WO2020040598A1 - 식물 재배용 광원 - Google Patents

식물 재배용 광원 Download PDF

Info

Publication number
WO2020040598A1
WO2020040598A1 PCT/KR2019/010772 KR2019010772W WO2020040598A1 WO 2020040598 A1 WO2020040598 A1 WO 2020040598A1 KR 2019010772 W KR2019010772 W KR 2019010772W WO 2020040598 A1 WO2020040598 A1 WO 2020040598A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
plant
section
light source
plant cultivation
Prior art date
Application number
PCT/KR2019/010772
Other languages
English (en)
French (fr)
Inventor
김세령
고상민
김진원
송현수
Original Assignee
서울바이오시스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울바이오시스 주식회사 filed Critical 서울바이오시스 주식회사
Priority to JP2021510160A priority Critical patent/JP7423605B2/ja
Priority to CN201980003221.5A priority patent/CN111182786A/zh
Priority to KR1020217005308A priority patent/KR20210037687A/ko
Priority to EP19851004.2A priority patent/EP3841869A4/en
Publication of WO2020040598A1 publication Critical patent/WO2020040598A1/ko
Priority to JP2024004974A priority patent/JP2024038403A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/16Controlling the light source by timing means
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/20Forcing-frames; Lights, i.e. glass panels covering the forcing-frames
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/249Lighting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/003Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/10Outdoor lighting
    • F21W2131/109Outdoor lighting of gardens
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/28Materials of the light emitting region containing only elements of Group II and Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Definitions

