WO2020042318A1 - 一种用于视网膜细胞修复与再生的发光器件及应用 - Google Patents

一种用于视网膜细胞修复与再生的发光器件及应用 Download PDF

Info

Publication number
WO2020042318A1
WO2020042318A1 PCT/CN2018/112157 CN2018112157W WO2020042318A1 WO 2020042318 A1 WO2020042318 A1 WO 2020042318A1 CN 2018112157 W CN2018112157 W CN 2018112157W WO 2020042318 A1 WO2020042318 A1 WO 2020042318A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
phosphor
emitting device
red
repairing
Prior art date
Application number
PCT/CN2018/112157
Other languages
English (en)
French (fr)
Inventor
陈雷
陈杰
王家龙
田云飞
何良锐
程鹏
Original Assignee
合肥工业大学智能制造技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥工业大学智能制造技术研究院 filed Critical 合肥工业大学智能制造技术研究院
Publication of WO2020042318A1 publication Critical patent/WO2020042318A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the invention belongs to the technical fields of semiconductor lighting, biomedicine and vision health, and particularly relates to a light-emitting device and application for repairing and regenerating retinal cells.
  • Far-red and near-infrared light can promote the repair and regeneration of retinal cells.
  • the essence is that the stimulation of far-red and near-infrared light can improve the functional activity of mitochondria, and then improve the ability of cells to repair and regenerate.
  • Mitochondria are the places where cells breathe to produce energy, and adenosine triphosphate (ATP) is the fuel of cellular energy, and it is the most direct energy source of organisms. Life can survive for several minutes without an oxygen supply, but if all ATP supply suddenly stops, people will die within 15 seconds.
  • ATP adenosine triphosphate
  • mitochondrial respiratory chain complex IV there is a chromophore molecule that absorbs light, that is, mitochondrial respiratory chain complex IV. Therefore, cytochrome c oxidase is a receiver and signal sensor for red and near-infrared light. Cytochrome c oxidase is the terminal enzyme of the electron transport chain and absorbs light before the final step of ATP production in the mitochondria.
  • the electron transport chain facilitates electron transfer across the inner membrane of the mitochondria. Specifically, after the organism is exposed to far-red light, it helps the cytochrome c oxidase catalytic center to increase the number of available electrons for the reduction of oxygen molecules, increase the potential of the mitochondrial membrane, and increase ATP, cAMP Reactive oxygen species (ROS) concentration levels, which in turn increase cell metabolism, promote tissue blood flow, stimulate nerve and synaptic growth.
  • ROS cAMP Reactive oxygen species
  • LED is widely used because of its significant advantages in energy saving and environmental protection.
  • the LEDs currently used in lighting fixtures and display backlights are mainly packaged using InGaN blue light chips to excite phosphors.
  • the commonly used phosphors are yellow, red, green or cyan phosphors.
  • the emission wavelength is limited to the visible light range of 400-700nm, and it lacks far-red light in the 700-850nm range, which is good for human vision health.
  • the damage of LED light sources to human vision has become increasingly serious.
  • the technical problem to be solved by the present invention is that: the existing LED light source causes severe visual damage.
  • a light-emitting device for repairing and regenerating retinal cells includes a base and an excitation light source, the excitation light source is disposed on the base, the excitation light source includes an LED chip and a phosphor layer, and the LED chip is fixed on the base
  • the phosphor layer includes a silica gel layer, and phosphor powder is dispersed in the silica gel layer.
  • the phosphor layer is fixed on an end surface of the LED chip facing away from the base; the emission wavelength of the LED chip is 200-520nm, Under the excitation of the LED chip, the emission wavelength of the phosphor is 570-850 nm.
  • the phosphor is composed of a mixture of red phosphor and far-red phosphor, and the red fluorescence is excited by an LED chip.
  • the powder emits red light with a wavelength of 570-700 nm.
  • the red light excites the far-red phosphors twice.
  • the far-red phosphors have an emission wavelength of 700-850 nm.
  • the light-emitting center of the red phosphor is Eu 2+ and the light-emitting matrix is nitride.
  • the light-emitting matrix is A 0.5 + 0.5y Al y Si 2-y N 3 or B 2- ⁇ D 5 N 8 O ⁇ , wherein A is Ca or Sr and 1.0 ⁇ y ⁇ 2.0, B is Sr, Ba or Ca, D is Al or Si and 0 ⁇ ⁇ ⁇ 1.0.
  • the red fluorescent powder is (Ca 1-z Eu z ) 0.5 + 0.5y Al y Si 2-y N 3 , where 1.0 ⁇ y ⁇ 2.0, 0 ⁇ z ⁇ 0.05.
  • the light-emitting device for repairing and regenerating retinal cells is Cr 3+ , and the light-emitting matrix is highly symmetrical with fluoride, oxyfluoride, or garnet structure. Sex oxide.
  • the light-emitting matrix when it is fluoride, it is L 3 E x F 6 or LLnF 4 , where L is K or Na, and E is Al. , Ga, Sc, Y, La, Gd, or Lu, Ln is any of Sc, Y, La, Gd, or Lu, and the sum of the number of atoms of E and the number of atoms of Cr is 1;
  • the luminescent host is an oxyfluoride, it is M 3 RO 4 FO, where M is Sr or Ca, and R is Al or Si;
  • the luminescent host is a highly symmetrical oxide of garnet, it is selected from the group consisting of T 3 X 5 O 12 , Z 3 Al 2 (SiO 4 ) 3 or Y 2 CaMg 2 (SiO 4 ) 3 , where T is Y, Any of Ga, Lu, or Tb, X is Al, Ga, or Sc, and Z is Ca or Mg.
