WO2020044664A1 - デューティ比補正回路および信号生成回路 - Google Patents
デューティ比補正回路および信号生成回路 Download PDFInfo
- Publication number
- WO2020044664A1 WO2020044664A1 PCT/JP2019/018674 JP2019018674W WO2020044664A1 WO 2020044664 A1 WO2020044664 A1 WO 2020044664A1 JP 2019018674 W JP2019018674 W JP 2019018674W WO 2020044664 A1 WO2020044664 A1 WO 2020044664A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- power supply
- error amplifier
- mos transistor
- duty ratio
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K5/13—Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
- H03K5/133—Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals using a chain of active delay devices
- H03K5/134—Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals using a chain of active delay devices with field-effect transistors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/01—Frequency selective two-port networks
- H03H7/06—Frequency selective two-port networks including resistors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/01—Details
- H03K3/017—Adjustment of width or dutycycle of pulses
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/38—Impedance-matching networks
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K5/01—Shaping pulses
- H03K5/04—Shaping pulses by increasing duration; by decreasing duration
Definitions
- the present disclosure relates to a duty ratio correction circuit and a signal generation circuit. More specifically, the present invention relates to a duty ratio correction circuit for correcting a duty ratio of a signal and a signal generation circuit including the duty ratio correction circuit.
- a transmission device conforming to the BLE standard has been used as a transmission device of a mobile device.
- the signal transmitted from this transmitting device needs to have a duty ratio of 50% to reduce the secondary distortion. This is to reduce the transmission of jamming radio waves.
- a transmission device that corrects the duty ratio of a signal generated by a DCO (Digital Controlled Oscillator) to 50%, amplifies the signal with a power amplifier, and transmits the signal from an antenna is used.
- a circuit for correcting the duty ratio of the above-mentioned signal for example, a duty ratio correction circuit having a circuit for controlling the rising timing of a clock signal has been proposed (for example, see Patent Document 1).
- This duty ratio correction circuit has a CMOS (Complementary Metal Oxide Semiconductor) inverter composed of a p-channel MOS transistor and an n-channel MOS transistor.
- the source of the p-channel MOS transistor of this CMOS inverter is connected to the power supply line Vdd via the second p-channel MOS transistor, and the source of the n-channel MOS transistor is grounded via the second n-channel MOS transistor.
- the gate of the second p-channel MOS transistor is biased to a predetermined voltage.
- a signal for feedback control is input to the gate of the second n-channel MOS transistor.
- a signal corresponding to the duty ratio is generated from the output signal of the CMOS inverter by the low-pass filter, and is negatively fed back to the gate of the second n-channel MOS transistor.
- the above-described conventional technique has a problem that the duty ratio of the clock signal cannot be adjusted when the power supply voltage is reduced. In order to reduce power consumption, it is necessary to lower the power supply voltage of the transmitter.
- the above-described conventional technique employs a configuration in which a second p-channel MOS transistor and a second n-channel MOS transistor are connected in series to a CMOS inverter. Therefore, when the power supply voltage is lowered, the drain-source voltage Vds of the second n-channel MOS transistor becomes insufficient. There is a problem that the efficiency of adjusting the rise time is reduced, the gain of the feedback control system is reduced, and the duty ratio of the clock signal cannot be adjusted.
- the present disclosure has been made in view of the above-described problem, and has as its object to stabilize the adjustment of the signal duty ratio even when the power supply voltage is reduced.
- the present disclosure has been made in order to solve the above-described problem, and a first aspect of the present disclosure is directed to an inversion buffer that inverts an input signal, and an inversion buffer connected to an output of the inversion buffer.
- a capacitor for adjusting a rise time and a fall time; a low-pass filter for extracting a low-frequency component of the inverted signal; and an output of the inversion buffer based on a difference between the extracted low-frequency component and a reference signal.
- An error amplifier that controls at least one of a source current and an output sink current to change at least one of a rising edge and a falling edge of the inverted signal to adjust a duty ratio of the inverted signal.
- an adjustment unit for adjusting the control of the inversion buffer in the error amplifier.
- the apparatus further comprises a constant current power supply unit for supplying a power supply current to the inversion buffer, wherein the error amplifier outputs a control signal for controlling a power supply current of the constant current power supply unit. Adjusting the duty ratio of the inverted signal by changing at least one of the rising edge and the falling edge of the inverted signal, and the adjusting unit adjusting the output control signal to adjust the duty ratio of the inverted signal.
- the control of the inversion buffer in the error amplifier may be adjusted.
- the adjusting unit includes a current mirror circuit to which a power supply voltage is applied, and superimposes a mirror current of the current mirror circuit on the output control signal as an adjustment signal to output the output signal.
- the control signal to be performed may be adjusted.
- the constant current power supply unit includes a source constant current power supply unit that supplies a source-side power supply current to the inversion buffer and a sink constant current power supply unit that supplies a sink-side power supply current to the inversion buffer. It may be configured.
- the error amplifier includes a source-side error amplifier that outputs a control signal to the source constant-current power supply unit and a sink-side error amplifier that outputs a control signal to the sink constant-current power supply unit. You may.
- the apparatus may further include a bias circuit that applies a predetermined bias voltage to the control signal and supplies the control signal to the source-side constant current power supply unit and the sink-side constant current power supply unit.
- the apparatus may further include an offset adjusting unit that adjusts an offset of the error amplifier.
- the inversion buffer is configured by a p-channel MOS transistor and an n-channel MOS transistor whose drain terminals are commonly connected, and the commonly connected drain terminal of the own inversion buffer is provided.
- An output terminal may be configured.
- the inverting buffer may include a capacitor connected between a gate of the p-channel MOS transistor and the n-channel MOS transistor and an input terminal of the inverting buffer.
- an oscillation circuit that generates a signal, an inversion buffer that inverts the signal, and a rising time and a falling time of the inverted signal that are connected to an output of the inversion buffer.
- An error amplifier for controlling at least one of them to change at least one of a rising edge and a falling edge of the inverted signal to adjust a duty ratio of the inverted signal;
- a signal generation circuit including an adjustment unit that adjusts control of the inversion buffer.
- the control by the error amplifier is performed by the adjustment unit.
- the effect that is adjusted by is provided. Adjustment by the adjustment unit according to the change in the power supply voltage is assumed.
- FIG. 1 is a diagram illustrating a configuration example of a transmission device according to an embodiment of the present disclosure.
- FIG. 2 is a diagram illustrating a configuration example of a duty ratio correction circuit according to the first embodiment of the present disclosure.
- FIG. 2 is a diagram illustrating a configuration example of an adjustment unit according to the first embodiment of the present disclosure.
- FIG. 4 is a diagram illustrating an example of duty ratio correction according to the first embodiment of the present disclosure.
- FIG. 4 is a diagram illustrating an example of adjustment of a control signal according to the first embodiment of the present disclosure.
- FIG. 11 is a diagram illustrating a configuration example of a duty ratio correction circuit according to a second embodiment of the present disclosure.
- FIG. 13 is a diagram illustrating a configuration example of an offset adjustment unit according to a second embodiment of the present disclosure.
- FIG. 13 is a diagram illustrating a configuration example of a duty ratio correction circuit according to a third embodiment of the present disclosure.
- FIG. 13 is a diagram illustrating a configuration example of an adjustment unit according to a third embodiment of the present disclosure.
- FIG. 13 is a diagram illustrating an example of adjustment of a control signal according to the third embodiment of the present disclosure.
- FIG. 14 is a diagram illustrating a configuration example of a duty ratio correction circuit according to a fourth embodiment of the present disclosure.
- FIG. 14 is a diagram illustrating a configuration example of a bias circuit according to a fourth embodiment of the present disclosure.
- FIG. 14 is a diagram illustrating an example of adjustment of a control signal according to a fourth embodiment of the present disclosure.
- FIG. 15 is a diagram illustrating a configuration example of a duty ratio correction circuit according to a fifth embodiment of the present disclosure.
- FIG. 1 is a diagram illustrating a configuration example of a transmission device according to an embodiment of the present disclosure.
- the transmission device 1 of FIG. 1 includes a PLL (Phase Locked Loop) 20, a duty ratio correction circuit 10, a power amplifier 30, a matching network 40, and a transmission antenna 50.
- the configuration of the duty ratio correction circuit 10 will be described using the transmission device 1 as an example. Note that the PLL 20 and the duty ratio correction circuit 10 constitute a signal generation circuit.
- the PLL 20 is a circuit for generating a clock signal.
- the PLL 20 has a built-in oscillation circuit and generates a clock signal (rectangular wave) having a desired frequency and phase.
- the clock signal is input to the duty ratio correction circuit 10 via the signal line 21.
- the PLL 20 is an example of the oscillation circuit described in the claims.
- the clock signal is an example of the signal described in the claims.
- the duty ratio correction circuit 10 is a circuit that corrects the duty ratio of the clock signal output from the PLL 20 to 50%. If the duty ratio of the clock signal is not 50%, a radio wave with secondary distortion is transmitted from the transmitting antenna 50, and the interference margin decreases. Therefore, a duty ratio correction circuit 10 is provided to correct the duty ratio to 50%.
- the clock signal whose duty ratio has been corrected is output to the power amplifier 30 via the signal line 11.
- the power amplifier 30 is an amplifier that amplifies a clock signal whose duty ratio has been corrected.
- a class D amplifier can be used.
- a plurality of power amplifiers 30 are connected in parallel to improve transmission power.
- the matching network 40 is a circuit that performs impedance matching between the power amplifier 30 and the transmission antenna 50.
- the matching network 40 shown in the figure is configured as a ⁇ -type filter, and passes the fundamental wave of the amplified clock signal.
- the transmitting antenna 50 is an antenna that transmits the fundamental wave of the clock signal from the matching network 40.
- FIG. 2 is a diagram illustrating a configuration example of the duty ratio correction circuit according to the first embodiment of the present disclosure.
- the duty ratio correction circuit 10 shown in FIG. 1 includes an error amplifier 101, a bias circuit 103, inverting buffers 104 to 106, MOS transistors 111 to 114, a capacitor 121, a resistor 124, a low-pass filter 140, 150.
- p-channel MOS transistors can be used as MOS transistors 111 and 112.
- MOS transistors 113 and 114 can use n-channel MOS transistors.
- a power supply line Vdd for supplying power is wired in the duty ratio correction circuit 10 of FIG.
- the signal line 21 is connected to the gate of the MOS transistor 112 and the gate of the MOS transistor 113.
- the drain of the MOS transistor 112 is connected to the drain of the MOS transistor 113, the input of the inversion buffer 104, and one end of the capacitor 121. The other end of the capacitor 121 is grounded.
- the source of MOS transistor 112 is connected to the drain of MOS transistor 111, and the source of MOS transistor 111 is connected to power supply line Vdd.
- the gate of MOS transistor 111 is connected to signal line 13.
- the output of the adjustment unit 150, the output of the error amplifier 101, and one end of the resistor 124 are further connected to the signal line 13.
- the other end of the resistor 124 is grounded.
- the source of MOS transistor 113 is connected to the drain of MOS transistor 114, and the source of MOS transistor 114 is grounded.
- the gate of the MOS transistor 114 is connected to the bias circuit 103.
- the output of the inversion buffer 104 is connected to the input of the inversion buffer 105 and the input of the low-pass filter 140.
- the output of the inversion buffer 105 is connected to the input of the inversion buffer 106, and the output of the inversion buffer 106 is connected to the signal line 11.
- the output of the low pass filter 140 is connected to the inverting input of the error amplifier 101.
- the non-inverting input of the error amplifier 101 is connected to the signal line 19. Note that a reference signal generated by a reference signal generation unit (not shown) is input to the signal line 19.
- the bias circuit 103 is a circuit configured by a voltage source and supplying a predetermined bias voltage to the gate of the MOS transistor 114.
- MOS transistors 112 and 113 constitute inverting buffer 110.
- the inversion buffer 110 inverts the logic of the clock signal input via the signal line 21 and outputs the inverted signal to the signal line 12.
- a MOS transistor 114 is connected to a source of the MOS transistor 113.
- the bias voltage is applied to the gate of the MOS transistor 114 by the bias circuit 103, and the gate is connected between the source of the MOS transistor 113 and the ground. Therefore, the MOS transistor 114 constitutes a constant current power supply unit that supplies the power supply current on the sink side to the MOS transistor 113.
- the MOS transistor 114 is an example of a sink constant current power supply unit described in the claims.
- the MOS transistor 111 is connected between the power supply line Vdd and the drain of the MOS transistor 112, and supplies the power supply current on the source side to the MOS transistor 112.
- the output of the error amplifier 101 is connected to the gate of the MOS transistor 111 via the signal line 13. For this reason, the MOS transistor 111 supplies a source-side power supply current corresponding to the output of the error amplifier 101 to the MOS transistor 112.
- the MOS transistor 111 is an example of a source constant current power supply unit described in the claims.
- the capacitor 121 is a capacitor for adjusting the rise time and the fall time of the clock signal inverted by the inversion buffer 110.
- the MOS transistors 111 and 114 are connected to the inversion buffer 110, and the source current on the source side and the power supply current on the sink side are supplied.
- the capacitor 121 connected to the output of the inverting buffer 110 is charged and discharged by an output source current and an output sink current based on the source and sink power supply currents. Therefore, the output clock signal of the inversion buffer 110 is a signal having a ramp-like rising and falling. As described above, the rise time and the fall time of the inverted clock signal are adjusted by the MOS transistors 111 and 114 and the capacitor 121.
- the inversion buffer 104 inverts the logic of the output clock signal from the inversion buffer 110 and shapes the waveform.
- the output clock signal of the inversion buffer 110 is a signal having a ramp-like rising and falling.
- the inversion buffer 104 shapes the clock signal into a signal having a sharp rise and fall.
- the shaped clock signal is output to signal line 11 via inverting buffers 105 and 106 connected in series.
- the clock signal shaped by the inversion buffer 104 is also input to the low-pass filter 140.
- the low-pass filter 140 is a filter that extracts a low-frequency component of the clock signal formed by the inversion buffer 104.
- the low-pass filter 140 includes a resistor 141 and a capacitor 142 connected in series, and blocks a high frequency component of the clock signal and allows a low frequency component to pass. By setting the cutoff frequency of the low-pass filter 140 sufficiently low, a signal corresponding to the duty ratio of the clock signal can be extracted. When the duty ratio of the clock signal is 50%, the output of the low-pass filter 140 outputs a signal having a voltage that is approximately ⁇ of the power supply voltage (Vdd).
