WO2022137506A1 - 運転評価システム、学習装置、評価結果出力装置、方法およびプログラム - Google Patents

運転評価システム、学習装置、評価結果出力装置、方法およびプログラム Download PDF

Info

Publication number
WO2022137506A1
WO2022137506A1 PCT/JP2020/048743 JP2020048743W WO2022137506A1 WO 2022137506 A1 WO2022137506 A1 WO 2022137506A1 JP 2020048743 W JP2020048743 W JP 2020048743W WO 2022137506 A1 WO2022137506 A1 WO 2022137506A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
cost function
expert
learning
region
Prior art date
Application number
PCT/JP2020/048743
Other languages
English (en)
French (fr)
Inventor
秋紗子 藤井
卓郎 鹿嶋
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2020/048743 priority Critical patent/WO2022137506A1/ja
Priority to EP20966992.8A priority patent/EP4250272A4/en
Priority to US18/269,443 priority patent/US20240083441A1/en
Priority to JP2022570949A priority patent/JP7552727B2/ja
Publication of WO2022137506A1 publication Critical patent/WO2022137506A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W40/09Driving style or behaviour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • G09B9/02Simulators for teaching or training purposes for teaching control of vehicles or other craft
    • G09B9/04Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of land vehicles
    • G09B9/042Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of land vehicles providing simulation in a real vehicle
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • G09B9/02Simulators for teaching or training purposes for teaching control of vehicles or other craft
    • G09B9/04Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of land vehicles
    • G09B9/052Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of land vehicles characterised by provision for recording or measuring trainee's performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/30Driving style
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network

