WO2020048150A1 - 锂离子电池正极、全固态锂离子电池及其制备方法与用电器件 - Google Patents

锂离子电池正极、全固态锂离子电池及其制备方法与用电器件 Download PDF

Info

Publication number
WO2020048150A1
WO2020048150A1 PCT/CN2019/086704 CN2019086704W WO2020048150A1 WO 2020048150 A1 WO2020048150 A1 WO 2020048150A1 CN 2019086704 W CN2019086704 W CN 2019086704W WO 2020048150 A1 WO2020048150 A1 WO 2020048150A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
positive electrode
ion battery
lithium
film
Prior art date
Application number
PCT/CN2019/086704
Other languages
English (en)
French (fr)
Inventor
夏晖
夏求应
孙硕
昝峰
徐璟
岳继礼
Original Assignee
天津瑞晟晖能科技有限公司
南京理工大学北方研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津瑞晟晖能科技有限公司, 南京理工大学北方研究院 filed Critical 天津瑞晟晖能科技有限公司
Priority to US16/652,764 priority Critical patent/US11600819B2/en
Publication of WO2020048150A1 publication Critical patent/WO2020048150A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • H01M4/0426Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/40Printed batteries, e.g. thin film batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of batteries, and in particular, to a lithium-ion battery positive electrode, an all-solid-state lithium-ion battery, a preparation method thereof, and a power consumption device.
  • Lithium-ion batteries are widely used in consumer electronics, power tools, medical electronics, electric vehicles, rail transit, aerospace, and large-scale renewable energy access due to their many advantages such as high working voltage, high energy density, long cycle life, and no memory effect.
  • Power grid peak frequency modulation, distributed energy storage and other fields have a wide range of applications.
  • current commercial lithium-ion batteries have the characteristics of being flammable, explosive, and volatile due to the use of a liquid organic electrolyte, and safety accidents have occurred frequently in recent years.
  • Using a solid electrolyte instead of a liquid organic electrolyte, and preparing an all-solid-state thin-film battery can fundamentally solve the safety problem of lithium-ion batteries.
  • the all-solid-state thin-film lithium-ion battery is prepared on the conductive substrate in the order of the positive electrode, the electrolyte, and the negative electrode into a thin film, and finally encapsulated to form a whole battery. Its working principle is similar to that of a commercial lithium-ion battery. Compared with commercial lithium-ion batteries using liquid electrolytes, all-solid-state thin-film lithium-ion batteries have the characteristics of high energy density, excellent electrical performance, and high battery packaging efficiency, which also makes them widely used in various microelectronic devices.
  • the purpose of the present application is to provide a lithium ion battery positive electrode to solve the problem that the existing positive electrode suitable for all solid state lithium ion batteries is prone to cracking, peeling under high temperature annealing conditions, and difficult to achieve integration with circuits, and is not easy to withstand high temperature solubility Technical issues of substrate bonding.
  • the purpose of the present application also includes providing an all-solid-state lithium-ion battery, and solving the difficulties of integration in integrated circuits, harsh production environments, and difficulty in high-temperature applications in the existing positive and negative lithium-containing solid-state lithium-ion batteries. technical problem.
  • the purpose of this application also includes providing a method for preparing an all-solid-state lithium-ion battery.
  • the object of the present application is also to provide an electric device including the all-solid-state lithium-ion battery.
  • a lithium ion battery positive electrode includes a positive electrode current collector and a positive electrode material layer disposed on a surface of the positive electrode current collector.
  • the positive electrode active material in the positive electrode material layer is: a manganese oxide compound; preferably, the manganese oxide compound includes : A compound of one or more of manganese dioxide, manganese trioxide, or trimanganese tetraoxide.
  • An all-solid-state lithium-ion battery includes a positive electrode, a solid electrolyte, and a negative electrode; wherein the positive electrode includes a positive electrode current collector and a positive electrode material layer disposed on a surface of the positive electrode current collector, and the positive electrode active material in the positive electrode material layer is : A manganese oxide compound; the negative electrode material includes: a negative electrode current collector and a negative electrode material layer provided on a surface of the negative electrode current collector; the negative electrode active material in the negative electrode material is: a titanium oxide compound; preferably, the manganese oxide compound includes : A composite of one or more of manganese dioxide, manganese trioxide, or trimanganese tetraoxide; more preferably, the cathode material layer is a manganese oxide compound film; preferably, the titanium oxide compound includes: Titanium dioxide; more preferably, the negative electrode material layer is a titanium oxide thin film.
  • a method for preparing an all-solid-state lithium-ion battery includes: sequentially combining a positive electrode, a solid-state electrolyte, and a negative electrode to obtain an all-solid-state lithium-ion battery.
  • An electric device includes the all-solid-state lithium-ion battery described in this application.
  • the all-solid-state lithium-ion battery in this application can be used in an ultra-high temperature range, with a maximum use temperature of 300 ° C, which can expand the application of all-solid-state thin-film lithium-ion batteries in aerospace or high-temperature places.
  • the all-solid-state lithium-ion battery of the present application has low requirements on the preparation site and greatly reduces the success rate of battery preparation.
  • the preparation of the all-solid-state lithium-ion battery of the present application does not require a high-temperature processing process, which can simplify the manufacturing process and reduce the manufacturing cost, and can also be matched with the semiconductor process to achieve the integration of the solid-state thin-film battery on the microcircuit.
  • the all-solid-state lithium-ion battery of this application can be prepared on various substrates, including conventional high-temperature-resistant stainless steel, alumina, silicon wafer, and glass-sheet substrates, or on lightweight, non-high-temperature paper, Polymer (such as polyimide) and other, and can develop a unique all-solid-state "paper battery”.
  • Example 1 is a schematic structural diagram of an all-solid-state thin-film lithium-ion battery prepared in Example 1 of the present application;
  • FIG. 2 is a SEM image of the Mn 3 O 4 cathode film prepared in Example 1 of the present application;
  • FIG. 3 is a Raman diagram of a Mn 3 O 4 cathode film prepared in Example 1 of the present application; FIG.
  • FIG. 4 is a Raman diagram of a Mn 3 O 4 cathode film prepared in Example 1 of the present application.
  • FIG. 5 is an XPS chart of the Mn 3 O 4 cathode film prepared in Example 1 of the present application.
  • FIG. 6 is an SEM image of the TiO 2 thin film prepared in Example 1 of the present application.
  • Example 7 is an XRD pattern of the TiO 2 thin film prepared in Example 1 of the present application.
  • FIG. 8 is a Raman diagram of a TiO 2 thin film prepared in Example 1 of the present application.
  • Example 9 is a SEM image of a cross-section of an all-solid-state thin-film lithium-ion battery prepared in Example 1 of the present application;
  • FIG. 10 is a performance test chart of the Mn 3 O 4 / LiPON / TiO 2 all-solid-state thin-film lithium-ion battery prepared in Example 1 of the present application;
  • Example 11 is a SEM image of the MnOx amorphous film prepared in Example 2 of the present application.
  • FIG. 12 is an XRD pattern of the MnOx amorphous thin film prepared in Example 2 of the present application.
  • Example 13 is a SEM image of a lithium ion cross section of the MnOx / LiPON / TiO 2 all-solid-state thin film prepared in Example 2 of the present application;
  • Example 14 is a schematic diagram of a packaged paper battery prepared in Example 2 of the present application.
  • Example 15 is an electrochemical performance test chart of lithium ion of the MnOx / LiPON / TiO 2 all-solid-state thin film prepared in Example 2 of this application;
  • FIG. 16 is a structural diagram of a polyimide battery prepared in Example 3 of the present application.
  • 17 is an electrochemical performance test chart of an all-solid-state thin-film lithium-ion battery prepared in Example 3 of the present application;
  • FIG. 20 is an electrochemical performance diagram of an all-solid-state thin-film lithium-ion battery prepared in Comparative Example 3 of the present application.
  • Fig. 1 1-positive electrode current collector, 2-positive electrode material layer, 3-solid electrolyte layer, 4-negative electrode material layer, 5-negative electrode current collector;
  • (a) is a SEM image of a 500 nm scale
  • (b) is a SEM image of a 1 ⁇ m scale
  • FIG. 6 (a) is a SEM image of a 500 nm scale, and (b) is a SEM image of a 1 ⁇ m scale;
  • (a) is a charge-discharge curve diagram at room temperature
  • (b) is a cycle performance diagram at room temperature
  • (c) is a charge-discharge curve diagram at different temperatures
  • (d) is a charge-discharge curve diagram at 240 ° C;
  • (a) is a CV graph
  • (b) is a charge-discharge graph
  • (c) a cycle performance graph
  • (a) is a CV graph
  • (b) is a charge-discharge graph
  • (c) a cycle performance graph.
  • the present application provides a lithium ion battery positive electrode, which includes a pole current collector and a positive electrode material layer disposed on a surface of the positive electrode current collector.
  • the positive electrode active material in the positive electrode material layer is a manganese oxide compound.
  • a manganese oxide compound is used as a positive electrode active material of the lithium ion battery.
  • manganese oxide compounds can be annealed below 400 ° C and have a high degree of crystallinity or can maintain good electrochemical performance without annealing and crystallization. Therefore, the use of manganese oxide compounds as the positive electrode active material has the advantages of low preparation temperature, low preparation cost, and high flexibility substrates (such as aluminum foil, paper, polymer, etc.) that are not resistant to high temperatures.
  • the all-solid-state lithium ion battery can be matched with a semiconductor process and used to manufacture an integrated circuit.
  • the manganese oxide compound includes: a composite of one or more of manganese dioxide, dimanganese trioxide, or trimanganese tetraoxide;
  • the manganese dioxide, dimanganese trioxide, and trimanganese tetraoxide are each independently selected to have a crystalline or amorphous structure.
  • the positive electrode material layer may include, in addition to the positive electrode active material, a binder, a conductive agent, or other substances that improve the performance of the manganese oxide compound; or the positive electrode material layer only includes the positive electrode active material.
  • the positive electrode material layer includes only a positive electrode active material, that is, the positive electrode material layer is a manganese oxide compound film;
  • the manganese oxide compound film in the manganese oxide compound film, the manganese oxide compound optionally exists in a crystalline or amorphous form.
  • the present application provides an all-solid-state lithium-ion battery, including: a positive electrode, a solid electrolyte, and a negative electrode;
  • the positive electrode includes a positive electrode current collector and a positive electrode material layer disposed on a surface of the positive electrode current collector.
  • the positive electrode active material in the positive electrode material layer is a manganese oxide compound.
  • the negative electrode material includes a negative electrode current collector and a negative electrode material layer disposed on a surface of the negative electrode current collector.
  • the negative electrode active material in the negative electrode material is a titanium oxide compound.
  • an all-solid-state lithium-ion battery having a structure of a positive electrode current collector (layer), a positive electrode material layer, a solid electrolyte (layer), a negative electrode material layer, and a negative electrode current collector (layer) in this order is provided in this application.
  • Lithium-containing materials such as LiCoO 2 materials
  • LiCoO 2 materials are currently the most commonly used cathode film materials in all-solid-state thin-film lithium-ion batteries.
  • lithium-containing cathode materials are usually only annealed at high temperatures (such as LiCoO 2 requires annealing at temperatures above 500 ° C)
  • Obtaining a high degree of crystallinity can ensure its excellent electrochemical performance.
  • the high temperature annealing process is prone to cause the positive electrode active material film to crack and fall off, which leads to the formation of micro short circuits in the thin film battery; on the other hand, the high temperature process does not match the semiconductor process, making it difficult to integrate the solid state thin film battery on the microcircuit.