  • the present invention relates to a light source for plant cultivation, and more particularly, to a light source for emitting light for increasing the content of an effective substance in asteraceae.
  • the present invention is to provide a light source for emitting light that can increase the content of the effective substance while maintaining the original color of the plant in the asteraceae.
  • the present invention relates to a light source for plant cultivation which is turned on or off according to the light cycle and the dark cycle of a plant, wherein the light source for plant cultivation includes a first semiconductor layer, a second semiconductor layer, and an active layer, and the active layer comprises: 1 is provided on the semiconductor layer to emit light of a specific wavelength by the band gap difference of the energy band according to the material of the active layer, and some of the bright period is called the first section and the remaining section is called the second section In this case, the first section and the second section are provided alternately, and provide light of different wavelengths to the plant for the first and second sections, resulting in a higher content of the active substance in the plant. .
  • the plant cultivation light source includes a first light source for emitting the first light, and a second light source for emitting the second light, one of the first and second light source It may be turned on in at least one of the first and second sections.
  • the second light may be provided to the plant in a flashing manner.
  • the first light is light in the visible light wavelength band
  • the second light is light in the ultraviolet wavelength band
  • the first light is provided to the plant in the first section
  • the second light may be provided to the plant in the second section.
  • the second light may be light in the ultraviolet B wavelength band. In one embodiment of the present invention, the second light may have a wavelength band of about 280nm to about 315nm.
  • the total cumulative energy amount of the second light irradiated to the plant may be 2.304 kJ / m 2 or less.
  • the first section and the second section are repeated sequentially within the clear period, the first and second sections adjacent to each other may form one repetition period.
  • the light provided in the second section may not be provided in the first section.
  • the second section is harvested It may be provided in the light cycle from before a predetermined date until the harvest.
  • the active substance may be at least one of chlorophyll, flavonol, anthocyanin, sesquiterpene lactone, and phenolic compound.
  • One embodiment of the present invention includes a plant cultivation apparatus employing the light source for plant cultivation.
  • Plant cultivation apparatus according to an embodiment of the present invention is provided in the main body and a light source for irradiating light to the plant; And a control unit for controlling the light source, wherein the light source is turned on or off according to the bright period and the dark period of the plant, wherein some of the bright periods are called a first section and the remaining sections are called a second section.
  • the first and second sections are alternately provided and provide light to the plant at different wavelengths for the first and second sections, thereby increasing the amount of active substance in the plant. It can increase.
  • According to one embodiment of the invention provides a light source for emitting light that can increase the content of the active substance while maintaining the original color of the plant in the asteraceae.
  • 1A is a cross-sectional view of a chicory plant growing device according to an embodiment of the present invention.
  • FIG. 1B schematically illustrates light emitting diodes used in the first and second light source units.
  • FIG. 2 is a cross-sectional view of a chicory plant growing device according to an embodiment of the present invention.
  • 3A and 3B illustrate growth conditions of chicory plants according to Comparative Examples and Experimental Examples.
  • Figure 4a is a photograph of the appearance of the blue lettuce lettuce according to Comparative Example and Experimental Example 1
  • Figure 4b is a photograph of the appearance of the blue lettuce lettuce according to Comparative Example and Experimental Example 2.
  • 5a to 5d are graphs showing the contents of the effective substances after the harvest of Comparative Example and Experimental Example 2 in blue lettuce lettuce.
  • 6a to 6c are graphs showing the contents of the effective substances after the harvest of Comparative Example and Experimental Example 2 in different chicory plants.
  • 7a to 7f are photographs taken to confirm the color of the appearance after harvesting of Comparative Example and Experimental Example 2 in chicory plants.
  • Figures 8a and 8b shows the growth conditions of the decay lettuce plant.
  • 9A to 9D are graphs showing the contents of the active substance and the weight of the resultant after harvesting of Comparative Examples and Experimental Examples 1 to 3 in red apron lettuce.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • Singular expressions include plural expressions unless the context clearly indicates otherwise.
  • the present invention relates to a light source used for plant cultivation and a cultivation apparatus including the same.
  • Plants make photosynthesis using light in the visible wavelength range and obtain energy through photosynthesis. Plant photosynthesis does not occur to the same extent in all wavelength bands.
  • the light of the wavelength band that plants use for photosynthesis in sunlight is called PAR (Photosynthetic Active Radiation) and occupies a part of the solar spectrum and corresponds to a band of about 400 nanometers to about 700 nanometers.
  • Plant cultivation light source according to an embodiment of the present invention includes the light of the above-described PAR wavelength band to provide light suitable for photosynthesis of the plant, the component that can have a positive effect on the health of people or plants when ingested (hereinafter In order to increase the content of the active ingredient)) to provide the light of the wavelength band.
  • the active ingredient here is a substance known to be necessary for humans, for example, a substance such as chlorophyll, flavonol, anthocyanin, sesquiterpene lactone, phenolic compound and the like.
  • the type of the plant to which the light source according to the embodiment of the present invention is applied may be variously changed.
  • the photosynthetic efficiency of the light emitted from the light source or the degree of increase in the content of the active ingredient may vary depending on the species.
  • a light source according to an embodiment of the present invention can be applied to plants of the Asteraceae.
  • it can be applied to the plant of the chicory family of the asteraceae.
  • the type of plant according to an embodiment of the present invention is not limited thereto, and may be applied to other species.
  • the plant to which the light source is applied includes an edible asteraceae plant, among which, in particular, the chicory plant.
  • the plant of the chicory family may be at least one of red apricot lettuce, red axilla lettuce, blue apricot lettuce, red aloe lettuce, butterhead lettuce, romaine lettuce, chicory, dandelion chicory and red cherries.
  • FIG. 1A is a cross-sectional view of a plant cultivation apparatus including a light source according to an embodiment of the present invention.
  • the plant cultivation apparatus 10 of the present invention includes a main body 100 and a light source.
  • the light source includes first and second light source units 200 and 300.
  • the main body 100 may include an empty space in which the seeds 400 of the chicory family are provided therein, and may be provided in the form of a box that prevents external light.
  • the seeds of the chicory family may mean at least one of red lettuce lettuce, red lettuce lettuce, blue lettuce lettuce, red roll lettuce, butterhead lettuce, romaine lettuce, chicory, dandelion chicory, red cherries have.
  • the main body 100 provides an environment in which the seeds 400 provided therein may grow.
  • the main body 100 may be provided with a size that can accommodate the plurality of seeds 400 even when they are grown.
  • the size of the main body 100 may vary depending on the use of the plant cultivation apparatus 10. For example, when the plant cultivation apparatus 10 is used for small-scale plant cultivation at home, the size of the main body 100 may be relatively small. When the plant cultivation apparatus 10 is used to grow and sell plants commercially, the size of the main body 100 may be relatively large.
  • the main body 100 may block the light so that the light outside the main body 100 does not flow into the main body 100.
  • the interior of the body 100 may be provided with a dark room environment isolated from the outside. Accordingly, it is possible to prevent the external light from being irradiated to the seed 400 provided inside the main body 100 unnecessarily.
  • the main body 100 may prevent the external visible light from being irradiated to the seed 400.
  • the body 100 may be designed to be partially opened to receive external light as it is.
  • a photocatalyst may be applied to the inner surface of the main body 100.
  • the photocatalyst may receive light emitted from the light source unit 200 to activate the photocatalytic reaction. Accordingly, even when the inside of the main body 100 is maintained in a dark dark environment, it is possible to prevent the growth of bacteria or mold inside the main body 100.
  • the photocatalyst material for performing this function is at least one selected from titanium dioxide (TiO 2 ), zirconia (ZrO 2 ), zinc oxide (ZnO), tungsten oxide (WO 3 ), zinc oxide (ZnO), tin oxide (SnO 2 ). It can be one.
  • the main body 100 may include a growing zone 120 in which chicory plants are grown.
  • the growing table 120 may support the seeds 400 and provide nutrients for the seeds 400 to grow. Therefore, the growing zone 120 may include a medium (Culture Medium) required for the seed 400 to grow, and the medium may include potassium (K), calcium (Ca), magnesium (Mg), sodium (Na), and iron ( It may be a soil containing an inorganic material such as Fe).
  • the growing table 120 may thus be provided in a form including a medium and a container for receiving the medium.
  • the container may be provided on at least one side, for example in the form of a box with the top exposed.
  • the medium and seeds 400 may be provided inside the box-shaped container. Seeds 400 may be provided in a form buried in the medium, or may be provided on the surface of the medium depending on the type.
  • the size and shape of the cultivation stand 120 may vary according to the shape of the main body 100 and the provision forms of the first light source unit 200 and the second light source unit 300.
  • the size and shape of the growing table 120 may be configured such that the seeds 400 provided on the growing table 120 fall within an irradiation range of light emitted from the first light source unit 200 and the second light source unit 300. .
  • the body 100 is provided with a moisture supply device 110 for supplying moisture to the seeds.
  • the water supply device 110 may be configured to be provided on the top of the main body 100 to spray water onto the growing zone 120 provided at the bottom of the main body 100.
  • the shape of the water supply device 110 is not limited to the above-described one, it is possible to provide a water supply device 110 of various forms according to the shape of the main body 100 and the arrangement of the growing table 120. .
  • One or more moisture supply devices 110 may be provided.
  • the number of moisture supply devices 110 may vary depending on the size of the body 100. For example, in the case of the home plant cultivation apparatus 10 having a relatively small size, since the main body 100 is small in size, one moisture supply apparatus 110 may be provided. On the contrary, in the case of a relatively large commercial plant cultivation apparatus 10, since the size of the main body 100 is large, a plurality of moisture supply apparatuses 110 may be provided. However, the number of the water supply devices is not limited thereto and may be provided at various locations in various numbers.
  • the water supply device 110 may be connected to a water bath provided in the main body 100 or a faucet outside the main body 100.
  • the water supply device 110 may further include a filtration device such that pollutants suspended in water are not provided to the seeds 400.
  • the filtering device may include a filter such as activated carbon, a nonwoven fabric, and thus, the water that has passed through the filtering device may be purified.
  • the filtering device may further include a light irradiation filter in some cases, the light irradiation filter may irradiate water with ultraviolet rays to remove bacteria, bacteria, mold spores, etc. present in the water. Since the water supply device 110 includes the above-described filtration devices, even when the water is recycled or rainwater is used for cultivation, the body 100 and the seeds 400 may not be contaminated.
  • the water provided by the water supply device 110 may be provided only by water itself (for example, purified water) without a separate nutrient, but is not limited thereto and may include nutrients necessary for the growth of chicory plants.
  • water includes potassium (K), calcium (Ca), magnesium (Mg), sodium (Na), iron (Fe), and other materials such as nitrate, phosphate, sulfate, Chloride (Cl) and the like.
  • Sachs liquid, Knop liquid, Hoagland liquid, Hewitt liquid, and the like may be supplied from the water supply device 110.
  • the first light source unit 200 irradiates the seeds 400 with light of a first wavelength band.
  • the seeds 400 may grow by being irradiated with light in a first wavelength band.
  • the first wavelength band emitted by the first light source unit 200 may be a visible light wavelength band. Accordingly, the seeds 400 may receive photosynthetic light in the first wavelength band emitted from the first light source unit 200. Plants may grow from the seeds 400 by photosynthesis.
  • the first light source unit 200 may include one or a plurality of light emitting diodes to emit light in the visible light wavelength band.
  • the at least one light emitting diode described above may be a light emitting diode that emits white light, or may be a light emitting diode that emits color light in various visible rays.
  • the first light source unit 200 may include a plurality of light emitting diodes, the plurality of light emitting diodes may emit light having different wavelength bands, respectively.
  • the first light source unit 200 may emit light of an infrared (Infra-Red) or near infrared (Near Infra-Red) wavelength band in some cases.
  • the plurality of light emitting diodes may be, for example, a light emitting diode emitting red light, a light emitting diode emitting blue light, and a green light.
  • a light emitting diode emitting the final white light can be realized.
  • a light emitting diode emitting red light and a light emitting diode emitting blue light may be included without a light emitting diode emitting green light.
  • the chicory plant can actively perform photosynthesis by receiving red light and blue light emitted from the above-described light emitting diodes.
  • red light may promote the photosynthesis of the plant to promote the growth of the plant from the seed 400
  • blue light may form the leaves of the plant from the seed 400, and induce the flowering of the plant.
  • the first light source unit 200 may include a light emitting diode emitting green light. The light emitting diode including green light can increase the photosynthetic efficiency of the plant.
  • the composition ratio of the light emitting diodes may vary depending on the wavelength. For example, light emitting diodes emitting red and blue light may be provided less than light emitting diodes emitting green light. The ratio of the light emitting diodes emitting the red light, the blue light, and the green light may be determined according to the type of the seed 400. For example, the ratio of cryptochrome (blue light receptor) and phytochrome (red light receptor) may be determined. The composition ratio can vary. Alternatively, light emitting diodes emitting light of each wavelength band may be provided in equal numbers, and the light emitting diodes may be driven at different ratios according to the type of plant.
  • the light emitting diodes provided to the first light source unit 200 may be used by mixing a red light emitting diode, a white light emitting diode, and a blue light emitting diode.
  • the first light source unit 200 may include a red light emitting diode, a white light emitting diode, and a blue light emitting diode in a ratio of 12:10:32, respectively.
  • the first light source unit 200 is disposed at a position capable of providing light to the seeds 400.
  • the first light source unit 200 may be provided on an inner wall of an upper side or a side of the inner space of the main body 100.
  • the first light source unit 200 is provided on the upper side of the main body 100, and light may be irradiated to the seeds 400 provided on the lower side of the main body 100.
  • the position of the first light source unit 200 may be determined in consideration of the light irradiation angle by the first light source unit 200 and the position of the growing zone 120 provided with the seeds 400.
  • the first light source unit 200 may have a waterproof structure. Accordingly, even if water splashes on the first light source unit 200, the first light source unit 200 may not be broken.
  • the second light source 300 emits light of the second wavelength band toward the seed 400.
  • the second wavelength band is different from the first wavelength band and may be an ultraviolet wavelength band of about 250 nm to about 380 nm.
  • the second wavelength band may correspond to at least one wavelength band of light of UV-A, UV-B, and UV-C wavelength band.
  • the second light source 300 may emit light in the wavelength band of about 280nm to about 315nm.
  • the second light source unit 300 may emit light in a 285 nm wavelength band.
  • the second light source unit 300 may include at least one light emitting diode that emits light in the above-described wavelength band. A plurality of light emitting diodes included in the second light source 300 or the second light source 300 may be provided.
  • the plurality of light emitting diodes may emit light having different wavelengths.
  • some of the second light source 300 or the light emitting diode emits light having a wavelength of about 285 nm, and another second light source 300 or the light emitting diode configures the second light source 300 to emit light having a wavelength of about 295 nm. can do.
  • the second light source unit 300 is for changing the content of the seed 400 and the active ingredient of the plant provided from the seed 400 by irradiating light of the ultraviolet wavelength band to the chicory plant. By irradiating the light emitted from the second light source unit 300 to the chicory plant for a predetermined time, the content of the active ingredient of the seeds 400 and the chicory plant is not affected, without affecting the growth of the seeds 400. You can change it.
  • the second light source unit 300 may have a waterproof structure. Accordingly, even if water splashes on the second light source 300, the second light source 300 may not be broken.
  • a control unit (not shown) for controlling the operation of the first light source unit 200 and the second light source unit 300 is wired to the first and / or second light source unit 200, 300. Or wirelessly connected.
  • the control unit simultaneously turns on / off the first light source unit 200 and / or the second light source unit 300 so that the first light source unit 200 and the second light source unit 300 emit light with a predetermined intensity in a predetermined section. Can be controlled individually
  • the controller may control whether the first light source unit 200 and the second light source unit 300 operate according to a pre-set process or according to a user input. For example, the controller sequentially disables the first and second light source units 200 and 300 for a first time, operates the first light source unit 200 for a second time, and operates the third light source for a third time.
  • the second light source 300 may be operated.
  • the user may manually input the length of the first time to the third time, wherein the intensity of the light of the first and / or second light source units 200 and 300 is manually input.
  • control unit may be connected to the water supply device in addition to the first and / or second light source units 200 and 300.
  • the controller may control the amount of moisture provided through the moisture supply device, the time at which the moisture is provided, and the like.
  • the controller may supply moisture to the seed 400 at a predetermined time interval without the user's manipulation.
  • the interval for supplying moisture to the seed 400 may vary depending on the type of the seed 400. In the case of chicory plants that require a lot of water to grow, they can be hydrated at relatively short intervals, and in the case of chicory plants that require less water to grow, they can be hydrated at relatively long intervals.
  • FIG. 1B schematically illustrates light emitting diodes used in the first and second light source units.
  • the light emitting diode includes a light emitting structure including a first semiconductor layer 223, an active layer 225, and a second semiconductor layer 227, a first electrode 221 and a second electrode connected to the light emitting structure. It may include an electrode 229.
  • the first semiconductor layer 223 is a semiconductor layer doped with the first conductivity type dopant.
  • the first conductivity type dopant may be a p-type dopant.
  • the first conductivity type dopant may be Mg, Zn, Ca, Sr, Ba, or the like.
  • the first semiconductor layer 223 may include a nitride-based semiconductor material.
  • the material of the first semiconductor layer 223 may be GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, or the like.
  • the active layer 225 is provided on the first semiconductor layer 223 and corresponds to the light emitting layer.
  • electrons (or holes) injected through the first semiconductor layer 223 and holes (or electrons) injected through the second semiconductor layer 227 meet each other to form a material of the active layer 225.
  • the layer emits light due to the band gap difference of the energy band.
  • the active layer 225 may be implemented with a compound semiconductor.
  • the active layer 225 may be implemented by at least one of compound semiconductors of Groups 3-5 or 2-6, for example.
  • the second semiconductor layer 227 is provided on the active layer 225.
  • the second semiconductor layer 227 is a semiconductor layer having a second conductivity type dopant having a polarity opposite to that of the first conductivity type dopant.
  • the second conductivity type dopant may be an n type dopant, and the second conductivity type dopant may include, for example, Si, Ge, Se, Te, O, C, or the like.
  • the second semiconductor layer 227 may comprise a nitride-based semiconductor material.
  • the material of the second semiconductor layer 227 include GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, and the like.
  • the first electrode 221 and the first electrode 229 may be provided in various forms so as to be connected to the first semiconductor layer 223 and the second semiconductor layer 227, respectively.
  • the first electrode 221 is provided below the first semiconductor layer 223 and the second electrode 229 is provided above the second semiconductor layer 227, the present invention is not limited thereto. no.
  • the first electrode 221 and the second electrode 229 are, for example, Al, Ti, Cr, Ni, Au, Ag, Ti, Sn, Ni, Cr, W, Cu It may be made of various metals such as or alloys thereof.
  • the first electrode 221 and the second electrode 229 may be formed in a single layer or multiple layers.
  • the light emitting diode is provided in a vertical type, but the light emitting diode does not necessarily need to be a vertical type, and may be provided in another type as long as it conforms to the concept of the present invention.
  • the following effects can be obtained by using a light emitting diode instead of a conventional general lamp as a light source to apply light to a sample.
  • the plant may be provided with light having a specific wavelength compared to light emitted from an existing general lamp (for example, an existing UV lamp).
  • the light emitted from the existing lamp has a broad spectrum in a wide area compared with the light emitted from the light emitting diode. Accordingly, in the case of the conventional UV lamp, it is not easy to separate only the light of a part of the wavelength band of the emitted light.
  • the light emitted from the light emitting diodes has a sharp peak at a specific wavelength and provides light of a specific wavelength having a very narrow half-width in comparison with the light from a conventional lamp. Accordingly, it is easy to select light of a specific wavelength and only the light of the selected specific wavelength can be provided to the sample.
  • the irradiation time may also be set in a wide range, but in the case of a light emitting diode, it is possible to provide light required for a sample within a definite time for a relatively short time.
  • the light emitting diode can provide a clear light irradiation amount due to a relatively narrow range of wavelengths, a narrow range of light amount, and a narrow range of irradiation time.
  • the content of the active ingredient may be changed by irradiating chrysanthemum plants, for example chicory plants, with light under predetermined conditions, using the first and second light source units.
  • Examples of the active ingredient whose content is changed in the plant by light irradiated from the first and second light source units include chlorophyll, flavonol, anthocyanin, sesquiterpene lactone, and phenolic compounds.