Definitions

  • the present invention outputs a driving evaluation system for evaluating a subject's driving, a driving evaluation method, a learning device for learning a cost function used for driving evaluation, a learning method and a learning program, and a driving evaluation result.
  • the present invention relates to an evaluation result output device, an evaluation result output method, and an evaluation result output program.
  • a sudden accelerator, a sudden brake, and a sudden steering wheel can be used as an index for judging whether or not the driving is ecological.
  • Patent Document 1 describes a driving skill evaluation system that automatically evaluates a subject's driving skill.
  • the system described in Patent Document 1 records sample driving data, and learns a driving pattern of exemplary driving based on the recorded driving data.
  • Patent Document 1 automatically evaluates the driving skill of a subject in a driving school or the like by learning by adding the traveling position of the vehicle to the evaluation.
  • the model driving pattern of the driver learned by the system described in Patent Document 1 can evaluate the driving according to the actual driving environment.
  • the present invention relates to a driving evaluation system and a driving evaluation method capable of evaluating the driving of a subject in consideration of the driving area, an evaluation result output device for outputting a driving evaluation result, an evaluation result output method and an evaluation. It is an object of the present invention to provide a result output program, and a learning device, a learning method, and a learning program for learning a cost function used for evaluating the operation thereof.
  • the driving evaluation system is a function input means that accepts input of a cost function represented by a linear sum of terms in which the degree of importance is weighted to each feature amount indicating the driver's driving, and is collected for each region.
  • the driving data input means that accepts the input of the information indicating the environment at the time of driving and the user driving data including the position information from which the information is acquired, and the area where the user drives are specified from the position information, and the information thereof is specified.
  • Select the cost function corresponding to the region apply the information indicating the environment when the subject is driving to the selected cost function, estimate the driving of the expert in the same environment, and estimate the driving of the expert. It is characterized by being equipped with an evaluation means for outputting an evaluation result comparing driving with the driving of a target person.
  • the learning device is a function input means that accepts input of a cost function represented by a linear sum of terms in which the degree of importance is weighted to each feature amount indicating the driver's operation, and a skill collected for each region. It is characterized by having a learning means for learning a cost function for each region by reverse reinforcement learning using expert driving data including information indicating the content of a person's driving as training data.
  • the evaluation result output device accepts input of user driving data including information indicating the driving of the target person who evaluates driving, information indicating the environment at the time of driving, and position information from which the information is acquired. Shows the driver's driving learned for each region by reverse reinforcement learning using the driving data input means and the expert driving data including the information showing the contents of the expert's driving collected for each region as training data. From the cost function represented by the linear sum of the terms weighted to each feature amount, the area where the user drives is specified from the position information, and the cost function corresponding to that area is selected and selected. By applying the information indicating the environment when the subject is driving to the calculated cost function, the driving of the expert in the same environment is estimated, and the estimated driving of the expert is compared with the driving of the subject. It is characterized by having an evaluation means for outputting the result.
  • the driving evaluation method accepts the input of a cost function represented by the linear sum of the terms in which the degree of importance is weighted to each feature amount indicating the driving of the driver, and the driving of a skilled person collected for each region.
  • a cost function represented by the linear sum of the terms in which the degree of importance is weighted to each feature amount indicating the driving of the driver, and the driving of a skilled person collected for each region.
  • the cost function for each region is learned, and the information indicating the driving of the target person who evaluates the driving and the environment during driving are shown.
  • It accepts the input of information and user driving data including the location information from which the information was acquired, identifies the area where the user drives from the location information, and selects and selects the cost function corresponding to that area.
  • the driving of the expert in the same environment is estimated, and the evaluation result comparing the estimated driving of the expert with the driving of the subject. Is characterized by outputting.
  • the learning method accepts the input of the cost function represented by the linear sum of the terms in which the degree of importance is weighted to each feature amount indicating the driver's driving, and the expert's driving collected for each region. It is characterized by learning the cost function for each region by reverse reinforcement learning using expert driving data including information showing the contents as training data.
  • the evaluation result output method accepts input of user driving data including information indicating the driving of a subject who evaluates driving, information indicating the environment at the time of driving, and position information from which the information was acquired. , Emphasis is placed on each feature amount that indicates the driver's driving, which was learned for each region by reverse reinforcement learning using the expert driving data including information showing the contents of the driver's driving collected for each region as training data. From the cost function represented by the linear sum of the terms weighted by each degree, the area where the user drives is specified from the position information, the cost function corresponding to that area is selected, and the selected cost function is used. Applying information indicating the environment when the subject is driving, the driving of the expert in the same environment is estimated, and the evaluation result comparing the estimated driving of the expert with the driving of the subject is output. It is characterized by.
  • the learning program according to the present invention has a function input process that accepts an input of a cost function represented by a linear sum of terms in which the degree of importance is weighted to each feature amount indicating the driver's driving, and a function input process for each region. It is characterized in that a learning process for learning a cost function for each region is executed by reverse reinforcement learning using the collected expert driving data including information indicating the contents of the expert's driving as training data.
  • the evaluation result output program is a computer for user driving data including information indicating the driving of a subject who evaluates driving, information indicating the environment during driving, and location information from which the information is acquired.
  • a driver learned for each region by driving data input processing that accepts input and reverse reinforcement learning using expert driving data including information showing the contents of the expert's driving collected for each region as training data. From the cost function represented by the linear sum of the terms in which the degree of importance is weighted to each feature amount indicating the operation of, the area where the user drives is specified from the position information and the cost function corresponding to that area is obtained.
  • the expert's driving in the same environment is estimated, and the estimated expert's driving and the subject's driving are combined. It is characterized by executing an evaluation process that outputs an evaluation result comparing the above.
  • FIG. 1 is a block diagram showing a configuration example of an embodiment of the operation evaluation system according to the present invention.
  • the operation evaluation system 1 of the present embodiment includes an evaluation result output device 300 and a learning device 400.
  • the evaluation result output device 300 is connected to the vehicle 100 equipped with the on-board unit 101 and the smartphone 200, and is also connected to the learning device 400.
  • the vehicle 100 (more specifically, the in-vehicle device 101) and the smartphone 200 are assumed to move in the same manner, and various information is input, instructions are given to the in-vehicle device 101, and the position information of the vehicle 100 is obtained.
  • the smartphone 200 is used for the acquisition of.
  • the handy smartphone 200 it becomes possible to simplify the input of movement information to the vehicle 100 (more specifically, the on-board unit 101) and the processing at the time of function expansion.
  • the vehicle 100 itself may be connected, and the on-board unit 101 may be configured to integrally realize the functions of the smartphone 200.
  • the evaluation result output device 300 is provided separately from the vehicle 100 (more specifically, the on-board unit 101) is illustrated.
  • the evaluation result output device 300 may be configured to be integrated with the vehicle-mounted device 101.
  • the learning device 400 is connected to a storage device 500 that stores various information used for learning and a display device 600 that displays the learning result.
  • the storage device 500 is realized by, for example, an external storage server.
  • the display device 600 is realized by, for example, a display device.
  • the learning device 400 may be configured to include one or both of the storage device 500 and the display device 600.
  • the storage device 500 stores data representing the driving performance of the vehicle (hereinafter referred to as driving data) as various information used for learning.
  • the driving data includes information indicating the driver's driving (for example, operation information for operating the vehicle), information indicating the environment at the time of the driving, and location information from which these information are acquired (that is, driving). Location information indicating the location) and. It should be noted that these pieces of information can be said to be feature quantities indicating features during driving.
  • the information indicating the environment may include the driver's own attributes as well as the situation outside the vehicle.
  • the storage device 500 may store only the driving data of the driver defined as a skilled person, or may store the driving data including the general driver. The definition of an expert will be described later.
  • FIG. 2 is an explanatory diagram showing an example of operation data.
  • the driving data illustrated in FIG. 2 includes items that are roughly classified into four categories (information about the vehicle (information inside the vehicle), information outside the vehicle, time information, and weather information).
  • An example of information indicating the driver's driving is the operation information (accelerator opening, brake operation, steering wheel operation, etc.) illustrated in FIG. 2, the vehicle speed in the engine information, and the position information indicating the driving location is GPS.
  • the location information acquired in is the location information acquired in.
  • operation data illustrated in FIG. 2 is an example, and the operation data may include all the items illustrated in FIG. 2 or may include some items. Further, the operation data may include items other than those illustrated in FIG.
  • the vehicle 100 exemplified in this embodiment includes the on-board unit 101.
  • Various sensors such as an external camera 140, a vehicle information sensor 150, a biological sensor 160, and an in-vehicle camera 170 are connected to the on-board unit 101.
  • the vehicle-mounted device 101 has a control unit 110 including a CPU (Central Processing Unit) 111 and a memory 112, a communication unit 120, and a storage unit 130.
  • the communication unit 120 performs various communications with the evaluation result output device 300.
  • the storage unit 130 stores various information used for processing by the control unit 110.
  • the outside camera 140 is a camera that photographs the outside of the vehicle 100.
  • the out-of-vehicle camera 140 may capture, for example, other vehicles, pedestrians, motorcycles, bicycles, and the like existing outside the vehicle. Further, the outside camera 140 may take a picture together with the state of the road on which the vehicle 100 is traveling (road shape, congestion information, signal information, etc.).
  • the control unit 110 may perform object recognition processing such as a vehicle or a pedestrian from the captured image, for example.
  • the vehicle information sensor 150 detects various states of the vehicle 100.
  • the vehicle information sensor 150 may detect information such as the engine speed and the accelerator opening degree based on, for example, CAN (Controller Area Network).
  • the biosensor 160 detects various biometric information of the driver.
  • the biological sensor 160 may be, for example, a sensor capable of detecting the driver's pulse, heart rate, and body temperature. Further, the biological sensor 160 may detect not only the biological information of the driver but also the biological information of the passenger.
  • the in-car camera 170 is a camera that photographs the inside of the car.
  • the in-vehicle camera 170 may, for example, capture the presence or absence of a passenger.
  • the sensor shown in FIG. 1 is an example, and some or all of these sensors may be connected to the on-board unit 101, or other sensors may be connected to the vehicle-mounted device 101.
  • the information detected by these sensors is stored in the storage unit 130 and transmitted to the evaluation result output device 300 via the communication unit 120.
  • the smartphone 200 includes a control unit 210 including a CPU 211 and a memory 212, a communication unit 220, a storage unit 230, an input unit 240, and a mobile information database (hereinafter, DB) 250.
  • a control unit 210 including a CPU 211 and a memory 212, a communication unit 220, a storage unit 230, an input unit 240, and a mobile information database (hereinafter, DB) 250.
  • DB mobile information database
  • the control unit 210 controls various processes performed by the smartphone 200.
  • the communication unit 220 performs various communications with the evaluation result output device 300.
  • the storage unit 230 stores various information used for processing by the control unit 210.
  • the input unit 240 receives various inputs to the smartphone 200 as well as control inputs to the vehicle-mounted device 101 from the user.
  • the movement information DB 250 stores the movement information of the vehicle 100. Specifically, the movement information DB 250 stores the position information of the vehicle 100 acquired from the GPS (Global Positioning System) by the control unit 210 in chronological order. This makes it possible to associate the position information of the vehicle 100 (that is, the position information indicating the place where the vehicle was driven) with the driving data.
  • GPS Global Positioning System
  • the learning device 400 includes a control unit 410 including a CPU 411 and a memory 412, a communication unit 420, an input unit 430, a storage unit 440, and a learning unit 450.
  • the control unit 410 controls the processing of the learning unit 450, which will be described later.
  • the communication unit 420 performs various communications with the evaluation result output device 300.
  • the storage unit 440 stores various information used for processing by the control unit 410 and the learning unit 450. Further, the storage unit 440 may store the operation data for which the input unit 430, which will be described later, has received the input.
  • the storage unit 440 is realized by, for example, a magnetic disk or the like.
  • the input unit 430 receives input of operation data from the storage device 500.
  • the input unit 430 may acquire operation data from the storage device 500 in response to an explicit instruction to the learning device 400, or may acquire operation data in response to a notification from the storage device 500. Further, the input unit 430 may store the acquired operation data in the storage unit 440. Since the received driving data is data used for learning by the reverse reinforcement learning unit 453, which will be described later, the driving data may be referred to as expert driving data or training data.
  • FIG. 3 is a block diagram showing a configuration example of the learning unit 450.
  • the learning unit 450 of the present embodiment includes a cost function input unit 451, a data extraction unit 452, a reverse reinforcement learning unit 453, and a learning result output unit 454.
  • the cost function input unit 451 accepts the input of the cost function used for learning by the inverse reinforcement learning unit 453, which will be described later. Specifically, the cost function input unit 451 accepts an input of a cost function represented by a linear sum of terms in which the degree of emphasis is weighted on each feature amount indicating the driver's operation as illustrated in FIG. .. It can be said that this degree of importance represents the intention at the time of evaluation. Therefore, the value calculated by the cost function can be said to be an evaluation index used for the evaluation of operation.
  • the cost function input unit 451 inputs not only the feature amount indicating the driver's driving but also the input of the cost function including a term in which the degree of importance is weighted to each feature amount indicating the driving environment as a linear sum. You may accept it.
  • the feature quantities indicating the driver's driving are, for example, the speed, the distance to the vehicle in front, and the amount of depression of the accelerator pedal. Further, the feature amount indicating the environment at the time of driving is, for example, road shape, congestion information, and the like.
  • the cost function input unit 451 may accept the input of the constraint condition to be satisfied together with the cost function.
  • the cost function and constraints are predetermined by the analyst and the like. That is, the candidate of the feature amount to be considered when evaluating the operation is selected in advance by an analyst or the like and defined as a cost function.
  • Equation 1 when evaluating driving, when speed, distance to a vehicle in front, and accelerator pedal depression amount are candidates for feature quantities, the cost function is represented by Equation 1 illustrated below.
  • the data extraction unit 452 extracts training data for each region from the operation data received by the input unit 430. Specifically, the data extraction unit 452 extracts training data for each region based on the position information from which the driving data (training data) has been acquired. The data extraction unit 452 may, for example, determine the area from the latitude and longitude acquired from GPS and extract training data.
  • the data extraction unit 452 performs a process of converting an item included in the operation data into a feature amount (calculation, conversion to a binary value, etc.), a data integration process, and data cleansing in order to match the feature amount included in the cost function. And so on.
  • the data extraction unit 452 extracts the operation data of a skilled person from the operation data as a candidate based on a predetermined standard.
  • the method of extracting the operation data of a skilled person is arbitrary and is predetermined by an analyst or the like.
  • the data extraction unit 452 may use a driver having a long total driving time and a driver having a small accident history or a violation history as a skilled person, and extract the driving data of the driver as the driving data of the skilled person.
  • the data extraction unit 452 may preferentially select the driving data of the driver related to the corresponding area from the driving data of the skilled worker as the more appropriate driving data of the skilled worker. For example, a driver residing in the area is considered to be more aware of the situation in that area.
  • the data extraction unit 452 may determine the driver's relevant area from the license plate, for example.
  • the reverse reinforcement learning unit 453 learns the cost function for each region by reverse reinforcement learning using the training data for each region extracted by the data extraction unit 452. Specifically, the reverse reinforcement learning unit 453 learns the cost function for each region by reverse reinforcement learning using the driving data of the expert collected for each region as training data. That is, this training data includes information representing the content of the driving of a skilled person. In addition, the training data may include information indicating the environment during the driving.
  • the method by which the reverse reinforcement learning unit 453 performs reverse reinforcement learning is arbitrary.
  • the inverse reinforcement learning unit 453 executes, for example, a mathematical optimization process that generates driving data of a skilled worker based on an input cost function and constraints, and a difference between the generated driving data of the skilled worker and training data.
  • the cost function may be learned by repeating the estimation process of the cost function that updates the parameter (degree of importance) of the cost function so as to reduce the value.
  • the learning result output unit 454 outputs the learned cost function. Specifically, the learning result output unit 454 outputs the feature amount included in the cost function learned for each region in association with the weight of the feature amount.
  • the learning result output unit 454 may display the contents of the cost function on the display device 600, or may store the contents in the storage unit 440. By displaying the contents of the cost function on the display device 600, it becomes possible to visually recognize the items to be emphasized for each region.