- the error amplifier 101 adjusts the duty ratio of the inverted clock signal.
- the error amplifier 101 outputs the output source current and the output sink current of the inverting buffer 110 based on the difference between the low frequency component of the clock signal input from the low-pass filter 140 and the reference signal input via the signal line 19. Control at least one. Thereby, at least one of the rising edge and the falling edge of the inverted clock signal is changed, and the duty ratio of the inverted clock signal is adjusted.
- the error amplifier 101 shown in the figure is configured by a transconductance amplifier. This transconductance amplifier is an amplifier that outputs a current corresponding to a difference between voltages applied to an inverting input and a non-inverting input.
- the output current of the error amplifier 101 is converted into a voltage by the resistor 124.
- the converted output voltage of error amplifier 101 is applied to the gate of MOS transistor 111 via signal line 13.
- a voltage corresponding to the difference between the low frequency components of the reference signal and the clock signal is applied to the gate of the MOS transistor 111 as a control signal.
- the source-side power supply current supplied by the MOS transistor 111 is controlled by a control signal output from the error amplifier 101. In this way, by feeding back the output clock signal of the inversion buffer 110 to the input of the error amplifier 101 via the low-pass filter 140, the duty ratio of the output clock signal of the inversion buffer 110 can be changed and corrected.
- the MOS transistor 111 is a p-channel MOS transistor, and the gate of the MOS transistor 111 is pulled down by the resistor 124, the error amplifier 101 supplies a current on the source side to the signal line 13 so that the MOS transistor 111 Controls source-side power supply current. The details of the duty ratio correction will be described later.
- the adjustment unit 150 adjusts the control of the inversion buffer 110 in the error amplifier 101.
- the adjustment unit 150 adjusts a control signal output from the error amplifier 101. Specifically, the adjustment unit 150 outputs a current (adjustment signal) to the signal line 13. Since this adjustment signal flows through the resistor 124, it is superimposed on the control signal of the error amplifier 101, converted into a voltage, and applied to the gate of the MOS transistor 111.
- the adjustment by the adjusting unit 150 can be performed based on, for example, a change in the power supply voltage Vdd. When the power supply voltage Vdd changes and the drain-source voltage Vds of the MOS transistor 111 changes, the duty ratio change efficiency changes and the loop gain of the feedback control system changes.
- the adjustment unit 150 outputs an adjustment signal for canceling the change in the drain-source voltage Vds of the MOS transistor 111, so that the change in the duty ratio change efficiency can be reduced. This makes it possible to stabilize the feedback control system using the error amplifier 101 and the like.
- FIG. 3 is a diagram illustrating a configuration example of the adjustment unit according to the first embodiment of the present disclosure.
- FIG. 14 is a circuit diagram illustrating a configuration example of the adjustment unit 150.
- the adjustment unit 150 shown in FIG. 9 includes MOS transistors 151 and 152 and a resistor 155.
- MOS transistors 151 and 152 p-channel MOS transistors can be used.
- MOS transistors 151 and 152 are commonly connected to power supply line Vdd.
- the gate of the MOS transistor 151 is connected to the drain of the MOS transistor 151, the gate of the MOS transistor 152, and one end of the resistor 155. The other end of the resistor 155 is grounded.
- the drain of the MOS transistor 152 is connected to the signal line 13.
- MOS transistors 151 and 152 form a current mirror circuit.
- a current according to the power supply voltage Vdd and the resistor 155 flows through the MOS transistor 151.
- the current flowing through MOS transistor 151 is mirrored by MOS transistor 152 and output to signal line 13.
- the power supply voltage Vdd changes, the current of the MOS transistor 151 also changes, and the current output to the signal line 13 by the MOS transistor 152 also changes.
- the current of the MOS transistor 151 and the MOS transistor 152 changes the current output to the signal line 13.
- the adjustment unit 150 can output a current corresponding to the power supply line Vdd, a variation in a manufacturing process, a change in temperature, or the like to the signal line 13 as an adjustment signal.
- the resistor 155 can be omitted.
- FIG. 4 is a diagram illustrating an example of duty ratio correction according to the first embodiment of the present disclosure.
- FIG. 3 is a diagram showing a state where the duty ratio of the input clock signal is adjusted.
- the duty ratio correction circuit input represents a clock signal input from the signal line 21.
- the inversion buffer output represents the output clock signal of the inversion buffer 110 output to the signal line 12.
- the output of the duty ratio correction circuit represents a clock signal output to the signal line 11 and having a corrected duty ratio.
- the broken line in the figure represents 0 V (ground potential).
- the dotted line represents the threshold value of the inversion buffer 104. This threshold is a voltage that is approximately half of the power supply voltage Vdd.
- a, b, and c in the figure represent the cases where the duty ratio of the input clock signal is 50%, less than 50%, and more than 50%, respectively.
- the clock signal having a duty ratio of 50% is inverted by the inversion buffer 110, and is converted into a waveform whose rising and falling change in a ramp shape by the capacitor 121. Since the duty ratio of the clock signal is 50%, the clock signal output from the inverting buffer 110 has a waveform having the same rise time and fall time. After that, the signal is inverted again by the inversion buffer 104 and the rising and falling edges are shaped. At this time, the source-side current (control signal) from the output of the error amplifier 101 and the source-side current (adjustment signal) from the adjustment unit 150 are output to the signal line 13, and the gate of the MOS transistor 111 is connected to these source-side currents.
- the output voltage of the low-pass filter 140 increases because the duty ratio of the clock signal is higher than 50%. Therefore, the output source current of error amplifier 101 decreases, and the gate voltage of MOS transistor 111 decreases. As a result, the source-side power supply current of the MOS transistor 111 increases, and the rise time of the output clock signal of the inversion buffer 110 decreases. The period of the logic “1” of the clock signal after the waveform is shaped by the inversion buffer 104 is shortened, and the duty ratio is adjusted to 50%.
- FIG. 5 is a diagram illustrating an example of adjustment of the control signal according to the first embodiment of the present disclosure.
- FIG. 5 is a diagram illustrating a state of adjustment of the control signal of the error amplifier 101 by the adjustment unit 150.
- the horizontal axis in the figure represents the difference between the inverting input and the non-inverting input of the error amplifier 101. When the voltage of the inverting input and the voltage of the non-inverting input are equal, the difference becomes a value “0”, and when the inverting input is higher than the non-inverting input, the difference becomes a positive value.
- the vertical axis in the figure represents the gate voltage of the MOS transistor 111.
- a broken line graph 304 in the same figure shows a state in which the feedback control is stopped.
- the relationship between the input difference of the error amplifier 101 and the gate voltage of the MOS transistor 111 is shown.
- a source-side current corresponding to the difference between the inputs of the error amplifier 101 is output, and the gate voltage is applied to the MOS transistor 111.
- the error amplifier 101 operates in the direction of outputting the sink-side current.
- the terminal of the resistor 124 that is not connected to the signal line 13 is grounded, no sink-side current flows and the gate voltage of the MOS transistor 111 becomes 0V.
- the solid line graph 301 represents the relationship between the difference between the input of the error amplifier 101 and the gate voltage of the MOS transistor 111 when the feedback control system described in FIG.
- the graph 301 has a shape shifted in the direction of the positive gate voltage with respect to the graph 304.
- a dashed-dotted line graph 303 is a graph in a case where the adjustment signal in the adjustment unit 150 is large. For example, when the power supply voltage Vdd increases, the adjustment unit 150 increases the adjustment signal. As a result, the graph 301 shifts to the graph 303, and the gate voltage generally increases. This compensates for an increase in the source-side power supply current of the MOS transistor 111 and reduces a change in the loop gain of the feedback control system.
- the control signal of the error amplifier 101 is adjusted by the adjusting unit 150 even when the threshold value of the MOS transistor changes due to a variation in the manufacturing process.
- the change in the loop gain of the feedback control system can be reduced.
- the duty ratio correction circuit 10 adjusts the control signal of the error amplifier 101 using the adjustment signal of the adjustment unit 150. Therefore, even when the power supply voltage Vdd changes, the duty ratio of the clock signal can be corrected to 50%.
- the duty ratio correction circuit 10 of the first embodiment corrects the duty ratio of the clock signal to 50% by arranging the error amplifier 101 and performing feedback control.
- the duty ratio correction circuit 10 according to the second embodiment of the present disclosure differs from the above-described first embodiment in that the offset of the error amplifier 101 is adjusted.
- FIG. 6 is a diagram illustrating a configuration example of a duty ratio correction circuit according to the second embodiment of the present disclosure.
- the duty ratio correction circuit 10 of FIG. 11 differs from the duty ratio correction circuit 10 described in FIG.
- the offset adjustment unit 160 in the figure adjusts the offset of the error amplifier 101 to substantially “0”.
- the power supply voltage Vdd of the duty ratio correction circuit 10 and the like may be reduced.
- the allowable offset error with respect to the output of the error amplifier 101 decreases. Therefore, by canceling the offset of the error amplifier 101, the influence of the offset error can be reduced.
- FIG. 7 is a diagram illustrating a configuration example of the offset adjustment unit according to the second embodiment of the present disclosure.
- the offset adjustment unit 160 in FIG. 9 includes an error amplifier 161, switches 162 to 164, and a capacitor 165.
- the switch 163 is connected between the signal line 14 and the inverting input of the error amplifier 101.
- Switch 164 is connected between the inverting input and non-inverting input of error amplifier 101.
- the non-inverting input of the error amplifier 161 is connected to the signal line 19, and the inverting input of the error amplifier 161 is connected to the output of the error amplifier 161 via the switch 162.
- the output of the error amplifier 161 is further connected to the signal line 13.
- Capacitor 165 is connected between the inverting input of error amplifier 161 and ground.
- Capacitor 165 is a capacitor that holds a voltage corresponding to the offset of error amplifiers 101 and 161.
- the error amplifier 161 adjusts the offset of the error amplifier 101 by outputting a current based on the voltage held in the capacitor 165 to the signal line 13.
- the offset adjustment unit 160 switches and executes the offset correction period and the normal operation period by a control circuit (not shown).
- the switches 162 and 164 are turned off, and the switch 163 is turned on.
- the output of the low-pass filter 140 is applied to the inverting input of the error amplifier 101, and a current based on the difference from the reference signal is output.
- the switch 163 is turned off, and the switches 162 and 164 are turned on.
- the reference signal is input to the inverting input and the non-inverting input of the error amplifier 101 and the non-inverting input of the error amplifier 161.
- a current based on its own offset is output from the output of the error amplifier 101, applied to the inverting input of the error amplifier 161 via the switch 162, and charges the capacitor 165.
- the voltage based on the offset of the error amplifier 101 is held in the capacitor 165.
- the voltage based on the offset of the error amplifier 161 is also held in the capacitor 165.
- the error amplifier 161 outputs a current based on the offset voltage held in the capacitor 165. Since the output current of the error amplifier 161 is superimposed on the output current of the error amplifier 101, the offset of the error amplifier 101 can be canceled.
- the other configuration of the duty ratio correction circuit 10 is the same as the configuration of the duty ratio correction circuit 10 described in the first embodiment of the present disclosure, and a description thereof will not be repeated.
- the duty ratio correction circuit 10 can adjust the offset of the error amplifier 101 by disposing the offset adjustment unit 160. Thereby, even when the power supply voltage Vdd is low, it is possible to reduce the error in the correction of the duty ratio.
- the duty ratio correction circuit 10 of the first embodiment controls the source-side power supply current of the MOS transistor 111.
- the duty ratio correction circuit 10 according to the third embodiment of the present disclosure differs from the above-described first embodiment in further controlling the sink-side power supply current of the MOS transistor 114.
- FIG. 8 is a diagram illustrating a configuration example of a duty ratio correction circuit according to the third embodiment of the present disclosure.
- the duty ratio correction circuit 10 shown in FIG. 2 further includes an error amplifier 102 and a resistor 125, includes an adjustment unit 170 instead of the adjustment unit 150, and omits the bias circuit 103. Different from 10.
- the inverting input of the error amplifier 102 is connected to the signal line 14, and the non-inverting input of the error amplifier 102 is connected to the signal line 19.
- the output of the error amplifier 102 is connected to the signal line 15.
- This signal line 15 is further connected to the gate of MOS transistor 114 and one end of resistor 125.
- the other end of the resistor 125 is connected to the power supply line Vdd.
- the adjusting unit 170 has two outputs and is connected to the signal lines 13 and 15, respectively. Other connections are the same as those of the duty ratio correction circuit 10 of FIG.
- the output of the error amplifier 102 is connected to the gate of the MOS transistor 114 via the signal line 15. For this reason, the MOS transistor 114 supplies the sink-side power supply current corresponding to the output of the error amplifier 102 to the MOS transistor 113.
- the MOS transistor 114 is an example of a sink constant current power supply unit described in the claims.
- the error amplifier 101 is an example of the source-side error amplifier described in the claims.
- the error amplifier 102 is an example of the sink-side error amplifier described in the claims.
- the error amplifier 102 is configured by a transconductance amplifier similarly to the error amplifier 101, and is based on a difference between a low-frequency component of a clock signal input from the low-pass filter 140 and a reference signal input via the signal line 19.
- the output sink current of the inversion buffer 110 is controlled.
- the error amplifier 102 adjusts the duty ratio of the clock signal by changing the falling edge of the clock signal inverted by the inversion buffer 110.
- the output current of the error amplifier 102 is converted into a voltage by the resistor 125 and applied to the gate of the MOS transistor 114. That is, a voltage corresponding to the difference between the low frequency components of the reference signal and the clock signal is applied to the gate of the MOS transistor 114 as a control signal.
- the MOS transistor 114 is an n-channel MOS transistor, and the gate of the MOS transistor 114 is pulled up by the resistor 125, the error amplifier 102 supplies a sink-side current to the signal line 15 to Controls sink-side power supply current.
- the adjustment unit 170 adjusts the control of the inversion buffer 110 in the error amplifiers 101 and 102.
- the adjustment section 170 adjusts the control signals output from the error amplifiers 101 and 102 at the same time. Specifically, adjustment section 170 outputs an adjustment signal to signal lines 13 and 15, respectively.