  • Chlorophyll is a photosynthetic pigment of green vegetables and is known to help prevent bad smell and constipation from the mouth.
  • Flavonols are antioxidants, such as quercetin, camphorol and myricetin. Quercetin is an antioxidant that has a high antioxidant capacity, and camphorol is known to prevent cancer cell proliferation by strengthening immunity, and myricetin is known to prevent cardiovascular disease by inhibiting fat accumulation.
  • Anthocyanins are representative antioxidants that have the effect of preventing aging by removing free radicals in the body. Anthocyanins also help to resynthesize the pigment called rhodopsin in the eye retina, which helps to prevent eye fatigue, decreased vision, and cataracts.
  • Sesquiterpene compounds are a kind of terpenoids (terpenoids), among which sesquiterpene lactones having a lactone structure have antitumor activity It is known to function as a cytotoxic, antimicrobial action.
  • lactucin one of the sesquiterpene lactones contained in lettuce, has an improvement effect on sleep disorders.
  • sesquiterpene lactones are known to have relatively good medical value in terms of resistance to microbial pathogens and the protective treatment of schistosome and antiallergic activity.
  • sesquiterpene lactone when ultraviolet rays are applied under predetermined conditions in the process of growing seeds of the plant of Chicocciaceae, sesquiterpene lactone may be increased or decreased.
  • sesquiterpene lactone When sesquiterpene lactone is increased in the plant, there is an effect of improving sleep disorders, and when the sesquiterpene lactone is reduced in the plant, there is an effect of preventing the phenomenon of falling asleep even when ingesting chicoryaceae.
  • Sesquiterpene lactone is a substance represented by the following Chemical Formula 1, and R1 and R2 may each independently be various types of functional groups.
  • R 1 and R 2 may be, for example, independently of one another, substituted or unsubstituted alkyl, alkoxy, allyl, aryl, having 1 to 18 carbon atoms.
  • sesquiterpene lactone is lactucin (lactucin), lactucopicrin, 8-deoxylactucin, 8-deoxylactucin, picriside A, crepidia Crepidiaside A, lactucin-15-oxalate, lactucopicrin-15-oxalate, 8-dioxylactucin-15-oxalate ( 8-deoxylactucin-15-oxalate), 15-deoxylactucin-8-sulfate, 15-deoxylactucin, 8-deoxylactucin-15- Sulfate (8-deoxylactucin-15-sulfate), and 15- (4-hydroxyphenylacetyl) -lactucin-8-sulfate (15- (4-hydroxyphenylacetyl) -lactucin-8-sulfate).
  • sesquiterpene lactones according to one embodiment of the present invention may have the following Chemical Formulas 2 to 8.
  • the light irradiated from the second light source unit 300 increases the phenolic compound of the plant grown from the seed 400.
  • the light of the second wavelength band irradiated from the second light source unit 300 activates the secondary metabolism of the plant, thereby increasing the content of the phenolic substance as the secondary metabolite.
  • the light of the second wavelength band gives a DNA-damaging effect on the cells constituting the plant, thereby producing a phenolic substance capable of absorbing the light of the wavelength described above. This can be facilitated.
  • Phenolic compounds correspond to antioxidant substances contained in plants grown from seed 400.
  • the phenolic compound may include a material of Formula 9 to Formula 11.
  • the substances of the formulas (9) to (11) correspond to luteolin, chlorogenic acid, and chicoric acid, respectively.
  • chlorogenic acid is a natural compound composed of ester bonds of caffeic acid and quinic acid, and is a biological antioxidant. Chlorogenic acid is known to neutralize the damaging effects of peroxides.
  • each chicory plant in addition to increasing the content of the active substance by irradiating light to asteraceae plants, for example, chicory plants using the first and second light source under predetermined conditions, each chicory plant This has the effect of making the original color of appear.
  • the present invention when using a light source for plant cultivation, it is possible to provide a growth environment suitable for the type of plant, even under conditions in which sunlight is not sufficient or does not provide sunlight.
  • a growth environment that can maintain the original color of the plant can increase the commerciality of the plant.
  • the plants grown in the plant factories have no anthocyanin production, or even very small amounts, and have a problem in that they do not have the color of the original plants.
  • chicory plants, such as red yam are normally red in color, but appear very pale, even if they are not red or grow in sunless plant plants.
  • the consumer can determine that the plant is at fault and, as a result, the marketability is poor.
  • the content of anthocyanin in the active ingredient of the plant by appropriately applying the first light and the second light to the plant, in particular, by applying the second light to the plant within a predetermined period before harvesting Increase significantly, resulting in the plant having a color close to that of the original plant. This leads to an improvement in the merchandise.
  • the light provided to the Asteraceae plant for example, the Chicoaceae plant, may be provided during different sections of light.
  • the interval means a temporal interval.
  • the first light when the light emitted from the first light source unit is called the first light and the light emitted from the second light source unit is called the second light, light corresponding to the first light may be provided in some sections. In the remaining sections except for the section, both the first light and the second light may be provided.
  • the section in which the first light is provided will be described as a first section and the second section in which the first light and the second light are provided. In other words, only the first light source described above may be turned on in the first section, and both the first light source and the second light source described above may be turned on in the second section.
  • the first section or the second section is a section in which the light including the visible light wavelength band is provided and means a predetermined section under bright conditions.
  • the second section corresponds to a shorter period than the first section.
  • the first section and the second section may be arranged in various ways depending on the growth time and harvest time of the plant.
  • the first section may be arranged after planting and before harvesting.
  • the second section may be disposed adjacent to the first section, and may be disposed before the harvest time within the overall schedule. In other words, after planting, the first section may be continued and the second section may be arranged at a time other than the first section before harvesting. The plant is then harvested.
  • the second section may be provided between the first sections over 10 days or less before harvesting.
  • the second section may be provided between the first sections over several days.
  • the second light total cumulative dose provided for example, may be 4.032 kJ / m 2, or 2.880 kJ / m may be 2, or 2.304 kJ / m 2 can be.
  • the plants may be grown under alternating light and dark cycles for about 20 days after planting. That is, the first section and the second section are sequentially repeated within the bright period, and the first and second sections adjacent to each other form one repeating period. In the repetition period, the light provided in the second section is not provided in the first section.
  • the light cycle can only take place in the first section. Then, over about 7 days from the 15th to the 20th day after planting of the plant (that is, from the 24th to the 30th day after sowing), the light cycle may be composed of alternately arranged first and second sections. That is, the first section and the second section are sequentially repeated within the bright period. In other words, the irradiation of light is repeated at a cycle of 10 minutes per second, and the second light has a rest for 9 minutes after being irradiated for 1 minute, and this cycle is repeated continuously for a light period.
  • the cumulative energy amount of the second light irradiated to the plant during the second period may be about 0.58 kJ / m 2 , the total cumulative energy amount accumulated until the number of seeds harvested is about 4.03k kJ / m 2.
  • the chicory plant growing device in a simple form according to an embodiment of the present invention has been described.
  • the chicory plant growing device according to an embodiment of the present invention can be used for commercial chicory plant production, and will look more closely at another type of chicory plant growing device for use in commercial chicory plant production. I want to see.
  • FIG. 2 is a cross-sectional view of a chicory plant growing device according to an embodiment of the present invention.
  • Plant cultivation device 10 is not only a home or personal cultivation device for growing a relatively small amount of chicory plants, but also a large factory for obtaining a large amount of chicory plants, that is, a plant production plant It can be operated in the form. Accordingly, the plant cultivation apparatus 10 may include a plurality of cultivation zones 120, a first light source unit 200, a second light source unit 300, and a water supply device (not shown).
  • the plurality of growing zones 120, the first light source unit 200, and the second light source unit 300 may constitute a plurality of zones.
  • the body 100 may be provided in the form of a structure including several compartments.
  • each zone included in the main body 100 may be operated independently of each other.
  • the first light source unit 200 provided in some zones may emit more blue light than the red light
  • the first light source unit 200 provided in other zones may emit more red light than the blue light.
  • each zone of the main body 100 may be operated differently from each other in time. For example, in some zones light of the first wavelength band may be irradiated from the first light source 200 to grow the plant 401, and in other zones, the content of the effective substance in the plant 401 may be increased or decreased. In order to emit light of the second wavelength band from the second light source 300.
  • Each zone included in the main body 100 may constitute a hermetically sealed dark room to be operated independently as described above. Accordingly, the light emitted from the first light source unit 200 and / or the second light source unit 300 provided in any zone may not affect other zones.
  • the growing zone 120 provided in the main body 100 may also include different media depending on the type of the plant 401. Therefore, it is possible to provide a customized growth environment for each type of plant 401.
  • the growing zone 120 may be separated from the main body 100. Therefore, when the plant 401 growing on the some cultivation stage 120 reaches the harvesting stage, the user is provided with the cultivation stage provided with the completed plant 401 without affecting the entire plant cultivation apparatus 10. Only 120 may be separated from the main body 100.
  • the main body 100 may further include a water supply device, and the water supply device may be provided on a surface where the main body 100 and the growing stand 120 are in contact with each other, so that the medium is directly included in the medium included in the growing stand 120. Water can be supplied. Accordingly, unlike the spray-type water supply device, even when the cultivation zone 120 is stacked, it is possible to supply water without affecting other cultivation zones 120.
  • the first light source unit 200 may be provided in plural numbers according to the shape of the growing table 120. As described above, the first light source unit 200 may include a plurality of light emitting diodes emitting light having different wavelengths. The above-described light emitting diodes may be provided in the first light source unit 200 at the same ratio or at different ratios. Can be. When the light emitting diodes emitting light having different wavelengths are provided in the same ratio in the first light source unit 200, the first wavelength band may be adjusted by the control unit according to the type of the plant 401. Accordingly, it is possible to provide a growth environment suitable for the type of plant 401.
  • a plurality of second light source 300 may also be provided.
  • the plurality of second light source units 300 may be provided in different areas in the main body 100 and may be driven independently. Accordingly, the light of the second wavelength band can be irradiated only to the plant 401 which has completed growth and is in the step of increasing or decreasing the content of the effective substance.
  • a variety of sensors may be additionally disposed in the control unit in the plant cultivation apparatus operating in the form of a plant production plant, and the control unit may be a sensor.
  • Receiving the data by the data can control the first and second light source unit and the moisture supply device, or the like as a whole or individually.
  • a cultivation device equipped with such a plant cultivation system may transmit or receive data directly or remotely at a remote location by wire, wireless, or internet means, and through a separate display, various sensors, first and second light source units, and moisture. It is also possible to display data from the supply device. After reviewing the data, the user may instruct the controller to implement the optimal condition.
  • the plant cultivation apparatus 10 As described above, by using the plant cultivation apparatus 10 according to an embodiment of the present invention it is possible to easily cultivate chicory plants with a change in the content of the effective substance in large quantities. For example, through the cultivation method as in one embodiment of the present invention, it is possible to obtain a large amount of the active substance in a natural state, not synthetic. Active substances obtained in large quantities can be processed in the form of pharmaceuticals, dietary supplements, various seasonings, etc., through separate processing processes. For example, chicory plants with a high content of active substance can be lyophilized at the same time as harvesting so that the state with the highest content of active substance immediately after harvesting is maintained in the final product.
  • Freeze-dried chicory plants may be processed into various forms, for example, powders, or the like, in which only the active substance is extracted through a separate process. Accordingly, the user may directly ingest the chicory plant having a high content of the active substance or in the form of a processed product through a separate processing process.
  • a plurality of plants 401 can be grown and cultivated at the same time, thereby independently providing a growth environment suitable for the type of plant 401. Accordingly, by using the plant cultivation apparatus 10 according to an embodiment of the present invention, it is possible to grow different kinds of plants 401 at the same time.
  • the present invention in the case of using a light source for plant cultivation, it is possible to independently provide a growth environment suitable for the type of plant even under conditions in which sunlight is not sufficient or does not provide sunlight. In addition, it is possible to easily cultivate a plant having the color of the original plant, but a high content of the active substance.
  • Chicoriaceae plants were harvested on the 31st day (grown for 31 days). During the growing period, the temperature was 22 ⁇ 1 °C and the relative humidity was maintained at 70 ⁇ 10%. During the growth period, the first and second light were provided using light emitting diodes.
  • chicory plants were germinated in the cancer cycle for two days after sowing.
  • the seeds of chicory plants were first seeded in a cultivation sponge and germinated in a dark cycle for about 2 days.
  • the first light was irradiated to chicory plants, and the light was irradiated with a light intensity of about 60 umol / m 2 / s PPFD (Photosynthetic Photon Flux Density) in the light cycle. After germination, before planting, only purified water was provided to plants.
  • the sprouts were grown on the deep-flow technique (DFT) hydroponic cultivation system on day 10. After planting, chicory plants were grown in nutrient solutions under light and dark cycles. The nutrient solution was a Hoagland stock solution was used, the pH was maintained at 5.5 to 6.5.
  • DFT deep-flow technique
  • the plants were provided with light cycles and dark cycles in units of 24 hours a day for 20 days after planting, and 16 hours for dark cycles and 8 hours for dark cycles within 24 hours.
  • the first light was provided in the light cycle for 20 days after the formulation, and the second light was not provided. That is, in the case of the comparative example, the post-formation irradiation period was made only in the first section of the light cycle.
  • the first light was irradiated at a light intensity of about 150 umol / m 2 / s PPFD in the light period.
  • Experimental Example 1 the plants were provided with light cycles and dark cycles in units of 24 hours a day for 20 days after planting, and 16 hours for dark cycles and 8 hours for dark cycles within 24 hours a day.
  • the first light was provided during the light cycle for 20 days after settling, and the second light was provided for 6 hours at the start of the light cycle on Day 20 after the set meal.
  • the irradiation period after the formulation was made of only the first section in the light cycle for 19 days, and the second section and the first section in the light cycle for the last 20 days.
  • Experimental Example 1 continuously provided the second light for 6 hours in some sections while continuously providing the first light in the light cycle on the 20th day (30 days after the seeding).
  • the first light was irradiated at a light intensity of about 150 umol / m 2 / s PPFD in the light period, and the cumulative total energy amount of the second light provided during the second period was 2.16 kJ / m 2.
  • Experimental Example 2 the plants were provided with light cycles and dark cycles in units of 24 hours a day for 20 days after planting.
  • the light was irradiated for 1 minute after irradiation for 1 minute in a cycle of 10 minutes per time, and then irradiated with the blinking method of irradiation again.
  • the amount of UV irradiation energy processed per day was 0.576 kJ ⁇ -2.
  • Experimental Example 2 was treated with UV after sowing, the total amount of UV irradiation energy was 4.032 kJ ⁇ -2.
  • Figure 4a is a photograph of the appearance of the blue lettuce lettuce according to Comparative Example and Experimental Example 1
  • Figure 4b is a photograph of the appearance of the blue lettuce lettuce according to Comparative Example and Experimental Example 2.
  • FIG. 4A the left gingiva lettuce is a comparative example and the right gingiva lettuce is equivalent to Experimental Example 1.
  • FIG. 4B the left gingiva lettuce is a comparative example, and the right gingiva lettuce corresponds to Experimental Example 2.
  • FIG. 4A the left gingiva lettuce is a comparative example
  • the right gingiva lettuce corresponds to Experimental Example 2.
  • the cumulative energy amount of the second light is 2.16kJ / m2, although much smaller than the cumulative energy amount of 4.03kJ / m2 of the second light of Experimental Example 2, it can be confirmed that the damage of the appearance was very large. have. This is judged to be due to the continuous irradiation of the second light, and thus it was confirmed that the damage of the appearance was minimized in the case of the blinking irradiation even if the amount of energy was large.
  • 5a to 5d are graphs showing the contents of the effective substances after the harvest of Comparative Example and Experimental Example 2 in blue lettuce lettuce.
  • each active substance is sequentially chlorogenic acid, chlorophyll, flavonoid, and anthocyanin.
  • 6a to 6c are graphs showing the contents of the effective substances after the harvest of Comparative Example and Experimental Example 2 in different chicory plants.
  • chicory, redol lettuce, red axis lettuce, red agar lettuce, and blue romaine were experimented with chicory plants as examples, and in FIG. , Red spinach lettuce and blue romaine were tested as examples.
  • the content of each active substance was measured for chlorophyll, flavonol, and anthocyanin, and the graphs of FIGS. 6A-6C are sequentially for chlorophyll, flavonol, and anthocyanin.
  • 7a to 7f are photographs taken to confirm the color of the appearance after harvesting of Comparative Example and Experimental Example 2 in chicory plants.
  • 7A to 7F are photographs of chicory, redolo lettuce, red axilla lettuce, red agar lettuce, romaine lettuce, and blue agar lettuce among chicory plants in sequence. 7A to 7F, the left side corresponds to the results of Comparative Example of each chicory plant and the right side corresponds to the results of Experiment 2 of each chicory plant.
  • Jeonjuma lettuce was harvested (grown for 31 days) on a total of 31 days. Growth conditions of the red apron lettuce plant according to the following comparison and experimental examples are shown in FIGS. 8A and 8B.
  • a section in which the first light is provided as the first section and a section in which the first light and the second light are provided are displayed as the second section.
  • germ lettuce lettuce was germinated in the dark cycle for two days after sowing.
  • seedling lettuce seeds were first seeded in a cultivation sponge and germinated in a dark cycle for about 2 days.
  • the red light lettuce was irradiated with the first light, and the light was irradiated with a light intensity of about 60 umol / m 2 / s PPFD in the light cycle. After germination, before planting, only purified water was provided to plants.
  • the sprouts were grown on the deep-flow technique (DFT) hydroponic cultivation system on day 10. After fertilization, red juvenile lettuce was grown in nutrient solution under light and dark cycles.
  • the nutrient solution was a Hoagland stock solution was used, the pH was maintained at 5.5 to 6.5.
  • the plants were provided with light cycles and dark cycles in units of 24 hours a day for 20 days after planting, and 16 hours for dark cycles and 8 hours for dark cycles within 24 hours.
  • the first light was provided in the light cycle for 20 days after the formulation, and the second light was not provided. That is, in the case of the comparative example, the post-formation irradiation period was made only in the first section of the light cycle.
  • the first light was irradiated at a light intensity of about 150 umol / m 2 / s PPFD in the light period.
  • Experimental Examples 1 to 3 the plants were provided with light cycles and dark cycles in units of 24 hours per day for 20 days after planting, and 16 hours for dark cycles and 8 hours for dark cycles within 24 hours per day.
  • the second light was flickered to the plants within the bright period. All of the Experimental Examples 1 to 3 had a resting period repeated for a certain time after several minutes of irradiation at a cycle of several minutes, and then irradiated again. Was investigated by the flashing method.
  • Experimental Example 1 was treated with UV after sowing, the total amount of UV irradiation energy was 2.304kJ ⁇ -2.
  • Experiment 2 was treated with UV after sowing, the total amount of UV irradiation energy was 2.880 kJ m-2.
  • Experiment 3 was treated with UV after sowing, the total amount of UV irradiation energy was 4.032 kJ ⁇ -2.
  • 9A to 9D are graphs showing the contents of the active substance and the weight of the resultant after harvesting of Comparative Examples and Experimental Examples 1 to 3 in red apron lettuce.
  • 9A to 9C show the contents of each active substance, which are sequentially chlorogenic acid, chlorophyll, flavonoids, and anthocyanins.
  • Figure 9d shows the bio weight and dry weight of red apron lettuce at harvest.
  • plants were harvested on the 31st day after sowing, and the leaves were transmitted to the optical sensor using a non-destructive analysis device called Dualx.
  • the contents of chlorogenic acid, chlorophyll, flavonol, and anthocyanin were measured in a manner.
  • Figure 9a is a graph of the chlorophyll content
  • Experimental Examples 1, 2, 3 all showed higher values than the comparative example.
  • Experimental Examples 1 and 3 showed similar values, and Experimental Example 2 was higher than Comparative Example and lower than Experimental Example 3, but there was no significant difference from Experimental Example 1.
  • Experimental Examples 1, 2, 3 increased by 28.1%, 18.4% and 38.6%, respectively.
  • Figure 9b is a graph of the flavonol content
  • Experimental Examples 1, 2, 3 all showed higher values than the comparative example and there was no substantial difference between Experimental Examples 1 to 3.
  • Experimental Examples 1, 2, and 3 were increased by 203.7%, 188.9%, and 213.8%, respectively, compared to the comparative examples.
  • Figure 9c is a graph of the anthocyanin content, Experimental Examples 1, 2, 3 all showed higher values than the comparative example and there was no substantial difference between Experimental Examples 1 to 3. Experimental Examples 1, 2, and 3 were increased by 66.9%, 71.2%, and 74.5%, respectively, compared to the comparative examples.
  • Figure 9d is a graph of the bio weight, dry weight, Comparative Example and Experimental Example 1 there was no substantial weight change in both weights.
  • Experimental Example 2 showed no difference in biomass but 16.9% decrease in dry weight.
  • Experimental Example 3 showed lower biomass and dry weight than the comparative example, the biomass was 21.0%, dry weight was reduced by 23.1%.
  • the total cumulative energy amount should not exceed 2.304 kJ ⁇ -2, as in Experimental Example 1, in which the functional material may increase without affecting the biomass and dry weight.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cultivation Of Plants (AREA)