  • Cost function 100 x speed + 50 x distance to the vehicle ahead + 10 x accelerator pedal depression amount (Equation 2)
  • the learning result output unit 454 may output the evaluation weight of [speed, distance to the vehicle ahead] as [100, 50, 10].
  • the learning result output unit 454 may output a predetermined number in order from the feature amount having the highest degree of importance as the weight of the evaluation. By doing so, it becomes possible to grasp the feature amount that more reflects the intention of the expert.
  • the learning unit 450 (more specifically, the cost function input unit 451 and the data extraction unit 452, the inverse reinforcement learning unit 453, and the learning result output unit 454) is driven by a computer processor that operates according to the program (learning program). It will be realized.
  • the program is stored in the storage unit 440 of the learning device 400, the processor reads the program, and according to the program, the learning unit 450 (more specifically, the cost function input unit 451 and the data extraction unit 452). It may operate as the inverse reinforcement learning unit 453 and the learning result output unit 454). Further, each function of the learning unit 450 (more specifically, the cost function input unit 451 and the data extraction unit 452, the inverse reinforcement learning unit 453, and the learning result output unit 454) is in the SaaS (Software as a Service) format. May be provided at.
  • SaaS Software as a Service
  • the cost function input unit 451, the data extraction unit 452, the reverse reinforcement learning unit 453, and the learning result output unit 454 may each be realized by dedicated hardware. Further, a part or all of each component of each device may be realized by a general-purpose or dedicated circuit (circuitry), a processor, or a combination thereof. These may be composed of a single chip or may be composed of a plurality of chips connected via a bus. A part or all of each component of each device may be realized by the combination of the circuit or the like and the program described above.
  • each component of the learning unit 450 (more specifically, the cost function input unit 451, the data extraction unit 452, the inverse reinforcement learning unit 453, and the learning result output unit 454) is plural.
  • a plurality of information processing devices, circuits, or the like may be centrally arranged or distributed.
  • the information processing device, the circuit, and the like may be realized as a form in which each is connected via a communication network, such as a client-server system and a cloud computing system.
  • the learning unit 450 may be included in the control unit 410 itself.
  • the control unit 410 may read the program (learning program) stored in the memory 412 by the CPU 411 and operate as the learning unit 450 according to the program.
  • the evaluation result output device 300 includes a control unit 310 including a CPU 311 and a memory 312, a communication unit 320, an input unit 330, an operation record DB 340, a user DB 350, a display unit 360, and an evaluation unit 370. ..
  • the control unit 310 controls the processing of the evaluation unit 370, which will be described later.
  • the communication unit 320 performs various communications with the vehicle 100 (more specifically, the on-board unit 101), the smartphone 200, the learning device 400, and the like.
  • the operation record DB 340 stores operation data generated based on various information sent from the on-board unit 101 and the smartphone 200.
  • the user DB 350 stores various information (for example, age, gender, past driving history, self-history, total driving time, etc.) of the user to be evaluated for driving.
  • the operation record DB 340 and the user DB 350 are realized by, for example, a magnetic disk or the like.
  • the input unit 330 receives the input of the user's operation data received via the communication unit 320. Specifically, the input unit 330 receives input of driving data including information indicating the driving of the target person who evaluates driving, information indicating the environment at the time of driving, and position information from which these information are acquired. .. In addition, in order to distinguish from the above-mentioned expert driving data (expert driving data), the user's driving input here may be referred to as user driving data.
  • the evaluation unit 370 outputs an evaluation result comparing the operation of the expert and the operation of the target person. Specifically, the evaluation unit 370 specifies the area where the user drives from the location information, and selects the cost function corresponding to the area. Next, the evaluation unit 370 applies the information of the environment in which the subject is driven to the selected cost function, and estimates the driving of the expert in the same environment. Then, the evaluation unit 370 outputs an evaluation result comparing the estimated driving of the expert and the driving of the target person. The evaluation unit 370 may display the evaluation result on the display unit 360.
  • the evaluation unit 370 may evaluate the user's operation collectively (that is, collectively the period from the start of operation to the end of operation), or may sequentially evaluate the user's operation at the time of operation.
  • the display unit 360 is a display device that outputs the evaluation result by the evaluation unit 370.
  • the evaluation result output device 300 may transmit and display the content to be displayed on the display unit 360 to the on-board unit 101 or the smartphone 200.
  • the first specific example is an example of visualizing the difference between the driving of the subject and the driving of the expert.
  • FIG. 4 is an explanatory diagram illustrating a first specific example (an example of a process for visualizing a difference during operation).
  • condition an environment (condition) of "Minato-ku, Tokyo, gentle curve, traffic jam” is assumed.
  • T a certain time T at "60 km / h, accelerator pedal depression amount 20%”.
  • the evaluation unit 370 estimates the operation of the expert estimated in the same environment (condition) based on the learned cost function.
  • an expert for example, a "driving school instructor in Minato-ku, Tokyo" who is a driver related to the relevant area can be mentioned.
  • the evaluation unit 370 calculates the difference between the driving of the subject and the driving of the expert in chronological order. The evaluation unit 370 may visualize this calculation result as illustrated in FIG.
  • the condition for notifying the driver is defined as "when the speed difference exceeds ⁇ 5 km".
  • the speed difference from the driving of a skilled person at time T is "+5 km”. Therefore, the evaluation unit 370 may notify the driver by voice, display, or the like, "Let's step on the accelerator strongly" in order to increase the speed. As described above, when the calculated difference satisfies the predetermined notification condition, the evaluation unit 370 may notify the content indicating the difference.
  • the notification conditions may be determined based on the learned cost function.
  • the notification condition may be determined based on the feature amount of the cost function having a high degree of importance. In this way, by using the learned cost function, it is possible to define the notification conditions by focusing on the evaluation items that should be paid more attention to.
  • FIG. 5 is an explanatory diagram illustrating a second specific example (an example of a process of scoring and outputting a difference in operation).
  • the evaluation unit 370 shall similarly estimate the operation of the expert. ..
  • a method of notifying when the speed difference exceeds a predetermined threshold value is illustrated.
  • the evaluation unit 370 cumulatively adds points in chronological order based on a predetermined method of scoring according to the difference between the driving of a skilled person and the driving of a target person, and calculates the added result. indicate.
  • the method of scoring is defined as "points are deducted when the difference from the expert is 5 km / h or more, and points are added when the difference from the expert is less than 5 km / h for 10 seconds".
  • the evaluation unit 370 cumulatively adds points based on the defined method. For example, as illustrated in FIG. 5, the evaluation unit 370 may superimpose the result of scoring on a graph showing the difference between the operation of the expert and the operation of the target person. In the example shown in FIG. 5, the driving of the driver A has a large difference from the skilled person throughout the running, so that there are many origins, and the driving of the driver B has almost no difference from the skilled person, so that points are added. ..
  • the evaluation unit 370 may not only score one running record of an individual, but also calculate the cumulative value of a plurality of running records. This makes it possible, for example, to score points for a predetermined period (monthly) or to score points for each region.
  • the evaluation unit 370 may aggregate the magnitude of the difference for each feature amount and output the evaluation corresponding to the feature amount having a large difference. For example, when the difference in the feature amount indicating the acceleration at the time of starting is large, the evaluation unit 370 may output a message such as "Please suppress the acceleration at the time of starting".
  • the evaluation unit 370 is realized by a computer processor that operates according to a program (evaluation result output program). Further, the evaluation unit 370 may be included in the control unit 310 itself.
  • FIG. 6 is a flowchart showing an operation example of the learning device 400 of the present embodiment.
  • the input unit 430 accepts the input of the cost function (step S11).
  • the learning unit 450 learns the cost function for each region by reverse reinforcement learning using the expert driving data including the information indicating the contents of the expert's driving collected for each region as training data (step S12).
  • FIG. 7 is a flowchart showing an operation example of the evaluation result output device 300 of the present embodiment.
  • the input unit 330 receives input of user driving data including information indicating the driving of the target person for evaluating driving, information indicating the environment at the time of driving, and the position information from which the information was acquired (step S21). ..
  • the evaluation unit 370 identifies the area where the user drives from the location information, and selects the cost function corresponding to that area (step S22).
  • the evaluation unit 370 applies information indicating the environment in which the subject is operating to the selected cost function, and estimates the operation of the expert in the same environment (step S23). Then, the evaluation unit 370 outputs an evaluation result comparing the estimated driving of the expert and the driving of the target person (step S24).
  • the input unit 430 accepts the input of the cost function
  • the learning unit 450 uses the expert driving data collected for each region as training data by reverse reinforcement learning for each region. Learn the cost function.
  • the input unit 330 accepts the input of the user driving data
  • the evaluation unit 370 identifies the area where the user drives from the position information, selects the corresponding cost function, and selects the target person for the selected cost function. Estimate the driving of a skilled person in the same environment by applying the information indicating the environment when driving. Then, the evaluation unit 370 outputs an evaluation result comparing the estimated driving of the expert and the driving of the target person. Therefore, it is possible to evaluate the driving of the target person in consideration of the driving area.
  • the learning unit 450 defines a skilled person (for example, a skilled driver, a taxi driver, a driving school instructor, a patrol car driver) who is supposed to drive well, and the driver of the skilled person is driven. By performing machine learning from the data, the characteristics of the driver are extracted. This makes it possible to extract the feature amount for evaluating the operation.
  • a skilled driver for example, a skilled driver, a taxi driver, a driving school instructor, a patrol car driver
  • the learning unit 450 (more specifically, the learning result output unit 454) visualizes the evaluation weight, it becomes possible to extract items to be improved.
  • a driving school can be considered.
  • the driving evaluation system of the present embodiment it is possible to embody the guidance given to the students by the instructor, improve the skills of the graduates, and improve the quality of the instructors. ..
  • the operation evaluation system of the present embodiment it is possible to review the speed limit and the like according to the region. In addition, if accidents in the area can be reduced, it will be possible to appeal that the area is safe to the outside world. Specifically, the speed limit can be reviewed by comparing the difference between the running speed of the expert and the legal speed. In addition, it will be possible to grasp driving trends in areas where there are many accidents, to directly call attention to them, and to develop infrastructure that reduces accidents.
  • FIG. 8 is a block diagram showing an outline of the operation evaluation system according to the present invention.
  • the operation evaluation system 70 (for example, the operation evaluation system 1) according to the present invention is a function input that accepts an input of a cost function represented by a linear sum of terms in which the degree of importance is weighted to each feature amount indicating the driver's operation.
  • Cost function for each region by means 71 (for example, cost function input unit 451) and inverse reinforcement learning using expert driving data including information indicating the contents of the expert's driving collected for each region as training data.
  • the learning means 72 (for example, the reverse reinforcement learning unit 453) for learning the above, information indicating the driving of the target person for evaluating the driving, information indicating the environment at the time of driving, and the position information from which the information was acquired are included.
  • the driving data input means 73 (for example, the input unit 330) that accepts the input of the user driving data and the area where the user drives are specified from the position information, and the cost function corresponding to the area is selected and selected. By applying the information indicating the environment when the subject is driving to the cost function, the driving of the expert in the same environment is estimated, and the evaluation result comparing the estimated driving of the expert with the driving of the subject is obtained. It is provided with an evaluation means 74 (for example, an evaluation unit 370) for outputting.
  • the operation evaluation system 70 may include a learning result output means (for example, a learning result output unit 454) that outputs the feature amount included in the cost function in association with the weight of the feature amount.
  • a learning result output means for example, a learning result output unit 454.
  • the operation evaluation system 70 may be provided with a data extraction means (for example, a data extraction unit 452) for extracting training data for each region. Then, the learning means 72 may learn the cost function for each region by using the extracted training data for each region.
  • a data extraction means for example, a data extraction unit 452 for extracting training data for each region.
  • the learning means 72 may learn the cost function for each region by using the extracted training data for each region.
  • the data extraction means may extract the training data of an expert from the training data as a candidate based on a predetermined standard.
  • the evaluation means 74 calculates the difference between the driving of the expert and the driving of the target person in chronological order, and when the calculated difference satisfies the predetermined notification condition, the evaluation means 74 notifies the content indicating the difference. May be good.
  • the evaluation means 74 cumulatively adds points in time series based on a predetermined method of scoring according to the difference between the driving of the expert and the driving of the target person, and displays the added result. May be good.
  • the function input means 71 may accept input of a cost function including a term in which the degree of emphasis is weighted to each feature amount indicating the environment at the time of operation as a linear sum.
  • FIG. 9 is a block diagram showing an outline of the learning device according to the present invention.
  • the learning device 80 (for example, the learning device 400) according to the present invention includes a function input means 81 and a learning means 82.
  • the contents of the function input means 81 and the learning means 82 are the same as those of the function input means 71 and the learning means 72 illustrated in FIG.
  • FIG. 10 is a block diagram showing an outline of the evaluation result output device according to the present invention.
  • the evaluation result output device 90 (for example, the evaluation result output device 300) according to the present invention includes an operation data input means 91 and an evaluation means 92.
  • the contents of the operation data input means 91 and the evaluation means 92 are the same as those of the operation data input means 73 and the evaluation means 74 illustrated in FIG.
  • a function input means that accepts input of a cost function represented by a linear sum of terms in which the degree of importance is weighted to each feature amount indicating the driver's operation.
  • a learning means for learning the cost function for each region by reverse reinforcement learning using expert driving data including information indicating the contents of the expert's driving collected for each region as training data.
  • a driving evaluation system characterized in that it is equipped with an evaluation means that estimates the driving of a skilled person in the environment of the above and outputs an evaluation result comparing the estimated driving of the skilled person with the driving of the subject.
  • Appendix 2 The operation evaluation system according to Appendix 1 provided with a learning result output means for outputting the feature amount included in the cost function in association with the weight of the feature amount.
  • Appendix 3 Equipped with a data extraction means to extract training data for each region
  • the learning means is the operation evaluation system according to Appendix 1 or Appendix 2, which learns the cost function for each region using the extracted training data for each region.
  • the data extraction means is the operation evaluation system according to Appendix 3, which extracts training data of an expert from candidate training data based on a predetermined standard.
  • the evaluation means calculates the difference between the driving of the expert and the driving of the target person in chronological order, and when the calculated difference satisfies the predetermined notification condition, the evaluation means notifies the content indicating the difference.
  • the operation evaluation system according to any one of Supplementary note 1 to Supplementary note 4.
  • the evaluation means cumulatively adds points in chronological order based on a predetermined method of scoring according to the difference between the driving of a skilled person and the driving of a target person, and displays the added result.
  • the operation evaluation system according to any one of Supplementary note 1 to Supplementary note 5.
  • the function input means accepts the input of a cost function including a term in which the degree of emphasis is weighted to each feature amount indicating the environment during operation as a linear sum.
  • the operation evaluation system described in one.
  • a function input means that accepts input of a cost function represented by a linear sum of terms in which the degree of importance is weighted to each feature amount indicating the driver's operation. It is provided with a learning means for learning the cost function for each region by reverse reinforcement learning using expert driving data including information indicating the contents of the expert's driving collected for each region as training data. Characterized learning device.
  • An operation data input means that accepts input of user operation data including information indicating the operation of the target person who evaluates the operation, information indicating the environment at the time of operation, and the position information from which the information was acquired.
  • Emphasis is placed on each feature amount that indicates the driver's driving, which was learned for each region by reverse reinforcement learning using the expert driving data including information showing the contents of the driver's driving collected for each region as training data.
  • the cost functions represented by the linear sum of the terms weighted by each degree From the cost functions represented by the linear sum of the terms weighted by each degree, the area where the user drives is specified from the position information, the cost function corresponding to the area is selected, and the selected cost function is selected.
  • Appendix 11 The operation evaluation method according to Appendix 10, wherein the feature amount included in the cost function and the weight of the feature amount are associated and output.
  • a learning method characterized by learning the cost function for each region by reverse reinforcement learning using expert driving data including information indicating the contents of the expert's driving collected for each region as training data.
  • a program storage medium that stores the evaluation result output program for executing the evaluation process to be output.
  • Operation evaluation system 100 Vehicle 101 On-board unit 110, 210, 310, 410 Control unit 111, 211, 311, 411 CPU 112,212,312,412 Memory 120,220,320,420 Communication unit 130,230,440 Storage unit 140 External camera 150 Vehicle information sensor 160 Biosensor 170 In-vehicle camera 200 Smartphone 240,330,430 Input unit 250 Movement information DB 300 Evaluation result output device 340 Operation record DB 350 User DB 360 Display unit 370 Evaluation unit 400 Learning device 450 Learning unit 451 Cost function input unit 452 Data extraction unit 453 Reverse reinforcement learning unit 454 Learning result output unit 500 Storage device 600 Display device

