WO2020041916A1 - 一种甲醇与双氧水组合还原制备高纯度二氧化氯的方法 - Google Patents

一种甲醇与双氧水组合还原制备高纯度二氧化氯的方法 Download PDF

Info

Publication number
WO2020041916A1
WO2020041916A1 PCT/CN2018/000307 CN2018000307W WO2020041916A1 WO 2020041916 A1 WO2020041916 A1 WO 2020041916A1 CN 2018000307 W CN2018000307 W CN 2018000307W WO 2020041916 A1 WO2020041916 A1 WO 2020041916A1
Authority
WO
WIPO (PCT)
Prior art keywords
chlorine dioxide
hydrogen peroxide
methanol
reducing agent
solution
Prior art date
Application number
PCT/CN2018/000307
Other languages
English (en)
French (fr)
Inventor
王双飞
詹磊
黄丙贵
徐萃声
刘良青
李忠平
谭浪
Original Assignee
广西博世科环保科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广西博世科环保科技股份有限公司 filed Critical 广西博世科环保科技股份有限公司
Priority to PCT/CN2018/000307 priority Critical patent/WO2020041916A1/zh
Priority to CN201880005421.XA priority patent/CN110382409A/zh
Priority to CA3025918A priority patent/CA3025918A1/en
Priority to US16/310,812 priority patent/US20200071166A1/en
Priority to EP18905887.8A priority patent/EP3845488A4/en
Priority to US16/268,408 priority patent/US20200071165A1/en
Publication of WO2020041916A1 publication Critical patent/WO2020041916A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/02Oxides of chlorine
    • C01B11/022Chlorine dioxide (ClO2)
    • C01B11/023Preparation from chlorites or chlorates
    • C01B11/026Preparation from chlorites or chlorates from chlorate ions in the presence of a peroxidic compound, e.g. hydrogen peroxide, ozone, peroxysulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/02Oxides of chlorine
    • C01B11/022Chlorine dioxide (ClO2)
    • C01B11/023Preparation from chlorites or chlorates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D5/00Sulfates or sulfites of sodium, potassium or alkali metals in general
    • C01D5/02Preparation of sulfates from alkali metal salts and sulfuric acid or bisulfates; Preparation of bisulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D5/00Sulfates or sulfites of sodium, potassium or alkali metals in general
    • C01D5/06Preparation of sulfates by double decomposition
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the invention relates to a method for producing chlorine dioxide, in particular to a method for preparing high-purity chlorine dioxide by combining reduction with methanol and hydrogen peroxide.
  • Chlorine dioxide is an orange-yellow gas at normal temperature and pressure. It has a pungent spicy taste similar to a mixture of chlorine and ozone. The boiling point is 11 ° C, the freezing point is -59 ° C, and the gaseous density is 3.09g at 11 ° C. / m3. Gaseous ClO 2 is unstable. Illumination or contact with organic matter at high concentrations can cause explosive decomposition to produce oxygen and chlorine. Generally, it is prepared on site and used on site. It is more stable when diluted with air and water vapor to less than 12% by volume at room temperature or in a low temperature aqueous solution state. The solubility in water decreases with increasing temperature. ClO 2 has strong oxidizing ability, and can be used as bleaching agent for pulp and textiles, water treatment agent, new air purification and freshener, and disinfectant for food, epidemic prevention and sanitation.
  • the common method for industrially preparing chlorine dioxide is mainly the sodium chlorate method.
  • This method mainly uses methanol, hydrochloric acid, sodium chloride, hydrogen peroxide or sulfur dioxide as the reducing agent.
  • the preparation method of methanol as the reducing agent is the current leading production method. This method has high production efficiency, but the product contains a certain amount of chlorine gas, the sulfuric acid consumption is relatively high, and the by-product acid mirabilite needs to be neutralized before it can be recycled.
  • the technical problem to be solved by the present invention is to provide a method for producing chlorine dioxide by combined reduction of methanol and hydrogen peroxide.
  • the method can improve the purity of the product, and at the same time, the by-product mirabilite produced by the reaction can be directly crystallized in the form of neutral mirabilite. Sulfuric acid consumption.
  • the method for preparing high-purity chlorine dioxide by combining methanol and hydrogen peroxide according to the present invention includes the following operation steps:
