WO2020044706A1 - マグネトプランバイト型六方晶フェライトの粉体及びその製造方法、並びに電波吸収体 - Google Patents

マグネトプランバイト型六方晶フェライトの粉体及びその製造方法、並びに電波吸収体 Download PDF

Info

Publication number
WO2020044706A1
WO2020044706A1 PCT/JP2019/022347 JP2019022347W WO2020044706A1 WO 2020044706 A1 WO2020044706 A1 WO 2020044706A1 JP 2019022347 W JP2019022347 W JP 2019022347W WO 2020044706 A1 WO2020044706 A1 WO 2020044706A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetoplumbite
radio wave
powder
hexagonal ferrite
type hexagonal
Prior art date
Application number
PCT/JP2019/022347
Other languages
English (en)
French (fr)
Inventor
橋本 浩一
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201980056043.2A priority Critical patent/CN112640008B/zh
Priority to JP2020540075A priority patent/JP6986637B2/ja
Priority to KR1020217004268A priority patent/KR102424753B1/ko
Priority to EP19854513.9A priority patent/EP3846183B1/en
Publication of WO2020044706A1 publication Critical patent/WO2020044706A1/ja
Priority to US17/173,437 priority patent/US20210166849A1/en
Priority to JP2021193576A priority patent/JP7113954B2/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0036Mixed oxides or hydroxides containing one alkaline earth metal, magnesium or lead
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0045Mixed oxides or hydroxides containing aluminium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0072Mixed oxides or hydroxides containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • H01F1/348Hexaferrites with decreased hardness or anisotropy, i.e. with increased permeability in the microwave (GHz) range, e.g. having a hexagonal crystallographic structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/02Particle morphology depicted by an image obtained by optical microscopy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/004Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems using non-directional dissipative particles, e.g. ferrite powders