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Educational Administration (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Educational Technology (AREA)
  • Business, Economics & Management (AREA)
  • Software Systems (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Medical Informatics (AREA)
  • Traffic Control Systems (AREA)

Abstract

関数入力手段71は、運転者の運転を示す各特徴量に重視度合いがそれぞれ重み付けされた項の線形和で表されたコスト関数の入力を受け付ける。学習手段72は、地域ごとに収集された熟練者の運転の内容を表わす情報を含む熟練者運転データをトレーニングデータとして用いた逆強化学習により、地域ごとのコスト関数を学習する。運転データ入力手段73は、運転を評価する対象者の運転を示す情報、運転の際の環境を示す情報、および、その情報が取得された位置情報を含む利用者運転データの入力を受け付ける。評価手段74は、利用者が運転する地域を位置情報から特定して、その地域に対応するコスト関数を選択し、選択されたコスト関数に対象者の運転の際の環境を示す情報を適用して、同一の環境における熟練者の運転を推定し、推定された熟練者の運転と対象者の運転とを比較した評価結果を出力する。

Description

運転評価システム、学習装置、評価結果出力装置、方法およびプログラム
 本発明は、対象者の運転を評価する運転評価システム、および、運転評価方法、運転の評価に用いられるコスト関数を学習する学習装置、学習方法および学習プログラム、並びに、運転の評価結果を出力する評価結果出力装置、評価結果出力方法および評価結果出力プログラムに関する。
 様々な指標や模範データを用いて、運転者の走行を評価する方法が各種知られている。例えば、急アクセルや急ブレーキ、急ハンドルは、エコロジカルな運転か否か判断する指標として用いることが可能である。
 また、他にも、例えば、特許文献1には、被験者の運転技能を自動的に評価する運転技能評価システムが記載されている。特許文献1に記載されたシステムは、見本となる運転データを記録し、記録された運転データに基づいて模範的な運転の走行パターンを学習する。
国際公開2020/049737号
 一方、上述するような急アクセルや急ブレーキ、急ハンドルを検出しただけは、安全な運転か否か(例えば、事故が減っているか否か)を客観的に評価することは難しい。これに対し、特許文献1に記載されているような模範的な走行パターンを学習することで、被験者の運転技能を客観的に評価することができるようになる。
 ここで、特許文献1に記載されたシステムは、車両の走行位置を評価に加味して学習することで、自動車教習所などにおいて、被験者の運転技能を自動的に評価するものである。しかし、特許文献1に記載されたシステムで学習される模範的な運転者の走行パターンは、実際の運転環境に応じた運転を評価できるものとは言い難い。
 例えば、交通量の少ない地域では、制限速度よりも低速で運転をしていたとしても、危険な運転とは評価されないと考えられる。一方、交通量の多い地域において低速で運転を続けていた場合、交通渋滞を引き起こす可能性が高く、危険な運転と評価される場合も考えられる。さらに、運転の評価は、地域性や文化、時代などが反映されるものであり、安全運転の定義をグローバルに定義することは難しいと言える。このような内容の評価を、自動車教習所における模範的な運転だけでは補うことは難しい。
 そのため、運転する地域を考慮することで、誤った指標に基づく評価を抑制し、安全運転に導く評価を行えることが望まれている。
 そこで、本発明は、運転する地域を考慮して対象者の運転の評価を行うことができる運転評価システムおよび運転評価方法、運転の評価結果を出力する評価結果出力装置、評価結果出力方法および評価結果出力プログラム、並びに、その運転の評価に用いられるコスト関数を学習する学習装置、学習方法および学習プログラムを提供することを目的とする。
 本発明による運転評価システムは、運転者の運転を示す各特徴量に重視度合いがそれぞれ重み付けされた項の線形和で表されたコスト関数の入力を受け付ける関数入力手段と、地域ごとに収集された熟練者の運転の内容を表わす情報を含む熟練者運転データをトレーニングデータとして用いた逆強化学習により、地域ごとのコスト関数を学習する学習手段と、運転を評価する対象者の運転を示す情報、運転の際の環境を示す情報、および、その情報が取得された位置情報を含む利用者運転データの入力を受け付ける運転データ入力手段と、利用者が運転する地域を位置情報から特定して、その地域に対応するコスト関数を選択し、選択されたコスト関数に対象者の運転の際の環境を示す情報を適用して、同一の環境における熟練者の運転を推定し、推定された熟練者の運転と対象者の運転とを比較した評価結果を出力する評価手段とを備えたことを特徴とする
 本発明による学習装置は、運転者の運転を示す各特徴量に重視度合いがそれぞれ重み付けされた項の線形和で表されたコスト関数の入力を受け付ける関数入力手段と、地域ごとに収集された熟練者の運転の内容を表わす情報を含む熟練者運転データをトレーニングデータとして用いた逆強化学習により、地域ごとのコスト関数を学習する学習手段とを備えたことを特徴とする。
 本発明による評価結果出力装置は、運転を評価する対象者の運転を示す情報、運転の際の環境を示す情報、および、その情報が取得された位置情報を含む利用者運転データの入力を受け付ける運転データ入力手段と、地域ごとに収集された熟練者の運転の内容を表わす情報を含む熟練者運転データをトレーニングデータとして用いた逆強化学習により地域ごとに学習された、運転者の運転を示す各特徴量に重視度合いがそれぞれ重み付けされた項の線形和で表されたコスト関数の中から、利用者が運転する地域を位置情報から特定してその地域に対応するコスト関数を選択し、選択されたコスト関数に対象者の運転の際の環境を示す情報を適用して、同一の環境における熟練者の運転を推定し、推定された熟練者の運転と対象者の運転とを比較した評価結果を出力する評価手段とを備えたことを特徴とする。
 本発明による運転評価方法は、運転者の運転を示す各特徴量に重視度合いがそれぞれ重み付けされた項の線形和で表されたコスト関数の入力を受け付け、地域ごとに収集された熟練者の運転の内容を表わす情報を含む熟練者運転データをトレーニングデータとして用いた逆強化学習により、地域ごとのコスト関数を学習し、運転を評価する対象者の運転を示す情報、運転の際の環境を示す情報、および、その情報が取得された位置情報を含む利用者運転データの入力を受け付け、利用者が運転する地域を位置情報から特定して、その地域に対応するコスト関数を選択し、選択されたコスト関数に対象者の運転の際の環境を示す情報を適用して、同一の環境における熟練者の運転を推定し、推定された熟練者の運転と対象者の運転とを比較した評価結果を出力することを特徴とする。
 本発明による学習方法は、運転者の運転を示す各特徴量に重視度合いがそれぞれ重み付けされた項の線形和で表されたコスト関数の入力を受け付け、地域ごとに収集された熟練者の運転の内容を表わす情報を含む熟練者運転データをトレーニングデータとして用いた逆強化学習により、地域ごとのコスト関数を学習することを特徴とする。
 本発明による評価結果出力方法は、運転を評価する対象者の運転を示す情報、運転の際の環境を示す情報、および、当該情報が取得された位置情報を含む利用者運転データの入力を受け付け、地域ごとに収集された熟練者の運転の内容を表わす情報を含む熟練者運転データをトレーニングデータとして用いた逆強化学習により地域ごとに学習された、運転者の運転を示す各特徴量に重視度合いがそれぞれ重み付けされた項の線形和で表されたコスト関数の中から、利用者が運転する地域を位置情報から特定してその地域に対応するコスト関数を選択し、選択されたコスト関数に対象者の運転の際の環境を示す情報を適用して、同一の環境における熟練者の運転を推定し、推定された熟練者の運転と対象者の運転とを比較した評価結果を出力することを特徴とする。
 本発明による学習プログラムは、コンピュータに、運転者の運転を示す各特徴量に重視度合いがそれぞれ重み付けされた項の線形和で表されたコスト関数の入力を受け付ける関数入力処理、および、地域ごとに収集された熟練者の運転の内容を表わす情報を含む熟練者運転データをトレーニングデータとして用いた逆強化学習により、地域ごとのコスト関数を学習する学習処理を実行させることを特徴とする。
 本発明による評価結果出力プログラムは、コンピュータに、運転を評価する対象者の運転を示す情報、運転の際の環境を示す情報、および、その情報が取得された位置情報を含む利用者運転データの入力を受け付ける運転データ入力処理、および、地域ごとに収集された熟練者の運転の内容を表わす情報を含む熟練者運転データをトレーニングデータとして用いた逆強化学習により地域ごとに学習された、運転者の運転を示す各特徴量に重視度合いがそれぞれ重み付けされた項の線形和で表されたコスト関数の中から、利用者が運転する地域を位置情報から特定してその地域に対応するコスト関数を選択し、選択されたコスト関数に対象者の運転の際の環境を示す情報を適用して、同一の環境における熟練者の運転を推定し、推定された熟練者の運転と対象者の運転とを比較した評価結果を出力する評価処理を実行させることを特徴とする。
 本発明によれば、運転する地域を考慮して対象者の運転の評価を行うことができる。
本発明による運転評価システムの一実施形態の構成例を示すブロック図である。 運転データの例を示す説明図である。 学習部の構成例を示すブロック図である。 運転中の差異を可視化する処理の例を説明する説明図である。 運転の差異を得点化して出力する処理の例を説明する説明図である。 学習装置の動作例を示すフローチャートである。 評価結果出力装置の動作例を示すフローチャートである。 本発明による運転評価システムの概要を示すブロック図である。 本発明による学習装置の概要を示すブロック図である。 本発明による評価結果出力装置の概要を示すブロック図である。
 以下、本発明の実施形態を図面を参照して説明する。
 図1は、本発明による運転評価システムの一実施形態の構成例を示すブロック図である。本実施形態の運転評価システム1は、評価結果出力装置300と、学習装置400とを備えている。評価結果出力装置300は、車載器101を搭載した車両100、および、スマートフォン200に接続され、併せて、学習装置400にも接続される。
 なお、本実施形態では、車両100(より具体的には、車載器101)とスマートフォン200とが同じように移動するものとし、各種情報の入力や車載器101への指示、車両100の位置情報の取得にスマートフォン200が用いられる場合を想定する。手軽なスマートフォン200を用いることで、車両100(より具体的には、車載器101)への移動情報の入力や、機能拡張の際の処理を簡素化することが可能になる。ただし、車両100自体がコネクテッド化され、スマートフォン200の機能を車載器101が一体化して実現するように構成されていてもよい。
 さらに、本実施形態では、評価結果出力装置300が車両100(より具体的には、車載器101)とは別に設けられている場合を例示する。ただし、評価結果出力装置300が車載器101と一体化して実現されるように構成されていてもよい。
 また、学習装置400は、学習に用いられる各種情報を記憶する記憶装置500および学習結果を表示する表示装置600に接続される。記憶装置500は、例えば、外部ストレージサーバによって実現される。また、表示装置600は、例えば、ディスプレイ装置により実現される。なお、学習装置400が、記憶装置500および表示装置600のいずれか一方または両方を含む構成であってもよい。
 記憶装置500は、学習に用いられる各種情報として、車両の運転実績を表わすデータ(以下、運転データと記す。)を記憶する。運転データには、運転者の運転(例えば、車両を操作する操作情報)を示す情報、その運転の際の環境を示す情報、および、これらの情報が取得された位置情報(すなわち、運転をした場所を示す位置情報)とが含まれる。なお、これらの情報は、運転の際の特徴を示す特徴量と言うことができる。環境を示す情報には、運転者自身の属性のほか、車外の状況等が含まれていてもよい。記憶装置500は、熟練者と定義される運転者の運転データのみ記憶していてもよく、一般の運転者も含めた運転データを記憶していてもよい。なお、熟練者の定義については後述される。
 図2は、運転データの例を示す説明図である。図2に例示する運転データは、項目として、大きく4つの区分(車両に関する情報(車内情報)、車外情報、時間情報、および、天気情報)に分類される項目を含む。運転者の運転を示す情報の一例が、図2に例示する操作情報(アクセル開度、ブレーキ操作、ハンドル操作など)やエンジン情報における車速などであり、運転をした場所を示す位置情報が、GPSで取得される位置情報に該当する。
 なお、図2に例示する運転データは一例であり、運転データが、図2に例示する全ての項目を含んでいてもよく、一部の項目を含んでいてもよい。また、運転データが、図2に例示する以外の項目を含んでいてもよい。
 上述するように、本実施形態で例示する車両100は、車載器101を含む。車載器101には、車外カメラ140、車両情報用センサ150、生体センサ160、車内カメラ170など、各種センサが接続される。また、車載器101は、CPU(Central Processing Unit )111およびメモリ112を備えた制御部110と、通信部120と、記憶部130とを有する。通信部120は、評価結果出力装置300と各種通信を行う。また、記憶部130は、制御部110が処理に用いる各種情報を記憶する。
 車外カメラ140は、車両100の外部を撮影するカメラである。車外カメラ140は、例えば、車外に存在する他の車両や歩行者、オートバイや自転車などを撮影してもよい。また、車外カメラ140は、車両100が走行している道路の状態(道路形状、混雑情報、信号情報など)を合わせて撮影してもよい。その際、制御部110は、例えば、撮影した画像から、車両や歩行者などの物体認識処理を行ってもよい。
 車両情報用センサ150は、車両100の各種状態を検出する。車両情報用センサ150は、例えば、CAN(Controller Area Network)に基づいて、エンジン回転数やアクセル開度などの情報を検出してもよい。
 生体センサ160は、運転者の各種生体情報を検出する。生体センサ160は、例えば、運転者の脈拍や心拍、体温を検出可能なセンサであってもよい。また、生体センサ160は、運転者の生体情報だけでなく、同乗者の生体情報を検出してもよい。
 車内カメラ170は、車内を撮影するカメラである。車内カメラ170は、例えば、同乗者の有無を撮影してもよい。
 なお、図1に記載したセンサは例示であり、車載器101には、これらの一部または全部のセンサが接続されていてもよく、他のセンサが接続されていてもよい。これらのセンサにより検出された情報は、記憶部130に記憶され、また、通信部120を介して評価結果出力装置300に送信される。
 スマートフォン200は、CPU211およびメモリ212を備えた制御部210と、通信部220と、記憶部230と、入力部240と、移動情報データベース(以下、DB)250とを含む。
 制御部210は、スマートフォン200が行う各種処理を制御する。通信部220は、評価結果出力装置300と各種通信を行う。また、記憶部230は、制御部210が処理に用いる各種情報を記憶する。入力部240は、スマートフォン200に対する各種入力の他、車載器101に対する制御の入力をユーザから受け付ける。
 移動情報DB250は、車両100の移動情報を記憶する。具体的には、移動情報DB250は、制御部210によってGPS(Global Positioning System )から取得された車両100の位置情報を時系列に記憶する。これにより、車両100の位置情報(すなわち、運転をした場所を示す位置情報)を運転データに対応付けることが可能になる。