Abstract

본 발명은 식물의 명주기와 암주기에 따라 턴 온 또는 턴 오프되는 식물 재배용 광원에 관한 것으로, 상기 명주기 중 일부 구간을 제1 구간이라고 하고 나머지 구간을 제2 구간이라고 할 때, 상기 제1 구간 및 상기 제2 구간은 교번적으로 제공되고, 상기 제1 및 제2 구간에 대해 서로 다른 파장의 광을 상기 식물에 제공하며, 그 결과 상기 식물 내 유효 물질의 함량이 높아진다.

Description

식물 재배용 광원
본 발명은 식물 재배용 광원에 관한 것으로서, 상세하게는 국화과 식물에 있어서의 유효 물질의 함량을 높이는 광을 출사하는 광원에 관한 것이다.
식물 재배용 조명 기구로서 태양광을 대신하는 다양한 광원들이 개발되어 사용되고 있다. 기존에는 식물 재배용 조명 기구로서 백열등, 형광등 등이 주로 사용되었다. 그러나, 기존의 식물 재배용 조명 기구는 단순히 식물의 광합성만을 위해 소정 파장의 광만 식물에 제공하며, 그외의 추가적인 기능이 없는 것이 대부분이다.
식물은 다양한 스트레스에 저항하는 과정에서 사람에게 유용한 물질들을 합성할 수 있는 바, 사람에게 유용한 물질이 다량 함유된 식물을 재배할 수 있는 광원 및 재배 장치 등이 다양하게 요구된다.
본 발명은 국화과 식물에 있어서의 식물의 원래 컬러를 유지하면서 유효 물질의 함량을 높일 수 있는 광을 출사하는 광원을 제공하기 위한 것이다.
본 발명은 식물의 명주기와 암주기에 따라 턴 온 또는 턴 오프되는 식물 재배용 광원에 관한 것으로, 상기 식물 재배용 광원은 제1 반도체층, 제2 반도체층 및 활성층을 포함하고, 상기 활성층은 상기 제1 반도체층 상에 제공되어 상기 활성층의 형성 물질에 따른 에너지 밴드의 밴드 갭 차이에 의해서 특정 파장의 빛을 방출하고, 상기 명주기 중 일부 구간을 제1 구간이라고 하고 나머지 구간을 제2 구간이라고 할 때, 상기 제1 구간 및 상기 제2 구간은 교번적으로 제공되고, 상기 제1 및 제2 구간에 대해 서로 다른 파장의 광을 상기 식물에 제공하며, 그 결과 상기 식물 내 유효 물질의 함량이 높아진다.
본 발명의 일 실시예에 있어서, 상기 식물 재배용 광원은 상기 제1 광을 출사하는 제1 광원부와, 상기 제2 광을 출사하는 제2 광원부를 포함하며, 상기 제1 및 제2 광원부 중 하나는 상기 제1 및 제2 구간 중 적어도 하나의 구간에서 턴 온될 수 있다.
본 발명의 일 실시예에 있어서, 상기 제2 광은 점멸적으로 상기 식물에 제공될 수 있다.
본 발명의 일 실시예에 있어서, 상기 제1 광은 가시 광선 파장 대역의 광이고, 상기 제2 광은 자외선 파장 대역의 광이며, 상기 제1 구간에서 상기 제1 광이 상기 식물에 제공되고, 상기 제2 구간에서 상기 제2 광이 상기 식물에 제공될 수 있다.
본 발명의 일 실시예에 있어서, 상기 제2 광은 자외선 B 파장 대역의 광일 수 있다. 본 발명의 일 실시예에 있어서, 상기 제2 광은 약 280nm 내지 약 315nm의 파장 대역을 가질 수 있다.
본 발명의 일 실시예에 있어서, 상기 식물에 조사된 상기 제2 광의 총 누적 에너지량은 2.304kJ/m2이하일 수 있다.
본 발명의 일 실시예에 있어서, 상기 제1 구간 및 상기 제2 구간은 명주기 내에서 순차적으로 반복되며, 서로 인접한 상기 제1 및 제2 구간은 하나의 반복 주기를 이룰 수 있다. 본 발명의 일 실시예에 있어서, 상기 반복 주기에 있어서, 상기 제2 구간에서 제공되는 광은 상기 제1 구간에서 제공되지 않을 수 있다.본 발명의 일 실시예에 있어서, 상기 제2 구간은 수확 전 소정 기일 이전부터 수확시까지의 상기 명주기에 제공될 수 있다.
본 발명의 일 실시예에 있어서, 상기 유효 물질은 클로로필, 플라보놀, 안토시아닌, 세스퀴테르펜 락톤, 및 페놀성 화합물 중 적어도 하나일 수 있다.
본 발명의 일 실시예는 상기 식물 재배용 광원이 채용된 식물 재배 장치를 포함한다. 본 발명의 일 실시예에 따른 식물 재배 장치는 상기 본체 내에 제공되며 상기 식물로 광을 조사하는 광원; 및 상기 광원을 제어하는 제어부를 포함하며, 상기 광원은 상기 식물의 명주기와 암주기에 따라 턴 온 또는 턴 오프되며, 상기 명주기 중 일부 구간을 제1 구간이라고 하고 나머지 구간을 제2 구간이라고 할 때, 상기 제1 구간 및 상기 제2 구간은 교번적으로 제공되고, 상기 제1 및 제2 구간에 대해 서로 다른 파장의 광을 상기 식물에 제공하며, 그 결과 상기 식물 내 유효 물질의 함량을 높일 수 있다.
본 발명의 일 실시예에 따르면 국화과 식물에 있어서의 식물의 원래 컬러를 유지하면서도 유효 물질의 함량을 높일 수 있는 광을 출사하는 광원을 제공한다.
도 1a은 본 발명의 일 실시예에 따른 치커리아과 식물 재배 장치의 단면도이다.
도 1b는 제1 및 제2 광원부에 사용되는 발광 다이오드를 개략적으로 도시한 것이다.
도 2는 본 발명의 일 실시예에 따른 치커리아과 식물 재배 장치의 단면도이다.
도 3a 및 도 3b는 비교예 및 실험예에 따른 치커리아과 식물의 생육 조건을 도시한 것이다.
도 4a는 비교예와 실험예 1에 따른 청치마 상추의 외형을 촬영한 사진이며, 도 4b는 비교예와 실험예 2에 따른 청치마 상추의 외형을 촬영한 사진이다.
도 5a 내지 도 5d는 청치마 상추에 있어서 비교예와 실험예 2의 수확 후 유효 물질의 함량을 도시한 그래프이다.
도 6a 내지 도 6c는 다른 치커리아과 식물에 있어서 비교예와 실험예 2의 수확 후 유효 물질의 함량을 도시한 그래프이다.
도 7a 내지 도 7f는 치커리아과 식물에 있어서 비교예와 실험예 2의 수확 후 외형의 컬러를 확인하기 위해 촬영한 사진들이다.
도 8a 및 도 8b는 적치마 상추 식물의 생육 조건을 도시한 것이다.
도 9a 내지 도 9d는 적치마 상추에 있어서 비교예와 실험예 1 내지 3의 수확 후 유효 물질의 함량 및 결과물의 중량을 도시한 그래프이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 위하여 실제보다 확대하여 도시한 것이다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명은 식물 재배시 사용되는 광원 및 이를 포함하는 재배 장치에 관한 것이다.
식물은 가시광선 파장 대역의 광을 이용하여 광합성을 하며, 광합성을 통해 에너지를 얻는다. 식물의 광합성은 모든 파장 대역에서 동일한 정도로 이루어지지는 않는다. 태양광 중 식물이 광합성에 이용하는 파장 대역의 광은 PAR(Photosynthetic Active Radiation)라고 하며, 태양광 스펙트럼의 일부를 차지하며, 약 400 나노미터 내지 약 700나노미터의 대역에 해당한다. 본 발명의 일 실시예에 따른 식물 재배용 광원은 상기한 PAR 파장대역의 광을 포함함으로써 식물의 광합성에 적절한 광을 제공하되, 섭취시 사람 또는 식물의 건강에 긍정적인 영향을 미칠 수 있는 성분(이하에서는 유효 성분이라 칭함)의 함량을 증가시키기 위한 파장 대역의 광도 함께 제공하기 위한 것이다. 여기서 유효 성분은 사람에게 필요하다고 알려진 물질로서, 예를 들어, 클로로필, 플라보놀, 안토시아닌, 세스퀴테르펜 락톤, 페놀성 화합물 등과 같은 물질이다.
본 발명의 일 실시예에 따른 광원이 적용되는 식물의 종류는 다양하게 변경될 수 있다. 다만, 종에 따라 광원으로부터 출사된 광의 광합성 효율이나 상기 유효 성분의 함량 증가 정도 등은 차이가 있을 수 있다. 본 발명의 일 실시예에 따른 광원의 경우 국화과의 식물에 적용될 수 있다. 또한, 본 발명의 일 실시예에 따른 광원의 경우, 국화과의 식물 중 치커리아과의 식물에 적용될 수 있다. 본 발명의 일 실시예에 따른 식물의 종류는 이에만 한정되는 것은 아니며, 다른 종에도 적용될 수 있음은 물론이다. 본 발명의 일 실시예에 있어서, 상기 광원이 적용되는 식물은 식용이 가능한 국화과의 식물을 포함하며, 그 중, 특히 치커리아과 식물을 포함한다. 치커리아과의 식물은 치커리아과의 적치마 상추, 적축면 상추, 청치마 상추, 적롤로 상추, 버터헤드 상추, 로메인상추, 치커리, 민들레치커리, 적치커리 중 적어도 하나일 수 있다.
이하에서는 설명의 편의를 위해 국화과, 특히 치커리아과의 식물에 본 발명의 일 실시예에 따른 광원을 적용한 것을 일 예로 설명한다.
도 1a는 본 발명의 일 실시예에 따른 광원을 포함하는 식물 재배 장치의 단면도이다.
도 1a를 참고하면, 본 발명의 식물 재배 장치(10)는 본체(100), 및 광원을 포함한다. 상기 광원은 제1 및 제2 광원부(200, 300)를 포함한다.
본체(100)는 내부에 치커리아과의 씨앗(400)이 제공될 수 있는 빈 공간을 포함하며, 외부의 광을 막을 수 있는 박스 형태로 제공될 수 있다. 본 발명의 일 실시예에 있어서, 치커리아과의 씨앗은 적치마 상추, 적축면 상추, 청치마상추, 적롤로 상추, 버터헤드 상추, 로메인상추, 치커리, 민들레치커리, 적치커리 중 적어도 하나를 의미할 수 있다.
본체(100)는 내부에 제공된 씨앗(400)이 생장할 수 있는 환경을 제공한다. 본체(100)에는 복수 개의 씨앗들(400)이 제공되어 생장하는 경우에도 이를 수용할 수 있는 크기로 제공될 수 있다. 아울러, 본체(100)의 크기는 식물 재배 장치(10)의 용도에 따라 달라질 수 있다. 예를 들어, 식물 재배 장치(10)가 가정에서 사용하는 소규모 식물 재배에 이용되는 경우 본체(100)의 크기는 상대적으로 작을 수 있다. 식물 재배 장치(10)가 상업적으로 식물을 재배하고 판매하는데 사용되는 경우 본체(100)의 크기는 상대적으로 클 수 있다.
본 발명의 일 실시예에 있어서, 본체(100)는 본체(100) 밖의 광이 본체(100) 내부로 유입되지 않도록 광을 차단할 수 있다. 따라서, 본체(100) 내부는 외부와 격리된 암실 환경이 제공될 수 있다. 이에 따라, 외부의 광이 불필요하게 본체(100) 내부에 제공된 씨앗(400)에 조사되는 것을 막을 수 있다. 특히, 본체(100)는 외부의 가시광선이 씨앗(400)에 조사되는 것을 막을 수 있다. 다만, 경우에 따라서는 본체(100)는 일부가 오픈되어 외부의 광을 그대로 받을 수 있도록 설계될 수도 있다.
본 발명의 일 실시예에 있어서, 본체(100) 내부 표면에는 광 촉매가 도포될 수 있다. 광 촉매는 광원부(200)로부터 조사되는 광을 받아 광 촉매 반응을 활성시킬 수 있다. 이에 따라, 본체(100) 내부가 습기가 많은 암실 환경으로 유지되어도, 본체(100) 내부에서 세균 또는 곰팡이가 증식하는 것을 막을 수 있다. 이러한 기능을 수행하기 위한 광촉매 물질은 이산화 티타늄(TiO2), 지르코니아(ZrO2), 산화 아연(ZnO), 텅스텐 산화물(WO3), 산화아연(ZnO), 산화주석(SnO2) 중에서 선택된 적어도 하나일 수 있다.
본체(100)는 치커리아과 식물이 재배되는 재배대(120)를 포함할 수 있다.
재배대(120) 상에는 치커리아과 식물들의 씨앗들(400)이 제공된다. 재배대(120)는 씨앗(400)을 지지하는 동시에 씨앗(400)이 자랄 수 있는 양분을 제공할 수 있다. 따라서, 재배대(120)는 씨앗(400)이 자라는데 필요한 배지(Culture Medium)를 포함할 수 있으며, 배지는 칼륨(K), 칼슘(Ca), 마그네슘(Mg), 나트륨(Na), 철(Fe) 등의 무기물질을 포함하는 토양일 수 있다.
재배대(120)는 따라서, 배지와 배지를 수용하기 위한 컨테이너(Container)를 포함하는 형태로 제공될 수 있다. 컨테이너는 적어도 일면, 예를 들어 상면이 노출된 박스 형태로 제공될 수 있다. 박스 형태의 컨테이너 내부에는 배지 및 씨앗들(400)이 제공될 수 있다. 씨앗들(400)은 그 종류에 따라 배지 속에 묻힌 형태로 제공되거나, 배지 표면 상에 놓인 형태로 제공될 수 있다.
재배대(120)의 크기와 형태는 본체(100)의 형태 및 제1 광원부(200)와 제2 광원부(300)의 제공 형태에 따라 달라질 수 있다. 재배대(120)의 크기와 형태는 재배대(120) 상에 제공된 씨앗들(400)이 제1 광원부(200) 및 제2 광원부(300)로부터 조사되는 광의 조사 범위 내에 들어오도록 구성될 수 있다.
본체(100) 내에는 씨앗에 수분을 공급하는 수분 공급 장치(110)가 제공된다. 수분 공급 장치(110)는 본체(100) 상단에 제공되어 본체(100) 하단에 제공된 재배대(120) 상에 물을 분사하는 형태로 구성될 수 있다. 다만, 수분 공급 장치(110)의 형태가 상술한 것에 제한되는 것은 아니고, 본체(100)의 형상 및 재배대(120)의 배치 형태에 따라 다양한 형태의 수분 공급 장치(110)를 제공할 수 있다.
수분 공급 장치(110)는 한 개 또는 복수 개 제공될 수 있다. 수분 공급 장치(110)의 개수는 본체(100)의 크기에 따라 달라질 수 있다. 예를 들어, 상대적으로 작은 크기의 가정용 식물 재배 장치(10)의 경우, 본체(100)의 크기가 작기 때문에 수분 공급 장치(110)가 하나 제공될 수 있다. 반대로, 상대적으로 크기가 큰 상업용 식물 재배 장치(10)의 경우, 본체(100)의 크기가 크기 때문에 수분 공급 장치(110)가 여러 개 제공될 수 있다. 그러나, 수분 공급 장치의 개수는 이에 한정되는 것은 아니며 다양한 개수로 다양한 위치에 제공될 수 있다.
수분 공급 장치(110)는 본체(100)에 제공된 수조 또는 본체(100) 외부의 수전에 연결될 수 있다. 아울러, 수분 공급 장치(110)는 물 속에 부유하는 오염 물질이 씨앗들(400)에 제공되지 않도록 여과 장치를 더 포함할 수 있다. 여과 장치는 활성탄, 부직포 등의 필터를 포함할 수 있으며, 이에 따라 여과 장치를 거친 물은 정수된 것일 수 있다. 여과 장치는 경우에 따라 광조사 필터를 더 포함할 수 있는데 광조사 필터는 자외선 등을 물에 조사하여, 물 속에 존재하는 세균, 박테리아, 곰팡이 포자 등을 제거할 수 있다. 수분 공급 장치(110)가 상술한 여과 장치들을 포함함으로써, 물을 재활용하거나 빗물 등을 바로 재배에 사용하는 경우에도 본체(100) 내부 및 씨앗들(400)이 오염될 우려가 없다.
수분 공급 장치(110)에서 제공되는 물은 별도의 양분이 없이 물 자체(예를 들어 정제수)로만 제공될 수도 있으나, 이에 한정되는 것은 아니며, 치커리아과 식물의 생장에 필요한 양분을 포함할 수 있다. 예를 들어, 물에는 포타슘(K), 칼슘(Ca), 마그네슘(Mg), 나트륨(Na), 철(Fe) 등의 물질이나 나이트레이트(Nitrate), 포스페이트(Phosphate), 설페이트(Sulfate), 클로라이드(Cl) 등이 함유될 수 있다. 예를 들어 삭스(Sachs)액, 크놉(Knop)액, 호글랜드((Hoagland)액, 휴위트(Hewitt)액 등이 수분 공급 장치(110)로부터 공급될 수 있다.
제1 광원부(200)는 씨앗들(400)에 제1 파장 대역의 광을 조사한다. 씨앗들(400)은 제1 파장 대역의 광을 조사받아 성장할 수 있다.
제1 광원부(200)가 출사하는 제1 파장 대역은 가시 광선 파장 대역일 수 있다. 이에 따라, 씨앗들(400)은 제1 광원부(200)로부터 출사된 제1 파장 대역의 광을 받아 광합성할 수 있다. 광합성에 의하여 씨앗들(400)로부터 식물이 성장할 수 있다.
제1 광원부(200)는 상술한 것과 같이 가시 광선 파장 대역의 광을 출사하기 위하여 한 개 또는 복수 개의 발광 다이오드를 포함할 수 있다.
상술한 적어도 하나의 발광 다이오드는 백색광을 출사하는 발광 다이오드일 수 있으며, 또는 다양한 가시 광선 내의 컬러 광을 출사하는 발광 다이오드일 수 있다. 예를 들어, 제1 광원부(200)가 복수 개의 발광 다이오드를 포함하는 경우, 복수 개의 발광 다이오드들은 각각 서로 다른 파장 대역의 광을 출사할 수 있다. 본 발명의 일 실시예에 있어서, 제1 광원부(200)는 경우에 따라, 적외선(Infra-Red) 또는 근적외선(Near Infra-Red) 파장 대역의 광을 출사할 수도 있다.
본 발명의 일 실시예에 있어서, 제1 광원부(200)가 복수 개의 발광 다이오드를 포함하는 때, 복수 개의 발광 다이오드들은 예를 들어, 적색광을 출사하는 발광 다이오드와 청색광을 출사하는 발광 다이오드 및 녹색 광을 출사하는 발광 다이오드를 포함함으로써 최종적으로 백색광을 구현할 수 있다. 또는, 녹색광을 출사하는 발광 다이오드 없이, 적색광을 출사하는 발광 다이오드와, 청색 광을 출사하는 발광 다이오드를 포함할 수도 있다.
본 발명의 일 실시예에 있어서, 치커리아과 식물은 상술한 발광 다이오드들로부터 출사되는 적색광과 청색광을 받아 활발하게 광합성을 수행할 수 있다. 이 경우, 특히 적색광은 식물의 광합성을 촉진하여 씨앗(400)으로부터 식물이 성장하는 것을 촉진할 수 있으며, 청색광은 씨앗(400)으로부터 식물의 잎이 형성되고, 식물의 개화를 유도할 수 있다. 제1 광원부(200)는 녹색광을 출사하는 발광 다이오드를 포함할 수 있다. 녹색광을 포함하는 발광 다이오드는 식물의 광합성 효율을 높일 수 있다.
본 발명의 일 실시예에 있어서, 제1 광원부(200)가 상술한 바와 같이 서로 다른 파장의 광을 출사하는 복수 개의 발광 다이오드들을 포함할 때, 발광 다이오드들의 구성 비율은 파장에 따라 다를 수 있다. 예를 들어, 적색광과 청색광을 출사하는 발광 다이오드는 녹색광을 출사하는 발광 다이오드에 비하여 적게 제공될 수 있다. 상술한 적색광, 청색광, 및 녹색광을 출사하는 발광 다이오드의 비율은 씨앗(400)의 종류에 따라 결정될 수 있는데, 예를 들어 청색광 수용체인 크립토크롬(cryptochrome)과 적색광 수용체인 파이토크롬(phytochrome)의 비율에 따라 구성 비율을 달리할 수 있다. 또는 각 파장 대역의 광을 출사하는 발광 다이오드들을 동수로 제공하고, 식물의 종류에 따라 서로 다른 비율로 발광 다이오드들을 구동하는 것도 가능하다.
제1 광원부(200)에 제공된 발광 다이오드들은 특히 특정 파장에서 높은 피크를 갖는 파형을 갖기 때문에, 씨앗(400)의 종류에 맞게 맞춤형 광 조사를 제공하는 것이 가능하다. 이에 따라, 적은 전력으로도 식물을 더 빠르고 크게 생장시킬 수 있다. 본 발명의 일 실시예에 있어서, 제1 광원부(200)을 이루는 발광 다이오드들은 적색 발광 다이오드, 백색 발광 다이오드, 및 청색 발광 다이오드를 혼합하여 사용할 수 있다. 예를 들어, 제1 광원부(200)은 적색 발광 다이오드, 백색 발광 다이오드, 및 청색 발광 다이오드가 각각 12:10:32의 비율로 배치될 수 있다.
제1 광원부(200)는 씨앗들(400)에 광을 제공할 수 있는 위치에 배치된다. 예를 들어, 제1 광원부(200)은 본체(100)의 내부 공간 중 상부측, 또는 측부측의 내벽에 제공될 수 있다. 도면에서는 제1 광원부(200)이 본체(100)의 상부측에 제공된 것이 도시되었으며, 본체(100) 하부측에 제공된 씨앗들(400)에 광을 조사할 수 있다. 제1 광원부(200)의 위치는 제1 광원부(200)에 의한 광 조사각과 씨앗들(400)이 제공된 재배대(120)의 위치를 고려하여 결정될 수 있다.
본 발명의 일 실시예에 있어서, 제1 광원부(200)는 방수 구조를 가질 수 있다. 이에 따라, 제1 광원부(200)에 물이 튀더라도 제1 광원부(200)가 고장날 우려가 없다.
제2 광원부(300)는 씨앗(400)을 향해 제2 파장 대역의 광을 출사한다.
제2 파장 대역은 제1 파장 대역과 상이하며, 약 250nm 내지 약 380nm의 자외선 파장 대역일 수 있다. 본 발명의 일 실시예에 있어서, 제2 파장 대역은 UV-A, UV-B, 및 UV-C 파장대역의 광 중 적어도 어느 하나의 파장 대역에 해당할 수 있다. 본 발명의 일 실시예에 있어서, 제2 광원부(300)는 약 280nm 내지 약 315nm 파장 대역의 광을 출사할 수 있다. 또는 제2 광원부(300)은 285nm 파장 대역의 광을 출사할 수 있다. 이를 위해 제2 광원부(300)는 상술한 파장 대역의 광을 출사하는 적어도 하나의 발광 다이오드를 포함할 수 있다. 제2 광원부(300) 또는 제2 광원부(300)에 포함된 발광 다이오드는 각각 복수 개 제공될 수 있다. 이 경우, 복수 개의 발광 다이오드들은 서로 다른 파장의 광을 출사할 수 있다. 예를 들어, 일부 제2 광원부(300) 또는 발광 다이오드는 약 285nm 파장의 광을 출사하고 다른 제2 광원부(300) 또는 발광 다이오드는 약 295nm 파장의 광을 출사하도록 제2 광원부(300)를 구성할 수 있다.
