WO2020048474A1 - 显微物镜光学系统及光学设备 - Google Patents

显微物镜光学系统及光学设备 Download PDF

Info

Publication number
WO2020048474A1
WO2020048474A1 PCT/CN2019/104307 CN2019104307W WO2020048474A1 WO 2020048474 A1 WO2020048474 A1 WO 2020048474A1 CN 2019104307 W CN2019104307 W CN 2019104307W WO 2020048474 A1 WO2020048474 A1 WO 2020048474A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
objective optical
lenses
microscope objective
Prior art date
Application number
PCT/CN2019/104307
Other languages
English (en)
French (fr)
Inventor
张新
Original Assignee
中国科学院长春光学精密机械与物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院长春光学精密机械与物理研究所 filed Critical 中国科学院长春光学精密机械与物理研究所
Publication of WO2020048474A1 publication Critical patent/WO2020048474A1/zh
Priority to US16/897,311 priority Critical patent/US11415781B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems

Definitions

  • the present invention relates to the field of optics, and in particular, to a microscope objective optical system and optical equipment.
  • Ultra-high-throughput microscope objectives have a wide field of view, a large numerical aperture, and a wide spectral range. They are widely used in biology, metrology, and semiconductor detection. Take the microscope objective lens for genetic sequencing in biology as an example. The sample to be imaged emits weak fluorescence under the action of laser. The microscope objective lens needs to have a higher energy collection ability for weak fluorescence. Resolution, so the optical system needs to have a large numerical aperture. In addition, in order to improve the measurement efficiency, the optical system should have a larger imaging field of view. Generally, the field of view required is much larger than the field of view of a standard microscope objective.
  • the more common technical solution is a transmissive system. Its disadvantages include: first, the material refractive index and Abbe number tolerance requirements are relatively strict; second, under the same index requirements, the length of the transmissive optical system is relatively large, optical The caliber of the component is also relatively large, and the number of lenses is also larger. Third, in order to correct the secondary spectrum and chromatic aberration of magnification, some special difficult-to-manufacture optical materials such as calcium fluoride must be used. Some domestic and foreign published journals and patents also disclose some refracting structures.
  • US patent USP8675276 discloses a wide-band microscopy refracting imaging system, but its design field of view is relatively small, and the object field of view of a typical system is 0.15. mm, because the prior art does not correct and balance the aberrations related to the field of view, especially the astigmatism, field curvature, and first-level coma, so the realized imaging field of view is smaller and the wave aberration is larger.
  • embodiments of the present invention provide a microscope objective optical system and optical equipment, which can effectively correct high-level spherical aberration, control astigmatism, field curvature, and high-level coma aberration related to the field of view.
  • the field of view is greater than 2mm
  • the numerical aperture is 1.0
  • the imaging quality reaches the diffraction limit.
  • the present invention provides a micro-objective optical system including a relay lens group and a collimator lens group divided by an intermediate image plane as a boundary, and the relay lens group includes a positive power lens along the optical axis in order.
  • the curvature centers of the two surfaces of the third lens are located on the object surface side, the center area of the second surface of the third lens is a second transmission area, and a liquid medium is provided between the two lenses and the object surface;
  • the collimating lens group includes a fifth lens with positive power, a sixth lens with positive power, a seventh lens with positive power, an eighth lens with negative power, and a first lens with positive power along the optical axis.
  • the three lenses are meniscus lenses and the surfaces are all bent toward the object side, and the tenth lens is a biconcave lens;
  • the light energy emitted by the object plane passes through the liquid medium, the first transmission area of the second lens, the second surface of the second lens, the first surface of the third lens, and then the second surface of the third lens in order.
  • the internal reflection area reflects, returns to the first surface of the third lens, passes through the second surface of the second lens, reaches the first surface of the second lens, and is reflected by the internal reflection area of the first surface of the second lens. After reflection, it returns to the second surface of the second lens, enters the first surface of the third lens, and enters the fourth lens through a second transmission region in the center of the second surface of the third lens, and converges to the intermediate image plane.
  • the light energy of the intermediate image plane continues to propagate, and passes through the fifth lens, the sixth lens, the seventh lens, the eighth lens, the ninth lens, the tenth lens, and the first lens in order.
  • the eleventh lens, the twelfth lens, the thirteenth lens, and the fourteenth lens form parallel light to be emitted to the outside of the optical system.
