WO2020040135A1 - 細胞の培養又は誘導方法 - Google Patents

細胞の培養又は誘導方法 Download PDF

Info

Publication number
WO2020040135A1
WO2020040135A1 PCT/JP2019/032438 JP2019032438W WO2020040135A1 WO 2020040135 A1 WO2020040135 A1 WO 2020040135A1 JP 2019032438 W JP2019032438 W JP 2019032438W WO 2020040135 A1 WO2020040135 A1 WO 2020040135A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
medium
culture
closed system
cell
Prior art date
Application number
PCT/JP2019/032438
Other languages
English (en)
French (fr)
Inventor
剛士 田邊
健太 須藤
Original Assignee
剛士 田邊
アイ ピース, インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 剛士 田邊, アイ ピース, インコーポレイテッド filed Critical 剛士 田邊
Priority to EP19851814.4A priority Critical patent/EP3842526A4/en
Priority to CN201980054197.8A priority patent/CN112601813A/zh
Priority to JP2020538405A priority patent/JPWO2020040135A1/ja
Priority to US17/269,943 priority patent/US20210198635A1/en
Publication of WO2020040135A1 publication Critical patent/WO2020040135A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M37/00Means for sterilizing, maintaining sterile conditions or avoiding chemical or biological contamination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/02Atmosphere, e.g. low oxygen conditions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2523/00Culture process characterised by temperature

Definitions

  • the present invention relates to cell technology, and to a method for culturing or inducing cells.
  • Embryonic stem cells are stem cells established from early human or mouse embryos. ES cells have pluripotency that can be differentiated into all cells present in a living body. Currently, human ES cells are available for cell transplantation therapy for many diseases, such as Parkinson's disease, juvenile diabetes, and leukemia. However, there are obstacles to transplantation of ES cells. In particular, transplantation of ES cells can cause an immune rejection similar to the rejection that occurs following an unsuccessful organ transplant. Also, there are many criticisms and oppositions from the ethical point of view regarding the use of ES cells established by destroying human embryos.
  • iPS Cells induced pluripotent stem cells
  • iPS Cells induced pluripotent stem cells
  • an object of the present invention is to provide a method capable of efficiently and conveniently culturing or inducing cells.
  • a method for culturing or inducing cells comprising culturing or inducing cells in a closed system.
  • the induction may include at least one of reprogramming, reprogramming, transdifferentiation, induction of differentiation, and alteration of cell fate.
  • the above method may further include controlling the temperature in the closed system.
  • the closed system may be closed.
  • cells, microorganisms, viruses, and dust outside the closed system may not enter the closed system while the closed system is closed.
  • the substance in the closed system does not have to flow out of the closed system while the closed system is closed.
  • At least one of carbon dioxide gas, nitrogen gas and oxygen gas may not be supplied into the closed system.
  • the pH of the medium in the closed system may be kept within a predetermined range.
  • At least a part of the closed system may be formed by being embedded in a gas impermeable substance.
  • At least a part of the closed system may be made of a gas impermeable material.
  • cells may be cultured or induced while supplementing or replacing the medium in a closed system.
  • cells may be cultured or induced while circulating the medium in a closed system.
  • the closed system includes a culture tank for culturing cells, a supply port for supplying a fluid into the culture tank, and an outlet for discharging the fluid in the closed system, the culture tank, It may be provided, and the supply port and the discharge port may be hermetically sealable.
  • a supply device for supplying a fluid to the supply port is detachable
  • a discharge device for discharging the fluid to the discharge port is detachable
  • a fluid is supplied from the supply device into the culture tank.
  • the fluid in the culture tank may move into the ejector.
  • the air in the culture tank may move into the discharger.
  • the culture medium in the culture tank may move into the discharger.
  • the medium may contain cells.
  • the concentration of carbon dioxide in the closed system may not be controlled.
  • the concentration of carbon dioxide outside the closed system may not be controlled.
  • substances in the closed system may move through the semipermeable membrane in the closed system.
  • the closed system may include a culture tank for culturing cells and a flow path connected to the culture tank, and the medium may circulate through the culture tank and the flow path.
  • the gas does not need to be exchanged with the outside in the flow path.
  • the pH of the culture medium in the culture tank may be kept within a predetermined range by circulating the culture medium.
  • the culture may be a suspension culture.
  • the culture may be adhesion culture.
  • cells may be cultured in a gel medium in a closed system.
  • cells may be cultured in a liquid medium in a closed system.
  • the medium in the closed system may be stirred.
  • the medium in the closed system may not be stirred.
  • the above method may further include passaging the cells.
  • the medium may be added or replaced between the seeding and the passage.
  • the medium may be added or replaced between passages.
  • the cells may be stem cells.
  • the stem cells may be iPS cells, ES cells, or somatic stem cells.
  • ⁇ Stem cells may be maintained in an undifferentiated state by culturing according to the above method.
  • the stem cells may maintain pluripotency in the culture.
  • the cells may be somatic cells.