  • the first step is to inject concentrated sulfuric acid and sodium chlorate solution into the reaction system to form the reaction mother liquor, and maintain the reaction mother liquor to maintain an acidity of 5.8-6.2N, a sodium chlorate content of 234-266g / l, and a temperature of 69-73 ° C;
  • the generating system is composed of a reactor and a reboiler connected through a circulation pipe;
  • a reducing agent is added to react the reaction mother liquor to produce chlorine dioxide gas and by-product neutral thenardite.
  • the reducing agent is a combined reducing agent composed of methanol and hydrogen peroxide, and the methanol and hydrogen peroxide in the combined reducing agent are in a mass percentage. The ratio is: 60-70% methanol: 30-40% hydrogen peroxide;
  • the chlorine dioxide gas produced by the reaction is cooled and then absorbed in low-temperature frozen water at 4-10 ° C to obtain an aqueous chlorine dioxide solution.
  • the by-product neutral thenardite is filtered, washed and recovered.
  • the second step of the method of the present invention before adding the methanol in the reducing agent, it is diluted with demineralized water to a 20% volume methanol solution, and then it is added from the venturi tube at the outlet of the reboiler.
  • the hydrogen peroxide in the reducing agent is added, it is first formulated into a hydrogen peroxide solution with a mass concentration of 30%, and then mixed with the sodium chlorate solution and added from the inlet of the reboiler. .
  • the preferred molar ratio of methanol and hydrogen peroxide combined with the reducing agent is: 66% methanol: 34% hydrogen peroxide.
  • the reactor is kept under vacuum, and its pressure is -78 ⁇ -82Kpa.
  • the chlorine dioxide gas is discharged from the top of the reactor, and the temperature of the gas mixed with the water vapor generated by the reactor is 57-68 ° C, and the temperature is reduced to 38-45 ° C through preliminary cooling of the intercooler. Then, it enters the chlorine dioxide absorption tower and is sprayed and absorbed by frozen water to form a chlorine dioxide aqueous solution.
  • the method of the invention firstly injects concentrated sulfuric acid and sodium chlorate solution into a generator to form a reaction mother liquor, and maintains the reaction mother liquor to maintain a certain acidity, temperature and sodium chlorate content, and then adds a reducing agent to react to generate chlorine dioxide gas and neutrality of byproducts Glauber's salt, chlorine dioxide gas is cooled and absorbed with low-temperature frozen water to obtain an aqueous chlorine dioxide solution, and by-products are filtered, washed, and recovered.
  • sodium chlorate reacts (1) to generate chlorine dioxide gas and chlorine radicals; methanol as a reducing agent reacts with chlorine radicals in accordance with reaction (3) to convert chlorine radicals to chloride ions, thereby reducing Or avoid the reaction of chlorine radicals (2) to produce chlorine gas, so that the chloride ions are recycled in the whole reaction process.
  • reaction rate of reaction (3) since the reaction rate of reaction (3) is insufficient to completely convert all chlorine radicals into chloride ions, the purity of chlorine dioxide prepared using methanol alone as a reducing agent is not high.
  • hydrogen peroxide is added together with methanol as a reducing agent to prepare chlorine dioxide, and the chlorine gas is reduced to chloride ions by reaction (4) hydrogen peroxide, thereby greatly reducing the generation of chlorine gas and improving the purity of chlorine dioxide gas.
  • the method of the present invention uses a combined reducing agent composed of a reasonable combination of methanol and hydrogen peroxide, and reacts with sodium chlorate in a titanium container under strong acid, certain temperature and vacuum conditions to continuously produce high-purity chlorine dioxide and by-product neutral thenardite, ClO 2 After cooling, the gas is absorbed with low-temperature frozen water to obtain a ClO 2 solution with a certain concentration. At the same time, the by-products are filtered, washed, and recovered.
  • a combined reducing agent composed of a reasonable combination of methanol and hydrogen peroxide
