WO2020049737A1 - 運転技能評価システム、方法及びプログラム - Google Patents

運転技能評価システム、方法及びプログラム Download PDF

Info

Publication number
WO2020049737A1
WO2020049737A1 PCT/JP2018/033295 JP2018033295W WO2020049737A1 WO 2020049737 A1 WO2020049737 A1 WO 2020049737A1 JP 2018033295 W JP2018033295 W JP 2018033295W WO 2020049737 A1 WO2020049737 A1 WO 2020049737A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
learning
data
vehicle
pattern
Prior art date
Application number
PCT/JP2018/033295
Other languages
English (en)
French (fr)
Inventor
幸雄 服部
Original Assignee
株式会社オファサポート
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オファサポート filed Critical 株式会社オファサポート
Priority to JP2019532821A priority Critical patent/JPWO2020049737A1/ja
Priority to PCT/JP2018/033295 priority patent/WO2020049737A1/ja
Publication of WO2020049737A1 publication Critical patent/WO2020049737A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • G09B9/02Simulators for teaching or training purposes for teaching control of vehicles or other craft
    • G09B9/04Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of land vehicles
    • G09B9/042Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of land vehicles providing simulation in a real vehicle

Definitions

  • the present invention relates to a driving skill evaluation system, a method, a device, and the like, and more specifically, to a driving skill evaluation system and the like that automatically evaluates a driving skill of a subject based on data on driving that serves as a model. .
  • Japanese Patent No. 6086515 of Ofa Support Co., Ltd. discloses that the behavior of a vehicle (steering wheel and brake operation) and the position information of the vehicle are obtained from data of a CAN (Controller Area Network) mounted on the vehicle by reference data as an evaluation standard.
  • a system for evaluating driving skills as compared to is disclosed.
  • Patent Literature 1 Although there is a reference to evaluate driving by inputting driver behavior information (steering operation amount, accelerator operation amount, brake operation amount, and the like) and performing machine learning ( In the document, paragraph 0067), the inventor has found that the evaluation of the behavior information is not sufficient, and the accuracy of the evaluation may be improved by learning the traveling position of the vehicle and adding this to the evaluation. We paid attention to the point.
  • driver behavior information steering operation amount, accelerator operation amount, brake operation amount, and the like
  • machine learning In the document, paragraph 0067
  • the inventor has found that the evaluation of the behavior information is not sufficient, and the accuracy of the evaluation may be improved by learning the traveling position of the vehicle and adding this to the evaluation. We paid attention to the point.
  • an object of the present invention is to provide a driving skill evaluation system, a method, and a program capable of improving the accuracy of evaluation by learning the traveling position of a vehicle and adding the learned position to the evaluation.
  • the present invention records a running position of a vehicle in a time series, and learns based on the running data, a running position recording unit that records sample running data, and learns a running pattern of an exemplary driving.
  • a driving skill evaluation system including a driving learning unit and an evaluation unit that evaluates a driving skill of a driver based on the learned driving pattern is provided.
  • the present invention records the driving position of the vehicle in time series, thereby recording sample driving data, and learning based on the driving data, and learning an exemplary driving driving pattern. And a step of evaluating the driving skill of the driver based on the learned driving pattern.
  • the present invention in the computer, by recording the traveling position of the vehicle in time series, the step of recording the driving data as a sample, learning based on the driving data, learning the driving pattern of an exemplary driving
  • a driving skill evaluation program for executing a learning step and a step of evaluating a driving skill of the driver based on the learned driving pattern is provided.
  • the accuracy of the evaluation of the driving skill is improved by learning the traveling position of the vehicle and adding it to the evaluation.
  • FIG. 2 is a block diagram illustrating a configuration of the vehicle according to the embodiment.
  • FIG. 3 is a block diagram illustrating a hardware configuration of a server according to the embodiment.
  • FIG. 3 is a block diagram illustrating a functional configuration of a server according to the embodiment.
  • It is a conceptual diagram which shows the concept of the time stretch by the dynamic time expansion / contraction method (DTW). It is a graph which shows before and after absorbing the difference in the time required for running by the dynamic time expansion and contraction method (DTW). It is a figure showing an example of learning of a run position by the N-dimensional DTW of the embodiment.
  • DTW dynamic time expansion / contraction method
  • the present invention automatically evaluates the driving skill of a subject in a driving school or the like, and aims to improve the accuracy of the evaluation by learning the traveling position of the vehicle and adding it to the evaluation. In addition, by learning behavior information in addition to learning the traveling position, the accuracy of evaluation is further improved.
  • the best mode for carrying out the present invention will be described in detail based on examples.
  • FIG. 1 is a conceptual diagram showing an outline of a driving skill evaluation system according to the present embodiment.
  • the server 50 acquires model data from the vehicle 10 and records the data in chronological order (step S1), performs machine learning, and patterns the data based on some sample data (step S2). Then, the data of the subject is obtained from the vehicle 10 (step S3), analyzed and evaluated, and the result is notified to the subject in real time (step S4).
  • the model data includes a traveling locus of the vehicle 10 (a traveling position of the vehicle) and behavior information indicating a driver's operation on the vehicle 10.
  • the travel locus is acquired by, for example, a virtual point RTK positioning method.
  • the virtual point RTK positioning method is a method of performing RTK positioning using a virtual reference point calculated from measurement data of a surrounding electronic reference point as a base station.
  • the traveling locus may be acquired by other methods.
  • the behavior information indicating the driver's operation on the vehicle 10 includes the driver's operation itself and the movement of the vehicle 10.
  • the operation of the driver is obtained by CAN (Controller Area Network). Specifically, there are operations of the brake pedal, the accelerator pedal 22, the steering 24, and the clutch 26 (for an MT person).
  • the movement of the vehicle 10 is also acquired by the CAN. Specifically, there are speed, smooth behavior of the vehicle 10 (smoothness at the time of braking, knocking at the time of starting, and the like). These pieces of behavior information are also recorded in the server 50 in chronological order.
  • the subject data includes the running locus of the vehicle 10 and the behavior information indicating the driver's operation on the vehicle 10 as in the example data.
  • the running locus of the subject may be close to the running locus as an example, or may meander or deviate from a prescribed course.
  • the behavior information of the subject with respect to the vehicle 10 may be similar to the example behavior, or may include excessive speed, smooth driving, excessive accelerator depression, clutch error (for an MT vehicle), and the like.