  • the high-temperature annealing process also makes it difficult to prepare all-solid-state thin-film lithium-ion batteries on substrates (such as polyimide, aluminum foil, etc.) that are not resistant to high temperatures, low costs, and high flexibility.
  • substrates such as polyimide, aluminum foil, etc.
  • the high-temperature annealing process also makes it difficult to prepare all-solid-state thin-film lithium-ion batteries on substrates (such as polyimide, aluminum foil, etc.) that are not resistant to high temperatures, low costs, and high flexibility.
  • substrates such as polyimide, aluminum foil, etc.
  • the soldering temperature is usually higher than 180 during integration).
  • the required production environment is harsh (need to be in a glove box or a high-level clean room), and it is difficult to apply in high temperature places (usually only at less than 180 °C).
  • the all-solid-state lithium-ion battery provided in the present application, neither the positive electrode nor the negative electrode contains a lithium compound or metallic lithium. Since both manganese oxide compounds and titanium oxide compounds can be prepared at normal temperature or a lower temperature (less than 400 ° C), Therefore, the all-solid-state lithium-ion battery of this application also greatly reduces the requirements for the preparation environmental conditions, and can also be matched with the semiconductor process and achieve the integration of the solid-state battery on the microcircuit.
  • the manganese oxide compound in the all-solid-state lithium ion battery, includes: a composite of one or more of manganese dioxide, dimanganese trioxide, or trimanganese tetraoxide;
  • the manganese dioxide, dimanganese trioxide, and trimanganese tetraoxide are each independently selected to be crystalline or amorphous.
  • the positive electrode material layer in addition to the positive electrode active material, may further include a binder, a conductive agent, or other substances that improve the performance of the manganese oxide compound; or, the positive electrode The material layer contains only a positive electrode active material.
  • the positive electrode material layer includes only a positive electrode active material, that is, the positive electrode material layer is a manganese oxide compound film;
  • the manganese oxide compound film in the manganese oxide compound film, the manganese oxide compound optionally exists in a crystalline or amorphous form.
  • the titanium oxide compound in the all-solid-state lithium-ion battery, includes: titanium dioxide;
  • the titanium dioxide is optionally a nitrogen-doped or non-doped titanium dioxide crystal or amorphous compound.
  • the negative electrode material layer in addition to the negative electrode active material, may further include a binder, a conductive agent, or other substances that improve the performance of the titanium oxide compound; or, the negative electrode The material layer contains only a negative electrode active material.
  • the negative electrode material layer includes only a negative electrode active material, that is, the negative electrode material layer is a titanium oxide compound film;
  • the titanium oxide compound in the titanium oxide compound film, optionally exists in a crystalline or amorphous form, and preferably exists in the form of nitrogen-doped or non-doped titanium dioxide crystal or amorphous compound.
  • the solid-state electrolyte in the all-solid-state lithium-ion battery, is a lithium-containing compound.
  • the solid electrolyte in the all-solid-state lithium-ion battery, is selected from the group consisting of LiPON, LiSiON, Li 2 SiO 3 , Li 7 La 3 Zr 2 O 12 , LiBO 3 , Li 3 PO 4 , Li 3 OX (X is F, Cl, Br, etc.), LiTi 2 (PO 4 ) 3 .
  • the all-solid-state lithium-ion battery further includes a substrate, wherein the cathode current collector is disposed on the substrate;
  • the present application can also provide an all-solid-state lithium ion having a structure of a substrate, a positive electrode current collector (layer), a positive electrode material layer, a solid electrolyte (layer), a negative electrode material layer, and a negative electrode current collector (layer) in this order. battery.
  • the solid-state lithium-ion battery of the present application can also be prepared on substrate materials such as paper and polymer that are not resistant to high temperatures, thereby obtaining a unique all-solid-state paper battery. And other new materials.
  • the thickness of the positive electrode material layer is 50-5000 nm, for example, it may be, but is not limited to, 100, 200, 500, 1000, 1500, 2000, 2500, 3000, 3500, and 4000 nm. Etc .; preferably 400nm;
  • the thickness of the negative electrode material layer is 50 to 5000 nm, which may be, for example, but not limited to, 100, 200, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000 nm, etc .; preferably 300 nm;
  • the thickness of the positive electrode current collector layer is 10 to 200 nm, and may be, for example, but is not limited to 30, 50, 100, 120, 150, 180 nm, etc .; preferably 40 nm;
  • the thickness of the negative electrode current collecting layer is 10 to 200 nm, and may be, for example, but is not limited to 30, 50, 100, 120, 150, 180 nm, etc .; preferably 40 nm;
  • the thickness of the solid electrolyte film is 200 to 5000 nm, and may be, for example, but is not limited to 300, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000 nm, etc .; preferably, 2000 nm.
  • the thickness of the positive electrode material layer and / or the negative electrode material layer is not easy to be too large or too small.
  • a suitable thickness of the positive electrode material layer and / or the negative electrode material layer helps to improve the utilization of the positive and negative electrode materials, optimize the cycle performance of the battery, and Fast charge and discharge capability.
  • the thickness of the solid electrolyte film is not easy to be too large or too small.
  • a suitable thickness of the solid electrolyte film is 2000 nm, which helps to reduce the short-circuit rate of the battery, improve the yield of the battery, and ensure the rapid charge and discharge capacity of the battery.
  • the material that can be used as the substrate is selected from the group consisting of metal, metal oxide, silicon, glass, paper, and polymer;
  • the metal material includes: stainless steel, aluminum;
  • the metal oxide material includes: aluminum oxide;
  • the polymer material includes: polyimide.
  • the all-solid-state lithium-ion battery is a thin-film battery.
  • the present application provides a method for preparing an all-solid-state lithium-ion battery, including: sequentially combining a positive electrode, a solid-state electrolyte, and a negative electrode to obtain an all-solid-state lithium-ion battery.
  • the method for preparing the all-solid-state lithium-ion battery includes: sequentially preparing a positive electrode material, a solid electrolyte, a negative-electrode material, and a negative-electrode current collector on the surface of a positive-electrode current collector to obtain the all-solid-state lithium-ion battery. .
  • a positive current collector as a basic material layer is disposed on the substrate;
  • preferred materials that can be used as a substrate include: one or at least two materials of metal, metal oxide, silicon, glass, paper, or polymer;
  • the metal material includes: stainless steel, aluminum;
  • the metal oxide material includes: aluminum oxide;
  • the polymer material includes: polyimide.
  • the method for preparing the all-solid-state lithium-ion battery includes: sequentially preparing a manganese oxide film, a solid electrolyte film, a titanium oxide compound film, and a negative electrode current collector film on the surface of the positive electrode current collector.
  • a method for preparing a manganese oxide film includes: magnetron sputtering, pulsed laser deposition, electrochemical deposition, chemical vapor deposition, or coating film;
  • said depositing comprises: magnetron sputtering.
  • a method for preparing a solid electrolyte film includes: magnetron sputtering, pulsed laser, or plasma-assisted electron beam evaporation.
  • the method for preparing the titanium oxide film includes magnetron sputtering or pulsed laser deposition.
  • a method for preparing a negative electrode current collector film includes: magnetron sputtering.
  • the present application provides a power consumption device, which includes the above-mentioned all-solid-state lithium-ion battery and uses it as a power supply device.
  • the electrical devices include micro sensors, smart cards, electronic tags, integrated circuits, wearable electronic devices, medical devices, and aerospace device devices.
  • an all-solid-state thin-film lithium-ion battery with a structure shown in FIG. 1 is prepared:
  • the specific process is as follows: After the target material and the positive electrode current collector are installed, the sputtering chamber is closed, the sputtering chamber is evacuated to below 1.0 ⁇ 10 -4 Pa, and 100 sccm argon and 20 sccm oxygen are passed in to set the DC sputtering.
  • transmission power 1.4W / cm 2
  • a target substrate distance 80mm, pre-sputtering 5min, the impurities to clean the target surface, the substrate was heated to 300 deg.]
  • C sputtering 3h i.e., with the positive electrode current collector prepared to obtain Mn 3 O 4 film ,
  • FIG. 2 SEM, XRD, Raman, and XPS images of the prepared Mn 3 O 4 thin films are shown in FIG. 2, FIG. 3, FIG. 4, and FIG. 5, respectively.
  • LiPON solid electrolyte film is prepared by magnetron sputtering to obtain solid electrolyte layer 3;
  • the specific process is as follows: After using Li 3 PO 4 as the target material, after installing the target material and the thin film prepared above, close the sputtering chamber, evacuate the sputtering chamber to below 1.0 ⁇ 10 -4 Pa, and pass in 100 sccm. Nitrogen, setting the RF sputtering power to 1.4 W / cm 2 , target base distance of 80 mm, and sputtering for 12 h to obtain solid electrolyte layer 3;
  • a titanium dioxide film is prepared by a magnetron sputtering method, that is, a negative electrode material layer 4.
  • the specific process is as follows: using pure Ti metal as the target, after installing the target and the thin film prepared above, close the sputtering chamber, evacuate the sputtering chamber to below 1.0 ⁇ 10 -4 Pa, and pass in 60 sccm argon With 10 sccm of oxygen, a DC sputtering power of 2 W / cm 2 was set , a target base distance of 80 mm, and sputtering for 12 h. A weakly crystalline TiO 2 film was obtained.
  • the specific process is as follows: using pure Ti metal as the target, after installing the target and the thin film prepared above, close the sputtering chamber, evacuate the sputtering chamber to below 1.0 ⁇ 10 -4 Pa, and pass in 60 sccm argon By setting a DC sputtering power of 0.5 W / cm 2 , a target base distance of 80 mm, and sputtering for 10 minutes, a metallic Ti film can be obtained.
  • the target after installing the target and the thin film prepared above, close the sputtering chamber, evacuate the sputtering chamber to below 1.0 ⁇ 10 -4 Pa, and pass in 60 sccm argon to set
  • the DC sputtering power is 1 W / cm 2
  • the target base distance is 80 mm
  • the sputtering is performed for 5 minutes to obtain a metallic Pt film.
  • the final Pt / Ti constitutes the negative electrode current collector 5.
  • the obtained all-solid-state thin-film lithium-ion battery is packaged to obtain an all-solid-state thin-film lithium-ion battery that can be used without both positive and negative electrodes.
  • the test results of the electrochemical performance of the Mn 3 O 4 / LiPON / TiO 2 all-solid-state thin-film lithium-ion battery prepared in Example 1 are shown in FIG. 10.
  • the all-solid-state thin-film lithium-ion battery of Example 1 can obtain a specific capacity of 96mAh / g at room temperature and an ultra-long cycle at a current of 25mA / g at a working voltage of 0V to 3.5V. Stability (substantially no attenuation after 2000 cycles).
  • the all-solid-state thin-film lithium-ion battery can also work at ultra-high temperatures.
  • the all-solid-state thin-film lithium-ion battery can exhibit a high specific capacity of 195 mAh / g. And, the capacity has almost no attenuation after cycling for 200 times at a high temperature of 240 ° C, showing excellent high-temperature cycle stability.
  • the specific process is as follows: After the target material and the positive electrode current collector are installed, the sputtering chamber is closed, the sputtering chamber is evacuated to less than 1.0 ⁇ 10 -4 Pa, and 40 sccm of argon and 10 sccm of oxygen are introduced, and then the chamber is The gas pressure was adjusted to 1 Pa; the DC sputtering power was set to 1.4 W / cm 2 , the target base distance was 80 mm, the pre-sputtering was 5 minutes, and the sputtering was performed at room temperature for 3 h. That is, an amorphous manganese oxide film was prepared on the positive current collector. After testing, the formed manganese oxide compound film is a composite film of Mn 3 O 4 and MnO 2 , which is described as an MnO x amorphous film (where x is 1.33 to 2).