  • it further includes a first lens having no optical power, the first lens and the second lens are cemented lens groups, and the first lens is disposed on a side of the second lens facing the object surface, The first transmission region is disposed in a region where the first surface of the second lens is glued to the first lens.
  • the first lens is a parallel flat plate having no optical power, a spherical lens, or an aspherical lens.
  • the first surface of the second lens may be a planar lens, a spherical lens, or an aspherical lens.
  • the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, the seventh lens, the eighth lens The lens, the ninth lens, the eleventh lens, the twelfth lens, the thirteenth lens, and the fourteenth lens are all made of fused quartz or calcium fluoride material.
  • an aperture stop is further provided between the eighth lens and the ninth lens.
  • the liquid medium is water or a biological immersion solution.
  • optical parameters of the optical system of the micro objective lens are as shown in the following table:
  • the optical surfaces of all the lenses in the system are spherical lenses or aspherical lenses.
  • the present invention provides an optical device having the above-mentioned micro-objective optical system.
  • the optical system and optical equipment of the micro-objective lens proposed by the present invention adopt a refracting structure, specifically a combination of a refracting relay lens group and a complex transmission collimating lens group, which can effectively correct advanced spherical aberration and control the visual aberration.
  • Field-related astigmatism, field curvature, and high-level coma aberrations achieve a field of view greater than 2 mm, a numerical aperture of 1.0, and an imaging quality reaching the diffraction limit in the range of 320 nm to 800 nm.
  • FIG. 1 is a structure and an optical path diagram of a micro objective lens optical system provided in an embodiment of the present invention
  • FIG. 2 is a graph showing a wave aberration of a microscope objective optical system provided by an embodiment of the present invention as a function of a field of view;
  • FIG. 3 is a relative distortion curve of a microscope objective optical system provided in an embodiment of the present invention.
  • an embodiment of the present invention provides a micro-objective optical system, which adopts a refracting structure and includes a relay lens group and a collimator lens group divided by a middle image plane 102 as a boundary.
  • the lens group includes a second lens L2 with a positive refractive power, a third lens L3 with a negative refractive power, and a fourth lens L4 with a negative refractive power in order along the optical axis.
  • the second lens L2 faces the object surface 101 and One surface has a first transmission region.
  • the third lens L3 is a meniscus lens. The centers of curvature of both surfaces of the third lens L3 are located on the object surface 101 side.
  • the center area of the second surface 302 of the third lens is The second transmission area and the third lens L3 remove the other areas of the second transmission area and the second internal reflection area.
  • a liquid medium is provided between the two lenses and the object surface 101.
  • the collimator lens group includes Fifth lens L5 with positive power, sixth lens L6 with positive power, seventh lens L7 with positive power, eighth lens L8 with negative power, ninth lens L9 with positive power, positive power
  • the tenth lens L10 is a biconcave lens, and
  • the two surfaces 301 are reflected by the internal reflection area of the third lens second surface 302, return to the third lens second surface 301, and then pass through the second lens second surface 202 to reach the second lens first
  • a surface 201 is reflected by the internal reflection area of the first surface 201 of the second lens and returns to the second surface 202 of the second lens, enters the second surface 301 of the third lens, and passes through the third lens second.
  • a second transmission region in the center of the surface 302 enters the fourth lens L4 and converges to the intermediate image plane 102
  • the light energy of the intermediate image plane 102 continues to propagate, and sequentially passes through the fifth lens L5, the sixth lens L6, the seventh lens L7, the eighth lens L8, the ninth lens L9, and the first lens.
  • the ten lens L10, the eleventh lens L11, the twelfth lens L12, the thirteenth lens L13, and the fourteenth lens L14 form parallel light that is emitted to the outside of the optical system and will be located on the object surface 101.
  • the light energy emitted by the sample is collimated into parallel light, achieving infinite conjugation, and simultaneously solving the design problems of the optical imaging field of view and the diffraction limit of the wave aberration.
  • the micro-objective lens adopts the form of a refracting structure composed of a single or several materials to effectively balance the aberrations related to the field of view.
  • the first lens L1 further includes a first lens L1 having no optical power
  • the first lens L1 and the second lens L2 are cemented lens groups, and other areas of the second lens L2 excluding the first transmission area are set as first