  • the far-red fluorescent powder is [L 3 (E x Cr 1-x )] F 6 , where 0 ⁇ x ⁇ 1.0, where The preparation method is as follows:
  • step (3) Add LF to the product of step (2), add L 3 EF 6 after the LF is dissolved, seal the reactor, and stir the reaction;
  • step (3) After the reaction in step (3) is completed, stop stirring, filter the reaction product with suction, and repeatedly rinse the reaction product with acetone until no acidity is detected;
  • reaction product is dried under vacuum at 70 ° C to obtain the far-red phosphor.
  • the invention also provides the application of the above LED light emitting device for repairing and regenerating retinal cells.
  • the application of the LED light-emitting device for repairing and regenerating retinal cells according to the present invention is applied to a display backlight or an illumination light source.
  • the technical solution of the present invention improves the LED excitation light source, so that the excited light has a non-visual function of repairing damaged retinal cells and promoting regeneration, especially using it with conventional binary blue-rich cold white LED devices , Can effectively reduce the harm of blue light and improve vision health;
  • the LED light emitting device is used in combination with an illumination light source or a display backlight source, which can independently control under different lighting conditions such as daytime and nighttime, and has a good energy saving effect.
  • FIG. 1 is a schematic structural diagram of an LED light emitting device for repairing and regenerating retinal cells according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of the fourth embodiment in which the LED light emitting device prepared in the first embodiment is applied to a desk lamp;
  • FIG. 6 is a schematic structural diagram of the fifth embodiment in which the LED light emitting device prepared in the second or third embodiment is applied to a display backlight;
  • FIG. 7 is a retinal structure diagram of various mice in Example 6, wherein A is a retinal structure diagram of group A mice; B is a retinal structure diagram of group B mice; C is a retinal structure diagram of group C mice; D is D Group mouse retina structure.
  • FIG. 1 shows a light-emitting device 1 for repairing and regenerating retinal cells according to the present invention.
  • the light-emitting device 1 includes a base 11 and an excitation light source 12.
  • the excitation light source 2 is disposed on the base 1 to form a complete LED light. Device.
  • the excitation light source 12 includes an LED chip 121 and a phosphor layer 122, and the LED chip 121 is fixed in the receiving tank; the phosphor layer 122 includes a silica gel layer 1221, and a phosphor 1222 is dispersed in the silica gel layer 1221.
  • the phosphor layer is fixed on an end surface of the LED chip facing away from the base 11.
  • the LED chip may be a blue light chip having an emission wavelength of 400-520 nm, a near-ultraviolet chip having an emission wavelength of 300-400 nm, or an ultraviolet chip having an emission wavelength of 200-300.
  • the phosphor is composed of a mixture of a red phosphor and a far-red phosphor. Under the excitation of an LED chip, the red phosphor emits red light with a wavelength of 570-700 nm, and the red light is far from red light. The phosphor is excited twice, and the emission wavelength of the far-red phosphor is 700-850nm.
  • the light-emitting center of the red phosphor is Eu 2+
  • the light-emitting matrix is nitride A 0.5 + 0.5y Al y Si 2-y N 3 or B 2- ⁇ D 5 N 8 O ⁇ , where A is Ca or Sr and 1.0 ⁇ y ⁇ 2.0, B is Sr, Ba or Ca, D is Al or Si and 0 ⁇ ⁇ ⁇ 1.0.
  • the luminous center of the far-red phosphor is Cr 3+ , and there are multiple choices of the luminescent matrix.
  • the luminescent matrix is a fluoride, it is L 3 E x F 6 or RLnF 4 , where L is K or Na.
  • E is any one of Al, Ga, Sc, Y, La, Gd or Lu
  • Ln is any one of Sc, Y, La, Gd or Lu
  • the sum of the numbers is 1; when the luminescent matrix is oxyfluoride, it is M 3 RO 4 FO, where M is Sr or Ca, and R is Al or Si; when the luminescent matrix is a highly symmetrical oxide of garnet , Which is selected from T 3 X 5 O 12 , Z 3 Al 2 (SiO 4 ) 3 or Y 2 CaMg 2 (SiO 4 ) 3 , wherein T is any one of Y, Ga, Lu or Tb, and X is Al , Ga or Sc, and Z is Ca or Mg.
  • the emission mechanism of the far-red phosphor with Cr 3+ as the emission center originates from the dd orbit. Since the -d orbital transition of d electrons is parity forbidden, the dependence on the lattice coordination environment and symmetry is not obvious, but Cr 3+ is placed in a coordination environment with different crystal field strengths, based on the crystal field splitting With different energy levels, the emission wavelength can be adjusted to obtain emitted light with different wavelengths. Therefore, the substitution of different atoms in the light-emitting matrix can produce the same effect.
  • FIG. 1 a specific structural diagram of the LED device according to this embodiment is shown.
  • the base 11 and the LED chip 121 are both purchased from Guangdong Jingke Electronics Co., Ltd.
  • a recessed receiving groove is formed on the base 11.
  • An electrode 13 is provided on an end surface of the base 11 facing away from the receiving groove.
  • the LED chip 121 is fixed at the bottom of the receiving groove.