 学習装置400は、CPU411およびメモリ412を備えた制御部410と、通信部420と、入力部430と、記憶部440と、学習部450とを含む。
 制御部410は、後述する学習部450の処理を制御する。通信部420は、評価結果出力装置300と各種通信を行う。記憶部440は、制御部410および学習部450が処理に用いる各種情報を記憶する。また、記憶部440は、後述する入力部430が入力を受け付けた運転データを記憶してもよい。記憶部440は、例えば、磁気ディスク等により実現される。
 入力部430は、記憶装置500から運転データの入力を受け付ける。入力部430は、学習装置400への明示の指示に応じて運転データを記憶装置500から取得してもよく、記憶装置500からの通知に応じて運転データを取得してもよい。また、入力部430は、取得した運転データを記憶部440に記憶させてもよい。なお、受け付けた運転データは、後述する逆強化学習部453が学習に用いるデータであるため、運転データのことを熟練者運転データ、または、トレーニングデータと言うこともある。
 図3は、学習部450の構成例を示すブロック図である。本実施形態の学習部450は、コスト関数入力部451と、データ抽出部452と、逆強化学習部453と、学習結果出力部454とを含む。
 コスト関数入力部451は、後述する逆強化学習部453が学習に用いるコスト関数の入力を受け付ける。具体的には、コスト関数入力部451は、図2に例示するような運転者の運転を示す各特徴量に重視度合いがそれぞれ重み付けされた項の線形和で表されたコスト関数の入力を受け付ける。なお、この重視度合いは、評価の際の意図を表わしていると言うこともできる。そのため、コスト関数によって算出される値は、運転の評価に用いられる評価指標とも言える。
 また、コスト関数入力部451は、運転者の運転を示す特徴量だけでなく、運転の際の環境を示す各特徴量に重視度合いがそれぞれ重み付けされた項を線形和として含むコスト関数の入力を受け付けてもよい。運転者の運転を示す特徴量は、例えば、速度や前方車との距離、アクセルペダル踏み込み量である。また、運転の際の環境を示す特徴量は、例えば、道路形状や混雑情報などである。
 また、コスト関数入力部451は、コスト関数と共に、満たすべき制約条件の入力を受け付けてもよい。コスト関数および制約条件は、分析者等により予め定められる。すなわち、運転を評価する際に考慮すべき特徴量の候補が分析者等により予め選択され、コスト関数として定義される。
 例えば、運転を評価する際に、速度、前方車のとの距離およびアクセルペダル踏み込み量を特徴量の候補とする場合、コスト関数は、以下に例示する式1で表わされる。
 コスト関数=α×速度+α×前方車との距離+α×アクセルペダル踏み込み量+β (式1)
 データ抽出部452は、入力部430が受け付けた運転データから地域ごとにトレーニングデータを抽出する。具体的には、データ抽出部452は、運転データ(トレーニングデータ)が取得された位置情報に基づいて地域ごとにトレーニングデータを抽出する。データ抽出部452は、例えば、GPSから取得した緯度および経度から地域を判断して、トレーニングデータを抽出してもよい。
 また、データ抽出部452は、コスト関数に含まれる特徴量に合わせるため、運転データに含まれる項目を特徴量へ変換する処理(演算や2値への変換等)やデータの統合処理、データクレンジングなどを行ってもよい。
 なお、後述する逆強化学習では、運転の上手い人(いわゆる熟練者)の運転データが必要とされる。そこで、運転データに一般の運転者による運転データが含まれている場合、データ抽出部452は、予め定めた基準に基づいて候補とする運転データから熟練者の運転データを抽出する。
 熟練者の運転データを抽出する方法は任意であり、分析者等により予め定められる。データ抽出部452は、例えば、総運転時間の長い運転者、事故歴や違反歴の少ない運転者を熟練者とし、その運転者の運転データを熟練者の運転データとして抽出してもよい。
 さらに、データ抽出部452は、熟練者の運転データのうち、該当する地域に関連する運転者の運転データを、より適切な熟練者の運転データとして優先的に選択してもよい。例えば、該当する地域に居住する運転者は、その地域の状況をより把握していると考えられるからである。データ抽出部452は、例えば、ナンバープレートから運転者の関連する地域を判断してもよい。
 逆強化学習部453は、データ抽出部452によって抽出された地域ごとのトレーニングデータを用いた逆強化学習により、地域ごとのコスト関数を学習する。具体的には、逆強化学習部453は、地域ごとに収集された熟練者の運転データをトレーニングデータとして用いた逆強化学習により、地域ごとのコスト関数を学習する。すなわち、このトレーニングデータには、熟練者の運転の内容を表わす情報が含まれる。また、このトレーニングデータに、その運転の際の環境を示す情報が含まれていてもよい。
 逆強化学習部453が逆強化学習を行う方法は任意である。逆強化学習部453は、例えば、入力されたコスト関数および制約条件に基づいて熟練者の運転データを生成する数理最適化処理の実行と、生成された熟練者の運転データとトレーニングデータとの差分を小さくするようにコスト関数のパラメータ(重視度合い)を更新するコスト関数の推定処理を繰り返すことで、コスト関数を学習してもよい。
 学習結果出力部454は、学習されたコスト関数を出力する。具体的には、学習結果出力部454は、地域ごとに学習されたコスト関数に含まれる特徴量と、その特徴量の重みとを対応付けて出力する。学習結果出力部454は、コスト関数の内容を表示装置600に表示してもよく、記憶部440に記憶させてもよい。表示装置600にコスト関数の内容を表示することにより、地域ごとに重視する項目を視認することが可能になる。
 例えば、上記式1に例示するコスト関数のパラメータ(重視度合い)が、以下に例示する式2のように学習されたとする。
 コスト関数=100×速度+50×前方車との距離+10×アクセルペダル踏み込み量 (式2)
この場合、学習結果出力部454は、[速度,前方車との距離]の評価の重みを[100,50,10]と出力してもよい。
 また、学習結果出力部454は、評価の重みとして、重視度合いの大きい特徴量から順に予め定めた数だけ出力するようにしてもよい。そのようにすることで、熟練者の意図をより反映した特徴量を把握することが可能になる。
 学習部450(より具体的には、コスト関数入力部451と、データ抽出部452と、逆強化学習部453と、学習結果出力部454)は、プログラム(学習プログラム)に従って動作するコンピュータのプロセッサによって実現される。
 例えば、プログラムは、学習装置400の記憶部440に記憶され、プロセッサは、そのプログラムを読み込み、プログラムに従って、学習部450(より具体的には、コスト関数入力部451と、データ抽出部452と、逆強化学習部453と、学習結果出力部454)として動作してもよい。また、学習部450(より具体的には、コスト関数入力部451と、データ抽出部452と、逆強化学習部453と、学習結果出力部454)の各機能がSaaS(Software as a Service )形式で提供されてもよい。
 また、コスト関数入力部451と、データ抽出部452と、逆強化学習部453と、学習結果出力部454は、それぞれが専用のハードウェアで実現されていてもよい。また、各装置の各構成要素の一部又は全部は、汎用または専用の回路(circuitry )、プロセッサ等やこれらの組合せによって実現されてもよい。これらは、単一のチップによって構成されてもよいし、バスを介して接続される複数のチップによって構成されてもよい。各装置の各構成要素の一部又は全部は、上述した回路等とプログラムとの組合せによって実現されてもよい。
 また、学習部450(より具体的には、コスト関数入力部451と、データ抽出部452と、逆強化学習部453と、学習結果出力部454)の各構成要素の一部又は全部が複数の情報処理装置や回路等により実現される場合には、複数の情報処理装置や回路等は、集中配置されてもよいし、分散配置されてもよい。例えば、情報処理装置や回路等は、クライアントサーバシステム、クラウドコンピューティングシステム等、各々が通信ネットワークを介して接続される形態として実現されてもよい。
 なお、学習部450が制御部410自体に含まれていてもよい。この場合、制御部410は、CPU411によってメモリ412に記憶されたプログラム(学習プログラム)が読み込まれ、そのプログラムに従って、学習部450として動作してもよい。
 評価結果出力装置300は、CPU311およびメモリ312を備えた制御部310と、通信部320と、入力部330と、運転実績DB340と、利用者DB350と、表示部360と、評価部370とを含む。
 制御部310は、後述する評価部370の処理を制御する。通信部320は、車両100(より具体的には、車載器101)、スマートフォン200、学習装置400等と各種通信を行う。
 運転実績DB340は、車載器101やスマートフォン200から送られてきた各種情報を基に生成される運転データを記憶する。利用者DB350は、運転を評価する対象の利用者の各種情報(例えば、年齢や性別、過去運転履歴、自己履歴、総運転時間など)を記憶する。運転実績DB340および利用者DB350は、例えば、磁気ディスク等により実現される。
 入力部330は、通信部320を介して受信した利用者の運転データの入力を受け付ける。具体的には、入力部330は、運転を評価する対象者の運転を示す情報、運転の際の環境を示す情報、および、これらの情報が取得された位置情報を含む運転データの入力を受け付ける。なお、上述する熟練者の運転データ(熟練者運転データ)と区別するため、ここで入力された利用者の運転のことを、利用者運転データと記すこともある。
 評価部370は、熟練者の運転と対象者の運転とを比較した評価結果を出力する。具体的には、評価部370は、利用者が運転する地域を位置情報から特定して、その地域に対応するコスト関数を選択する。次に、評価部370は、対象者が運転する環境の情報を選択されたコスト関数に適用して、同一の環境における熟練者の運転を推定する。そして、評価部370は、推定された熟練者の運転と対象者の運転とを比較した評価結果を出力する。評価部370は、評価結果を表示部360に表示させてもよい。
 評価部370は、利用者の運転を一括して(すなわち、運転開始から運転終了までの期間をまとめて)評価してもよいし、利用者の運転時に逐次評価してもよい。
 表示部360は、評価部370による評価結果を出力する表示装置である。なお、評価結果出力装置300は、表示部360に表示させる内容を、車載器101や、スマートフォン200に送信して表示させてもよい。
 以下、評価部370が出力する評価結果の具体例を説明する。第一の具体例は、対象者の運転と熟練者の運転との差異を可視化する例である。図4は、第一の具体例(運転中の差異を可視化する処理の例)を説明する説明図である。
 対象者が、ある環境(条件)のもとで運転を行っている状況を想定する。ここでは、具体例として、「東京都港区、緩やかなカーブ、渋滞中」という環境(条件)を想定する。この環境(条件)において、対象者は、ある時刻Tにおいて「時速60km、アクセルペダル踏み込み量20%」で運転をしていたとする。
 ここで、評価部370は、同じ環境(条件)において推定される熟練者の運転を、学習されたコスト関数に基づいて推定する。この場合の熟練者として、例えば、該当する地域に関連する運転者である「東京都港区の自動車教習所の教官」が挙げられる。その結果、例えば、熟練者の運転が「時速65km、アクセルペダル踏み込み量30%」と推定される。評価部370は、この推定結果に基づき、対象者の運転と熟練者の運転との差異を時系列に算出する。評価部370は、この算出結果を図4に例示するように可視化してもよい。
 また、例えば、運転者に通知する条件(通知条件)が「速度差が±5kmを超えた場合」と定義されていたとする。図4に示す例において、時刻Tにおける熟練者の運転との速度差は、「+5km」である。そこで、評価部370は、速度を上昇させるために、運転者に対して「アクセルを強く踏みましょう」と音声や表示等で通知してもよい。このように、評価部370は、算出した差異が予め定めた通知条件を満たした場合に、その差異を示す内容を通知してもよい。
 また、通知の条件が、学習済みのコスト関数に基づいて定められてもよい。例えば、重視度合いの高いコスト関数の特徴量に基づいて通知の条件が定められてもよい。このように、学習済みのコスト関数を利用することで、より注視すべき評価項目に着目して通知の条件を定義することが可能になる。
 次に、評価結果の第二の具体例を説明する。第二の具体例は、対象者の運転と熟練者の運転との差異を得点化して出力する例である。図5は、第二の具体例(運転の差異を得点化して出力する処理の例)を説明する説明図である。
 ここでも、対象者が、第一の具体例と同様の環境(条件)のもとで運転を行っている状況を想定し、評価部370は、熟練者の運転を同様に推定するものとする。第一の具体例では、速度差が予め定めた閾値を超えた場合に通知する方法を例示した。本具体例では、評価部370は、熟練者の運転と対象者の運転との差異に応じて得点化する予め定めた方法に基づき、時系列に得点を累積的に加算し、加算した結果を表示する。
 例えば、得点化の方法として「熟練者との差が時速5km以上の時に減点し、熟練者との差が時速5km未満の状態が10秒継続したときに加点する」と定義されていたとする。評価部370は、定義された方法に基づいて得点を累積的に加算する。評価部370は、例えば、図5に例示するように、熟練者の運転と対象者の運転との差異を示すグラフに重畳させて得点化の結果を表示してもよい。図5に示す例では、運転者Aの運転は、走行全体を通して熟練者との差が多いため、原点が多く、運転者Bの運転は、熟練者とほぼ差がないため、加点が多くなる。
 また、評価部370は、個人のある1回の走行記録を得点化するだけでなく、複数の走行記録の累計値を算出してもよい。これにより、例えば、所定期間(月間)での得点化や、地域ごとに得点化することも可能になる。
 さらに、評価部370は、特徴量別に差異の大きさを集計し、差異の大きい特徴量に対応する評価を出力してもよい。例えば、発進時の加速を示す特徴量の差異が大きい場合、評価部370は、「発進時の加速を抑えて下さい」等のメッセージを出力してもよい。
 評価部370は、プログラム(評価結果出力プログラム)に従って動作するコンピュータのプロセッサによって実現される。また、評価部370が、制御部310自体に含まれていてもよい。
 次に、本実施形態の運転評価システムの動作例を説明する。図6は、本実施形態の学習装置400の動作例を示すフローチャートである。入力部430は、コスト関数の入力を受け付ける(ステップS11)。学習部450は、地域ごとに収集された熟練者の運転の内容を表わす情報を含む熟練者運転データをトレーニングデータとして用いた逆強化学習により、地域ごとのコスト関数を学習する(ステップS12)。
 図7は、本実施形態の評価結果出力装置300の動作例を示すフローチャートである。入力部330は、運転を評価する対象者の運転を示す情報、運転の際の環境を示す情報、および、その情報が取得された位置情報を含む利用者運転データの入力を受け付ける(ステップS21)。
 評価部370は、利用者が運転する地域を位置情報から特定して、その地域に対応するコスト関数を選択する(ステップS22)。評価部370は、選択されたコスト関数に対象者の運転の際の環境を示す情報を適用して、同一の環境における熟練者の運転を推定する(ステップS23)。そして、評価部370は、推定された熟練者の運転と対象者の運転とを比較した評価結果を出力する(ステップS24)。
 以上のように、本実施形態では、入力部430がコスト関数の入力を受け付け、学習部450が、地域ごとに収集された熟練者運転データをトレーニングデータとして用いた逆強化学習により、地域ごとのコスト関数を学習する。また、入力部330が、利用者運転データの入力を受け付け、評価部370は、利用者が運転する地域を位置情報から特定して対応するコスト関数を選択し、選択されたコスト関数に対象者の運転の際の環境を示す情報を適用して、同一の環境における熟練者の運転を推定する。そして、評価部370が、推定された熟練者の運転と対象者の運転とを比較した評価結果を出力する。よって、運転する地域を考慮して対象者の運転の評価を行うことができる。