  • the first lens L1 is disposed on a side of the second lens L2 facing the object surface 101
  • the first transmission region is disposed on the first surface 201 of the second lens and the first lens L1.
  • the first lens L1 may be a parallel flat plate, a spherical lens, or an aspherical lens without power. It should be noted that the first lens L1 may be omitted.
  • the relay lens group is composed of four lenses, including a parallel flat plate, two fold mirrors and a lens. Its role is to form the object surface 101 into an enlarged real image, that is, a primary image surface. Its magnification can be -1.8 ⁇ -2.0;
  • the collimating lens group consists of ten lenses, whose function is to collimate the light on the image plane into parallel light and emit it to the outside of the system.
  • the first surface 201 of the second lens may be a flat surface or a spherical surface. That is, when the first lens L1 is a parallel plate with no power, the first surface 201 of the second lens is a flat design, and the second surface of the second lens L2 is a flat surface. In the case of a spherical lens, the first surface 201 of the second lens correspondingly adopts a spherical design to ensure a good fit when cemented.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6, the seventh lens L7, the eighth lens L8, the ninth lens L9, the eleventh lens L11, the twelfth lens L12, the thirteenth lens L13, and the first The fourteen lenses L14 are all made of fused silica material.
  • the fused silica lens has the technical characteristics of small chromatic aberration, small center blocking, object-side telecentricity, and low distortion.
  • an aperture stop 103 is further provided between the eighth lens L8 and the ninth lens L9.
  • the aperture stop 103 is used to adjust the imaging beam, and its position and the size of the light passing hole affect the optical system. Imaging brightness, sharpness and the size of some aberrations are directly related. The smaller the aperture of the diaphragm, the smaller the spherical aberration, the clearer the image, and the greater the depth of field; but the weaker the image is. The larger the clear hole, the brighter the image; but the larger the spherical aberration, the worse the image's clarity, and the smaller the depth of field.
  • the liquid medium is water or a biological immersion liquid, which is not limited thereto.
  • optical parameters of the microscope objective optical system provided by the present invention are shown in the following table:
  • the optical surfaces of all the lenses in the system are spherical lenses or aspherical lenses, that is, the first lens, the second lens, ..., and the optical surfaces of the thirteenth lens and the fourteenth lens are spherical. Lenses or aspheric lenses.
  • the optical system of the micro-objective lens proposed by the invention can effectively correct the high-level spherical aberration, control the astigmatism, field curvature and primary high-level coma aberration related to the field of view.
  • the imaging quality reaches the diffraction limit.
  • the microscope objective optical system of the present invention uses a collimating lens group consisting of ten lenses to correct the primary and advanced spherical aberrations of the relay lens group, especially the advanced astigmatism and advanced field curvature related to the field of view. Finally, a large field of view design is realized, and the micro objective optical system provided by the invention also has the characteristics of compact structure.
  • the technical index of the optical system of the micro objective lens of the present invention is shown in Table 1.
  • the change curve of the field of view is the change curve of the wave aberration with the field of view of the micro objective optical system at the working wavelength of 632nm; the solid red line is the change of the wave aberration of the micro objective optical system at the 712nm operating wavelength.
  • Field variation curve as can be seen in Figure 2, the full-field wave aberration in the working band is less than 0.029 ⁇ .
  • the abscissa is relative distortion, the unit is%; the ordinate is the object-side field of view; the curves in Figure 3 give the relative distortion curves of the working wavelengths of 553nm, 632nm, and 712nm, respectively, the limits within the entire field of view Less than 0.006%, the variation of the wave aberration of the optical system of the micro objective lens with the field of view is shown in Figure 2.
  • Each distortion curve of the system is shown in Figure 3, and the relative distortion of the entire field of view is less than 0.006%.
  • the present invention provides an optical device having the above-mentioned micro-objective optical system, which effectively corrects high-level spherical aberration, controls astigmatism, field curvature, and high-level coma aberration related to the field of view.
  • the field of view is greater than 2mm
  • the numerical aperture is 1.0
  • the imaging quality reaches the diffraction limit.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.
  • the program may be stored in a computer-readable storage medium.
  • the storage medium may include: Read-only memory (ROM, Read Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Lenses (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