  • the chlorine dioxide produced by the method of the present invention has higher purity than the chlorine dioxide produced by using methanol alone as a reducing agent, the Cl 2 content of the chlorine dioxide is reduced by 60-70%, and the byproduct produced is neutral thenardite, and acid thenardite is not required. Neutralization treatment reduces sulfuric acid consumption by 14-20%.
  • FIG. 1 is a production process flow chart of the method of the present invention.
  • chlorine dioxide is continuously produced in the generator. Chlorine dioxide and the evaporated water vapor are discharged from the top of the generator into the intercooler, cooled by the intercooler, and then entered the chlorine dioxide absorption tower (combination of the intercooler and the chlorine dioxide absorption tower to form a cooling and absorption device) , Into the chlorine dioxide absorption tower, add chilled water to absorb chlorine dioxide to form a chlorine dioxide aqueous solution product.
  • the solid content in the generator is controlled to a certain concentration range, and the neutral thenardite produced with the mother liquor is pumped out from the bottom of the generator through the thenardite feed pump, sent to the thenardite filter device for filtering and washing, and the filtered mother liquor is returned to the generator.
  • the methanol adding point is designed to be added at the venturi tube at the outlet of the reboiler, and the hydrogen peroxide adding point is designed to be added between the inlet of the reboiler and the outlet of the circulation pump.
  • the generator maintains the vacuum condition, and the pressure is -78 ⁇ -82KPa (g).
  • the temperature of the mixed gas of chlorine dioxide and water vapor discharged from the generator is 57-68 ° C, and the temperature is reduced to 38-45 ° C through the intercooler, and the gas enters the chlorine dioxide absorption tower. It is sprayed and absorbed with 4-10 ° C frozen water to form a chlorine dioxide aqueous solution. With the progress of the reaction, precipitated crystals are continuously formed in the mother liquor.
  • the mother liquor containing Glauber's salt was pumped out at the bottom of the generator, and the by-product neutral Glauber's salt was filtered by a filtering device, and the filtered filtrate was returned to the generator.
  • the concentration of the produced chlorine dioxide solution was 9.4 g / l
  • the Cl 2 content of the solution was 0.08 g / l
  • the sulfuric acid consumption was 0.86 t / tClO 2 .
  • the generator maintains the vacuum condition, and the pressure is -78 ⁇ -82KPa (g).
  • the temperature of the mixed gas of chlorine dioxide and water vapor derived from the generator is 57-68 ° C, and the temperature is reduced to 38-45 ° C through preliminary intercooler, and the gas enters the chlorine dioxide absorption tower. It is sprayed and absorbed with 4-10 ° C frozen water to form a chlorine dioxide aqueous solution. With the progress of the reaction, precipitated crystals are continuously formed in the mother liquor.
  • the mother liquor containing Glauber's salt was pumped out at the bottom of the generator, and the by-product neutral Glauber's salt was filtered by a filtering device, and the filtered filtrate was returned to the generator.
  • the concentration of the produced chlorine dioxide solution was 9.5 g / l
  • the Cl 2 content of the solution was 0.09 g / l
  • the sulfuric acid consumption was 0.87 t / tClO 2 .
  • the generator maintains the vacuum condition, and the pressure is -78 ⁇ -82KPa (g).
  • the temperature of the mixed gas of chlorine dioxide and water vapor derived from the generator is 57-68 ° C, and the temperature is reduced to 38-45 ° C through preliminary intercooler, and the gas enters the chlorine dioxide absorption tower. It is sprayed and absorbed with 4-10 ° C frozen water to form a chlorine dioxide aqueous solution. With the progress of the reaction, precipitated crystals are continuously formed in the mother liquor.
  • the mother liquor containing Glauber's salt was pumped out at the bottom of the generator, and the by-product neutral Glauber's salt was filtered by a filtering device, and the filtered filtrate was returned to the generator.
  • the concentration of the produced chlorine dioxide solution was 9.3 g / l
  • the Cl 2 content of the solution was 0.07 g / l
  • the sulfuric acid consumption was 0.87 t / tClO 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