 例えば、「上手い運転」を定義するのは難しい。これは、地域性を考慮した場合、なおさらである。さらに、例えば、「坂道発進は得意であるが、カーブの運転は苦手」などの個人の特性を抽出するには、膨大なパラメータが必要になる。
 一方、本願発明では、学習部450が、上手い運転を行うと想定される熟練者(例えば、熟練者ドライバー、タクシードライバー、自動車教習所の教官、パトカーの運転手)を定義し、その熟練者の運転データから機械学習を行うことで、運転者の特徴を抽出する。これにより、運転を評価する特徴量を抽出することが可能になる。
 さらに、本実施形態では、地域ごとの住民の運転データから運転者の特徴を抽出することで、運転の上手さとは異なる評価軸として、地域ごとの運転評価に必要な特徴量を抽出することが可能になる。
 また、本実施形態では、学習部450(より具体的には、学習結果出力部454)が評価の重みを可視化するため、改善すべき項目を抽出することが可能になる。
 以下、本実施形態の運転評価システムの適用例について説明する。
 第一の例として、OEM(original equipment manufacturer)への適用が考えられる。本実施形態の運転評価システムを用いることで、車両の実際の使用傾向が把握できるため、対象とする国や地域専用の車両(例えば、寒冷地専用車、名古屋用専用車、など)を開発することが可能になり、社会価値の高い車両作りが可能になる。
 さらに、不具合の発生に関しても、実際の運転から不具合の傾向を把握することが可能になるため、例えば、安全運転通知機能がついた車両の販売の必要性や、自動運転方式の評価を行うことも可能になる。
 第二の例として、一般ユーザへの適用が考えられる。本実施形態の運転評価システムを用いることで、初めて訪れる場所でも安全な運転をすることができる。また、運転が上手い人の操作が明示されるため、不足するスキルを具体的に学習することも可能になる。具体的な一般ユーザの学習方法として、例えば、運転に基づいてナビゲーションシステムによる通知(「この地域は、車間を詰めてくるので注意しましょう」、「もう少し加速しましょう」)を行う方法が挙げられる。
 第三の例として、自動車教習所への適用が考えられる。本実施形態の運転評価システムを用いることで、教官が生徒に対して行う指導を具体化することができ、卒業生の技能を向上させることができるとともに、教官の質も向上させることが可能になる。例えば、本実施形態の運転評価システムを、運転シミュレータに適用して、生徒の運転と熟練者との運転との差異を可視化することが考えられる。さらに地域特有で必要な運転スキルや運転マナーを明示化することも可能になる。
 第四の例として、保険会社への適用が考えられる。本実施形態の運転評価システムを用いることで、地域ごとの運転の傾向が把握できるため、地域ごとに車両保険を設定(運転能力レベルによる保険料の変更)することが可能になる。また、結果として安全運転が増加するため、補償金の支払いも低減し、保険料を下げることができる結果、市場の競争性を優位にすることも可能になる。
 具体的には、運転をスコア化することで、所定のスコア以上の保険加入者の保険料を割引したり、年齢ではなくスコアの高い(すなわち、事故が少ないと想定される)対象者をターゲットに勧誘を進めたりすることが可能になる。
 第五の例として、国や自治体への適用が考えられる。本実施形態の運転評価システムを用いることで、地域に応じた速度制限等の見直しを行うことが可能になる。また、地域内の事故を減少させることができれば、対外的に安全な地域であることをアピールすることも可能になる。具体的には、熟練者の走行速度と法定速度との差異を比較して速度制限を見直すことができる。また、事故が多い地域の運転の傾向を把握して、直接注意喚起したり、事故を低減させるようなインフラストラクチャを整備したりすることも可能になる。
 次に、本発明の概要を説明する。図8は、本発明による運転評価システムの概要を示すブロック図である。本発明による運転評価システム70(例えば、運転評価システム1)は、運転者の運転を示す各特徴量に重視度合いがそれぞれ重み付けされた項の線形和で表されたコスト関数の入力を受け付ける関数入力手段71(例えば、コスト関数入力部451)と、地域ごとに収集された熟練者の運転の内容を表わす情報を含む熟練者運転データをトレーニングデータとして用いた逆強化学習により、地域ごとのコスト関数を学習する学習手段72(例えば、逆強化学習部453)と、運転を評価する対象者の運転を示す情報、運転の際の環境を示す情報、および、その情報が取得された位置情報を含む利用者運転データの入力を受け付ける運転データ入力手段73(例えば、入力部330)と、利用者が運転する地域を位置情報から特定して、その地域に対応するコスト関数を選択し、選択されたコスト関数に対象者の運転の際の環境を示す情報を適用して、同一の環境における熟練者の運転を推定し、推定された熟練者の運転と対象者の運転とを比較した評価結果を出力する評価手段74(例えば、評価部370)とを備えている。
 そのような構成により、運転する地域を考慮して対象者の運転の評価を行うことができる。
 また、運転評価システム70は、コスト関数に含まれる特徴量と、その特徴量の重みとを対応付けて出力する学習結果出力手段(例えば、学習結果出力部454)を備えていてもよい。そのような構成により、運転を評価する特徴量を把握することが可能になる。
 また、運転評価システム70は、地域ごとにトレーニングデータを抽出するデータ抽出手段(例えば、データ抽出部452)を備えていてもよい。そして、学習手段72は、抽出された地域ごとのトレーニングデータを用いて、地域ごとのコスト関数を学習してもよい。
 さらに、データ抽出手段は、予め定めた基準に基づいて、候補とするトレーニングデータから熟練者のトレーニングデータを抽出してもよい。
 また、評価手段74は、熟練者の運転と対象者の運転との差異を時系列に算出し、算出した差異が予め定めた通知条件を満たした場合に、その差異を示す内容を通知してもよい。
 また、評価手段74は、熟練者の運転と対象者の運転との差異に応じて得点化する予め定めた方法に基づき、時系列に得点を累積的に加算し、加算した結果を表示してもよい。
 また、関数入力手段71は、運転の際の環境を示す各特徴量に重視度合いがそれぞれ重み付けされた項を線形和として含むコスト関数の入力を受け付けてもよい。
 図9は、本発明による学習装置の概要を示すブロック図である。本発明による学習装置80(例えば、学習装置400)は、関数入力手段81と、学習手段82とを備えている。関数入力手段81および学習手段82の内容は、図8に例示する関数入力手段71および学習手段72と同様である。
 図10は、本発明による評価結果出力装置の概要を示すブロック図である。本発明による評価結果出力装置90(例えば、評価結果出力装置300)は、運転データ入力手段91と、評価手段92とを備えている。運転データ入力手段91および評価手段92の内容は、図8に例示する運転データ入力手段73および評価手段74と同様である。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)運転者の運転を示す各特徴量に重視度合いがそれぞれ重み付けされた項の線形和で表されたコスト関数の入力を受け付ける関数入力手段と、
 地域ごとに収集された熟練者の運転の内容を表わす情報を含む熟練者運転データをトレーニングデータとして用いた逆強化学習により、当該地域ごとの前記コスト関数を学習する学習手段と、
 運転を評価する対象者の運転を示す情報、運転の際の環境を示す情報、および、当該情報が取得された位置情報を含む利用者運転データの入力を受け付ける運転データ入力手段と、
 前記利用者が運転する地域を位置情報から特定して、当該地域に対応するコスト関数を選択し、選択されたコスト関数に前記対象者の運転の際の環境を示す情報を適用して、同一の環境における熟練者の運転を推定し、推定された熟練者の運転と前記対象者の運転とを比較した評価結果を出力する評価手段とを備えた
 ことを特徴とする運転評価システム。
(付記2)コスト関数に含まれる特徴量と、当該特徴量の重みとを対応付けて出力する学習結果出力手段を備えた
 付記1記載の運転評価システム。
(付記3)地域ごとにトレーニングデータを抽出するデータ抽出手段を備え、
 学習手段は、抽出された地域ごとのトレーニングデータを用いて、当該地域ごとのコスト関数を学習する
 付記1または付記2記載の運転評価システム。
(付記4)データ抽出手段は、予め定めた基準に基づいて、候補とするトレーニングデータから熟練者のトレーニングデータを抽出する
 付記3記載の運転評価システム。
(付記5)評価手段は、熟練者の運転と対象者の運転との差異を時系列に算出し、算出した差異が予め定めた通知条件を満たした場合に、当該差異を示す内容を通知する
 付記1から付記4のうちのいずれか1つに記載の運転評価システム。
(付記6)評価手段は、熟練者の運転と対象者の運転との差異に応じて得点化する予め定めた方法に基づき、時系列に得点を累積的に加算し、加算した結果を表示する
 付記1から付記5のうちのいずれか1つに記載の運転評価システム。
(付記7)関数入力手段は、運転の際の環境を示す各特徴量に重視度合いがそれぞれ重み付けされた項を線形和として含むコスト関数の入力を受け付ける
 付記1から付記6のうちのいずれか1つに記載の運転評価システム。
(付記8)運転者の運転を示す各特徴量に重視度合いがそれぞれ重み付けされた項の線形和で表されたコスト関数の入力を受け付ける関数入力手段と、
 地域ごとに収集された熟練者の運転の内容を表わす情報を含む熟練者運転データをトレーニングデータとして用いた逆強化学習により、当該地域ごとの前記コスト関数を学習する学習手段とを備えた
 ことを特徴とする学習装置。
(付記9)運転を評価する対象者の運転を示す情報、運転の際の環境を示す情報、および、当該情報が取得された位置情報を含む利用者運転データの入力を受け付ける運転データ入力手段と、
 地域ごとに収集された熟練者の運転の内容を表わす情報を含む熟練者運転データをトレーニングデータとして用いた逆強化学習により当該地域ごとに学習された、運転者の運転を示す各特徴量に重視度合いがそれぞれ重み付けされた項の線形和で表されたコスト関数の中から、前記利用者が運転する地域を位置情報から特定して当該地域に対応するコスト関数を選択し、選択されたコスト関数に前記対象者の運転の際の環境を示す情報を適用して、同一の環境における熟練者の運転を推定し、推定された熟練者の運転と前記対象者の運転とを比較した評価結果を出力する評価手段とを備えた
 ことを特徴とする評価結果出力装置。
(付記10)運転者の運転を示す各特徴量に重視度合いがそれぞれ重み付けされた項の線形和で表されたコスト関数の入力を受け付け、
 地域ごとに収集された熟練者の運転の内容を表わす情報を含む熟練者運転データをトレーニングデータとして用いた逆強化学習により、当該地域ごとの前記コスト関数を学習し、
 運転を評価する対象者の運転を示す情報、運転の際の環境を示す情報、および、当該情報が取得された位置情報を含む利用者運転データの入力を受け付け、
 前記利用者が運転する地域を位置情報から特定して、当該地域に対応するコスト関数を選択し、
 選択されたコスト関数に前記対象者の運転の際の環境を示す情報を適用して、同一の環境における熟練者の運転を推定し、
 推定された熟練者の運転と前記対象者の運転とを比較した評価結果を出力する
 ことを特徴とする運転評価方法。
(付記11)コスト関数に含まれる特徴量と、当該特徴量の重みとを対応付けて出力する
 付記10記載の運転評価方法。
(付記12)運転者の運転を示す各特徴量に重視度合いがそれぞれ重み付けされた項の線形和で表されたコスト関数の入力を受け付け、
 地域ごとに収集された熟練者の運転の内容を表わす情報を含む熟練者運転データをトレーニングデータとして用いた逆強化学習により、当該地域ごとの前記コスト関数を学習する
 ことを特徴とする学習方法。
(付記13)運転を評価する対象者の運転を示す情報、運転の際の環境を示す情報、および、当該情報が取得された位置情報を含む利用者運転データの入力を受け付け、
 地域ごとに収集された熟練者の運転の内容を表わす情報を含む熟練者運転データをトレーニングデータとして用いた逆強化学習により当該地域ごとに学習された、運転者の運転を示す各特徴量に重視度合いがそれぞれ重み付けされた項の線形和で表されたコスト関数の中から、前記利用者が運転する地域を位置情報から特定して当該地域に対応するコスト関数を選択し、
 選択されたコスト関数に前記対象者の運転の際の環境を示す情報を適用して、同一の環境における熟練者の運転を推定し、
 推定された熟練者の運転と前記対象者の運転とを比較した評価結果を出力する
 ことを特徴とする評価結果出力方法。
(付記14)コンピュータに、
 運転者の運転を示す各特徴量に重視度合いがそれぞれ重み付けされた項の線形和で表されたコスト関数の入力を受け付ける関数入力処理、および、
 地域ごとに収集された熟練者の運転の内容を表わす情報を含む熟練者運転データをトレーニングデータとして用いた逆強化学習により、当該地域ごとの前記コスト関数を学習する学習処理
 を実行させるための学習プログラムを記憶するプログラム記憶媒体。
(付記15)コンピュータに、
 運転を評価する対象者の運転を示す情報、運転の際の環境を示す情報、および、当該情報が取得された位置情報を含む利用者運転データの入力を受け付ける運転データ入力処理、および、
 地域ごとに収集された熟練者の運転の内容を表わす情報を含む熟練者運転データをトレーニングデータとして用いた逆強化学習により当該地域ごとに学習された、運転者の運転を示す各特徴量に重視度合いがそれぞれ重み付けされた項の線形和で表されたコスト関数の中から、前記利用者が運転する地域を位置情報から特定して当該地域に対応するコスト関数を選択し、選択されたコスト関数に前記対象者の運転の際の環境を示す情報を適用して、同一の環境における熟練者の運転を推定し、推定された熟練者の運転と前記対象者の運転とを比較した評価結果を出力する評価処理
 を実行させるための評価結果出力プログラムを記憶するプログラム記憶媒体。
(付記16)コンピュータに、
 運転者の運転を示す各特徴量に重視度合いがそれぞれ重み付けされた項の線形和で表されたコスト関数の入力を受け付ける関数入力処理、および、
 地域ごとに収集された熟練者の運転の内容を表わす情報を含む熟練者運転データをトレーニングデータとして用いた逆強化学習により、当該地域ごとの前記コスト関数を学習する学習処理
 を実行させるための学習プログラム。
(付記17)コンピュータに、
 運転を評価する対象者の運転を示す情報、運転の際の環境を示す情報、および、当該情報が取得された位置情報を含む利用者運転データの入力を受け付ける運転データ入力処理、および、
 地域ごとに収集された熟練者の運転の内容を表わす情報を含む熟練者運転データをトレーニングデータとして用いた逆強化学習により当該地域ごとに学習された、運転者の運転を示す各特徴量に重視度合いがそれぞれ重み付けされた項の線形和で表されたコスト関数の中から、前記利用者が運転する地域を位置情報から特定して当該地域に対応するコスト関数を選択し、選択されたコスト関数に前記対象者の運転の際の環境を示す情報を適用して、同一の環境における熟練者の運転を推定し、推定された熟練者の運転と前記対象者の運転とを比較した評価結果を出力する評価処理
 を実行させるための評価結果出力プログラム。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 1 運転評価システム
 100 車両
 101 車載器
 110,210,310,410 制御部
 111,211,311,411 CPU
 112,212,312,412 メモリ
 120,220,320,420 通信部
 130,230,440 記憶部
 140 車外カメラ
 150 車両情報用センサ
 160 生体センサ
 170 車内カメラ
 200 スマートフォン
 240,330,430 入力部
 250 移動情報DB
 300 評価結果出力装置
 340 運転実績DB
 350 利用者DB
 360 表示部
 370 評価部
 400 学習装置
 450 学習部
 451 コスト関数入力部
 452 データ抽出部
 453 逆強化学習部
 454 学習結果出力部
 500 記憶装置
 600 表示装置