  • the electrodes 13 are electrically connected. After mixing the red light phosphor and the far red light phosphor with AB transparent silica gel, it is degassed in a vacuum, and then it is dropped on the side of the LED chip 121 facing the base 11 using a dispenser, in a vacuum state, After being baked and cured at 150 ° C., an LED light emitting device capable of emitting light independently under direct current driving is formed.
  • Red light phosphor (Ca 1-z Eu z ) 0.5 + 0.5y Al y Si 2-y N 3 , 1.0 ⁇ y ⁇ 2.0, 0 ⁇ z ⁇ 0.05, far red light phosphor is selected [L 3 (ExCr1-x )] F 6 , 0 ⁇ x ⁇ 1.0 The effect is better after mixing.
  • the red phosphor used in this implementation is (Ca 0.996 Eu 0.004 ) 1.1 Al 1.2 Si 0.8 N 3
  • the far-red phosphor is K 3 Al 0.94 Cr 0.06 F 6 .
  • K 3 Al 0.94 Cr 0.06 F 6 far-red phosphor is prepared by the following method: (1) Weigh CrF 3 , LF and L 3 EF 3 , where the molar ratio of LF to L 3 EF 6 is 0: 1-3 : 1; (2) pour CrF 3 into the polyvinyl fluoride reactor, add hydrofluoric acid, and stir to dissolve; (3) add LF to the product of step (2), and add L 3 EF after LF is dissolved 6 , the reactor is sealed and the reaction is stirred; (4) after step (3) the reaction is stopped, the stirring is stopped, the reaction product is filtered with suction, and the reaction product is repeatedly washed with acetone until no acidity is detected; (5) the reaction is taken The product is dried under vacuum at 70 ° C to obtain the far-red phosphor.
  • Direct current was applied to the LED light-emitting device prepared in this embodiment, and the light emission spectrum was collected using a marine optical USB4000 optical fiber spectrometer. The result is shown in FIG. 2. It can be seen from the spectrogram that the LED light-emitting device emits a wavelength of 570 -850nm range.
  • the far-red phosphor uses Y 3 Al 5 O 12 as a light-emitting matrix
  • the far-red phosphor is prepared by the following method: Y 2 O 3 , Al 2 O 3 and Cr 2 O 3 are used as raw materials, a co-solvent is added thereto, and the mixture is ball-milled into a corundum crucible, and then calcined in a muffle furnace at a high temperature of 1250-1650 ° C. After the reaction is completed, it can be broken.
  • the above-described Cr 2 O 3 may also be employed as the Cr 3+ Cr (NO 3) 3 instead of the cosolvent may be used BaF 2, AlF 3 or H 3 BO 3, according to the amount of raw materials, the calcination time is 2-10h.
  • the LED light-emitting device prepared in this embodiment is powered on, and the spectrum shown in FIG. 3 is collected, and it can be known that its wavelength is 570-850 nm.
  • the far-red light emitting phosphor in this embodiment may also be replaced with other highly symmetrical oxides having a garnet structure.
  • the rare earth oxides Ln 2 O 3 and Tb 4 are used according to the specific structure.
  • O 7 , Al 2 O 3 , SiO 2 , and alkali metal oxide MO are used as reaction raw materials.
  • the difference between this embodiment and the third embodiment lies in that Ba 1.5 Al 5 N 8 O 0.5 is used as the red phosphor in this embodiment, and Sr 3 SiO 4 FO is used as the far-red phosphor.
  • the preparation methods of Ba 1.5 Al 5 N 8 O 0.5 and Sr 3 SiO 4 FO are all conventional methods, and are not repeated here.
  • the LED light-emitting device prepared in this embodiment is powered on, and the spectrum shown in FIG. 4 is collected, and it can be known that the wavelength is 570-850 nm.
  • the LED light emitting device 1 obtained in the first embodiment is combined with an ordinary table lamp to form a health table lamp.
  • At least one LED light-emitting device 1 according to the first embodiment is provided between the white-light lamp beads 2 of an ordinary table lamp, wherein the LED light-emitting device 1 and the white-light lamp beads 2 are controlled to be powered on and off by different power switches.
  • the LED light-emitting device prepared in the second or third embodiment is combined with other white-light LED lamp beads 3 and applied to a display backlight source.
  • the LED light-emitting device is spaced apart from the white-light LED lamp beads 3.
  • the two LED devices are independently configured with switches.
  • mice with different light sources Twenty SD male rats weighing 200-220g were randomly divided into four groups A, B, C, and D. Group A was irradiated with blue light, group B was irradiated with blue light and far-infrared light, and group C was red light. Irradiation, group D was irradiated with red light and far red light at the same time. Under the same other conditions, the four groups of mice were irradiated with light for 4 hours a day, and the normal light and dark changes were maintained for the rest of the week for a week. Two days after the light was stopped, the eyeball retinas of the mice were taken for HE staining, and the changes of the retinal structure of the mice in each group were observed. Table 1 shows the parameters of the light source used.
  • A is the retinal structure of group A mice
  • B is the retinal structure of group B mice
  • C is the retinal structure of group C mice
  • D is the retinal structure of group D mice.
  • the density of INL and ONL layer cells in group A is significantly lower than that in group B
  • the density of INL and ONL layer cells in group C is significantly lower than that in group D.
  • INL layer refers to the inner nuclear layer of the retina
  • ONL refers to the outer nuclear layer of the retina