  • the cell is at least one selected from blood cells, neural cells, cardiomyocytes, epithelial cells, mesenchymal cells, hepatocytes, insulin producing cells, retinal pigment epithelial cells, and corneal cells. It may be one.
  • the cells may be cells into which an inducing factor has been introduced.
  • an inducer may be added to a medium in a closed system, and the inducer may be introduced into cells cultured in the closed system.
  • the cells may be induced into stem cells.
  • the stem cells may be iPS cells.
  • the cells may be blood cells.
  • the cells may be induced to another kind of cells.
  • the cells are blood cells
  • an inducer is added to a medium in a closed system
  • the inducer is introduced into blood cells cultured in the closed system
  • the blood cells are converted into iPS cells. May be guided.
  • the inducer may be contained in the plasmid.
  • the inducer may be RNA.
  • the inducer may be contained in Sendai virus.
  • a culture component permeable member through which a culture component can pass and a culture tank that covers a surface of the culture component permeable member, holds a cell-containing medium, and cultures cells, Covering the other surface of the culture component permeable member, comprising a medium holding tank for holding a medium, providing a cell incubator, and culturing or inducing cells in the culture tank, Methods for culturing or inducing cells are provided.
  • the induction may include at least one of reprogramming, reprogramming, transdifferentiation, induction of differentiation and alteration of cell fate.
  • the inside of the cell incubator may be closed from the outside.
  • the pH of the medium in the cell incubator may be kept within a predetermined range.
  • the culture may be a suspension culture.
  • the cells may be stem cells.
  • the cells may be somatic cells.
  • the cell is at least one selected from blood cells, neural cells, cardiomyocytes, epithelial cells, mesenchymal cells, hepatocytes, insulin producing cells, retinal pigment epithelial cells, and corneal cells. It may be one.
  • the cells may be cells into which an inducing factor has been introduced.
  • the inducer may be added to the medium in the culture tank, and the inducer may be introduced into the cells cultured in the culture tank.
  • the cells may be induced to another kind of cells.
  • the cell incubator may further include a culture-side plate provided with an opening, which is superimposed on the surface of the culture component transmitting member on the side of the culture tank.
  • the cell incubator may further include a culture-side plate provided with an opening, which is superimposed on a surface of the culture component transmitting member on the side of the culture medium holding tank.
  • the culture side plate may be dark.
  • the above method may further include observing a cell or a cell clump composed of cells against a background of the culture plate where the opening is not provided.
  • the above method may further include photographing the cell or the cell mass composed of the cell in the background where the opening of the culture side plate is not provided.
  • the above method may further include replenishing or replacing the medium in the medium holding tank.
  • FIG. 2 is an exploded perspective view of the cell incubator according to the embodiment. It is a perspective view of the cell incubator concerning embodiment. It is a front view of a part of cell culture device concerning an embodiment. It is a perspective view of a part of cell culture device concerning an embodiment. It is a front view of a part of cell culture device concerning an embodiment. It is a rear view of the cell incubator concerning embodiment.
  • FIG. 2 is an exploded perspective view of the cell incubator according to the embodiment. 4 is an optical microscope photograph of cells cultured by the culture method according to Example 1. 6 is a histogram showing the results of analyzing cells cultured by the culture method according to Example 1 by flow cytometry.
  • FIG. 10A is a photograph of a tube used in the culture method according to Example 2.
  • FIG. 10A is a photograph of a tube used in the culture method according to Example 2.
  • 10B is an optical micrograph of cells cultured by the culture method according to Example 2.
  • 9 is a histogram showing the results of analyzing cells cultured by the culture method according to Example 2 by flow cytometry.
  • 9 is an optical micrograph of cells cultured by the culture method according to Example 3.
  • 9 is a histogram showing the results of analyzing cells cultured by the culture method according to Example 3 by flow cytometry.
  • 9 is a photograph of a flask used in the method for producing induced pluripotent stem cells according to Example 4.
  • 9 is an optical micrograph of cells produced by the method for producing induced pluripotent stem cells according to Example 4.
  • 9 is a graph showing the number of colonies of cells produced by the method for producing induced pluripotent stem cells according to Example 4 for each colony morphology.
  • FIG. 9 is a histogram showing the results of analyzing cells produced by the method for producing induced pluripotent stem cells according to Example 4 by flow cytometry.
  • 9 is an optical micrograph of cells produced by the method for producing induced pluripotent stem cells according to Example 5.
  • 11 is a histogram showing the results of analyzing cells produced by the method for producing induced pluripotent stem cells according to Example 5 by flow cytometry.
  • FIG. 14 is an exploded perspective view of the cell incubator according to Example 6.
  • FIG. 13 is a perspective view of a cell incubator according to Example 6.
  • 13 is a micrograph of a cell mass according to Example 6.
  • 14 is a histogram showing the results of flow cytometry of iPS cells according to Example 6.
  • 13 is a micrograph of a cell mass according to Example 7.
  • 14 is a histogram showing the results of flow cytometry of iPS cells according to Example 7.
  • 14 is a micrograph of a cell mass according to Example 8.
  • 14 is
  • the method for culturing cells includes culturing the cells in a closed system.