Claims (15)

  1.  運転者の運転を示す各特徴量に重視度合いがそれぞれ重み付けされた項の線形和で表されたコスト関数の入力を受け付ける関数入力手段と、
     地域ごとに収集された熟練者の運転の内容を表わす情報を含む熟練者運転データをトレーニングデータとして用いた逆強化学習により、当該地域ごとの前記コスト関数を学習する学習手段と、
     運転を評価する対象者の運転を示す情報、運転の際の環境を示す情報、および、当該情報が取得された位置情報を含む利用者運転データの入力を受け付ける運転データ入力手段と、
     前記利用者が運転する地域を位置情報から特定して、当該地域に対応するコスト関数を選択し、選択されたコスト関数に前記対象者の運転の際の環境を示す情報を適用して、同一の環境における熟練者の運転を推定し、推定された熟練者の運転と前記対象者の運転とを比較した評価結果を出力する評価手段とを備えた
     ことを特徴とする運転評価システム。
  2.  コスト関数に含まれる特徴量と、当該特徴量の重みとを対応付けて出力する学習結果出力手段を備えた
     請求項1記載の運転評価システム。
  3.  地域ごとにトレーニングデータを抽出するデータ抽出手段を備え、
     学習手段は、抽出された地域ごとのトレーニングデータを用いて、当該地域ごとのコスト関数を学習する
     請求項1または請求項2記載の運転評価システム。
  4.  データ抽出手段は、予め定めた基準に基づいて、候補とするトレーニングデータから熟練者のトレーニングデータを抽出する
     請求項3記載の運転評価システム。
  5.  評価手段は、熟練者の運転と対象者の運転との差異を時系列に算出し、算出した差異が予め定めた通知条件を満たした場合に、当該差異を示す内容を通知する
     請求項1から請求項4のうちのいずれか1項に記載の運転評価システム。
  6.  評価手段は、熟練者の運転と対象者の運転との差異に応じて得点化する予め定めた方法に基づき、時系列に得点を累積的に加算し、加算した結果を表示する
     請求項1から請求項5のうちのいずれか1項に記載の運転評価システム。
  7.  関数入力手段は、運転の際の環境を示す各特徴量に重視度合いがそれぞれ重み付けされた項を線形和として含むコスト関数の入力を受け付ける
     請求項1から請求項6のうちのいずれか1項に記載の運転評価システム。
  8.  運転者の運転を示す各特徴量に重視度合いがそれぞれ重み付けされた項の線形和で表されたコスト関数の入力を受け付ける関数入力手段と、
     地域ごとに収集された熟練者の運転の内容を表わす情報を含む熟練者運転データをトレーニングデータとして用いた逆強化学習により、当該地域ごとの前記コスト関数を学習する学習手段とを備えた
     ことを特徴とする学習装置。
  9.  運転を評価する対象者の運転を示す情報、運転の際の環境を示す情報、および、当該情報が取得された位置情報を含む利用者運転データの入力を受け付ける運転データ入力手段と、
     地域ごとに収集された熟練者の運転の内容を表わす情報を含む熟練者運転データをトレーニングデータとして用いた逆強化学習により当該地域ごとに学習された、運転者の運転を示す各特徴量に重視度合いがそれぞれ重み付けされた項の線形和で表されたコスト関数の中から、前記利用者が運転する地域を位置情報から特定して当該地域に対応するコスト関数を選択し、選択されたコスト関数に前記対象者の運転の際の環境を示す情報を適用して、同一の環境における熟練者の運転を推定し、推定された熟練者の運転と前記対象者の運転とを比較した評価結果を出力する評価手段とを備えた
     ことを特徴とする評価結果出力装置。
  10.  運転者の運転を示す各特徴量に重視度合いがそれぞれ重み付けされた項の線形和で表されたコスト関数の入力を受け付け、
     地域ごとに収集された熟練者の運転の内容を表わす情報を含む熟練者運転データをトレーニングデータとして用いた逆強化学習により、当該地域ごとの前記コスト関数を学習し、
     運転を評価する対象者の運転を示す情報、運転の際の環境を示す情報、および、当該情報が取得された位置情報を含む利用者運転データの入力を受け付け、
     前記利用者が運転する地域を位置情報から特定して、当該地域に対応するコスト関数を選択し、
     選択されたコスト関数に前記対象者の運転の際の環境を示す情報を適用して、同一の環境における熟練者の運転を推定し、
     推定された熟練者の運転と前記対象者の運転とを比較した評価結果を出力する
     ことを特徴とする運転評価方法。
  11.  コスト関数に含まれる特徴量と、当該特徴量の重みとを対応付けて出力する
     請求項10記載の運転評価方法。
  12.  運転者の運転を示す各特徴量に重視度合いがそれぞれ重み付けされた項の線形和で表されたコスト関数の入力を受け付け、
     地域ごとに収集された熟練者の運転の内容を表わす情報を含む熟練者運転データをトレーニングデータとして用いた逆強化学習により、当該地域ごとの前記コスト関数を学習する
     ことを特徴とする学習方法。
  13.  運転を評価する対象者の運転を示す情報、運転の際の環境を示す情報、および、当該情報が取得された位置情報を含む利用者運転データの入力を受け付け、
     地域ごとに収集された熟練者の運転の内容を表わす情報を含む熟練者運転データをトレーニングデータとして用いた逆強化学習により当該地域ごとに学習された、運転者の運転を示す各特徴量に重視度合いがそれぞれ重み付けされた項の線形和で表されたコスト関数の中から、前記利用者が運転する地域を位置情報から特定して当該地域に対応するコスト関数を選択し、
     選択されたコスト関数に前記対象者の運転の際の環境を示す情報を適用して、同一の環境における熟練者の運転を推定し、
     推定された熟練者の運転と前記対象者の運転とを比較した評価結果を出力する
     ことを特徴とする評価結果出力方法。
  14.  コンピュータに、
     運転者の運転を示す各特徴量に重視度合いがそれぞれ重み付けされた項の線形和で表されたコスト関数の入力を受け付ける関数入力処理、および、
     地域ごとに収集された熟練者の運転の内容を表わす情報を含む熟練者運転データをトレーニングデータとして用いた逆強化学習により、当該地域ごとの前記コスト関数を学習する学習処理
     を実行させるための学習プログラムを記憶するプログラム記憶媒体。
  15.  コンピュータに、
     運転を評価する対象者の運転を示す情報、運転の際の環境を示す情報、および、当該情報が取得された位置情報を含む利用者運転データの入力を受け付ける運転データ入力処理、および、
     地域ごとに収集された熟練者の運転の内容を表わす情報を含む熟練者運転データをトレーニングデータとして用いた逆強化学習により当該地域ごとに学習された、運転者の運転を示す各特徴量に重視度合いがそれぞれ重み付けされた項の線形和で表されたコスト関数の中から、前記利用者が運転する地域を位置情報から特定して当該地域に対応するコスト関数を選択し、選択されたコスト関数に前記対象者の運転の際の環境を示す情報を適用して、同一の環境における熟練者の運転を推定し、推定された熟練者の運転と前記対象者の運転とを比較した評価結果を出力する評価処理
     を実行させるための評価結果出力プログラムを記憶するプログラム記憶媒体。
PCT/JP2020/048743 2020-12-25 2020-12-25 運転評価システム、学習装置、評価結果出力装置、方法およびプログラム WO2022137506A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2020/048743 WO2022137506A1 (ja) 2020-12-25 2020-12-25 運転評価システム、学習装置、評価結果出力装置、方法およびプログラム
EP20966992.8A EP4250272A4 (en) 2020-12-25 2020-12-25 DRIVING EVALUATION SYSTEM, LEARNING DEVICE, EVALUATION RESULTS GENERATION DEVICE, METHOD AND PROGRAM
US18/269,443 US20240083441A1 (en) 2020-12-25 2020-12-25 Driving evaluation system, learning device, evaluation result output device, method, and program
JP2022570949A JP7552727B2 (ja) 2020-12-25 2020-12-25 運転評価システム、学習装置、評価結果出力装置、方法およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/048743 WO2022137506A1 (ja) 2020-12-25 2020-12-25 運転評価システム、学習装置、評価結果出力装置、方法およびプログラム