제2 광원부(300)는 자외선 파장 대역의 광을 치커리아과 식물에 조사함으로써 씨앗(400) 및 씨앗(400)으로부터 제공되는 식물의 유효 성분의 함량을 변경시키기 위한 것이다. 제2 광원부(300)가 출사하는 광을 치커리아과 식물에 소정 정도의 강도로 소정 시간 동안 조사함으로써, 씨앗(400)의 생장에 영향 없이, 씨앗(400) 및 치커리아과 식물의 유효 성분의 함량을 변경시킬 수 있다.
제2 광원부(300)는 방수 구조를 가질 수 있다. 이에 따라, 제2 광원부(300)에 물이 튀더라도 제2 광원부(300)가 고장날 우려가 없다.
본 발명의 일 실시예에 있어서, 상기 제1 및/또는 제2 광원부(200, 300)에는 제1 광원부(200)와 제2 광원부(300)의 동작 여부를 제어하는 제어부(미도시)가 유선 또는 무선으로 연결될 수 있다.
제어부는, 제1 광원부(200)와 제2 광원부(300)를 소정 구간에 소정의 강도로 광을 출사하도록 제1 광원부(200) 및/또는 제2 광원부(300)의 온/오프를 동시에 또는 개별적으로 제어할 수 있다.
본 발명의 일 실시예에 있어서, 제어부는 제1 광원부(200)와 제2 광원부(300)의 동작 여부를 선 셋팅된 프로세스에 따라, 또는 사용자의 입력에 따라 제어할 수 있다. 예를 들어, 제어부는 순차적으로, 제1 시간 동안 상기 제1 및 제2 광원부(200, 300)를 미동작시키고, 제2 시간 동안 상기 제1 광원부(200)를 동작시키고, 제3 시간 동안 상기 제2 광원부(300)를 동작시킬 수 있다. 또는 사용자가 제1 시간 내지 제3 시간의 길이, 이때 제1 및/또는 제2 광원부(200, 300)의 광의 세기 등을 수동으로 입력할 수 있다.
본 발명의 일 실시예에 따르면, 제어부는 제1 및/또는 제2 광원부(200, 300) 이외에, 수분 공급 장치에도 연결될 수 있다. 제어부는 수분 공급 장치를 통해 제공되는 수분의 양이나, 수분이 제공되는 시간 등을 제어할 수 있다.
예를 들어, 제어부는 사용자의 조작 없이도 수분 공급 장치(110)는 기 설정된 시간 간격으로 씨앗(400)에 수분을 공급할 수 있다. 씨앗(400)에 수분을 공급하는 간격은 씨앗(400)의 종류에 따라 달라질 수 있다. 생장에 물을 많이 필요로 하는 치커리아과 식물의 경우 상대적으로 짧은 간격으로 수분을 공급할 수 있고, 생장에 물을 적게 필요로 하는 치커리아과 식물의 경우 상대적으로 긴 간격으로 수분을 공급할 수 있다.
도 1b는 제1 및 제2 광원부에 사용되는 발광 다이오드를 개략적으로 도시한 것이다.
도 1b를 참조하면, 발광 다이오드는 제1 반도체층(223), 활성층(225), 및 제2 반도체층(227)을 포함하는 발광 구조체와, 발광 구조체에 연결된 제1 전극(221) 및 제2 전극(229)를 포함할 수 있다.
제1 반도체층(223)은 제1 도전형 도펀트가 도핑된 반도체 층이다. 제1 도전형 도펀트는 p형 도펀트일 수 있다. 제1 도전형 도펀트는 Mg, Zn, Ca, Sr, Ba 등일 수 있다. 본 발명의 일 실시예에 있어서, 제1 반도체층(223)은 질화물계 반도체 재료를 포함할 수 있다. 본 발명의 일 실시예에 있어서, 제1 반도체층(223)의 재료로는 GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN 등을 들 수 있다.
활성층(225)은 제1 반도체층(223) 상에 제공되며 발광층에 해당한다. 활성층(225)은 제1 반도체층(223)을 통해서 주입되는 전자(또는 정공)와 제2 반도체층(227)을 통해서 주입되는 정공(또는 전자)이 서로 만나서, 활성층(225)의 형성 물질에 따른 에너지 밴드(Energy Band)의 밴드 갭(Band Gap) 차이에 의해서 빛을 방출하는 층이다.
활성층(225)은 화합물 반도체로 구현될 수 있다. 활성층(225)은 예로서 3족-5족 또는 2족-6족의 화합물반도체 중에서 적어도 하나로 구현될 수 있다.
제2 반도체층(227)은 활성층(225) 상에 제공된다. 제2 반도체층(227)은 제1 도전형 도펀트와 반대의 극성을 갖는 제2 도전형 도펀트를 갖는 반도체층이다. 제2 도전형 도펀트는 n형 도펀트일 수 있는 바, 제2 도전형 도펀트는 예를 들어, Si, Ge, Se, Te, O, C 등을 포함할 수 있다.
본 발명의 일 실시예에 있어서, 제2 반도체층(227)은 질화물계 반도체 재료를 포함할 수 있다. 제2 반도체층(227)의 재료로는 GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, 등을 들 수 있다.
제1 전극(221)과 제1 전극(229)은 각각 제1 반도체층(223)과 제2 반도체층(227)과 연결되도록 다양한 형태로 제공될 수 있다. 본 실시예에서는 제1 반도체층(223)의 하부에 제1 전극(221)이 제공되고, 제2 반도체층(227)의 상부에 제2 전극(229)가 제공된 것을 도시하였으나, 이에 한정되는 것은 아니다. 본 발명의 일 실시예에 있어서, 제1 전극(221) 및 제2 전극(229)는 예를 들어, Al, Ti, Cr, Ni, Au, Ag, Ti, Sn, Ni, Cr, W, Cu 등의 다양한 금속 또는 이들의 합금으로 이루어질 수 있다. 제1 전극(221) 및 제2 전극(229)는 단일층 또는 다중층으로 형성될 수 있다.
본 발명의 일 실시예에 있어서, 발광 다이오드가 버티컬 타입으로 제공된 것을 설명하였으나, 발광 다이오드가 반드시 버티컬 타입일 필요는 없으며, 본 발명의 개념에 부합하는 한, 다른 타입으로 제공될 수도 있다.
본 발명의 일 실시예에 따르면 시료에 광을 인가하기 위해 광원으로서, 기존의 일반적인 램프가 아닌 발광 다이오드를 사용함으로써 다음과 같은 효과를 얻을 수 있다.
본 발명의 일 실시예에 따라 발광 다이오드를 광원으로 사용하는 경우, 기존 일반 램프(예를 들어, 기존 UV 램프)로부터 출사된 광 대비 특정 파장의 광을 식물에 제공할 수 있다. 기존 램프로부터 출사된 광은, 발광 다이오드로부터 출사된 광 대비 넓은 영역에서 브로드한 스펙트럼을 갖는다. 이에 따라, 기존의 UV 램프의 경우 출사된 광의 파장 대역 중 일부 대역의 광만을 분리하는 것이 용이하지 않다. 이에 비해 발광 다이오드로부터 출사된 광은 특정 파장에서의 샤프한 피크를 가지며 기존 램프로부터의 광에 비해 반치폭이 매우 좁은 특정 파장의 광을 제공한다. 이에 따라, 특정 파장의 광을 선택하는 것이 용이하며 그 선택된 특정 파장의 광만을 시료에 제공할 수 있다.
또한, 기존 램프의 경우 시료에 광을 제공하되 광량의 정확한 한정이 어려울 수 있으나, 발광 다이오드의 경우 광량을 명확하게 한정하여 제공할 수 있다. 또한, 기존 램프의 경우 광량의 정확한 한정이 어려울 수 있으므로 조사 시간 또한 넓은 범위로 설정될 수 있으나, 발광 다이오드의 경우 상대적으로 짧은 시간 동안 명확한 시간 내에 시료에 필요한 광을 제공할 수 있다.
상술한 바와 같이, 기존 램프의 경우 상대적으로 넓은 범위의 파장, 넓은 범위의 광량, 및 넓은 범위의 조사 시간으로 인해 광 조사량의 명확한 판단이 어렵다. 이에 비해 발광 다이오드의 경우 상대적으로 좁은 범위의 파장, 좁은 범위의 광량, 및 좁은 범위의 조사 시간으로 인해 명확한 광 조사량을 제공할 수 있다.
이에 더해, 기존 램프의 경우 전원을 켠 후 최대 광량까지 도달하는 데 시간이 상당히 소요되었다. 이에 비해, 발광 다이오드를 사용하는 경우, 전원을 켠 후 워밍업 시간이 실질적으로 거의 없이 바로 최대 광량까지 도달한다. 따라서, 발광 다이오드 광원의 경우, 식물에 특정 파장의 광을 조사할 때 광의 조사 시간을 명확하게 제어할 수 있다.
본 발명의 일 실시예에 따르면, 상기 제1 및 제2 광원부를 이용하여 국화과 식물, 예를 들어 치커리아과 식물에 소정 조건 하에서 광을 조사함으로써, 유효 성분의 함량을 변경시킬수 있다.
상기 제1 및 제2 광원부로부터 조사된 광에 의해 식물 내에서 함량이 변경되는 유효 성분으로는 클로로필, 플라보놀, 안토시아닌, 세스퀴테르펜 락톤, 페놀계 화합물 등을 들 수 있다.
클로로필은 녹색채소의 광합성 색소로서 입에서 나는 악취와 변비 예방에 도움을 주는 것으로 알려져 있다. 플라보놀은 항산화 물질로서, 퀘세틴, 캠페롤, 미리세틴 등이 대표적인 물질이다. 퀘세틴은 항산화능이 높은 항산화 물질이며, 켐페롤은 면역력을 강화함으로써 암세포의 증식을 방지한다고 알려져 있으며, 미리세틴은 지방의 축적을 억제하여 심혈관 질환을 예방한다고 알려져 있다. 안토시아닌은 대표적은 항산화물질로서 몸속의 활성 산소를 제거함으로써 노화를 예방하는 효과가 있다. 안토시아닌은 그 이외에도 안구 망막에 있는 로돕신이라는 색소의 재합성을 도와 눈의 피로와 시력 저하, 백내장 예방에 도움을 준다.
세스퀴테르펜계 화합물들(세스퀴테르페노이드; sesquiterpenoid)는 테르펜계 화합물들(테르페노이드; terpenoid) 의 일종이며, 그 중, 락톤 구조를 갖는 세스퀴테르펜 락톤(sesquiterpene lactone)은 항종양 활성, 세포 독성 완화, 및 항균작용 등의 기능을 하는 것으로 알려져 있다. 특히, 상추 내에 포함된 세스퀴테르펜 락톤 중 하나인 락투신은 수면 장애에 개선 효과가 있다. 이에 더해, 세스퀴테르펜 락톤은 미생물 병균을 저항하고 주혈흡충(schistosome)과 항 알러지 활성(antiallergic activity)을 방어 치료하는 등의 면에서는 비교적 우수한 의료용 가치가 있다고 알려져 있다.
본 발명의 일 실시예에 따르면, 치커리아과의 식물의 씨앗을 재배하는 과정에서 자외선을 소정 조건으로 인가하는 경우, 세스퀴테르펜 락톤이 증가하거나 감소할 수 있다. 식물체 내에 세스퀴테르펜 락톤이 증가하는 경우, 수면 장애의 개선 효과가 있으며, 식물체 내에 세스퀴테르펜 락톤이 감소하는 경우, 치커리아과의 섭취시에도 잠이 오는 현상이 방지되는 효과가 있다.
세스퀴테르펜 락톤은 하기 화학식 1로 표시되는 물질로서, R1 및 R2는 각각 독립적으로 다양한 형태의 기능기일 수 있다. R1 및 R2는 예를 들어, 서로 독립적으로 탄소수 1개 내지 18개의 치환 또는 비치환된 알킬, 알콕시, 알릴, 아릴 등일 수 있다.
Figure PCTKR2019010772-appb-C000001
본 발명의 일 실시예에 있어서, 세스퀴테르펜 락톤은 락투신(lactucin), 락투코피크린(lactucopicrin), 8-디옥시락투신(8-deoxylactucin), 피크리사이드 A(picriside A), 크레피디아사이드 A(crepidiaside A), 락투신-15-옥살레이트(lactucin-15-oxalate), 락투코피크린-15-옥살레이트(lactucopicrin-15-oxalate), 8-디옥시락투신-15-옥살레이트(8-deoxylactucin-15-oxalate), 15-디옥시락투신-8-설페이트(15-deoxylactucin-8-sulfate), 15-디옥시락투신(15-deoxylactucin), 8-디옥시락투신-15-설페이트(8-deoxylactucin-15-sulfate), 및 15-(4-히드록시페닐아세틸)-락투신-8-설페이트(15-(4-hydroxyphenylacetyl)-lactucin-8-sulfate) 중 적어도 하나일 수 있다.
또는, 본 발명의 일 실시예에 따른 세스퀴테르펜 락톤은 하기한 화학식 2 내지 화학식 8을 가질 수 있다.
Figure PCTKR2019010772-appb-C000002
Figure PCTKR2019010772-appb-C000003
Figure PCTKR2019010772-appb-C000004
Figure PCTKR2019010772-appb-C000005
Figure PCTKR2019010772-appb-C000006
Figure PCTKR2019010772-appb-C000007
Figure PCTKR2019010772-appb-C000008
본 발명의 일 실시예에 있어서, 제2 광원부(300)로부터 조사된 빛은 씨앗(400)으로부터 성장한 식물의 페놀성 화합물의 증가시킨다. 구체적으로, 제2 광원부(300)로부터 조사된 제2 파장 대역의 빛은 식물의 2차 대사를 활성화하며, 이에 따라 2차 대사 산물인 페놀성 물질 함량이 증가할 수 있다. 식물에 제2 파장 대역의 빛이 조사되었을 때, 상술한 파장의 빛은 식물을 구성하는 세포에 대하여 DNA-손상 효과를 주고, 이에 따라, 상술한 파장의 빛을 흡수할 수 있는 페놀성 물질 생성이 촉진될 수 있다. 페놀성 화합물은 씨앗(400)으로부터 성장한 식물이 포함하는 항산화 물질에 해당한다.
본 발명의 일 실시예에 있어서, 페놀계 화합물은 아래 화학식 9 내지 화학식 11의 물질을 포함할 수 있다. 화학식 9 내지 화학식 11의 물질은 각각, 루테올린(luteolin), 클로로겐산(chlorogenic acid), 키코르산(chicoric acid)에 해당한다. 여기서, 클로로겐산(Chlorogenic acid)은 카페인산과 퀸산의 에스테르결합으로 구성된 천연 화합물로서, 생물학적 항산화 물질이다. 클로로겐산은 과산화물의 손상 효과를 중화시키는 것으로 알려져 있다.
Figure PCTKR2019010772-appb-C000009
Figure PCTKR2019010772-appb-C000010
Figure PCTKR2019010772-appb-C000011
본 발명의 일 실시예에 따르면, 상기 제1 및 제2 광원부를 이용하여 국화과 식물, 예를 들어 치커리아과 식물에 소정 조건 하에서 광을 조사함으로써, 유효 물질의 함량을 높이는 것에 더해, 각 치커리아과 식물의 원래 컬러가 나타나도록 하는 효과가 있다.
본 발명의 일 실시예에 따르면, 식물 재배용 광원을 이용하는 경우, 태양광이 충분하지 않거나, 태양광을 제공하지 못하는 조건하에서도, 식물의 종류에 맞는 성장 환경을 제공할 수 있다. 특히, 식물이 가지고 있는 원래의 컬러를 유지할 수 있는 성장 환경을 제공함으로써 식물의 상품성을 높일 수 있다. 태양광이 없이 식물을 재배하는 기존의 식물 공장의 경우, 그 식물 공장 내에서 재배되는 식물은 안토시아닌의 생성이 없거나, 있더라도 매우 적은 양으로서, 원래의 식물이 가지고 있는 컬러를 갖지 못하는 문제점이 있다. 예를 들어, 적치마 상추와 같은 치커리과 식물은 원래 붉은 색을 띠는 것이 정상이나, 태양광이 없는 식물 공장 내에서 재배시 붉은 색이 없거나 있더라도 매우 옅게 나타난다. 어떤 식물에 있어서, 그 식물이 가져야 할 원래의 컬러를 갖지 못하는 경우, 소비자가 그 식물을 이상이 있는 것으로 판단할 수 있으며, 그 결과 상품성이 떨어진다. 그러나, 본 발명의 일 실시예에 따르면, 제1 광과 제2 광을 적절하게 식물에 인가함으로써, 특히, 제2 광을 수확전 소정 기간 내에 식물에 인가함으로써, 식물의 유효 성분 중 안토시아닌의 함량을 현저하게 증가시키며, 그 결과 그 식물이 원 식물의 색에 가까운 컬러를 갖게 한다. 이는 상품성의 향상으로 이어진다.본 발명의 일 실시예에 있어서, 국화과 식물, 예를 들어, 치커리아과 식물에 제공되는 광은 광은 각각 서로 다른 구간 동안 제공될 수 있다. 여기서 구간은 시간적인 구간을 의미한다. 예를 들어, 제1 광원부로부터 출사된 광을 제1 광이라고 하고, 제2 광원부로부터 출사된 광을 제2 광이라고 하면, 일부 구간에서는 제1 광에 해당하는 광이 제공될 수 있으며, 상기 일부 구간을 제외한 나머지 구간에서는 제1 광과 제2 광 모두가 제공될 수 있다. 이하에서는, 설명의 편의를 위해, 제1 광이 제공되는 구간을 제1 구간으로, 제1 광과 제2 광이 제공되는 제2 구간으로 설명한다. 다시 설명하면 제1 구간에서는 상술한 제1 광원만이 턴 온되며, 제2 구간에서는 상술한 제1 광원과 제2 광원이 둘다 턴 온될 수 있다.
여기서, 제1 구간이나 제2 구간은 가시광선 파장 대역이 포함된 광이 제공되는 구간으로서 명조건 하에서의 소정 구간을 의미한다. 본 발명의 일 실시예에 있어서, 제2 구간은 제1 구간보다 짧은 기간에 해당한다.
본 발명의 일 실시예에 있어서, 상기 제1 구간과 제2 구간은 식물의 생육 시기 및 수확 시기에 따라 다양하게 배치될 수 있다. 예를 들어, 제1 구간은 식물의 정식 후 수확 전까지 배치될 수 있다. 제2 구간은 제1 구간에 인접하여 배치될 수 있으며, 전체적인 일정 내에서 수확 시기 이전에 배치될 수 있다. 다시 말해, 식물의 정식 후, 제1 구간이 이어지다가 수확 전 제1 구간 이외의 시간에 제2 구간이 배치될 수 있다. 이후 식물이 수확된다. 본 발명의 일 실시예에 있어서, 제2 구간은 수확 전 10일 이하에 걸쳐서 제1 구간의 사이사이에 제공될 수 있다. 상세하게는 제2 구간은 수일에 걸쳐 제1 구간의 사이 사이에 제공될 수 있다. 이때, 제공된 제2 광의 총 누적 조사량은 예를 들어, 4.032 kJ/m2일 수 있으며, 또는 2.880 kJ/m2 일 수 있으며, 또는 2.304 kJ/m2 수 있다.
본 발명의 일 실시예에 있어서, 식물은 정식 후 약 20일 동안 교번되는 명주기와 암주기 하에서 재배될 수 있다. 즉, 상기 제1 구간 및 상기 제2 구간은 명주기 내에서 순차적으로 반복되며, 서로 인접한 상기 제1 및 제2 구간은 하나의 반복 주기를 이룬다. 상기 반복 주기에 있어서, 상기 제2 구간에서 제공되는 광은 상기 제1 구간에서 제공되지 않는다.
식물의 정식 후 14일 동안(즉, 파종 후 10일차부터 23일차까지) 명주기는 제1 구간으로만 이루어질 수 있다. 그 다음, 식물의 정식 후 15일부터 20일까지(즉, 파종 후 24일차부터 30일차까지) 약 7일에 걸쳐 명주기는 교번적으로 배치된 제1 구간과 제2 구간으로 이루어질 수 있다. 즉, 명주기 내에서 제1 구간과 제2 구간이 순차적으로 반복된다. 다르게 설명하면, 광의 조사는 1회당 10분의 주기로 반복되며, 제2 광은 1분간 조사된 후 9분 동안 휴식기를 가지며, 이러한 주기가 명주기 동안 계속 반복된다.
본 발명의 일 실시예에 있어서, 제2 구간 동안 식물에 조사되는 제2 광의 하루 누적 에너지량은 약 0.58 kJ/m2일 수 있으며, 파종 수 수확시까지 누적된 전체 누적 에너지량은 약 4.03k kJ/m2일 수 있다.이상에서는 본 발명의 일 실시예에 따른 간단한 형태의 치커리아과 식물 재배 장치에 대하여 살펴보았다. 다만, 본 발명의 일 실시예에 따른 치커리아과 식물 재배 장치는 상업적 치커리아과 식물 생산에 이용될 수 있는 바, 상업적 치커리아과 식물 생산에 이용하기 위한 치커리아과 식물 재배 장치의 다른 형태에 대하여 더 자세히 살펴보고자 한다.
도 2는 본 발명의 일 실시예에 따른 치커리아과 식물 재배 장치의 단면도이다.
본 발명의 일 실시예에 따른 식물 재배 장치(10)는 상대적으로 소량의 치커리아과 식물을 재배하기 위한 가정용 또는 개인용 재배 장치뿐만 아니라, 대량의 치커리아과 식물을 얻기 위한 대형 공장, 즉, 식물 생산 공장 형태로 운영될 수 있다. 이에 따라, 식물 재배 장치(10)는 복수 개의 재배대(120), 제1 광원부(200), 제2 광원부(300), 및 수분 공급 장치(미도시)를 포함할 수 있다.
도면에 도시된 것과 같이, 복수 개의 재배대(120), 제1 광원부(200), 및 제2 광원부(300)는 여러 개의 구역을 구성할 수 있다. 따라서, 본체(100)는 여러 개의 구역(compartment)을 포함하는 구조물의 형태로 제공될 수 있다.