- FIG. 9 is a diagram illustrating a configuration example of an adjustment unit according to the third embodiment of the present disclosure.
- the adjustment unit 170 in FIG. 11 differs from the adjustment unit 150 described in FIG. 3 in further including MOS transistors 153 and 154.
- MOS transistors 153 and 154 n-channel MOS transistors can be used.
- the resistor 155 is connected between the drain of the MOS transistor 151 and the drain of the MOS transistor 153.
- the drain of MOS transistor 153 is further connected to the gate of MOS transistor 153 and the gate of MOS transistor 154.
- the source of MOS transistor 153 and the source of MOS transistor 154 are both grounded.
- the drain of MOS transistor 154 is connected to signal line 15. The other connections are the same as those of the adjustment unit 150 in FIG.
- MOS transistors 153 and 154 form a current mirror circuit. A current corresponding to the power supply voltage Vdd and the resistor 155 flows through the MOS transistor 153. The current flowing through MOS transistor 153 is mirrored by MOS transistor 154 and output to signal line 15. The adjustment unit 170 outputs the source-side current and the sink-side current to the signal lines 13 and 15 as adjustment signals, respectively.
- FIG. 10 is a diagram illustrating an example of adjustment of a control signal according to the third embodiment of the present disclosure.
- FIG. 14 is a diagram illustrating a state of adjustment of control signals of error amplifiers 101 and 102 by adjustment section 170. The same reference numerals are described in graphs common to FIG.
- the broken line graph 308 in the figure shows the state in which the feedback control is stopped.
- the relationship between the input difference of the error amplifier 102 and the gate voltage of the MOS transistor 114 is shown.
- a sink-side current corresponding to the difference between the inputs of the error amplifier 102 is output, and the gate voltage is applied to the MOS transistor 114.
- the error amplifier 102 operates in the direction of outputting the source side current.
- the terminal of the resistor 125 that is not connected to the signal line 15 is connected to the power supply line Vdd, the source-side current does not flow, and the power supply voltage Vdd is applied to the gate of the MOS transistor 114.
- a solid line graph 305 represents the relationship between the difference between the input of the error amplifier 102 and the gate voltage of the MOS transistor 114 when the feedback control system described in FIG.
- the graph 305 has a shape shifted in the direction of the negative gate voltage with respect to the graph 308.
- a dashed line graph 307 is a graph when the adjustment signal in the adjustment unit 170 is large, and a dashed line graph 306 is a graph when the adjustment signal in the adjustment unit 170 is small. In this manner, the increase and decrease in the power supply current on the sink side of the MOS transistor 114 due to the change in the power supply voltage Vdd are compensated, and the change in the loop gain of the feedback control system is reduced.
- the duty ratio correction circuit 10 shown in the figure includes the error amplifiers 101 and 102 and controls the source-side power supply current and the sink-side power supply current of the inversion buffer 110. Thereby, the correction efficiency of the duty ratio of the clock signal can be improved.
- the offset can be adjusted in the duty ratio correction circuit 10 of FIG. 8 as well as in the duty ratio correction circuit 10 of FIG. Specifically, the offset adjustment unit 160 described in FIG. 6 is connected to the error amplifier 101, and a second offset adjustment unit having the same configuration as the offset adjustment unit 160 is connected to the error amplifier 102. Thus, the offset adjustment of the error amplifiers 101 and 102 can be performed, and the error in the correction of the duty ratio can be reduced.
- the other configuration of the duty ratio correction circuit 10 is the same as the configuration of the duty ratio correction circuit 10 described in the first embodiment of the present disclosure, and a description thereof will not be repeated.
- the duty ratio correction circuit 10 arranges two error amplifiers 101 and 102 and controls the source-side power supply current and the sink-side power supply current of the inversion buffer 110. .
- the rise time and the fall time of the clock signal can be simultaneously adjusted, and the efficiency of correcting the duty ratio of the clock signal can be improved.
- the duty ratio correction circuit 10 according to the third embodiment described above uses two error amplifiers 101 and 102.
- the duty ratio correction circuit 10 according to the fourth embodiment of the present disclosure differs from the above-described third embodiment in that one error amplifier 101 controls the MOS transistors 111 and 114. .
- FIG. 11 is a diagram illustrating a configuration example of a duty ratio correction circuit according to the fourth embodiment of the present disclosure.
- the duty ratio correction circuit 10 shown in FIG. 8 has a configuration in which the error amplifier 102 is omitted, constant current circuits 131 and 132 are provided instead of the resistors 124 and 125, and a bias circuit 180 is further provided. Different from circuit 10.
- the constant current circuit 131 is a circuit that supplies a constant current on the source side.
- the constant current circuit 131 includes a MOS transistor 115 and a voltage source 107 for supplying a predetermined gate voltage to the MOS transistor 115.
- the source of MOS transistor 115 is connected to power supply line Vdd, and the drain is connected to signal line 13.
- As the MOS transistor 115 a p-channel MOS transistor can be used.
- the constant current circuit 132 is a circuit that supplies a constant current on the sink side.
- the constant current circuit 132 includes a MOS transistor 116 and a voltage source 108 that supplies a predetermined gate voltage to the MOS transistor 116.
- the source of MOS transistor 116 is grounded, and the drain is connected to signal line 15.
- As the MOS transistor 116 an n-channel MOS transistor can be used. Note that the constant current circuit 132 supplies a current whose absolute value is equal to the current supplied by the constant current circuit 131.
- the bias circuit 180 is a circuit that is connected between the signal lines 13 and 15 and supplies a predetermined bias voltage.
- the bias circuit 180 is connected to the output of the error amplifier 101 and adds the above-described bias voltage to the control signal of the error amplifier 101.
- the control signal of the error amplifier 101 is input to the gate of the MOS transistor 111 via the signal line 13.
- the control signal of the error amplifier 101 to which the bias voltage from the bias circuit 180 is added is applied to the gate of the MOS transistor 114.
- the control signal of the error amplifier 101 can be supplied to the gate of the MOS transistor 114 having a different potential from the gate of the MOS transistor 111.
- the other connections are the same as in the duty ratio correction circuit 10 of FIG.
- a current having the same value as that of the constant current circuits 131 and 132 flows through the bias circuit 180.
- the source current is supplied from the error amplifier 101.
- a current from the error amplifier 101 flows to the bias circuit 180 and the constant current circuit 132.
- the output voltage of the constant current circuit 132 increases. Therefore, the output voltage of the constant current circuit 131 decreases.
- the gate voltage of the MOS transistor 111 increases, the source-side power supply current of the MOS transistor 111 decreases, and the rise time of the clock signal output from the inversion buffer 110 increases.
- the gate voltage of the MOS transistor 114 increases, the sink-side power supply current of the MOS transistor 114 increases, and the fall time of the clock signal output from the inversion buffer 110 decreases.
- the duty ratio of the clock signal shaped by the inversion buffer 104 increases, and the duty ratio of the clock signal is adjusted.
- the gate voltage of the MOS transistor 114 decreases, the power supply current on the sink side of the MOS transistor 114 decreases, and the fall time of the clock signal output from the inversion buffer 110 increases.
- the duty ratio of the clock signal shaped by the inversion buffer 104 decreases, and the duty ratio of the clock signal is adjusted.
- FIG. 12 is a diagram illustrating a configuration example of a bias circuit according to the fourth embodiment of the present disclosure.
- the bias circuit 180 shown in the figure includes current sources 181 and 182 and MOS transistors 183 to 188.
- MOS transistors 183 to 185 n-channel MOS transistors can be used.
- MOS transistors 186 to 188 p-channel MOS transistors can be used.
- the current source 181 is connected between the power supply line Vdd and the drain of the MOS transistor 183.
- the drain of MOS transistor 183 is further connected to the gate of MOS transistor 183 and the gate of MOS transistor 184.
- the source of MOS transistor 183 is connected to the drain and gate of MOS transistor 185, and the source of MOS transistor 185 is grounded.
- Current source 182 is connected between the drain of MOS transistor 188 and a ground line.
- the drain of MOS transistor 188 is further connected to the gate of MOS transistor 188 and the gate of MOS transistor 187.
- the source of MOS transistor 188 is connected to the drain and gate of MOS transistor 186, and the source of MOS transistor 186 is grounded to power supply line Vdd.
- the drain of MOS transistor 184 and the source of MOS transistor 187 are commonly connected to signal line 13.
- the source of MOS transistor 184 and the drain of MOS transistor 187 are commonly connected to signal line 15.
- MOS transistors 183 and 184 form a current mirror circuit
- MOS transistor 184 causes a current having the same value as the supply current of current source 181 to flow from signal line 13 to signal line 15.
- MOS transistor 187 causes a current having the same value as the supply current of current source 182 to flow from signal line 13 to signal line 15.
- the MOS transistors 188 and 185 are MOS transistors that adjust the potential of the bias circuit 180 at the node connected to the signal lines 13 and 15.
- the configuration of the bias circuit 180 is not limited to this example.
- a single resistor can be used as the bias circuit 180.
- a bias voltage based on the current from the constant current circuits 131 and 132 is generated at both ends of the resistor, and is added to the control signal of the error amplifier 101.
- FIG. 13 is a diagram illustrating an example of adjustment of a control signal according to the fourth embodiment of the present disclosure.
- FIG. 7 is a diagram illustrating a state in which the adjustment unit 170 adjusts the control signal of the error amplifier 101.
- a solid line graph 311 is a graph showing the relationship between the difference between the inputs of the error amplifier 101 and the gate voltage of the MOS transistor 111.
- a dashed line graph 312 is a graph when the adjustment signal in the adjustment unit 170 is large, and a dashed line graph 317 is a graph when the adjustment signal in the adjustment unit 170 is small.
- a solid line graph 315 is a graph showing the relationship between the difference between the inputs of the error amplifier 101 and the gate voltage of the MOS transistor 114.
- a dashed-dotted line graph 317 is a graph when the adjustment signal in the adjustment unit 170 is large, and a dashed-dotted line graph 316 is a graph when the adjustment signal in the adjustment unit 170 is small.
- Bias voltage in the figure represents a bias voltage by the bias circuit 180.
- the bias voltage of the bias circuit 180 changes according to the adjustment signal of the adjustment unit 170, and the increase and decrease of the source-side power supply current and the sink-side power supply current of the MOS transistors 111 and 114 are compensated. .
- the configuration of the duty ratio correction circuit 10 other than the above is the same as the configuration of the duty ratio correction circuit 10 described in the third embodiment of the present disclosure, and a description thereof will not be repeated.
- the duty ratio correction circuit 10 controls the source-side power supply current and the sink-side power supply current of the inversion buffer 110 by using one error amplifier 101.
- the configuration of the duty ratio correction circuit 10 can be simplified.
- the source-side power supply current and the sink-side power supply current are supplied to the inversion buffer 110 by the MOS transistors 111 and 114.
- the duty ratio correction circuit 10 according to the fifth embodiment of the present disclosure applies a control signal to the gates of the MOS transistors 112 and 113 forming the inversion buffer 110 to supply the source-side power supply current and the sink-side power supply current. Is different from the above-described third embodiment in that is adjusted.
- FIG. 14 is a diagram illustrating a configuration example of a duty ratio correction circuit according to the fifth embodiment of the present disclosure. 8 is different from the duty ratio correction circuit 10 described with reference to FIG. 8 in that the MOS transistor 111 and the MOS transistor 114 are omitted and resistors 126 and 127 and capacitors 122 and 123 are further provided.
- the capacitor 122 is connected between the signal line 21 and the gate of the MOS transistor 112, and the capacitor 123 is connected between the signal line 21 and the gate of the MOS transistor 113.
- the resistor 126 is connected between the signal line 13 and the gate of the MOS transistor 112, and the resistor 127 is connected between the signal line 15 and the gate of the MOS transistor 113.
- the source of MOS transistor 112 is connected to power supply line Vdd, and the source of MOS transistor 113 is grounded. The other connections are the same as those of the duty ratio correction circuit 10 described with reference to FIG.
- the clock signals from the signal line 21 are input to the gates of the MOS transistors 112 and 113 via the capacitors 122 and 123, respectively.
- Control signals for error amplifiers 101 and 102 are input to the gates of MOS transistors 112 and 113 via resistors 126 and 127, respectively. With this control signal, the gate bias voltages of MOS transistors 112 and 113 change, and the source side current of MOS transistor 112 and the sink side current of MOS transistor 113 are adjusted.
- the configuration of the duty ratio correction circuit 10 other than the above is the same as the configuration of the duty ratio correction circuit 10 described in the third embodiment of the present disclosure, and a description thereof will not be repeated.
- the duty ratio correction circuit 10 applies the input clock signal to the gate of the MOS transistor included in the inversion buffer 110 by capacitor coupling, and also applies the input clock signal to the gate of the MOS transistor. Apply control signal. Thereby, the source constant current power supply unit and the sink constant current power supply unit can be omitted, and the configuration of the duty ratio correction circuit 10 can be simplified.
- the present technology may have the following configurations.
- an inversion buffer for inverting an input signal;
- a capacitor connected to the output of the inverting buffer to adjust the rise time and fall time of the inverted signal;
- a low-pass filter for extracting a low-frequency component of the inverted signal;
- An error amplifier for adjusting at least one of the duty ratios of the inverted signal;
- a duty ratio correction circuit comprising: an adjustment unit that adjusts control of the inversion buffer in the error amplifier.
- the error amplifier outputs a control signal for controlling a power supply current of the constant current power supply unit, thereby changing at least one of a rising edge and a falling edge of the inverted signal, thereby changing the inverted signal.
- Adjust the duty ratio The duty ratio correction circuit according to (1), wherein the adjustment unit adjusts control of the inversion buffer in the error amplifier by adjusting the output control signal.
- the adjusting unit includes a current mirror circuit to which a power supply voltage is applied, and adjusts the output control signal by superimposing a mirror current of the current mirror circuit on the output control signal as an adjustment signal.
- the constant current power supply section includes a source constant current power supply section that supplies a source-side power supply current to the inversion buffer and a sink constant current power supply section that supplies a sink-side power supply current to the inversion buffer.
- the duty ratio correction circuit according to (3).
- the duty ratio correction circuit according to (4) further including a bias circuit that adds a predetermined bias voltage to the control signal and supplies the control signal to the source-side constant current power supply unit and the sink-side constant current power supply unit. .