Definitions

  • the present disclosure relates to a powder of magnetoplumbite-type hexagonal ferrite, a method for producing the same, and a radio wave absorber.
  • radio interference causes problems such as malfunctions and failures of electronic devices.
  • a radio wave absorber absorbs unnecessary radio waves to prevent the reflection of the radio waves.
  • Magnetic wave absorbers are often used as radio wave absorbers.
  • a radio wave incident on a radio wave absorber including a magnetic substance generates a magnetic field in the magnetic substance.
  • the generated magnetic field is reduced to radio wave energy, part of the energy is lost and absorbed. Therefore, in a radio wave absorber including a magnetic material, the frequency band in which the effect is obtained differs depending on the type of the magnetic material used.
  • Japanese Patent No. 4,674,380 discloses that the composition formula is AFe (12-x) Al x O 19 , where A is at least one of Sr, Ba, Ca, and Pb, and x is 1.0 to 2.2.
  • A is at least one of Sr, Ba, Ca, and Pb
  • x is 1.0 to 2.2.
  • a magnetic powder for a radio wave absorber having a laser diffraction scattering particle size distribution having a peak particle size of 10 ⁇ m or more is described.
  • the magnetic powder for a radio wave absorber described in Japanese Patent No. 4,674,380 it is said that the magnetic powder exhibits excellent radio wave absorption performance near 76 GHz.
  • a magnetoplumbite-type hexagonal ferrite powder capable of producing a radio wave absorber having excellent radio wave absorption performance and sheet strength even when formed into a thin film.
  • a method for producing a powder of magnetoplumbite-type hexagonal ferrite capable of producing a radio wave absorber having excellent radio wave absorption performance and sheet strength even when formed into a thin film is provided.
  • the content of each metal atom with respect to 100 atom% of iron atoms is determined.
  • the composition is confirmed based on the obtained content.
  • the ICP emission spectrometer for example, ICPS-8100 (model number) manufactured by Shimadzu Corporation can be suitably used.
  • the ICP emission spectrometer is not limited to this.
  • a preferable mode is a mode in which the mode diameter is 5 ⁇ m or more and 9.8 ⁇ m or less, and (D 90 ⁇ D 10 ) / mode diameter ⁇ 3.0.
  • the mode diameter is 5 ⁇ m or more and 9.5 ⁇ m or less, and (D 90 ⁇ D 10 ) / mode diameter ⁇ 3.0.
  • the mode diameter is 5 ⁇ m or more. 9D or less, and (D 90 ⁇ D 10 ) / mode diameter ⁇ 3.0.
  • the particle size (ie, mode diameter, D 10 and D 90 ) of the magnetoplumbite-type hexagonal ferrite powder is controlled by classification using a sieve, a centrifuge, or the like, crushing using a mortar and pestle, an ultrasonic disperser, or the like. can do.
  • the desired value can be adjusted by selecting the pulverizing means, the pulverizing time, the material of the medium, the medium diameter and the like.
  • the particle diameter of the magnetoplumbite-type hexagonal ferrite powder tends to be small.
  • the material of the medium is not particularly limited, and for example, a medium made of glass, alumina, steel, zirconia, ceramic, or the like can be preferably used.
  • radio wave absorber of the present disclosure by increasing the ratio of aluminum atoms to iron atoms in the specific magnetoplumbite-type hexagonal ferrite (that is, increasing the value of x in equation (1)), Since radio waves in higher frequency bands can be absorbed, excellent radio wave absorption performance can be exhibited even in a high frequency band of, for example, 70 GHz to 90 GHz.
  • the radio wave absorber of the present disclosure may have a planar shape or a three-dimensional shape.
  • the planar shape is not particularly limited, and examples include a sheet shape and a film shape.
  • Examples of the three-dimensional shape include a polygonal pillar shape, a cylindrical shape, a pyramid shape, a conical shape, and a honeycomb shape of a triangle or more.
  • examples of the three-dimensional shape include a shape obtained by combining the above-described planar shape and the three-dimensional shape.
  • the radio wave absorption performance of the radio wave absorber of the present disclosure can be controlled not only by the content of the specific magnetoplumbite-type hexagonal ferrite powder in the radio wave absorber, but also by the shape of the radio wave absorber.
  • the radio wave absorber of the present disclosure may include only one type of specific magnetoplumbite-type hexagonal ferrite powder, or may include two or more types.
  • the radio wave absorber of the present disclosure may include, for example, two or more specific magnetoplumbite-type hexagonal ferrite powders having different compositions.
  • the content of the specific magnetoplumbite-type hexagonal ferrite powder in the radio wave absorber of the present disclosure is not particularly limited. For example, from the viewpoint of radio wave absorption performance, 10% with respect to the total solid content in the radio wave absorber. It is preferably at least 30 mass%, more preferably at least 30 mass%, even more preferably at least 50 mass%. Further, the content of the specific magnetoplumbite-type hexagonal ferrite powder in the radio wave absorber of the present disclosure is, for example, from the viewpoint of sheet strength and manufacturing suitability of the radio wave absorber, relative to the total solid content in the radio wave absorber. Thus, the content is preferably 98% by mass or less, more preferably 95% by mass or less, and even more preferably 92% by mass or less.
  • the total solid content in the radio wave absorber refers to the total mass of the radio wave absorber when the radio wave absorber does not contain a solvent, and the radio wave absorption when the radio wave absorber contains a solvent. It means the total mass of the body excluding the solvent.
  • the radio wave absorber of the present disclosure includes a binder.
  • the term “binder” is a general term for a substance that can keep a specific magnetoplumbite-type hexagonal ferrite powder in a dispersed state and form a form of a radio wave absorber.
  • the binder is not particularly limited, and examples thereof include a resin, a rubber, and a thermoplastic elastomer (TPE).
  • TPE thermoplastic elastomer
  • a thermoplastic elastomer (TPE) is preferable as the binder, for example, from the viewpoint of tensile strength and bending resistance.
  • the resin may be either a thermoplastic resin or a thermosetting resin.
  • the thermoplastic resin include acrylic resin; polyacetal; polyamide; polyethylene; polypropylene; polyethylene terephthalate; polybutylene terephthalate; polycarbonate; polystyrene; polyphenylene sulfide; polyvinyl chloride; copolymerization of acrylonitrile, butadiene and styrene.
  • ABS acrylonitrile butadiene styrene
  • AS acrylonitrile styrene
  • the thermosetting resin include a phenol resin, an epoxy resin, a melamine resin, a urea resin, an unsaturated polyester, a diallyl phthalate resin, a urethane resin, and a silicone resin.
  • thermoplastic elastomer examples include olefin-based thermoplastic elastomer (TPO), styrene-based thermoplastic elastomer (TPS), amide-based thermoplastic elastomer (TPA), and polyester-based thermoplastic elastomer (TPC).
  • TPO olefin-based thermoplastic elastomer
  • TPS styrene-based thermoplastic elastomer
  • TPA amide-based thermoplastic elastomer
  • TPC polyester-based thermoplastic elastomer
  • the radio wave absorber of the present disclosure contains rubber as a binder, it may contain various additives such as a vulcanizing agent, a vulcanization aid, a softener, and a plasticizer in addition to the rubber.
  • a vulcanizing agent include sulfur, organic sulfur compounds, and metal oxides.
  • the melt mass slow rate (hereinafter also referred to as “MFR”) of the binder is not particularly limited, and is, for example, preferably 1 g / 10 min to 200 g / 10 min, more preferably 3 g / 10 min to 100 g / 10 min, and more preferably 5 g / 10 min. 80 g / 10 min is more preferable, and 10 g / 10 min to 50 g / 10 min is particularly preferable.
  • the MFR of the binder is 1 g / 10 min or more, the fluidity is sufficiently high, and poor appearance is less likely to occur.
  • the MFR of the binder is 200 g / 10 min or less, mechanical properties such as the strength of the molded body are more easily increased.
  • the MFR of the binder is a value measured under the conditions of a measurement temperature of 230 ° C. and a load of 10 kg in accordance with JIS K 7210: 1999.
  • the content of the binder in the electromagnetic wave absorber of the present disclosure is not particularly limited, for example, from the viewpoint of dispersibility of specific magnetoplumbite-type hexagonal ferrite powder, and from the viewpoint of sheet strength and manufacturing suitability of the electromagnetic wave absorber. Therefore, the total solid content in the radio wave absorber is preferably 2% by mass or more, more preferably 5% by mass or more, even more preferably 8% by mass or more. Further, the content of the binder in the radio wave absorber of the present disclosure is, for example, preferably 90% by mass or less, more preferably 70% by mass or less based on the total solid content in the radio wave absorber from the viewpoint of radio wave absorption performance. More preferably, it is 50% by mass or less.
  • the radio wave absorber uses a solution that is ultrasonically dispersed in a solvent (for example, acetone) as a sample, and perform measurement by a laser diffraction scattering method to confirm the mode diameter, particle size distribution, and the like. Can be.
  • a solvent for example, acetone
  • the method for manufacturing the radio wave absorber of the present disclosure is not particularly limited.
  • the radio wave absorber of the present disclosure can be manufactured by a known method using a specific magnetoplumbite-type hexagonal ferrite powder, a binder, a solvent, and, if necessary, other components.
  • a radio wave absorber composition containing a specific magnetoplumbite type hexagonal ferrite powder, a binder, a solvent, and, if necessary, other components is coated on a support and dried. Thereby, a radio wave absorber can be manufactured.
  • a radio wave absorber can be manufactured.
  • the content of the specific magnetoplumbite-type hexagonal ferrite powder and the binder in the composition for the electromagnetic wave absorber is the content of the specific magnetoplumbite-type hexagonal ferrite powder and the binder in the finally obtained electromagnetic absorber. May be adjusted so that the content of the specific magnetoplumbite-type hexagonal ferrite powder and the binder in the above-described electromagnetic wave absorber becomes the same.
  • the content of the solvent in the composition for a radio wave absorber is not particularly limited, and is appropriately selected depending on, for example, the type and amount of components to be mixed in the composition for a radio wave absorber.
  • the specific magnetoplumbite-type hexagonal ferrite powder and the binder may be simply mixed.
  • the method for mixing the specific magnetoplumbite-type hexagonal ferrite powder and the binder is not particularly limited, and examples thereof include a method of mixing by stirring.
  • the stirring means is not particularly limited, and a general stirring device can be used. Examples of the stirring device include a mixer such as a paddle mixer and an impeller mixer.
  • the stirring time is not particularly limited, and can be appropriately set according to, for example, the type of the stirring device, the composition of the composition for a radio wave absorber, and the like.
  • the support is not particularly limited, and a known support can be used.
  • a material constituting the support for example, a metal plate (a metal plate such as aluminum, zinc, or copper), a plastic sheet (polyester (polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, etc.), polyethylene (linear Density polyethylene, low-density polyethylene, high-density polyethylene, etc.), polypropylene, polystyrene, polycarbonate, polyimide, polyamide, polyamideimide, polysulfone, polyvinyl chloride, polyacrylonitrile, polyphenylene sulfide, polyetherimide, polyethersulfone, polyvinyl acetal, acrylic Sheet of Resin, etc.], and a plastic sheet on which the above-described metal is laminated or vapor-deposited.
  • the plastic sheet is preferably biaxially stretched.
  • the support can function to maintain the form of the radio wave absorber. If the radio wave absorber can retain its own form, for example, a metal plate, a glass plate, or a plastic sheet having a surface subjected to release treatment is used as the support, and after the radio wave absorber is manufactured. It may be removed from the radio wave absorber.
  • the shape, structure, size, etc. of the support can be appropriately selected according to the purpose.
  • Examples of the shape of the support include a flat plate.
  • the structure of the support may be a single-layer structure or a laminated structure of two or more layers.
  • the size of the support can be appropriately selected according to the size of the radio wave absorber and the like.
  • the thickness of the support is not particularly limited, and is usually about 0.01 mm to 10 mm, for example, preferably 0.02 mm to 3 mm, and more preferably 0.05 mm to 1 mm from the viewpoint of handleability. More preferred.
  • the method of applying the composition for a radio wave absorber on a support is not particularly limited, and examples thereof include a method using a die coater, a knife coater, an applicator, and the like.
  • the method for drying the radio wave absorber composition applied or discharged onto the support is not particularly limited, and examples thereof include a method using a heating device such as an oven.
  • the drying temperature and the drying time are not particularly limited as long as the solvent in the composition for a radio wave absorber can be volatilized. As an example, drying can be performed by heating at 30 ° C. to 150 ° C. for 0.01 hour to 2 hours.
  • the pH of the second liquid was measured using a tabletop pH meter F-71 (trade name) manufactured by Horiba, Ltd. (the same applies hereinafter).
  • the second liquid was stirred for 15 minutes to terminate the reaction, and a liquid containing a reaction product to be a precursor of the magnetoplumbite-type hexagonal ferrite powder (that is, a liquid containing a precursor) was obtained.
  • the precursor-containing liquid was subjected to centrifugal separation (rotation speed: 3000 rpm, rotation time: 10 minutes) three times, and the resulting precipitate was collected.
  • the collected precipitate was dried in an oven at an internal atmosphere temperature of 95 ° C.
  • the powder of the precursor is pulverized using a mortar and pestle so that there is no particle of 500 ⁇ m or more, and then put into a muffle furnace, and in an air atmosphere, the temperature in the furnace is set to 1100 ° C.
  • the magnetic powder 1 was obtained by setting the conditions and baking for 4 hours.
  • the magnetic powder 1 was pulverized for 20 seconds using a Wonder Crusher WC-3 (trade name) of Osaka Chemical Co., Ltd. with the variable speed dial set to “3” to obtain a magnetic powder 2. .
  • the magnetic powder 3 was obtained by crushing the magnetic powder 1 for 60 seconds using a Wonder Crusher WC-3 (trade name) of Osaka Chemical Co., Ltd. with the variable speed dial set to “5”. .
  • the magnetic powder 4 was obtained by grinding the magnetic powder 1 using a Wonder Crusher WC-3 (trade name) of Osaka Chemical Co., Ltd. for 90 seconds with the variable speed dial set to “5”. .
  • the magnetic powder 1 was pulverized for 120 seconds using a Wonder Crusher WC-3 (trade name) of Osaka Chemical Co., Ltd. with the variable speed dial set to “5” to obtain a magnetic powder 5. .
  • the magnetic powder 6 was obtained by pulverizing the magnetic powder 1 for 180 seconds using an Absolute Mill (trade name) of Osaka Chemical Co., Ltd. with the variable speed dial set to “8”.
  • variable speed dial is set to "1" using a Wonder Crusher WC-3 (trade name) of Osaka Chemical Co., Ltd. By crushing for 10 seconds, magnetic powder 7 was obtained.
  • the magnetic powder 8 was obtained by grinding the magnetic powder 1 for 120 seconds using a Wonder Crusher WC-3 (trade name) of Osaka Chemical Co., Ltd. with the variable speed dial set to “8”. .
  • the magnetic powder 9 was obtained by grinding the magnetic powder 1 using a Wonder Crusher WC-3 (trade name) of Osaka Chemical Co., Ltd. for 60 seconds with the variable speed dial set to “3”. .
  • variable speed dial is set to "1" using a Wonder Crusher WC-3 (trade name) of Osaka Chemical Co., Ltd. By crushing for 10 seconds, magnetic powder 10 was obtained.
  • the second liquid was stirred for 15 minutes to terminate the reaction, and a liquid containing a reaction product to be a precursor of the magnetoplumbite-type hexagonal ferrite powder (that is, a liquid containing a precursor) was obtained.
  • the precursor-containing liquid was subjected to centrifugal separation (rotation speed: 3000 rpm, rotation time: 10 minutes) three times, and the resulting precipitate was collected.
  • the collected precipitate was dried in an oven at an internal atmosphere temperature of 95 ° C. for 12 hours to obtain an aggregate of particles of the precursor (that is, a powder of the precursor).
  • the magnetic powder 12 was obtained by crushing the magnetic powder 11 for 120 seconds using a Wonder Crusher WC-3 (trade name) of Osaka Chemical Co., Ltd. with the variable speed dial set to “5”. .
  • the magnetic powder 13 was obtained by crushing the magnetic powder 11 for 180 seconds using an Absolute Mill (trade name) of Osaka Chemical Co., Ltd. with the variable speed dial set to “8”.
  • each of the magnetic bodies 1 to 16 has a magnetoplumbite-type crystal structure, and is a single-phase magnetoplumbite-type hexagonal ferrite having no crystal structure other than the magnetoplumbite type. It was confirmed that.
  • each of the magnetic bodies 1 to 16 was confirmed by high frequency inductively coupled plasma (ICP) emission spectroscopy. Specifically, a pressure-resistant container (beaker) containing 12 mg of each powder and 10 mL of a 4 mol / L hydrochloric acid aqueous solution was held in an oven at a set temperature of 120 ° C. for 12 hours to obtain a solution. After adding 30 mL of pure water to the obtained solution, the solution was filtered using a 0.1 ⁇ m membrane filter. Elemental analysis of the filtrate thus obtained was carried out using a high frequency inductively coupled plasma (ICP) emission spectrometer [Model: ICPS-8100, Shimadzu Corporation]. Based on the results of the obtained elemental analysis, the content of each metal atom with respect to 100 atom% of iron atoms was determined. Then, based on the obtained content, the composition of each magnetic body was confirmed. The composition of each magnetic material is shown below.
  • Magnetic bodies 1 to 10, magnetic body 15, and magnetic body 16 SrFe (9.95) Al (2.05) O 19
  • Magnetic body 11 to magnetic body 13 SrFe (9.70) Al (2.30) O 19
  • Magnetic 14 Sr (0.80) Ba ( 0.10) Ca (0.10) Fe (9.83) Al (2.17) O 19
  • the number-based particle size distribution of each of the magnetic powders 1 to 16 was measured by a laser diffraction scattering method, and the mode (so-called mode diameter), cumulative 10% diameter, and The cumulative 90% diameter was determined. Specifically, 500 mg of cyclohexanone was added to 10 mg of each magnetic powder for dilution, followed by stirring for 30 seconds using a shaker, and the obtained liquid was used as a sample for particle size distribution measurement. Next, the particle size distribution of the sample for particle size distribution measurement was measured using a laser diffraction / scattering type particle size distribution measuring device [trade name: Partica LA-960, Horiba, Ltd.].
  • a mode diameter (unit: ⁇ m) that is the mode
  • D 10 (unit: ⁇ m) that is a cumulative 10% diameter
  • D 90 (unit that is a 90% diameter) are cumulative. (Unit: ⁇ m). Further, the value of “(D 90 ⁇ D 10 ) / mode diameter” was calculated. The results are shown in Tables 1 to 3.
  • Radio wave absorption was performed on a radio wave absorption sheet (hereinafter, also referred to as “the radio wave absorption sheet 1 to the radio wave absorption sheet 16”) manufactured using each magnetic powder of the magnetic powder 1 to the magnetic powder 16. The performance was evaluated. For evaluation, a radio wave absorption sheet for evaluation produced by the following method was used.
  • the return loss (unit: dB) of the radio wave absorption sheet for evaluation obtained above was measured. Specifically, a vector network analyzer (product name: MS4647B) manufactured by Anritsu Corporation and a horn antenna (product name: RH19R) manufactured by KEYCOM CORPORATION were used, and the incident angle was set to 0 ° by a free space method. The return loss was measured with the sweep frequency set to 60 GHz to 90 GHz. The radio wave absorbing sheets 1 to 10 and the radio wave absorbing sheets 14 to 16 are based on the value of the return loss at 76.5 GHz, and the radio wave absorbing sheets 11 to 13 are 85. The radio wave absorption performance was evaluated based on the value of the return loss at 0 GHz. The evaluation criteria are shown below. If the evaluation result is A, it was determined that the sheet was a radio wave absorbing sheet having excellent radio wave absorbing performance. The results are shown in Tables 1 to 3.
  • the prepared composition for a radio wave absorber was applied on a glass plate using an applicator to form a composition layer for a radio wave absorber.
  • the formed radio wave absorber composition layer was dried in an oven at an internal atmosphere temperature of 80 ° C. for 2 hours to form a radio wave absorption layer (thickness: 380 ⁇ m, planar shape) on the glass plate.
  • the radio wave absorbing layer was peeled off from the glass plate, and the peeled radio wave absorbing layer was cut into a strip of 20 mm ⁇ 70 mm to obtain a radio wave absorbing sheet for evaluation.
  • the breaking strength (unit: MPa) of the radio wave absorption sheet for evaluation obtained above was measured. Specifically, using a strograph V1-C (trade name) manufactured by Toyo Seiki Seisaku-Sho, Ltd. as a measuring device, the evaluation radio wave absorbing sheet is pulled in the longitudinal direction at a speed of 20 ⁇ m / s (second) to break. The load applied to the immediately preceding radio wave absorbing sheet for evaluation was defined as the breaking strength. The sheet strength was evaluated based on the obtained values of the breaking strength. The evaluation criteria are shown below. If the evaluation result is A, it was determined that the sheet was a radio wave absorbing sheet having excellent sheet strength even when a thin film was formed. The results are shown in Tables 1 to 3.
  • the powders of the magnetoplumbite-type hexagonal ferrite of Examples 1 to 6 (that is, magnetic powder 3 to magnetic powder 5, magnetic powder 12, magnetic powder 14) were used.
  • the magnetic powder 15 had a high coercive force (Hc) and were excellent in magnetic properties.
  • the radio wave absorbing sheets of Examples 1 to 6 (that is, the radio wave absorbing sheets 3 to 5, the radio wave absorbing sheets 12, the radio wave absorbing sheets 14, and the radio wave absorbing sheets 15) are thin films of 380 ⁇ m. It was also confirmed that the sheet also had excellent radio wave absorption performance and sheet strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

下記の式(1)で表される化合物の粒子の集合体であり、かつ、レーザ回折散乱法により測定した個数基準の粒度分布において、最頻値をモード径、累積10%径をD10、及び累積90%径をD90としたときに、モード径が5μm以上10μm未満であり、(D90-D10)/モード径 ≦ 3.0であるマグネトプランバイト型六方晶フェライトの粉体及びその応用。式(1)中、Aは、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素を表し、xは、1.5≦x≦8.0を満たす。AFe(12-x)Al19・・・式(1)