  • the server 50 acquires the data of these subjects, the server 50 analyzes and evaluates the driving skills of the subjects based on the machine-learned exemplary running patterns and behavior patterns.
  • the analyzed / evaluated result may be notified to the subject driving the vehicle 10 in real time, for example, or the sample data and information such as a high-risk point having a large error may be output together. You may.
  • FIG. 2 is a block diagram showing a configuration of the vehicle 10 of the present embodiment.
  • the vehicle 10 includes a control unit 12, a storage unit 14, a display unit 16, a communication unit 18, an operation unit 20, a traveling position detection unit 30, and a behavior information detection unit 32.
  • the control unit 12 includes, for example, a CPU (Central Processing Unit), and performs various processes by reading and executing various programs stored in the storage unit 14.
  • the storage unit 14 stores a program to be executed by the control unit 12, and includes, for example, a ROM (Read Only Memory) and a RAM (Random Access Memory).
  • the display unit 14 is a monitor or the like provided in the vehicle 10 and displays an evaluation result and the like.
  • the communication unit 18 performs various data communications with the server 50 via a network.
  • the operation unit 20 performs an operation necessary for driving the vehicle 10, and specifically includes a steering wheel, an accelerator pedal 22, a brake pedal, a blinker, a shift lever, and the like.
  • the traveling position detector 30 detects the traveling position of the vehicle 10 and uses, for example, a GPS.
  • the behavior information detection unit 32 includes, for example, a vehicle speed detection unit, an accelerator pedal depression angle detection unit, a brake pedal depression angle detection unit, a clutch pedal depression angle detection unit (only for MT vehicles), a steering angle detection unit, and the like.
  • an acceleration detector, an angular velocity detector, and the like may be included.
  • the data detected by the traveling position detection unit 30 and the behavior information detection unit 32 is stored in the storage unit 14 and provided to the server 50 via the communication unit 18.
  • FIG. 3 is a block diagram showing a hardware configuration of the server 50 of the driving skill evaluation system 100 of the present embodiment.
  • the server 50 includes a processor 52, a memory 54, a storage 56, and a communication unit 58, and these are connected by a bus (not shown).
  • the processor 52 is configured by, for example, a CPU (Central Processing Unit), and performs various processes by reading and executing various programs stored in the memory 54.
  • the memory 54 stores a program to be executed by the CPU 52, and includes, for example, a ROM (Read Only Memory) and a RAM (Random Access Memory). For example, various means shown in FIG. 4 are stored.
  • the storage 56 stores operation data 56A, behavior information 56B, learning data 56C, a control program (not shown), and the like.
  • the driving data 56A is sample driving data obtained by recording the running positions acquired from the vehicle 10 in time series.
  • the behavior information 56 ⁇ / b> B is information obtained from the vehicle 10 and indicating an operation performed by the driver on the vehicle 10.
  • the learning data 56C stores an exemplary driving traveling pattern obtained by learning based on the driving data 56A. In the learning data 56C, an exemplary driving behavior pattern obtained by learning based on the behavior information 56B is stored.
  • the communication unit 58 performs various data communications with the vehicle 10 via a network.
  • FIG. 4 is a block diagram showing the functional configuration of the server 50.
  • the server 50 includes a traveling position recording unit 60, a traveling learning unit 62, a behavior information acquiring unit 64, a behavior learning unit 66, an evaluation unit 68, and an output unit 70.
  • the traveling position recording means 60 records the traveling position of the vehicle 10 in chronological order, so that the driving data 56A as a sample is recorded in the storage 56.
  • the traveling learning means 62 learns based on the driving data 56A, and learns an exemplary driving traveling pattern.
  • the learning result is stored in the storage 56 as learning data 56C.
  • the behavior information acquiring means 64 acquires behavior information indicating an operation performed by the driver on the vehicle 10, and the acquired information is recorded in the storage 56 as behavior information 56B.
  • the behavior learning means 66 learns based on the behavior information 56B, and learns an exemplary driving behavior pattern. The learning result is recorded in the storage 56 as learning data 56C.
  • Evaluation means 68 evaluates the driving skill of the driver (subject) based on the exemplary traveling pattern learned by traveling learning means 62. In this embodiment, the evaluation means 68 evaluates the driving skill of the driver (subject) based on the exemplary behavior pattern learned by the behavior learning means 66 in addition to the running pattern.
  • the output unit 70 outputs the evaluation by the evaluation unit 68.
  • the output unit 70 may display the evaluation in real time on the display unit 16 provided in the vehicle 10 driven by the subject, or the driving of the prescribed course is terminated. After that, the dangerous places and the deduction points may be displayed collectively.
  • the evaluation may be notified to a mail address or the like registered by the subject, or may be printed on a paper medium and passed to the subject.
  • FIG. 5 is a conceptual diagram showing the concept of Dynamic Time Warping (DTW).
  • the DTW is applied to the travel position information of the vehicle 10 for obtaining the travel trajectory and the behavior information related to the operation of the vehicle 10.
  • FIG. 5A shows data relating to latitude in the position information, in which line LA1 is model data and line LB1 is subject data. Since the vehicle travels on the prescribed course, the time-series changes in the position information are similar, but the subject has been shifted back and forth.
  • FIG. 5 (B) shows data relating to the amount of depression of the accelerator pedal in the behavior information, in which line LA2 is model data and line LB2 is subject data.
  • the time-series change in the amount of depression of the accelerator pedal greatly differs between individuals.
  • Other behavior information (the amount of depression of the brake pedal, the steering angle of the steering wheel, and the like) also tends to appear with many individual differences. These pieces of behavior information are considered to be highly relevant.
  • FIG. 6 is a graph showing before and after the difference in time required for traveling by the dynamic time expansion and contraction method (DTW) is absorbed.
  • the horizontal axis represents time (time required for traveling), and the vertical axis represents, for example, the latitude of traveling position information of the vehicle.
  • the line LA is a data line serving as a model
  • the line LB is a data line of the subject. As shown in the figure, by absorbing the difference in running time, comparison of data becomes easier than before the absorption.
  • FIG. 7 is an explanatory diagram showing an example of learning of the traveling position by the N-dimensional DTW in the present embodiment.
  • a normal DTW can process only one element of time-series data, but the traveling position data of the present invention requires processing of two elements of latitude and longitude.
  • the N-dimensional DTW 72 can process time-series data of a plurality of elements, calculate similarity, and perform time stretching (time stretching) in accordance with the characteristics of the data.