显微物镜光学系统及光学设备,采用折反射式结构,具体为折反射中继镜组与复杂透射式准直镜组相结合的方式,有效校正高级球差,控制了与视场有关的像散、场曲及初高级彗差,在波段320nm~800nm范围内,实现视场大于2mm,数值孔径为1.0,成像质量达到衍射限。

Description

显微物镜光学系统及光学设备 技术领域
本发明涉及光学领域,特别涉及一种显微物镜光学系统及光学设备。
背景技术
超高通量显微物镜具有大视场、大数值孔径、宽谱段等特点,在生物学、计量学以及半导体检测等领域有着广泛的应用。以生物学中基因测序用显微物镜为例,待成像的样品在激光的作用下发出微弱的荧光,显微物镜需要对弱荧光具有较高的能量收集能力,同时要求显微物镜具有较高的分辨率,因此需要光学系统具有较大的数值孔径。此外,为提高测量效率光学系统应该具有较大的成像视场,通常情况下要求的视场比标准显微物镜的视场大很多。
目前比较通用的技术方案为透射式系统,其缺点包括:第一,对材料折射率和阿贝数公差要求比较严格;第二,在同等指标要求下,透射式光学系统的长度比较大,光学元件的口径也比较大,镜片的数量也更多;第三,为校正二级光谱和倍率色差,必然用到一些特殊的难以制造的光学材料,例如氟化钙。国内外公开的期刊和专利中也公开了一些折反射结构形式,例如美国专利USP8675276公开了宽频带显微术折反射成像系统,但是其设计视场比较小,典型系统的物方视场为0.15mm,由于现有技术没有对视场有关的像差进行校正和平衡,特别是像散、场曲和初高级彗差,因此所实现成像视场较小且波像差较大。
发明内容
有鉴于此,本发明实施例提供了一种显微物镜光学系统及光学设备,有效校正高级球差,控制了与视场有关的像散、场曲及初高级彗差,在波段320nm~800nm范围内,实现视场大于2mm,数值孔径为1.0,成像质量达到衍射限。
第一方面,本发明提供一种显微物镜光学系统,包括以中间像面为界分成的中继镜组和准直镜组,所述中继镜组沿着光轴依次包括正光焦度的第二透镜、负光焦度的第三透镜以及负光焦度的第四透镜,其中,所述第二透镜朝向物面第一表面具有第一透射区,所述第三透镜为弯月透镜,所述第三透镜的两个表面的曲率中心均位于物面一侧,第三透镜第二表面中心区域为第二透射区,所述二透镜和物面之间设有液体介质;
所述准直镜组沿着光轴依次包括正光焦度的第五透镜、正光焦度的第六透镜、正光焦度的第七透镜、负光焦度的第八透镜、正光焦度的第九透镜、正光焦度的第十透镜、正光焦度的第十一透镜、负光焦度的第十二透镜以及负光焦度的第十三透镜,其中,所述第五透镜、所述第六透镜、所述第七透镜、所述第九透镜和所述第十四透镜为双凸透镜,所述第八透镜、所述第十一透镜、所述第十二透镜和所述第十三透镜为弯月透镜且表面均弯向物面一侧,所述第十透镜为双凹透镜;
由物面发出的光能量依次经过液体介质、所述第二透镜的第一透射区、所述第二透镜第二表面、所述第三透镜第一表面后经所述第三透镜第二表面内反射区域反射,返回到所述第三透镜第一表面,再经过所述第二透镜第二表面,到达所述第二透镜第一表面,被所述第二透镜第一表面的内反射区域反射后回到第二透镜第二表面,进入所述第三透镜第一表面,透过所述第三透镜第二表面中心的第二透射区进入所述第四透镜,汇聚到中间像面,中间像面的光能量继续传播,依次经过所述第五透镜、所述第六透镜、所述第七透镜、所述第八透镜、所述第九透镜、所述第十透镜、所述第十一透镜、所述第十二透镜、所述第十三透镜、所述第十四透镜形成平行光发射到光学系统外部。
可选地,还包括无光焦度的第一透镜,所述第一透镜和所述第二透镜为胶合透镜组,所述第一透镜设置在所述第二透镜朝向物面的一侧,所述第一透射区设置在所述第二透镜第一表面与所述第一透镜胶合的区域。
可选地,所述第一透镜为无光焦度的平行平板、球面透镜或非球面透镜。
可选地,所述第二透镜第一表面可以为平面、球面透镜或非球面透镜。
可选地,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜、所述第七透镜、所述第八透镜、所述第九透镜、 所述第十一透镜、所述第十二透镜、所述第十三透镜以及所述第十四透镜均采用熔石英或氟化钙材料制成。
可选地,所述第八透镜和所述第九透镜之间还设有孔径光阑。
可选地,所述液体介质为水或生物浸液。
可选地,所述显微物镜光学系统的光学参数具体如下表所示:
Figure PCTCN2019104307-appb-000001
Figure PCTCN2019104307-appb-000002
可选地,所述系统中全部透镜的光学表面均为球面透镜或非球面透镜。
第二方面,本发明提供一种光学设备,具有上述的显微物镜光学系统。
从以上技术方案可以看出,本发明实施例具有以下优点:
本发明提出的显微物镜光学系统及光学设备,采用折反射式结构,具体为折反射中继镜组与复杂透射式准直镜组相结合的方式,有效校正高级球差,控制了与视场有关的像散、场曲及初高级彗差,在波段320nm~800nm范围内,实现视场大于2mm,数值孔径为1.0,成像质量达到衍射限。
附图说明
图1是本发明实施例中提供的显微物镜光学系统的结构及光路图;
图2是本发明实施例中提供的显微物镜光学系统的波像差随视场的变化曲线图;
图3是本发明实施例中提供的显微物镜光学系统的相对畸变曲线。
附图标记:
L1-第一透镜,L2-第二透镜,L3-第三透镜,L4-第四透镜,L5-第五透镜,L6-第六透镜,L7-第七透镜,L8-第八透镜,L9-第九透镜,L10-第十透镜,L11-第十一透镜,L12-第十二透镜,L13-第十三透镜,L14-第十四透镜,101-物面,102-中间像面,103-孔径光阑,201-第二透镜第一表面,202-第二透镜第二表面,301-第三透镜第一表面,302-第三透镜第二表面。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