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

一种视网膜细胞修复与再生的发光器件(1),包括基座(11)和激发光源(12),所述激发光源(12)设置于所述基座(11)上,所述激发光源(12)包括LED芯片(121)和荧光粉层(122),所述LED芯片(121)固设于基座上;所述荧光粉层(122)包括硅胶层(1221),所述硅胶层(1221)内分散有荧光粉(1222),该荧光粉层(122)固设于LED芯片(121)背离基座的端面上;所述LED芯片(121)的发射波长为200-520nm,在LED芯片的激发下,所述荧光粉的发射波长为570-850nm。

Description

一种用于视网膜细胞修复与再生的发光器件及应用 技术领域
本发明属于半导体照明、生物医疗及视力健康技术领域,具体涉及一种用于视网膜细胞修复与再生的发光器件及应用。
背景技术
对于人眼视力健康而言,远红光与近红外光异常重要。远红光与近红外光能够促进视网膜细胞的修复与再生,其本质是远红光与近红外光的刺激能够提高线粒体的功能活性,进而提高细胞的修复与再生能力。
线粒体是细胞呼吸产生能量的场所,而三磷酸腺苷(ATP)是细胞能量的燃料,是生物体最直接的能量来源。生命在没有氧气供应的环境下能够存活几分钟,但如果所有ATP供应突然停止,人将在15秒内死亡。线粒体中的细胞色素C氧化酶中存在吸收光的生色团(chromophore)分子,即线粒体呼吸链复合物IV(complex IV)。所以,细胞色素c氧化酶是红光与近红外光的接收器和信号传感器。细胞色素c氧化酶是电子传输链的终端酶,在线粒体中产生ATP的最后一步之前吸收光。通过一系列氧化还原反应,电子传输链有助于电子跨过线粒体的内膜进行传递。具体而言,生物体接触远红光后,有助于细胞色素c氧化酶催化中心把氧气分子还原的可用电子数增加,增大线粒体膜的电势,提高ATP、环磷酸腺苷(cAMP)和活性氧簇(reactive oxygen species,ROS)的浓度水平,进而提高细胞新陈代谢、促进组织的血液流动、激发神经与突触生长。而在生物体中,有利于细胞产生能量的临界波长范围是570-850nm。
LED因其具有节能、环保的显著优势而得到广泛应用。但目前在照明灯具及显示器背光源中应用的LED主要是利用InGaN蓝光芯片激发荧光粉封装而 成,为达到节能效果,普遍使用的荧光粉是黄色、红色、绿色或青色荧光粉,将LED的发射波长限制在400-700nm可见光范围内,其缺乏对人体视力健康有益的700-850nm范围内远红光。随着LED在灯具照明与显示器背光源应用的普及,特别是近来年智能手机的普及,LED光源对人体视力的伤害越发严重。
发明内容
本发明所要解决的技术问题在于:现有LED光源对视力的伤害十分严重。
本发明采用以下技术方案解决上述技术问题:
一种视网膜细胞修复与再生的发光器件,包括基座和激发光源,所述激发光源设置于所述基座上,所述激发光源包括LED芯片和荧光粉层,所述LED芯片固设于基座上;所述荧光粉层包括硅胶层,所述硅胶层内分散有荧光粉,该荧光粉层固设于LED芯片背离基座的端面上;所述LED芯片的发射波长为200-520nm,在LED芯片的激发下,所述荧光粉的发射波长为570-850nm。
优选地,本发明所述的一种视网膜细胞修复与再生的发光器件,所述荧光粉由红光荧光粉与远红光荧光粉混合而成,在LED芯片的激发下,所述红光荧光粉发射波长在570-700nm的红光,该红光对远红光荧光粉进行二次激发,远红光荧光粉的发射波长为700-850nm。
优选地,本发明所述的一种视网膜细胞修复与再生的发光器件,所述红光荧光粉的发光中心为Eu 2+,发光基质为氮化物。
优选地,本发明所述的一种视网膜细胞修复与再生的发光器件,所述发光基质为A 0.5+ 0.5yAl ySi 2-yN 3或B 2-δD 5N 8O δ,其中A为Ca或Sr且1.0<y<2.0,B为Sr、Ba或Ca,D为Al或Si且0≤δ<1.0。
优选地,本发明所述的一种视网膜细胞修复与再生的发光器件,所述红光荧 光粉为(Ca 1-zEu z) 0.5+ 0.5yAl ySi 2-yN 3,其中1.0<y<2.0,0<z<0.05。
优选地,本发明所述的一种视网膜细胞修复与再生的发光器件,所述远红光荧光粉的发光中心为Cr 3+,发光基质为氟化物、氧氟化物或石榴石结构的高对称性氧化物。
优选地,本发明所述的一种视网膜细胞修复与再生的发光器件,所述发光基质为氟化物时,其为L 3E xF 6或LLnF 4,其中L为K或Na,E为Al、Ga、Sc、Y、La、Gd或Lu中的任一种,Ln为Sc、Y、La、Gd或Lu中的任一种,且E的原子个数与Cr的原子个数之和为1;
所述发光基质为氧氟化物时,其为M 3RO 4FO,其中M为Sr或Ca,R为Al或Si;
所述发光基质为石榴石的高对称性氧化物时,其选自T 3X 5O 12、Z 3Al 2(SiO 4) 3或Y 2CaMg 2(SiO 4) 3,其中T为Y、Ga、Lu或Tb中的任一种,X为Al、Ga或Sc,Z为Ca或Mg。