  • a travel position from [1] travel position (latitude and longitude) to [m] travel position (latitude and longitude) is input to the N-dimensional DTW 72.
  • the N-dimensional DTW 72 processes latitude and longitude time-series data, calculates similarity, performs time stretching (time expansion and contraction) according to the characteristics of the data, and extracts the most average data from the M traveling position data. I do.
  • [7] the traveling position (latitude and longitude) is extracted as the most average data, and learned as a typical driving traveling pattern.
  • the most average data may be extracted from the M pieces of travel position data and used as an exemplary driver's travel pattern. That is, the similarity is calculated for all the input learning samples (a plurality of model traveling locus data) on a round robin basis, and a sample having a high average value of similarity with all the other samples is extracted. More specifically, a plurality of model traveling trajectory data is used as an input value of a learning sample, and an average of similarity between one pair and others by N-dimensional DTW is calculated, and data having the highest average similarity is picked up. The data is used as the best model running data, and learning is performed as a running pattern for comparison with the data of the subject.
  • FIG. 8 is an explanatory diagram illustrating an example of an evaluation method based on a traveling position according to the present embodiment.
  • a line LC is an actual traveling locus (a traveling locus of a subject)
  • a line LD is a typical traveling locus of a driver.
  • the exemplary running locus LD is time-expanded or shrunk to match the running locus LC of the subject.
  • the position PA of the vehicle 10 on the actual travel locus LC at a certain time t is different from the position PB of the vehicle 10 on the exemplary driver's travel locus LD at the same time t.
  • the distance from the position PB of the vehicle 10 at the time t of the LD on the exemplary traveling locus is changed. If the vehicle 10 is in a position within the threshold value Dthresh (within the range of the circle shown by the broken line in FIG. 8), it is evaluated as OK. In the example of FIG. 8, the position PC is OK because it is located within the distance threshold Dthresh.
  • the traveling locus of the landing site is excluded. For example, data within 30 mk from the start point and the end point is ignored, and the travel trajectory from the point beyond 30 m from the start point to the point beyond 30 m from the end point is evaluated.
  • FIG. 9 is a diagram illustrating an example of machine learning by learning behavior information in the present embodiment.
  • 9 (A) is the speed
  • FIG. 9 (B) is the brake pedal depression amount
  • FIG. 9 (C) is the accelerator pedal depression amount
  • FIG. 9 (D) is the blinker operation amount
  • FIG. 9 (E) is the steering angle.
  • 9A to 9E a line LS represents behavior data of the instructor serving as a learning sample
  • a line LSave represents an average value of behavior data of a plurality of instructors.
  • the line LSave is learned as an exemplary driving behavior pattern.
  • the difference between the parameter and the exemplary driving behavior pattern is calculated, and how much the pattern matches the exemplary driving behavior pattern, or A numerical value is used to determine how far away the distance is, and the numerical value is used to determine the deduction of the evaluation.
  • FIG. 10 shows an example of abnormal value determination based on behavior information.
  • FIG. 10A shows the depression amount of the brake pedal, a plurality of lines LS are normal operation data (operation data of the instructor), and a line LB3 is the operation data of the subject.
  • FIG. 10B shows the vehicle speed, a plurality of lines LS are normal driving data (driving data of the instructor), and a line LB4 is driving data of the subject.
  • the pattern is analyzed, and how much the pattern of the driving data of the subject matches the normal data, Alternatively, an abnormal value is determined (evaluated) by quantifying how far away the distance is, and the number of points to be deducted in the evaluation is determined based on the result.
  • FIG. 11 An example of a screen showing the result of the driving skill evaluation evaluated as described above to the subject 10 is shown in FIG.
  • the traveling route 82 is shown on the left side, and the problem location 84 is displayed on the right side in real time.
  • the problem location 86 “00:02:12 ⁇ travel deviation (small) ⁇ 1.0 m or more to less than 1.5 m ⁇ ⁇ 5 points”
  • the problem location 88 “00:02:28 ⁇ travel trajectory (Small) ⁇ less than 1.0 to 1.5 m ⁇ 5 points”
  • the total evaluation score 90 at the present time obtained by adding the deduction points displayed at each problem location is displayed.
  • the numerical value of the comprehensive evaluation score 90 changes as the vehicle travels.
  • the evaluation based on the driving behavior pattern may be added to this, so that the accuracy of the driving skill evaluation is improved. improves.
  • the driving skill evaluation system 100 records the driving positions of the vehicle 10 in a time series, thereby recording driving data as a sample.
  • the accuracy of the evaluation is improved by taking the driving locus into consideration for the driving skill evaluation of the subject.
  • a behavior information acquisition unit 56 that acquires behavior information indicating a driver's operation on the vehicle, and a behavior learning unit 58 that learns based on the behavior information and learns an exemplary driving behavior pattern
  • the evaluation unit 60 evaluates the driving skill of the driver based on the learned behavior pattern in addition to the traveling pattern, so that the evaluation accuracy is further improved.
  • the above-described embodiment is an example, and can be appropriately changed within a range in which a similar effect is obtained.
  • the system configuration shown in the above embodiment is also an example, and the vehicle 10 may be provided with the configuration of the server 50 so that the vehicle 10 performs machine learning, analysis, and evaluation.
  • the recording method of the traveling locus described in the above embodiment is also an example.
  • the positioning method of the SBAS method (a correction value is calculated from a positioning error measured by a ground base station, and the correction value broadcasted via a satellite is corrected).
  • a method of correcting GPS positioning errors using information) or an RTK positioning method installing an RTK base station on its own, calculating the correction value from the positioning errors measured there, and receiving it via wireless or Internet communications) (A method of correcting an error in GPS positioning using the correction information obtained).
  • the definition of the number of deductions shown in the above-described embodiment is also an example. For example, if the deviation of the distance from the exemplary traveling locus exceeds 1.0 m, “deduction 5” is set as “traceS” and the deviation is If the distance exceeds 1.5 m, the number of deductions may be defined as “traceM” as “deduction 10”, and if the deviation exceeds 2.0 m, “traceL” as “deduction 15”. The same applies to other deduction items.
  • the present invention may be provided as a program executed by the server 50. This program may be provided in a state recorded on a computer-readable recording medium, or may be downloadable via a network. Further, the present invention may be provided as a method invention.
  • the accuracy of the driving skill evaluation is improved by learning the traveling position of the vehicle and adding it to the evaluation, it is suitable as a driving skill evaluation system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