  • the specific process is as follows: After using Li 3 PO 4 as the target material, after installing the target material and the thin film prepared above, close the sputtering chamber, evacuate the sputtering chamber to below 1.0 ⁇ 10 -4 Pa, and pass in 100 sccm. Nitrogen, setting the RF sputtering power to 1.4 W / cm 2 , target base distance of 80 mm, and sputtering for 12 h to obtain solid electrolyte layer 3;
  • a titanium dioxide thin film is prepared by using a magnetron sputtering method and a TiO2 target as a target.
  • the specific process is as follows: After installing the target and the thin film prepared above, close the sputtering chamber, evacuate the sputtering chamber to below 1.0 ⁇ 10 -4 Pa, pass in 100 sccm argon, and set the RF sputtering power. 2W / cm 2 , target base distance 80 mm, sputtering for 12 h, an amorphous TiO 2 thin film can be obtained.
  • the specific process is as follows: using pure Ti metal as the target, after installing the target and the thin film prepared above, close the sputtering chamber, evacuate the sputtering chamber to below 1.0 ⁇ 10 -4 Pa, and pass in 60 sccm argon By setting a DC sputtering power of 0.5 W / cm 2 , a target base distance of 80 mm, and sputtering for 10 minutes, a metallic Ti film can be obtained.
  • the target after installing the target and the thin film prepared above, close the sputtering chamber, evacuate the sputtering chamber to below 1.0 ⁇ 10 -4 Pa, and pass in 60 sccm argon to set
  • the DC sputtering power is 1 W / cm 2
  • the target base distance is 80 mm
  • the sputtering is performed for 5 minutes to obtain a metallic Pt film.
  • the final Pt / Ti constitutes the negative electrode current collector 5.
  • the obtained all-solid-state thin-film lithium-ion battery is packaged to obtain an all-solid-state thin-film lithium-ion battery that can be used without both positive and negative electrodes.
  • the resulting paper battery is shown in FIG. 14.
  • the electrochemical performance test results of the prepared MnO x / LiPON / TiO 2 all-solid-state thin-film lithium-ion battery are shown in FIG. 15.
  • the all-solid-state thin-film lithium-ion battery of Example 2 can obtain a specific capacity of 93 mAh / g at a room temperature of 25 mA / g at a working voltage of 0 V to 3.5 V.
  • a radio frequency magnetron sputtering method is adopted, using a MnO2 target as a target material, and preparing a MnOx amorphous film on a polyimide film substrate plated with platinum and titanium as a positive electrode current collector;
  • the specific process is as follows: After the target material and the positive electrode current collector are installed, the sputtering chamber is closed, the sputtering chamber is evacuated to less than 1.0 ⁇ 10 -4 Pa, 100 sccm argon and 20 sccm oxygen are introduced, and the chamber is The gas pressure was adjusted to 1 Pa; a DC sputtering power of 1.4 W / cm 2 was set , a target base distance was 80 mm, and sputtering was performed at room temperature for 3 h to obtain a MnOx film composited with a positive electrode current collector.
  • an amorphous TiO2 film After installing the target and the thin film prepared above, close the sputtering chamber, evacuate the sputtering chamber to below 1.0 ⁇ 10 -4 Pa, pass in 100sccm argon, and set the RF sputtering power to 2W / cm 2 With a target base distance of 80mm and sputtering for 12h, an amorphous TiO2 film can be obtained.
  • a titanium dioxide film is prepared by using a magnetron sputtering method and using pure Ti metal as a target.
  • the specific process is as follows: After the target material and the thin film prepared above are installed, the sputtering chamber is closed, the sputtering chamber is evacuated to below 1.0 ⁇ 10 -4 Pa, and 100 sccm argon is passed in to set the DC sputtering power. 2W / cm 2 , target base distance 80mm, sputtering for 12h, weakly crystalline TiO 2 film can be obtained.
  • the target after installing the target and the thin film prepared above, close the sputtering chamber, evacuate the sputtering chamber to below 1.0 ⁇ 10 -4 Pa, and pass in 60 sccm argon to set
  • the DC sputtering power is 1 W / cm 2
  • the target base distance is 80 mm
  • the sputtering is performed for 5 minutes to obtain a metallic Pt film.
  • the final Pt / Ti constitutes the negative electrode current collector 5.
  • the obtained all-solid-state thin-film lithium-ion battery is packaged to obtain an all-solid-state thin-film lithium-ion battery that can be used without both positive and negative electrodes.
  • the electrochemical performance test results of the prepared MnO x / LiPON / TiO 2 all-solid-state thin-film lithium-ion battery are shown in FIG. 17.
  • the all-solid-state thin-film lithium-ion battery of Example 3 can obtain a specific capacity of 92 mAh / g at room temperature under a current of 25 mA / g at an operating voltage of 0 V to 3.5 V.
  • LiSiON amorphous solid electrolyte film is prepared on the basis of Mn 3 O 4 film by magnetron sputtering;
  • a solid electrolyte layer 3 can be obtained by setting a radio frequency sputtering power of 1.4 W / cm 2 with a nitrogen gas and 10 sccm of oxygen, a target base distance of 80 mm, and sputtering for 12 hours;
  • the specific process is as follows: After the target material and the thin film prepared above are installed, the sputtering chamber is closed, the sputtering chamber is evacuated to below 1.0 ⁇ 10 -4 Pa, and 100 sccm argon is passed in to set the DC sputtering power. 2W / cm 2 , target base distance 80mm, sputtering for 12h, weakly crystalline TiO 2 film can be obtained.
  • the specific process is as follows: using pure Ti metal as the target, after installing the target and the thin film prepared above, close the sputtering chamber, evacuate the sputtering chamber to below 1.0 ⁇ 10 -4 Pa, and pass in 60 sccm argon By setting a DC sputtering power of 0.5 W / cm 2 , a target base distance of 80 mm, and sputtering for 10 minutes, a metallic Ti film can be obtained.
  • the target after installing the target and the thin film prepared above, close the sputtering chamber, evacuate the sputtering chamber to below 1.0 ⁇ 10 -4 Pa, and pass in 60 sccm argon to set
  • the DC sputtering power is 1 W / cm 2
  • the target base distance is 80 mm
  • the sputtering is performed for 5 minutes to obtain a metallic Pt film.
  • the final Pt / Ti constitutes the negative electrode current collector 5.
  • the obtained all-solid-state thin-film lithium-ion battery is packaged to obtain an all-solid-state thin-film lithium-ion battery that can be used without both positive and negative electrodes.
  • Li 7 La 3 Zr 2 O 12 target is used as a target, and Li 7 La 3 Zr 2 O 12 amorphous solid electrolyte film is prepared by magnetron sputtering;
  • the specific process is as follows: After the target material and the thin film prepared above are installed, the sputtering chamber is closed, the sputtering chamber is evacuated to below 1.0 ⁇ 10 -4 Pa, and 50 sccm argon is passed in to set the DC sputtering power.
  • An amorphous Li7La3Zr2O12 thin film can be obtained with a target base distance of 80 mm and sputtering for 12 h at 1 W / cm 2 .
  • TiO 2 is used as a target material, and pulsed laser deposition is performed to form a titanium dioxide film.
  • the specific process is as follows: KrF excimer laser is used, the laser wavelength is 248nm, the laser energy density is controlled to 3J / cm2 and 10Hz, the target base distance is 4cm, and the oxygen partial pressure is 26.6Pa, directly in the above Li 7 La 3 Zr 2 An amorphous TiO 2 negative electrode film was prepared on an O 12 electrolyte film.
  • the specific process is as follows: using pure Ti metal as the target, after installing the target and the thin film prepared above, close the sputtering chamber, evacuate the sputtering chamber to below 1.0 ⁇ 10 -4 Pa, and pass in 60 sccm argon By setting a DC sputtering power of 0.5 W / cm 2 , a target base distance of 80 mm, and sputtering for 10 minutes, a metallic Ti film can be obtained.
  • the target after installing the target and the thin film prepared above, close the sputtering chamber, evacuate the sputtering chamber to below 1.0 ⁇ 10 -4 Pa, and pass in 60 sccm argon to set
  • the DC sputtering power is 1 W / cm 2
  • the target base distance is 80 mm
  • the sputtering is performed for 5 minutes to obtain a metallic Pt film.
  • the final Pt / Ti constitutes the negative electrode current collector 5.
  • the obtained all-solid-state thin-film lithium-ion battery is packaged to obtain an all-solid-state thin-film lithium-ion battery that can be used without both positive and negative electrodes.
  • the lithium lithium is deposited on the LiPON solid electrolyte film by thermal evaporation equipment to form a negative electrode active material film.
  • Pt and Ti are used as targets, and a negative electrode current collector film is obtained by magnetron sputtering to obtain Mn 3 O. 4 / LiPON / Li structure all-solid-state thin-film lithium-ion battery.
  • the test results of the electrochemical properties of the all-solid-state thin-film lithium-ion battery prepared in Comparative Example 1 are shown in FIG. 18.
  • the battery can obtain a specific capacity of 205 mAh / g at a current density of 50 mA / g, and the capacity remains 84% after 1500 cycles.
  • metal lithium is directly used as the negative electrode, and metal lithium needs to be prepared in a glove box or a high-level ultra-clean room to be stored, the preparation requirements and costs are relatively high.
  • the melting point of metallic lithium is 180 ° C, it is difficult to use the battery in a high-temperature region above 180 ° C.
  • a method of direct current magnetron sputtering is used to prepare the titanium dioxide film on the glass substrate plated with platinum and titanium as a positive electrode current collector by using the method of step 3) in Example 1 with pure Ti metal as a target.
  • step 2) On the basis of the obtained titanium dioxide film, adopt the method in step 2) in Example 1 to prepare a LiPON solid electrolyte film by magnetron sputtering.
  • LiPON solid electrolyte film On the basis of LiPON solid electrolyte film, metal lithium is deposited on the LiPON solid electrolyte film using thermal evaporation equipment to form a negative electrode active material film;
  • the electrochemical performance of the all-solid-state thin-film lithium-ion battery prepared in Comparative Example 2 is shown in FIG. 19.
  • the battery can obtain a specific capacity of 202 mAh / g at a current density of 50 mA / g, and the capacity has no attenuation after 2000 cycles.
  • metal lithium is directly used as the negative electrode, and metal lithium needs to be prepared in a glove box or a high-level ultra-clean room to be stored, the preparation requirements and costs are relatively high.
  • the melting point of metallic lithium is 180 ° C, it is difficult to use the battery in a high-temperature region above 180 ° C.
  • An existing all-solid-state lithium ion battery includes a positive electrode current collector layer, a positive electrode material layer, a lithium-containing solid electrolyte, a negative electrode material layer, and a negative electrode current collector layer that are sequentially stacked.
  • the positive electrode current collector layer is stainless steel
  • the positive electrode material layer is LiCoO2
  • the lithium-containing solid electrolyte is LiPON
  • the negative electrode material layer is metal lithium
  • the negative electrode current collector layer is copper.
  • a radio frequency magnetron sputtering method is adopted, a lithium cobaltate (LiCoO 2 ) target is used as a target material, polyimide is used as a base material, and Pt / Ti is plated thereon as a positive electrode current collector.
  • a lithium cobaltate (LiCoO 2 ) target is used as a target material
  • polyimide is used as a base material
  • Pt / Ti is plated thereon as a positive electrode current collector.
  • Step 2) Preparation of solid electrolyte film: The method in step 2) in Example 1 was adopted to prepare a LiPON solid electrolyte film by magnetron sputtering.
  • the heating temperature is set to 300 ° C.
  • the sputtering temperature of LiCoO2 is 300 ° C, its crystallinity is limited without heat treatment.
  • the specific capacity is about 30mAh / g. If the temperature of the heat treatment is increased, the substrate is easily deformed and decomposed by heat, and fails.
  • lithium metal needs to be prepared in a glove box or a high-level ultra-clean room to be stored.
  • the melting point of metallic lithium is 180 ° C, it is difficult to use the battery in a high-temperature region above 180 ° C.
  • neither the positive electrode nor the negative electrode contains a lithium compound or metallic lithium. Since both manganese oxide compounds and titanium oxide compounds can be prepared at normal temperature or a lower temperature, this application also makes the entire application The requirements of solid-state lithium-ion batteries for the preparation of environmental conditions are greatly reduced, and they can also be matched with semiconductor processes, and the integration of solid-state batteries on microcircuits can be achieved. In addition, this type of battery design can have excellent high temperature performance (up to 300 ° C), which can be used in special high temperature applications, such as mines, aerospace, high temperature wells, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供了锂离子电池正极、全固态锂离子电池及其制备方法与用电器件。本申请全固态锂离子电池包括:正极,固态电解质和负极;正极包括:正极集流体和设置于正极集流体表面的正极材料层,所述正极材料层中的正极活性材料为锰氧化合物;负极材料包括:负极集流体以及设置于负极集流体表面的负极材料层,所述负极材料中的负极活性材料为钛氧化合物。本申请所提供的全固态锂离子电池中,正极和负极中都不含有锂化合物或者金属锂,由于锰氧化合物和钛氧化合物均能够在常温或者较低温度制备得到,因此也使得本申请全固态锂离子电池对于制备环境条件的要求大大降低,还可以与半导体工艺匹配,并实现固态电池在微电路上的集成。