Description

マグネトプランバイト型六方晶フェライトの粉体及びその製造方法、並びに電波吸収体
 本開示は、マグネトプランバイト型六方晶フェライトの粉体及びその製造方法、並びに電波吸収体に関する。
 近年、電子料金収受システム(ETC:Electronic Toll Collection System)、走行支援道路システム(AHS:Advanced Cruise-Assist Highway Systems)、衛星放送等、高周波数帯域における電波の利用形態の多様化に伴い、電波干渉による電子機器の誤作動、故障等が問題となっている。このような電波干渉が電子機器へ与える影響を低減するため、電波吸収体に不要な電波を吸収させ、電波の反射を防止することが行われている。
 電波吸収体としては、磁性体を使用したものが多用されている。磁性体を含む電波吸収体に入射した電波は、磁性体の中に磁場を発生させる。その発生した磁場が電波のエネルギーに還元される際、一部のエネルギーが失われて吸収される。そのため、磁性体を含む電波吸収体では、使用する磁性体の種類によって効果を奏する周波数帯域が異なる。
 例えば、特許第4674380号公報には、組成式AFe(12-x)Al19、但し、AはSr、Ba、Ca及びPbの1種以上、x:1.0~2.2、で表されるマグネトプランバイト型六方晶フェライトの粉体において、レーザ回折散乱粒度分布のピーク粒径が10μm以上である電波吸収体用磁性粉体が記載されている。特許第4674380号公報に記載の電波吸収体用磁性粉体によれば、76GHz付近で優れた電波吸収性能を呈するとされている。
 ところで、マグネトプランバイト型六方晶フェライトの粉体を含む薄膜(例えば、500μm以下の厚みの膜;以下、同じ)の電波吸収体では、上記粉体の含有率が高いほど、膜厚に対する電波吸収性能は高くなる。このような薄膜で、かつ、マグネトプランバイト型六方晶フェライトの粉体の含有率が高い電波吸収体では、マグネトプランバイト型六方晶フェライトの粒径が大きすぎると、電波吸収体を曲げたり引っ張ったりした場合に、粒子が起点となって破断するという問題が生じ得る。一方、マグネトプランバイト型六方晶フェライトの粒径が小さすぎると、マグネトプランバイト型六方晶フェライトの磁気特性が劣化し、電波吸収体の電波吸収性能が低下するという問題が生じ得る。
 上述の点に関し、特許第4674380号公報では、マグネトプランバイト型六方晶フェライトの粉体を含む薄膜の電波吸収体において生じ得る上記問題について、何ら言及していない。
 本発明の一実施形態が解決しようとする課題は、薄膜とした場合でも電波吸収性能及びシート強度に優れる電波吸収体を製造することができるマグネトプランバイト型六方晶フェライトの粉体を提供することである。
 本発明の他の実施形態が解決しようとする課題は、薄膜とした場合でも電波吸収性能及びシート強度に優れる電波吸収体を製造することができるマグネトプランバイト型六方晶フェライトの粉体の製造方法を提供することである。
 また、本発明の他の実施形態が解決しようとする課題は、薄膜とした場合でも電波吸収性能及びシート強度に優れる電波吸収体を提供することである。
 上記課題を解決するための手段には、以下の態様が含まれる。
 <1> 下記の式(1)で表される化合物の粒子の集合体であり、かつ、
 レーザ回折散乱法により測定した個数基準の粒度分布において、最頻値をモード径、累積10%径をD10、及び累積90%径をD90としたときに、モード径が5μm以上10μm未満であり、(D90-D10)/モード径 ≦ 3.0であるマグネトプランバイト型六方晶フェライトの粉体。
Figure JPOXMLDOC01-appb-C000002

 
 式(1)中、Aは、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素を表し、xは、1.5≦x≦8.0を満たす。
 <2> 上記式(1)におけるxが、1.5≦x≦6.0を満たす<1>に記載のマグネトプランバイト型六方晶フェライトの粉体。
 <3> 結晶相が単相である<1>又は<2>に記載のマグネトプランバイト型六方晶フェライトの粉体。
 <4> 電波吸収体に用いられる<1>~<3>のいずれか1つに記載のマグネトプランバイト型六方晶フェライトの粉体。
 <5> <1>~<4>のいずれか1つに記載のマグネトプランバイト型六方晶フェライトの粉体の製造方法であり、
 液相法により、Feと、Alと、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素と、を含む反応生成物を得る工程Aと、
 上記工程Aにて得られた上記反応生成物を乾燥して乾燥物を得る工程Bと、
 上記工程Bにて得られた上記乾燥物を焼成して焼成物を得た後、得られた上記焼成物を粉砕する工程、又は、上記工程Bにて得られた上記乾燥物を粉砕して粉砕物を得た後、得られた上記粉砕物を焼成する工程のいずれか一方の工程Cと、
を含むマグネトプランバイト型六方晶フェライトの粉体の製造方法。
 <6> 上記工程Aは、Fe塩、Al塩、及び上記少なくとも1種の金属元素の塩を含む水溶液と、アルカリ水溶液と、を混合して反応生成物を得る工程を含む<5>に記載のマグネトプランバイト型六方晶フェライトの粉体の製造方法。
 <7> <1>~<4>のいずれか1つに記載のマグネトプランバイト型六方晶フェライトの粉体と、バインダーと、を含む電波吸収体。
 本発明の一実施形態によれば、薄膜とした場合でも電波吸収性能及びシート強度に優れる電波吸収体を製造することができるマグネトプランバイト型六方晶フェライトの粉体が提供される。
 本発明の他の実施形態によれば、薄膜とした場合でも電波吸収性能及びシート強度に優れる電波吸収体を製造することができるマグネトプランバイト型六方晶フェライトの粉体の製造方法が提供される。
 また、本発明の他の実施形態によれば、薄膜とした場合でも電波吸収性能及びシート強度に優れる電波吸収体が提供される。
 以下、本発明を適用したマグネトプランバイト型六方晶フェライトの粉体の実施形態の一例について説明する。但し、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜、変更を加えて実施することができる。
 本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を意味する。
 本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 本開示において、各成分の量は、各成分に該当する物質が複数種存在する場合には、特に断らない限り、複数種の物質の合計量を意味する。
 本開示において、「工程」の用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば本用語に含まれる。
[マグネトプランバイト型六方晶フェライトの粉体]
 本開示のマグネトプランバイト型六方晶フェライトの粉体は、下記の式(1)で表される化合物の粒子の集合体であり、かつ、レーザ回折散乱法により測定した個数基準の粒度分布において、最頻値をモード径、累積10%径をD10、及び累積90%径をD90としたときに、モード径が5μm以上10μm未満であり、(D90-D10)/モード径 ≦ 3.0であるマグネトプランバイト型六方晶フェライトの粉体である。
Figure JPOXMLDOC01-appb-C000003