본체(100)에 포함된 여러 개의 구역은 각각 독립적으로 운영될 수 있다. 예를 들어, 일부 구역에 제공된 제1 광원부(200)에서는 적색광보다 청색광이 더 많이 조사되고, 다른 구역에 제공된 제1 광원부(200)에서는 청색광보다 적색광이 더 많이 조사될 수 있다. 아울러, 본체(100)의 각 구역은 시간적으로도 서로 상이하게 운영될 수 있다. 예를 들어, 일부 구역에서는 식물(401)을 성장시키기 위하여 제1 광원부(200)로부터 제1 파장 대역의 광이 조사될 수 있고, 다른 구역에서는 식물(401) 내 유효 물질의 함량을 높이거나 줄이기 위하여 제2 광원부(300)로부터 제2 파장 대역의 광이 조사될 수 있다.
본체(100)에 포함된 각 구역은 상술한 것과 같이 독립적으로 운영될 수 있도록 각각 밀폐된 암실을 구성할 수 있다. 이에 따라, 임의의 구역 내에 제공된 제1 광원부(200) 및/또는 제2 광원부(300)로부터 출사된 광은 다른 구역에 영향을 미치지 않을 수 있다.
본체(100)에 제공된 재배대(120) 역시 식물(401)의 종류에 따라 서로 다른 배지를 포함할 수 있다. 따라서, 식물(401)의 종류별로 맞춤형 성장 환경을 제공하는 것이 가능하다. 또한, 재배대(120)는 본체(100)로부터 분리될 수 있다. 따라서, 사용자는 일부 재배대(120) 상에서 자라는 식물(401)이 수확 단계에 이르렀을 때, 식물 재배 장치(10) 전체에 영향을 주는 것 없이, 재배가 완료된 식물(401)이 제공된 재배대(120)만 본체(100)로부터 분리할 수 있다.
본체(100)는 아울러, 수분 공급 장치를 더 포함할 수 있는데, 수분 공급 장치는 본체(100)와 재배대(120)가 맞닿은 면에 제공되어, 재배대(120)에 포함된 배지에 직접적으로 물을 공급할 수 있다. 이에 따라, 스프레이 형태의 수분 공급 장치와 달리, 재배대(120)가 층층이 쌓여있는 때에도 다른 재배대(120)에 영향을 주지 않고 수분 공급이 가능하다.
제1 광원부(200)는 재배대(120)의 형태에 따라 복수 개 제공될 수 있다. 상술한 바와 같이 제1 광원부(200)는 서로 다른 파장의 광을 출사하는 복수 개의 발광 다이오드들을 포함할 수 있는데, 상술한 발광 다이오드들은 제1 광원부(200) 내에 같은 비율로 또는 다른 비율로 제공될 수 있다. 제1 광원부(200) 내에 서로 다른 파장의 광을 출사하는 발광 다이오드들이 같은 비율로 제공될 때, 제어부에 의하여 식물(401)의 종류에 맞게 제1 파장 대역을 조절할 수 있다. 이에 따라, 식물(401)의 종류에 맞는 성장 환경 제공이 가능하다.
제2 광원부(300) 역시 복수 개 제공될 수 있다. 복수 개의 제2 광원부들(300)은 본체(100) 내의 서로 다른 구역에 제공될 수 있으며 독립적으로 구동될 수 있다. 이에 따라, 성장이 완료되어 유효 물질의 함량 증가나 감소 단계에 있는 식물(401)에만 제2 파장 대역의 광을 조사할 수 있다.
본 발명의 일 실시예에 있어서, 식물 생산 공장 형태로 운영되는 식물 재배 장치에는 제어부에 다양한 센서들(예를 들어, 온도 센서, 습도 센서, 광량 센서 등)이 추가적으로 배치될 수 있으며, 제어부는 센서들에 의한 데이터를 전송받아 제1 및 제2 광원부 및 수분 공급 장치 등을 전체적으로 또는 개별적으로 제어할 수 있다. 이러한 식물 재배 시스템을 갖춘 재배 장치는 직접적으로 또는, 원격의 이격지에서 유선, 무선 또는 인터넷 수단 등으로 데이터를 송수신할 수도 있으며, 별도의 디스플레이를 통해 각종 센서들, 제1 및 제2 광원부, 수분 공급 장치로부터의 데이터를 표시할 수도 있다. 사용자는 이러한 데이터를 검토한 후 제어부를 통해 최적 조건이 구현되도록 지시할 수 있다.
상술한 바와 같이, 본 발명의 일 실시예에 따른 식물 재배 장치(10)를 이용하여 유효 물질의 함량이 변경된 치커리아과 식물을 대량으로 용이하게 재배할 수 있다. 예를 들어, 본 발명의 일 실시예에서와 같은 재배 방법을 통해, 합성이 아닌 천연 상태의 유효 물질을 대량으로 수득할 수 있다. 대량으로 수득된 유효 물질은 별도의 별도의 가공 공정을 통해 의약품, 건강 보조 식품, 각종 조미료, 등의 형태로 가공될 수 있다. 예를 들어, 수확 직후의 유효 물질의 함량이 가장 높은 상태가 최종적인 제품에서도 유지되도록, 유효 물질 함량이 높은 치커리아과 식물을 수확과 동시에 동결 건조시킬 수 있다. 동결 건조된 치커리아과 식물은 다양한 형태, 예를 들어, 분말 등으로 가공되거나 별도의 과정을 통해 유효 물질만 추출되는 형태로 가공될 수도 있다. 이에 따라, 사용자는 유효 물질의 함량이 높은 치커리아과 식물을 직접 섭취하거나, 별도의 가공 공정을 통해 가공된 제품의 형태로 섭취할 수도 있다. 이에 더해, 본 발명의 일 실시예에 따른 식물 재배 장치를 이용하면 복수 개의 식물(401)을 동시에 재배다회, 식물(401)의 종류에 맞는 성장 환경을 독립적으로 제공할 수 있다. 이에 따라, 본 발명의 일 실시예에 따른 식물 재배 장치(10)를 이용하면 서로 다른 종류의 식물들(401)을 동시에 재배할 수 있다.
본 발명의 일 실시예에 따르면, 식물 재배용 광원을 이용하는 경우, 태양광이 충분하지 않거나, 태양광을 제공하지 못하는 조건하에서도, 식물의 종류에 맞는 성장 환경을 독립적으로 제공할 수 있다. 또한, 원래 식물이 가지는 컬러를 가지면서도 유효 물질의 함량이 높은 식물을 용이하게 재배할 수 있다.
실시예
1. 식물의 생육 및 광 처리 조건 1
이하의 실시예들에 있어서, 국화과 식물 중 치커리아과 식물을 일 예로 하여 실험이 수행되었다. 치커리아과 식물은 31일차 되는 날에 수확되었다(31일간 생육). 생육기간 동안 온도는 22±1℃, 상대습도는 70±10%로 유지시켜 재배하였다. 생육기간 동안 제1 및 제2 광은 발광 다이오드를 이용하여 제공하였다.
비교예 및 실험예에 따른 치커리아과 식물의 생육 조건은 도 3a 및 도 3b에 도시되었다. 이하 도면에서는, 설명의 편의를 위해, 제1 광이 제공되는 구간을 제1 구간으로, 제1 광 및 제2 광이 제공되는 구간을 제2 구간으로 표시하였다.
도 3a 및 도 3b를 참조하면, 파종 후 이틀 동안 암주기에서 치커리아과 식물을 발아시켰다. 다시 말해, 치커리아과 식물을 생육시키기 위해 먼저 재배용 스펀지에 치커리아과 식물 종자를 파종하고, 약 2일간 암주기에서 발아시켰다.
3일 차부터 파종 후 9일이 되는 날까지 명주기와 암주기 하에서 생육되었으며 이는 정식 전 조사 기간에 대응한다. 치커리아과 식물에는 제1 광이 조사되었는 바, 명주기에서 약 60 umol/m2/s PPFD (Photosynthetic Photon Flux Density)의 광도로 광이 조사되었다. 발아 후 정식 전에는 정제수만 식물에 제공하였다.
키운 새싹은 10일차에 DFT(deep-flow technique) 수경 재배 시스템에 정식되었다. 정식 후 치커리아과 식물은 명주기와 암주기 하에서 양액으로 생육되었다. 양액은 호글랜드 스탁 용액(Hoagland stock solution)이 사용되었으며, pH는 5.5 내지 6.5로 유지되었다.
비교예에 있어서, 식물에 정식 후 20일 동안 하루 24시간 단위로 명주기와 암주기가 각각 제공되었으며, 하루 24시간 내에서 명주기는 16시간, 암주기는 8시간 유지되었다. 정식 후 20일 동안 명주기에 제1 광이 제공되었으며, 제2 광은 제공되지 않았다. 즉, 비교예의 경우, 정식 후 조사 기간은 명주기에서 제1 구간으로만 이루어졌다. 여기서, 제1 광은 명주기에서 약 150 umol/m2/s PPFD 의 광도로 조사되었다.
실험예 1에 있어서, 식물에 정식 후 20일 동안 하루 24시간 단위로 명주기와 암주기가 각각 제공되었으며, 하루 24시간 내에서 명주기는 16시간, 암주기는 8시간 유지되었다. 정식 후 20일 동안 명주기에 제1 광이 제공되었으며, 정식 후 20일차에 명주기 시작할 때 제2 광이 6시간 동안 제공되었다. 이에 따라, 실험예 1의 경우 정식 후 조사 기간은 19일 동안은 명주기에서 제1 구간만으로 이루어지며, 마지막 20일차에는 명주기에서 제2 구간과 제1 구간으로 이루어졌다. 상세하게는, 실험예 1은 정식 후 20일 차(파종 후 30일 차)에 명주기 내에서 제1 광을 지속적으로 제공하면서 일부 구간에서 6시간 동안 제2 광을 연속하여 제공하였다. 여기서, 제1 광은 명주기에서 약 150 umol/m2/s PPFD 의 광도로 조사되었으며, 제2 구간 동안 제공된 제2 광의 누적 총 에너지량은 2.16kJ/m2이었다.
실험예 2에 있어서, 식물에 정식 후 20일 동안 하루 24시간 단위로 명주기와 암주기가 각각 제공되었으며, 하루 24시간 내에서 명주기는 16시간, 암주기는 8시간 유지되었다. 실험예 2에서는 명주기 내에서 제2 광이 점멸적으로 식물에 제공되었는 바, 1회당 10분의 주기에서 1분간 조사 후 9분 동안 휴식기를 가지며, 다시 조사가 시작되는 점멸방식으로 조사하였다. 실험예 2에 있어서, 하루에 처리되는 UV조사 에너지량은 0.576kJ븁-2이었다. 실험예 2는 파종 후 UV를 처리하였으며, 총 UV 조사 에너지량은 4.032 kJ븁-2 이었다.
비교예, 실험예 1, 및 실험예 2는 제2 광의 조사 유무, 조사 시간, 조사 에너지만 다르며, 다른 조건은 모두 동일하게 유지되었다. 여기서, 제1 광은 가시광선 파장대역을 갖는 광이었으며, 제2 광은 UV B의 파장대역을 갖는 광으로서, 상세하게는 285nm의 파장을 갖는 광이었다.
이후, 31일차에 치커리아과 식물이 수확되었다..
2. 비교예, 실험예 1 및 2에 따른 청치마 상추의 외형 비교
본 실험에서는 청치마 상추에 도 3a와 도 3b에 도시된 조건으로 비교예와 실험예 1로 나누어 재배하고, 수확 후 외형의 손상 여부를 조사하였다.
도 4a는 비교예와 실험예 1에 따른 청치마 상추의 외형을 촬영한 사진이며, 도 4b는 비교예와 실험예 2에 따른 청치마 상추의 외형을 촬영한 사진이다. 도 4a에 있어서, 좌측 청치마 상추가 비교예이며 우측 청치마 상추가 실험예 1에 해당한다. 도 4b에 있어서, 좌측 청치마 상추가 비교예이며, 우측 청치마 상추가 실험예 2에 해당한다.
도 4a 및 도 4b를 참조하면, 비교예의 경우 외형의 손상이 전혀 없다. 그러나, 실험예 1의 경우, 잎이 마르고 잎의 단부가 휘어지는 잎 말림 현상이 관찰되었으며, 전체적으로 갈변이 일어났다. 이에 비해, 실험예 2의 경우 비교예와 차이가 발견되지 않으며 전체적인 외형의 손상이 전혀 없었다.
이를 통해, 실험예 1의 경우 제2 광의 누적 에너지량이 2.16kJ/m2로서 실험예 2의 제2 광의 누적 에너지량 4.03kJ/m2보다 훨씬 작음에도 불구하고, 외형의 손상이 매우 크게 진행되었음을 확인할 수 있다. 이는 제2 광의 연속적인 조사로 인한 것으로 판단되며, 이에 따라 에너지량이 크더라도 점멸적인 조사의 경우 외형의 손상이 최소화된다는 점을 확인할 수 있었다.
3. 비교예와 실험예 2에 따른 청치마 상추의 유효 물질 함량 비교
도 5a 내지 도 5d는 청치마 상추에 있어서 비교예와 실험예 2의 수확 후 유효 물질의 함량을 도시한 그래프이다. 도 5a 내지 도 5d에 있어서, 각 유효물질은 순차적으로, 클로로겐산, 클로로필, 플라보노이드, 및 안토시아닌이다.
비교예 및 실험예 2에 따른 결과를 얻기 위해, 파종 후 31일째 되는 날에 식물을 수확하고, 듀얼렉스(dualex)라는 비파괴성 분석장비를 이용하여 잎을 광 센서로 투과시키는 방식으로 클로로겐산, 클로로필, 플라보놀, 및 안토시아닌의 함량을 측정하였다. 청치마 상추는 18개체를 측정하였다(n=18).
도 5a 내지 도 5d를 참조하면, 비교예 대비 실험예 2에서 모두 유효 물질 함량의 현저한 증가가 관찰되었다. 즉, 제2 광을 식물에 인가하는 경우, 클로로겐산, 클로로필, 플라보노이드, 및/또는 안토시아닌에 해당하는 유효 물질이 현저하게 증가되었음을 확인할 수 있다.
4. 비교예와 실험예 2에 따른 다른 치커리아과 식물의 유효 물질 함량 비교
도 6a 내지 도 6c는 다른 치커리아과 식물에 있어서 비교예와 실험예 2의 수확 후 유효 물질의 함량을 도시한 그래프이다.
도 6a 내지 도 6b에 있어서, 치커리아과 식물로 치커리, 적롤로 상추, 적축면 상추, 적치마 상추, 청로메인을 예로서 실험하였으며, 도 6c에 있어서, 치커리아과 식물로 적롤로 상추, 적축면 상추, 적치마 상추, 청로메인을 예로서 실험하였다. 각 유효 물질의 함량은 클로로필, 플라보놀, 및 안토시아닌에 대해 측정하였는 바, 도 6a 내지 도 6c의 그래프는 순차적으로 클로로필, 플라보놀, 및 안토시아닌에 대한 것이다.
비교예 및 실험예 2에 따른 결과를 얻기 위해, 파종 후 31일째 되는 날에 각 식물을 수확하고, 듀얼렉스라는 비파괴성 분석장비를 이용하여 잎을 광 센서로 투과시키는 방식으로 클로로필, 플라보놀, 및 안토시아닌의 함량을 측정하였다. 각 식물은 18개체를 측정하였다(n=18).
도 6a 내지 도 6c를 참조하면, 치커리아과 식물에 해당하는 치커리, 적롤로 상추, 적축면 상추, 적치마 상추, 및 청로메인이 전체적으로, 비교예 대비 실험예 2에서 유효 물질이 현저하게 증가하였음을 확인할 수 있다.
5. 비교예와 실험예 2에 따른 치커리아과 식물의 외형 컬러 비교
도 7a 내지 도 7f는 치커리아과 식물에 있어서 비교예와 실험예 2의 수확 후 외형의 컬러를 확인하기 위해 촬영한 사진들이다.
도 7a 내지 도 7f는 순차적으로 치커리아과 식물 중 치커리, 적롤로 상추, 적축면 상추, 적치마 상추, 로메인 상추, 및 청치마 상추에 관한 사진들이다. 도 7a 내지 도 7f에 있어서, 좌측은 각 치커리아과 식물의 비교예 결과이며 우측은각 치커리아과 식물의 실험예 2 결과에 해당한다.
도 7a 내지 도 7f를 참조하면, 비교예 및 실험예 2 모두 외형의 손상은 관찰되지 않았다. 그러나, 비교예들은 모두 전체적으로 초록색을 띄었다. 이에 비해, 실험예 2의 경우 식물의 원래 컬러가 붉은 색을 일부 나타내는 식물, 예를 들어, 적롤로 상추, 적축면 상추, 적치마 상추의 경우에는, 실험예 2의 결과가 비교예 대비 현저하게 붉은 색을 띄고 있음이 명확하다. 식물의 붉은 색의 경우, 안토시아닌에 기인한 것으로 볼 수 있는 바, 이는 제2 광을 식물에 인가함으로써 안토시아닌의 함량이 증가하고, 그 결과 그 식물의 컬러에도 영향을 끼쳤다는 것을 확인할 수 있다.
6. 식물의 생육 및 광 처리 조건 2
이하의 실시예들에 있어서, 국화과 식물 중 치커리아과 식물, 그중에서 적치마 상추를 일 예로 하여 실험이 수행되었다. 생육기간 동안 온도는 22±1℃, 상대습도는 70±10%로 유지시켜 재배하였다. 생육기간 동안 제1 및 제2 광은 발광 다이오드를 이용하여 제공하였다.
적치마 상추는 총 31일차 되는 날에 수확(31일간 생육)되었다. 이하의 비교에 및 실험예들에 따른 적치마 상추 식물의 생육 조건은 도 8a 및 도 8b에 도시되었다. 이하 도면에서는, 설명의 편의를 위해, 제1 광이 구간을 제1 구간으로, 제1 광 및 제2 광이 제공되는 구간을 제2 구간으로 표시하였다.
도 8a 및 도 8b를 참조하면 파종 후 이틀 동안 암주기에서 적치마 상추를 발아시켰다. 다시 말해, 적치마 상추를 생육시키기 위해 먼저 재배용 스펀지에 적치마 상추 종자를 파종하고, 약 2일간 암주기에서 발아시켰다.
3일 차부터 파종 후 9일이 되는 날까지 명주기와 암주기 하에서 생육되었으며 이는 정식 전 조사 기간에 대응한다. 적치마 상추에는 제1 광이 조사되었는 바, 명주기에서 약 60 umol/m2/s PPFD 의 광도로 광이 조사되었다. 발아 후 정식 전에는 정제수만 식물에 제공하였다.
키운 새싹은 10일차에 DFT(deep-flow technique) 수경 재배 시스템에 정식되었다. 정식 후 적치마 상추는 명주기와 암주기 하에서 양액으로 생육되었다. 양액은 호글랜드 스탁 용액(Hoagland stock solution)이 사용되었으며, pH는 5.5 내지 6.5로 유지되었다.
비교예에 있어서, 식물에 정식 후 20일 동안 하루 24시간 단위로 명주기와 암주기가 각각 제공되었으며, 하루 24시간 내에서 명주기는 16시간, 암주기는 8시간 유지되었다. 정식 후 20일 동안 명주기에 제1 광이 제공되었으며, 제2 광은 제공되지 않았다. 즉, 비교예의 경우, 정식 후 조사 기간은 명주기에서 제1 구간으로만 이루어졌다. 여기서, 제1 광은 명주기에서 약 150 umol/m2/s PPFD 의 광도로 조사되었다.
실험예 1 내지 3에 있어서, 식물에 정식 후 20일 동안 하루 24시간 단위로 명주기와 암주기가 각각 제공되었으며, 하루 24시간 내에서 명주기는 16시간, 암주기는 8시간 유지되었다. 실험예 1 내지 3에서는 명주기 내에서 제2 광이 점멸적으로 식물에 제공되었는 바, 실험예 1 내지 3 모두 1회당 수 분의 주기에서 수 분간 조사 후 일정 시간 반복되는 휴식기를 가지며, 다시 조사가 시작되는 점멸방식으로 조사하였다. 실험예 1 내지 3에 있어서, 하루에 처리되는 UV조사 에너지량은 0.576kJ븁-2이고, 각 처리구는 처리가 시작되는 일수와 총 조사에너지량만 다르며 조사방식은 같았다.
실험예 1은 파종 후 UV를 처리하였으며 총 UV 조사 에너지량은 2.304kJ븁-2 이었다. 실험예2는 파종 후 UV를 처리하였으며, 총 UV 조사 에너지량은 2.880 kJ m-2 이었다. 실험예 3은 파종 후 UV를 처리하였으며, 총 UV 조사 에너지량은 4.032 kJ븁-2 이었다.
7. 비교예와 실험예 1 내지 3에 따른 적치마 상추의 유효 물질 함량 비교
도 9a 내지 도 9d는 적치마 상추에 있어서 비교예와 실험예 1 내지 3의 수확 후 유효 물질의 함량 및 결과물의 중량을 도시한 그래프이다. 도 9a 내지 도 9c는 각 유효 물질의 함량을 나타낸 것으로서, 순차적으로, 클로로겐산, 클로로필, 플라보노이드, 및 안토시아닌이다. 도 9d는 수확시의 적치마 상추의 생체 중량과 건조 중량을 나타낸 것이다.
비교예 및 실험예 1 내지 3에 따른 도 9a 내지 도 9d의 결과를 얻기 위해, 파종 후 31일째 되는 날에 식물을 수확하고, 듀얼렉스라는 비파괴성 분석장비를 이용하여 잎을 광 센서로 투과시키는 방식으로 클로로겐산, 클로로필, 플라보놀, 및 안토시아닌의 함량을 측정하였다. 적치마 상추는 18개체를 측정하였다(n=18). 이후, 식물 9개체를 수확하여 생체 무게(n=9)를 측정하고 그 중 5개체는 액체질소로 생체활동을 중단시킨 후 3일 간 동결건조하여 건조 무게(n=5)를 측정하였다.
도 9a는 클로로필 함량에 대한 그래프로서, 실험예 1, 2, 3 모두 비교예보다 높은 수치를 나타내었다. 실험예 1과 3은 비슷한 수치를 나타내었으며 실험예 2는 비교예보다 높고, 실험예 3보다는 낮으나, 실험예 1과는 유의미한 차이는 없었다. 비교예에 비해 실험예 1, 2, 3은 각각 28.1%, 18.4%, 38.6% 증가하였다.
도 9b는 플라보놀 함량에 대한 그래프로서, 실험예 1, 2, 3 모두 비교예보다 높은 수치를 나타내었으며 실험예 1 내지 3 사이의 실질적인 차이는 없었다. 비교예에 비해 실험예 1, 2, 3은 각각 203.7%, 188.9%, 213.8% 증가하였다.
도 9c는 안토시아닌 함량에 대한 그래프로서, 실험예 1, 2, 3 모두 비교예보다 높은 수치를 나타내었으며 실험예 1 내지 3 사이의 실질적인 차이는 없었다. 비교예에 비해 실험예 1, 2, 3은 각각 66.9%, 71.2%, 74.5% 증가하였다.
도 9d는 생체 중량, 건조 중량에 대한 그래프로 비교예와 실험예 1은 두 가지 중량 모두 실질적인 중량 변화가 없었다. 실험예 2는 생체중량은 차이가 없었으나 건조중량에서 16.9% 감소함을 보였다. 실험예 3은 생체중량, 건조중량 모두 비교예에 비해 낮은 수치를 보였으며, 생체 중량은 21.0%, 건조 중량은 23.1% 감소하였다.
결과적으로, 생체중량과 건조중량에 영향을 미치지 않으면서 기능성 물질이 증가할 수 있는 조건은 실험예 1과 같이 총 누적에너지량이 2.304kJ븁-2를 넘지 않아야 함을 확인할 수 있다.
이상에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술 분야에 통상의 지식을 갖는 자라면, 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정하여져야만 할 것이다.