提供一种甲醇与双氧水组合还原剂制备高纯度二氧化氯的方法,包括:先将浓硫酸、氯酸钠溶液注入发生器中形成反应母液,并使反应母液维持酸度5.8-6.2N,氯酸钠含量234-266g/L,保持温度69-73℃;然后加入甲醇和双氧水的组合还原剂反应产生二氧化氯气体和副产物中性芒硝;将反应产生的二氧化氯气体经冷却后用4-10℃的冷冻水吸收,得到二氧化氯水溶液,同时对副产物中性芒硝进行过滤洗涤回收。该方法比单一甲醇还原剂的方法生产二氧化氯的氯气含量降低60-70%,硫酸消耗量降低14-20%,而且产生的副产物为中性芒硝,不需要进行酸性芒硝的中性化处理。

Description

一种甲醇与双氧水组合还原制备高纯度二氧化氯的方法 技术领域
本发明涉及二氧化氯的生产方法,具体是一种采用甲醇与双氧水组合还原制备高纯度二氧化氯的方法。
背景技术
二氧化氯(ClO 2)在常温常压下为橙黄色气体,具有类似于氯和臭氧混合物的刺激性辣味,沸点为11℃,冰点为-59℃,在11℃时气态密度为3.09g/m3。气态ClO 2不稳定,高浓度时光照或与有机物相接触会引起爆炸分解生产氧气、氯气。一般情况下,现场制备,现场使用。常温下用空气、水蒸汽稀释至12%的体积含量以下或为低温水溶液状态时较为稳定,在水中的溶解度随着温度的升高而降低。ClO 2具有很强氧化能力,可用作纸浆和纺织品等的漂白剂、水处理剂、新型空气净化清新剂和用于饮食、防疫、卫生等方面的消毒杀菌剂。
目前工业制备二氧化氯常用的方法主要是氯酸钠法,该方法主要使用甲醇、盐酸、氯化钠、双氧水或二氧化硫作为还原剂,其中甲醇作为还原剂的制备方法是目前的主导生产方法,该法生产效率较高,但产品中含一定的氯气,硫酸消耗偏高,且产生的副产品——酸性芒硝需要进行中性化处理后才能回收利用。
发明内容
本发明所要解决的技术问题是提供一种甲醇与双氧水组合还原制备二氧化 氯的生产方法,该方法能够提高产品的纯度,同时使反应产生的副产品芒硝直接以中性芒硝的形式结晶析出,降低硫酸消耗。
本发明以如下技术方案解决上述技术问题:
本发明甲醇与双氧水组合还原制备高纯度二氧化氯的方法,它包括如下操作步骤:
第一步,首先将浓硫酸、氯酸钠溶液注入发生体系中形成反应母液,并使反应母液维持酸度5.8-6.2N,氯酸钠含量234-266g/l,保持温度69-73℃;所述发生体系由反应器和再沸器经循环管连接构成;
第二步,然后加入还原剂使反应母液反应产生二氧化氯气体及副产品中性芒硝,所述还原剂是由甲醇与双氧水组成的组合还原剂,该组合还原剂中的甲醇与双氧水按质量百分比的配比是:甲醇60-70%∶双氧水30-40%;
第三步,将反应产生的二氧化氯气体经冷却后用4-10℃的低温冷冻水吸收,得到二氧化氯水溶液,同时对副产品中性芒硝进行过滤洗涤回收。
本发明方法第二步中,所述还原剂中的甲醇在加入前,先采用软化水稀释成体积浓度为20%的甲醇溶液,然后将其从再沸器出口的文丘里管加入。
本发明方法第二步中,所述还原剂中的双氧水在加入前,先将其配制为质量浓度为30%的双氧水溶液,然后将其与氯酸钠溶液混合后从再沸器入口处加入。
本发明方法第二步中,组合还原剂的甲醇与双氧水按质量百分比的优选配比是:甲醇66%∶双氧水34%。
本发明方法第一步中,所述反应器保持真空,其压力为-78~-82Kpa。
本发明方法第三步中,所述二氧化氯气体从反应器顶部排出,其与反应器产生的水蒸汽混合的气体温度为57~68℃,经间冷器初步冷却降温到38~45 ℃,然后进入二氧化氯吸收塔塔内,采用冷冻水喷淋吸收形成二氧化氯水溶液。
本发明方法首先将浓硫酸、氯酸钠溶液注入发生器中形成反应母液,并使反应母液维持一定的酸度、温度和氯酸钠含量,然后加入还原剂反应产生二氧化氯气体及副产品中性芒硝,二氧化氯气体经冷却后用低温冷冻水吸收,得到二氧化氯水溶液,同时对副产品进行过滤洗涤回收。
本发明产生二氧化氯的反应原理:
Figure PCTCN2018000307-appb-000001
氯酸钠在酸性介质中,反生反应(1)生成二氧化氯气体和氯自由基;甲醇作为还原剂按照反应(3)与氯自由基反应,将氯自由基转化为氯离子,从而减少或避免氯自由基出现反应(2)产生氯气,使得氯离子在整个反应过程中循环使用。但实际生产中由于反应(3)的反应速率不足以使全部氯自由基全部转变为氯离子,因此单独使用甲醇作为还原剂制备的二氧化氯纯度不高。本发明加入双氧水与甲醇一起作为还原剂制备二氧化氯,通过反应(4)双氧水将氯气还原为氯离子,从而大幅度减少氯气的产生,提高了二氧化氯气体的纯度。
本发明方法采用由甲醇、双氧水合理搭配组成的组合还原剂,在强酸、一定的温度、真空条件下在钛容器中与氯酸钠反应连续生产高纯度二氧化氯及副产品中性芒硝,ClO 2气体经冷却后用低温冷冻水吸收,得到具有一定浓度ClO 2溶液,同时对副产品进行过滤洗涤回收。
