいて、実施の形態1において述べた第1モードと、実施の形態2において述べた第2モードと、実施の形態3において述べた第3モードとを切り替えるものである。
以下、本願の実施の形態4を、上記実施の形態1~3と異なる箇所を中心に図を用いて説明する。上記実施の形態1と同様の部分は同一符号を付して説明を省略する。
図13は、実施の形態4による電力変換装置400を示す概略構成図である。
図に示すように、電力変換装置400は、当該電力変換装置100の各電力変換回路10、20、30の温度情報Ta等の環境情報を取得する環境情報センサ477を備える。
そして制御回路50は、この取得された温度情報Taに基づいて、実施の形態1において述べた第1モードと、実施の形態2において述べた第2モードと、実施の形態3において述べた第3モードとを切り替えるものである。
例えば、制御回路50が、損失特性情報Jを用いた第3モードにより電力損失低減に関する制御を行っていたとする。しかしながら、環境情報センサ477によって取得された温度情報Taにより、各電力変換回路10、20、20の温度が上昇されていることが検知されると、制御回路50は、実際の電力損失Psを検出して直流電圧Vlinkあるいは直流電圧Vintを調整する第1モードに切り替える。
第3モードにおいて用いる損失特性情報Jは、予め試験段階などにおいて取得された電力損失特性に基づいたものであるため、電力変換回路10、20、30の温度が上昇すると、損失特性情報Jに記録された電力損失特性と、実際の電力変換回路10、20、30の電力損失特性とにズレが生じる可能性がある。このように、制御回路50は、実際の電力変換装置100の運転状態に基づく環境情報を取得し、それに応じたモードを選択することで、更に精度よく電力損失を低減することができる。
本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1 交流電源、4 直流リンクコンデンサ(第1直流コンデンサ)、5 統合コンデンサ(第2直流コンデンサ)、10 接触方式充電器(第1電力変換回路)、11 AC/DCコンバータ(第1コンバータ回路)、15 絶縁型DC/DCコンバータ(第2コンバータ回路)、20 非接触方式充電器(第2電力変換回路)、30 DC/DCコンバータ(第3電力変換回路)、50 制御回路、477 環境情報センサ、100,400 電力変換装置。
Claims (18)
- 第1端により交流電源に接続され、前記交流電源からの入力電圧を直流電圧へ変換する第1コンバータ回路、前記第1コンバータ回路により変換された直流電圧の昇圧あるいは降圧を行って第2端より出力する第2コンバータ回路、を有する第1電力変換回路と、
送電装置の送電コイルと磁気的に結合することにより、非接触で電力を受電する第1端としての非接触受電コイル、前記非接触受電コイルから受電した交流電圧を直流電圧へ変換して第2端より出力する第3コンバータ回路、を有する第2電力変換回路と、
第2端が負荷に接続され、第1端から入力される直流電圧の昇圧あるいは降圧を行って前記負荷に電力供給を行う第3電力変換回路と、
それぞれ直流電圧を平滑する第1直流コンデンサ、第2直流コンデンサと、
前記第1電力変換回路、前記第2電力変換回路および前記第3電力変換回路を制御する制御回路と、を備え、
前記第1電力変換回路の第2端および前記第2電力変換回路の第2端とが、統合母線を介して前記第3電力変換回路の第1端に接続され、前記第1直流コンデンサは前記第1コンバータ回路と前記第2コンバータ回路との間に接続され、前記第2直流コンデンサは前記統合母線に接続されて、前記第1電力変換回路あるいは前記第2電力変換回路の少なくとも一方から出力された直流電力を、前記第3電力変換回路を介して前記負荷に対して供給可能に構成され、
前記制御回路は、
前記第1電力変換回路、前記第2電力変換回路、前記第3電力変換回路の少なくとも一つの電力損失を低減するように、前記第1直流コンデンサの直流電圧あるいは前記第2直流コンデンサの直流電圧を調整する、
電力変換装置。 - 前記制御回路は、
前記第1電力変換回路、前記第2電力変換回路、前記第3電力変換回路の少なくとも一つの電力損失を、第1設定時間毎に検出し、
検出された最新の電力損失が、前記第1設定時間分前において検出した電力損失未満となると、前記第1直流コンデンサあるいは前記第2直流コンデンサの電圧指令値に対して設定された補正値を加算し、
検出された最新の電力損失が、前記第1設定時間分前に検出した電力損失以上大きくなると、前記第1直流コンデンサあるいは前記第2直流コンデンサの電圧指令値に対して極性を反転させた前記補正値を加算して
前記第1直流コンデンサあるいは前記第2直流コンデンサの直流電圧を調整する第1モードを有する、
請求項1に記載の電力変換装置。 - 前記第3電力変換回路の出力電流を検出する電流検出器を備え、
前記制御回路は、
検出された前記第3電力変換回路の出力電流が最大となるように、
前記第1直流コンデンサあるいは前記第2直流コンデンサの直流電圧を調整する第2モードを有する、