Description

锂离子电池正极、全固态锂离子电池及其制备方法与用电器件
相关申请的交叉引用
本申请要求于2018年09月05日提交中国专利局的申请号为201811034547.8、名称为“锂离子电池正极、全固态锂离子电池及其制备方法与用电器件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,尤其是涉及一种锂离子电池正极、全固态锂离子电池及其制备方法与用电器件。
背景技术
锂离子电池由于其高工作电压、高能量密度、长循环寿命、无记忆效应等众多优点,在消费电子、电动工具、医疗电子、电动汽车、轨道交通、航空航天、大规模可再生能源接入、电网调峰调频、分布式储能等领域具有广泛的应用。然而,当前商用的锂离子电池由于使用液态有机电解液,存在着易燃易爆易挥发的特点,近年来安全事故频发。使用固态电解质替代液态有机电解液,并制备全固态薄膜电池可以从根本上解决锂离子电池的安全性问题。当前体型的固态电池由于电极/电解质界面问题以及技术不够成熟,目前难以实现商业化使用。而将固态电池薄膜化,并制备全固态薄膜锂离子电池可以实现较完美的电极/电解质界面,是目前已经实现商业化应用的固态电池形式。
全固态薄膜锂离子电池是在导电衬底上将电池的各个元素按照正极、电解质、负极的顺序依次制备成薄膜,最后封装构成一个整电池,其工作原理和商用锂离子电池类似。与使用液态电解液的商用锂离子电池相比,全固态薄膜锂离子电池具有能量密度高,电学性能优异等特点,且电池封装效率高,这也使其在各种微型电子器件中广泛应用。
现有全固态薄膜锂离子电池中,所需正极材料大多需要进行高温退火处理,而这会导致造成正极活性材料薄膜开裂、脱落,导致薄膜电池形成微短路;另一方面,高温过程与半导体工艺不匹配,难以实固态薄膜电池在微电路上的集成,且难以在不耐高温的基底上制备。同时,全固态薄膜锂离子电池中所用负极材料往往对于环境的耐受性较差,不仅难以在集成电路中集成,并且对于生产环境的要求苛刻,也难以在高温场所中应用。有鉴于此,特提出本申请。
发明内容
本申请的目的包括,提供一种锂离子电池正极,以解决现有适于全固态锂离子电池的正极高温退火条件下容易发生开裂、脱落以及难以实现与为电路集成且不易与不耐高温溶性基底结合的技术问题。
本申请的目的还包括,提供一种全固态锂离子电池,以及解决现有正极和负极含锂固态锂离子电池所存在着的难以在集成电路中集成、生产环境苛刻和难以在高温场所应用等技术问题。
本申请的目的还包括,提供一种全固态锂离子电池的制备方法。
本申请的目的还包括,提供一种包含上述全固态锂离子电池的用电器件。
为了实现本申请的至少一个目的,特采用如下技术方案:
一种锂离子电池正极,包括正极集流体和设置于所述正极集流体表面的正极材料 层,所述正极材料层中的正极活性材料为:锰氧化合物;优选的,所述锰氧化合物包括:二氧化锰,三氧化二锰或者四氧化三锰中的一种或几种的复合物。
一种全固态锂离子电池,包括:正极,固态电解质和负极;其中,所述正极包括:正极集流体和设置于正极集流体表面的正极材料层,所述正极材料层中的正极活性材料为:锰氧化合物;所述负极材料包括:负极集流体以及设置于负极集流体表面的负极材料层,所述负极材料中的负极活性材料为:钛氧化合物;优选的,所述锰氧化合物包括:二氧化锰,三氧化二锰或者四氧化三锰中的一种或几种的复合物;更优选的,所述正极材料层为锰氧化合物薄膜;优选的,所述钛氧化合物包括:二氧化钛;更优选的,所述负极材料层为钛氧化物薄膜。
一种全固态锂离子电池的制备方法,所述制备方法包括:将正极,固态电解质和负极依次复合,得到全固态锂离子电池。
一种用电器件,所述电子器件包含本申请所述的全固态锂离子电池。
与已有技术相比,本申请具有有益效果例如包括:
(1)本申请全固态锂离子电池可以在超高的温度范围内使用,最高使用温度可达300℃,可以拓展全固态薄膜锂离子电池在航天航空或者高温场所的应用。
(2)本申请全固态锂离子电池对制备场所的要求低大大降低,可以提高电池制备的成功率。
(3)本申请全固态锂离子电池制备无需高温处理过程,可以简化制备过程、降低制备成本,还可以与半导体工艺匹配,实现固态薄膜电池在微电路上的集成。
(4)本申请全固态锂离子电池可以在各种基底上制备,既包括常规的耐高温的不锈钢、氧化铝、硅片、玻璃片基底,也可以在轻质、不耐高温的纸上、聚合物(如聚亚酰胺)等制备,并可以开发出独特的全固态的“纸电池”。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例1所制备的全固态薄膜锂离子电池结构示意图;
图2为本申请实施例1所制备的Mn 3O 4正极薄膜的SEM图;
图3为本申请实施例1所制备的Mn 3O 4正极薄膜的Raman图;
图4为本申请实施例1所制备的Mn 3O 4正极薄膜的Raman图;
图5为本申请实施例1所制备的Mn 3O 4正极薄膜的XPS图;
图6为本申请实施例1所制备的TiO 2薄膜的SEM图;
图7为本申请实施例1所制备的TiO 2薄膜的XRD图;
图8为本申请实施例1所制备的TiO 2薄膜的Raman图;
图9为本申请实施例1所制备的全固态薄膜锂离子电池截面的SEM图;
图10为本申请实施例1所制备的Mn 3O 4/LiPON/TiO 2全固态薄膜锂离子电池的性能检测图;
图11为本申请实施例2所制备的MnOx非晶薄膜SEM图;
图12为本申请实施例2所制备的MnOx非晶薄膜XRD图;
图13为本申请实施例2所制备的MnOx/LiPON/TiO 2全固态薄膜锂离子截面的SEM图;
图14为本申请实施例2所制备的封装后的纸电池示意图;
图15为本申请实施例2所制备的MnOx/LiPON/TiO 2全固态薄膜锂离子的电化学性能检测图;
图16为本申请实施例3所制备的聚酰亚胺电池结构图
图17为本申请实施例3所制备的全固态薄膜锂离子电池的电化学性能检测图;
图18为本申请对比例1所制备的全固态薄膜锂离子电池的电化学性能图;
图19为本申请对比例2所制备的全固态薄膜锂离子电池的电化学性能图;
图20为本申请对比例3所制备的全固态薄膜锂离子电池的电化学性能图。
其中,图1中,1-正极集流体,2-正极材料层,3-固态电解质层,4-负极材料层,5-负极集流体;
图2中,(a)为500nm标尺SEM图,(b)为1μm标尺SEM图;
图5中,(a)为Mn 3s XPS图,(b)为Mn 2p XPS图;
图6中,(a)为500nm标尺SEM图,(b)为1μm标尺SEM图;
图10中,(a)为室温下充放电曲线图,(b)为室温下循环性能图,(c)为不同温度下充放电曲线图,(d)为240℃下充放电曲线图;
图11中,(a)2μm标尺SEM图,(b)为1μm标尺SEM图;
图18中,(a)为CV曲线图,(b)为充放电曲线图和(c)循环性能图;
图19中,(a)为CV曲线图,(b)为充放电曲线图和(c)循环性能图。
具体实施方式
下面将结合实施例对本申请的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本申请,而不应视为限制本申请的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
一方面,本申请提供了一种锂离子电池正极,包括极集流体和设置于所述正极集流体表面的正极材料层,所述正极材料层中的正极活性材料为:锰氧化合物。
本申请所提供的锂离子电池正极中,利用锰氧化合物作为锂离子电池的正极活性材料。相较于含锂正极材料而言,锰氧化合物可以在400℃以下进行退火并具有较高的结晶度或者无需退火结晶就能够保持良好的电化学性能。因此,以锰氧化合物作为正极活性材料具有制备所需温度低,制备成本低,可以在不耐高温的高柔性衬底(例如 铝箔、纸、聚合物等)上制备等优点。进一步的,利用该锂离子电池正极可以使得全固态锂离子电池与半导体工艺相匹配,并用以制造集成电路。
在本申请的一些实施方式中,所述锰氧化合物包括:二氧化锰,三氧化二锰或者四氧化三锰中的一种或几种的复合物;
作为优选,所述二氧化锰,三氧化二锰以及四氧化三锰分别独立任选的为晶体或非晶态结构。
在本申请的一些实施方式中,正极材料层除包括正极活性材料外,还可以包括粘结剂、导电剂或者其他改善锰氧化合物性能的物质;或者,正极材料层仅包含正极活性材料。
在本申请优选的一些实施方式中,正极材料层仅包含正极活性材料,即所述正极材料层为锰氧化合物薄膜;
其中,所述锰氧化合物薄膜中,锰氧化合物任选的以晶体或者非晶态的形式存在。
第二方面,本申请提供了一种全固态锂离子电池,包括:正极,固态电解质和负极;
其中,所述正极包括:正极集流体和设置于正极集流体表面的正极材料层,所述正极材料层中的正极活性材料为:锰氧化合物;
所述负极材料包括:负极集流体以及设置于负极集流体表面的负极材料层,所述负极材料中的负极活性材料为:钛氧化合物。
也就是说,本申请中提供了一种具有依次为:正极集流体(层),正极材料层,固态电解质(层),负极材料层和负极集流体(层)结构的全固态锂离子电池。
如LiCoO 2材料等含锂材料,是目前全固态薄膜锂离子电池中最常用的正极薄膜材料,然而含锂的正极材料通常只有在高温退火后(如LiCoO 2需500℃以上的高温退火)才能得到较高的高结晶度,才能够保证其优良的电化学性能。然而,高温退火过程一方面容易造成正极活性材料薄膜开裂、脱落,导致薄膜电池形成微短路;另一方面,高温过程与半导体工艺不匹配,难以实固态薄膜电池在微电路上的集成。此外,高温退火过程也使得全固态薄膜锂离子电池难以在一些不耐高温、低成本、高柔性的基底(如聚酰亚胺、铝箔等)上制备。同时,对于常用的负极金属Life材料而言,由于其熔点较低(180℃)且容易吸水或者吸氧而失效,因而金属锂负极时难以在集成电路中集成(集成时焊接温度通常高于180℃),所需生产环境苛刻(需要在手套箱中或者高级别的超净间内),并且在高温场所难以应用(通常只能在低于180℃下应用)。
本申请所提供的全固态锂离子电池中,正极和负极中都不含有锂化合物或者金属锂,由于锰氧化合物和钛氧化合物均能够在常温或者较低温度(低于400℃)制备得到,因此也使得本申请全固态锂离子电池对于制备环境条件的要求大大降低,还可以与半导体工艺匹配,并实现固态电池在微电路上的集成。
在本申请的一些实施方式中,所述全固态锂离子电池中,锰氧化合物包括:二氧化锰,三氧化二锰或者四氧化三锰中的一种或几种的复合物;
作为优选,所述二氧化锰,三氧化二锰以及四氧化三锰分别独立任选的为晶体或非晶态。
在本申请的一些实施方式中,所述全固态锂离子电池中,正极材料层除包括正极活性材料外,还可以包括粘结剂、导电剂或者其他改善锰氧化合物性能的物质;或者,正 极材料层仅包含正极活性材料。
在本申请优选的一些实施方式中,所述全固态锂离子电池中,正极材料层仅包含正极活性材料,即所述正极材料层为锰氧化合物薄膜;