优选地,本发明所述的一种视网膜细胞修复与再生的发光器件,所述远红光荧光粉为[L 3(E xCr 1-x)]F 6,其中0<x<1.0,其制备方法如下:
(1)根据x的取值称取CrF 3、LF和L 3EF 3,其中LF与L 3EF 6的摩尔比为0:1-3:1;
(2)将CrF 3倒入聚氟乙烯反应器中,加入氢氟酸,搅拌使其溶解;
(3)往步骤(2)的产物中加入LF,待LF溶解后加入L 3EF 6,将反应器密封,搅拌反应;
(4)待步骤(3)反应结束后,停止搅拌,对反应产物进行抽滤,使用丙酮反复冲洗反应产物,直至检测不出酸性;
(5)取反应产物于70℃真空条件下烘干,得到所述远红光荧光粉。
本发明还提供了上述的一种用于视网膜细胞修复与再生的LED发光器件的应用。
优选地,本发明所述的一种用于视网膜细胞修复与再生的LED发光器件的应用,其在显示器背光源或照明光源中的应用。
本发明技术有益效果:
本发明技术方案通过对LED激发光源进行改进,使得激发出的光具有对损伤的视网膜细胞进行修复和促进再生的非视觉功能,特别是将该其与常规二元富蓝冷白光LED器件配合使用,能够有效降低了蓝光危害,提高视力健康;
将该LED发光器件与照明光源或显示器背光源结合使用,其能够针对日间、夜间等不同光照情况下进行独立控制,起到良好的节能效果。
附图说明
图1为本发明实施例一种所述的一种用于视网膜细胞修复与再生的LED发光器件的结构示意图;
图2为实施例一中所述的LED发光器件发射的远红光的光谱图;
图3为实施例二中所述的LED发光器件发射的远红光的光谱图;
图4为实施例三中所述的LED发光器件发射的远红光的光谱图;
图5为实施例四中将实施例一制备的LED发光器件应用于台灯的结构示意图;
图6为实施例五将实施例二或实施例三制备的LED发光器件应用于显示器背光源中的结构示意图;
图7为实施例六中各种小鼠的视网膜结构图,其中A为A组小鼠视网膜结构图;B为B组小鼠视网膜结构图;C为C组小鼠视网膜结构图;D为D组小 鼠视网膜结构图。
具体实施方式
为便于本领域技术人员理解本发明技术方案,现结合说明书附图对本发明技术方案做进一步的说明。
图1所示为本发明提供的一种视网膜细胞修复与再生的发光器件1,其包括基座11和激发光源12,所述激发光源2设置于所述基座1上构成一完整的LED发光器件。
所述激发光源12包括LED芯片121和荧光粉层122,所述LED芯片121固设于容纳槽内;所述荧光粉层122包括硅胶层1221,所述硅胶层1221内分散有荧光粉1222,该荧光粉层固设于LED芯片背离基座11的端面上。
所述LED芯片可以是发射波长在400-520nm的蓝光芯片,也可以是发射波长在300-400nm的近紫外芯片,还可以是发射波长在200-300的紫外芯片。
所述荧光粉由由红光荧光粉与远红光荧光粉混合而成,在LED芯片的激发下,所述红光荧光粉发射波长在570-700nm的红光,该红光对远红光荧光粉进行二次激发,远红光荧光粉的发射波长为700-850nm。
更为具体地,所述红光荧光粉的发光中心为Eu 2+,发光基质为氮化物A 0.5+ 0.5yAl ySi 2-yN 3或B 2-δD 5N 8O δ,其中A为Ca或Sr且1.0<y<2.0,B为Sr、Ba或Ca,D为Al或Si且0≤δ<1.0。
所述远红光荧光粉的发光中心为Cr 3+,其发光基质有多种选择,例如当发光基质为氟化物时,其为L 3E xF 6或RLnF 4,其中L为K或Na,E为Al、Ga、Sc、Y、La、Gd或Lu中的任一种,Ln为Sc、Y、La、Gd或Lu中的任一种,此时E的原子个数与Cr的原子个数之和为1;当发光基质为氧氟化物时,其为 M 3RO 4FO,其中M为Sr或Ca,R为Al或Si;当发光基质为石榴石的高对称性氧化物时,其选自T 3X 5O 12、Z 3Al 2(SiO 4) 3或Y 2CaMg 2(SiO 4) 3,其中T为Y、Ga、Lu或Tb中的任一种,X为Al、Ga或Sc,Z为Ca或Mg。
以Cr 3+为发光中心的远红光荧光粉其发光机理源于d-d轨道。由于d电子的-d轨道跃迁是宇称禁戒的,对晶格配位环境与对称性依赖不明显,但是将Cr 3+置于不同晶体场强度的配位环境中,基于晶体场劈裂能级的不同,可以对发光波长进行调控,获得不同波长的发射光。因而发光基质中采用不同原子进行替换均能够产生相同的效果。
下面通过具体实施例来对本发明获得的LED发光器件进行详尽地说明。
实施例一
如图1所示为本实施例所述的LED器件的具体结构示意图,在本实施例中,所述基座11及LED芯片121均购置广东晶科电子有限公司。
参阅图1,所述基座11上形成有一凹陷的容纳槽,基座11背离容纳槽所在端面上设有电极13,所述LED芯片121固设在容纳槽的底部,LED芯片121通过导线与所述电极13电性连接。将红光荧光粉与远红光荧光粉与AB透明硅胶混合后,经真空脱泡,再使用点胶机将其滴到LED芯片121朝向基座11外的一侧面上,在真空状态下,经150℃烘烤固化即构成能够在直流电驱动下可以独立发光的LED发光器件。