- the duty ratio correction circuit according to any one of (1) to (6) further including an offset adjustment unit that adjusts an offset of the error amplifier.
- the inverting buffer includes a p-channel MOS transistor and an n-channel MOS transistor whose drain terminals are commonly connected, and the commonly connected drain terminal forms an output terminal of its own inverting buffer.
- Duty ratio correction circuit 20 PLL Reference Signs List 30 power amplifier 40 matching network 50 transmitting antenna 101, 102, 161 error amplifier 103, 180 bias circuit 104 to 106, 110 inversion buffer 107, 108 voltage source 111 to 116, 151 to 154, 183 to 188 MOS transistor 121 to 123, 142, 165 Capacitor 124, 141, 155 Resistance 131, 132 Constant current circuit 140 Low-pass filter 150, 170 Adjustment unit 160 Offset adjustment unit 162 to 164 Switch 181, 182 Current source
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Amplifiers (AREA)
- Pulse Circuits (AREA)
Abstract
電源電圧が低下した場合であっても、クロック信号のデューティ比の調整を安定化する。 デューティ比補正回路は、反転バッファ、キャパシタ、低域フィルタ、誤差増幅器および調整部を具備する。反転バッファは、入力信号を反転する。キャパシタは、反転バッファの出力に接続されて反転された信号の立ち上がり時間および立ち下がり時間を調整する。低域フィルタは、反転された信号の低周波成分を抽出する。誤差増幅器は、抽出された低周波成分と参照信号との差分に基づいて反転バッファの出力ソース電流および出力シンク電流の少なくとも1つを制御することにより、反転された信号の立ち上がりおよび立ち下がりのうちの少なくとも1つを変化させて反転された信号のデューティ比の調整を行う。調整部は、誤差増幅器における反転バッファの制御を調整する。
Description
本開示は、デューティ比補正回路および信号生成回路に関する。詳しくは、信号のデューティ比を補正するデューティ比補正回路および当該デューティ比補正回路を備える信号生成回路に関する。
従来、モバイル機器の送信装置として、BLE規格に準拠した送信装置が使用されている。この送信装置から送信される信号は、デューティ比を50%にして2次歪みを低減する必要がある。妨害電波の送信を低減するためである。このような送信装置としてDCO(Digital Controlled Oscillator)により生成された信号のデューティ比を50%に補正した後、パワーアンプにて増幅し、アンテナより送信する送信装置が使用されている。上述の信号のデューティ比を補正する回路として、例えば、クロック信号の立ち上がりタイミングを制御する回路を有するデューティ比補正回路が提案されている(例えば、特許文献1参照。)。
このデューティ比補正回路は、pチャネルMOSトランジスタおよびnチャネルMOSトランジスタにより構成されるCMOS(Complementary Metal Oxide Semiconductor)インバータを有する。このCMOSインバータのpチャネルMOSトランジスタのソースは第2のpチャネルMOSトランジスタを介して電源線Vddに接続され、nチャネルMOSトランジスタのソースは第2のnチャネルMOSトランジスタを介して接地される。第2のpチャネルMOSトランジスタのゲートは所定の電圧にバイアスされる。一方、第2のnチャネルMOSトランジスタのゲートには帰還制御のための信号が入力される。具体的には、ローパスフィルタによりCMOSインバータの出力信号からデューティ比に応じた信号が生成され、上述の第2のnチャネルMOSトランジスタのゲートに負帰還される。このような構成により、CMOSインバータに入力されたクロック信号は、立ち上がり時間が調整されてデューティ比が調整される。
上述の従来技術では、電源電圧が低下した場合に、クロック信号のデューティ比が調整できないという問題がある。消費電力を低減するためには、送信機の低電源電圧化が必要となる。しかし、上述の従来技術では、CMOSインバータに第2のpチャネルMOSトランジスタおよび第2のnチャネルMOSトランジスタが直列に接続される構成を採る。このため、低電源電圧化した際に第2のnチャネルMOSトランジスタのドレイン-ソース間電圧Vdsが不足する。立ち上がり時間の調整効率が低下することとなり、帰還制御系の利得が低下してクロック信号のデューティ比が調整できなくなるという問題がある。
本開示は、上述した問題点に鑑みてなされたものであり、電源電圧が低下した場合であっても、信号のデューティ比の調整を安定化することを目的としている。
本開示は、上述の問題点を解消するためになされたものであり、その第1の態様は、入力信号を反転する反転バッファと、上記反転バッファの出力に接続されて上記反転された信号の立ち上がり時間および立ち下がり時間を調整するキャパシタと、上記反転された信号の低周波成分を抽出する低域フィルタと、上記抽出された低周波成分と参照信号との差分に基づいて上記反転バッファの出力ソース電流および出力シンク電流の少なくとも1つを制御することにより、上記反転された信号の立ち上がりおよび立ち下がりのうちの少なくとも1つを変化させて上記反転された信号のデューティ比の調整を行う誤差増幅器と、上記誤差増幅器における上記反転バッファの制御を調整する調整部とを具備するデューティ比補正回路である。
また、この第1の態様において、上記反転バッファに電源電流を供給する定電流電源部を更に具備し、上記誤差増幅器は、上記定電流電源部の電源電流を制御する制御信号を出力することにより、上記反転された信号の立ち上がりおよび立ち下がりのうちの少なくとも1つを変化させて上記反転された信号のデューティ比を調整し、上記調整部は、上記出力される制御信号を調整することにより上記誤差増幅器における上記反転バッファの制御を調整してもよい。
また、この第1の態様において、上記調整部は、電源電圧が印加されるカレントミラー回路を備え、上記カレントミラー回路のミラー電流を調整信号として上記出力される制御信号に重畳することにより上記出力される制御信号を調整してもよい。
また、この第1の態様において、上記定電流電源部は、上記反転バッファにソース側電源電流を供給するソース定電流電源部および上記反転バッファにシンク側電源電流を供給するシンク定電流電源部により構成されてもよい。
また、この第1の態様において、上記誤差増幅器は、上記ソース定電流電源部に制御信号を出力するソース側誤差増幅器および上記シンク定電流電源部に制御信号を出力するシンク側誤差増幅器により構成されてもよい。
また、この第1の態様において、上記制御信号に所定のバイアス電圧を付加して上記ソース側定電流電源部および上記シンク側定電流電源部に供給するバイアス回路をさらに具備してもよい。
また、この第1の態様において、上記誤差増幅器のオフセットを調整するオフセット調整部をさらに具備してもよい。
また、この第1の態様において、上記反転バッファは、ドレイン端子が共通に接続されるpチャネルMOSトランジスタおよびnチャネルMOSトランジスタにより構成されるとともに上記共通に接続されるドレイン端子が自身の反転バッファの出力端を構成してもよい。
また、この第1の態様において、上記反転バッファは、上記pチャネルMOSトランジスタおよび上記nチャネルMOSトランジスタのゲートと自身の反転バッファの入力端との間にキャパシタがそれぞれ接続されてもよい。
また、本開示の第2の態様は、信号を発生する発振回路と、上記信号を反転する反転バッファと、上記反転バッファの出力に接続されて上記反転された信号の立ち上がり時間および立ち下がり時間を調整するキャパシタと、上記反転された信号の低周波成分を抽出する低域フィルタと、上記抽出された低周波成分と参照信号との差分に基づいて上記反転バッファの出力ソース電流および出力シンク電流の少なくとも1つを制御することにより、上記反転された信号の立ち上がりおよび立ち下がりのうちの少なくとも1つを変化させて上記反転された信号のデューティ比の調整を行う誤差増幅器と、上記誤差増幅器における上記反転バッファの制御を調整する調整部とを具備する信号生成回路である。
上述の態様を採ることにより、誤差増幅器が反転バッファの出力ソース電流および出力シンク電流の少なくとも1つを制御して反転された信号のデューティ比の調整を行う際に、誤差増幅器による制御が調整部により調整されるという作用をもたらす。電源電圧の変化に応じた調整部による調整が想定される。
本開示によれば、電源電圧が低下した場合であっても、クロック信号のデューティ比の調整を安定化するという優れた効果を奏する。
次に、図面を参照して、本開示を実施するための形態(以下、実施の形態と称する)を説明する。以下の図面において、同一または類似の部分には同一または類似の符号を付している。ただし、図面は、模式的なものであり、各部の寸法の比率等は現実のものとは必ずしも一致しない。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれることは勿論である。また、以下の順序で実施の形態の説明を行う。
1.第1の実施の形態
2.第2の実施の形態
3.第3の実施の形態
4.第4の実施の形態
5.第5の実施の形態
1.第1の実施の形態
2.第2の実施の形態
3.第3の実施の形態
4.第4の実施の形態
5.第5の実施の形態
<1.第1の実施の形態>
[送信装置の構成]
図1は、本開示の実施の形態に係る送信装置の構成例を示す図である。同図の送信装置1は、PLL(Phase Locked Loop)20と、デューティ比補正回路10と、パワーアンプ30と、マッチングネットワーク40と、送信アンテナ50とを備える。この送信装置1を例に挙げてデューティ比補正回路10の構成を説明する。なお、PLL20およびデューティ比補正回路10は、信号生成回路を構成する。
[送信装置の構成]
図1は、本開示の実施の形態に係る送信装置の構成例を示す図である。同図の送信装置1は、PLL(Phase Locked Loop)20と、デューティ比補正回路10と、パワーアンプ30と、マッチングネットワーク40と、送信アンテナ50とを備える。この送信装置1を例に挙げてデューティ比補正回路10の構成を説明する。なお、PLL20およびデューティ比補正回路10は、信号生成回路を構成する。
PLL20は、クロック信号を発生させる回路である。このPLL20は、発振回路を内蔵し、所望の周波数および位相のクロック信号(矩形波)を発生する。クロック信号は、信号線21を介してデューティ比補正回路10に入力される。なお、PLL20は、請求の範囲に記載の発振回路の一例である。クロック信号は、請求の範囲に記載の信号の一例である。
デューティ比補正回路10は、PLL20から出力されたクロック信号のデューティ比を50%に補正する回路である。クロック信号のデューティ比が50%でない場合には、2次歪みを伴う電波が送信アンテナ50から送信され、妨害マージンが低下する。そこで、デューティ比補正回路10を配置し、デューティ比を50%に補正する。デューティ比が補正されたクロック信号は、信号線11を介してパワーアンプ30に出力される。
パワーアンプ30は、デューティ比が補正されたクロック信号を増幅する増幅器である。このパワーアンプ30には、D級アンプを使用することができる。同図の送信装置1においては、複数のパワーアンプ30を並列に接続して送信電力の向上を図っている。
マッチングネットワーク40は、パワーアンプ30および送信アンテナ50のインピーダンス整合を行う回路である。同図のマッチングネットワーク40は、π型フィルタに構成され、増幅されたクロック信号の基本波を通過させる。
送信アンテナ50は、マッチングネットワーク40からのクロック信号の基本波を送信するアンテナである。
[デューティ比補正回路の構成]
図2は、本開示の第1の実施の形態に係るデューティ比補正回路の構成例を示す図である。同図のデューティ比補正回路10は、誤差増幅器101と、バイアス回路103と、反転バッファ104乃至106と、MOSトランジスタ111乃至114と、キャパシタ121と、抵抗124と、低域フィルタ140と、調整部150とを備える。なお、MOSトランジスタ111および112は、pチャネルMOSトランジスタを使用することができる。MOSトランジスタ113および114は、nチャネルMOSトランジスタを使用することができる。同図のデューティ比補正回路10には、電源を供給する電源線Vddが配線される。
図2は、本開示の第1の実施の形態に係るデューティ比補正回路の構成例を示す図である。同図のデューティ比補正回路10は、誤差増幅器101と、バイアス回路103と、反転バッファ104乃至106と、MOSトランジスタ111乃至114と、キャパシタ121と、抵抗124と、低域フィルタ140と、調整部150とを備える。なお、MOSトランジスタ111および112は、pチャネルMOSトランジスタを使用することができる。MOSトランジスタ113および114は、nチャネルMOSトランジスタを使用することができる。同図のデューティ比補正回路10には、電源を供給する電源線Vddが配線される。
信号線21は、MOSトランジスタ112のゲートおよびMOSトランジスタ113のケートに接続される。MOSトランジスタ112のドレインは、MOSトランジスタ113のドレイン、反転バッファ104の入力およびキャパシタ121の一端に接続される。キャパシタ121の他の一端は、接地される。MOSトランジスタ112のソースはMOSトランジスタ111のドレインに接続され、MOSトランジスタ111のソースは電源線Vddに接続される。MOSトランジスタ111のゲートは信号線13に接続される。この信号線13には、調整部150の出力、誤差増幅器101の出力および抵抗124の一端がさらに接続される。抵抗124の他の一端は、接地される。MOSトランジスタ113のソースはMOSトランジスタ114のドレインに接続され、MOSトランジスタ114のソースは接地される。MOSトランジスタ114のゲートは、バイアス回路103に接続される。
反転バッファ104の出力は、反転バッファ105の入力および低域フィルタ140の入力に接続される。反転バッファ105の出力は反転バッファ106の入力に接続され、反転バッファ106の出力は信号線11に接続される。低域フィルタ140の出力は、誤差増幅器101の反転入力に接続される。誤差増幅器101の非反転入力は、信号線19に接続される。なお、信号線19には、不図示の参照信号生成部により生成された参照信号が入力される。
バイアス回路103は、電圧源により構成され、MOSトランジスタ114のゲートに所定のバイアス電圧を供給する回路である。
MOSトランジスタ112および113は、反転バッファ110を構成する。この反転バッファ110は、信号線21を介して入力されたクロック信号の論理を反転し、信号線12に出力する。MOSトランジスタ113のソースには、MOSトランジスタ114が接続される。上述のように、MOSトランジスタ114のゲートにはバイアス回路103によりバイアス電圧が印加され、MOSトランジスタ113のソースと接地との間に接続される。このため、MOSトランジスタ114は、MOSトランジスタ113にシンク側の電源電流を供給する定電流電源部を構成する。なお、MOSトランジスタ114は、請求の範囲に記載のシンク定電流電源部の一例である。