结合图1所示,本发明实施例中提供一种显微物镜光学系统,采用折反射式结构,包括以中间像面102为界分成的中继镜组和准直镜组,所述中继镜组沿着光轴依次包括正光焦度的第二透镜L2、负光焦度的第三透镜L3以及负光焦度的第四透镜L4,其中,所述第二透镜L2朝向物面101第一表面具有第一透射区,所述第三透镜L3为弯月透镜,所述第三透镜L3的两个表面的曲率中心均位于物面101一侧,第三透镜第二表面302中心区域为第二透射区,第三透镜L3除去第二透射区的其他区域第二内反射区域,所述二透镜和物面101之间设有液体介质,所述准直镜组沿着光轴依次包括正光焦度的第五透镜L5、正光焦度的第六透镜L6、正光焦度的第七透镜L7、负光焦度的第八透镜L8、正光焦度的第九透镜L9、正光焦度的第十透镜L10、正光焦度的第十一透镜L11、负光焦度的第十二透镜L12以及负光焦度的第十三透镜L13,其中,所述第五透镜L5、所述第六透镜L6、所述第七透镜L7、所述第九透镜L9和所述第十四透镜L14为双凸透镜,所述第八透镜L8、所述第十一透镜L11、所述第十二透镜L12和所述第十三透镜L13为弯月透镜且表面均弯向物面101一侧,所述第十透镜L10为双凹透镜,由物面101发出的光能量依次经过液体介质、 所述第二透镜L2的第一透射区、所述第二透镜第二表面202、所述第三透镜第二表面301后经所述第三透镜第二表面302内反射区域反射,返回到所述第三透镜第二表面301,再经过所述第二透镜第二表面202,到达所述第二透镜第一表面201,被所述第二透镜第一表面201的内反射区域反射后回到第二透镜第二表面202,进入所述第三透镜第二表面301,透过所述第三透镜第二表面302中心的第二透射区进入所述第四透镜L4,汇聚到中间像面102,中间像面102的光能量继续传播,依次经过所述第五透镜L5、所述第六透镜L6、所述第七透镜L7、所述第八透镜L8、所述第九透镜L9、所述第十透镜L10、所述第十一透镜L11、所述第十二透镜L12、所述第十三透镜L13、所述第十四透镜L14形成平行光发射到光学系统外部,将位于物面101的样品发射出的光能量准直成平行光,实现无限共轭,同时解决了光学成像视场和波像差衍射限的设计问题。显微物镜采用单种或几种材料组成的折反射结构形式,有效平衡与视场有关像差。
可选地,还包括无光焦度的第一透镜L1,所述第一透镜L1和所述第二透镜L2为胶合透镜组,第二透镜L2除去第一透射区的其他区域设为第一内反射区域,所述第一透镜L1设置在所述第二透镜L2朝向物面101的一侧,所述第一透射区设置在所述第二透镜第一表面201与所述第一透镜L1胶合的区域,第一透镜L1可以采用无光焦度的平行平板、球面透镜或非球面透镜,需要说明的是第一透镜L1可以省掉。
中继镜组由四个镜片组成,其中包含一个平行平板、两个折反射镜和一个透镜,其作用是将物面101形成一个放大的实像即一次像面,其放大倍率可在-1.8~-2.0;准直镜组由十片透镜,其作用是一次像面的光准直成平行光发射到系统外部。
对应的,第二透镜第一表面201可以为平面或球面,即在第一透镜L1采用无光焦度的平行平板时候,第二透镜第一表面201采用平面设计,而在第二透镜L2采用球面透镜时候,第二透镜第一表面201则对应采用球面设计以保证在胶合时候的良好的贴合。
对于透镜的材质,本实施例中,所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5、所述第六透镜L6、所述 第七透镜L7、所述第八透镜L8、所述第九透镜L9、所述第十一透镜L11、所述第十二透镜L12、所述第十三透镜L13以及所述第十四透镜L14均采用熔石英材料制成,熔石英透镜具有色差小、中心遮拦小、物方远心以及低畸变等技术特点。
可选地,所述第八透镜L8和所述第九透镜L9之间还设有孔径光阑103,孔径光阑103用来调整成像光束,它的位置及通光孔的大小对光学系统所成像的明亮程度、清晰度和某些像差的大小有直接关系。该光阑的通光孔越小,球差越小,像越清晰,景深越大;但像的明亮程度越弱。通光孔越大,像的明亮程度越强;但球差越大,像的清晰程度越差,景深越小。
本实施例中,所述液体介质为水或生物浸液,对此不做限定。
本发明提供的显微物镜光学系统的光学参数具体如下表所示:
Figure PCTCN2019104307-appb-000003
Figure PCTCN2019104307-appb-000004
本实施例中,所述系统中全部透镜的光学表面均为球面透镜或非球面透镜,即第一透镜、第二透镜,……,第十三透镜以及第十四透镜的光学表面都采用球面透镜或非球面透镜。
本发明提出的显微物镜光学系统,有效校正高级球差,控制了与视场有关的像散、场曲及初高级彗差,在波段320nm~800nm范围内,实现视场大于2mm,数值孔径为1.0,成像质量达到衍射限。
本发明的显微物镜光学系统,采用由十片透镜组成的准直镜组,对中继镜组的初级和高级球差,特别是与视场有关的高级像散、高级场曲进行校正,最终实现了大视场设计,采用本发明提供的显微物镜光学系统还具有结构紧凑的特点。
本发明的显微物镜光学系统技术指标如表1所示。
工作波段 320nm~800nm
物方视场 2.08mm
物方数值孔径NA 1.0
光学长度(物面101 ≤160mm
到透镜L14)  
表1显微物镜光学系统达到的技术指标
下面通过实验数据对本发明的效果加以佐证,具体地,结合图2所示,横坐标为半视场,单位是毫米,最大值为1.04mm;纵坐标为RMS波像差值,单位是波长λ(λ=632nm);黑实线为显微物镜光学系统考虑三个主要工作波长时波像差随视场的变化曲线;蓝色虚线为显微物镜光学系统在553nm工作波长时波像差随视场的变化曲线;绿色点划线为显微物镜光学系统在632nm工作波长时波像差随视场的变化曲线;红色实线为显微物镜光学系统在712nm工作波长时波像差随视场的变化曲线;图2中可以看出,工作波段内全视场波像差小于0.029λ。结合图3所示,横坐标为相对畸变,单位是%;纵坐标为物方视场;图3中的曲线分别给出了工作波长553nm、632nm和712nm相对畸变曲线,整个视场范围内极限小于0.006%,显微物镜光学系统各个波段的波像差随视场的变化情况如图2所示,整个视场的波像差在0.025λ~0.030λ(λ=632nm),显微物镜光学系统各个畸变曲线如图3所示,整个视场的相对畸变小于0.006%。