其中,所述锰氧化合物薄膜中,锰氧化合物任选的以晶体或者非晶态的形式存在。
在本申请的一些实施方式中,所述全固态锂离子电池中,所述钛氧化合物包括:二氧化钛;
作为优选,所述二氧化钛任选的为掺氮或不掺氮的二氧化钛晶体或非晶化合物。
在本申请的一些实施方式中,所述全固态锂离子电池中,负极材料层除包括负极活性材料外,还可以包括粘结剂、导电剂或者其他改善钛氧化合物性能的物质;或者,负极材料层仅包含负极活性材料。
在本申请优选的一些实施方式中,所述全固态锂离子电池中,负极材料层仅包含负极活性材料,即所述负极材料层为钛氧化合物薄膜;
其中,所述钛氧化合物薄膜中,钛氧化合物任选的以晶体或者非晶态的形式存在,优选的以掺氮或不掺氮的二氧化钛晶体或非晶化合物的形式存在。
在本申请的一些实施方式中,所述全固态锂离子电池中,所述固态电解质为含锂化合物。
在本申请的优选一些实施方式中,所述全固态锂离子电池中,所述固态电解质选自由LiPON,LiSiON,Li 2SiO 3,Li 7La 3Zr 2O 12,LiBO 3,Li 3PO 4,Li 3OX(X为F、Cl、Br等),LiTi 2(PO 4) 3所组成的组。
在本申请的一些实施方式中,所述全固态锂离子电池中,还包括基底,其中,所述正极集流体设置于所述基底之上;
也就是说,本申请还能够提供一种具有依次为:基底,正极集流体(层),正极材料层,固态电解质(层),负极材料层和负极集流体(层)结构的全固态锂离子电池。
由于本申请固态锂离子电池的正极和负极均为非锂材料,因而也使得本申请固态锂离子电池能够在不耐高温的纸、聚合物等基底材料上制备,从而得到独特的全固态纸电池等新型材质电池。
在一些优选的实施方式中,正极材料层(锰氧化物薄膜)的厚度为50~5000nm,例如可以为,但不限于100,200,500,1000,1500,2000,2500,3000,3500,4000nm等;优选为400nm;
负极材料层(钛氧化物薄膜)的厚度为50~5000nm,例如可以为,但不限于100,200,500,1000,1500,2000,2500,3000,3500,4000nm等;优选为300nm;
正极集流层的厚度为10~200nm,例如可以为,但不限于30,50,100,120,150,180nm等;优选为40nm;
负极集流层的厚度为10~200nm,例如可以为,但不限于30,50,100,120,150,180nm等;优选为40nm;
固态电解质薄膜的厚度为200~5000nm,例如可以为,但不限于300,500,1000, 1500,2000,2500,3000,3500,4000nm等;优选为2000nm。
正极材料层和/或负极材料层的厚度不易过大或过小,适宜的正极材料层和/或负极材料层的厚度,有助于提高正负极材料的利用率、优化电池的循环性能和快速充放电能力。固态电解质薄膜的厚度不易过大或过小,适宜的固态电解质薄膜的厚度为2000nm,有助于降低电池的短路率、提高电池的制备良品率并保证电池的快速充放电能力。
在本申请优选的一些实施方式中,可以作为基底的材料选自由金属,金属氧化物,硅,玻璃,纸和聚合物所组成的组;
作为优选,所述金属材料包括:不锈钢,铝;
作为优选,所述金属氧化物材料包括:三氧化二铝;
作为优选,所述聚合物材料包括:聚酰亚胺。
在本申请的一些实施方式中,所述全固态锂离子电池为薄膜电池。
第三方面,本申请提供了一种全固态锂离子电池的制备方法,包括:将正极,固态电解质和负极依次复合,得到全固态锂离子电池。
在本申请的一些实施方式中,所述全固态锂离子电池的制备方法包括:在正极集流体的表面依次制备正极材料,固态电解质,负极材料和负极集流体,得到所述全固态锂离子电池。
在本申请优选的一些实施方式中,所述全固态锂离子电池的制备方法中,作为基础材料层的正极集流体设置于所述基底之上;
其中,优选的,可以作为基底的材料包括:金属,金属氧化物,硅,玻璃,纸或者聚合物中的一种或至少两种材料的复合材料;
作为优选,所述金属材料包括:不锈钢,铝;
作为优选,所述金属氧化物材料包括:三氧化二铝;
作为优选,所述聚合物材料包括:聚酰亚胺。
在本申请优选的一些实施方式中,所述全固态锂离子电池的制备方法包括:在正极集流体的表面依次制备锰氧化合物薄膜,固态电解质膜,钛氧化合物薄膜以及负极集流体薄膜。
在本申请更优选的一些实施方式中,锰氧化合物薄膜的制备方法包括:磁控溅射,脉冲激光沉积,电化学沉积,化学气相沉积或者涂膜;
作为优选,所述沉积包括:磁控溅射。
在本申请更优选的一些实施方式中,固态电解质薄膜的制备方法包括:磁控溅射、脉冲激光或者等离子体辅助电子束蒸镀。
在本申请更优选的一些实施方式中,钛氧薄膜的制备方法包括磁控溅射或者脉冲激光沉积。
在本申请更优选的一些实施方式中,负极集流体薄膜的制备方法包括:磁控溅射。
第三方面,本申请提供了一种用电器件,所述用电器件中包含上述全固态锂离子电池,并以其作为供电设备。
在本申请的一些实施方式中,所述用电器件包括微型传感器、智能卡、电子标签、集成电路、可穿戴电子设备、医疗器件和航天用装置器件等。
下面将结合实施例和对比例对本申请做进一步详细的说明。
实施例1
按照如下方法,制备结构如图1所示的全固态薄膜锂离子电池:
(1)采用直流磁控溅射的方法,以纯Mn金属为靶材,在镀有铂和钛作为正极集流体1的玻璃基底上,制备Mn 3O 4薄膜,即为正极材料层2。
具体工艺如下:安装好靶材和正极集流体后,关闭溅射腔室,将溅射腔室抽真空至1.0×10 -4Pa以下,通入100sccm氩气和20sccm的氧气,设定直流溅射功率1.4W/cm 2,靶基距80mm,预溅射5min,以清理靶材表面的杂质,将基底加热至300℃溅射3h,即在正极集流体相上制备得到Mn 3O 4薄膜,
所制备的Mn 3O 4薄膜的SEM图、XRD图、Raman图和XPS图分别如图2,图3,图4和图5所示。
(2)在得到的Mn 3O 4薄膜的基础上,采用磁控溅射方式制备LiPON固态电解质薄膜,即可得固态电解质层3;
具体工艺如下:以Li 3PO 4为靶材、安装好靶材和上述制备得到的薄膜后,关闭溅射腔室,将溅射腔室抽真空至1.0×10 -4Pa以下,通入100sccm氮气,设定射频溅射功率1.4W/cm 2,靶基距80mm,溅射12h,即可得固态电解质层3;
(3)在LiPON固态电解质薄膜的基础上,采用磁控溅射方式,制备二氧化钛薄膜,即为负极材料层4。
具体工艺如下:以纯Ti金属为靶材,安装好靶材和上述制备得到的薄膜后,关闭溅射腔室,将溅射腔室抽真空至1.0×10 -4Pa以下,通入60sccm氩气和10sccm氧气,设定直流溅射功率2W/cm 2,靶基距80mm,溅射12h,可以得到弱结晶的TiO 2薄膜。
所制备的TiO 2薄膜的SEM图、XRD图和Raman图分别如图6,图7和图8所示。
(4)在二氧化钛薄膜的基础上,以Pt和Ti为靶材,采用磁控溅射,形成与二氧化钛薄膜复合的负极集流体薄膜,即为负极集流体5。
具体工艺如下:以纯Ti金属为靶材,安装好靶材和上述制备得到的薄膜后,关闭溅射腔室,将溅射腔室抽真空至1.0×10 -4Pa以下,通入60sccm氩气,设定直流溅射功率0.5W/cm 2,靶基距80mm,溅射10min,可以得到金属Ti薄膜。
然后以纯Pt金属为靶材,安装好靶材和上述制备得到的薄膜后,关闭溅射腔室,将溅射腔室抽真空至1.0×10 -4Pa以下,通入60sccm氩气,设定直流溅射功率1W/cm 2,靶基距80mm,溅射5min,可以得到金属Pt薄膜。最终的Pt/Ti构成了负极集流体5。
由如上步骤(1)-(4)所制备的实施例1的全固态薄膜锂离子电池截面的SEM图如图9所示。
然后,将所得全固态薄膜锂离子电池封装,得到能够进行使用的正负极都不含锂的全固态薄膜锂离子电池。
实施例1所制备的Mn 3O 4/LiPON/TiO 2全固态薄膜锂离子电池的电化学性能检测结果如 图10所示。由图10可知,实施例1全固态薄膜锂离子电池在0V至3.5V的工作电压内,在25mA/g的电流下,在室温下可以获得96mAh/g的比容量,并且具有超长的循环稳定性(2000次循环后基本上无衰减)。同时,该全固态薄膜锂离子电池还能在超高温下工作,在300℃的高温度下,在25mA/g的电流下,该全固态薄膜锂离子电池能展现出195mAh/g的高比容量,并且在240℃的高温度下循环200圈后容量几乎没有衰减,表现出优异的高温循环稳定性。
实施例2
按照如下方法,制备全固态薄膜锂离子电池:
(1)采用直流磁控溅射的方法,以纯Mn金属为靶材,在镀有铂和钛作为正极集流体的纸上,制备MnO x非晶薄膜;
具体工艺如下:安装好靶材和正极集流体后,关闭溅射腔室,将溅射腔室抽真空至1.0×10 -4Pa以下,通入40sccm氩气和10sccm的氧气,再将腔室内气体压强调节到1Pa;设定直流溅射功率1.4W/cm 2,靶基距80mm,预溅射5min,常温条件下溅射3h,即在正极集流体上制备得到非晶的锰氧化合物薄膜,经检测,所形成锰氧化合物薄膜为Mn 3O 4和MnO 2复合物薄膜,记为MnO x非晶薄膜(其中,x为1.33~2)。
所制备的MnOx非晶薄膜的SEM图和XRD图分别如图11、图12所示
(2)在得到的非晶MnO x薄膜的基础上,采用磁控溅射方式制备LiPON固态电解质薄膜;
具体工艺如下:以Li 3PO 4为靶材、安装好靶材和上述制备得到的薄膜后,关闭溅射腔室,将溅射腔室抽真空至1.0×10 -4Pa以下,通入100sccm氮气,设定射频溅射功率1.4W/cm 2,靶基距80mm,溅射12h,即可得固态电解质层3;
(3)在LiPON固态电解质薄膜的基础上,采用磁控溅射方式,以TiO2靶为靶材,制备二氧化钛薄膜。
具体工艺如下:安装好靶材和上述制备得到的薄膜后,关闭溅射腔室,将溅射腔室抽真空至1.0×10 -4Pa以下,通入100sccm氩气,设定射频溅射功率2W/cm 2,靶基距80mm,溅射12h,可以得到非晶TiO 2薄膜。
(4)在二氧化钛薄膜的基础上,以Pt和Ti为靶材,采用磁控溅射,形成与二氧化钛薄膜复合的负极集流体薄膜。
具体工艺如下:以纯Ti金属为靶材,安装好靶材和上述制备得到的薄膜后,关闭溅射腔室,将溅射腔室抽真空至1.0×10 -4Pa以下,通入60sccm氩气,设定直流溅射功率0.5W/cm 2,靶基距80mm,溅射10min,可以得到金属Ti薄膜。
然后以纯Pt金属为靶材,安装好靶材和上述制备得到的薄膜后,关闭溅射腔室,将溅射腔室抽真空至1.0×10 -4Pa以下,通入60sccm氩气,设定直流溅射功率1W/cm 2,靶基距80mm,溅射5min,可以得到金属Pt薄膜。最终的Pt/Ti构成了负极集流体5。
由如上步骤(1)-(4)所制备的实施例2的全固态薄膜锂离子电池截面的SEM图和如图13所示。