【課題】運転技能評価システムにおいて、運転技能評価の精度の向上を図る。 【解決手段】運転技能評価システム100は、サーバ50が、車両10の走行位置を時系列で記録することで、見本となる運転データを記録する走行位置記録手段と、前記運転データに基づいて学習し、模範的な運転の走行パターンを学習する走行学習手段と、学習した前記走行パターンに基づいて、運転者の運転技能を評価する評価手段と、を備える。また、運転者の車両10に対する操作を示す挙動情報を取得する挙動情報取得手段と、前記挙動情報に基づいて学習し、模範的な運転の挙動パターンを学習する挙動学習手段と、を備え、前記評価手段は、前記走行パターンに加えて、学習した前記挙動パターンに基づいて、前記運転者の運転技能を評価する。

Description

運転技能評価システム、方法及びプログラム
 本発明は、運転技能を評価するシステム、方法及び装置等に係り、更に具体的には、お手本となる運転に関するデータに基づいて、被験者の運転技能を自動的に評価する運転技能評価システム等に関する。
 従来より運転技能を評価するシステムが知られている。例えば、株式会社オファサポートの特許第6086515号では、車両に搭載されたCAN(Controller Area Network)のデータから車両の挙動(ハンドルやブレーキ操作)と、車両の位置情報を、評価基準となる基準データと比較して運転技能を評価するシステムが開示されている。
特許第6086515号公報
 しかしながら、上記特許文献1において、運転者の挙動情報(ステアリングの操作量、アクセルの操作量、ブレーキの操作量等)を入力し、機械学習することで運転を評価することについて言及があるものの(同文献の段落0067)、発明者らは、この挙動情報の学習では評価が十分ではなく、車両の走行位置を学習し、これを評価に加味することで評価の精度が向上するのではないかという点に着目した。
 そこで、本発明では、車両の走行位置を学習して評価に加味することで、評価の精度の向上が可能な運転技能評価システム、方法及びプログラムを提供することを、その目的とする。
 本発明は、車両の走行位置を時系列で記録することで、見本となる運転データを記録する走行位置記録手段と、前記運転データに基づいて学習し、模範的な運転の走行パターンを学習する走行学習手段と、学習した前記走行パターンに基づいて、運転者の運転技能を評価する評価手段と、を備える運転技能評価システムを提供する。
 また、本発明は、車両の走行位置を時系列に記録することで、見本となる運転データを記録するステップと、前記運転データに基づいて学習し、模範的な運転の走行パターンを学習するステップと、学習した前記走行パターンに基づいて、運転者の運転技能を評価するステップと、を備える運転技能評価方法を提供する。
 更に、本発明は、コンピュータに、車両の走行位置を時系列で記録することで、見本となる運転データを記録するステップと、前記運転データに基づいて学習し、模範的な運転の走行パターンを学習するステップと、学習した前記走行パターンに基づいて、運転者の運転技能を評価するステップと、を実行させるための運転技能評価プログラムを提供する。
 本発明によれば、車両の走行位置を学習して評価に加味することで、運転技能の評価の精度が向上する。
本発明の一実施形態の運転技能評価システムの概要を示す概念図である。 前記実施形態の車両の構成を示すブロック図である。 前記実施形態のサーバのハードウェア構成を示すブロック図である。 前記実施形態のサーバの機能構成を示すブロック図である。 動的時間伸縮法(DTW)によるタイムストレッチの考え方を示す概念図である。 動的時間伸縮法(DTW)により走行にかかる時間の違いを吸収する前後を示すグラフである。 前記実施形態のN次元DTWによる走行位置の学習の例を示す図である。 前記実施形態における走行位置の評価方法の一例を示す説明図である。 前記実施形態における挙動情報の学習の一例を示す図である。 前記実施形態における挙動情報に基づく異常値判定の一例を示す図である。 前記実施形態の車両に表示される評価画面の一例を示す図である。
 本発明は、自動車教習所などにおいて、被験者の運転技能を自動的に評価するものであって、車両の走行位置を学習して評価に加味することで、評価の精度の向上を図るものである。また、走行位置の学習に加え、挙動情報を学習することで、更に評価の精度の向上を図る。以下、本発明を実施するための最良の形態を、実施例に基づいて詳細に説明する。
 <全体構成>・・・図1は、本実施形態に係る運転技能評価システムの概要を示す概念図である。本発明は、サーバ50が、車両10から手本となるデータを取得して時系列に記録して(ステップS1)機械学習し、いくつかの見本データを元にパターン化する(ステップS2)。そして、車両10から被験者のデータを取得して(ステップS3)、分析・評価し、その結果をリアルタイムで被験者に通知する(ステップS4)。
 手本となるデータには車両10の走行軌跡(車両の走行位置)と、車両10に対する運転者の操作を示す挙動情報がある。走行軌跡は、例えば、仮想点RTK測位法により取得する。仮想点RTK測位法は、周辺の電子基準点の計測データから算出した仮想基準点を基地局としたRTK測位をする方法である。むろん、この他の方法により走行軌跡を取得してもよい。車両10の走行位置を時系列でサーバ50に記憶することで、車両10の走行軌跡が得られる。
 車両10に対する運転者の操作を示す挙動情報としては、運転者の操作自体と車両10の動きが含まれる。運転者の操作は、CAN(Controller Area Network)により取得する。具体的には、ブレーキペダル、アクセルペダル22、ステアリング24、クラッチ26の操作(MT者の場合)の操作がある。また、車両10の動きも、CANにより取得する。具体的には、スピード、車両10のスムーズな挙動(ブレーキ時のスムースさ、スタート時のノッキング等)がある。これらの挙動情報もサーバ50に時系列で記録される。
 被験者のデータは、手本となるデータと同様に、車両10の走行軌跡と、車両10に対する運転者の操作を示す挙動情報がある。被験者の走行軌跡は、手本となる走行軌跡と近いものもあれば、蛇行していたり規定のコースを逸脱しているものがある。
 車両10に対する被験者の挙動情報は、手本となる挙動と近いものもあれば、スピードの出し過ぎ、スムースな運転か否か、アクセルの踏みすぎ、クラッチミス(MT車の場合)などがある。これらの被験者のデータをサーバ50が取得することで、サーバ50は、機械学習した模範的な走行パターンや挙動パターンに基づいて、被験者の運転技能を分析・評価する。
 分析・評価された結果は、例えば、リアルタイムで車両10を運転する被験者に通知してもよいし、手本となるデータと誤差の大きい危険度の高い箇所などの情報をまとめて出力するようにしてもよい。
 <車両の構成>・・・図2は、本実施形態の車両10の構成を示すブロック図である。車両10は、制御部12、記憶部14、表示部16、通信部18、操作部20、走行位置検出部30、挙動情報検出部32を備えている。制御部12は、例えば、CPU(Central Processing Unit)により構成され、記憶部14に記憶された各種プログラムを読み出して実行することで、各種処理を行う。記憶部14は、制御部12により実行させるプログラムを記憶するものであり、例えば、ROM(Read Only Memory)やRAM(Random Access Memory)による構成される。