  • the closed system is, for example, a completely closed system in which no gas exchange occurs between the inside and the outside of the closed system.
  • the closed system is closed, for example, so that no outside air enters the closed system.
  • cells, microorganisms, viruses, and dust outside the closed system do not enter the closed system.
  • substances in the closed system do not flow out of the closed system.
  • the cells may be cultured in a liquid medium in a closed system or in a gel medium. Further, the cells may be adherently cultured or suspended in a closed system. During culturing cells in a closed system, the medium may or may not be agitated. When cells are adhered and cultured, feeder cells may be used or feeder cells may not be used. When cells are suspended and cultured, feeder cells may not be used.
  • Cells cultured in a closed system may be animal cells including humans, insect cells, or plant cells.
  • the cells cultured in the closed system may be, for example, somatic cells, differentiated cells, undifferentiated cells, or stem cells.
  • Cells cultured in a closed system are not particularly limited.
  • blood cells, nervous cells, cardiomyocytes, epithelial cells, vascular endothelial cells, mesenchymal cells, fibroblasts, hepatocytes, insulin Production cells, retinal pigment epithelial cells, and corneal cells may be used.
  • Blood cells include T cells, B cells, NK cells, NKT cells, megakaryocytes, macrophages, granulocytes, neutrophils, eosinophils, hematopoietic stem cells, blood stem / progenitor cells, erythrocytes, leukocytes and platelets. It may be a blood cell.
  • the neural cells may be neural cells and glial cells, oligodendrocytes, neural stem cells.
  • the myocardial cells may be myocardial stem cells, myocardial cells, and pacemaker cells.
  • the epithelial cells may be keratinocytes, intestinal epithelial cells, oral epithelium, corneal epithelial cell epithelial cells.
  • Mesenchymal cells may be dermal cells, osteoblasts, adipocytes, muscle cells, chondrocytes and the like.
  • Stem cells are, for example, induced pluripotent stem (iPS) cells, embryonic stem cells (ES cells) and somatic stem cells.
  • the somatic stem cells may be mesenchymal stem cells.
  • the stem cell grows in a culture medium while maintaining an undifferentiated state and maintaining pluripotency.
  • stem cells are decomposed into single cells or cell clusters before suspension culture, and the stem cells decomposed into single cells or cell clusters are placed in a medium.
  • Single cells or cell clumps grow while maintaining clonality and form colonies in the medium.
  • Stem cells are cultured, for example, in a stem cell culture medium.
  • a human ES / iPS culture medium such as mTeSR1 (registered trademark, STEMCELL @ TECHNOLOGIES) can be used.
  • the medium for stem cells is not limited to this, and various stem cell media can be used.
  • a medium containing 20% KnockOut @ SR (registered trademark, ThermoFisher @ SCIENTIFIC), GlutaMAX (registered trademark, ThermoFisher @ SCIENTIFIC), and a non-essential amino acid (NEAA) may be used as the stem cell medium.
  • SR registered trademark, ThermoFisher @ SCIENTIFIC
  • GlutaMAX registered trademark, ThermoFisher @ SCIENTIFIC
  • NEAA non-essential amino acid
  • ES Cell Medium for Human iPS and ES Cells, Plurington reprogramming medium (Stemgent), Pluri STEM (registered trademark), Stemfit AK02N, Stemfit AK03 (registered trademark of Ajinomoto) serum and feeder free medium for hESC / iPS (Applied StemCell), and L7 may be used (registered trademark) hPSC Culture System (LONZA) such as stem cell medium.
  • the medium in the closed system is appropriately selected according to the type of cells cultured in the closed system.
  • the cells are blood cells
  • a medium suitable for the blood cells is placed in a closed system.
  • the cells are mesenchymal cells
  • a medium suitable for the mesenchymal cells is placed in a closed system.
  • the medium may not contain a growth factor such as, for example, basic bfibroblast growth factor (bFGF).
  • bFGF basic bfibroblast growth factor
  • the medium may contain a growth factor such as bFGF at a low concentration of 400 ⁇ g / L or less, 40 ⁇ g / L or less, or 10 ⁇ g / L or less.
  • the medium may not contain tgf- ⁇ .
  • the medium may contain tgf- ⁇ at a low concentration of 2 ⁇ g / L (2 ng / mL) or less, 600 ng / L or less, 300 ng / L or less, or 100 ng / L or less.
  • the medium may contain at least one substance selected from the group consisting of cadherin, laminin, fibronectin, and vitronectin.
  • the gel medium may be, for example, a medium containing deacylated gellan gum in a final concentration of 0.001% to 0.5% by weight, 0.005% to 0.1% by weight, or 0% by weight. It is prepared by adding from 0.01% by weight to 0.05% by weight.
  • Gel medium is gellan gum, hyaluronic acid, ramzan gum, diutan gum, xanthan gum, carrageenan, fucoidan, pectin, pectic acid, pectinic acid, heparan sulfate, heparin, heparitin sulfate, keratosulfate, chondroitin sulfate, deltaman sulfate, rhamnan sulfate, and It may contain at least one polymer compound selected from the group consisting of salts thereof. Further, the gel medium may contain methylcellulose. By including methylcellulose, aggregation between cells is further suppressed.