Publications (1)

Publication Number Publication Date
WO2022137506A1 true WO2022137506A1 (ja) 2022-06-30

Family

ID=82157589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048743 WO2022137506A1 (ja) 2020-12-25 2020-12-25 運転評価システム、学習装置、評価結果出力装置、方法およびプログラム

Country Status (4)

Country Link
US (1) US20240083441A1 (ja)
EP (1) EP4250272A4 (ja)
JP (1) JP7552727B2 (ja)
WO (1) WO2022137506A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115545118A (zh) * 2022-11-16 2022-12-30 北京集度科技有限公司 车辆驾驶评价及其模型的训练方法、装置、设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190072959A1 (en) * 2017-09-06 2019-03-07 GM Global Technology Operations LLC Unsupervised learning agents for autonomous driving applications
WO2019150452A1 (ja) * 2018-01-30 2019-08-08 日本電気株式会社 情報処理装置、制御方法、及びプログラム
WO2019167457A1 (ja) * 2018-02-28 2019-09-06 ソニー株式会社 情報処理装置、情報処理方法、プログラム、及び移動体
WO2020049737A1 (ja) 2018-09-07 2020-03-12 株式会社オファサポート 運転技能評価システム、方法及びプログラム
WO2020115904A1 (ja) * 2018-12-07 2020-06-11 日本電気株式会社 学習装置、学習方法、および学習プログラム
WO2020183609A1 (ja) * 2019-03-12 2020-09-17 三菱電機株式会社 移動体制御装置および移動体制御方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9090255B2 (en) * 2012-07-12 2015-07-28 Honda Motor Co., Ltd. Hybrid vehicle fuel efficiency using inverse reinforcement learning
CN108427985B (zh) * 2018-01-02 2020-05-19 北京理工大学 一种基于深度强化学习的插电式混合动力车辆能量管理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190072959A1 (en) * 2017-09-06 2019-03-07 GM Global Technology Operations LLC Unsupervised learning agents for autonomous driving applications
WO2019150452A1 (ja) * 2018-01-30 2019-08-08 日本電気株式会社 情報処理装置、制御方法、及びプログラム
WO2019167457A1 (ja) * 2018-02-28 2019-09-06 ソニー株式会社 情報処理装置、情報処理方法、プログラム、及び移動体
WO2020049737A1 (ja) 2018-09-07 2020-03-12 株式会社オファサポート 運転技能評価システム、方法及びプログラム
WO2020115904A1 (ja) * 2018-12-07 2020-06-11 日本電気株式会社 学習装置、学習方法、および学習プログラム
WO2020183609A1 (ja) * 2019-03-12 2020-09-17 三菱電機株式会社 移動体制御装置および移動体制御方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"ENCYCLOPEDIA OF ARTIFICIAL INTELLIGENCE CHAPTER 6", 1 July 2017, article ANONYMOUS: " Machine learning and data mining [6-10] Reinforcement Learning, Reinforcement Learning", pages: 1 - 1, XP055951354 *
ANONYMOUS: "Developed by NEC, an AI that can make decisions at the same level as experts Learns ``intentions'' with ``reverse reinforcement learning''-ITmedia NEWS", ITMEDIA, 17 July 2019 (2019-07-17), pages 1 - 4, XP055951357, Retrieved from the Internet <URL:https://www.itmedia.co.jp/news/articles/1907/17/news095.html> [retrieved on 20220815] *
See also references of EP4250272A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115545118A (zh) * 2022-11-16 2022-12-30 北京集度科技有限公司 车辆驾驶评价及其模型的训练方法、装置、设备及介质

Also Published As

Publication number Publication date
EP4250272A4 (en) 2024-01-17
JP7552727B2 (ja) 2024-09-18
JPWO2022137506A1 (ja) 2022-06-30
EP4250272A1 (en) 2023-09-27
US20240083441A1 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
CN111164660B (zh) 信息处理装置、信息处理方法和程序
CN106874597B (zh) 一种应用于自动驾驶车辆的高速公路超车行为决策方法
JP5434912B2 (ja) 運転状態判定方法、運転状態判定システム及びプログラム
US10915964B1 (en) System and method for providing vehicle services based on driving behaviors
KR101405184B1 (ko) 운전의 적절성 및 테스트 대상의 성과를 평가하고 기록하는 장치 및 방법
JP5375805B2 (ja) 運転支援システム及び運転支援管理センター
US8738523B1 (en) Systems and methods to identify and profile a vehicle operator
US12005922B2 (en) Toward simulation of driver behavior in driving automation
CN111325230B (zh) 车辆换道决策模型的在线学习方法和在线学习装置
JP6703465B2 (ja) 運転支援装置、センタ装置
US20180370537A1 (en) System providing remaining driving information of vehicle based on user behavior and method thereof
WO2011033840A1 (ja) 運転評価システム、車載機及び情報処理センター
US20160196613A1 (en) Automated Driver Training And Premium Discounts
JPWO2017038166A1 (ja) 情報処理装置、情報処理方法及びプログラム
CN112749740B (zh) 确定车辆目的地的方法、装置、电子设备及介质
US10475350B1 (en) System and method for a driving simulator on a mobile device
CN111856969A (zh) 自动驾驶仿真测试方法及装置
CA2805439C (en) Systems and methods using a mobile device to collect data for insurance premiums
WO2022137506A1 (ja) 運転評価システム、学習装置、評価結果出力装置、方法およびプログラム
JP2010152497A (ja) 運転特性取得装置及び交通シミュレーションシステム
JP6619316B2 (ja) 駐車位置探索方法、駐車位置探索装置、駐車位置探索プログラム及び移動体
CN114126943A (zh) 应用于自主车辆中的方法和设备
Toledo Topics in traffic simulation and travel behavior modeling
KR102572305B1 (ko) 자율주행차량의 튜토리얼 서비스 시스템 및 이를 제공하는 방법
US20160167674A1 (en) Telematics enabled drivers education

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022570949

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18269443

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2020966992

Country of ref document: EP

Effective date: 20230621

NENP Non-entry into the national phase

Ref country code: DE