Claims (20)

  1. 식물의 명주기와 암주기에 따라 턴 온 또는 턴 오프되는 식물 재배용 광원에 있어서, 상기 식물 재배용 광원은 제1 반도체층, 제2 반도체층 및 활성층을 포함하고, 상기 활성층은 상기 제1 반도체층 상에 제공되어 상기 활성층의 형성 물질에 따른 에너지 밴드의 밴드 갭 차이에 의해서 특정 파장의 빛을 방출하고, 상기 명주기 중 일부 구간을 제1 구간이라고 하고 나머지 구간을 제2 구간이라고 할 때, 상기 제1 구간 및 상기 제2 구간은 교번적으로 제공되고, 상기 제1 및 제2 구간에 대해 서로 다른 파장의 광을 상기 식물에 제공하며, 그 결과 상기 식물 내 유효 물질의 함량이 높아지는 식물 재배용 광원.
  2. 제1 항에 있어서,
    상기 식물 재배용 광원은 상기 제1 광을 출사하는 제1 광원부와, 상기 제2 광을 출사하는 제2 광원부를 포함하며, 상기 제1 및 제2 광원부 중 하나는 상기 제1 및 제2 구간 중 적어도 하나의 구간에서 턴 온되는 식물 재배용 광원.
  3. 제2 항에 있어서,
    상기 제2 광은 점멸적으로 상기 식물에 제공되는 식물 재배용 광원.
  4. 제2 항에 있어서,
    상기 제1 광은 가시 광선 파장 대역의 광이고, 상기 제2 광은 자외선 파장 대역의 광이며, 상기 제1 구간에서 상기 제1 광이 상기 식물에 제공되고, 상기 제2 구간에서 상기 제2 광이 상기 식물에 제공되는 식물 재배용 광원.
  5. 제4 항에 있어서,
    상기 제2 광은 자외선 B 파장 대역의 광인 식물 재배용 광원.
  6. 제5 항에 있어서,
    상기 식물에 조사된 상기 제2 광의 총 누적 에너지량은 2.304kJ/m2이하인 식물 재배용 광원.
  7. 제5 항에 있어서,
    상기 제2 광은 약 약 280nm 내지 약 315nm의 파장 대역을 갖는 식물 재배용 광원.
  8. 제1 항에 있어서,
    상기 제1 구간 및 상기 제2 구간은 명주기 내에서 순차적으로 반복되며, 서로 인접한 상기 제1 및 제2 구간은 하나의 반복 주기를 이루는 식물 재배용 광원.
  9. 제8 항에 있어서,
    상기 반복 주기에 있어서, 상기 제2 구간에서 제공되는 광은 상기 제1 구간에서 제공되지 않는 식물 재배용 광원.
  10. 제1 항에 있어서,
    상기 제2 구간은 수확 전 소정 기일 이전부터 수확시까지의 상기 명주기에 제공되는 식물 재배용 광원.
  11. 제1 항에 있어서,
    상기 유효 물질은 클로로필, 플라보놀, 안토시아닌, 클로로겐산, 세스퀴테르펜 락톤, 및 페놀성 화합물 중 적어도 하나인 식물 재배용 광원.
  12. 식물이 내부에 제공되는 본체;
    상기 본체 내에 제공되며 상기 식물로 광을 조사하는 광원; 및
    상기 광원을 제어하는 제어부를 포함하며,
    상기 광원은 상기 식물의 명주기와 암주기에 따라 턴 온 또는 턴 오프되며, 상기 명주기 중 일부 구간을 제1 구간이라고 하고 나머지 구간을 제2 구간이라고 할 때, 상기 제1 구간 및 상기 제2 구간은 교번적으로 제공되고, 상기 제1 및 제2 구간에 대해 서로 다른 파장의 광을 상기 식물에 제공하며, 그 결과 상기 식물 내 유효 물질의 함량을 높이는 식물 재배 장치.
  13. 제12 항에 있어서,
    상기 광원은 상기 제1 광을 출사하는 제1 광원부와, 상기 제2 광을 출사하는 제2 광원부를 포함하며, 상기 제어부는 상기 제1 및 제2 광원부 중 하나를 상기 제1 및 제2 구간 중 적어도 하나의 구간에서 턴 온시키는 식물 재배 장치.
  14. 제13 항에 있어서,
    상기 제2 광은 상기 식물에 점멸적으로 제공되는 식물 재배 장치.
  15. 제14 항에 있어서,
    상기 제1 광은 가시 광선 파장 대역의 광이고, 상기 제2 광은 자외선 파장 대역의 광이며, 상기 제1 구간에서 상기 제1 광이 상기 식물에 제공되고, 상기 제2 구간에서 상기 제2 광이 상기 식물에 제공되는 식물 재배 장치.
  16. 제15 항에 있어서,
    상기 제2 광은 자외선 B 파장 대역의 광인 식물 재배 장치.
  17. 제16 항에 있어서,
    상기 식물에 조사된 상기 제2 광의 총 누적 에너지량은 2.304kJ/m2이하인 식물 재배 장치.
  18. 제15 항에 있어서,
    상기 제2 광은 약 약 280nm 내지 약 315nm의 파장 대역을 갖는 식물 재배 장치.
  19. 제12 항에 있어서,
    상기 제1 구간 및 상기 제2 구간은 명주기 내에서 순차적으로 반복되며, 서로 인접한 상기 제1 및 제2 구간은 하나의 반복 주기를 이루는 식물 재배 장치.
  20. 제19 항에 있어서,
    상기 반복 주기에 있어서, 상기 제2 구간에서 제공되는 광은 상기 제1 구간에서 제공되지 않는 식물 재배 장치.
PCT/KR2019/010772 2018-08-24 2019-08-23 식물 재배용 광원 WO2020040598A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021510160A JP7423605B2 (ja) 2018-08-24 2019-08-23 植物栽培用光源
CN201980003221.5A CN111182786A (zh) 2018-08-24 2019-08-23 植物栽培用光源
KR1020217005308A KR20210037687A (ko) 2018-08-24 2019-08-23 식물 재배용 광원
EP19851004.2A EP3841869A4 (en) 2018-08-24 2019-08-23 LED LIGHT SOURCE FOR PLANT GROWING
JP2024004974A JP2024038403A (ja) 2018-08-24 2024-01-17 照明装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862722405P 2018-08-24 2018-08-24
US62/722,405 2018-08-24
US16/548,350 2019-08-22
US16/548,350 US11291164B2 (en) 2018-08-24 2019-08-22 Light source for plant cultivation