 表示部14は、車両10内に設けられたモニタ等であって、評価結果等を表示する。通信部18は、ネットワークを介してサーバ50と各種データ通信を行うものである。操作部20は、車両10の運転に必要な操作を行うものであって、具体的には、ステアリング、アクセルペダル22、ブレーキペダル、ウィンカー、シフトレバー等である。
 走行位置検出部30は、車両10の走行位置を検出するもので、例えば、GPSなどが用いられる。挙動情報検出部32は、例えば、車速度検出部、アクセルペダル踏み角度検出部、ブレーキペダル踏み角度検出部、クラッチペダル踏み角度検出部(MT車のみ)、操舵角検出部などがある。このほか、加速度検出部や角速度検出部などを含むようにしてもよい。
 前記走行位置検出部30及び挙動情報検出部32で検出されたデータは、記憶部14に記憶され、通信部18を介してサーバ50に提供される。
 <サーバのハードウェア構成>・・・図3は、本実施形態の運転技能評価システム100のサーバ50のハードウェア構成を示すブロック図である。サーバ50は、プロセッサ52、メモリ54、ストレージ56、通信部58を備え、これらは図示しないバスにより接続されている。プロセッサ52は、例えば、CPU(Central Processing Unit)により構成され、メモリ54に記憶された各種プログラムを読み出して実行することで、各種処理を行う。前記メモリ54は、CPU52により実行させるプログラムを記憶するものであり、例えば、ROM(Read Only Memory)やRAM(Random Access Memory)による構成される。例えば、図4に示す各種手段が記憶されている。
 ストレージ56は、運転データ56A、挙動情報56B、学習データ56Cや図示しない制御プログラムなどを記憶するものである。運転データ56Aは、車両10から取得した走行位置を時系列で記録することで得られる見本となる運転データである。挙動情報56Bは、車両10から取得した、運転者の車両10に対する操作を示す情報である。学習データ56Cは、前記運転データ56Aに基づいて学習して得られた模範的な運転の走行パターンが記憶される。また、学習データ56Cには、挙動情報56Bに基づいて学習して得られた模範的な運転の挙動パターンが記憶される。通信部58は、ネットワークを介して、車両10と各種データ通信を行うものである。
 <サーバの機能構成>・・・図4は、サーバ50の機能構成を示すブロック図である。サーバ50は、走行位置記録手段60、走行学習手段62、挙動情報取得手段64、挙動学習手段66、評価手段68、出力手段70を備えている。
 走行位置記録手段60は、車両10の走行位置を時系列で記録することで、見本となる運転データ56Aをストレージ56に記録する。走行学習手段62は、前記運転データ56Aに基づいて学習し、模範的な運転の走行パターンを学習する。学習結果は、ストレージ56に学習データ56Cとして記憶される。
 挙動情報取得手段64は、運転者の車両10に対する操作を示す挙動情報を取得し、取得された情報は、ストレージ56に挙動情報56Bとして記録される。挙動学習手段66は、前記挙動情報56Bに基づいて学習し、模範的な運転の挙動パターンを学習する。学習結果は、ストレージ56に学習データ56Cとして記録される。
 評価手段68は、走行学習手段62によって学習した模範的な走行パターンに基づいて、運転者(被験者)の運転技能を評価する。また、本実施例では、評価手段68は、前記走行パターンに加え、前記挙動学習手段66で学習した模範的な挙動パターンに基づいて、運転者(被験者)の運転技能を評価する。
 出力手段70は、評価手段68による評価を出力するもので、例えば、被験者が運転する車両10に設けられた表示部16にリアルタイムで表示するようにしてもよいし、規定のコースの運転が終了したのちにまとめて危険個所や減点部分などを表示するようにしてもよい。また、表示部16への表示のみならず、被験者が登録したメールアドレス等に評価を通知するようにしてもよいし、紙媒体へ印刷して被験者へ渡すようにしてもよい。
 <動的時間伸縮法(DTW)>・・・図5は、動的時間伸縮法(DTW:Dynamic TimeWarping)の考え方を示す概念図である。本実施形態では、走行軌跡を得るための車両10の走行位置情報と、車両10の操作に関する挙動情報をわけてDTWにかけている。図5(A)は、位置情報のうちの緯度に関するデータであって、ラインLA1が手本となるデータ、ラインLB1が被験者のデータである。規定のコースを走行するため、位置情報の時系列変化は類似するものの、被験者によって前後のずれが生じている。
 図5(B)は、挙動情報のうちのアクセルペダルの踏み込み量に関するデータであって、ラインLA2が手本となるデータ、ラインLB2が被験者のデータである。図示の例では、アクセルペダルの踏み込み量の時系列変化は、個人差が非常に大きい。他の挙動情報(ブレーキペダルの踏み込み量、ハンドルの操舵角など)も個人差が多くあらわれやすい。そして、これらの挙動情報は、それぞれ関連性が高いと考えられる。
 図6には、動的時間伸縮法(DTW)による走行にかかる時間の違いを吸収する前後を示すグラフが示されている。同図において、横軸は時間(走行にかかる時間)、縦軸は例えば、車両の走行位置情報のうちの緯度である。ラインLAは手本となるデータのライン、ラインLBは被験者のデータのラインである。同図に示すように走行にかかる時間の違いを吸収することで、吸収前よりもデータの比較が容易となる。
 <走行位置に基づく運転技能評価>・・・図7は、本実施形態におけるN次元DTWによる走行位置の学習の例を示す説明図である。通常のDTWは1つの要素の時系列データしか処理できないが、本発明の走行位置データは、緯度と経度の2つの要素の時系列データの処理が必要となる。N次元DTW72では、複数の要素の時系列データを処理でき、類似度の算出、データの特徴に合わせたタイムストレッチ(時間伸縮)が可能である。
 例えば、図7に示すように、[1]走行位置(緯度経度)~[m]走行位置(緯度経度)の走行位置をN次元DTW72に入力する。N次元DTW72は、緯度と経度の時系列データを処理し、類似度の算出、データの特徴に合わせたタイムストレッチ(時間伸縮)を行い、M個の走行位置データから最も平均的なデータを抽出する。図7の例では、[7]走行位置(緯度経度)が最も平均的なデータとして抽出され、模範的な運転の走行パターンと学習される。
 また、M個の走行位置データから最も平均的なデータを抽出して模範的な運転者の走行パターンとしてもよい。すなわち、入力される学習サンプル(複数の模範走行軌跡データ)を総当たりで類似性を算出し、他のサンプル全てとの類似性の平均値が高いサンプルを抽出する。より具体的には、複数の模範走行軌跡データを学習サンプルの入力値とし、それぞれ、1対その他とのN次元DTWによる類似性の平均を算出し、最も平均類似性の高いデータをピックアップし、そのデータを最優秀模範走行データとし、被験者のデータと比較するための走行パターンとして学習するという具合である。