然后,将所得全固态薄膜锂离子电池封装,得到能够进行使用的正负极都不含锂的全固态薄膜锂离子电池,所得纸电池如图14所示。所制备的MnO x/LiPON/TiO 2全固态薄膜锂离子电池的电化学性能检测结果如图15所示。由图15可知,实施例2全固态薄膜锂离 子电池在0V至3.5V的工作电压内,在25mA/g的电流下,在室温下可以获得93mAh/g的比容量。
实施例3
例如按照如下方法,制备全固态薄膜锂离子电池:
(1)采用射频磁控溅射的方法,以MnO2靶作为为靶材,在镀有铂和钛作为正极集流体的聚酰亚胺薄膜基底上,制备MnOx非晶薄膜;
具体工艺如下:安装好靶材和正极集流体后,关闭溅射腔室,将溅射腔室抽真空至1.0×10 -4Pa以下,通入100sccm氩气和20sccm的氧气,再将腔室内气体压强调节到1Pa;设定直流溅射功率1.4W/cm 2,靶基距80mm,常温条件下溅射3h,得到与正极集流体相复合的MnOx薄膜。
(2)在得到的非晶MnO x薄膜的基础上,采用磁控溅射方式制备LiPON固态电解质薄膜;
具体工艺例如:
安装好靶材和上述制备得到的薄膜后,关闭溅射腔室,将溅射腔室抽真空至1.0×10 -4Pa以下,通入100sccm氩气,设定射频溅射功率2W/cm 2,靶基距80mm,溅射12h,可以得到非晶TiO2薄膜。
(3)在LiPON固态电解质薄膜的基础上,采用磁控溅射方式,以纯Ti金属为靶材,制备二氧化钛薄膜。
具体工艺如下:安装好靶材和上述制备得到的薄膜后,关闭溅射腔室,将溅射腔室抽真空至1.0×10 -4Pa以下,通入100sccm氩气,设定直流溅射功率2W/cm 2,靶基距80mm,溅射12h,可以得到弱结晶的TiO 2薄膜。
(4)在二氧化钛薄膜的基础上,以Pt和Ti为靶材,采用磁控溅射,形成与二氧化钛薄膜复合的负极集流体薄膜。
以纯Ti金属为靶材,安装好靶材和上述制备得到的薄膜后,关闭溅射腔室,将溅射腔室抽真空至1.0×10 -4Pa以下,通入60sccm氩气,设定直流溅射功率0.5W/cm 2,靶基距80mm,溅射10min,可以得到金属Ti薄膜。
然后以纯Pt金属为靶材,安装好靶材和上述制备得到的薄膜后,关闭溅射腔室,将溅射腔室抽真空至1.0×10 -4Pa以下,通入60sccm氩气,设定直流溅射功率1W/cm 2,靶基距80mm,溅射5min,可以得到金属Pt薄膜。最终的Pt/Ti构成了负极集流体5。
然后,将所得全固态薄膜锂离子电池封装,得到能够进行使用的正负极都不含锂的全固态薄膜锂离子电池,所得到的封装后的聚酰亚胺电池如图16所示。
所制备的MnO x/LiPON/TiO 2全固态薄膜锂离子电池的电化学性能检测结果如图17所示。由图17可知,实施例3全固态薄膜锂离子电池在0V至3.5V的工作电压内,在25mA/g的电流下,在室温下可以获得92mAh/g的比容量。
实施例4
(1)以镀金不锈钢箔作为工作电极,铂片作为对电极,Ag/AgCl作为参比电极上,0.1M醋酸锰和0.1M的硫酸钠混合溶液作为电解液,在-1.4V的恒电流下电沉积15min,直接在镀金不锈钢箔上制备得到Mn 3O 4薄膜;
(2)在Mn 3O 4薄膜的基础上采用磁控溅射方式制备LiSiON非晶固态电解质薄膜;
具体工艺如下:以Li 2SiO 3为靶材、安装好靶材和上述制备得到的薄膜后,关闭溅射腔室,将溅射腔室抽真空至1.0×10 -4Pa以下,通入90sccm氮气和10sccm氧气,设定射频溅射功率1.4W/cm 2,靶基距80mm,溅射12h,即可得固态电解质层3;
(3)在LiSiON固态电解质薄膜的基础上,以纯Ti金属为靶材,制备二氧化钛薄膜。
具体工艺如下:安装好靶材和上述制备得到的薄膜后,关闭溅射腔室,将溅射腔室抽真空至1.0×10 -4Pa以下,通入100sccm氩气,设定直流溅射功率2W/cm 2,靶基距80mm,溅射12h,可以得到弱结晶的TiO 2薄膜。
(4)在二氧化钛薄膜的基础上,以Pt和Ti为靶材,采用磁控溅射,形成与二氧化钛薄膜复合的负极集流体薄膜。
具体工艺如下:以纯Ti金属为靶材,安装好靶材和上述制备得到的薄膜后,关闭溅射腔室,将溅射腔室抽真空至1.0×10 -4Pa以下,通入60sccm氩气,设定直流溅射功率0.5W/cm 2,靶基距80mm,溅射10min,可以得到金属Ti薄膜。
然后以纯Pt金属为靶材,安装好靶材和上述制备得到的薄膜后,关闭溅射腔室,将溅射腔室抽真空至1.0×10 -4Pa以下,通入60sccm氩气,设定直流溅射功率1W/cm 2,靶基距80mm,溅射5min,可以得到金属Pt薄膜。最终的Pt/Ti构成了负极集流体5。
然后,将所得全固态薄膜锂离子电池封装,得到能够进行使用的正负极都不含锂的全固态薄膜锂离子电池。
实施例5
(1)采用脉冲激光沉积法,使用纯Mn金属靶作为靶材,不锈钢作为正极集流体,采用KrF准分子激光器,激光波长为248nm,激光能量密度分别控制为2J/cm2和10Hz,靶基距为4cm,氧分压为26.6Pa,将基片加热至400℃溅射40min,直接在不锈钢箔上制备得到MnO x薄膜;
(2)在MnO x薄膜的基础上,以Li 7La 3Zr 2O 12靶作为靶材,采用磁控溅射方式制备Li 7La 3Zr 2O 12非晶固态电解质薄膜;
具体工艺如下:安装好靶材和上述制备得到的薄膜后,关闭溅射腔室,将溅射腔室抽真空至1.0×10 -4Pa以下,通入50sccm氩气,设定直流溅射功率1W/cm 2,靶基距80mm,溅射12h,可以得到非晶Li7La3Zr2O12薄膜。
(3)在Li 7La 3Zr 2O 12固态电解质薄膜上,以TiO 2为靶材,采用脉冲激光沉积,,形成二氧化钛薄膜。
具体工艺如下:采用KrF准分子激光器,激光波长为248nm,激光能量密度分别控制为3J/cm2和10Hz,靶基距为4cm,氧分压为26.6Pa,直接在上述的Li 7La 3Zr 2O 12电解质薄膜上制备得到非晶TiO 2负极薄膜。
(4)在二氧化钛薄膜的基础上,以Pt和Ti为靶材,采用磁控溅射,形成与二氧化钛薄膜复合的负极集流体薄膜。
具体工艺如下:以纯Ti金属为靶材,安装好靶材和上述制备得到的薄膜后,关闭溅射腔室,将溅射腔室抽真空至1.0×10 -4Pa以下,通入60sccm氩气,设定直流溅射功率0.5W/cm 2,靶基距80mm,溅射10min,可以得到金属Ti薄膜。
然后以纯Pt金属为靶材,安装好靶材和上述制备得到的薄膜后,关闭溅射腔室,将溅射腔室抽真空至1.0×10 -4Pa以下,通入60sccm氩气,设定直流溅射功率1W/cm 2,靶基距80mm,溅射5min,可以得到金属Pt薄膜。最终的Pt/Ti构成了负极集流体5。
然后,将所得全固态薄膜锂离子电池封装,得到能够进行使用的正负极都不含锂的全固态薄膜锂离子电池。
对比例1
按照实施例1步骤1)、2)的方法,在镀有铂和钛作为正极集流体1的玻璃基底上,依次制备Mn 3O 4薄膜和LiPON固态电解质薄膜;
然后,在LiPON固态电解质薄膜上采用热蒸发设备进行金属锂的蒸镀,形成负极活性材料薄膜,最后以Pt和Ti为靶材,采用磁控溅射获得负极集流体薄膜,得到具有Mn 3O 4/LiPON/Li结构的全固态薄膜锂离子电池。
对比例1所制备的全固态薄膜锂离子电池的电化学性质检测结果如图18所示。该电池可以在50mA/g的电流密度下获得205mAh/g的比容量,并且在循环1500圈之后容量保持84%。但是由于直接使用金属锂作为负极,而金属锂需要在手套箱中或者高级别超净间内制备才能保存,制备要求和成本相对较高。此外,由于金属锂的熔点为180℃,该电池难以在180℃以上的高温区区间内使用。
对比例2
1)采用直流磁控溅射的方法,以实例1中步骤3)中的方法,以纯Ti金属为靶材,在镀有铂和钛作为正极集流体的玻璃基底上,制备二氧化钛薄膜。
2)在得到的二氧化钛薄膜的基础上,采用实例1中步骤2)中的方法,采用磁控溅射方式制备LiPON固态电解质薄膜。
3)在LiPON固态电解质薄膜的基础上,在LiPON固态电解质薄膜上采用热蒸发设备进行金属锂的蒸镀,形成负极活性材料薄膜;
4)以Pt和Ti为靶材,采用磁控溅射获得负极集流体薄膜,得到具有TiO 2/LiPON/Li结构的全固态薄膜锂离子电池。
对比例2所制备的全固态薄膜锂离子电池的电化学性能如图19所示。该电池可以在50mA/g的电流密度下获得202mAh/g的比容量,并且在循环2000圈之后容量基本无衰减。但是由于直接使用金属锂作为负极,而金属锂需要在手套箱中或者高级别超净间内制备才能保存,制备要求和成本相对较高。此外,由于金属锂的熔点为180℃,该电池难以在180℃以上的高温区区间内使用。
对比例3
一种现有的全固态锂离子电池,包括依次层叠设置的正极集流层、正极材料层、含锂的固态电解质、负极材料层和负极集流层。其中,正极集流层为不锈钢、正极材料层为LiCoO2,含锂的固态电解质为LiPON,负极材料层为金属锂,负极集流层为铜。
1)采用射频磁控溅射法,以钴酸锂(LiCoO 2)靶作为靶材,聚酰亚胺作为基底材料,在其上镀Pt/Ti作为正极集流体。安装好靶材和正极集流体后,关闭溅射腔室,将溅射腔室抽真空至1.0×10-4Pa以下,通入100sccm氩气和20sccm的氧气,再将腔室内气体压强调节到1Pa;将基底加热至300℃,设定射频溅射功率密度为1.4W/cm2,靶基距为80mm,预溅射5min,以清理靶材表面的杂质,室温下溅射3h,可以直接在上述基底上 得到钴酸锂薄膜;
2)固态电解质薄膜的制备:采用实例1中步骤2)中的方法,采用磁控溅射方式制备LiPON固态电解质薄膜。
3)在得到的LiPON固态电解质薄膜表面,采用热蒸发法,在电解质表面蒸发镀上一层金属Li膜;
4)以Pt和Ti为靶材,采用磁控溅射获得负极集流体薄膜,得到具有LiCoO 2/LiPON/Li结构的全固态薄膜锂离子电池。
该全固态薄膜锂离子电池由于聚酰亚胺能承受的最高温度为300℃,因而设置加热温度为300℃。然而,由于LiCoO2的溅射温度为300℃,未经热处理,其结晶度有限。如其电化学性能图20所示,在3V至4.2V的工作电压内,在25mA/g的电流下,比容量约为30mAh/g。若提高其热处理的温度,基底则容易受热变形、分解而失效。此外,金属锂需要在手套箱中或者高级别超净间内制备才能保存。此外,由于金属锂的熔点为180℃,该电池难以在180℃以上的高温区区间内使用。
工业实用性
本申请所提供的全固态锂离子电池中,正极和负极中都不含有锂化合物或者金属锂,由于锰氧化合物和钛氧化合物均能够在常温或者较低温度制备得到,因此也使得本申请全固态锂离子电池对于制备环境条件的要求大大降低,还可以与半导体工艺匹配,并实现固态电池在微电路上的集成。此外,该种电池设计可以具有极好的高温性能(最高可达300℃),可以应用于特殊的高温场合,如矿井、航空航天、高温井等。