采用本发明方法生产二氧化氯比单一使用甲醇作为还原剂生产的二氧化氯纯度高,二氧化氯的Cl 2含量降低60-70%,且产生的副产品为中性芒硝,不需 要进行酸性芒硝中性化处理,硫酸消耗量降低14-20%。
附图说明
图1本发明方法的生产工艺流程图。
具体实施方式
下面结合附图及实例对本发明方法作进一步的描述:
本发明方法采用的工艺流程按图1所示:浓硫酸从再沸器出口的文丘里管一侧进入发生器,甲醇经软化水稀释后从文丘里管另一侧进入发生器,双氧水与氯酸钠溶液混合后在循环泵出口管进入再沸器,经再沸器进入发生器。反应液在循环泵的作用下在发生器及循环管之间不断循环,通过再沸器给反应母液加热维持反应所需的温度,发生器与再沸器之间通过循环管连接并形成循环回路。
随着甲醇、双氧水等原料的加入,二氧化氯不断在发生器内产生。二氧化氯和蒸发出来的水蒸气从发生器顶部排出进入间冷器,经间冷器冷却降温后再进入二氧化氯吸收塔(间冷器与二氧化氯吸收塔组合形成冷却、吸收装置),在二氧化氯吸收塔内加入冷冻水吸收二氧化氯形成的二氧化氯水溶液产品。
将发生器内的固含量控制在一定浓度范围,产生的中性芒硝随母液通过芒硝供料泵从发生器底部抽出,送到芒硝过滤装置过滤洗涤后回收,滤出的母液返回发生器。
本发明将甲醇的加入点设计在再沸器出口的文丘里管处加入,将双氧水的加入点设计在再沸器的入口与循环泵的出口之间加入。
实施例1:
将质量浓度为98%的浓硫酸186kg和质量浓度为30%的氯酸钠溶液547kg注入发生器中形成反应母液,在循环泵的作用下在发生器循环管道中循环并使反应母液保持酸度5.8~6.2N和氯酸钠含量234~266g/l。通过再沸器传热给反应母液,保持温度69~73℃。分别将浓度为20%(v/v)的甲醇溶液44.8kg、浓度为30%(w/w)的双氧水溶液16.3kg连续均匀地注入发生器反应产生二氧化氯。发生器保持真空条件,压力为-78~-82KPa(g)。在负压条件下,从发生器排出的气体二氧化氯和水蒸气的混合气体温度为57~68℃,通过间冷器初步冷却降温到38~45℃,气体进入二氧化氯吸收塔塔内,用4~10℃冷冻水喷淋吸收形成二氧化氯水溶液。副产品随反应的进行,在母液中不断形成析出晶体。为保持反应液固体的体积百分比含量为18~23%,在发生器底部用泵抽出含芒硝的母液,并利用过滤装置滤出副产品中性芒硝,过滤后的滤液返回发生器。生产的二氧化氯溶液浓度为9.4g/l,溶液的Cl 2含量为0.08g/l,硫酸消耗量为0.86t/tClO 2
实施例2:
将质量浓度为98%的浓硫酸186kg和质量浓度为30%的氯酸钠溶液547kg注入发生器中形成反应母液,在循环泵的作用下在发生器循环管道中循环并使反应母液保持酸度5.8~6.2N和氯酸钠含量234~266g/l。通过再沸器传热给反应母液,保持温度69~73℃。分别将浓度为20%(v/v)的甲醇溶液46.5kg、浓度为30%(w/w)的双氧水溶液14.3kg连续均匀地注入发生器使反应产生二氧化氯。发生器保持真空条件,压力为-78~-82KPa(g)。在负压条件下,从发生器导出的气体二氧化氯和水蒸气的混合气体温度为57~68℃,通过间冷器初步冷却降温到38~45℃,气体进入二氧化氯吸收塔塔内,用4~10℃冷冻水喷淋吸 收形成二氧化氯水溶液。副产品随反应的进行,在母液中不断形成析出晶体。为保持反应液固体的体积百分比含量为18~23%,在发生器底部用泵抽出含芒硝的母液,并利用过滤装置滤出副产品中性芒硝,过滤后的滤液返回发生器。生产的二氧化氯溶液浓度为9.5g/l,溶液的Cl 2含量为0.09g/l,硫酸消耗量为0.87t/tClO 2
实施例3:
将质量浓度为98%的浓硫酸186kg和质量浓度为30%的氯酸钠溶液547kg注入发生器中形成反应母液,在循环泵的作用下在发生器循环管道中循环并使反应母液保持酸度5.8~6.2N和氯酸钠含量234~266g/l。通过再沸器传热给反应母液,保持温度69~73℃。分别将浓度为20%(v/v)的甲醇溶液45kg、浓度为30%(w/w)的双氧水溶液12.6kg连续均匀地注入发生器使反应产生二氧化氯。发生器保持真空条件,压力为-78~-82KPa(g)。在负压条件下,从发生器导出的气体二氧化氯和水蒸气的混合气体温度为57~68℃,通过间冷器初步冷却降温到38~45℃,气体进入二氧化氯吸收塔塔内,用4~10℃冷冻水喷淋吸收形成二氧化氯水溶液。副产品随反应的进行,在母液中不断形成析出晶体。为保持反应液固体的体积百分比含量为18~23%,在发生器底部用泵抽出含芒硝的母液,并利用过滤装置滤出副产品中性芒硝,过滤后的滤液返回发生器。生产的二氧化氯溶液浓度为9.3g/l,溶液的Cl 2含量为0.07g/l,硫酸消耗量为0.87t/tClO 2