Publications (1)

Publication Number Publication Date
WO2020040598A1 true WO2020040598A1 (ko) 2020-02-27

Family

ID=69583188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010772 WO2020040598A1 (ko) 2018-08-24 2019-08-23 식물 재배용 광원

Country Status (6)

Country Link
US (5) US11291164B2 (ko)
EP (1) EP3841869A4 (ko)
JP (2) JP7423605B2 (ko)
KR (1) KR20210037687A (ko)
CN (1) CN111182786A (ko)
WO (1) WO2020040598A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065871A1 (ko) * 2020-09-23 2022-03-31 충북대학교 산학협력단 식물 재배용 광원 모듈 및 그 광원 모듈을 포함하는 식물 재배용 광원 장치

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3821698A4 (en) * 2018-07-13 2021-09-01 Mitsubishi Chemical Agri Dream Co., Ltd. CULTIVATION DEVICE AND CULTIVATION METHOD FOR NIGHT SHADOW SEEDLINGS
US11125405B2 (en) 2018-08-10 2021-09-21 Seoul Viosys Co., Ltd. Light source for plant cultivation and plant cultivation device
US10820532B2 (en) 2018-08-24 2020-11-03 Seoul Viosys Co., Ltd. Light source for plant cultivation
US11291164B2 (en) 2018-08-24 2022-04-05 Seoul Viosys Co., Ltd. Light source for plant cultivation
JP7462139B2 (ja) * 2019-07-10 2024-04-05 日亜化学工業株式会社 植物処理装置
US10881052B1 (en) * 2019-12-18 2021-01-05 Artled Technology Corp. Illuminating device for plant cultivation
US20220330489A1 (en) * 2021-03-03 2022-10-20 Seoul Viosys Co., Ltd. Light source module and plants cultivation device including the same
US11723316B2 (en) * 2021-07-12 2023-08-15 IntraLight, LLC Pest control with ultraviolet light
KR20230056896A (ko) * 2021-10-21 2023-04-28 서울대학교산학협력단 식물 이차대사산물 조절을 위한 인공 조명 설정 방법 및 시스템
CN115777375B (zh) * 2022-12-21 2023-10-24 广东省农业科学院环境园艺研究所 一种提高石斛活性物质含量的uv-a辐射方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003339236A (ja) * 2002-05-29 2003-12-02 Matsushita Electric Works Ltd 植物育成用照明装置及び植物育成装置並びに植物育成方法
KR20100135919A (ko) * 2008-04-24 2010-12-27 파나소닉 전공 주식회사 식물 병해 방제용 조명 장치
JP2012205520A (ja) * 2011-03-29 2012-10-25 Sharp Corp 光照射装置、イチゴ栽培システムおよびイチゴ栽培方法
JP2013123417A (ja) * 2011-12-15 2013-06-24 Panasonic Corp 植物育成病害防除照明装置
WO2017188719A1 (ko) * 2016-04-28 2017-11-02 서울바이오시스주식회사 이고들빼기의 생장 및 생리활성 물질 증진 방법

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7220018B2 (en) 2003-12-15 2007-05-22 Orbital Technologies, Inc. Marine LED lighting system and method
US20070058368A1 (en) 2005-09-09 2007-03-15 Partee Adam M Efficient high brightness led system that generates radiometric light energy capable of controlling growth of plants from seed to full maturity
JP2007075073A (ja) 2005-09-16 2007-03-29 Masanobu Kojima スプラウトの栽培方法
GB0601602D0 (en) * 2006-01-26 2006-03-08 Scott Lionel Plant treatment method and means therefor
US7905052B2 (en) 2006-11-20 2011-03-15 Hurst William E System of photomorphogenically enhancing plants
US20080302004A1 (en) 2007-06-07 2008-12-11 Lin Yu-Ho Multifunction plant cultivation led able to control the growing speed of plants
EP2025220A1 (en) * 2007-08-15 2009-02-18 Lemnis Lighting Patent Holding B.V. LED lighting device for growing plants
US20090303706A1 (en) 2008-06-09 2009-12-10 Lucia Atehortua Wave length light optimizer for human driven biological processes
US8297782B2 (en) 2008-07-24 2012-10-30 Bafetti Vincent H Lighting system for growing plants
JP5047117B2 (ja) 2008-10-20 2012-10-10 パナソニック株式会社 植物病害防除用照明システム
TWI487139B (zh) 2009-08-07 2015-06-01 Showa Denko Kk 培育植物用多色發光二極體燈、照明裝置及培育植物方法
US8373363B2 (en) 2009-08-14 2013-02-12 Once Innovations, Inc. Reduction of harmonic distortion for LED loads
US8643308B2 (en) 2009-08-14 2014-02-04 Once Innovations, Inc. Spectral shift control for dimmable AC LED lighting
WO2011053708A1 (en) 2009-10-28 2011-05-05 Once Innovations, Inc. Architecture for high power factor and low harmonic distortion led lighting
HUE057552T2 (hu) 2009-10-29 2022-05-28 Signify North America Corp LED világítás állatállomány hozamnövelésére
US8302346B2 (en) 2010-01-26 2012-11-06 University Of Georgia Research Foundation, Inc. Biological optimization systems for enhancing photosynthetic efficiency and methods of use
CN102884370B (zh) 2010-03-17 2017-03-22 万斯创新公司 适配用于昼间鸟和人类的光谱灵敏度的光源
US8651691B2 (en) 2010-03-31 2014-02-18 Once Innovations, Inc. Integral conduit modular lighting
JP5498904B2 (ja) 2010-09-27 2014-05-21 パナソニック株式会社 作物育成システム
US9696011B2 (en) 2011-04-22 2017-07-04 Once Innovations, Inc. Extended persistence and reduced flicker light sources
JP2013236562A (ja) 2012-05-11 2013-11-28 Panasonic Corp 害虫防除照明装置
JP6290873B2 (ja) 2012-06-04 2018-03-07 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. 野菜および果物のホルメシス誘導装置
US10028448B2 (en) 2012-07-10 2018-07-24 Once Innovations, Inc. Light sources adapted to spectral sensitivity of plants
WO2014011623A2 (en) 2012-07-10 2014-01-16 Zdenko Grajcar Light sources adapted to spectral sensitivity of plant
US20150273235A1 (en) 2014-03-28 2015-10-01 Once Innovations, Inc. Devices and method of causing chemical reaction to supplement vitamin d production
CN104427857B (zh) 2012-07-11 2018-04-24 飞利浦灯具控股公司 能够提供园艺光的照明设备和照射园艺的方法
BR112015004461A2 (pt) 2012-09-04 2017-07-04 Koninklijke Philips Nv método para melhorar o valor nutricional de uma primeira parte de uma planta de uma plantação; e dispositivo de iluminação
US20140069007A1 (en) 2012-09-13 2014-03-13 Cashido Corporation Plant growth facilitating apparatus plant growth facilitating apparatus
US9282698B2 (en) 2012-11-27 2016-03-15 James H. Beyer Light emitting diode grow light for plant growing applications
CA2901762C (en) 2013-03-05 2021-10-19 Xiant Technologies, Inc. Photon modulation management system
JP2014233247A (ja) 2013-06-03 2014-12-15 タカラバイオ株式会社 セリ科植物の栽培方法
US10292340B2 (en) 2013-06-06 2019-05-21 Flora Fotonica Ltd. System and method for providing illumination to plants
JP6268516B2 (ja) 2013-11-13 2018-01-31 パナソニックIpマネジメント株式会社 作物育成システム
JP6444611B2 (ja) 2014-04-22 2018-12-26 岩谷産業株式会社 植物栽培方法
CN105265290A (zh) * 2014-07-04 2016-01-27 北京中环易达设施园艺科技有限公司 Led光源下冰叶日中花的栽培方法
WO2016014456A1 (en) 2014-07-21 2016-01-28 Zdenko Grajcar Photonic engine system for actuating the photosynthetic electron transport chain
US10244595B2 (en) 2014-07-21 2019-03-26 Once Innovations, Inc. Photonic engine system for actuating the photosynthetic electron transport chain
KR20170139551A (ko) * 2015-03-25 2017-12-19 비타빔 엘티디. 근적외선 및 가시 광선을 이용한 식물 성장 및 발달 촉진 방법 및 장치
KR20170084936A (ko) * 2016-01-13 2017-07-21 경상남도 소형분화 재배용 저비용 led 식물공장 설치 및 관리 방법
US20170311553A1 (en) * 2016-05-02 2017-11-02 Sensor Electronic Technology, Inc. Ultraviolet Plant Illumination System
US10624978B2 (en) 2016-07-26 2020-04-21 Sensor Electronic Technology, Inc. Ultraviolet-based mildew control
AU2018293468A1 (en) 2017-06-29 2020-01-30 Biolumic Limited Method to improve crop yield and/or quality
CN108093934B (zh) * 2018-03-01 2024-03-26 广东绿爱生物科技股份有限公司 植物照明栽培方法、装置以及人工栽培装置
US11125405B2 (en) 2018-08-10 2021-09-21 Seoul Viosys Co., Ltd. Light source for plant cultivation and plant cultivation device
US10820532B2 (en) 2018-08-24 2020-11-03 Seoul Viosys Co., Ltd. Light source for plant cultivation
US11291164B2 (en) 2018-08-24 2022-04-05 Seoul Viosys Co., Ltd. Light source for plant cultivation
US11304376B2 (en) * 2019-05-20 2022-04-19 Seoul Semiconductor Co., Ltd. Light source for plant cultivation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003339236A (ja) * 2002-05-29 2003-12-02 Matsushita Electric Works Ltd 植物育成用照明装置及び植物育成装置並びに植物育成方法
KR20100135919A (ko) * 2008-04-24 2010-12-27 파나소닉 전공 주식회사 식물 병해 방제용 조명 장치
JP2012205520A (ja) * 2011-03-29 2012-10-25 Sharp Corp 光照射装置、イチゴ栽培システムおよびイチゴ栽培方法
JP2013123417A (ja) * 2011-12-15 2013-06-24 Panasonic Corp 植物育成病害防除照明装置
WO2017188719A1 (ko) * 2016-04-28 2017-11-02 서울바이오시스주식회사 이고들빼기의 생장 및 생리활성 물질 증진 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3841869A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065871A1 (ko) * 2020-09-23 2022-03-31 충북대학교 산학협력단 식물 재배용 광원 모듈 및 그 광원 모듈을 포함하는 식물 재배용 광원 장치

Also Published As

Publication number Publication date
US20200060099A1 (en) 2020-02-27
US20240049649A1 (en) 2024-02-15
US11291164B2 (en) 2022-04-05
CN111182786A (zh) 2020-05-19
KR20210037687A (ko) 2021-04-06
EP3841869A4 (en) 2022-03-02
JP7423605B2 (ja) 2024-01-29
US11968937B2 (en) 2024-04-30
EP3841869A1 (en) 2021-06-30
US20220192103A1 (en) 2022-06-23
US11778953B2 (en) 2023-10-10
US20240292791A1 (en) 2024-09-05
US20240224882A1 (en) 2024-07-11
JP2021534768A (ja) 2021-12-16
JP2024038403A (ja) 2024-03-19

Similar Documents

Publication Publication Date Title
WO2020040598A1 (ko) 식물 재배용 광원
WO2020040597A1 (ko) 식물 재배용 광원
TWI459895B (zh) 植物育成照明裝置
TWI424809B (zh) 植物病害防除用照明系統
WO2020032677A1 (ko) 식물 재배 장치 및 식물 재배 방법
WO2019203597A1 (ko) Uv를 이용한 식물 재배 방법 및 이를 위한 식물 재배 시스템
WO2017188719A1 (ko) 이고들빼기의 생장 및 생리활성 물질 증진 방법
WO2020032601A2 (ko) 식물 재배 장치 및 이를 이용한 재배 방법
WO2013183897A1 (ko) 과채류의 호르메시스 유도 장치
CN102159062A (zh) 具备防虫效果的植物照明栽培方法及植物栽培用照明装置
WO2016206275A1 (zh) 一种基于led脉冲光降解农药的生长装置
WO2014014267A1 (ko) 현미순 재배장치와 이를 이용한 재배방법 및 음식조리방법
Lalge et al. The effects of red, blue and white light on the growth and development of Cannabis sativa L
Reuveni et al. Sporulation of Botrytis cinerea as affected by photoselective polyethylene sheets and filters
JP4988643B2 (ja) 植物病害防除用照明装置
Harun et al. WSN application in LED plant factory using continuous lighting (CL) method
WO2021137676A1 (ko) 식물 재배용 광원
WO2021201634A1 (ko) 식물 재배용 광원 및 이를 이용한 식물 재배 방법
KR200247078Y1 (ko) 발광다이오드를 이용한 절화 및 분화식물의 품질유지용조명장치
WO2022164232A1 (ko) 식물 재배용 광원 모듈 및 그것을 포함하는 광원 장치
CN107711698A (zh) 一种乌龟工厂化养殖方法
KR20240009595A (ko) 수경재배장치용 led 조광 시스템
JP2024009511A (ja) 果菜植物栽培用照明装置
Hall The Relationship of TEPP and Photoperiod to Flowering and Fruiting in Tomato
KR20150106555A (ko) 식물 발아 억제용 조명

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851004

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217005308

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021510160

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019851004

Country of ref document: EP

Effective date: 20210324