红光荧光粉(Ca 1-zEu z) 0.5+ 0.5yAl ySi 2-yN 3,1.0<y<2.0,0<z<0.05,远红光荧光粉选用[L 3(ExCr1-x)]F 6,0<x<1.0混合后的效果较佳。
具体地,本实施中所用红光荧光粉为(Ca 0.996Eu 0.004) 1.1Al 1.2Si 0.8N 3,远红光荧光粉为K 3Al 0.94Cr 0.06F 6
(Ca 0.996Eu 0.004) 1.1Al 1.2Si 0.8N 3红光荧光粉采用固相反应法合成:以Ca 3N 2、AlN、Si 3N 4和Eu 3N 2为原料,首先在氮气气氛保护下对原料充分研磨,然后把研磨后的产物装入石墨坩埚,放入高压炉,在N 2气氛保护下于1600-1900℃进高温煅烧3-10小时,样品出炉后经粉碎处理,即得到红光荧光粉成品。
K 3Al 0.94Cr 0.06F 6远红光荧光粉通过下述方法制备:(1)称取CrF 3、LF和L 3EF 3,其中LF与L 3EF 6的摩尔比为0:1-3:1;(2)将CrF 3倒入聚氟乙烯反应器中,加入氢氟酸,搅拌使其溶解;(3)往步骤(2)的产物中加入LF,待LF溶解后加入L 3EF 6,将反应器密封,搅拌反应;(4)待步骤(3)反应结束后,停止搅拌,对反应产物进行抽滤,使用丙酮反复冲洗反应产物,直至检测不出酸性;(5)取反应产物于70℃真空条件下烘干,得到所述远红光荧光粉。
向本实施例制备得到的LED发光器件通入直流电,并采用海洋光学USB4000光纤光谱仪采集其发光光谱,结果如图2所示,从光谱图中可看到,该LED发光器件发射的波长在570-850nm范围内。
实施例二
本实施例与实施例一的区别在于,所述远红光荧光粉采用采用Y 3Al 5O 12作为发光基质,该远红光荧光粉通过下述方法制备而成:以Y 2O 3、Al 2O 3及Cr 2O 3为原料,向其中加入助溶剂,经球磨混料后装入刚玉坩埚,再在马弗炉内经1250-1650℃的高温煅烧,反应完成后破碎即可。
上述的Cr 2O 3作为Cr 3+还可以采用Cr(NO 3) 3代替,所述的助溶剂可以使用BaF 2、AlF 3或H 3BO 3,根据原料用量,煅烧时间为2-10h。
对本实施例制备的LED发光器件通电,采集到如图3所示的光谱,可知其波长在570-850nm。
需要说明的是,本实施例中的远红光荧光粉还可以采用其他具有石榴石结构的高对称性氧化物来代替,在制备时,根据具体结构采用稀土氧化物Ln 2O 3、Tb 4O 7、Al2O 3、SiO 2、碱金属氧化物MO作为反应原料。
实施例三
本实施例与实施例三的区别在于,本实施例中的红光荧光粉采用Ba 1.5Al 5N 8O 0.5,所述远红光荧光粉采用Sr 3SiO 4FO。所述Ba 1.5Al 5N 8O 0.5及Sr 3SiO 4FO的制备方法均为常规方法,此处不再赘述。
对本实施例制备的LED发光器件通电,采集到如图4所示的光谱,可知其波长在570-850nm。
实施例四
参阅图5,将实施例一制得的LED发光器件1与普通台灯结合构成一健康台灯。在普通台灯的白光灯珠2间设置至少一个实施例一制得LED发光器件1,其中所述LED发光器件1与白光灯珠2通过不同的电源开关控制通断电。
在日间使用该健康台灯时,因太阳光中有丰富的远红光光谱成分,因此仅需开启白光灯珠2以达到节能的目的。在夜间或阳光不足的情况下,可同时开启白光灯珠和LED发光器件,补充远红光,达到对视网膜细胞的修复及再生作用。
实施例五
参阅图6,将实施例二或实施例三制备的LED发光器件与其他白光LED灯珠3组合应用于显示器背光源,该LED发光器件间隔地设置与白光LED灯珠3之间。同样地,两种LED器件独立配置开关。
实施例六
采用不同光源对小鼠进行光照实验。取20只体重为200-220g的SD雄鼠, 随机平均分为A、B、C、D四组,其中A组采用蓝光照射,B组采用蓝光和远红外光同时照射,C组采用红光照射,D组采用红光和远红光同时照射。在其他条件完全相同的情况下,对四组小鼠每天光照4小时,其余时间保持正常的明暗变化,连续进行一周。停止光照后两天取小鼠眼球视网膜进行HE染色,观察各组小鼠视网膜结构的变化。表1为所用光源参数。
表1 小鼠实验各种使用光源参数
Figure PCTCN2018112157-appb-000001
实验结果参照图7,其中A为A组小鼠的视网膜结构,B为B组小鼠的视网膜结构,C为C组小鼠的视网膜结构,D为D组小鼠的视网膜结构。通过比对,A组的INL、ONL层细胞密度明显低于B组,C组的INL、ONL层细胞密度明显低于D组,由此可证明远红外光对于视网膜损伤确有保护和治疗效果,即远红外光具有促进视网膜细胞修复和再生的作用。
上述的INL层是指视网膜的内核层,ONL是指视网膜的外核层。
本发明技术方案在上面结合附图对发明进行了示例性描述,显然本发明具体实现并不受上述方式的限制,只要采用了本发明的方法构思和技术方案进行的各种非实质性改进,或未经改进将发明的构思和技术方案直接应用于其它场合的, 均在本发明的保护范围之内。