Claims (6)

  1. 一种甲醇与双氧水组合还原制备高纯度二氧化氯的方法,其特征在于:它包括如下操作步骤:
    第一步,首先将浓硫酸、氯酸钠溶液注入发生体系中形成反应母液,并使反应母液维持酸度5.8-6.2N,氯酸钠含量234-266g/l,保持温度69-73℃;所述发生体系由反应器和再沸器经循环管连接构成;
    第二步,然后加入还原剂使反应母液反应产生二氧化氯气体及副产品中性芒硝,所述还原剂是由甲醇与双氧水组成的组合还原剂,该组合还原剂中的甲醇与双氧水按质量百分比的配比是:甲醇60-70%∶双氧水30-40%;
    第三步,将反应产生的二氧化氯气体经冷却后用4-10℃的低温冷冻水吸收,得到二氧化氯水溶液,同时对副产品中性芒硝进行过滤洗涤回收。
  2. 根据权利要求1所述甲醇与双氧水组合还原制备高纯度二氧化氯的方法,其特征在于:第二步中,所述还原剂中的甲醇在加入前,先采用软化水稀释成体积浓度为20%的甲醇溶液,然后将其从再沸器出口的文丘里管加入。
  3. 根据权利要求1或2所述甲醇与双氧水组合还原制备高纯度二氧化氯的方法,其特征在于:第二步中,所述还原剂中的双氧水在加入前,先将其配制为质量浓度为30%的双氧水溶液,然后将其与氯酸钠溶液混合后从再沸器入口处加入。
  4. 根据权利要求1或2所述甲醇与双氧水组合还原制备高纯度二氧化氯的方法,其特征在于:第一步中,所述反应器保持真空,其压力为-78~-82Kpa。
  5. 根据权利要求1或2所述甲醇与双氧水组合还原制备高纯度二氧化氯的方法,其特征在于:第三步中,所述二氧化氯气体从反应器顶部排出,其与 反应器产生的水蒸汽混合的气体温度为57~68℃,经间冷器初步冷却降温到38~45℃,然后进入二氧化氯吸收塔塔内,采用冷冻水喷淋吸收形成二氧化氯水溶液。
  6. 根据权利要求1或2所述甲醇与双氧水组合还原制备高纯度二氧化氯的方法,其特征在于:第二步中,组合还原剂的甲醇与双氧水按质量百分比的优选配比是:甲醇66%∶双氧水34%。
PCT/CN2018/000307 2018-08-30 2018-08-30 一种甲醇与双氧水组合还原制备高纯度二氧化氯的方法 WO2020041916A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2018/000307 WO2020041916A1 (zh) 2018-08-30 2018-08-30 一种甲醇与双氧水组合还原制备高纯度二氧化氯的方法
CN201880005421.XA CN110382409A (zh) 2018-08-30 2018-08-30 一种甲醇与双氧水组合还原制备高纯度二氧化氯的方法
CA3025918A CA3025918A1 (en) 2018-08-30 2018-08-30 A method for preparing high-purity chlorine dioxide by using methanol and hydrogen peroxide as reducing agent
US16/310,812 US20200071166A1 (en) 2018-08-30 2018-08-30 Method for preparing high-purity chlorine dioxide by using methanol and hydrogen peroxide as reducing agent
EP18905887.8A EP3845488A4 (en) 2018-08-30 2018-08-30 PROCESS FOR THE PRODUCTION OF HIGHLY PURE CHLORINE DIOXIDE BY COMBINING METHYL ALCOHOL AND HYDROGEN PEROXIDE AS A REDUCING AGENT
US16/268,408 US20200071165A1 (en) 2018-08-30 2019-02-05 Preparation of high-purity chlorine dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/000307 WO2020041916A1 (zh) 2018-08-30 2018-08-30 一种甲醇与双氧水组合还原制备高纯度二氧化氯的方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/310,812 A-371-Of-International US20200071166A1 (en) 2018-08-30 2018-08-30 Method for preparing high-purity chlorine dioxide by using methanol and hydrogen peroxide as reducing agent
US16/268,408 Continuation-In-Part US20200071165A1 (en) 2018-08-30 2019-02-05 Preparation of high-purity chlorine dioxide