第二方面,本发明提供一种光学设备,具有上述的显微物镜光学系统,效校正高级球差,控制了与视场有关的像散、场曲及初高级彗差,在波段320nm~800nm范围内,实现视场大于2mm,数值孔径为1.0,成像质量达到衍射限。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为 单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器(ROM,Read Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或光盘等。
以上对本发明所提供的一种显微物镜光学系统及光学设备进行了详细介绍,对于本领域的一般技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种显微物镜光学系统,其特征在于,包括以中间像面为界分成的中继镜组和准直镜组,所述中继镜组沿着光轴依次包括正光焦度的第二透镜、负光焦度的第三透镜以及负光焦度的第四透镜,其中,所述第二透镜朝向物面第一表面具有第一透射区,所述第三透镜为弯月透镜,所述第三透镜的两个表面的曲率中心均位于物面一侧,第三透镜第二表面中心区域为第二透射区,所述二透镜和物面之间设有液体介质;
    所述准直镜组沿着光轴依次包括正光焦度的第五透镜、正光焦度的第六透镜、正光焦度的第七透镜、负光焦度的第八透镜、正光焦度的第九透镜、正光焦度的第十透镜、正光焦度的第十一透镜、负光焦度的第十二透镜以及负光焦度的第十三透镜,其中,所述第五透镜、所述第六透镜、所述第七透镜、所述第九透镜和所述第十四透镜为双凸透镜,所述第八透镜、所述第十一透镜、所述第十二透镜和所述第十三透镜为弯月透镜且表面均弯向物面一侧,所述第十透镜为双凹透镜;
    由物面发出的光能量依次经过液体介质、所述第二透镜的第一透射区、所述第二透镜第二表面、所述第三透镜第一表面后经所述第三透镜第二表面内反射区域反射,返回到所述第三透镜第一表面,再经过所述第二透镜第二表面,到达所述第二透镜第一表面,被所述第二透镜第一表面的内反射区域反射后回到第二透镜第二表面,进入所述第三透镜第一表面,透过所述第三透镜第二表面中心的第二透射区进入所述第四透镜,汇聚到中间像面,中间像面的光能量继续传播,依次经过所述第五透镜、所述第六透镜、所述第七透镜、所述第八透镜、所述第九透镜、所述第十透镜、所述第十一透镜、所述第十二透镜、所述第十三透镜、所述第十四透镜形成平行光发射到光学系统外部。
  2. 根据权利要求1所述的显微物镜光学系统,其特征在于,还包括无光焦度的第一透镜,所述第一透镜和所述第二透镜为胶合透镜组,所述第一透镜设置在所述第二透镜朝向物面的一侧,所述第一透射区设置在所述第二透镜第一表面与所述第一透镜胶合的区域。
  3. 根据权利要求2所述的显微物镜光学系统,其特征在于,所述第一透镜为无光焦度的平行平板、球面透镜或非球面透镜。
  4. 根据权利要求1或3所述的显微物镜光学系统,其特征在于,所述第二透镜第一表面可以为平面或球面。
  5. 根据权利要求2所述的显微物镜光学系统,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜、所述第七透镜、所述第八透镜、所述第九透镜、所述第十一透镜、所述第十二透镜、所述第十三透镜以及所述第十四透镜均采用熔石英或氟化钙材料制成。
  6. 根据权利要求1所述的显微物镜光学系统,其特征在于,所述第八透镜和所述第九透镜之间还设有孔径光阑。
  7. 根据权利要求2所述的显微物镜光学系统,其特征在于,所述液体介质为水或生物浸液。
  8. 根据权利要求7所述的显微物镜光学系统,其特征在于,所述显微物镜光学系统的光学参数具体如下表所示:
    Figure PCTCN2019104307-appb-100001
    Figure PCTCN2019104307-appb-100002
  9. 根据权利要求2所述的显微物镜光学系统,其特征在于,所述系统中全部透镜的光学表面均为球面透镜或非球面透镜。
  10. 一种光学设备,其特征在于,具有如权利要求1至9中任一项所述的显微物镜光学系统。
PCT/CN2019/104307 2018-09-04 2019-09-04 显微物镜光学系统及光学设备 WO2020048474A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/897,311 US11415781B2 (en) 2018-09-04 2020-06-10 Microobjective optical system and optical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811028030.8 2018-09-04
CN201811028030.8A CN108873289B (zh) 2018-09-04 2018-09-04 显微物镜光学系统及光学设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/897,311 Continuation US11415781B2 (en) 2018-09-04 2020-06-10 Microobjective optical system and optical device