  • the gel medium is poly (glycerol monomethacrylate) (PGMA), poly (2-hydroxypropylmethacrylate) (PHPMA), Poly (N-isopropylacrylamide) (PNIPAM), amine terminated, carboxylic acid terminated, maleimide terminated, N-hydroxysuccinimide ( NHS) ester terminated, triethoxysilane terminated, Poly (N-isopropylacrylamide-co-acrylamide), Poly (N-isopropylacrylamide-co-acrylic acid), Poly (N-isopropylacrylamide-co-butylacrylate), Poly (N-isopropylacrylamide-co- It may contain a small number of temperature-sensitive gels selected from methacrylic acid, poly (N-isopropylacrylamide-co-methacrylic acid-co-octadecyl acrylate), and N-isopropylacrylamide.
  • PGMA poly (glycerol monomethacrylate)
  • a gel medium or a gel medium includes a polymer medium.
  • the temperature of the medium in the closed system is maintained at, for example, 0 ° C or higher, 4 ° C or higher, 15 ° C or higher, 20 ° C or higher, or 34 ° C or higher.
  • the temperature of the medium in the closed system is maintained at, for example, 45 ° C. or lower, 39 ° C. or lower, or 20 ° C. or lower.
  • the temperature of the medium in the closed system may be controlled using a temperature control device such as a heater and a cooler.
  • the pH of the medium put in the closed system is, for example, 4.0 or more, 5.0 or more, 6.0 or more, 7.0 or more, or 8.0 or more.
  • the pH of the medium placed in the closed system is, for example, 10.0 or less, 9.0 or less, 8.8 or less, or 8.0 or less.
  • the presence of the medium in the closed system tends to keep the pH within the above range while culturing the cells by being present in the closed system. It is preferable that the pH of the medium placed in the closed system is 7.0 or more or 8.0 or more, since lactic acid is neutralized during culturing the cells in the closed system and the decrease in pH is suppressed.
  • the closed system is filled with a medium so that a gas layer does not remain or is reduced in the closed system.
  • the medium may be circulated in the closed system so as not to be exposed to the outside air.
  • a semi-permeable membrane may be arranged between the cell suspension and the circulating medium, and the active ingredient of the medium may permeate the cell suspension through the semi-permeable membrane.
  • the cells are cultured, for example, for 3 hours or more, 1 day or more, 14 days or more, or 30 days or more.
  • the closed system may be opened at the time of subculture, medium exchange, and medium addition.
  • Note that it is not necessary to exchange or supplement the medium between the cell seeding and the passage.
  • the cells in the closed system are cultured without opening the closed system at all.
  • seeding and passage for example, 1 day or more, 5 days or more, or 10 days or more, cells in the closed system are cultured without opening the closed system at all.
  • the cells in the closed system are cultured without opening the closed system at all. Between passages, for example, 1 day or more, 5 days or more, or 10 days or more, the cells in the closed system are cultured without opening the closed system at all.
  • the closed system may be opened and the medium may be added or replaced. Further, between the passages of the cells, the closed system may be opened, and the medium may be added or replaced. The medium may be added or replaced every other day, every two or more days, or every five or more days.
  • the cells in the closed system are cultured without any opening of the closed system except at the time of addition to or exchange with the medium.
  • the method for inducing cells includes inducing cells in a closed system.
  • the closed system is as described above.
  • Induction refers to reprogramming, initialization, transdifferentiation (Transdifferentiation or Lineage reprogramming), differentiation induction, and cell fate change (Cell fate reprogramming).
  • the cell induced in the closed system may be a cell into which an inducing factor has been introduced outside the closed system in advance.
  • an inducer may be added to a medium in a closed system, and the inducer may be introduced into cells cultured in the closed system but not introduced with the inducer to induce cells in the closed system.
  • the cells induced in the closed system may be animal cells or plant cells.
  • the cells may be induced in a liquid medium in a closed system or in a gel medium in a closed system. Further, the cells may be induced while being adherently cultured in a closed system, or may be induced while being suspended and cultured. While inducing cells in a closed system, the medium may or may not be agitated. When cells are induced while being adherently cultured, feeder cells may be used or feeder cells may not be used. When cells are induced in suspension culture, feeder cells may not be used.
  • cells may be induced into stem cells such as iPS cells.
  • the cells may be induced to another type of cell other than stem cells.
  • Stem cells such as iPS cells and ES cells, may be induced into different types of cells in a closed system.
  • the cells induced to iPS cells in the closed system may be blood cells such as blood cells.
  • cells induced into iPS cells in a closed system may be fibroblasts, medullary stem cells, keratinocytes, dermal papilla cells, oral epithelial cells, and somatic stem progenitor cells.
  • cells may be induced into, for example, blood cells, neural cells, cardiomyocytes, epithelial cells, mesenchymal cells, hepatocytes, insulin-producing cells, retinal pigment epithelial cells, and corneal cells. Good.
  • Blood cells are separated from blood.