Publications (1)

Publication Number Publication Date
WO2020041916A1 true WO2020041916A1 (zh) 2020-03-05

Family

ID=68243223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/000307 WO2020041916A1 (zh) 2018-08-30 2018-08-30 一种甲醇与双氧水组合还原制备高纯度二氧化氯的方法

Country Status (5)

Country Link
US (2) US20200071166A1 (zh)
EP (1) EP3845488A4 (zh)
CN (1) CN110382409A (zh)
CA (1) CA3025918A1 (zh)
WO (1) WO2020041916A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111167299B (zh) * 2020-03-02 2024-02-27 中晶环境科技股份有限公司 基于液态氧化性离子的烟气脱硝装置及其使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101746731A (zh) * 2009-12-16 2010-06-23 广西博世科环保科技有限公司 采用组合还原剂生产高纯度二氧化氯的方法
CN203938477U (zh) * 2014-06-18 2014-11-12 广西博世科环保科技股份有限公司 真空条件下具有蒸发、反应结晶的二氧化氯发生器
CN204981135U (zh) * 2015-07-22 2016-01-20 广西博世科环保科技股份有限公司 无废酸排放双氧水法二氧化氯发生器
CN105439091A (zh) * 2015-12-02 2016-03-30 广西大学 环保型的双氧水法二氧化氯制备方法及设备
CN106082131A (zh) * 2016-06-02 2016-11-09 四川齐力绿源水处理科技有限公司 液体二氧化氯释放剂及制备方法
CN106241742A (zh) * 2016-08-23 2016-12-21 广西博世科环保科技股份有限公司 一种用于稳定控制甲醇法二氧化氯生产的方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4216195A (en) * 1978-05-19 1980-08-05 Hooker Chemicals & Plastics Corp. Production of chlorine dioxide having low chlorine content
US4406736A (en) * 1979-11-29 1983-09-27 Erco Industries Limited Method of bleaching pulp with an aqueous solution of chlorine dioxide and chlorine followed by a chlorine solution
JPH0621005B2 (ja) * 1989-09-29 1994-03-23 ダイソー株式会社 二酸化塩素の製造法
SE500043C2 (sv) * 1990-08-31 1994-03-28 Eka Nobel Ab Förfarande för kontinuerlig framställning av klordioxid
US5366714A (en) * 1992-06-09 1994-11-22 Sterling Canada Inc. Hydrogen peroxide-based chlorine dioxide process
US5487881A (en) * 1993-02-26 1996-01-30 Eka Nobel Inc. Process of producing chlorine dioxide
AU4742497A (en) * 1996-09-27 1998-04-17 International Paper Company Method for producing chlorine dioxide using methanol and hydrogen peroxide as reducing agents
CA2268173A1 (en) * 1996-09-27 1998-04-02 Timothy R. Hammond Method for producing chlorine dioxide using methanol, chloride, and hydrogen peroxide as reducing agents
NZ520939A (en) * 2000-03-17 2004-07-30 Superior Plus Inc Advanced control strategies for chlorine dioxide generating processes
WO2009079746A1 (en) * 2007-12-26 2009-07-02 Fpinnovations Use of chemical pulp mill steam stripper off gases condensate as reducing agent in chlorine dioxide production
CN101544354A (zh) * 2009-05-06 2009-09-30 广西大学 利用组合bsc还原剂制备二氧化氯的生产方法
WO2010145996A1 (en) * 2009-06-16 2010-12-23 Akzo Nobel N.V. Process for the production of chlorine dioxide
CN101982404B (zh) * 2010-10-26 2012-02-01 山东山大华特科技股份有限公司 二氧化氯溶液制备的设备及方法
CN105752931A (zh) * 2016-05-03 2016-07-13 广西大学 一种生产高纯度二氧化氯的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101746731A (zh) * 2009-12-16 2010-06-23 广西博世科环保科技有限公司 采用组合还原剂生产高纯度二氧化氯的方法
CN203938477U (zh) * 2014-06-18 2014-11-12 广西博世科环保科技股份有限公司 真空条件下具有蒸发、反应结晶的二氧化氯发生器
CN204981135U (zh) * 2015-07-22 2016-01-20 广西博世科环保科技股份有限公司 无废酸排放双氧水法二氧化氯发生器
CN105439091A (zh) * 2015-12-02 2016-03-30 广西大学 环保型的双氧水法二氧化氯制备方法及设备
CN106082131A (zh) * 2016-06-02 2016-11-09 四川齐力绿源水处理科技有限公司 液体二氧化氯释放剂及制备方法
CN106241742A (zh) * 2016-08-23 2016-12-21 广西博世科环保科技股份有限公司 一种用于稳定控制甲醇法二氧化氯生产的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3845488A4 *