MOSトランジスタ111は、電源線VddとMOSトランジスタ112のドレインとの間に接続され、MOSトランジスタ112にソース側の電源電流を供給する。MOSトランジスタ111のゲートには、信号線13を介して誤差増幅器101の出力が接続される。このため、MOSトランジスタ111は、誤差増幅器101の出力に応じたソース側電源電流をMOSトランジスタ112に供給する。なお、MOSトランジスタ111は、請求の範囲に記載のソース定電流電源部の一例である。
キャパシタ121は、反転バッファ110により反転されたクロック信号の立ち上がり時間および立ち下がり時間を調整するキャパシタである。前述のように反転バッファ110には、MOSトランジスタ111および114が接続されてソース側およびシンク側の電源電流が供給される。反転バッファ110の出力に接続されるキャパシタ121は、これらソース側およびシンク側の電源電流に基づく出力ソース電流および出力シンク電流により充電および放電される。このため、反転バッファ110の出力クロック信号は、ランプ状の立ち上がりおよび立ち下がりを有する信号となる。このように、MOSトランジスタ111および114ならびにキャパシタ121により、反転されたクロック信号の立ち上がり時間および立ち下がり時間が調整される。
反転バッファ104は、反転バッファ110の出力クロック信号の論理を反転するとともに波形の整形を行うものである。上述のように、反転バッファ110の出力クロック信号は、ランプ状の立ち上がりおよび立ち下がりを有する信号となる。反転バッファ104により、このクロック信号を急峻な立ち上がりおよび立ち下がりを有する信号に整形する。整形後のクロック信号は、直列に接続された反転バッファ105および106を介して信号線11に出力される。また、反転バッファ104により整形されたクロック信号は、低域フィルタ140にも入力される。
低域フィルタ140は、反転バッファ104により成型されたクロック信号の低周波数成分を抽出するフィルタである。この低域フィルタ140は、直列に接続された抵抗141およびキャパシタ142により構成され、クロック信号の高周波数成分を遮断し、低周波数成分を通過させる。低域フィルタ140のカットオフ周波数を十分低く設定することより、クロック信号のデューティ比に応じた信号を抽出することができる。クロック信号のデューティ比が50%の場合には、低域フィルタ140の出力から電源電圧(Vdd)の略1/2の電圧の信号が出力される。クロック信号のデューティ比が50%を超える場合にはVddの1/2より高い電圧の信号が出力され、クロック信号のデューティ比が50%未満の場合にはVddの1/2より低い電圧の信号が出力される。低域フィルタ140の出力信号は、信号線14を介して誤差増幅器101の反転入力に入力される。
誤差増幅器101は、反転されたクロック信号のデューティ比の調整を行うものである。この誤差増幅器101は、低域フィルタ140から入力されるクロック信号の低周波成分と信号線19を介して入力される参照信号との差分に基づいて反転バッファ110の出力ソース電流および出力シンク電流の少なくとも1つを制御する。これにより、反転されたクロック信号の立ち上がりおよび立ち下がりのうちの少なくとも1つを変化させ、反転されたクロック信号のデューティ比の調整を行う。同図の誤差増幅器101は、トランスコンダクタンス増幅器により構成される。このトランスコンダクタンス増幅器は、反転入力および非反転入力に印加される電圧の差分に応じた電流を出力する増幅器である。同図の誤差増幅器101は、反転入力および非反転入力に印加される電圧の差分を増幅するとともに電流に変換して出力する。誤差増幅器101の非反転入力に対して反転入力の電圧が高い場合には誤差増幅器101からはシンク側電流が流れ、誤差増幅器101の非反転入力に対して反転入力の電圧が低い場合には誤差増幅器101からはソース側電流が流れる。
この誤差増幅器101の出力電流は、抵抗124により電圧に変換される。この変換された誤差増幅器101の出力電圧が信号線13を介してMOSトランジスタ111のゲートに印加される。これにより、参照信号およびクロック信号の低周波数成分の差分に応じた電圧が制御信号としてMOSトランジスタ111のゲートに印加される。MOSトランジスタ111が供給するソース側電源電流が誤差増幅器101の出力である制御信号により制御されることとなる。このように、低域フィルタ140を介して反転バッファ110の出力クロック信号を誤差増幅器101の入力に帰還することにより、反転バッファ110の出力クロック信号のデューティ比を変更して補正することができる。なお、MOSトランジスタ111はpチャネルMOSトランジスタであり、抵抗124によりMOSトランジスタ111のゲートがプルダウンされるため、誤差増幅器101は信号線13に対してソース側の電流を供給することによりMOSトランジスタ111のソース側電源電流を制御する。デューティ比の補正の詳細については後述する。
調整部150は、誤差増幅器101における反転バッファ110の制御を調整するものである。この調整部150は、誤差増幅器101から出力される制御信号を調整する。具体的には、調整部150は、信号線13に対して電流(調整信号)を出力する。この調整信号は、抵抗124を流れるため、誤差増幅器101の制御信号に重畳されて電圧に変換され、MOSトランジスタ111のゲートに印加される。調整部150による調整は、例えば、電源電圧Vddの変化に基づいて行うことができる。電源電圧Vddが変化してMOSトランジスタ111のドレイン-ソース間電圧Vdsが変化すると、デューティ比の変更効率が変化して帰還制御系のループ利得が変化することとなる。このような場合に、MOSトランジスタ111のドレイン-ソース間電圧Vdsの変化を打ち消す調整信号を調整部150が出力することにより、デューティ比の変更効率の変化を軽減することができる。これにより、誤差増幅器101等による帰還制御系を安定化させることができる。
[調整部の構成]
図3は、本開示の第1の実施の形態に係る調整部の構成例を示す図である。同図は、調整部150の構成例を表す回路図である。同図の調整部150は、MOSトランジスタ151および152と、抵抗155とを備える。MOSトランジスタ151および152には、pチャネルMOSトランジスタを使用することができる。
図3は、本開示の第1の実施の形態に係る調整部の構成例を示す図である。同図は、調整部150の構成例を表す回路図である。同図の調整部150は、MOSトランジスタ151および152と、抵抗155とを備える。MOSトランジスタ151および152には、pチャネルMOSトランジスタを使用することができる。
MOSトランジスタ151および152のソースは電源線Vddに共通に接続される。MOSトランジスタ151のゲートは、MOSトランジスタ151のドレイン、MOSトランジスタ152のゲートおよび抵抗155の一端に接続される。抵抗155の他の一端は、接地される。MOSトランジスタ152のドレインは、信号線13に接続される。
MOSトランジスタ151および152は、カレントミラー回路を構成する。MOSトランジスタ151には、電源電圧Vddおよび抵抗155に応じた電流が流れる。このMOSトランジスタ151に流れる電流がMOSトランジスタ152にミラーされて信号線13に出力される。電源電圧Vddが変化した場合には、MOSトランジスタ151の電流も変化し、MOSトランジスタ152により信号線13に出力される電流も変化する。また、例えば、デューティ比補正回路10を構成する半導体素子の製造プロセスのばらつきにより、デューティ比補正回路10に配置されるMOSトランジスタの閾値等が変化した場合においても、MOSトランジスタ151の電流およびMOSトランジスタ152により信号線13に出力される電流が変化する。
また、例えば、周囲の温度が変化してデューティ比補正回路10に配置されるMOSトランジスタの閾値等が変化した場合においても同様に、MOSトランジスタ151の電流およびMOSトランジスタ152により信号線13に出力される電流が変化する。このように、調整部150は、電源線Vddや製造プロセスのばらつき、温度の変化等に応じた電流を調整信号として信号線13に出力することができる。なお、電源電圧Vddが低い場合には、抵抗155を省略することができる。
[デューティ比の補正]
図4は、本開示の第1の実施の形態に係るデューティ比の補正の一例を示す図である。同図は、入力されるクロック信号のデューティ比が調整される様子を表した図である。同図において、デューティ比補正回路入力は、信号線21から入力されるクロック信号を表す。反転バッファ出力は、信号線12に出力される反転バッファ110の出力クロック信号を表す。デューティ比補正回路出力は、信号線11に出力されるデューティ比が補正されたクロック信号を表す。また、同図の破線は、0V(接地電位)を表す。点線は、反転バッファ104の閾値を表す。この閾値は電源電圧Vddの略1/2の電圧となる。また、同図におけるa、bおよびcは、入力クロック信号のデューティ比がそれぞれ50%、50%未満および50%を超える場合を表したものである。
図4は、本開示の第1の実施の形態に係るデューティ比の補正の一例を示す図である。同図は、入力されるクロック信号のデューティ比が調整される様子を表した図である。同図において、デューティ比補正回路入力は、信号線21から入力されるクロック信号を表す。反転バッファ出力は、信号線12に出力される反転バッファ110の出力クロック信号を表す。デューティ比補正回路出力は、信号線11に出力されるデューティ比が補正されたクロック信号を表す。また、同図の破線は、0V(接地電位)を表す。点線は、反転バッファ104の閾値を表す。この閾値は電源電圧Vddの略1/2の電圧となる。また、同図におけるa、bおよびcは、入力クロック信号のデューティ比がそれぞれ50%、50%未満および50%を超える場合を表したものである。
同図におけるaにおいて、デューティ比50%のクロック信号は、反転バッファ110により反転され、キャパシタ121により立ち上がりおよび立ち下がりがランプ状に変化する波形に変換される。クロック信号のデューティ比が50%であるため、反転バッファ110から出力されるクロック信号は、立ち上がり時間および立ち下がり時間が等しい波形となる。その後、反転バッファ104により再度反転されるとともに立ち上がりおよび立ち下がりが整形される。この際、誤差増幅器101の出力からのソース側電流(制御信号)および調整部150からのソース側電流(調整信号)が信号線13に出力され、MOSトランジスタ111のゲートはこれらのソース側電流に基づく電圧にバイアスされる。このバイアス電圧により、MOSトランジスタ114のシンク側電源電流と絶対値が同じ値のソース側電源電流がMOSトランジスタ111から反転バッファ110に供給される。このように、定常時における帰還制御が実行される。
同図におけるbにおいて、クロック信号のデューティ比が50%より低いため、低域フィルタ140の出力電圧は低下する。このため、誤差増幅器101の出力ソース電流が増加し、MOSトランジスタ111のゲート電圧が上昇する。これにより、MOSトランジスタ111のソース側電源電流が減少して反転バッファ110の出力クロック信号の立ち上がり時間が長くなる。反転バッファ110の出力クロック信号の立ち下がり時間はクロック信号のデューティ比が50%の時と同じであるため、反転バッファ104により波形が整形された後のクロック信号の論理「1」の期間が延長され、デューティ比が50%に調整される。
同図におけるcにおいて、クロック信号のデューティ比が50%より高いため、低域フィルタ140の出力電圧は上昇する。このため、誤差増幅器101の出力ソース電流が減少し、MOSトランジスタ111のゲート電圧が低下する。これにより、MOSトランジスタ111のソース側電源電流が増加して反転バッファ110の出力クロック信号の立ち上がり時間が短くなる。反転バッファ104により波形が整形された後のクロック信号の論理「1」の期間が短縮され、デューティ比が50%に調整される。
[制御信号の調整]
図5は、本開示の第1の実施の形態に係る制御信号の調整の一例を示す図である。同図は、調整部150による誤差増幅器101の制御信号の調整の様子を表す図である。同図の横軸は誤差増幅器101の反転入力および非反転入力の差分を表す。反転入力および非反転入力の電圧が等しい場合に差分は値「0」となり、反転入力が非反転入力より高い場合に差分は正の値となる。同図の縦軸は、MOSトランジスタ111のゲート電圧を表す。
図5は、本開示の第1の実施の形態に係る制御信号の調整の一例を示す図である。同図は、調整部150による誤差増幅器101の制御信号の調整の様子を表す図である。同図の横軸は誤差増幅器101の反転入力および非反転入力の差分を表す。反転入力および非反転入力の電圧が等しい場合に差分は値「0」となり、反転入力が非反転入力より高い場合に差分は正の値となる。同図の縦軸は、MOSトランジスタ111のゲート電圧を表す。
同図において破線のグラフ304は、帰還制御が停止した状態における。誤差増幅器101の入力の差分とMOSトランジスタ111のゲート電圧との関係を表したものである。誤差増幅器101の反転入力の電圧が非反転入力の電圧より低い場合には、誤差増幅器101の入力の差分に応じたソース側電流が出力され、ゲート電圧がMOSトランジスタ111に印加される。誤差増幅器101の反転入力の電圧が非反転入力の電圧より高くなると、誤差増幅器101はシンク側電流を出力する方向に動作する。しかし、抵抗124は、信号線13に接続されていない側の端子が接地されているため、シンク側電流は流れず、MOSトランジスタ111のゲート電圧は0Vとなる。
実線のグラフ301は、図4におけるaにおいて説明した帰還制御系が定常状態にある場合の誤差増幅器101の入力の差分とMOSトランジスタ111のゲート電圧との関係を表したものである。グラフ301は、グラフ304に対して正のゲート電圧の方向にシフトした形状となる。1点鎖線のグラフ303は、調整部150における調整信号が多い場合のグラフである。例えば、電源電圧Vddが上昇した場合に、調整部150は調整信号を増加させる。これにより、グラフ301がグラフ303にシフトしてゲート電圧が全般的に高くなる。これにより、MOSトランジスタ111のソース側電源電流の増加を補償し、帰還制御系のループ利得の変化を軽減する。
一方、電源電圧Vddが低下した場合には、調整部150の調整信号が減少する。これにより、グラフ301が2点鎖線のグラフ302にシフトしてゲート電圧が全般的に低くなり、MOSトランジスタ111のソース側電源電流の減少を補償し、帰還制御系のループ利得の変化を軽減する。
なお、製造プロセスのばらつきによりMOSトランジスタの閾値等が変化した場合においても、調整部150により誤差増幅器101の制御信号が調整される。帰還制御系のループ利得の変化を軽減することができる。
以上説明したように、本開示の第1の実施の形態のデューティ比補正回路10は、調整部150の調整信号により誤差増幅器101の制御信号を調整する。これにより、電源電圧Vddが変化した場合であっても、クロック信号のデューティ比を50%に補正することができる。
<2.第2の実施の形態>
上述の第1の実施の形態のデューティ比補正回路10は、誤差増幅器101を配置して帰還制御を行うことにより、クロック信号のデューティ比を50%に補正していた。これに対し、本開示の第2の実施の形態のデューティ比補正回路10は、誤差増幅器101のオフセットを調整する点で、上述の第1の実施の形態と異なる。
上述の第1の実施の形態のデューティ比補正回路10は、誤差増幅器101を配置して帰還制御を行うことにより、クロック信号のデューティ比を50%に補正していた。これに対し、本開示の第2の実施の形態のデューティ比補正回路10は、誤差増幅器101のオフセットを調整する点で、上述の第1の実施の形態と異なる。
[デューティ比補正回路の構成]
図6は、本開示の第2の実施の形態に係るデューティ比補正回路の構成例を示す図である。同図のデューティ比補正回路10は、オフセット調整部160をさらに備える点で、図2において説明したデューティ比補正回路10と異なる。
図6は、本開示の第2の実施の形態に係るデューティ比補正回路の構成例を示す図である。同図のデューティ比補正回路10は、オフセット調整部160をさらに備える点で、図2において説明したデューティ比補正回路10と異なる。
同図のオフセット調整部160は、誤差増幅器101のオフセットを略「0」に調整するものである。送信装置1の低電力化を図るため、デューティ比補正回路10等の電源電圧Vddを低くする場合がある。例えば、電源電圧Vddを1V以下の低い電圧にする場合には、誤差増幅器101出力に対する許容オフセット誤差が低下する。そこで、誤差増幅器101のオフセットをキャンセルすることにより、オフセット誤差の影響を軽減することができる。