Claims (10)

  1. 一种视网膜细胞修复与再生的发光器件,包括基座和激发光源,所述激发光源设置于所述基座上,其特征在于,所述激发光源包括LED芯片和荧光粉层,所述LED芯片固设于基座上;所述荧光粉层包括硅胶层,所述硅胶层内分散有荧光粉,该荧光粉层固设于LED芯片背离基座的端面上;所述LED芯片的发射波长为200-520nm,在LED芯片的激发下,所述荧光粉的发射波长为570-850nm。
  2. 根据权利要求1所述的一种视网膜细胞修复与再生的发光器件,其特征在于,所述荧光粉由红光荧光粉与远红光荧光粉混合而成,在LED芯片的激发下,所述红光荧光粉发射波长在570-700nm的红光,该红光对远红光荧光粉进行二次激发,远红光荧光粉的发射波长为700-850nm。
  3. 根据权利要求2所述的一种视网膜细胞修复与再生的发光器件,其特征在于,所述红光荧光粉的发光中心为Eu 2+,发光基质为氮化物。
  4. 根据权利要求3所述的一种视网膜细胞修复与再生的发光器件,其特征在于,所述发光基质为A 0.5+ 0.5yAl ySi 2-yN 3或B 2-δD 5N 8O δ,其中A为Ca或Sr且1.0<y<2.0,B为Sr、Ba或Ca,D为Al或Si且0≤δ<1.0。
  5. 根据权利要求4所述的一种视网膜细胞修复与再生的发光器件,其特征在于,所述红光荧光粉为(Ca 1-zEu z) 0.5+ 0.5yAl ySi 2-yN 3,其中1.0<y<2.0,0<z<0.05。
  6. 根据权利要求2-5任一项所述的一种视网膜细胞修复与再生的发光器件,其特征在于,所述远红光荧光粉的发光中心为Cr 3+,发光基质为氟化物、氧氟化物或石榴石结构的高对称性氧化物。
  7. 根据权利要求6所述的一种视网膜细胞修复与再生的发光器件,其特征在于,所述发光基质为氟化物时,其为L 3E xF 6或LLnF 4,其中L为K或Na,E 为Al、Ga、Sc、Y、La、Gd或Lu中的任一种,Ln为Sc、Y、La、Gd或Lu中的任一种,且E的原子个数与Cr的原子个数之和为1;
    所述发光基质为氧氟化物时,其为M 3RO 4FO,其中M为Sr或Ca,R为Al或Si;
    所述发光基质为石榴石的高对称性氧化物时,其选自T 3X 5O 12、Z 3Al 2(SiO 4) 3或Y 2CaMg 2(SiO 4) 3,其中T为Y、Ga、Lu或Tb中的任一种,X为Al、Ga或Sc,Z为Ca或Mg。
  8. 根据权利要求7所述的一种视网膜细胞修复与再生的发光器件,其特征在于,所述远红光荧光粉为[L 3(E xCr 1-x)]F 6,其中0<x<1.0,其制备方法如下:
    (1)根据x的取值称取CrF 3、LF和L 3EF 3,其中LF与L 3EF 6的摩尔比为0:1-3:1;
    (2)将CrF 3倒入聚氟乙烯反应器中,加入氢氟酸,搅拌使其溶解;
    (3)往步骤(2)的产物中加入LF,待LF溶解后加入L 3EF 6,将反应器密封,搅拌反应;
    (4)待步骤(3)反应结束后,停止搅拌,对反应产物进行抽滤,使用丙酮反复冲洗反应产物,直至检测不出酸性;
    (5)取反应产物于70℃真空条件下烘干,得到所述远红光荧光粉。
  9. 如权利要求1-8任一项所述的一种用于视网膜细胞修复与再生的发光器件的应用。
  10. 根据权利要求9所述的一种用于视网膜细胞修复与再生的发光器件的应用,其特征在于,所述LED发光器件在显示器背光源或照明光源中的应用。
PCT/CN2018/112157 2018-08-30 2018-10-26 一种用于视网膜细胞修复与再生的发光器件及应用 WO2020042318A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811004355.2A CN109192844A (zh) 2018-08-30 2018-08-30 一种用于视网膜细胞修复与再生的led发光器件及应用
CN201811004355.2 2018-08-30

Publications (1)

Publication Number Publication Date
WO2020042318A1 true WO2020042318A1 (zh) 2020-03-05

Family

ID=64916869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112157 WO2020042318A1 (zh) 2018-08-30 2018-10-26 一种用于视网膜细胞修复与再生的发光器件及应用

Country Status (2)