請求項1に記載の電力変換装置。 - 前記制御回路は、前記第2モードにおいて、
前記第3電力変換回路の出力電流を第2設定時間毎に検出し、
検出された最新の出力電流が、前記第2設定時間分前において検出された出力電流以上大きくなると、前記第1直流コンデンサの電圧指令値に対して設定された補正値を加算し、
検出された最新の出力電流が、前記第2設定時間分前において検出された出力電流未満となると、前記第1直流コンデンサあるいは前記第2直流コンデンサの電圧指令値に対して極性を反転させた前記補正値を加算して、
前記第1直流コンデンサあるいは前記第2直流コンデンサの直流電圧を調整する、
請求項3に記載の電力変換装置。 - 前記制御回路は、
前記第1電力変換回路、前記第2電力変換回路、前記第3電力変換回路の少なくとも一つの電力損失特性を記録した損失特性情報を有し、
前記損失特性情報に基づいて、前記第1直流コンデンサあるいは前記第2直流コンデンサの直流電圧を調整する第3モードを有する、
請求項1に記載の電力変換装置。 - 前記損失特性情報は、
前記第1電力変換回路および前記第2電力変換回路のそれぞれの入力電圧に対応する前記第1電力変換回路および前記第2電力変換回路の電力損失特性が記録され、
前記負荷の電圧に対応する前記第3電力変換回路の電力損失特性が記録される、
請求項5に記載の電力変換装置。 - 前記負荷の直流電圧を検出する電圧検出器を備え、
前記損失特性情報は、
前記第1電力変換回路、前記第2電力変換回路および前記第3電力変換回路の電力損失特性を、前記第2直流コンデンサの直流電圧値ごとに対応して記録した複数の損失マップから構成され、
前記制御回路は、前記第3モードにおいて、
検出された前記負荷の直流電圧に基づいて、前記第2直流コンデンサの直流電圧の調整可能範囲を演算し、
複数の前記損失マップの内から、演算された前記第2直流コンデンサの前記調整可能範囲内の値に対応した前記損失マップを選出し、
選出された前記損失マップに基づいて、前記第2直流コンデンサの直流電圧を調整する、
請求項6に記載の電力変換装置。 - 前記交流電源の電圧を検出する電圧検出器を備え、
前記損失特性情報は、
前記第1電力変換回路、前記第2電力変換回路および前記第3電力変換回路の電力損失特性を、前記第1直流コンデンサの直流電圧値ごとに対応して記録した複数の損失マップから構成され、
前記制御回路は、前記第3モードにおいて、
検出された前記交流電源の電圧に基づいて、前記第1直流コンデンサの直流電圧の調整可能範囲を演算し、
複数の前記損失マップの内から、演算された前記第1直流コンデンサの前記調整可能範囲内の値に対応した前記損失マップを選出し、
選出された前記損失マップに基づいて、前記第1直流コンデンサの直流電圧を調整する、
請求項6に記載の電力変換装置。 - 前記制御回路は、前記第3モードにおいて、
前記第1電力変換回路のみを用いて前記負荷に対して直流電力の供給を行い、
前記第1電力変換回路の前記損失特性情報に基づいて、前記第1直流コンデンサあるいは前記第2直流コンデンサの直流電圧を調整する、
請求項5から請求項7のいずれか1項に記載の電力変換装置。 - 前記制御回路は、前記第3モードにおいて、
前記第2電力変換回路のみを用いて、該第2電力変換回路からの直流電力を前記負荷に対して供給させ、
前記第2電力変換回路の前記損失特性情報に基づいて、前記第2直流コンデンサの直流電圧を調整する、
請求項5または請求項6に記載の電力変換装置。 - 前記損失特性情報は、
前記第1電力変換回路と前記第2電力変換回路と前記第3電力変換回路との電力損失特性を合計した合計電力損失特性が記録され、
前記制御回路は、前記第3モードにおいて、
前記第1電力変換回路と前記第2電力変換回路とを用いて、該第1電力変換回路と該第2電力変換回路とからの合計直流電力を前記負荷に対して供給させ、
前記合計電力損失特性が記録された前記損失特性情報に基づいて、前記第1直流コンデンサあるいは前記第2直流コンデンサの直流電圧を調整する、
請求項5または請求項6に記載の電力変換装置。 - 前記制御回路は、
前記第2コンバータ回路のスイッチング素子を制御することにより、前記第2直流コンデンサの直流電圧を調整する、
請求項1、請求項2、請求項5から請求項7、請求項9から請求項11、のいずれか1項に記載の電力変換装置。 - 前記制御回路は、
前記第3電力変換回路のスイッチング素子を制御することにより、前記第2直流コンデンサの直流電圧を調整する、
請求項1から請求項7、請求項9から請求項11、のいずれか1項に記載の電力変換装置。 - 前記制御回路は、
前記第1コンバータ回路のスイッチング素子を制御することにより、前記第1直流コンデンサの直流電圧を調整する、
請求項1、請求項2、請求項5、請求項6、請求項8、請求項9、請求項11、のいずれか1項に記載の電力変換装置。 - 前記制御回路は、
前記第2コンバータ回路のスイッチング素子を制御することにより、前記第1直流コンデンサの直流電圧を調整する、
請求項1から請求項6、請求項8、請求項9、請求項11、のいずれか1項に記載の電力変換装置。 - 前記第3電力変換回路の出力電流を検出する電流検出器と、