 図8は、本実施形態における走行位置に基づく評価方法の一例を示す説明図である。図8において、ラインLCは実際の走行軌跡(被験者の走行軌跡)、ラインLDは模範的な運転者の走行軌跡である。被験者の走行軌跡LCに合わせて、模範の走行軌跡LDが時間伸縮されている。ある時間tにおける実際の走行軌跡LC上の車両10の位置PAは、同じ時間tにおける模範的な運転者の走行軌跡LD上の車両10の位置PBと異なっている。
 このとき、例えば、時間の閾値Tthresh以下の時間の間(図8に実線で示された円の範囲内)に、模範的な走行軌跡上LDの時間tにおける車両10の位置PBから、距離の閾値Dthresh以内の位置(図8に破線で示された円の範囲内)に車両10が入っていればOKと評価する。図8の例では、位置PCは、距離の閾値Dthresh以内の位置に入っているのでOKとなる。
 そして、例えば、模範的な走行軌跡との距離のずれが0.7mを超えていれば、「traceS」として「減点5」、ずれが1.0mを超えていれば「traceM」として「減点10」、ずれが1.2mを超えていれば「traceL」として「減点20」という具合に減点式で評価を行う。なお、この減点数の定義も一例であり、他の定義を採用してもよい。
 なお、このような走行位置による被験者の運転技能の評価にあたり、発着場の走行軌跡は除外する。例えば、開始地点、終了地点から30mk以内のデータを無視し、開始地点から30mを超えた地点から、終了地点から30mを超えた地点までの走行軌跡を評価する。
 <挙動情報に基づく運転技能評価>・・・図9は、本実施形態における挙動情報の学習による機械学習の一例を示す図である。図9(A)は速度、図9(B)はブレーキペダル踏み込み量、図9(C)はアクセルペダル踏み込み量、図9(D)はウィンカー操作量、図9(E)はステリング操舵角である。図9(A)~(E)において、ラインLSは学習サンプルとなる教官の挙動データ、ラインLSaveは複数の教官の挙動データの平均値である。ここでは、ラインLSaveが模範的な運転の挙動パターンとして学習される。
 そして、被験者の車両10に対する操作を示す挙動情報の各パラメータに対して、模範的な運転の挙動パターンとの差異を計算し、どのくらい模範的な運転の挙動パターンと合致しているのか、あるいは、どのくらい離れているのかを数値化し、その数値により評価の減点数を決める。
 図10は、挙動情報に基づく異常値判定の一例が示されている。図10(A)はブレーキペダルの踏み込み量であって、複数のラインLSは正常な運転データ(指導員の運転データ)であり、ラインLB3が被験者の運転データである。図10(B)は車速であって、複数のラインLSは正常な運転データ(指導員の運転データ)であり、ラインLB4が被験者の運転データである。
 図10(A)及び(B)に示す例では、多数の正常な運転データを収集した上で、そのパターンを解析し、被験者の運転データのパターンが正常なデータにどのくらい合致しているのか、あるいはどのくらい離れているのかを数値化することで、異常値判定(評価)を行い、その結果により評価の減点数を決める。
 <運転技能評価の結果表示>・・・以上のように評価された運転技能評価の結果を、被験者10に示す画面の一例が図11に示されている。図11に示す表示画面には、左側に走行ルート82が示され、右側に問題箇所84がリアルタイムで表示される。例えば、問題箇所86には、「00:02:12 走行軌跡のずれ(小)-1.0m以上~1.5m未満 -5点」、問題箇所88には、「00:02:28 走行軌跡のずれ(小)-1.0~1.5m未満 -5点」と表示されており、各問題箇所で表示された減点を加算した現時点での総合評価得点90が表示されている。すなわち、総合評価得点90の数値は、走行を進めるにしたがって変化していく。なお、図11の問題箇所には走行軌跡のずれと人形接触の場合しか表示されていないが、運転の挙動パターンに基づく評価をこれに加味してもよく、それによって運転技能評価の精度がより向上する。
 <効果>・・・以上説明した実施形態によれば、運転技能評価システム100は、車両10の走行位置を時系列で記録することで、見本となる運転データを記録する走行位置記録手段52と、前記運転データに基づいて学習し、模範的な運転の走行パターンを学習する走行学習手段54と、学習した前記走行パターンに基づいて、運転者の運転技能を評価する評価手段60と、を備える。このように、被験者の運転技能評価に、走行軌跡を加味することで評価の精度が向上する。
 また、運転者の車両に対する操作を示す挙動情報を取得する挙動情報取得手段56と、前記挙動情報に基づいて学習し、模範的な運転の挙動パターンを学習する挙動学習手段58と、を備え、前記評価手段60は、前記走行パターンに加えて、学習した前記挙動パターンに基づいて、前記運転者の運転技能を評価することで、より評価の精度が向上する。
 上述した実施形態は一例であり、同様の効果を奏する範囲内で適宜変更が可能である。例えば、前記実施形態で示したシステム構成も一例であり、サーバ50の構成を車両10が備えることで、車両10で、機械学習、分析、評価を行うようにしてもよい。また、前記実施形態で示した走行軌跡の記録方法も一例であり、SBAS方式の測位法(地上の基地局で計測した測位誤差から補正値を算出し、衛星を介して、放送されたその補正情報を使ってGPS測位の誤差を補正する方法)や、RTK測位法(自前でRTK基地局を設置し、そこで計測した測位誤差から補正値を算出し、無線やインターネット等の通信を介して受信したその補正情報を使ってGPS測位の誤差を補正する方法)を採用してもよい。更に、前記実施形態で示した減点数の定義も一例であり、例えば、模範的な走行軌跡との距離のずれが1.0mを超えていれば、「traceS」として「減点5」、ずれが1.5mを超えていれば「traceM」として「減点10」、ずれが2.0mを超えていれば「traceL」として「減点15」というように減点数を定義してもよい。他の減点項目においても同様である。また、本発明は、サーバ50で実行されるプログラムとして提供されてもよい。このプログラムは、コンピュータが読取可能な記録媒体に記録された状態で提供されていてもよいし、ネットワークを介してダウンロード可能としてもよい。更に、本発明は、方法の発明として提供されてもよい。
 本発明によれば、車両の走行位置を学習して評価に加味することで、運転技能の評価の精度が向上するため、運転技能評価システムとして好適である。
 10:車両
 12:制御部
 14:記憶部
 16:表示部
 18:通信部
 20:操作部
 22:アクセルペダル
 24:ステアリング
 26:クラッチ
 30:走行位置検出部
 32:挙動情報検出部
 50:サーバ
 52:プロセッサ
 54:メモリ
 56:ストレージ
 56A:運転データ
 56B:挙動情報
 56C:学習データ
 58:通信部
 60:走行位置記憶手段
 62:走行学習手段
 64:挙動情報取得手段
 66:挙動学習手段
 68:評価手段
 70:出力手段
 72:N次元DTW
 80:表示画面
 82:走行ルート
 84:問題箇所
 86、88:減点項目
 90:総合評価得点
100:運転技能評価システム
LA、LA1、LA2、LB、LB1、LB2、LC、LD、LS、LSave:ライン
PA~PC:位置
 