  • Blood is, for example, but not limited to, peripheral blood and cord blood. Blood may be collected from an adult or from a minor.
  • an anticoagulant such as ethylenediaminetetraacetic acid (EDTA), heparin, and liquid A (BCD) is used.
  • EDTA ethylenediaminetetraacetic acid
  • BCD liquid A
  • Blood cells are, for example, nucleated cells such as mononuclear cells (Mononuclear cells), neutrophils, eosinophils, lymphocytes, macrophages, blood stem / progenitor cells, and vascular endothelial cells; Contains no platelets. Blood cells may be, for example, vascular endothelial progenitor cells, blood stem / progenitor cells, T cells, or B cells. T cells are, for example, ⁇ T cells.
  • Monocyte cells are separated from blood using a blood cell separation medium and a centrifugal separator.
  • a blood cell separation medium When Ficoll (GE Healthcare) is used as a medium for separating blood cells, the method for separating mononuclear cells is as follows.
  • the centrifuge is set at 4 ° C to 42 ° C, preferably 18 ° C. 10 ⁇ L to 50 mL of blood is collected from an adult or underage human, and a chelating agent containing EDTA is added to the blood and mixed gently so that the blood does not solidify.
  • a medium for separating human lymphocytes (Ficoll-Paque @ PREMIUM, GE Healthcare Japan) is dispensed in 5 mL portions into two 15 mL tubes. 5 mL of blood is added to and diluted with 5 mL of PBS, and 5 mL is layered on the medium for separating human lymphocytes in a tube. At this time, the diluted blood is slowly added to the medium along the tube wall so as not to disturb the interface.
  • vacutainer registered trademark, BD
  • the centrifuge is set at 4 ° C to 42 ° C, preferably at 18 ° C.
  • a blood collection tube (Vacutina (registered trademark), BD), mixed by inversion and mixed with an anticoagulant.
  • the balance is adjusted, and the solution is heated at 4 ° C. to 42 ° C., preferably 18 ° C., at 100 ⁇ g to 3000 ⁇ g, preferably 1500 ⁇ g to 1800 ⁇ g with a swing rotor for 1 minute to 60 minutes, preferably 20 minutes.
  • Centrifuge After centrifugation, the upper layer, which is the plasma layer, is removed, and the mononuclear cell layer and the blood cells adhered to the gel are suspended by pipetting to obtain a suspension. Transfer the resulting suspension to another 15 mL tube.
  • the method for separating mononuclear cells from blood is not limited to the above method.
  • mononuclear cells may be separated from blood using a dialysis membrane.
  • a pure cell select system registered trademark, PALL
  • PALL pure cell select system
  • a purifier for removing blood cells Celsorber E, registered trademark, Asahi Kasei
  • a leukocyte removal filter Sepacell PL, registered trademark, A filter such as PLX-5B-SCD, Asahi Kasei
  • Monocyte cells may be separated using an erythrocyte sedimentation agent capable of separating nucleated cells by gravity sedimentation or centrifugation of erythrocytes.
  • erythrocyte sedimentation agents include HetaSep (registered trademark, STEMCELL @ Technologies) and HES40 (NIPRO).
  • CTL-UP1 sold by Cellular Technology Limited
  • PBMC-001 manufactured by Sanguine Biosciences, or the like may be used.
  • blood cells cryopreserved using a cell cryopreservation solution such as Cell Banker 1, Stem Cell Banker GMP Grade, or Stem Cell Banker DMSO Free GMP Grade (Xenoac) may be thawed and used.
  • a cell cryopreservation solution such as Cell Banker 1, Stem Cell Banker GMP Grade, or Stem Cell Banker DMSO Free GMP Grade (Xenoac) may be thawed and used.
  • a 15 mL tube was filled with 1 mL to 15 mL, preferably 8 mL of a serum-free hematopoietic cell culture medium of known composition (X-VIVO (registered trademark) 10, Lonza) and frozen.
  • the tube containing the mononuclear cells is placed in a warm bath at 4 ° C to 42 ° C, preferably 37 ° C, to begin lysing the mononuclear cells.
  • the tube containing the mononuclear cells is pulled out of the hot tub, and the mononuclear cells are transferred to the tube containing the serum-free hematopoietic cell culture medium of a known composition. 10 ⁇ L of the mononuclear cell suspension is stained with trypan blue and counted on a hemocytometer.
  • Blood cells may be separated based on cell surface markers.
  • Blood stem / progenitor cells are positive for CD34.
  • T cells are positive for any of CD3, CD4 and CD8.
  • B cells are positive for any of CD10, CD19 and CD20.
  • Blood stem / progenitor cells, T cells, or B cells are separated from blood cells using, for example, an automatic magnetic cell separator and immunomagnetic beads. Alternatively, previously separated mononuclear cells may be prepared. However, blood cells that have not been separated based on cell surface markers may be used.
  • CD34-positive cells are stem / progenitor cells and tend to be easily reprogrammed.
  • iPS cells are produced using T cells that are CD3-positive cells, iPS cells derived from T cells tend to be able to efficiently induce differentiation into T cells because they retain the type of TCR recombination.