Country Link
CN (1) CN109192844A (zh)
WO (1) WO2020042318A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110518004B (zh) * 2019-08-29 2021-10-01 合肥工业大学智能制造技术研究院 适于糖尿病性视网膜病变的专用光源及灯具
CN110531554A (zh) * 2019-08-29 2019-12-03 合肥工业大学智能制造技术研究院 促进视网膜细胞与视神经元生长与修复的显示器光源模组、显示屏及应用
CN112186087B (zh) * 2020-08-28 2021-09-28 合肥工业大学 一种远红光-近红外光led器件制备方法及led器件
CN112420902A (zh) * 2020-11-26 2021-02-26 欧普照明股份有限公司 一种光源模组及包括该光源模组的照明装置
CN113193100A (zh) * 2021-05-25 2021-07-30 鸿利智汇集团股份有限公司 一种促进hela细胞生长的红外LED封装

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101434839A (zh) * 2007-08-21 2009-05-20 三星电机株式会社 (氧)氮化物荧光粉、白光发射装置及荧光粉制法
CN102399552A (zh) * 2011-11-08 2012-04-04 杭州广陵科技开发有限公司 一种用于白光led的氮化物红色荧光粉及其制备方法
CN107676638A (zh) * 2017-08-17 2018-02-09 江苏脉锐光电科技有限公司 一种led光源
CN108336208A (zh) * 2018-01-22 2018-07-27 暨南大学 一种分光光度计用led光源及其制备方法
CN108424770A (zh) * 2018-01-29 2018-08-21 中国科学院长春光学精密机械与物理研究所 一种具有宽带发射特性的近红外荧光粉及其制备方法与应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6329083B2 (ja) * 2012-12-28 2018-05-23 シャープ株式会社 発光装置
CN106328795A (zh) * 2016-10-21 2017-01-11 电子科技大学 一种医用光疗的pc‑LEDs灯

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101434839A (zh) * 2007-08-21 2009-05-20 三星电机株式会社 (氧)氮化物荧光粉、白光发射装置及荧光粉制法
CN102399552A (zh) * 2011-11-08 2012-04-04 杭州广陵科技开发有限公司 一种用于白光led的氮化物红色荧光粉及其制备方法
CN107676638A (zh) * 2017-08-17 2018-02-09 江苏脉锐光电科技有限公司 一种led光源
CN108336208A (zh) * 2018-01-22 2018-07-27 暨南大学 一种分光光度计用led光源及其制备方法
CN108424770A (zh) * 2018-01-29 2018-08-21 中国科学院长春光学精密机械与物理研究所 一种具有宽带发射特性的近红外荧光粉及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU, YUANSHU: "Optical Functionalization of Cryolite Polycrystals Using Transition Metal/ Rare Earth Ions for the Applications of Lighting and Biological Imaging", 1 January 2018 (2018-01-01), pages 1 - 67, XP055695418, Retrieved from the Internet <URL:https://rucore.libraries.rutgers.edu/rutgers-lib/56161> *

Also Published As

Publication number Publication date
CN109192844A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
WO2020042318A1 (zh) 一种用于视网膜细胞修复与再生的发光器件及应用
JP5770269B2 (ja) 白色光源およびそれを用いた白色光源システム
CN108424770B (zh) 一种具有宽带发射特性的近红外荧光粉及其制备方法与应用
EP4332434A2 (en) White light source and white light source system using white light source
WO2020034390A1 (zh) Led白光器件及其制备方法、led背光模组
CN110518004B (zh) 适于糖尿病性视网膜病变的专用光源及灯具
CN112011332B (zh) 一种远红光荧光粉以及包含该荧光粉的发光装置
CN108276999A (zh) 一种掺铕钼酸镧红色荧光粉的制备方法
CN104868041A (zh) 全碳基量子点混合荧光粉led及其制备方法
CN111073644A (zh) 近红外荧光粉、制备与应用方法、近红外光源及近红外白光光源制备方法
CN109856860B (zh) 一种液晶显示模组及显示装置
CN110437832B (zh) 一种Eu2+掺杂的硅酸盐近红外荧光粉及其制备方法与转换型LED发光装置
JP2017222750A (ja) 蛍光体、発光装置および表示装置
CN110531554A (zh) 促进视网膜细胞与视神经元生长与修复的显示器光源模组、显示屏及应用
JP4309242B2 (ja) 赤色蛍光体材料、赤色蛍光体材料を用いた白色発光ダイオードおよび白色発光ダイオードを用いた照明機器
JP2005179498A (ja) 赤色蛍光体材料、赤色蛍光体材料を用いた白色発光ダイオードおよび白色発光ダイオードを用いた照明機器
CN1667082A (zh) 紫外光固体光源的无机粉
CN105255489B (zh) 一种蓝绿光激发的红色荧光粉及其制备方法
CN103560201A (zh) 一种促进植物生长的紫外发光二极管
CN102807864A (zh) 一种白光led用铕激活的钨酸盐红色荧光粉及其制备方法
CN110360469B (zh) 一种基于荧光体的全光谱激光装置
CN108841384B (zh) 一种上转换荧光粉及其制备方法
CN113322063A (zh) 一种红光荧光粉及其在背光显示白光led灯中的应用
SU1634696A1 (ru) Люминесцентный материал
CN104673312A (zh) 一种铬、钕共掺的镓酸钆近红外长余辉材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18931597

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18931597

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/09/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18931597

Country of ref document: EP

Kind code of ref document: A1