[オフセット調整部の構成]
図7は、本開示の第2の実施の形態に係るオフセット調整部の構成例を示す図である。同図のオフセット調整部160は、誤差増幅器161と、スイッチ162乃至164と、キャパシタ165とを備える。
図7は、本開示の第2の実施の形態に係るオフセット調整部の構成例を示す図である。同図のオフセット調整部160は、誤差増幅器161と、スイッチ162乃至164と、キャパシタ165とを備える。
スイッチ163は、信号線14および誤差増幅器101の反転入力の間に接続される。スイッチ164は、誤差増幅器101の反転入力および非反転入力の間に接続される。誤差増幅器161の非反転入力は信号線19に接続され、誤差増幅器161の反転入力はスイッチ162を介して誤差増幅器161の出力に接続される。また、誤差増幅器161の出力は信号線13にさらに接続される。キャパシタ165は、誤差増幅器161の反転入力および接地の間に接続される。
キャパシタ165は、誤差増幅器101および161のオフセットに相当する電圧を保持するキャパシタである。誤差増幅器161は、キャパシタ165に保持された電圧に基づく電流を信号線13に出力することにより、誤差増幅器101のオフセットを調整するものである。
オフセット調整部160は、不図示の制御回路により、オフセット補正期間および通常動作期間を切り替えて実行する。通常動作期間においては、スイッチ162および164を非導通状態とし、スイッチ163を導通状態にする。これにより、誤差増幅器101の反転入力に低域フィルタ140の出力が印加され、参照信号との差分に基づく電流が出力される。オフセット補正期間においては、スイッチ163を非導通状態とし、スイッチ162および164を導通状態にする。これにより、誤差増幅器101の反転入力および非反転入力ならびに誤差増幅器161の非反転入力に参照信号が入力される。誤差増幅器101の出力には、自身のオフセットに基づく電流が出力され、スイッチ162を介して誤差増幅器161の反転入力に印加されるとともにキャパシタ165を充電する。これにより、キャパシタ165に誤差増幅器101のオフセットに基づく電圧が保持される。この際、誤差増幅器161のオフセットに基づく電圧も同様にキャパシタ165に保持される。
次に、通常動作期間に移行すると、誤差増幅器161は、キャパシタ165に保持されたオフセット電圧に基づく電流を出力する。この誤差増幅器161の出力電流が誤差増幅器101の出力電流に重畳されるため、誤差増幅器101のオフセットをキャンセルすることができる。
これ以外のデューティ比補正回路10の構成は本開示の第1の実施の形態において説明したデューティ比補正回路10の構成と同様であるため、説明を省略する。
以上説明したように、本開示の第2の実施の形態のデューティ比補正回路10は、オフセット調整部160を配置することにより、誤差増幅器101のオフセットを調整することができる。これにより、電源電圧Vddが低い場合であっても、デューティ比の補正の誤差を低減することができる。
<3.第3の実施の形態>
上述の第1の実施の形態のデューティ比補正回路10は、MOSトランジスタ111のソース側電源電流を制御していた。これに対し、本開示の第3の実施の形態のデューティ比補正回路10は、MOSトランジスタ114のシンク側電源電流の制御をさらに行う点で、上述の第1の実施の形態と異なる。
上述の第1の実施の形態のデューティ比補正回路10は、MOSトランジスタ111のソース側電源電流を制御していた。これに対し、本開示の第3の実施の形態のデューティ比補正回路10は、MOSトランジスタ114のシンク側電源電流の制御をさらに行う点で、上述の第1の実施の形態と異なる。
[デューティ比補正回路の構成]
図8は、本開示の第3の実施の形態に係るデューティ比補正回路の構成例を示す図である。同図のデューティ比補正回路10は、誤差増幅器102および抵抗125をさらに備え、調整部150の代わりに調整部170を備えるとともにバイアス回路103を省略する点で、図2において説明したデューティ比補正回路10と異なる。
図8は、本開示の第3の実施の形態に係るデューティ比補正回路の構成例を示す図である。同図のデューティ比補正回路10は、誤差増幅器102および抵抗125をさらに備え、調整部150の代わりに調整部170を備えるとともにバイアス回路103を省略する点で、図2において説明したデューティ比補正回路10と異なる。
誤差増幅器102の反転入力は信号線14に接続され、誤差増幅器102の非反転入力は信号線19に接続される。誤差増幅器102の出力は、信号線15に接続される。この信号線15は、MOSトランジスタ114のゲートおよび抵抗125の一端にさらに接続される。抵抗125の他の一端は、電源線Vddに接続される。調整部170は2つ出力を備え、それぞれ信号線13および15に接続される。これ以外の結線は、図2のデューティ比補正回路10と同様であるため、説明を省略する。
MOSトランジスタ114のゲートには、信号線15を介して誤差増幅器102の出力が接続される。このため、MOSトランジスタ114は、誤差増幅器102の出力に応じたシンク側電源電流をMOSトランジスタ113に供給する。なお、MOSトランジスタ114は、請求の範囲に記載のシンク定電流電源部の一例である。誤差増幅器101は、請求の範囲に記載のソース側誤差増幅器の一例である。誤差増幅器102は、請求の範囲に記載のシンク側誤差増幅器の一例である。
誤差増幅器102は、誤差増幅器101と同様にトランスコンダクタンス増幅器により構成され、低域フィルタ140から入力されるクロック信号の低周波成分と信号線19を介して入力される参照信号との差分に基づいて反転バッファ110の出力シンク電流を制御する。これにより、誤差増幅器102は、反転バッファ110により反転されたクロック信号の立ち下がりを変化させてクロック信号のデューティ比の調整を行う。誤差増幅器102の出力電流は、抵抗125により電圧に変換されてMOSトランジスタ114のゲートに印加される。すなわち、参照信号およびクロック信号の低周波数成分の差分に応じた電圧が制御信号としてMOSトランジスタ114のゲートに印加される。なお、MOSトランジスタ114はnチャネルMOSトランジスタであり、抵抗125によりMOSトランジスタ114のゲートがプルアップされるため、誤差増幅器102は信号線15に対してシンク側電流を供給することによりMOSトランジスタ114のシンク側電源電流を制御する。
調整部170は、誤差増幅器101および102における反転バッファ110の制御を調整するものである。この調整部170は、誤差増幅器101および102から出力される制御信号を同時に調整する。具体的には、調整部170は、信号線13および15に対して調整信号をそれぞれ出力する。
[調整部の構成]
図9は、本開示の第3の実施の形態に係る調整部の構成例を示す図である。同図の調整部170は、MOSトランジスタ153および154をさらに備える点で、図3において説明した調整部150と異なる。MOSトランジスタ153および154には、nチャネルMOSトランジスタを使用することができる。
図9は、本開示の第3の実施の形態に係る調整部の構成例を示す図である。同図の調整部170は、MOSトランジスタ153および154をさらに備える点で、図3において説明した調整部150と異なる。MOSトランジスタ153および154には、nチャネルMOSトランジスタを使用することができる。
抵抗155は、MOSトランジスタ151のドレインおよびMOSトランジスタ153のドレインの間に接続される。MOSトランジスタ153のドレインは、MOSトランジスタ153のゲートおよびMOSトランジスタ154のゲートにさらに接続される。MOSトランジスタ153のソースおよびMOSトランジスタ154のソースは、ともに接地される。MOSトランジスタ154のドレインは、信号線15に接続される。これ以外の結線は、図3の調整部150と同様であるため、説明を省略する。
MOSトランジスタ153および154は、カレントミラー回路を構成する。MOSトランジスタ153には、電源電圧Vddおよび抵抗155に応じた電流が流れる。このMOSトランジスタ153に流れる電流がMOSトランジスタ154にミラーされて信号線15に出力される。調整部170は、信号線13および15にソース側電流およびシンク側電流を調整信号としてそれぞれ出力する。
[制御信号の調整]
図10は、本開示の第3の実施の形態に係る制御信号の調整の一例を示す図である。同図は、調整部170による誤差増幅器101および102の制御信号の調整の様子を表す図である。図5と共通するグラフには同じ符号を記載した。
図10は、本開示の第3の実施の形態に係る制御信号の調整の一例を示す図である。同図は、調整部170による誤差増幅器101および102の制御信号の調整の様子を表す図である。図5と共通するグラフには同じ符号を記載した。
同図の破線のグラフ308は、帰還制御が停止した状態における。誤差増幅器102の入力の差分とMOSトランジスタ114のゲート電圧との関係を表したものである。誤差増幅器102の反転入力の電圧が非反転入力の電圧より高い場合には、誤差増幅器102の入力の差分に応じたシンク側電流が出力され、ゲート電圧がMOSトランジスタ114に印加される。誤差増幅器102の反転入力の電圧が非反転入力の電圧より低くなると、誤差増幅器102はソース側電流を出力する方向に動作する。しかし、抵抗125は、信号線15に接続されていない側の端子が電源線Vddに接続されているため、ソース側電流は流れず、MOSトランジスタ114のゲートは電源電圧Vddが印加される。
実線のグラフ305は、図4におけるaにおいて説明した帰還制御系が定常状態にある場合の誤差増幅器102の入力の差分とMOSトランジスタ114のゲート電圧との関係を表したものである。グラフ305は、グラフ308に対して負のゲート電圧の方向にシフトした形状となる。1点鎖線のグラフ307は調整部170における調整信号が多い場合のグラフであり、2点鎖線のグラフ306は調整部170における調整信号が少ない場合のグラフである。このように、電源電圧Vddの変化に伴うMOSトランジスタ114のシンク側電源電流の増加および減少が補償され、帰還制御系のループ利得の変化が軽減される。
このように、同図のデューティ比補正回路10は、誤差増幅器101および102を備え、反転バッファ110のソース側電源電流およびシンク側電源電流を制御する。これにより、クロック信号のデューティ比の補正効率を向上させることができる。
なお、図8のデューティ比補正回路10においても図6のデューティ比補正回路10と同様にオフセットの調整を行うことができる。具体的には、図6において説明したオフセット調整部160を誤差増幅器101に接続するとともにオフセット調整部160と同じ構成の第2のオフセット調整部を誤差増幅器102に接続する。これにより、誤差増幅器101および102のオフセット調整を行い、デューティ比の補正の誤差を低減することができる。
これ以外のデューティ比補正回路10の構成は本開示の第1の実施の形態において説明したデューティ比補正回路10の構成と同様であるため、説明を省略する。
以上説明したように、本開示の第3の実施の形態のデューティ比補正回路10は、2つの誤差増幅器101および102を配置し、反転バッファ110のソース側電源電流およびシンク側電源電流を制御する。これにより、クロック信号の立ち上がり時間および立ち下がり時間を同時に調整することができ、クロック信号のデューティ比の補正効率を向上させることができる。
<4.第4の実施の形態>
上述の第3の実施の形態のデューティ比補正回路10は、2つの誤差増幅器101および102を使用していた。これに対し、本開示の第4の実施の形態のデューティ比補正回路10は、1つの誤差増幅器101により、MOSトランジスタ111および114の制御を行う点で、上述の第3の実施の形態と異なる。
上述の第3の実施の形態のデューティ比補正回路10は、2つの誤差増幅器101および102を使用していた。これに対し、本開示の第4の実施の形態のデューティ比補正回路10は、1つの誤差増幅器101により、MOSトランジスタ111および114の制御を行う点で、上述の第3の実施の形態と異なる。
[デューティ比補正回路の構成]
図11は、本開示の第4の実施の形態に係るデューティ比補正回路の構成例を示す図である。同図のデューティ比補正回路10は、誤差増幅器102を省略し、抵抗124および125の代わりに定電流回路131および132を備え、バイアス回路180をさらに備える点で、図8において説明したデューティ比補正回路10と異なる。
図11は、本開示の第4の実施の形態に係るデューティ比補正回路の構成例を示す図である。同図のデューティ比補正回路10は、誤差増幅器102を省略し、抵抗124および125の代わりに定電流回路131および132を備え、バイアス回路180をさらに備える点で、図8において説明したデューティ比補正回路10と異なる。
定電流回路131は、ソース側の定電流を供給する回路である。この定電流回路131は、MOSトランジスタ115およびMOSトランジスタ115に所定のゲート電圧を供給する電圧源107により構成される。MOSトランジスタ115のソースは電源線Vddに接続され、ドレインは信号線13に接続される。MOSトランジスタ115には、pチャネルMOSトランジスタを使用することができる。
定電流回路132は、シンク側の定電流を供給する回路である。この定電流回路132は、MOSトランジスタ116およびMOSトランジスタ116に所定のゲート電圧を供給する電圧源108により構成される。MOSトランジスタ116のソースは接地され、ドレインは信号線15に接続される。MOSトランジスタ116には、nチャネルMOSトランジスタを使用することができる。なお、定電流回路132は、定電流回路131が供給する電流に対して絶対値が等しい電流を供給する。
バイアス回路180は、信号線13および15の間に接続され、所定のバイアス電圧を供給する回路である。このバイアス回路180は、誤差増幅器101の出力に接続され、誤差増幅器101の制御信号に上述のバイアス電圧を付加する。MOSトランジスタ111のゲートには、信号線13を介して誤差増幅器101の制御信号が入力される。一方、MOSトランジスタ114のゲートには、バイアス回路180によるバイアス電圧が付加された誤差増幅器101の制御信号が印加される。このバイアス回路180を配置することにより、MOSトランジスタ111のゲートとは異なる電位のMOSトランジスタ114のゲートに誤差増幅器101の制御信号を供給することができる。これ以外の結線は、図8のデューティ比補正回路10と同様であるため、説明を省略する。
後述するように、バイアス回路180には、定電流回路131および132と同じ値の電流が流れる。入力されたクロック信号のデューティ比が低く、参照信号よりクロック信号の低周波成分が低い場合には、誤差増幅器101からソース側の電流が供給される。この際、定電流回路131が供給する電流に加えて誤差増幅器101からの電流がバイアス回路180および定電流回路132に流れることとなる。バイアス回路180の端子間電圧が上昇するとともに定電流回路132の出力電圧も上昇する。このため、定電流回路131の出力電圧が低下する。MOSトランジスタ111のゲート電圧が高くなってMOSトランジスタ111のソース側電源電流が減少し、反転バッファ110から出力されるクロック信号の立ち上がり時間が長くなる。一方、MOSトランジスタ114のゲート電圧は高くなるため、MOSトランジスタ114のシンク側電源電流が増加して反転バッファ110から出力されるクロック信号の立ち下がり時間が短くなる。これらにより、反転バッファ104により整形されたクロック信号のデューティ比は上昇し、クロック信号のデューティ比が調整される。
入力されたクロック信号のデューティ比が高く、参照信号よりクロック信号の低周波成分が高い場合には、誤差増幅器101からシンク側の電流が供給される。定電流回路131の出力電流の一部が誤差増幅器101に流れることとなり、バイアス回路180および定電流回路132に流れる電流が不足する。このため、バイアス回路180の端子間電圧が低下するとともに定電流回路132の出力電圧も低下する。このため、定電流回路131の出力電圧も低下する。MOSトランジスタ111のゲート電圧が低くなってMOSトランジスタ111のソース側電源電流が増加し、反転バッファ110から出力されるクロック信号の立ち上がり時間が短くなる。一方、MOSトランジスタ114のゲート電圧は低くなるため、MOSトランジスタ114のシンク側電源電流が減少して反転バッファ110から出力されるクロック信号の立ち下がり時間が長くなる。反転バッファ104により整形されたクロック信号のデューティ比は低下し、クロック信号のデューティ比が調整される。