該電力変換装置の環境情報を取得する環境情報センサと、を備え、
前記制御回路は、
前記第1モードと、
検出された前記第3電力変換回路の出力電流が最大となるように、前記第1直流コンデンサあるいは前記第2直流コンデンサの直流電圧を調整する第2モードと、
前記第1電力変換回路、前記第2電力変換回路および前記第3電力変換回路の損失特性を記録した損失特性情報を有して、前記損失特性情報に基づいて、前記第1直流コンデンサあるいは前記第2直流コンデンサの直流電圧を調整する第3モードと、を有し、
取得された前記環境情報に基づいて、前記第1モードと、前記第2モードと前記第3モードとを切り替える、
請求項2に記載の電力変換装置。 - 前記第2設定時間は、前記第3電力変換回路のスイッチング素子のスイッチング間隔に応じて設定された、
請求項4に記載の電力変換装置。 - 前記第2コンバータ回路は、
前記第1コンバータ回路により変換された直流電圧を交流電圧へ変換するインバータ回路と、前記インバータ回路からの交流電圧を1次側で受電して絶縁し、2次側へ給電する絶縁トランスと、前記絶縁トランスの2次側から受電する交流電圧を直流電圧へ変換する第4コンバータ回路と、を備えた、
請求項1から請求項17のいずれか1項に記載の電力変換装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112019004409.5T DE112019004409T5 (de) | 2018-09-03 | 2019-05-14 | Energie-umwandlungseinrichtung |
US17/257,868 US11527947B2 (en) | 2018-09-03 | 2019-05-14 | Power conversion device having a configuration for simultaneous wired and wireless charging |
JP2020541013A JP6896182B2 (ja) | 2018-09-03 | 2019-05-14 | 電力変換装置 |
CN201980052310.9A CN112585857B (zh) | 2018-09-03 | 2019-05-14 | 电力变换装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018164114 | 2018-09-03 | ||
JP2018-164114 | 2018-09-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020049801A1 true WO2020049801A1 (ja) | 2020-03-12 |
Family
ID=69722052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/019073 WO2020049801A1 (ja) | 2018-09-03 | 2019-05-14 | 電力変換装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11527947B2 (ja) |
JP (1) | JP6896182B2 (ja) |
CN (1) | CN112585857B (ja) |
DE (1) | DE112019004409T5 (ja) |
WO (1) | WO2020049801A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021033131A1 (en) * | 2019-08-16 | 2021-02-25 | Auckland Uniservices Limited | Vehicle-grid-home power interface |
WO2023243115A1 (ja) * | 2022-06-16 | 2023-12-21 | 株式会社日立産機システム | 電力変換装置 |
US11909240B2 (en) | 2021-07-30 | 2024-02-20 | Toyota Jidosha Kabushiki Kaisha | Charging device |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022120663A1 (zh) * | 2020-12-09 | 2022-06-16 | 宁德时代新能源科技股份有限公司 | 功率变换器的控制方法、装置及系统 |
DE102020133306B4 (de) * | 2020-12-14 | 2023-08-10 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Verfahren zur Steuerung einer Ladeeinrichtung |