Claims (15)

  1. 一种锂离子电池正极,其特征在于,包括正极集流体和设置于所述正极集流体表面的正极材料层,所述正极材料层中的正极活性材料为:锰氧化合物;
    优选的,所述锰氧化合物是包括选自由二氧化锰,三氧化二锰和四氧化三锰组成的组中的一种或几种的复合物。
  2. 根据权利要求1所述的锂离子电池正极,其特征在于,所述正极材料层为锰氧化合物薄膜。
  3. 一种全固态锂离子电池,其特征在于,包括:正极,固态电解质和负极;
    其中,所述正极包括:正极集流体和设置于正极集流体表面的正极材料层,所述正极材料层中的正极活性材料为:锰氧化合物;
    所述负极材料包括:负极集流体以及设置于负极集流体表面的负极材料层,所述负极材料中的负极活性材料为:钛氧化合物;
    优选的,所述锰氧化合物是包括选自由二氧化锰,三氧化二锰和四氧化三锰组成的组中的一种或几种的复合物;
    优选的,所述钛氧化合物包括:二氧化钛。
  4. 根据权利要求3所述的全固态锂离子电池,其特征在于,所述正极材料层为锰氧化合物薄膜。
  5. 根据权利要求3所述的全固态锂离子电池,其特征在于,所述负极材料层为钛氧化物薄膜。
  6. 根据权利要求3所述的全固态锂离子电池,其特征在于,所述固态电解质为含锂化合物。
  7. 根据权利要求5所述的全固态锂离子电池,其特征在于,所述固态电解质选自由LiPON,LiSiON,Li 2SiO 3,Li 7La 3Zr 2O 12,LiBO 3,Li 3PO 4,Li 3OX和LiTi 2(PO 4) 3组成的组;
    优选的,X为卤素;
    更优选的,X为氟,氯或溴。
  8. 根据权利要求3所述的全固态锂离子电池,其特征在于,所述全固态锂离子电池还包括基底,其中,所述正极集流体设置于所述基底之上。
  9. 根据权利要求8所述的全固态锂离子电池,其特征在于,所述基底的材料选自由金属材料,金属氧化物材料,硅材料,玻璃材料,纸材料和聚合物材料组成的组;
    优选的,所述金属材料包括:不锈钢或铝;
    优选的,所述金属氧化物材料包括:三氧化二铝;
    优选的,所述聚合物材料包括:聚酰亚胺。
  10. 根据权利要求3-9中任一项所述的全固态锂离子电池,其特征在于,所述全固态锂离子电池为薄膜电池。
  11. 权利要求3-10中任一项所述的全固态锂离子电池的制备方法,其特征在于,所述制备方法包括:将正极,固态电解质和负极依次复合,得到全固态锂离子电池。
  12. 根据权利要求11所述的制备方法,其特征在于,包括:在正极集流体的表面依次制备正极材料,固态电解质,负极材料和负极集流体,得到所述全固态锂离子电池。
  13. 根据权利要求12所述的制备方法,其特征在于,所述正极集流体设置于所述基底之上;
    优选的,所述基底的材料是包括选自由金属材料,金属氧化物材料,硅材料,玻璃材料,纸材料和聚合物材料组成的组中的一种或至少两种材料的复合材料;
    更优选的,所述金属材料包括:不锈钢或铝;
    更优选的,所述金属氧化物材料包括:三氧化二铝;
    更优选的,所述聚合物材料包括:聚酰亚胺。
  14. 根据权利要求12所述的制备方法,其特征在于,包括:在正极集流体的表面依次制备锰氧化合物薄膜,固态电解质膜,钛氧化合物薄膜以及负极集流体薄膜。
  15. 一种用电器件,其特征在于,所述用电器件包含权利要求3-10中任一项所述的全固态锂离子电池。
PCT/CN2019/086704 2018-09-05 2019-05-13 锂离子电池正极、全固态锂离子电池及其制备方法与用电器件 WO2020048150A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/652,764 US11600819B2 (en) 2018-09-05 2019-05-13 Positive electrode of lithium-ion battery, all-solid-state lithium-ion battery and preparation method thereof, and electrical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811034547.8A CN109148894A (zh) 2018-09-05 2018-09-05 锂离子电池正极、全固态锂离子电池及其制备方法与用电器件
CN201811034547.8 2018-09-05