 
 式(1)中、Aは、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素を表し、xは、1.5≦x≦8.0を満たす。
 既述のとおり、マグネトプランバイト型六方晶フェライトの粉体を含む薄膜の電波吸収体では、上記粉体の含有率が高いほど、膜厚に対する電波吸収性能は高くなる。このような薄膜で、かつ、マグネトプランバイト型六方晶フェライトの粉体の含有率が高い電波吸収体では、マグネトプランバイト型六方晶フェライトの粒径が大きすぎると、電波吸収体を曲げたり引っ張ったりした場合に、粒子が起点となって破断するという問題が生じ得る。一方、マグネトプランバイト型六方晶フェライトの粒径が小さすぎると、マグネトプランバイト型六方晶フェライトの磁気特性が劣化し、電波吸収体の電波吸収性能が低下するという問題が生じ得る。
 これに対し、本開示のマグネトプランバイト型六方晶フェライトの粉体は、薄膜とした場合でも電波吸収性能及びシート強度に優れる電波吸収体を製造することができる。
 本開示のマグネトプランバイト型六方晶フェライトの粉体が、このような効果を奏し得る理由については明らかではないが、本発明者は以下のように推測している。
 但し、以下の推測は、本開示のマグネトプランバイト型六方晶フェライトの粉体を限定的に解釈するものではなく、一例として説明するものである。
 本開示のマグネトプランバイト型六方晶フェライトの粉体は、式(1)で表される化合物の粒子の集合体であるため、磁気特性に優れる。また、本開示のマグネトプランバイト型六方晶フェライトの粉体は、レーザ回折散乱法により測定した個数基準の粒度分布におけるモード径が5μm以上であり、(D90-D10)/モード径 ≦ 3.0であるため、磁気特性が劣る微細な粒子が少ない。さらに、本開示のマグネトプランバイト型六方晶フェライトの粉体は、レーザ回折散乱法により測定した個数基準の粒度分布におけるモード径が10μm未満であり、(D90-D10)/モード径 ≦ 3.0であるため、膜破断の起点となり得る粗大な粒子が少ない。以上のことから、本開示のマグネトプランバイト型六方晶フェライトの粉体は、薄膜とした場合でも電波吸収性能及びシート強度に優れる電波吸収体を製造することができると考えられる。
 まず、本開示のマグネトプランバイト型六方晶フェライトの粉体(以下、「マグネトプランバイト型六方晶フェライト粉体」ともいう。)について、詳細に説明する。
 本開示のマグネトプランバイト型六方晶フェライト粉体は、式(1)で表される化合物の粒子の集合体である。
 式(1)におけるAは、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素であれば、金属元素の種類及び数は、特に制限されない。
 式(1)におけるAは、例えば、操作性及び取り扱い性の観点から、Sr、Ba、及びCaからなる群より選ばれる少なくとも1種の金属元素であることが好ましい。
 また、式(1)におけるAは、例えば、79GHz付近で優れた電波吸収性能を発揮する電波吸収体を製造できるという観点から、Srを含むことが好ましく、Srであることがより好ましい。
 式(1)におけるxは、1.5≦x≦8.0を満たし、1.5≦x≦6.0を満たすことが好ましく、1.5≦x≦4.0を満たすことがより好ましく、1.5≦x≦3.0を満たすことが更に好ましい。
 式(1)におけるxが1.5以上であると、60GHzよりも高い周波数帯域の電波を吸収できる。
 また、式(1)におけるxが8.0以下であると、マグネトプランバイト型六方晶フェライトが磁性を有する。
 式(1)で表される化合物であるマグネトプランバイト型六方晶フェライトとしては、SrFe(10.44)Al(1.56)19、SrFe(10.00)Al(2.00)19、SrFe(9.95)Al(2.05)19、SrFe(9.85)Al(2.15)19、SrFe(9.79)Al(2.21)19、SrFe(9.74)Al(2.26)19、SrFe(9.58)Al(2.42)19、SrFe(9.37)Al(2.63)19、SrFe(9.33)Al(2.67)19、SrFe(9.27)Al(2.73)19、SrFe(7.88)Al(4.12)19、SrFe(7.71)Al(4.29)19、SrFe(7.37)Al(4.63)19、SrFe(7.04)Al(4.96)19、SrFe(6.25)Al(5.75)19、BaFe(9.50)Al(2.50)19、BaFe(10.05)Al(1.95)19、CaFe(10.00)Al(2.00)19、PbFe(9.00)Al(3.00)19、Sr(0.80)Ba(0.10)Ca(0.10)Fe(9.83)Al(2.17)19、Sr(0.80)Ba(0.10)Ca(0.10)Fe(8.85)Al(3.15)19等が挙げられる。
 マグネトプランバイト型六方晶フェライトの組成は、高周波誘導結合プラズマ(ICP:Inductively Coupled Plasma)発光分光分析法により確認する。
 具体的には、試料粉体12mg及び4mol/L(リットル;以下、同じ)の塩酸水溶液10mLを入れた耐圧容器を、設定温度120℃のオーブンで12時間保持し、溶解液を得る。次いで、得られた溶解液に純水30mLを加えた後、0.1μmのメンブレンフィルタを用いてろ過する。このようにして得られたろ液の元素分析を、高周波誘導結合プラズマ(ICP)発光分光分析装置を用いて行う。得られた元素分析の結果に基づき、鉄原子100原子%に対する各金属原子の含有率を求める。求めた含有率に基づき、組成を確認する。
 ICP発光分光分析装置としては、例えば、(株)島津製作所のICPS-8100(型番)を好適に用いることができる。但し、ICP発光分光分析装置は、これに限定されない。
 本開示では、マグネトプランバイト型六方晶フェライトの結晶相は、単相でもよいし、単相でなくてもよいが、好ましくは単相である。
 結晶相が単相であるマグネトプランバイト型六方晶フェライトの粉体は、アルミニウムの含有割合が同じである場合、結晶相が単相ではない(例えば、結晶相が二相である)マグネトプランバイト型六方晶フェライトの粉体と比較して、保磁力が高く、磁気特性により優れる傾向がある。
 本開示において、「結晶相が単相である」場合とは、粉末X線回折(XRD:X-Ray-Diffraction)測定において、任意の組成のマグネトプランバイト型六方晶フェライトの結晶構造を示す回折パターンが1種類のみ観察される場合をいう。
 一方、本開示において、「結晶相が単相ではない」場合とは、任意の組成のマグネトプランバイト型六方晶フェライトが複数混在し、回折パターンが2種類以上観察されたり、マグネトプランバイト型六方晶フェライト以外の結晶の回折パターンが観察されたりする場合をいう。
 結晶相が単相ではない場合、主たるピークとそれ以外のピークとが存在する回折パターンが得られる。ここで、「主たるピーク」とは、観察される回折パターンにおいて、回折強度の値が最も高いピークを指す。
 本開示のマグネトプランバイト型六方晶フェライトの粉体が、単相ではないマグネトプランバイト型六方晶フェライトの粉体を含む場合、粉末X線回折(XRD)測定により得られる、主たるピークの回折強度の値(以下、「Im」と称する。)に対する、それ以外のピークの回折強度の値(以下、「Is」と称する。)の比(Is/Im)は、例えば、電波吸収性能により優れる電波吸収体を製造できるという観点から、1/2以下であることが好ましく、1/5以下であることがより好ましい。
 なお、2種以上の回折パターンが重なり、それぞれの回折パターンのピークが極大値を有している場合には、それぞれの極大値をIm及びIsと定義し、比を求める。また、2種以上の回折パターンが重なり、主たるピークの肩部として、それ以外のピークが観察される場合には、肩部の最大強度値をIsと定義し、比を求める。
 また、それ以外のピークが2つ以上存在する場合には、それぞれの回折強度の合計値をIsと定義し、比を求める。
 回折パターンの帰属には、例えば、国際回折データセンター(ICDD:International Centre for Diffraction Data、登録商標)のデータベースを参照できる。
 例えば、Srを含むマグネトプランバイト型六方晶フェライトの回折パターンは、国際回折データセンター(ICDD)の「00-033-1340」を参照できる。但し、鉄の一部がアルミニウムに置換されることで、ピーク位置については、シフトする。
 マグネトプランバイト型六方晶フェライトの結晶相が単相であることは、既述のとおり、粉末X線回折(XRD)測定により確認する。
 具体的には、粉末X線回折装置を用い、以下の条件にて測定する。
 粉末X線回折装置としては、例えば、PANalytical社のX’Pert Pro(商品名)を好適に用いることができる。但し、粉末X線回折装置は、これに限定されない。
-条件-
 X線源:CuKα線
〔波長:1.54Å(0.154nm)、出力:40mA,45kV〕
 スキャン範囲:20°<2θ<70°
 スキャン間隔:0.05°
 スキャンスピード:0.75°/min
 本開示のマグネトプランバイト型六方晶フェライト粉体を構成する個々の粒子の形状は、特に制限されず、例えば、板状、不定形状等が挙げられる。
 本開示のマグネトプランバイト型六方晶フェライト粉体は、レーザ回折散乱法により測定した個数基準の粒度分布において、最頻値をモード径、累積10%径をD10、及び累積90%径をD90としたときに、モード径が5μm以上10μm未満であり、(D90-D10)/モード径 ≦ 3.0である。
 本開示のマグネトプランバイト型六方晶フェライト粉体は、モード径が5μm以上であり、(D90-D10)/モード径 ≦ 3.0であるため、磁気特性が劣る微細な粒子が少ない。そのため、本開示のマグネトプランバイト型六方晶フェライト粉体によれば、電波吸収性能に優れる電波吸収体を製造することができる。
 また、本開示のマグネトプランバイト型六方晶フェライト粉体は、モード径が10μm未満であり、(D90-D10)/モード径 ≦ 3.0であるため、膜破断の起点となり得る粗大な粒子が少ない。そのため、本開示のマグネトプランバイト型六方晶フェライト粉体によれば、薄膜とした場合でもシート強度に優れる電波吸収体を製造することができる。
 例えば、薄膜とした場合のシート強度の観点からは、好ましい態様としては、モード径が5μm以上9.8μm以下であり、(D90-D10)/モード径 ≦ 3.0である態様であり、より好ましい態様としては、モード径が5μm以上9.5μm以下であり、(D90-D10)/モード径 ≦ 3.0である態様であり、更に好ましい態様としては、モード径が5μm以上9μm以下であり、(D90-D10)/モード径 ≦ 3.0である態様である。
 例えば、電波吸収性能の観点からは、好ましい態様としては、モード径が5μm以上10μm未満であり、(D90-D10)/モード径 ≦ 2.5である態様であり、より好ましい態様としては、モード径が5μm以上10μm未満であり、(D90-D10)/モード径 ≦ 2.0である態様であり、更に好ましい態様としては、モード径が5μm以上10μm未満であり、(D90-D10)/モード径 ≦ 1.5である態様である。
 「(D90-D10)/モード径」の下限は、特に制限されない。「(D90-D10)/モード径」は、例えば、0.3 ≦ (D90-D10)/モード径の関係を満たすことが好ましく、0.5 ≦ (D90-D10)/モード径の関係を満たすことがより好ましい。
 マグネトプランバイト型六方晶フェライト粉体の粒径(即ち、モード径、D10及びD90)は、篩、遠心分離機等による分級、乳鉢及び乳棒、超音波分散機等による粉砕などにより、制御することができる。例えば、マグネトプランバイト型六方晶フェライト粉体の粒径を粉砕により制御する場合には、粉砕手段、粉砕時間、メディアの材質、メディア径等の選択により、目的の値に調整可能である。
 例えば、メディアを用いる粉砕によれば、マグネトプランバイト型六方晶フェライト粉体の粒径は、小さくなる傾向を示す。また、例えば、粉砕時間が長いほど、マグネトプランバイト型六方晶フェライト粉体の粒径は、小さくなる傾向を示す。また、例えば、メディア径が小さいほど、マグネトプランバイト型六方晶フェライト粉体の粒径は、小さくなる傾向を示す。
 「(D90-D10)/モード径」の値は、粉砕後に、例えば、篩、遠心分離機等による分級により粒子を選別することで、目的の値に調整可能である。
 本開示のマグネトプランバイト型六方晶フェライト粉体の最頻値、累積10%径、及び累積90%径は、レーザ回折散乱法により測定した個数基準の粒度分布に基づいて求められる値である。具体的には、以下の方法により測定される値である。
 マグネトプランバイト型六方晶フェライト粉体10mgにシクロヘキサノン500mLを加えて希釈した後、振とう機を用いて30秒間撹拌し、得られた液を粒度分布測定用サンプルとする。次いで、粒度分布測定用サンプルを用いて、レーザ回折散乱法により粒度分布を測定する。測定装置には、レーザ回折/散乱式粒子径分布測定装置を用いる。
 レーザ回折/散乱式粒子径分布測定装置としては、例えば、(株)堀場製作所のPartica LA-960(商品名)を好適に用いることができる。但し、レーザ回折/散乱式粒子径分布測定装置は、これに限定されない。
 本開示のマグネトプランバイト型六方晶フェライト粉体の保磁力(Hc)は、700kA/m以上が好ましく、730kA/m以上がより好ましく、750kA/m以上が更に好ましい。
 本開示のマグネトプランバイト型六方晶フェライト粉体の保磁力(Hc)が700kA/m以上であると、電波吸収性能により優れる電波吸収体を製造することができる。
 本開示のマグネトプランバイト型六方晶フェライト粉体の保磁力(Hc)の上限は、特に制限されず、例えば、1500kA/m以下が好ましい。
 本開示のマグネトプランバイト型六方晶フェライト粉体の単位質量あたりの飽和磁化(δs)は、10Am/kg以上が好ましく、20Am/kg以上がより好ましく、30Am/kg以上が更に好ましい。
 本開示のマグネトプランバイト型六方晶フェライト粉体の単位質量あたりの飽和磁化(δs)が10Am/kg以上であると、電波吸収性能により優れる電波吸収体を製造することができる。
 本開示のマグネトプランバイト型六方晶フェライト粉体の単位質量あたりの飽和磁化(δs)の上限は、特に制限されず、例えば、60Am/kg以下が好ましい。
 上記のマグネトプランバイト型六方晶フェライト粉体の保磁力(Hc)及び単位質量あたりの飽和磁化(δs)は、振動試料型磁力計を用いて、雰囲気温度23℃の環境下、最大印加磁界3589kA/m、及び磁界掃引速度1.994kA/m/s(秒)の条件にて測定した値である。
 振動試料型磁力計としては、例えば、(株)玉川製作所のTM-TRVSM5050-SMSL型(型番)を好適に用いることができる。但し、振動試料型磁力計は、これに限定されない。
 本開示のマグネトプランバイト型六方晶フェライトの粉体全体に占める、マグネトプランバイト型六方晶フェライト粉体以外の粉体の割合は、例えば、電波吸収性能により優れる電波吸収体を製造できるという観点から、20質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることが更に好ましく、0質量%以下であること、即ち、マグネトプランバイト型六方晶フェライト粉体以外の粉体を含まないことが特に好ましい。
<マグネトプランバイト型六方晶フェライト粉体の用途>
 本開示のマグネトプランバイト型六方晶フェライト粉体は、磁気特性に優れるため、電波吸収体に好適に用いられる。
 また、本開示のマグネトプランバイト型六方晶フェライト粉体は、レーザ回折散乱法により測定した個数基準の粒度分布において、最頻値をモード径、累積10%径をD10、及び累積90%径をD90としたときに、モード径が5μm以上であり、(D90-D10)/モード径 ≦ 3.0であるため、磁気特性が劣る微細な粒子が少ない。そのため、本開示のマグネトプランバイト型六方晶フェライト粉体を用いて製造された電波吸収体は、電波吸収性能に優れる。
 さらに、本開示のマグネトプランバイト型六方晶フェライト粉体は、レーザ回折散乱法により測定した個数基準の粒度分布において、最頻値をモード径、累積10%径をD10、及び累積90%径をD90としたときに、モード径が10μm未満であり、(D90-D10)/モード径 ≦ 3.0であるため、シート破断の起点となり得る粗大な粒子が少ない。そのため、本開示のマグネトプランバイト型六方晶フェライト粉体を用いて製造された電波吸収体は、薄膜とした場合でもシート強度に優れる。
[マグネトプランバイト型六方晶フェライト粉体の製造方法]
 本開示のマグネトプランバイト型六方晶フェライト粉体の製造方法は、既述の本開示のマグネトプランバイト型六方晶フェライト粉体を製造できればよく、特に制限されない。
 本開示のマグネトプランバイト型六方晶フェライト粉体は、固相法及び液相法のいずれの方法でも製造できる。
 本開示のマグネトプランバイト型六方晶フェライト粉体を固相法により製造する方法としては、例えば、SrCO、Al、α-Fe等を原料として用いる方法が挙げられる。本開示のマグネトプランバイト型六方晶フェライト粉体の固相法による一般的な製造方法については、特許第4674380号公報の段落[0023]~[0025]を適宜参照できる。
 本開示のマグネトプランバイト型六方晶フェライト粉体を製造する方法としては、磁気特性により優れるマグネトプランバイト型六方晶フェライト粉体を得やすいという観点から、以下で説明する、本実施形態のマグネトプランバイト型六方晶フェライト粉体の製造方法が好ましい。
 本実施形態のマグネトプランバイト型六方晶フェライト粉体の製造方法(以下、「本実施形態の製造方法」ともいう。)は、液相法により、Feと、Alと、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素(以下、「特定金属元素」ともいう。)と、を含む反応生成物を得る工程Aと、工程Aにて得られた反応生成物を乾燥して乾燥物を得る工程Bと、工程Bにて得られた乾燥物を焼成して焼成物を得た後、得られた焼成物を粉砕する工程(以下、「c1工程」ともいう。)、又は、工程Bにて得られた乾燥物を粉砕して粉砕物を得た後、得られた粉砕物を焼成する工程(以下、「c2工程」ともいう。)のいずれか一方の工程Cと、を含む。
 工程A、工程B、及び工程Cは、それぞれ2段階以上に分かれていてもよい。
 以下、各工程について詳細に説明する。
<工程A>
 工程Aは、液相法により、Feと、Alと、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素(即ち、特定金属元素)と、を含む反応生成物を得る工程である。
 工程Aでは、マグネトプランバイト型六方晶フェライト粉体の前駆体となる反応生成物を得ることができる。工程Aにて得られる反応生成物は、水酸化鉄、水酸化アルミニウム、鉄とアルミニウムと特定金属元素との複合水酸化物等であると推測される。
 工程Aは、Fe塩、Al塩、及び特定金属元素の塩を含む水溶液(以下、「原料水溶液」ともいう。)と、アルカリ水溶液と、を混合して反応生成物を得る工程(以下、「工程A1」ともいう。)を含むことが好ましい。
 工程A1では、原料水溶液とアルカリ水溶液とを混合することにより、反応生成物の沈殿物が生じる。工程A1では、マグネトプランバイト型六方晶フェライト粉体の前駆体となる反応生成物を含む液(所謂、前駆体含有液)を得ることができる。
 また、工程Aは、工程A1にて得られた反応生成物を固液分離する工程(以下、「工程A2」ともいう。)を含むことが好ましい。
 工程A2では、マグネトプランバイト型六方晶フェライト粉体の前駆体となる反応生成物(即ち、工程Aにおける反応生成物)を得ることができる。