  • the inducer into cells that have been adherently cultured.
  • the inducer is introduced into cells suspended in a gel medium.
  • the inducer may be RNA.
  • the inducer may be contained in Sendai virus.
  • the inducer may be introduced into the cells by transfection.
  • the inducer may be DNA.
  • the inducer may be contained in a plasmid.
  • Inducers may be included, for example, in adenoviruses, lentiviruses, and retroviruses.
  • the inducer may be a protein.
  • CytoTune (registered trademark, Invitrogen) can be used as the Sendai virus.
  • An index of Sendai virus titer (Titer) includes multiplicity of infection (MOI).
  • the MOI of Sendai virus is, for example, 0.1 to 100.0, or 1.0 to 50.0.
  • inducers to be introduced into cells include OCT3 / 4 mRNA, SOX2 mRNA, KLF4 mRNA, and c-MYC mRNA.
  • inducer may be used M 3 O with an improved OCT4.
  • Inducing factors include LIN28A, FOXH1, LIN28B, GLIS1, p53-dominant negative, p53-P275S, L-MYC, NANOG, DPPA2, DPPA4, DPPA5, ZIC3, BCL-2, E-RAS, TPT1, SALL2, NAC1.
  • the mRNA contained in the inducer includes pseudouridine ( ⁇ ), 5-methylcytosine (m 5 C), 5-methyluridine (5 meU or m 5 U), N1-methyl pseudouridine (me1 ⁇ ), and 5-methoxyuridine (5 moU). ), 5-hydroxymethyluridine (5 hmU), 5-formyluridine (5fU), 5-carboxymethylesteruridine (5camU), thienoguanosine (thG), N4-methylcytidine (me 4 C), 5-methylcytidine (M 5 C), 5-methyoxytidine (5moC), 5-hydroxymethylcytidine (5hmC), 5-hydroxycytidine (5hoC), 5-formcytidine (5fC), 5-carboxycytidine (5caC), N 6 -methyl -2-aminoadenosine (m 6 DAP), diamino Selected from the group consisting of purine (DAP), 2′-O-methyluridine (Um or m 2′- OU), 2-thiour
  • Cytosine may be substituted with 5-methylcytosine (m 5 C).
  • Uracil may be substituted with pseudouracil.
  • the mRNA contained in the inducer may be polyadenylated.
  • M mRNA contained in the inducer may be prepared by polyadenylation of in vitro transcribed (IVT) RNA.
  • mRNA may be polyadenylated during IVT by using a DNA template encoding the poly (A) terminus.
  • the mRNA may be capped. To maximize the efficiency of expression in cells, it is preferred that most mRNA molecules contain a cap.
  • the mRNA may have a 5'cap [m7G (5 ') ppp (5') G] structure.
  • the sequence is a sequence that stabilizes mRNA and promotes transcription. 5'triphosphate may be removed from mRNA having 5'triphosphate by dephosphorylation treatment.
  • the mRNA may have [3'O-Me-m7G (5 ') ppp (5') G] as Anti-Reverse ⁇ Cap ⁇ Analog (ARCA).
  • ARCA is a sequence inserted before the start of transcription, and the efficiency of transcribed mRNA is doubled.
  • the mRNA may have a PolyA tail.
  • the mRNA contained in the inducer may be treated with ribonuclease III (RNase III).
  • RNase III ribonuclease III
  • the mRNA contained in the inducer may be a replicative RNA having self-proliferation ability.
  • the replicative RNA is an RNA having a self-proliferating ability and, unlike ordinary RNA, also has an ability to express a protein necessary for RNA replication.
  • Replicative RNA is derived from the Venezuelan equine encephalitis (VEE) virus, a type of alphavirus. Transfection of the cells with the replicative RNA allows the cells to express the RNA that continues to produce the reprogramming factor, thereby eliminating the need to introduce the inducer RNA multiple times into the cell.
  • VEE Venezuelan equine encephalitis
  • the sequences of the replicative RNAs include alphavirus replicon RNA, eastern equine encephalitis virus (EEE), Venezuelan equine encephalitis virus (VEE), Everglades virus, Mucambo virus, Pixuna virus, and western part. It may comprise a sequence derived from an alphavirus selected from the group consisting of equine encephalitis virus (WEE).
  • replicative RNAs include Sindbis virus, Semliki @ Forest virus, Middelburg virus, Chikungunya virus, O'nyong-nyong virus, and Rosliver virus.
  • Barmah @ Forest virus Getah virus, Sagiyama virus, Bebaru virus, Mayaro virus, Una virus, Aura virus, Wataroa virus.
  • Babanki virus Kyzylagach virus, Hyla De J (Highlands J) virus, Fort Morgan (Fort Morgan) virus, Nudumu (Ndumu) virus, and it may include sequences derived from the alpha virus selected from the group consisting of buggy Creek (Buggy Creek) virus.
  • the replicative RNA is, for example, from 5 ′ to 3 ′, (VEE @ RNA replicase)-(promoter)-(RF1)-(self-cleaving peptide)-(RF2)-(self-cleaving peptide)-( (RF3)-(IRES or core promoter)-(RF4)-(IRES or any promoter)-(optionally selectable marker)-(VEE @ 3'UTR and poly-A tail)-(optionally selectable marker) -Contains a promoter.