 

Claims (4)

  1.  車両の走行位置を時系列で記録することで、見本となる運転データを記録する走行位置記録手段と、
     前記運転データに基づいて学習し、模範的な運転の走行パターンを学習する走行学習手段と、
     学習した前記走行パターンに基づいて、運転者の運転技能を評価する評価手段と、
    を備える運転技能評価システム。
  2.  運転者の車両に対する操作を示す挙動情報を取得する挙動情報取得手段と、
     前記挙動情報に基づいて学習し、模範的な運転の挙動パターンを学習する挙動学習手段と、を備え、
     前記評価手段は、前記走行パターンに加えて、学習した前記挙動パターンに基づいて、前記運転者の運転技能を評価する請求項1に記載の運転技能評価システム。
  3.  車両の走行位置を時系列に記録することで、見本となる運転データを記録するステップと、
     前記運転データに基づいて学習し、模範的な運転の走行パターンを学習するステップと、
     学習した前記走行パターンに基づいて、運転者の運転技能を評価するステップと、
    を備える運転技能評価方法。
  4.  コンピュータに、
     車両の走行位置を時系列で記録することで、見本となる運転データを記録するステップと、
     前記運転データに基づいて学習し、模範的な運転の走行パターンを学習するステップと、
     学習した前記走行パターンに基づいて、運転者の運転技能を評価するステップと、
    を実行させるための運転技能評価プログラム。
     
     
PCT/JP2018/033295 2018-09-07 2018-09-07 運転技能評価システム、方法及びプログラム WO2020049737A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019532821A JPWO2020049737A1 (ja) 2018-09-07 2018-09-07 運転技能評価システム、方法及びプログラム
PCT/JP2018/033295 WO2020049737A1 (ja) 2018-09-07 2018-09-07 運転技能評価システム、方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/033295 WO2020049737A1 (ja) 2018-09-07 2018-09-07 運転技能評価システム、方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2020049737A1 true WO2020049737A1 (ja) 2020-03-12

Family

ID=69721721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033295 WO2020049737A1 (ja) 2018-09-07 2018-09-07 運転技能評価システム、方法及びプログラム

Country Status (2)