(工程A1)
 工程A1は、Fe塩、Al塩、及び特定金属元素の塩を含む水溶液(即ち、原料水溶液)と、アルカリ水溶液と、を混合して反応生成物を得る工程である。
 Fe塩、Al塩、及び特定金属元素の塩における塩としては、特に制限されず、例えば、入手容易性及びコストの観点から、硝酸塩、硫酸塩等の水溶性の無機酸塩、又は塩化物が好ましい。
 Fe塩の具体例としては、塩化鉄(III)六水和物〔FeCl・6HO〕、硝酸鉄(III)九水和物〔Fe(NO・9HO〕等が挙げられる。
 Al塩の具体例としては、塩化アルミニウム六水和物〔AlCl・6HO〕、硝酸アルミニウム九水和物〔Al(NO・9HO〕等が挙げられる。
 Sr塩の具体例としては、塩化ストロンチウム六水和物〔SrCl・6HO〕、硝酸ストロンチウム〔Sr(NO〕、酢酸ストロンチウム0.5水和物〔Sr(CHCOO)・0.5HO〕等が挙げられる。
 Ba塩の具体例としては、塩化バリウム二水和物〔BaCl・2HO〕、硝酸バリウム〔Ba(NO〕、酢酸バリウム〔(CHCOO)Ba〕等が挙げられる。
 Ca塩の具体例としては、塩化カルシウム二水和物〔CaCl・2HO〕、硝酸カルシウム四水和物〔Ca(NO・4HO〕、酢酸カルシウム一水和物〔(CHCOO)Ca・HO〕等が挙げられる。
 Pb塩の具体例としては、塩化鉛(II)〔PbCl〕、硝酸鉛(II)〔Pb(NO〕等が挙げられる。
 アルカリ水溶液としては、特に制限されず、水酸化ナトリウム水溶液、水酸化カリウム水溶液等が挙げられる。
 アルカリ水溶液の濃度は、特に制限されず、例えば、0.1mol/L~10mol/Lとすることができる。
 原料水溶液とアルカリ水溶液とは、単に混合すればよい。
 原料水溶液とアルカリ水溶液とは、全量を一度に混合してもよく、原料水溶液とアルカリ水溶液とを少しずつ徐々に混合してもよい。また、原料水溶液及びアルカリ水溶液のいずれか一方に、他方を少しずつ添加しながら混合してもよい。
 例えば、電波吸収性能の再現性の観点からは、原料水溶液とアルカリ水溶液とを少しずつ徐々に混合することが好ましい。
 原料水溶液とアルカリ水溶液とを混合する方法は、特に制限されず、例えば、撹拌により混合する方法が挙げられる。
 撹拌手段としては、特に制限はなく、一般的な撹拌器具又は撹拌装置を用いることができる。
 撹拌時間は、混合する成分の反応が終了すれば、特に制限されず、原料水溶液の組成、撹拌器具又は撹拌装置の種類等に応じて、適宜設定できる。
 原料水溶液とアルカリ水溶液とを混合する際の温度は、例えば、突沸を防ぐ観点から、100℃以下が好ましく、反応生成物が良好に得られるという観点から、95℃以下がより好ましく、15℃以上92℃以下が更に好ましい。
 温度を調整する手段としては、特に制限はなく、一般的な加熱装置、冷却装置等を用いることができる。
 原料水溶液とアルカリ水溶液との混合により得られる水溶液の25℃におけるpHは、例えば、反応生成物をより得やすいとの観点から、5~13が好ましく、6~12がより好ましい。
 原料水溶液とアルカリ水溶液との混合比率は、特に制限されず、例えば、原料水溶液1質量部に対して、アルカリ水溶液を0.1質量部~10.0質量部に設定することができる。
(工程A2)
 工程A2は、工程A1にて得られた反応生成物を固液分離する工程である。
 固液分離の方法は、特に制限されず、デカンテーション、遠心分離、濾過(吸引濾過、加圧濾過等)などの方法が挙げられる。
 固液分離の方法が遠心分離である場合、遠心分離の条件は、特に制限されない。例えば、回転数2000rpm(revolutions per minute;以下、同じ)以上で、3分間~30分間遠心分離することが好ましい。また、遠心分離は、複数回行ってもよい。
<工程B>
 工程Bは、工程Aにて得られた反応生成物を乾燥して乾燥物(所謂、前駆体の粉体)を得る工程である。
 工程Aにて得られた反応生成物を焼成前に乾燥させることにより、製造される電波吸収体の電波吸収性能の再現性が良好となる。また、工程Aにて得られた反応生成物を粉砕前に乾燥させることにより、マグネトプランバイト型六方晶フェライト粉体の粒度分布を粉砕により制御しやすくなる。
 乾燥手段は、特に制限されず、例えば、オーブン等の乾燥機が挙げられる。
 乾燥温度としては、特に制限はなく、例えば、50℃~200℃が好ましく、70℃~150℃がより好ましい。
 乾燥時間としては、特に制限はなく、例えば、2時間~50時間が好ましく、5時間~30時間がより好ましい。
<工程C>
 工程Cは、工程Bにて得られた乾燥物を焼成して焼成物を得た後、得られた焼成物を粉砕する工程(即ち、c1工程)、又は、工程Bにて得られた乾燥物を粉砕して粉砕物を得た後、得られた粉砕物を焼成する工程(即ち、c2工程)のいずれか一方の工程である。
 工程Bにて得られた乾燥物を焼成して焼成物を得た後、得られた焼成物を粉砕するか、或いは、工程Bにて得られた乾燥物を粉砕して粉砕物を得た後、得られた粉砕物を焼成することにより、目的とする粒径のマグネトプランバイト型六方晶フェライト粉体を得ることができる。
 工程Cは、c1工程であってもよく、c2工程であってもよい。
 例えば、焼成後の磁気特性をより均一にするという観点からは、工程Cは、c2工程であることが好ましい。
 焼成は、加熱装置を用いて行うことができる。
 加熱装置は、目的の温度に加熱することができれば、特に制限されず、公知の加熱装置をいずれも用いることができる。加熱装置としては、例えば、電気炉の他、製造ラインに合わせて独自に作製した焼成装置を用いることができる。
 焼成は、大気雰囲気下で行うことが好ましい。
 焼成温度としては、特に制限はなく、例えば、900℃以上が好ましく、900℃~1400℃がより好ましく、1000℃~1200℃が更に好ましい。
 焼成時間としては、特に制限はなく、例えば、1時間~10時間が好ましく、2時間~6時間がより好ましい。
 粉砕手段は、目的とする粒径のマグネトプランバイト型六方晶フェライト粉体を得ることができれば、特に制限はない。
 粉砕手段としては、乳鉢及び乳棒、粉砕機(ボールミル、ビーズミル、ローラーミル、ジェットミル、ハンマーミル、アトライター等)などが挙げられる。
 メディアを用いる粉砕の場合、メディアの粒径(所謂、メディア径)は、特に制限されず、例えば、0.1mm~5.0mmが好ましく、0.5mm~3.0mmがより好ましい。
 本開示において、「メディア径」とは、球状メディア(例えば、球状ビーズ)の場合は、メディア(例えば、ビーズ)の直径を意味し、非球状メディア(例えば、非球状ビーズ)の場合は、透過型電子顕微鏡(TEM)又は走査型電子顕微鏡(SEM)の観察像から複数個のメディア(例えば、ビーズ)の円相当径を測定し、測定値を算術平均して求められる直径を意味する。
 メディアの材質は、特に制限されず、例えば、ガラス製、アルミナ製、スチール製、ジルコニア製、セラミック製等のメディアを好適に用いることができる。
[電波吸収体]
 本開示の電波吸収体は、本開示のマグネトプランバイト型六方晶フェライト粉体(以下、「特定マグネトプランバイト型六方晶フェライト粉体」ともいう。)と、バインダーと、を含む。
 本開示の電波吸収体は、特定マグネトプランバイト型六方晶フェライト粉体を含むため、例えば、500μm以下の薄膜とした場合でも電波吸収性能及びシート強度に優れる。
 また、本開示の電波吸収体では、特定マグネトプランバイト型六方晶フェライトにおける鉄原子に対するアルミニウム原子の割合〔即ち、式(1)中のxの値〕を制御することで、電波吸収体の電波の吸収波長を設計することが可能であり、所望の周波数の電波の吸収を効率良く高めることができる。具体的には、本開示の電波吸収体では、特定マグネトプランバイト型六方晶フェライトにおける鉄原子に対するアルミニウム原子の割合を高める〔即ち、式(1)中のxの値を大きくする〕ことで、より高周波数帯域の電波の吸収が可能となるため、例えば、70GHz~90GHzの高周波数帯域においても、優れた電波吸収性能を発揮し得る。
 本開示の電波吸収体は、平面形状を有していてもよく、立体形状を有していてもよい。
 平面形状としては、特に制限はなく、シート状、フィルム状等の形状が挙げられる。
 立体形状としては、例えば、三角形以上の多角形の柱形状、円柱形状、角錐形状、円錐形状、及びハニカム形状が挙げられる。また、立体形状としては、上記平面形状と上記立体形状とを組み合わせた形状も挙げられる。
 本開示の電波吸収体の電波吸収性能は、電波吸収体中における特定マグネトプランバイト型六方晶フェライト粉体の含有率のみならず、電波吸収体の形状によっても制御することが可能である。
 本開示の電波吸収体は、特定マグネトプランバイト型六方晶フェライト粉体を1種のみ含んでいてもよく、2種以上含んでいてもよい。
 本開示の電波吸収体は、例えば、組成の異なる2種以上の特定マグネトプランバイト型六方晶フェライト粉体を含んでいてもよい。
 本開示の電波吸収体中における特定マグネトプランバイト型六方晶フェライト粉体の含有率は、特に制限されず、例えば、電波吸収性能の観点から、電波吸収体中の全固形分量に対して、10質量%以上が好ましく、30質量%以上がより好ましく、50質量%以上が更に好ましい。
 また、本開示の電波吸収体中における特定マグネトプランバイト型六方晶フェライト粉体の含有率は、例えば、電波吸収体のシート強度及び製造適性の観点から、電波吸収体中の全固形分量に対して、98質量%以下が好ましく、95質量%以下がより好ましく、92質量%以下が更に好ましい。
 本開示において、電波吸収体中の全固形分量とは、電波吸収体が溶剤を含まない場合には、電波吸収体の全質量を意味し、電波吸収体が溶剤を含む場合には、電波吸収体から溶剤を除いた全質量を意味する。
 本開示の電波吸収体は、バインダーを含む。
 本開示において、「バインダー」とは、特定マグネトプランバイト型六方晶フェライト粉体を分散させた状態に保ち、かつ、電波吸収体の形態を形成し得る物質の総称である。
 バインダーとしては、特に制限はなく、例えば、樹脂、ゴム、又は、熱可塑性エラストマー(TPE)が挙げられる。
 これらの中でも、バインダーとしては、例えば、引張り強度及び耐屈曲性の観点から、熱可塑性エラストマー(TPE)が好ましい。
 樹脂は、熱可塑性樹脂及び熱硬化性樹脂のいずれであってもよい。
 熱可塑性樹脂としては、具体的には、アクリル樹脂;ポリアセタール;ポリアミド;ポリエチレン;ポリプロピレン;ポリエチレンテレフタレート;ポリブチレンテレフタレート;ポリカーボネート;ポリスチレン;ポリフェニレンサルファイド;ポリ塩化ビニル;アクリロニトリルとブタジエンとスチレンとの共重合により得られるABS(acrylonitrile butadiene styrene)樹脂;アクリロニトリルとスチレンとの共重合により得られるAS(acrylonitrile styrene)樹脂等が挙げられる。
 熱硬化性樹脂としては、具体的には、フェノール樹脂、エポキシ樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、ジアリルフタレート樹脂、ウレタン樹脂、シリコン樹脂等が挙げられる。
 ゴムとしては、特に制限はなく、例えば、特定マグネトプランバイト型六方晶フェライト粉体との混合性が良好であり、かつ、耐久性、耐候性、及び耐衝撃性により優れる電波吸収体を製造できるという観点から、ブタジエンゴム;イソプレンゴム;クロロプレンゴム;ハロゲン化ブチルゴム;フッ素ゴム;ウレタンゴム;アクリル酸エステル(例えば、アクリル酸エチル、アクリル酸ブチル、及びアクリル酸2-エチルヘキシル)と他の単量体との共重合により得られるアクリルゴム(ACM);チーグラー触媒を用いたエチレンとプロピレンとの配位重合により得られるエチレン-プロピレンゴム;イソブチレンとイソプレンとの共重合により得られるブチルゴム(IIR);ブタジエンとスチレンとの共重合により得られるスチレンブタジエンゴム(SBR);アクリロニトリルとブタジエンとの共重合により得られるアクリロニトリルブタジエンゴム(NBR);シリコーンゴム等の合成ゴムが好ましい。
 熱可塑性エラストマーとしては、具体的には、オレフィン系熱可塑性エラストマー(TPO)、スチレン系熱可塑性エラストマー(TPS)、アミド系熱可塑性エラストマー(TPA)、ポリエステル系熱可塑性エラストマー(TPC)等が挙げられる。
 本開示の電波吸収体は、バインダーとしてゴムを含む場合、ゴムに加えて、加硫剤、加硫助剤、軟化剤、可塑剤等の各種添加剤を含んでいてもよい。
 加硫剤としては、硫黄、有機硫黄化合物、金属酸化物等が挙げられる。
 バインダーのメルトマススローレイト(以下、「MFR」ともいう。)は、特に制限されず、例えば、1g/10min~200g/10minが好ましく、3g/10min~100g/10minがより好ましく、5g/10min~80g/10minが更に好ましく、10g/10min~50g/10minが特に好ましい。
 バインダーのMFRが1g/10min以上であると、流動性が十分に高く、外観不良がより生じ難い。
 バインダーのMFRが200g/10min以下であると、成形体の強度等の機械特性をより高めやすい。
 バインダーのMFRは、JIS K 7210:1999に準拠して、測定温度230℃及び荷重10kgの条件で測定される値である。
 バインダーの硬度は、特に制限されず、例えば、成形適性の観点から、5g~150gが好ましく、10g~120gがより好ましく、30g~100gが更に好ましく、40g~90gが特に好ましい。
 バインダーの硬度は、JIS K 6253-3:2012に準拠して測定される瞬間値である。
 バインダーの密度は、特に制限されず、例えば、成形適性の観点から、600kg/m~1100kg/mが好ましく、700kg/m~1000kg/mがより好ましく、750kg/m~1050kg/mが更に好ましく、800kg/m~950kg/mが特に好ましい。
 バインダーの密度は、JIS K 0061:2001に準拠して測定される値である。
 バインダーの100%引張応力は、特に制限されず、例えば、成形適性の観点から、0.2MPa~20MPaが好ましく、0.5MPa~10MPaがより好ましく、1MPa~5MPaが更に好ましく、1.5MPa~3MPaが特に好ましい。
 バインダーの引張強さは、特に制限されず、例えば、成形適性の観点から、1MPa~20MPaが好ましく、2MPa~15MPaがより好ましく、3MPa~10MPaが更に好ましく、5MPa~8MPaが特に好ましい。
 バインダーの切断時伸びは、特に制限されず、例えば、成形適性の観点から、110%~1500%が好ましく、150%~1000%がより好ましく、200%~900%が更に好ましく、400%~800%が特に好ましい。
 以上の引張特性は、JIS K 6251:2010に準拠して測定される値である。測定は、試験片としてJIS 3号ダンベルを用い、引張速度500mm/minの条件で行う。
 本開示の電波吸収体は、バインダーを1種のみ含んでいてもよく、2種以上含んでいてもよい。
 本開示の電波吸収体中におけるバインダーの含有率は、特に制限されず、例えば、特定マグネトプランバイト型六方晶フェライト粉体の分散性の観点、並びに、電波吸収体のシート強度及び製造適性の観点から、電波吸収体中の全固形分量に対して、2質量%以上が好ましく、5質量%以上がより好ましく、8質量%以上が更に好ましい。
 また、本開示の電波吸収体中におけるバインダーの含有率は、例えば、電波吸収性能の観点から、電波吸収体中の全固形分量に対して、90質量%以下が好ましく、70質量%以下がより好ましく、50質量%以下が更に好ましい。
 本開示の電波吸収体は、特定マグネトプランバイト型六方晶フェライト粉体及びバインダー以外に、本実施形態の効果を損なわない範囲において、必要に応じて、種々の添加剤(所謂、他の添加剤)を含んでいてもよい。
 他の添加剤としては、分散剤、分散助剤、防黴剤、帯電防止剤、酸化防止剤等が挙げられる。他の添加剤は、1つの成分が2つ以上の機能を担うものであってもよい。
 電波吸収体に、特定マグネトプランバイト型六方晶フェライト粉体が含まれていることは、例えば、以下の方法により確認することができる。
 電波吸収体を細かく切り刻んだ後、溶剤(例えば、アセトン)中に1日間~2日間浸漬した後、乾燥させる。乾燥後の電波吸収体を更に細かく磨り潰し、粉末X線回折(XRD)測定を行うことにより、構造を確認することができる。また、電波吸収体の断面を切り出した後、例えば、エネルギー分散型X線分析装置を用いることで、組成を確認することができる。
 また、電波吸収体を細かく切り刻んだ後、溶剤(例えば、アセトン)中に超音波分散させた溶液を試料とし、レーザ回折散乱法による測定を行うことで、モード径、粒度分布等を確認することができる。
[電波吸収体の製造方法]
 本開示の電波吸収体の製造方法は、特に制限されない。
 本開示の電波吸収体は、特定マグネトプランバイト型六方晶フェライト粉体と、バインダーと、溶剤と、必要に応じて、他の成分と、を用いて、公知の方法により製造することができる。
 例えば、特定マグネトプランバイト型六方晶フェライト粉体と、バインダーと、溶剤と、必要に応じて、他の成分と、を含む電波吸収体用組成物を、支持体上に塗布し、乾燥させることにより、電波吸収体を製造することができる。
 また、例えば、特定マグネトプランバイト型六方晶フェライト粉体と、バインダーと、溶剤と、必要に応じて、他の成分と、を混練して混練物を得た後、得られた混練物をプレス成形することにより、電波吸収体を製造することができる。
 溶剤としては、特に制限はなく、例えば、水、有機溶媒、又は、水と有機溶媒との混合溶媒が挙げられる。
 有機溶媒としては、特に制限はなく、メタノール、エタノール、n-プロパノール、i-プロパノール、メトキシプロパノール等のアルコール化合物、アセトン、メチルエチルケトン、シクロヘキサン、シクロヘキサノン等のケトン化合物、テトラヒドロフラン、アセトニトリル、酢酸エチル、トルエンなどが挙げられる。
 これらの中でも、溶剤としては、沸点が比較的低く、乾燥させやすいという観点から、メチルエチルケトン及びシクロヘキサンから選ばれる少なくとも1種が好ましい。
 電波吸収体用組成物中における特定マグネトプランバイト型六方晶フェライト粉体及びバインダーの含有率は、最終的に得られる電波吸収体中における特定マグネトプランバイト型六方晶フェライト粉体及びバインダーの含有率が、既述の電波吸収体中における特定マグネトプランバイト型六方晶フェライト粉体及びバインダーの含有率になるように、それぞれ調整すればよい。
 電波吸収体用組成物中における溶剤の含有率は、特に制限されず、例えば、電波吸収体用組成物に配合される成分の種類、量等により、適宜選択される。
 電波吸収体用組成物中において、特定マグネトプランバイト型六方晶フェライト粉体とバインダーとは、単に混合されていればよい。
 特定マグネトプランバイト型六方晶フェライト粉体とバインダーとを混合する方法は、特に制限されず、例えば、撹拌により混合する方法が挙げられる。
 撹拌手段としては、特に制限されず、一般的な撹拌装置を用いることができる。
 撹拌装置としては、パドルミキサー、インペラーミキサー等のミキサーが挙げられる。
 撹拌時間は、特に制限されず、例えば、撹拌装置の種類、電波吸収体用組成物の組成等に応じて、適宜設定することができる。
 支持体としては、特に制限はなく、公知の支持体を用いることができる。