  • RF1-4 is a factor that induces dedifferentiation of cells into pluripotent cells. The above RF2-3, RF3-4, and RF4 are optional.
  • RF1-4 is OCT-4, KLF4, SOX-2, c-MYC, LIN28A, LIN28B, GLIS1, FOXH1, p53-dominant negative, p53-P275S, L-MYC, NANOG, DPPA2, DPPA4, DPPA5, ZIC3, BCL-2, E-RAS, TPT1, SALL2, NAC1, DAX1, TERT, ZNF206, FOXD3, REX1, UTF1, KLF2, KLF5, ESRRB, miR-291-3p, miR-294, miR-295, NR5A1, It may be selected from the group consisting of NR5A2, TBX3, MBD3sh, TH2A, and TH2B.
  • the medium in which the cells into which the inducer is introduced is cultured is appropriately selected according to the type of the cells into which the inducer is introduced.
  • the medium in which the cells into which the inducer has been introduced is cultured is appropriately selected depending on the type of the cells into which the inducer has been introduced.
  • the medium may not contain, for example, a growth factor such as bFGF, or may contain a growth factor at a low concentration.
  • the medium may not contain tgf- ⁇ or may contain tgf- ⁇ at a low concentration.
  • the medium may contain at least one substance selected from the group consisting of cadherin, laminin, fibronectin, and vitronectin.
  • the medium may contain at least one polymer compound as described above. Further, the gel medium may contain methylcellulose. Alternatively, the gel medium may include a temperature sensitive gel, as described above.
  • the temperature of the medium in the closed system is, for example, the same as the temperature during culturing the cells in the closed system described above.
  • the pH of the medium placed in the closed system in which the cells are induced is, for example, the same as the pH of the medium placed in the closed system in which the cells are cultured.
  • the closed system is filled with a medium so that a gas layer does not remain or is reduced in the closed system.
  • the medium may be circulated in the closed system so as not to be exposed to the outside air.
  • a semi-permeable membrane may be arranged between the cell suspension and the circulating medium, and the active ingredient of the medium may permeate the cell suspension through the semi-permeable membrane.
  • In a closed system, cells are induced while being cultured, for example, for 1 day or more, 14 days or more, or 30 days or more. However, the closed system may be opened at the time of subculture, medium exchange, and medium addition.
  • Note that it is not necessary to exchange or supplement the medium between the cell seeding and the passage.
  • the cells in the closed system are induced while being cultured without opening the closed system at all.
  • the seeding and the passage for example, 1 day or more, 5 days or more, or 10 days or more, the cells in the closed system are induced while being cultured without opening the closed system at all.
  • the cells in the closed system are induced while being cultured without opening the closed system at all. Between passages, for example, 1 day or more, 5 days or more, or 10 days or more, the cells in the closed system are induced while being cultured without the closed system being opened at all.
  • the closed system may be opened and the medium may be added or replaced. Further, between the passages of the cells, the closed system may be opened, and the medium may be added or replaced. The medium may be added or replaced every other day, every two or more days, or every five or more days. Except at the time of addition to or exchange with the culture medium, the cells in the closed system are induced while being cultured without opening the closed system at all.
  • Whether or not the cells into which the inducer has been introduced has been induced (reprogrammed) into iPS cells can be confirmed, for example, from the cell morphology. Alternatively, whether or not the cells were induced into iPS cells was determined by cytoflow meter using TRA-1-60, TRA-1-81, SSEA-1, and SSEA5, which are undifferentiated cell surface markers. This can be done by analyzing whether at least one selected surface marker is positive.
  • TRA-1-60 is an antigen specific to iPS / ES cells and is not detected in differentiated cells. Since iPS cells can be formed only from the TRA-1-60 positive fraction, TRA-1-60 positive cells are considered to be a species of iPS cells.
  • the closed system for culturing or inducing cells inside may include, for example, a cell incubator as shown in FIG.
  • the cell incubator includes a culture component transmitting member 10 through which the culture component can pass, a culture tank 30 that covers a surface of the culture component transmission member 10 and holds a cell-containing medium and cultures cells.
  • the cell-containing medium in the culture tank 30 can contact the culture component permeable member 10. Further, the culture medium in the culture medium holding tank 40 can contact the culture component transmitting member 10.
  • the medium in the medium holding tank 40 does not contain cells.
  • the culture component transmitting member 10 allows the effective component of the culture medium in the culture medium holding tank 40 to penetrate into the cell-containing medium in the culture tank 30.
  • the culture component transmitting member 10 may allow waste products in the cell-containing medium in the culture tank 30 to permeate into the medium in the medium holding tank 40.
  • a semipermeable membrane and a mesh can be used as the culture component permeable member 10.
  • Semi-permeable membranes include dialysis membranes.
  • the molecular weight cut off of the semipermeable membrane is, for example, 0.1 KDa or more, 10 KDa or more, or 50 KDa or more.