WO2023245864A1 (en) * | 2022-06-22 | 2023-12-28 | Hong Kong Applied Science and Technology Research Institute Company Limited | Adaptive power control for two-stage ac/dc or dc/dc isolated power converters |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010131348A1 (ja) * | 2009-05-14 | 2010-11-18 | トヨタ自動車株式会社 | 車両用充電装置 |
JP2011097775A (ja) * | 2009-10-30 | 2011-05-12 | Ricoh Elemex Corp | 電源装置 |
JP2015208171A (ja) * | 2014-04-23 | 2015-11-19 | 日立オートモティブシステムズ株式会社 | 電源装置 |
JP2016524890A (ja) * | 2013-05-15 | 2016-08-18 | クアルコム,インコーポレイテッド | 電気車両有線およびワイヤレス充電に関するシステム、方法、および装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5576941A (en) * | 1994-08-10 | 1996-11-19 | York Technologies, Inc. | Modular power supply system |
EP2667481A4 (en) * | 2011-01-19 | 2015-12-02 | Technova Inc | SYSTEM FOR CONTACT-FREE ENERGY TRANSMISSION |
JP5652549B2 (ja) * | 2011-06-30 | 2015-01-14 | トヨタ自動車株式会社 | 電動機駆動装置およびそれを備えた車両、ならびに電動機駆動装置の制御方法 |
JP6382739B2 (ja) | 2015-02-17 | 2018-08-29 | 株式会社Soken | Dcdcコンバータ |
JP6009027B1 (ja) * | 2015-04-01 | 2016-10-19 | 三菱電機株式会社 | 電力変換装置 |
JP6406108B2 (ja) * | 2015-04-15 | 2018-10-17 | 株式会社デンソー | モータ制御システムの制御装置 |
JP6554323B2 (ja) | 2015-05-25 | 2019-07-31 | 日立オートモティブシステムズ株式会社 | 電源装置 |
JP6630536B2 (ja) | 2015-10-23 | 2020-01-15 | 日立グローバルライフソリューションズ株式会社 | 電源装置 |
WO2019150597A1 (ja) | 2018-02-02 | 2019-08-08 | 三菱電機株式会社 | 電力変換装置 |
-
2019
- 2019-05-14 JP JP2020541013A patent/JP6896182B2/ja active Active
- 2019-05-14 DE DE112019004409.5T patent/DE112019004409T5/de active Pending
- 2019-05-14 US US17/257,868 patent/US11527947B2/en active Active
- 2019-05-14 WO PCT/JP2019/019073 patent/WO2020049801A1/ja active Application Filing
- 2019-05-14 CN CN201980052310.9A patent/CN112585857B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010131348A1 (ja) * | 2009-05-14 | 2010-11-18 | トヨタ自動車株式会社 | 車両用充電装置 |
JP2011097775A (ja) * | 2009-10-30 | 2011-05-12 | Ricoh Elemex Corp | 電源装置 |
JP2016524890A (ja) * | 2013-05-15 | 2016-08-18 | クアルコム,インコーポレイテッド | 電気車両有線およびワイヤレス充電に関するシステム、方法、および装置 |
JP2015208171A (ja) * | 2014-04-23 | 2015-11-19 | 日立オートモティブシステムズ株式会社 | 電源装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021033131A1 (en) * | 2019-08-16 | 2021-02-25 | Auckland Uniservices Limited | Vehicle-grid-home power interface |