 支持体を構成する材料としては、例えば、金属板(アルミニウム、亜鉛、銅等の金属の板)、プラスチックシート〔ポリエステル(ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等)、ポリエチレン(直鎖状低密度ポリエチレン、低密度ポリエチレン、高密度ポリエチレン等)、ポリプロピレン、ポリスチレン、ポリカーボネート、ポリイミド、ポリアミド、ポリアミドイミド、ポリスルホン、ポリ塩化ビニル、ポリアクリロニトリル、ポリフェニレンスルフィド、ポリエーテルイミド、ポリエーテルスルホン、ポリビニルアセタール、アクリル樹脂等のシート〕、上述した金属がラミネートされ又は蒸着されたプラスチックシートなどが挙げられる。
 なお、プラスチックシートは、二軸延伸されていることが好ましい。
 支持体は、電波吸収体の形態を保持するために機能し得る。なお、電波吸収体がそれ自身の形態を保持できる場合には、支持体として、例えば、金属板、ガラス板、又は表面に離型処理が施されたプラスチックシートを用い、電波吸収体の製造後に電波吸収体から除去してもよい。
 支持体の形状、構造、大きさ等については、目的に応じて適宜選択することができる。
 支持体の形状としては、例えば、平板状が挙げられる。
 支持体の構造は、単層構造であってもよいし、2層以上の積層構造であってもよい。
 支持体の大きさは、電波吸収体の大きさ等に応じて、適宜選択することができる。
 支持体の厚みは、特に制限されず、通常は0.01mm~10mm程度であり、例えば、取り扱い性の観点から、0.02mm~3mmであることが好ましく、0.05mm~1mmであることがより好ましい。
 支持体上に、電波吸収体用組成物を塗布する方法としては、特に制限はなく、例えば、ダイコーター、ナイフコーター、アプリケーター等を用いる方法が挙げられる。
 支持体上に、塗布又は吐出した電波吸収体用組成物を乾燥させる方法としては、特に制限はなく、例えば、オーブン等の加熱装置を用いる方法が挙げられる。
 乾燥温度及び乾燥時間は、電波吸収体用組成物中の溶剤を揮発させることができれば、特に制限されない。一例を挙げれば、30℃~150℃にて、0.01時間~2時間加熱することにより、乾燥させることができる。
 以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を超えない限り、以下の実施例に限定されるものではない。
<マグネトプランバイト型六方晶フェライト粉体の作製>
-磁性粉体1の作製-
 35℃に保温した水400.0gを撹拌し、撹拌中の水に、塩化鉄(III)六水和物〔FeCl・6HO〕57.0g、塩化ストロンチウム六水和物〔SrCl・6HO〕27.8g、及び塩化アルミニウム六水和物〔AlCl・6HO〕10.2gを水216.0gに溶解して調製した原料水溶液と、5mol/Lの水酸化ナトリウム水溶液181.3gに水113.0gを加えて調製した溶液と、をそれぞれ10mL/minの流速にて、添加のタイミングを同じくして、全量添加し、第1の液を得た。
 次いで、第1の液の温度を25℃に変更した後、1mol/Lの水酸化ナトリウム水溶液39.8gを添加し、第2の液を得た。得られた第2の液のpHは、10.5であった。なお、第2の液のpHは、(株)堀場製作所の卓上型pHメータ F-71(商品名)を用いて測定した(以下、同じ)。
 次いで、第2の液を15分間撹拌し、反応を終了させて、マグネトプランバイト型六方晶フェライト粉体の前駆体となる反応生成物を含む液(即ち、前駆体含有液)を得た。
 次いで、前駆体含有液に対し、遠心分離処理(回転数:3000rpm、回転時間:10分間)を3回行い、得られた沈殿物を回収した。
 次いで、回収した沈殿物を内部雰囲気温度95℃のオーブン内で12時間乾燥させて、前駆体からなる粒子の集合体(即ち、前駆体の粉体)を得た。
 次いで、前駆体の粉体を、乳鉢と乳棒とを用いて、500μm以上の粒子がないように粉砕した後、マッフル炉の中に入れ、大気雰囲気下において、炉内の温度を1100℃の温度条件に設定し、4時間焼成することにより、磁性粉体1を得た。
-磁性粉体2の作製-
 磁性粉体1を、大阪ケミカル(株)のワンダークラッシャー WC-3(商品名)を用いて、可変速度ダイアルを「3」に設定して20秒間粉砕することで、磁性粉体2を得た。
-磁性粉体3の作製-
 磁性粉体1を、大阪ケミカル(株)のワンダークラッシャー WC-3(商品名)を用いて、可変速度ダイアルを「5」に設定して60秒間粉砕することで、磁性粉体3を得た。
-磁性粉体4の作製-
 磁性粉体1を、大阪ケミカル(株)のワンダークラッシャー WC-3(商品名)を用いて、可変速度ダイアルを「5」に設定して90秒間粉砕することで、磁性粉体4を得た。
-磁性粉体5の作製-
 磁性粉体1を、大阪ケミカル(株)のワンダークラッシャー WC-3(商品名)を用いて、可変速度ダイアルを「5」に設定して120秒間粉砕することで、磁性粉体5を得た。
-磁性粉体6の作製-
 磁性粉体1を、大阪ケミカル(株)のアブソルートミル(商品名)を用いて、可変速度ダイアルを「8」に設定して180秒間粉砕することで、の磁性粉体6を得た。
-磁性粉体7の作製-
 磁性粉体1、磁性粉体4、及び磁性粉体6を混合した後、大阪ケミカル(株)のワンダークラッシャー WC-3(商品名)を用いて、可変速度ダイアルを「1」に設定して10秒間粉砕することで、磁性粉体7を得た。
-磁性粉体8の作製-
 磁性粉体1を、大阪ケミカル(株)のワンダークラッシャー WC-3(商品名)を用いて、可変速度ダイアルを「8」に設定して120秒間粉砕することで、磁性粉体8を得た。
-磁性粉体9の作製-
 磁性粉体1を、大阪ケミカル(株)のワンダークラッシャー WC-3(商品名)を用いて、可変速度ダイアルを「3」に設定して60秒間粉砕することで、磁性粉体9を得た。
-磁性粉体10の作製-
 磁性粉体1、磁性粉体2、及び磁性粉体4を混合した後、大阪ケミカル(株)のワンダークラッシャー WC-3(商品名)を用いて、可変速度ダイアルを「1」に設定して10秒間粉砕することで、磁性粉体10を得た。
-磁性粉体11の作製-
 35℃に保温した水400.0gを撹拌し、撹拌中の水に、塩化鉄(III)六水和物〔FeCl・6HO〕57.0g、塩化ストロンチウム六水和物〔SrCl・6HO〕27.8g、及び塩化アルミニウム六水和物〔AlCl・6HO〕10.2gを水216.0gに溶解して調製した原料水溶液と、5mol/Lの水酸化ナトリウム水溶液181.3gに水113.0gを加えて調製した溶液と、をそれぞれ10mL/minの流速にて、添加のタイミングを同じくして、全量添加し、第1の液を得た。
 次いで、第1の液の温度を25℃に変更した後、1mol/Lの水酸化ナトリウム水溶液30.2gを添加し、第2の液を得た。得られた第2の液のpHは、9.5であった。
 次いで、第2の液を15分間撹拌し、反応を終了させて、マグネトプランバイト型六方晶フェライト粉体の前駆体となる反応生成物を含む液(即ち、前駆体含有液)を得た。
 次いで、前駆体含有液に対し、遠心分離処理(回転数:3000rpm、回転時間:10分間)を3回行い、得られた沈殿物を回収した。
 次いで、回収した沈殿物を内部雰囲気温度95℃のオーブン内で12時間乾燥させて、前駆体からなる粒子の集合体(即ち、前駆体の粉体)を得た。
 次いで、前駆体の粉体を、乳鉢と乳棒とを用いて、500μm以上の粒子がないように粉砕した後、マッフル炉の中に入れ、大気雰囲気下において、炉内の温度を1100℃の温度条件に設定し、4時間焼成することにより、磁性粉体11を得た。
-磁性粉体12の作製-
 磁性粉体11を、大阪ケミカル(株)のワンダークラッシャー WC-3(商品名)を用いて、可変速度ダイアルを「5」に設定して120秒間粉砕することで、磁性粉体12を得た。
-磁性粉体13の作製-
 磁性粉体11を、大阪ケミカル(株)のアブソルートミル(商品名)を用いて、可変速度ダイアルを「8」に設定して180秒間粉砕することで、磁性粉体13を得た。
-磁性粉体14の作製-
 35℃に保温した水400.0gを撹拌し、撹拌中の水に、塩化鉄(III)六水和物〔FeCl・6HO〕57.0g、塩化ストロンチウム六水和物〔SrCl・6HO〕22.3g、塩化バリウム二水和物〔BaCl・2HO〕2.6g、塩化カルシウム二水和物〔CaCl・2HO〕1.5g、及び塩化アルミニウム六水和物〔AlCl・6HO〕10.2gを水216.0gに溶解して調製した原料水溶液と、5mol/Lの水酸化ナトリウム水溶液181.3gに水113.0gを加えて調製した溶液と、をそれぞれ10mL/minの流速にて、添加のタイミングを同じくして、全量添加し、第1の液を得た。
 次いで、第1の液の温度を25℃に変更した後、1mol/Lの水酸化ナトリウム水溶液39.8gを添加し、第2の液を得た。得られた第2の液のpHは、10.5であった。
 次いで、第2の液を15分間撹拌し、反応を終了させて、マグネトプランバイト型六方晶フェライト粉体の前駆体となる反応生成物を含む液(即ち、前駆体含有液)を得た。
 次いで、前駆体含有液に対し、遠心分離処理(回転数:3000rpm、回転時間:10分間)を3回行い、得られた沈殿物を回収した。
 次いで、回収した沈殿物を内部雰囲気温度95℃のオーブン内で12時間乾燥させて、前駆体からなる粒子の集合体(即ち、前駆体の粉体)を得た。
 次いで、前駆体の粉体を、乳鉢と乳棒とを用いて、500μm以上の粒子がないように粉砕した後、マッフル炉の中に入れ、大気雰囲気下において、炉内の温度を1100℃の温度条件に設定し、4時間焼成することにより、焼成体を得た。
 次いで、得られた焼成体を、大阪ケミカル(株)のワンダークラッシャー WC-3(商品名)を用いて、可変速度ダイアルを「5」に設定して120秒間粉砕することで、磁性粉体14を得た。
-磁性粉体15の作製-
 磁性粉体6及び磁性粉体10を混合した後、大阪ケミカル(株)のワンダークラッシャー WC-3(商品名)を用いて、可変速度ダイアルを「1」に設定して10秒間粉砕することで、磁性粉体15を得た。
-磁性粉体16の作製-
 磁性粉体10を、大阪ケミカル(株)のワンダークラッシャー WC-3(商品名)を用いて、可変速度ダイアルを「1」に設定して10秒間粉砕することで、磁性粉体16を得た。
1.結晶構造の確認
 磁性粉体1~磁性粉体16の各磁性粉体を形成する磁性体(以下、それぞれ「磁性体1~磁性体16」ともいう。)の結晶構造を、X線回折(XRD)法により確認した。
 具体的には、マグネトプランバイト型の結晶構造を有しているか、及び、単相であるか、又は、二相以上の異なる結晶相を有しているかについて確認した。
 測定装置には、粉末X線回折装置であるPANalytical社のX’Pert Pro(商品名)を使用した。測定条件を以下に示す。
-測定条件-
 X線源:CuKα線
〔波長:1.54Å(0.154nm)、出力:40mA、45kV〕
 スキャン範囲:20°<2θ<70°
 スキャン間隔:0.05°
 スキャンスピード:0.75°/min
 その結果、磁性体1~磁性体16は、いずれもマグネトプランバイト型の結晶構造を有しており、マグネトプランバイト型以外の結晶構造を含まない単相のマグネトプランバイト型六方晶フェライトであることが確認された。
2.組成の確認
 磁性体1~磁性体16の各磁性体の組成を、高周波誘導結合プラズマ(ICP)発光分光分析法により確認した。
 具体的には、各粉体12mg及び4mol/Lの塩酸水溶液10mLを入れた耐圧容器(ビーカー)を、設定温度120℃のオーブンで12時間保持し、溶解液を得た。得られた溶解液に純水30mLを加えた後、0.1μmのメンブレンフィルタを用いて濾過した。このようにして得られた濾液の元素分析を、高周波誘導結合プラズマ(ICP)発光分光分析装置〔型番:ICPS-8100、(株)島津製作所〕を用いて行った。
 得られた元素分析の結果に基づき、鉄原子100原子%に対する各金属原子の含有率を求めた。そして、得られた含有率に基づき、各磁性体の組成を確認した。各磁性体の組成を以下に示す。
 磁性体1~磁性体10、磁性体15、及び磁性体16:SrFe(9.95)Al(2.05)19
 磁性体11~磁性体13:SrFe(9.70)Al(2.30)19
 磁性体14:Sr(0.80)Ba(0.10)Ca(0.10)Fe(9.83)Al(2.17)19
3.粒径分布の測定
 磁性粉体1~磁性粉体16の各磁性粉体の個数基準の粒度分布をレーザ回折散乱法により測定し、最頻値(所謂、モード径)、累積10%径、及び累積90%径を求めた。
 具体的には、各磁性粉体10mgにシクロヘキサノン500mLを加えて希釈した後、振とう機を用いて30秒間撹拌し、得られた液を粒度分布測定用サンプルとした。
 次いで、粒度分布測定用サンプルの粒度分布を、レーザ回折/散乱式粒子径分布測定装置〔商品名:Partica LA-960、(株)堀場製作所〕を用いて測定した。そして、得られた個数基準の粒度分布に基づき、最頻値であるモード径(単位:μm)、累積10%径であるD10(単位:μm)、及び累積90%径であるD90(単位:μm)を求めた。また、「(D90-D10)/モード径」の値を算出した。結果を表1~表3に示す。
 上記の「1.結晶構造の確認」、「2.組成の確認」、及び「3.粒径分布の測定」の結果より、磁性粉体1~磁性粉体16のうち、磁性粉体3、磁性粉体4、磁性粉体5、磁性粉体12、磁性粉体14、及び磁性粉体15は、本開示のマグネトプランバイト型六方晶フェライトの粉体であることが確認された。
4.磁気特性の評価
 磁性粉体1~磁性粉体16の各磁性粉体の磁気特性として、保磁力(Hc)及び飽和磁化(δs)を測定した。
 具体的には、測定装置として、振動試料型磁力計〔型番:TM-TRVSM5050-SMSL型、(株)玉川製作所〕を用い、雰囲気温度23℃の環境下、最大印加磁界3589kA/m、及び磁界掃引速度1.994kA/m/s(秒)の条件にて、印加した磁界に対する粉体の磁化の強度を測定した。測定結果より、各粉体の磁界(H)-磁化(M)曲線を得た。得られた磁界(H)-磁化(M)曲線に基づき、各磁性粉体の保磁力(Hc)(単位:kA/m)及び飽和磁化(δs)(単位:Am/kg)を求めた。求めた値に基づき、磁気特性の評価を行った。評価基準を以下に示す。
 評価結果がAであれば、磁気特性に優れる磁性粉体であると判断した。結果を表1~表3に示す。
(評価基準)
 A:保磁力(Hc)が700kA/m以上であること、及び、飽和磁化(δs)が35Am/kg以上であること、の両方を満たす。
 B:保磁力(Hc)が700kA/m未満であること、及び、飽和磁化(δs)が35Am/kg未満であること、の少なくとも一方を満たす。
5.電波吸収性能の評価
 磁性粉体1~磁性粉体16の各磁性粉体を用いて作製した電波吸収シート(以下、それぞれ「電波吸収シート1~電波吸収シート16」ともいう。)について、電波吸収性能を評価した。評価には、以下の方法により作製した評価用電波吸収シートを用いた。
 磁性粉体9.0g、アクリロニトリルブタジエンゴム(NBR)〔グレード:JSR N215SL、JSR(株)、バインダー〕1.05g、及びシクロヘキサノン6.1gを、撹拌装置〔製品名:あわとり練太郎 ARE-310、シンキー(株)〕を用い、回転数2000rpmにて5分間撹拌し、混合することにより、電波吸収体用組成物を調製した。次いで、アルミ箔上に、調製した電波吸収体用組成物を、アプリケーターを用いて塗布し、電波吸収体用組成物層を形成した。次いで、形成した電波吸収体用組成物層を、内部雰囲気温度80℃のオーブン内で2時間乾燥させることにより、アルミ箔上に電波吸収層(厚み:380μm)を形成し、評価用電波吸収シートを得た。
 上記にて得られた評価用電波吸収シートの反射減衰量(単位:dB)を測定した。
 具体的には、測定装置として、アンリツ(株)のベクトルネットワークアナライザ(製品名:MS4647B)及びキーコム(株)のホーンアンテナ(製品名:RH19R)を用い、自由空間法により、入射角を0°、及び、掃引周波数を60GHz~90GHzとして反射減衰量を測定した。そして、電波吸収シート1~電波吸収シート10及び電波吸収シート14~電波吸収シート16については、76.5GHzにおける反射減衰量の値に基づき、電波吸収シート11~電波吸収シート13については、85.0GHzにおける反射減衰量の値に基づき、電波吸収性能の評価を行った。評価基準を以下に示す。
 評価結果がAであれば、電波吸収性能に優れる電波吸収シートであると判断した。結果を表1~表3に示す。
(評価基準)
 A:反射減衰量が10dB以上である。
 B:反射減衰量が10dB未満である。
6.シート強度の評価
 磁性粉体1~磁性粉体16の各磁性粉体を用いて作製した電波吸収シート(即ち、電波吸収シート1~電波吸収シート16)について、シート強度を評価した。評価には、以下の方法により作製した評価用電波吸収シートを用いた。
 磁性粉体9.0g、アクリロニトリルブタジエンゴム(NBR)〔グレード:JSR N215SL、JSR(株)、バインダー〕1.05g、及びシクロヘキサノン6.1gを、撹拌装置〔製品名:あわとり練太郎 ARE-310、シンキー(株)〕を用い、回転数2000rpmにて5分間撹拌し、混合することにより、電波吸収体用組成物を調製した。次いで、ガラス板上に、調製した電波吸収体用組成物を、アプリケーターを用いて塗布し、電波吸収体用組成物層を形成した。次いで、形成した電波吸収体用組成物層を、内部雰囲気温度80℃のオーブン内で2時間乾燥させることにより、ガラス板上に電波吸収層(厚み:380μm、平面形状)を形成した。次いで、ガラス板から電波吸収層を剥離し、剥離した電波吸収層を20mm×70mmの短冊状に切断し、評価用電波吸収シートとした。
 上記にて得られた評価用電波吸収シートの破断強度(単位:MPa)を測定した。
 具体的には、測定装置として、(株)東洋精機製作所のストログラフ V1-C(商品名)を用い、評価用電波吸収シートを20μm/s(秒)の速度で長手方向に引っ張り、破断する直前の評価用電波吸収シートにかかる荷重を破断強度とした。得られた破断強度の値に基づき、シート強度の評価を行った。評価基準を以下に示す。
 評価結果がAであれば、薄膜とした場合でもシート強度に優れる電波吸収シートであると判断した。結果を表1~表3に示す。
(評価基準)
 A:破断強度が2MPa以上である。
 B:破断強度が2MPa未満である。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表1~表3に示すように、実施例1~実施例6のマグネトプランバイト型六方晶フェライトの粉体(即ち、磁性粉体3~磁性粉体5、磁性粉体12、磁性粉体14、及び磁性粉体15)は、保磁力(Hc)が高く、磁気特性に優れていた。
 また、実施例1~実施例6の電波吸収シート(即ち、電波吸収シート3~電波吸収シート5、電波吸収シート12、電波吸収シート14、及び電波吸収シート15)は、380μmの薄膜であっても電波吸収性能及びシート強度に優れていることが確認された。
 一方、比較例2~比較例7、比較例9、及び比較例10の電波吸収シート(即ち、電波吸収シート2、電波吸収シート6~電波吸収シート10、電波吸収シート13、及び電波吸収シート16)は、電波吸収性能及びシート強度の少なくとも一方が、実施例1~実施例6の電波吸収シート(即ち、電波吸収シート3~電波吸収シート5、電波吸収シート12、電波吸収シート14、及び電波吸収シート15)と比較して劣っていた。
 また、比較例1及び比較例8の電波吸収シート(即ち、電波吸収シート1及び電波吸収シート11)は、粗大粒子の存在により部分的に欠損状態となったため、正確な測定ができなかった。
 2018年8月28日に出願された日本国特許出願2018-159192号の開示、及び、2019年5月27日に出願された日本国特許出願2019-098735号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的に、かつ、個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (7)