[バイアス回路の構成]
図12は、本開示の第4の実施の形態に係るバイアス回路の構成例を示す図である。同図のバイアス回路180は、電流源181および182と、MOSトランジスタ183乃至188を備える。MOSトランジスタ183乃至185は、nチャネルMOSトランジスタを使用することができる。MOSトランジスタ186乃至188は、pチャネルMOSトランジスタを使用することができる。
図12は、本開示の第4の実施の形態に係るバイアス回路の構成例を示す図である。同図のバイアス回路180は、電流源181および182と、MOSトランジスタ183乃至188を備える。MOSトランジスタ183乃至185は、nチャネルMOSトランジスタを使用することができる。MOSトランジスタ186乃至188は、pチャネルMOSトランジスタを使用することができる。
電流源181は、電源線VddおよびMOSトランジスタ183のドレインの間に接続される。MOSトランジスタ183のドレインは、MOSトランジスタ183のゲートおよびMOSトランジスタ184のゲートにさらに接続される。MOSトランジスタ183のソースはMOSトランジスタ185のドレインおよびゲートに接続され、MOSトランジスタ185のソースは接地される。電流源182は、MOSトランジスタ188のドレインおよび接地線の間に接続される。MOSトランジスタ188のドレインは、MOSトランジスタ188のゲートおよびMOSトランジスタ187のゲートにさらに接続される。MOSトランジスタ188のソースはMOSトランジスタ186のドレインおよびゲートに接続され、MOSトランジスタ186のソースは電源線Vddに接地される。MOSトランジスタ184のドレインおよびMOSトランジスタ187のソースは、信号線13に共通に接続される。MOSトランジスタ184のソースおよびMOSトランジスタ187のドレインは、信号線15に共通に接続される。
同図の電流源181および182は、図11において説明した定電流回路131および132が供給する電流の1/2の電流を供給する。MOSトランジスタ183および184はカレントミラー回路を構成するため、MOSトランジスタ184は、電流源181の供給電流と同じ値の電流を信号線13から信号線15に流す。同様に、MOSトランジスタ187は、電流源182の供給電流と同じ値の電流を信号線13から信号線15に流す。これらMOSトランジスタ184および187により、バイアス回路180には、定電流回路131および132と同じ電流が流れることとなる。なお、MOSトランジスタ188および185は、信号線13および15に接続されるノードにおけるバイアス回路180電位を調整するMOSトランジスタである。
なお、バイアス回路180の構成は、この例に限定されない。例えば、単一の抵抗をバイアス回路180として使用することもできる。この場合、この抵抗の両端には定電流回路131および132からの電流に基づくバイアス電圧が生成され、誤差増幅器101の制御信号に付加される。
[制御信号の調整]
図13は、本開示の第4の実施の形態に係る制御信号の調整の一例を示す図である。同図は、調整部170による誤差増幅器101の制御信号の調整の様子を表す図である。同図において、実線のグラフ311は、誤差増幅器101の入力の差分とMOSトランジスタ111のゲート電圧との関係を表すグラフである。また、1点鎖線のグラフ312は調整部170における調整信号が多い場合のグラフであり、2点鎖線のグラフ317は調整部170における調整信号が少ない場合のグラフである。
図13は、本開示の第4の実施の形態に係る制御信号の調整の一例を示す図である。同図は、調整部170による誤差増幅器101の制御信号の調整の様子を表す図である。同図において、実線のグラフ311は、誤差増幅器101の入力の差分とMOSトランジスタ111のゲート電圧との関係を表すグラフである。また、1点鎖線のグラフ312は調整部170における調整信号が多い場合のグラフであり、2点鎖線のグラフ317は調整部170における調整信号が少ない場合のグラフである。
同図において、実線のグラフ315は、誤差増幅器101の入力の差分とMOSトランジスタ114のゲート電圧との関係を表すグラフである。また、1点鎖線のグラフ317は調整部170における調整信号が多い場合のグラフであり、2点鎖線のグラフ316は調整部170における調整信号が少ない場合のグラフである。同図における「バイアス電圧」は、バイアス回路180によるバイアス電圧を表す。
同図に表したように、調整部170の調整信号に応じてバイアス回路180のバイアス電圧が変化し、MOSトランジスタ111および114のソース側電源電流およびシンク側電源電流の増加および減少が補償される。
これ以外のデューティ比補正回路10の構成は本開示の第3の実施の形態において説明したデューティ比補正回路10の構成と同様であるため、説明を省略する。
以上説明したように、本開示の第4の実施の形態のデューティ比補正回路10は、1つの誤差増幅器101により反転バッファ110のソース側電源電流およびシンク側電源電流を制御する。これにより、デューティ比補正回路10の構成を簡略化することができる。
<5.第5の実施の形態>
上述の第3の実施の形態のデューティ比補正回路10は、MOSトランジスタ111および114により反転バッファ110にソース側電源電流およびシンク側電源電流を供給していた。これに対し、本開示の第5の実施の形態のデューティ比補正回路10は、反転バッファ110を構成するMOSトランジスタ112および113のゲートに制御信号を印加してソース側電源電流およびシンク側電源電流を調整する点で、上述の第3の実施の形態と異なる。
上述の第3の実施の形態のデューティ比補正回路10は、MOSトランジスタ111および114により反転バッファ110にソース側電源電流およびシンク側電源電流を供給していた。これに対し、本開示の第5の実施の形態のデューティ比補正回路10は、反転バッファ110を構成するMOSトランジスタ112および113のゲートに制御信号を印加してソース側電源電流およびシンク側電源電流を調整する点で、上述の第3の実施の形態と異なる。
[デューティ比補正回路の構成]
図14は、本開示の第5の実施の形態に係るデューティ比補正回路の構成例を示す図である。同図のデューティ比補正回路10は、MOSトランジスタ111およびMOSトランジスタ114を省略し、抵抗126および127ならびにキャパシタ122および123をさらに備える点で、図8において説明したデューティ比補正回路10と異なる。
図14は、本開示の第5の実施の形態に係るデューティ比補正回路の構成例を示す図である。同図のデューティ比補正回路10は、MOSトランジスタ111およびMOSトランジスタ114を省略し、抵抗126および127ならびにキャパシタ122および123をさらに備える点で、図8において説明したデューティ比補正回路10と異なる。
キャパシタ122は信号線21およびMOSトランジスタ112のゲートの間に接続され、キャパシタ123は信号線21およびMOSトランジスタ113のゲートの間に接続される。抵抗126は信号線13およびMOSトランジスタ112のゲートの間に接続され、抵抗127は信号線15およびMOSトランジスタ113のゲートの間に接続される。MOSトランジスタ112のソースは電源線Vddに接続され、MOSトランジスタ113のソースは接地される。これ以外の結線は図8において説明したデューティ比補正回路10と同様であるため、説明を省略する。
MOSトランジスタ112および113は、キャパシタ122および123を介して信号線21からのクロック信号がゲートにそれぞれ入力される。また、MOSトランジスタ112および113のゲートには、抵抗126および127を介して誤差増幅器101および102の制御信号がそれぞれ入力される。この制御信号により、MOSトランジスタ112および113のゲートバイアス電圧が変化してMOSトランジスタ112のソース側電流およびMOSトランジスタ113のシンク側電流が調整される。
これ以外のデューティ比補正回路10の構成は本開示の第3の実施の形態において説明したデューティ比補正回路10の構成と同様であるため、説明を省略する。
以上説明したように、本開示の第5の実施の形態のデューティ比補正回路10は、反転バッファ110を構成するMOSトランジスタのゲートにキャパシタ結合により入力クロック信号を印加するとともに、MOSトランジスタのゲートに制御信号を印加する。これにより、ソース定電流電源部およびシンク定電流電源部を省略することができ、デューティ比補正回路10の構成を簡略化することができる。
最後に、上述した各実施の形態の説明は本開示の一例であり、本開示は上述の実施の形態に限定されることはない。このため、上述した各実施の形態以外であっても、本開示に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。
なお、本技術は以下のような構成もとることができる。
(1)入力信号を反転する反転バッファと、
前記反転バッファの出力に接続されて前記反転された信号の立ち上がり時間および立ち下がり時間を調整するキャパシタと、
前記反転された信号の低周波成分を抽出する低域フィルタと、
前記抽出された低周波成分と参照信号との差分に基づいて前記反転バッファの出力ソース電流および出力シンク電流の少なくとも1つを制御することにより、前記反転された信号の立ち上がりおよび立ち下がりのうちの少なくとも1つを変化させて前記反転された信号のデューティ比の調整を行う誤差増幅器と、
前記誤差増幅器における前記反転バッファの制御を調整する調整部と
を具備するデューティ比補正回路。
(2)前記反転バッファに電源電流を供給する定電流電源部を更に具備し、
前記誤差増幅器は、前記定電流電源部の電源電流を制御する制御信号を出力することにより、前記反転された信号の立ち上がりおよび立ち下がりのうちの少なくとも1つを変化させて前記反転された信号のデューティ比を調整し、
前記調整部は、前記出力される制御信号を調整することにより前記誤差増幅器における前記反転バッファの制御を調整する前記(1)に記載のデューティ比補正回路。
(3)前記調整部は、電源電圧が印加されるカレントミラー回路を備え、前記カレントミラー回路のミラー電流を調整信号として前記出力される制御信号に重畳することにより前記出力される制御信号を調整する前記(2)に記載のデューティ比補正回路。
(4)前記定電流電源部は、前記反転バッファにソース側電源電流を供給するソース定電流電源部および前記反転バッファにシンク側電源電流を供給するシンク定電流電源部により構成される前記(2)または(3)に記載のデューティ比補正回路。
(5)前記誤差増幅器は、前記ソース定電流電源部に制御信号を出力するソース側誤差増幅器および前記シンク定電流電源部に制御信号を出力するシンク側誤差増幅器により構成される前記(4)に記載のデューティ比補正回路。
(6)前記制御信号に所定のバイアス電圧を付加して前記ソース側定電流電源部および前記シンク側定電流電源部に供給するバイアス回路をさらに具備する前記(4)に記載のデューティ比補正回路。
(7)前記誤差増幅器のオフセットを調整するオフセット調整部をさらに具備する前記(1)から(6)の何れかに記載のデューティ比補正回路。
(8)前記反転バッファは、ドレイン端子が共通に接続されるpチャネルMOSトランジスタおよびnチャネルMOSトランジスタにより構成されるとともに前記共通に接続されるドレイン端子が自身の反転バッファの出力端を構成する前記(1)から(7)の何れかに記載のデューティ比補正回路。
(9)前記反転バッファは、前記pチャネルMOSトランジスタおよび前記nチャネルMOSトランジスタのゲートと自身の反転バッファの入力端との間にキャパシタがそれぞれ接続される前記(8)に記載のデューティ比補正回路。
(10)信号を発生する発振回路と、
前記信号を反転する反転バッファと、
前記反転バッファの出力に接続されて前記反転された信号の立ち上がり時間および立ち下がり時間を調整するキャパシタと、
前記反転された信号の低周波成分を抽出する低域フィルタと、
前記抽出された低周波成分と参照信号との差分に基づいて前記反転バッファの出力ソース電流および出力シンク電流の少なくとも1つを制御することにより、前記反転された信号の立ち上がりおよび立ち下がりのうちの少なくとも1つを変化させて前記反転された信号のデューティ比の調整を行う誤差増幅器と、
前記誤差増幅器における前記反転バッファの制御を調整する調整部と
を具備する信号生成回路。
(1)入力信号を反転する反転バッファと、
前記反転バッファの出力に接続されて前記反転された信号の立ち上がり時間および立ち下がり時間を調整するキャパシタと、
前記反転された信号の低周波成分を抽出する低域フィルタと、
前記抽出された低周波成分と参照信号との差分に基づいて前記反転バッファの出力ソース電流および出力シンク電流の少なくとも1つを制御することにより、前記反転された信号の立ち上がりおよび立ち下がりのうちの少なくとも1つを変化させて前記反転された信号のデューティ比の調整を行う誤差増幅器と、
前記誤差増幅器における前記反転バッファの制御を調整する調整部と
を具備するデューティ比補正回路。
(2)前記反転バッファに電源電流を供給する定電流電源部を更に具備し、
前記誤差増幅器は、前記定電流電源部の電源電流を制御する制御信号を出力することにより、前記反転された信号の立ち上がりおよび立ち下がりのうちの少なくとも1つを変化させて前記反転された信号のデューティ比を調整し、
前記調整部は、前記出力される制御信号を調整することにより前記誤差増幅器における前記反転バッファの制御を調整する前記(1)に記載のデューティ比補正回路。
(3)前記調整部は、電源電圧が印加されるカレントミラー回路を備え、前記カレントミラー回路のミラー電流を調整信号として前記出力される制御信号に重畳することにより前記出力される制御信号を調整する前記(2)に記載のデューティ比補正回路。
(4)前記定電流電源部は、前記反転バッファにソース側電源電流を供給するソース定電流電源部および前記反転バッファにシンク側電源電流を供給するシンク定電流電源部により構成される前記(2)または(3)に記載のデューティ比補正回路。
(5)前記誤差増幅器は、前記ソース定電流電源部に制御信号を出力するソース側誤差増幅器および前記シンク定電流電源部に制御信号を出力するシンク側誤差増幅器により構成される前記(4)に記載のデューティ比補正回路。
(6)前記制御信号に所定のバイアス電圧を付加して前記ソース側定電流電源部および前記シンク側定電流電源部に供給するバイアス回路をさらに具備する前記(4)に記載のデューティ比補正回路。
(7)前記誤差増幅器のオフセットを調整するオフセット調整部をさらに具備する前記(1)から(6)の何れかに記載のデューティ比補正回路。
(8)前記反転バッファは、ドレイン端子が共通に接続されるpチャネルMOSトランジスタおよびnチャネルMOSトランジスタにより構成されるとともに前記共通に接続されるドレイン端子が自身の反転バッファの出力端を構成する前記(1)から(7)の何れかに記載のデューティ比補正回路。
(9)前記反転バッファは、前記pチャネルMOSトランジスタおよび前記nチャネルMOSトランジスタのゲートと自身の反転バッファの入力端との間にキャパシタがそれぞれ接続される前記(8)に記載のデューティ比補正回路。
(10)信号を発生する発振回路と、
前記信号を反転する反転バッファと、
前記反転バッファの出力に接続されて前記反転された信号の立ち上がり時間および立ち下がり時間を調整するキャパシタと、
前記反転された信号の低周波成分を抽出する低域フィルタと、
前記抽出された低周波成分と参照信号との差分に基づいて前記反転バッファの出力ソース電流および出力シンク電流の少なくとも1つを制御することにより、前記反転された信号の立ち上がりおよび立ち下がりのうちの少なくとも1つを変化させて前記反転された信号のデューティ比の調整を行う誤差増幅器と、
前記誤差増幅器における前記反転バッファの制御を調整する調整部と
を具備する信号生成回路。
10 デューティ比補正回路
20 PLL
30 パワーアンプ
40 マッチングネットワーク
50 送信アンテナ
101、102、161 誤差増幅器
103、180 バイアス回路
104~106、110 反転バッファ
107、108 電圧源
111~116、151~154、183~188 MOSトランジスタ