Publications (1)

Publication Number Publication Date
WO2020048474A1 true WO2020048474A1 (zh) 2020-03-12

Family

ID=64323146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104307 WO2020048474A1 (zh) 2018-09-04 2019-09-04 显微物镜光学系统及光学设备

Country Status (3)

Country Link
US (1) US11415781B2 (zh)
CN (1) CN108873289B (zh)
WO (1) WO2020048474A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114114613A (zh) * 2021-11-01 2022-03-01 湖南长步道光学科技有限公司 一种超低畸变光学系统及工业镜头

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108873289B (zh) 2018-09-04 2024-02-09 中国科学院长春光学精密机械与物理研究所 显微物镜光学系统及光学设备
CN110187490A (zh) * 2019-04-30 2019-08-30 宁波永新光学股份有限公司 一种提高显微镜物镜分辨率的方法
CN111175956A (zh) * 2019-12-23 2020-05-19 中国科学院长春光学精密机械与物理研究所 宽谱段大数值孔径的显微物镜
CN111965784B (zh) * 2020-07-21 2021-09-17 中国科学院长春光学精密机械与物理研究所 三线阵航测相机光学系统及三线阵航测相机
CN112269256B (zh) * 2020-10-21 2022-07-05 麦克奥迪实业集团有限公司 一种显微镜物镜
CN114859540B (zh) * 2022-05-23 2023-06-09 苏州瑞霏光电科技有限公司 一种用于晶圆aoi检测的紫外-可见显微物镜光学系统
CN116338924B (zh) * 2023-05-30 2023-08-18 睿励科学仪器(上海)有限公司 一种显微物镜光学系统、硅片缺陷的检测装置及检测方法
CN117270185B (zh) * 2023-11-17 2024-02-20 长春长光智欧科技有限公司 一种大数值孔径宽光谱的显微光学系统
CN117647880B (zh) * 2024-01-29 2024-04-05 长春长光智欧科技有限公司 浸液式高数值孔径宽谱段显微物镜光学系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040240047A1 (en) * 2003-02-21 2004-12-02 Shafer David R. Catadioptric imaging system for broad band microscopy
US6842298B1 (en) * 2000-09-12 2005-01-11 Kla-Tencor Technologies Corporation Broad band DUV, VUV long-working distance catadioptric imaging system
US20080247035A1 (en) * 2003-02-21 2008-10-09 Kla-Tencor Technologies Corporation Catadioptric imaging system employing immersion liquid for use in broad band microscopy
CN102906619A (zh) * 2010-05-27 2013-01-30 佳能株式会社 反射折射系统和图像拾取装置
JP2015118215A (ja) * 2013-12-18 2015-06-25 キヤノン株式会社 光学装置および撮像装置
CN108873289A (zh) * 2018-09-04 2018-11-23 中国科学院长春光学精密机械与物理研究所 显微物镜光学系统及光学设备
CN208780900U (zh) * 2018-09-04 2019-04-23 中国科学院长春光学精密机械与物理研究所 显微物镜光学系统及光学设备