  1.  下記の式(1)で表される化合物の粒子の集合体であり、かつ、
     レーザ回折散乱法により測定した個数基準の粒度分布において、最頻値をモード径、累積10%径をD10、及び累積90%径をD90としたときに、モード径が5μm以上10μm未満であり、(D90-D10)/モード径 ≦ 3.0であるマグネトプランバイト型六方晶フェライトの粉体。
    Figure JPOXMLDOC01-appb-C000001

     
     式(1)中、Aは、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素を表し、xは、1.5≦x≦8.0を満たす。
  2.  前記式(1)におけるxが、1.5≦x≦6.0を満たす請求項1に記載のマグネトプランバイト型六方晶フェライトの粉体。
  3.  結晶相が単相である請求項1又は請求項2に記載のマグネトプランバイト型六方晶フェライトの粉体。
  4.  電波吸収体に用いられる請求項1~請求項3のいずれか1項に記載のマグネトプランバイト型六方晶フェライトの粉体。
  5.  請求項1~請求項4のいずれか1項に記載のマグネトプランバイト型六方晶フェライトの粉体の製造方法であり、
     液相法により、Feと、Alと、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素と、を含む反応生成物を得る工程Aと、
     前記工程Aにて得られた前記反応生成物を乾燥して乾燥物を得る工程Bと、
     前記工程Bにて得られた前記乾燥物を焼成して焼成物を得た後、得られた前記焼成物を粉砕する工程、又は、前記工程Bにて得られた前記乾燥物を粉砕して粉砕物を得た後、得られた前記粉砕物を焼成する工程のいずれか一方の工程Cと、
    を含むマグネトプランバイト型六方晶フェライトの粉体の製造方法。
  6.  前記工程Aは、Fe塩、Al塩、及び前記少なくとも1種の金属元素の塩を含む水溶液と、アルカリ水溶液と、を混合して反応生成物を得る工程を含む請求項5に記載のマグネトプランバイト型六方晶フェライトの粉体の製造方法。
  7.  請求項1~請求項4のいずれか1項に記載のマグネトプランバイト型六方晶フェライトの粉体と、バインダーと、を含む電波吸収体。
PCT/JP2019/022347 2018-08-28 2019-06-05 マグネトプランバイト型六方晶フェライトの粉体及びその製造方法、並びに電波吸収体 WO2020044706A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201980056043.2A CN112640008B (zh) 2018-08-28 2019-06-05 磁铅石型六方晶铁氧体的粉体及其制造方法及电波吸收体
JP2020540075A JP6986637B2 (ja) 2018-08-28 2019-06-05 マグネトプランバイト型六方晶フェライトの粉体及びその製造方法、並びに電波吸収体
KR1020217004268A KR102424753B1 (ko) 2018-08-28 2019-06-05 마그네토플럼바이트형 육방정 페라이트의 분체와 그 제조 방법, 및 전파 흡수체
EP19854513.9A EP3846183B1 (en) 2018-08-28 2019-06-05 Powder of magnetoplumbite-type hexagonal ferrite, method for producing the same, and radio wave absorber
US17/173,437 US20210166849A1 (en) 2018-08-28 2021-02-11 Powder of magnetoplumbite-type hexagonal ferrite, method for producing the same, and radio wave absorber
JP2021193576A JP7113954B2 (ja) 2018-08-28 2021-11-29 マグネトプランバイト型六方晶フェライトの粉体及びその製造方法、並びに電波吸収体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018159192 2018-08-28
JP2018-159192 2018-08-28
JP2019098735 2019-05-27
JP2019-098735 2019-05-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/173,437 Continuation US20210166849A1 (en) 2018-08-28 2021-02-11 Powder of magnetoplumbite-type hexagonal ferrite, method for producing the same, and radio wave absorber