121~123、142、165 キャパシタ
124、141、155 抵抗
131、132 定電流回路
140 低域フィルタ
150、170 調整部
160 オフセット調整部
162~164 スイッチ
181、182 電流源
20 PLL
30 パワーアンプ
40 マッチングネットワーク
50 送信アンテナ
101、102、161 誤差増幅器
103、180 バイアス回路
104~106、110 反転バッファ
107、108 電圧源
111~116、151~154、183~188 MOSトランジスタ
121~123、142、165 キャパシタ
124、141、155 抵抗
131、132 定電流回路
140 低域フィルタ
150、170 調整部
160 オフセット調整部
162~164 スイッチ
181、182 電流源
Claims (10)
- 入力信号を反転する反転バッファと、
前記反転バッファの出力に接続されて前記反転された信号の立ち上がり時間および立ち下がり時間を調整するキャパシタと、
前記反転された信号の低周波成分を抽出する低域フィルタと、
前記抽出された低周波成分と参照信号との差分に基づいて前記反転バッファの出力ソース電流および出力シンク電流の少なくとも1つを制御することにより、前記反転された信号の立ち上がりおよび立ち下がりのうちの少なくとも1つを変化させて前記反転された信号のデューティ比の調整を行う誤差増幅器と、
前記誤差増幅器における前記反転バッファの制御を調整する調整部と
を具備するデューティ比補正回路。 - 前記反転バッファに電源電流を供給する定電流電源部を更に具備し、
前記誤差増幅器は、前記定電流電源部の電源電流を制御する制御信号を出力することにより、前記反転された信号の立ち上がりおよび立ち下がりのうちの少なくとも1つを変化させて前記反転された信号のデューティ比を調整し、
前記調整部は、前記出力される制御信号を調整することにより前記誤差増幅器における前記反転バッファの制御を調整する
請求項1記載のデューティ比補正回路。 - 前記調整部は、電源電圧が印加されるカレントミラー回路を備え、前記カレントミラー回路のミラー電流を調整信号として前記出力される制御信号に重畳することにより前記出力される制御信号を調整する請求項2記載のデューティ比補正回路。
- 前記定電流電源部は、前記反転バッファにソース側電源電流を供給するソース定電流電源部および前記反転バッファにシンク側電源電流を供給するシンク定電流電源部により構成される請求項2記載のデューティ比補正回路。
- 前記誤差増幅器は、前記ソース定電流電源部に制御信号を出力するソース側誤差増幅器および前記シンク定電流電源部に制御信号を出力するシンク側誤差増幅器により構成される請求項4記載のデューティ比補正回路。
- 前記制御信号に所定のバイアス電圧を付加して前記ソース側定電流電源部および前記シンク側定電流電源部に供給するバイアス回路をさらに具備する請求項4記載のデューティ比補正回路。
- 前記誤差増幅器のオフセットを調整するオフセット調整部をさらに具備する請求項1記載のデューティ比補正回路。
- 前記反転バッファは、ドレイン端子が共通に接続されるpチャネルMOSトランジスタおよびnチャネルMOSトランジスタにより構成されるとともに前記共通に接続されるドレイン端子が自身の反転バッファの出力端を構成する請求項1記載のデューティ比補正回路。
- 前記反転バッファは、前記pチャネルMOSトランジスタおよび前記nチャネルMOSトランジスタのゲートと自身の反転バッファの入力端との間にキャパシタがそれぞれ接続される請求項8記載のデューティ比補正回路。
- 信号を発生する発振回路と、
前記信号を反転する反転バッファと、
前記反転バッファの出力に接続されて前記反転された信号の立ち上がり時間および立ち下がり時間を調整するキャパシタと、
前記反転された信号の低周波成分を抽出する低域フィルタと、
前記抽出された低周波成分と参照信号との差分に基づいて前記反転バッファの出力ソース電流および出力シンク電流の少なくとも1つを制御することにより、前記反転された信号の立ち上がりおよび立ち下がりのうちの少なくとも1つを変化させて前記反転された信号のデューティ比の調整を行う誤差増幅器と、
前記誤差増幅器における前記反転バッファの制御を調整する調整部と
を具備する信号生成回路。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112019004275.0T DE112019004275T5 (de) | 2018-08-28 | 2019-05-10 | Tastverhältniskorrekturschaltkreis und Signalerzeugungsschaltkreis |
CN201980054350.7A CN112585872A (zh) | 2018-08-28 | 2019-05-10 | 占空比校正电路和信号产生电路 |
US17/269,840 US11336267B2 (en) | 2018-08-28 | 2019-05-10 | Duty ratio correction circuit and signal generation circuit |
JP2020540054A JP7277469B2 (ja) | 2018-08-28 | 2019-05-10 | デューティ比補正回路および信号生成回路 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-159136 | 2018-08-28 | ||
JP2018159136 | 2018-08-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020044664A1 true WO2020044664A1 (ja) | 2020-03-05 |
Family
ID=69643200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/018674 WO2020044664A1 (ja) | 2018-08-28 | 2019-05-10 | デューティ比補正回路および信号生成回路 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11336267B2 (ja) |
JP (1) | JP7277469B2 (ja) |
CN (1) | CN112585872A (ja) |
DE (1) | DE112019004275T5 (ja) |
WO (1) | WO2020044664A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113470582B (zh) * | 2021-07-28 | 2022-07-15 | 昆山龙腾光电股份有限公司 | 一种pwm输出电路和液晶显示装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07264018A (ja) * | 1994-03-25 | 1995-10-13 | Kawasaki Steel Corp | チョッパ型コンパレータ |
JP2000068797A (ja) * | 1998-08-24 | 2000-03-03 | Mitsubishi Electric Corp | デューティ比補正回路及びクロック生成回路 |
US20020084817A1 (en) * | 2000-12-28 | 2002-07-04 | Rajendran Nair | Duty cycle control loop |
JP2003289242A (ja) * | 2002-03-28 | 2003-10-10 | Matsushita Electric Ind Co Ltd | ディレイ回路 |
JP2006065836A (ja) * | 2004-07-27 | 2006-03-09 | Rohm Co Ltd | レギュレータ回路 |
JP2013236174A (ja) * | 2012-05-07 | 2013-11-21 | Asahi Kasei Electronics Co Ltd | ゼロドリフトアンプ |
WO2018037946A1 (ja) * | 2016-08-23 | 2018-03-01 | ソニーセミコンダクタソリューションズ株式会社 | 補正装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6320438B1 (en) * | 2000-08-17 | 2001-11-20 | Pericom Semiconductor Corp. | Duty-cycle correction driver with dual-filter feedback loop |
DE102006061649A1 (de) | 2006-12-27 | 2008-07-03 | Infineon Technologies Ag | Einrichtung zum Einstellen eines Tastverhältnisses, Tastverhältnis-Einstellschaltung und Verfahren zum Einstellen eines Tastverhältnisses |
-
2019
- 2019-05-10 DE DE112019004275.0T patent/DE112019004275T5/de active Pending
- 2019-05-10 WO PCT/JP2019/018674 patent/WO2020044664A1/ja active Application Filing
- 2019-05-10 JP JP2020540054A patent/JP7277469B2/ja active Active
- 2019-05-10 US US17/269,840 patent/US11336267B2/en active Active
- 2019-05-10 CN CN201980054350.7A patent/CN112585872A/zh not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07264018A (ja) * | 1994-03-25 | 1995-10-13 | Kawasaki Steel Corp | チョッパ型コンパレータ |
JP2000068797A (ja) * | 1998-08-24 | 2000-03-03 | Mitsubishi Electric Corp | デューティ比補正回路及びクロック生成回路 |
US20020084817A1 (en) * | 2000-12-28 | 2002-07-04 | Rajendran Nair | Duty cycle control loop |
JP2003289242A (ja) * | 2002-03-28 | 2003-10-10 | Matsushita Electric Ind Co Ltd | ディレイ回路 |
JP2006065836A (ja) * | 2004-07-27 | 2006-03-09 | Rohm Co Ltd | レギュレータ回路 |
JP2013236174A (ja) * | 2012-05-07 | 2013-11-21 | Asahi Kasei Electronics Co Ltd | ゼロドリフトアンプ |
WO2018037946A1 (ja) * | 2016-08-23 | 2018-03-01 | ソニーセミコンダクタソリューションズ株式会社 | 補正装置 |
Also Published As
Publication number | Publication date |
---|---|
US20210184656A1 (en) | 2021-06-17 |
JPWO2020044664A1 (ja) | 2021-08-12 |
CN112585872A (zh) | 2021-03-30 |
US11336267B2 (en) | 2022-05-17 |
DE112019004275T5 (de) | 2021-05-20 |
JP7277469B2 (ja) | 2023-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7154294B2 (en) | Comparators capable of output offset calibration | |
US8248130B2 (en) | Duty cycle correction circuit | |
JP2006345405A (ja) | デューティ比可変回路およびこれを用いたad変換回路 | |
US7944262B2 (en) | Duty correction circuit | |
US20050285649A1 (en) | Duty cycle correction circuit for use in a semiconductor device | |
US10523165B2 (en) | Common mode feedback circuit with backgate control | |
US7298201B2 (en) | Clock buffer circuit having predetermined gain with bias circuit thereof | |
US7965118B2 (en) | Method and apparatus for achieving 50% duty cycle on the output VCO of a phased locked loop | |
US8264269B2 (en) | Level shift circuit | |
US9276565B2 (en) | Duty ratio correction circuit and phase synchronization circuit | |
US10972079B2 (en) | Common mode voltage level shifting and locking circuit | |
WO2020044664A1 (ja) | デューティ比補正回路および信号生成回路 | |
US10298419B2 (en) | Low voltage differential signaling driver | |
US7936186B1 (en) | Method and apparatus for correcting duty cycle via current mode logic to CMOS converter | |
KR101100655B1 (ko) | 싱글 투 디퍼런셜 앨엔에이 회로 | |
US12113494B2 (en) | Differential amplifier circuit, reception circuit, and semiconductor integrated circuit | |
US7642867B2 (en) | Simple technique for reduction of gain in a voltage controlled oscillator | |
US10804849B2 (en) | Self-biased amplifier for use with a low-power crystal oscillator | |
JP7119757B2 (ja) | パルス位置変調回路及び送信回路 | |
JP2005286822A (ja) | コンダクタンスアンプ | |
CN114793108A (zh) | 占空比校正电路及方法、晶振电路、电子设备 | |
JP2008177862A (ja) | ゲイン増幅回路 | |
JP2007088885A (ja) | 遅延回路およびそれを用いた電圧制御発振器 | |
JP2006086783A (ja) | 温度補償回路 | |
JP2010239566A (ja) | 発振回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19854194 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020540054 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19854194 Country of ref document: EP Kind code of ref document: A1 |