US11909240B2 (en) | 2021-07-30 | 2024-02-20 | Toyota Jidosha Kabushiki Kaisha | Charging device |
WO2023243115A1 (ja) * | 2022-06-16 | 2023-12-21 | 株式会社日立産機システム | 電力変換装置 |
Also Published As
Publication number | Publication date |
---|---|
US11527947B2 (en) | 2022-12-13 |
JP6896182B2 (ja) | 2021-06-30 |
US20210313870A1 (en) | 2021-10-07 |
JPWO2020049801A1 (ja) | 2021-01-07 |
CN112585857B (zh) | 2024-02-02 |
CN112585857A (zh) | 2021-03-30 |
DE112019004409T5 (de) | 2021-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020049801A1 (ja) | 電力変換装置 | |
US9484804B2 (en) | Battery charging system and method | |
KR102657324B1 (ko) | 차량의 충전 소요 시간 예측 방법 및 이를 적용한 예약 충전 방법 | |
KR101509910B1 (ko) | 플러그-인 하이브리드 자동차 및 전기자동차의 충전 제어 방법 | |
JP6394632B2 (ja) | ワイヤレス電力伝送システム | |
US10008883B2 (en) | Noise reducing power feed device, power reception device and power feed method | |
US11267353B2 (en) | Method and apparatus of controlling bidirectional on-board charger for electric vehicles | |
CN110014886B (zh) | 车载充电系统 | |
US20170203656A1 (en) | Wireless Power Supply System and Power Transmission Device | |
KR101558794B1 (ko) | 전기 자동차용 배터리 충전 장치 | |
CN104467060A (zh) | 电池充电系统及方法 | |
US9738170B2 (en) | Wireless power supply system and power transmission device | |
KR102575045B1 (ko) | 배터리 충전기 최적효율 제어방법 및 이를 채용한 충전기 | |
KR20210156107A (ko) | 차량용 배터리 충전 장치 및 방법 | |
CN104980032A (zh) | 电力转换装置以及电力转换方法 | |
CN104184328A (zh) | 电力转换装置及电力校正方法 | |
JP2015159640A (ja) | 電力変換装置及び電力変換方法 | |
US10804752B2 (en) | Transmission system for contactlessly transmitting energy | |
CN113904556A (zh) | 电力转换装置 | |
US20170066339A1 (en) | Charging apparatus and vehicle | |
WO2011155051A1 (ja) | 充電制御システム | |
WO2014069148A1 (ja) | 非接触電力伝送装置および受電機器 | |
US20230097935A1 (en) | Apparatus and Method for Controlling Power Factor Correction to Suppress Overcurrent | |
EP3467996A1 (en) | Contactless power supply system and contactless power transmission system | |
JP7257311B2 (ja) | 車両用充電装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19857380 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020541013 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19857380 Country of ref document: EP Kind code of ref document: A1 |