Publications (1)

Publication Number Publication Date
WO2020048150A1 true WO2020048150A1 (zh) 2020-03-12

Family

ID=64827252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086704 WO2020048150A1 (zh) 2018-09-05 2019-05-13 锂离子电池正极、全固态锂离子电池及其制备方法与用电器件

Country Status (3)

Country Link
US (1) US11600819B2 (zh)
CN (1) CN109148894A (zh)
WO (1) WO2020048150A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114843586A (zh) * 2022-05-16 2022-08-02 福州大学 一种全固态薄膜锂电池的预锂化方法
CN117638200A (zh) * 2024-01-24 2024-03-01 宁德新能源科技有限公司 锂离子电池和电子装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109148894A (zh) * 2018-09-05 2019-01-04 天津瑞晟晖能科技有限公司 锂离子电池正极、全固态锂离子电池及其制备方法与用电器件
CN109950528A (zh) * 2019-04-17 2019-06-28 天津瑞晟晖能科技有限公司 薄膜锂电池及其制备方法、正极薄膜材料、正极薄膜、正极组件及其制备方法、用电器
CN110085917B (zh) * 2019-04-28 2021-05-28 天津瑞晟晖能科技有限公司 全固态锂离子电池及其制备方法和用电设备
CN111129505B (zh) * 2020-01-21 2022-03-11 合肥国轩高科动力能源有限公司 一种使用轻量化的集流体的锂电池
CN111525181B (zh) * 2020-05-08 2022-01-18 上海空间电源研究所 一种低界面电阻的全固态电池及其制备方法
KR20230032830A (ko) * 2021-08-30 2023-03-07 스미토모 긴조쿠 고잔 가부시키가이샤 정극 활물질, 고온 동작형 리튬 이온 폴리머 이차 전지, 고온 동작형 리튬 이온 무기 전고체 이차 전지

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102301519A (zh) * 2009-02-03 2011-12-28 索尼公司 薄膜固态锂离子二次电池及其制造方法
CN102290595B (zh) * 2011-06-24 2014-06-11 中国科学院上海微系统与信息技术研究所 一种全固态高循环寿命薄膜锂电池及其制作方法
CN104157905A (zh) * 2014-07-14 2014-11-19 宁波大学 一种LiMn2O4/掺杂NASICON/Li4Ti5O12全固态薄膜电池及制备方法
CN106207099A (zh) * 2016-09-21 2016-12-07 天津瑞晟晖能科技有限公司 一种三维LiMn2O4薄膜正电极及三维全固态薄膜锂离子电池的制备方法
WO2018097727A1 (en) * 2016-11-25 2018-05-31 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Hybrid nanolaminate electrodes for li-ion batteries
CN109148894A (zh) * 2018-09-05 2019-01-04 天津瑞晟晖能科技有限公司 锂离子电池正极、全固态锂离子电池及其制备方法与用电器件

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5169094B2 (ja) * 2007-09-12 2013-03-27 ソニー株式会社 リチウム二次電池用正極活物質およびこれを用いたリチウム二次電池
JP4745323B2 (ja) * 2007-11-26 2011-08-10 ナミックス株式会社 リチウムイオン二次電池、及び、その製造方法
JP2013062242A (ja) * 2011-08-24 2013-04-04 Sumitomo Metal Mining Co Ltd 薄膜固体二次電池用の薄膜の製造方法とそれに用いる塗布液、及び薄膜、並びにそれを用いた薄膜固体二次電池
CN103022463B (zh) * 2012-12-20 2015-03-25 中国东方电气集团有限公司 一种锂电池锰基复合负极材料及其制备方法
CN105609752A (zh) * 2016-02-02 2016-05-25 陕西科技大学 一种纳米颗粒状Mn3O4/Super P锂离子电池负极材料的制备方法
CN106099197B (zh) * 2016-07-11 2019-01-22 成都亦道科技合伙企业(有限合伙) 全固态金属离子电池及其制备方法、电动车
WO2018087966A1 (ja) * 2016-11-11 2018-05-17 日本碍子株式会社 Ic用電源及びそれを備えた各種ic製品、icへの電力供給方法、並びにicの駆動方法
CN108232320A (zh) * 2018-02-08 2018-06-29 天津瑞晟晖能科技有限公司 全固态薄膜锂离子电池的制备方法及全固态薄膜锂离子电池
KR102302038B1 (ko) * 2018-05-11 2021-09-15 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102301519A (zh) * 2009-02-03 2011-12-28 索尼公司 薄膜固态锂离子二次电池及其制造方法
CN102290595B (zh) * 2011-06-24 2014-06-11 中国科学院上海微系统与信息技术研究所 一种全固态高循环寿命薄膜锂电池及其制作方法
CN104157905A (zh) * 2014-07-14 2014-11-19 宁波大学 一种LiMn2O4/掺杂NASICON/Li4Ti5O12全固态薄膜电池及制备方法
CN106207099A (zh) * 2016-09-21 2016-12-07 天津瑞晟晖能科技有限公司 一种三维LiMn2O4薄膜正电极及三维全固态薄膜锂离子电池的制备方法
WO2018097727A1 (en) * 2016-11-25 2018-05-31 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Hybrid nanolaminate electrodes for li-ion batteries
CN109148894A (zh) * 2018-09-05 2019-01-04 天津瑞晟晖能科技有限公司 锂离子电池正极、全固态锂离子电池及其制备方法与用电器件

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FELIX MATTELAER: "Deposition of MnO Anode and Mn02 Cathode Thin Films by Plasma Enhanced Atomic Layer Deposition Using the Mn(thd)3 Precursor", CHEMISTRY OF MATERIALS, vol. 27, no. 10, 5 May 2015 (2015-05-05), XP055690255 *
GIJS VANHOUTTE: "Electro-precipitation via oxygen reduction: a new technique for thin film manganese oxide deposition", JOURNAL OF MATERIALS CHEMISTRY A, vol. 4, no. 35, 4 August 2016 (2016-08-04), XP055690254 *
HUI XIA: "Manganese oxide thin films prepared by pulsed laser deposition for thin film microbatteries", MATERIALS CHEMISTRY AND PHYSICS, vol. 143, 15 January 2014 (2014-01-15), pages 720 - 727, XP028778124 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114843586A (zh) * 2022-05-16 2022-08-02 福州大学 一种全固态薄膜锂电池的预锂化方法
CN117638200A (zh) * 2024-01-24 2024-03-01 宁德新能源科技有限公司 锂离子电池和电子装置
CN117638200B (zh) * 2024-01-24 2024-04-30 宁德新能源科技有限公司 锂离子电池和电子装置

Also Published As

Publication number Publication date
US20200235388A1 (en) 2020-07-23
US11600819B2 (en) 2023-03-07
CN109148894A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
WO2020048150A1 (zh) 锂离子电池正极、全固态锂离子电池及其制备方法与用电器件
CN101771168B (zh) 微型锂电池的制备方法
KR100487458B1 (ko) 리튬 2차 전지용 전극의 제조 방법
Lee et al. Scalable fabrication of flexible thin-film batteries for smart lens applications
JP4977023B2 (ja) 超高速パルスレーザ堆積を使用する電気化学デバイス作製方法。
Kuwata et al. Thin film lithium ion batteries prepared only by pulsed laser deposition
US20040048157A1 (en) Lithium vanadium oxide thin-film battery
US8709106B2 (en) Lithium secondary battery anode member and method for manufacturing the same
CN108448055A (zh) 锂离子电池正极材料及其制备方法
JP4850405B2 (ja) リチウムイオン二次電池及びその製造方法
JP2010205718A (ja) 薄膜固体リチウムイオン二次電池及びその製造方法
CN108808058B (zh) 一种具有图案化结构的高电压固态薄膜锂电池片
Siyu et al. Pyrite film synthesized for lithium-ion batteries
CN108886150A (zh) 包含具有精细图案的锂金属层及其保护层的二次电池用负极、以及所述负极的制造方法
EP3327837A1 (en) Li-ion based electrochemical energy storage cell
Vereecken et al. Conformal deposition for 3D thin-film batteries
JP2008282797A (ja) 非水二次電池用集電体、およびその製造方法
JP5154139B2 (ja) 全固体型リチウム二次電池製造方法および全固体型リチウム二次電池
CA3079064C (en) Solid-state thin film hybrid electrochemical cell
KR102155025B1 (ko) 리튬 메탈 표면의 불화리튬의 증착 및 이를 이용한 리튬 이차전지
CN110085917B (zh) 全固态锂离子电池及其制备方法和用电设备
TWI676314B (zh) 薄膜電池的負極結構及其形成方法,以及使用該負極結構之薄膜電池
KR100495674B1 (ko) 전 고상 박막전지용 양극 박막, 그 제조방법 및 이를이용한 리튬 박막전지
CN113308677B (zh) 氮掺杂的非晶五氧化二铌薄膜的制备方法、全固态薄膜的锂离子电池正极以及锂离子电池
JP2005235686A (ja) 正極および電池、並びにそれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14-06-2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19857931

Country of ref document: EP

Kind code of ref document: A1