Country Link
JP (1) JPWO2020049737A1 (ja)
WO (1) WO2020049737A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111785014A (zh) * 2020-05-26 2020-10-16 浙江工业大学 一种基于dtw-rgcn的路网交通数据修复的方法
JP2021163027A (ja) * 2020-03-31 2021-10-11 株式会社豊田中央研究所 交通評価システム、交通情報管理システム、交通評価方法、およびコンピュータプログラム
WO2022137506A1 (ja) 2020-12-25 2022-06-30 日本電気株式会社 運転評価システム、学習装置、評価結果出力装置、方法およびプログラム
JP7435429B2 (ja) 2020-12-14 2024-02-21 トヨタ自動車株式会社 安全運転レベル評価装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012198774A (ja) * 2011-03-22 2012-10-18 Toyota Central R&D Labs Inc 規範車速算出装置及びプログラム
JP2014194620A (ja) * 2013-03-28 2014-10-09 Fujitsu Ltd 運転診断システム、運転診断プログラム、及び運転診断装置
WO2015076420A1 (ja) * 2014-11-27 2015-05-28 株式会社小松製作所 鉱山機械の管理システム、鉱山機械の管理方法、及びダンプトラック
US20160298971A1 (en) * 2015-04-10 2016-10-13 GM Global Technology Operations LLC Vehicle driving aids

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4926413B2 (ja) * 2005-05-17 2012-05-09 富士重工業株式会社 車両の走行軌跡生成方法、及びそれを利用した駐車支援装置
JP2008058459A (ja) * 2006-08-30 2008-03-13 Toyota Motor Corp 運転評価装置
US9349150B2 (en) * 2013-12-26 2016-05-24 Xerox Corporation System and method for multi-task learning for prediction of demand on a system
JP2017062763A (ja) * 2015-09-24 2017-03-30 ルネサスエレクトロニクス株式会社 運転能力を評価するための装置および方法、ならびに当該方法をコンピュータに実行させるためのプログラム
JP2017085410A (ja) * 2015-10-29 2017-05-18 アイシン精機株式会社 走行支援装置
JP2017142147A (ja) * 2016-02-10 2017-08-17 富士通株式会社 情報処理装置、軌跡情報生成方法および軌跡情報生成プログラム
JP2017151694A (ja) * 2016-02-24 2017-08-31 株式会社デンソー 安全確認診断システム及び安全確認診断方法
JP6086515B1 (ja) * 2016-04-11 2017-03-01 株式会社オファサポート 運転技量評価装置、サーバ装置、運転技量評価システム、プログラムおよび運転技量評価方法
JP6690568B2 (ja) * 2017-02-01 2020-04-28 株式会社デンソー 能力評価システムおよび能力評価装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012198774A (ja) * 2011-03-22 2012-10-18 Toyota Central R&D Labs Inc 規範車速算出装置及びプログラム
JP2014194620A (ja) * 2013-03-28 2014-10-09 Fujitsu Ltd 運転診断システム、運転診断プログラム、及び運転診断装置
WO2015076420A1 (ja) * 2014-11-27 2015-05-28 株式会社小松製作所 鉱山機械の管理システム、鉱山機械の管理方法、及びダンプトラック
US20160298971A1 (en) * 2015-04-10 2016-10-13 GM Global Technology Operations LLC Vehicle driving aids

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021163027A (ja) * 2020-03-31 2021-10-11 株式会社豊田中央研究所 交通評価システム、交通情報管理システム、交通評価方法、およびコンピュータプログラム
JP7188409B2 (ja) 2020-03-31 2022-12-13 株式会社豊田中央研究所 交通評価システム、交通情報管理システム、交通評価方法、およびコンピュータプログラム
CN111785014A (zh) * 2020-05-26 2020-10-16 浙江工业大学 一种基于dtw-rgcn的路网交通数据修复的方法
CN111785014B (zh) * 2020-05-26 2021-10-29 浙江工业大学 一种基于dtw-rgcn的路网交通数据修复的方法
JP7435429B2 (ja) 2020-12-14 2024-02-21 トヨタ自動車株式会社 安全運転レベル評価装置
WO2022137506A1 (ja) 2020-12-25 2022-06-30 日本電気株式会社 運転評価システム、学習装置、評価結果出力装置、方法およびプログラム
EP4250272A4 (en) * 2020-12-25 2024-01-17 Nec Corp DRIVING EVALUATION SYSTEM, LEARNING DEVICE, EVALUATION RESULTS GENERATION DEVICE, METHOD AND PROGRAM

Also Published As

Publication number Publication date
JPWO2020049737A1 (ja) 2020-09-10

Similar Documents

Publication Publication Date Title
WO2020049737A1 (ja) 運転技能評価システム、方法及びプログラム
US10446047B1 (en) Real-time driver observation and scoring for driver'S education
JP5392686B2 (ja) 運転支援装置および方法
US11173924B2 (en) Test for self-driving motor vehicle
JP5774847B2 (ja) 車両走行再現評価装置
CN105823479B (zh) 驾驶行为分析方法
CN110132306B (zh) 车辆定位误差的纠正方法及系统
CN110470309A (zh) 本车位置推断装置
EP3353765B1 (en) Method and apparatus for emergency braking performance testing, evaluation and/or driver training
JP2009175929A (ja) ドライバ状態推定装置及びプログラム
CN115398062A (zh) 已学习模型的生成方法及路面特征判定装置
CN110207715B (zh) 车辆定位的修正方法及修正系统
JP2010152497A (ja) 運転特性取得装置及び交通シミュレーションシステム
Imine et al. Road profile inputs for evaluation of the loads on the wheels
US11879809B2 (en) Vehicle action simulation method and vehicle action simulation system
CN109544648B (zh) 一种标定方法及装置
CN108120450B (zh) 一种静止状态的判断方法及装置
CN114737455B (zh) 一种路面检测方法、装置及设备
JP2021002384A (ja) 運転技能評価システム、方法及びプログラム
US6353777B1 (en) Path correction for lane change analysis
CN113085872B (zh) 驾驶行为评估方法、装置、设备及存储介质
CN114565107A (zh) 碰撞检测方法、装置及设备
US20220034755A1 (en) Tire ground contact characteristic measuring method, tire ground contact characteristic measuring portion, and tire ground contact characteristic measuring system
CN113591278B (zh) 车辆参数辨识方法、装置、计算机设备和存储介质
TW201545097A (zh) 體能測驗防弊方法、系統及電腦程式產品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019532821

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932736

Country of ref document: EP

Kind code of ref document: A1