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5717518A (en) * 1996-07-22 1998-02-10 Kla Instruments Corporation Broad spectrum ultraviolet catadioptric imaging system
EP1059550A4 (en) * 1998-12-25 2003-03-19 Nikon Corp REFRACTION REFLECTION IMAGE FORMING SYSTEM AND PROJECTION EXPOSURE APPARATUS INCLUDING THE OPTICAL SYSTEM
US6995930B2 (en) * 1999-12-29 2006-02-07 Carl Zeiss Smt Ag Catadioptric projection objective with geometric beam splitting
US7136159B2 (en) * 2000-09-12 2006-11-14 Kla-Tencor Technologies Corporation Excimer laser inspection system
JP4066079B2 (ja) * 2001-11-26 2008-03-26 株式会社ニコン 対物レンズ及びそれを用いた光学装置
US7180658B2 (en) * 2003-02-21 2007-02-20 Kla-Tencor Technologies Corporation High performance catadioptric imaging system
US7646533B2 (en) * 2003-02-21 2010-01-12 Kla-Tencor Technologies Corporation Small ultra-high NA catadioptric objective
US7466489B2 (en) * 2003-12-15 2008-12-16 Susanne Beder Projection objective having a high aperture and a planar end surface
JP2010250136A (ja) * 2009-04-17 2010-11-04 Olympus Corp 対物光学系及び落射型蛍光観察装置
JP5479206B2 (ja) * 2010-04-28 2014-04-23 キヤノン株式会社 反射屈折光学系及びそれを有する撮像装置
JP5656682B2 (ja) * 2011-02-22 2015-01-21 キヤノン株式会社 反射屈折光学系及びそれを有する撮像装置
JP5836686B2 (ja) * 2011-07-28 2015-12-24 キヤノン株式会社 反射屈折光学系及びそれを有する撮像装置
US8908294B2 (en) * 2012-05-18 2014-12-09 Canon Kabushiki Kaisha Catadioptric optical system with high numerical aperture
US9329373B2 (en) * 2013-02-13 2016-05-03 Canon Kabushiki Kaisha Catadioptric optical system with multi-reflection element for high numerical aperture imaging
DE102013105586B4 (de) * 2013-05-30 2023-10-12 Carl Zeiss Ag Vorrichtung zur Abbildung einer Probe
JP2015036706A (ja) * 2013-08-12 2015-02-23 キヤノン株式会社 撮像装置
CN103837974B (zh) * 2014-02-26 2016-04-13 中国科学院上海光学精密机械研究所 筒长无限的显微物镜光学系统
JP2015176134A (ja) * 2014-03-18 2015-10-05 キヤノン株式会社 撮像装置
CN105807410B (zh) * 2014-12-31 2018-11-09 上海微电子装备(集团)股份有限公司 一种基于高数值孔径的折反射式投影物镜
CN106772976B (zh) * 2017-02-28 2019-09-20 浙江大学 一种显微物镜以及宽视场高分辨率成像系统
CN107505696B (zh) * 2017-09-15 2019-05-07 中国科学院长春光学精密机械与物理研究所 平场复消色差显微物镜
CN107576401B (zh) * 2017-09-20 2018-11-16 中国科学院长春光学精密机械与物理研究所 一种制冷型热成像系统
CN115598819B (zh) * 2022-10-17 2023-06-16 佛山迈奥光学科技有限公司 一种高分辨率大视场浸液显微物镜

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6842298B1 (en) * 2000-09-12 2005-01-11 Kla-Tencor Technologies Corporation Broad band DUV, VUV long-working distance catadioptric imaging system
US20040240047A1 (en) * 2003-02-21 2004-12-02 Shafer David R. Catadioptric imaging system for broad band microscopy
US20080247035A1 (en) * 2003-02-21 2008-10-09 Kla-Tencor Technologies Corporation Catadioptric imaging system employing immersion liquid for use in broad band microscopy
CN102906619A (zh) * 2010-05-27 2013-01-30 佳能株式会社 反射折射系统和图像拾取装置
JP2015118215A (ja) * 2013-12-18 2015-06-25 キヤノン株式会社 光学装置および撮像装置
CN108873289A (zh) * 2018-09-04 2018-11-23 中国科学院长春光学精密机械与物理研究所 显微物镜光学系统及光学设备
CN208780900U (zh) * 2018-09-04 2019-04-23 中国科学院长春光学精密机械与物理研究所 显微物镜光学系统及光学设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114114613A (zh) * 2021-11-01 2022-03-01 湖南长步道光学科技有限公司 一种超低畸变光学系统及工业镜头
CN114114613B (zh) * 2021-11-01 2023-08-29 湖南长步道光学科技有限公司 一种超低畸变光学系统及工业镜头

Also Published As

Publication number Publication date
CN108873289B (zh) 2024-02-09
US11415781B2 (en) 2022-08-16
US20200301115A1 (en) 2020-09-24
CN108873289A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
WO2020048474A1 (zh) 显微物镜光学系统及光学设备
US7046451B2 (en) Immersion microscope objective lens
CN208780900U (zh) 显微物镜光学系统及光学设备
CN108318995B (zh) 一种透镜系统和镜头
JPH10274742A (ja) 液浸系顕微鏡対物レンズ
JPS5850509A (ja) 小型望遠レンズ
JP2003015047A (ja) 液浸系顕微鏡対物レンズ
JP5479206B2 (ja) 反射屈折光学系及びそれを有する撮像装置
US11048071B2 (en) Microscope objective
JP2006064829A (ja) 望遠レンズ系
JP5836686B2 (ja) 反射屈折光学系及びそれを有する撮像装置
RU2451312C1 (ru) Объектив
EP3557302A1 (en) Dry objective
JPH09292571A (ja) 顕微鏡対物レンズ
CN104749746B (zh) 一种宽光谱大视场投影物镜
JPH09222565A (ja) 顕微鏡対物レンズ
RU121091U1 (ru) Объектив с вынесенным зрачком
JP2019191275A (ja) 顕微鏡対物レンズ
RU2784320C1 (ru) Объектив-апохромат
JP7214192B2 (ja) 液浸系顕微鏡対物レンズ、結像レンズ及び顕微鏡装置
JP2001208976A (ja) 顕微鏡用対物レンズ
JP2000241710A (ja) 顕微鏡対物レンズ
JP2013015718A (ja) 反射屈折光学系及びそれを有する撮像装置
JP5387960B2 (ja) 平行系実体顕微鏡用対物レンズ
JP3960784B2 (ja) 顕微鏡対物レンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19856856

Country of ref document: EP

Kind code of ref document: A1