Also Published As

Publication number Publication date
CA3025918A1 (en) 2020-02-29
EP3845488A1 (en) 2021-07-07
CN110382409A (zh) 2019-10-25
EP3845488A4 (en) 2021-09-01
US20200071165A1 (en) 2020-03-05
US20200071166A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
CN105752931A (zh) 一种生产高纯度二氧化氯的方法
US10266406B1 (en) Producing high-purity chlorine dioxide gas
CN101746731B (zh) 采用组合还原剂生产高纯度二氧化氯的方法
CA2085682A1 (en) Integrated procedure for high yield production of chlorine dioxide
CN113912085A (zh) 一种溴化钠的生产方法
CN114477100A (zh) 利用硫酰氯氟化法制备硫酰氟的方法
WO2020041916A1 (zh) 一种甲醇与双氧水组合还原制备高纯度二氧化氯的方法
CN208454495U (zh) 一种生产高纯度二氧化氯气体的装置
CN103641748A (zh) 一种循环利用副产盐酸制备甲基磺酸的方法
CN113321186B (zh) 一种过氧化钙在硫酸氢钠溶液环境下还原氯酸钠生产二氧化氯的方法
RU2011147711A (ru) Получение диоксида хлора
CN106829866B (zh) 一种采用卤水生产盐酸的工艺
US9776163B1 (en) Method and system for the integral chlorine dioxide production with relatively independent sodium chlorate electrolytic production and chlorine dioxide production
CN105439091B (zh) 环保型的双氧水法二氧化氯制备方法及设备
JPH0621005B2 (ja) 二酸化塩素の製造法
CN101982404B (zh) 二氧化氯溶液制备的设备及方法
ES2557435T3 (es) Procedimiento para la producción de dióxido de cloro
CN107930366A (zh) 氯化亚砜综合尾气治理的工艺
CN210366984U (zh) 一种塔式连续法生产次氯酸钠的系统
CN107673965B (zh) 一种氧化法生产乙醛酸的工艺
CN114100323A (zh) 一种固体光气尾气分离工艺及设备
CA2946017A1 (en) A method for hydrogen peroxide based chlorine dioxide production process with a vertical generator
CN204981135U (zh) 无废酸排放双氧水法二氧化氯发生器
CN209957373U (zh) 一种基于氯酸和双氧水生产亚氯酸钠的设备
CN103552986B (zh) 半连续式稳定二氧化氯消毒液生产方法及其生产系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3025918

Country of ref document: CA

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018905887

Country of ref document: EP

Effective date: 20210330