Publications (1)

Publication Number Publication Date
WO2020044706A1 true WO2020044706A1 (ja) 2020-03-05

Family

ID=69642962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022347 WO2020044706A1 (ja) 2018-08-28 2019-06-05 マグネトプランバイト型六方晶フェライトの粉体及びその製造方法、並びに電波吸収体

Country Status (6)

Country Link
US (1) US20210166849A1 (ja)
EP (1) EP3846183B1 (ja)
JP (2) JP6986637B2 (ja)
KR (1) KR102424753B1 (ja)
CN (1) CN112640008B (ja)
WO (1) WO2020044706A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024084976A1 (ja) * 2022-10-21 2024-04-25 戸田工業株式会社 電磁波吸収用フェライト粒子粉末及びその製造方法、それを用いた樹脂組成物及び電磁波吸収材

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64707A (en) * 1986-09-05 1989-01-05 Sony Corp Manufacture of barium ferrite powder
JP2007250823A (ja) * 2006-03-16 2007-09-27 Dowa Holdings Co Ltd 電波吸収体用磁性粉体および製造法並びに電波吸収体
JP2010114407A (ja) * 2008-10-10 2010-05-20 Dowa Electronics Materials Co Ltd 混合フェライト粉およびその製造方法、並びに、電波吸収体
JP2010184840A (ja) * 2009-02-12 2010-08-26 Dowa Electronics Materials Co Ltd 磁性粉末と磁性焼結体および製造方法
JP2011093762A (ja) * 2009-10-30 2011-05-12 Toda Kogyo Corp 六方晶フェライト粒子粉末の製造法、及び六方晶フェライト粒子粉末、並びに磁気記録媒体
JP2015127985A (ja) * 2013-12-27 2015-07-09 富士フイルム株式会社 磁気記録用磁性粉、磁気記録媒体、および磁気記録用磁性粉の製造方法
JP2018159192A (ja) 2017-03-22 2018-10-11 中日本高速オートサービス株式会社 飛散防止収納付き標識車両
JP2019098735A (ja) 2017-12-04 2019-06-24 三緯國際立體列印科技股▲フン▼有限公司 分割プリント可能な3dプリンタ及び分割プリント方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3729693A1 (de) * 1986-09-05 1988-05-05 Sony Corp Verfahren zur herstellung feiner bariumferritteilchen
JP5578777B2 (ja) * 2007-09-28 2014-08-27 Dowaエレクトロニクス株式会社 ボンド磁石用フェライト粉末およびその製造方法、並びに、これを用いたボンド磁石

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64707A (en) * 1986-09-05 1989-01-05 Sony Corp Manufacture of barium ferrite powder
JP2007250823A (ja) * 2006-03-16 2007-09-27 Dowa Holdings Co Ltd 電波吸収体用磁性粉体および製造法並びに電波吸収体
JP4674380B2 (ja) 2006-03-16 2011-04-20 Dowaエレクトロニクス株式会社 電波吸収体用磁性粉体および製造法並びに電波吸収体
JP2010114407A (ja) * 2008-10-10 2010-05-20 Dowa Electronics Materials Co Ltd 混合フェライト粉およびその製造方法、並びに、電波吸収体
JP2010184840A (ja) * 2009-02-12 2010-08-26 Dowa Electronics Materials Co Ltd 磁性粉末と磁性焼結体および製造方法
JP2011093762A (ja) * 2009-10-30 2011-05-12 Toda Kogyo Corp 六方晶フェライト粒子粉末の製造法、及び六方晶フェライト粒子粉末、並びに磁気記録媒体
JP2015127985A (ja) * 2013-12-27 2015-07-09 富士フイルム株式会社 磁気記録用磁性粉、磁気記録媒体、および磁気記録用磁性粉の製造方法
JP2018159192A (ja) 2017-03-22 2018-10-11 中日本高速オートサービス株式会社 飛散防止収納付き標識車両
JP2019098735A (ja) 2017-12-04 2019-06-24 三緯國際立體列印科技股▲フン▼有限公司 分割プリント可能な3dプリンタ及び分割プリント方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024084976A1 (ja) * 2022-10-21 2024-04-25 戸田工業株式会社 電磁波吸収用フェライト粒子粉末及びその製造方法、それを用いた樹脂組成物及び電磁波吸収材

Also Published As

Publication number Publication date
US20210166849A1 (en) 2021-06-03
EP3846183A1 (en) 2021-07-07
JP6986637B2 (ja) 2021-12-22
EP3846183A4 (en) 2021-11-03
KR20210029815A (ko) 2021-03-16
JP7113954B2 (ja) 2022-08-05
JP2022022302A (ja) 2022-02-03
CN112640008A (zh) 2021-04-09
EP3846183B1 (en) 2024-10-09
JPWO2020044706A1 (ja) 2021-05-13
CN112640008B (zh) 2023-11-28
KR102424753B1 (ko) 2022-07-22

Similar Documents

Publication Publication Date Title
JP7220674B2 (ja) マグネトプランバイト型六方晶フェライトの粒子及びその製造方法、並びに電波吸収体
JP7071513B2 (ja) マグネトプランバイト型六方晶フェライトの粉体の製造方法及び電波吸収体の製造方法
JP2020145340A (ja) 電波吸収体及びその製造方法
JP7113954B2 (ja) マグネトプランバイト型六方晶フェライトの粉体及びその製造方法、並びに電波吸収体
US12112871B2 (en) Powder mixture of magnetoplumbite-type hexagonal ferrite, method for producing the same, and radio wave absorber
JP7303871B2 (ja) 電波吸収体
JP7496816B2 (ja) 電波吸収体及びコンパウンド
JP7273953B2 (ja) 電波吸収体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854513

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020540075

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217004268

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019854513

Country of ref document: EP

Effective date: 20210329