  • the semipermeable membrane includes, for example, cellulose ester, ethyl cellulose, cellulose esters, regenerated cellulose, polysulfone, polyacrylonitrile, polymethyl methacrylate, ethylene vinyl alcohol copolymer, polyester polymer alloy, polycarbonate, polyamide, cellulose acetate, cellulose diester. It is composed of acetate, cellulose triacetate, copper ammonium rayon, saponified cellulose, hemophan film, phosphatidylcholine film, vitamin E coating film and the like.
  • the mesh When the culture component permeable member 10 is a mesh, the mesh has pores smaller than the cells or cell mass cultured in the culture tank 30. This prevents the cells or cell mass in the culture tank 30 from moving into the medium holding tank 40.
  • the material of the mesh is, for example, resin and metal, but is not particularly limited.
  • the surface of the culture component permeable member 10 may be non-cell-adhesive.
  • the cell incubator according to the embodiment may further include a culture-side plate 21 and a culture-side plate 22 each having an opening and sandwiching the culture component permeable member 10.
  • the culture-side plate 21 and the culture-side plate 22 are arranged so that the culture component permeable member 10 is prevented from changing due to the pressure of the cell-containing medium in the culture tank 30 and the medium in the medium holding tank 40. Is held, and the culture component transmitting member 10 is held. Thereby, contact of the culture component permeable member 10 with the inner wall of the culture tank 30 or the culture medium holding tank 40 due to the pressure fluctuation is suppressed.
  • the culture-side plate 21 and the culture-side plate 22 have hardness that does not fluctuate due to the pressure received from the cell-containing medium in the culture tank 30 and the medium in the medium holding tank 40.
  • the material of the culture side plate 21 and the medium side plate 22 is, for example, resin and metal, but is not particularly limited.
  • the surface of the culture side plate 21 may be cell non-adhesive.
  • the culture-side plate 21 is provided with an opening so that the cell-containing medium in the culture tank 30 can come into contact with the culture component transmitting member 10.
  • an opening is provided in the culture medium side plate 22 so that the culture medium in the culture medium holding tank 40 can come into contact with the culture component transmitting member 10.
  • the shape of the opening provided in each of the culture side plate 21 and the medium side plate 22 is, for example, a circle, but is not particularly limited.
  • the openings provided in each of the culture side plate 21 and the culture medium side plate 22 have a size within a range in which the fluctuation of the culture component transmitting member 10 can be suppressed.
  • the openings are provided in the culture-side plate 21 and the medium-side plate 22, for example, in a lattice shape or randomly.
  • the culture side plate 21 may have a dark color such as black.
  • the cells in the cell-containing medium can be visually recognized or imaged with high contrast with the culture side plate 21 as a background. If the size of the area of the culture-side plate 21 where the opening is not provided is larger than the cell or cell mass, the cell or the cell mass is raised with the background where the opening of the culture-side plate 21 is not provided as the background. It becomes easy to visually recognize the image or to make an image with the contrast. However, even if the culture component transmitting member 10 and the culture side plate 21 are transparent, the cells or the cell mass can be visually recognized or imaged by adjusting the light applied to the cells or the cell mass. is there.
  • the culture tank 30 and the medium holding tank 40 may be fixed with screws, pins, electromagnets, or the like.
  • the contact portion of the culture tank 30 and at least a part of one surface of the culture plate 21 are in close contact with each other.
  • At least a part of the other surface of the culture side plate 21 and at least a part of one surface of the culture component transmitting member 10 are in close contact with each other.
  • At least a part of the other surface of the culture component transmitting member 10 and at least a part of one surface of the culture plate 22 are in close contact with each other.
  • At least a part of the other surface of the medium side plate 22 and the contact portion of the medium holding tank 40 are in close contact with each other.
  • a packing or the like may be used as appropriate.
  • the packing may be arranged, for example, between the culture component permeable member 10 and the culture tank 30.
  • the packing may be disposed between the outer periphery of the culture component permeable member 10 and the culture tank 30.
  • the outer diameter of the packing disposed between the culture component permeable member 10 and the culture tank 30 may be larger than the outer diameter of the culture component permeable member 10.
  • the packing may be arranged between the culture component permeable member 10 and the culture medium holding tank 40, for example.
  • the packing may be arranged between the outer periphery of the culture component transmitting member 10 and the culture medium holding tank 40.
  • the outer diameter of the packing disposed between the culture component permeable member 10 and the culture medium holding tank 40 may be larger than the outer diameter of the culture component permeable member 10.
  • the culture tank 30 includes, for example, a housing 31 and a cover 32 that covers the housing 31.
  • the housing 31 and the cover 32 may be integrated.
  • the inner wall of the culture tank 30 may be coated with a cell non-adhesive substance such as poly-HEMA (polyp2-hydroxyethyl methacrylate) to prevent cells from adhering, and the inner wall of the culture tank 30 may be made non-cell-adhesive.
  • the housing 31 is provided with an opening 131 for exposing the culture component transmitting member 10 through the opening of the culture side plate 21.
  • the cover 32 of the culture tank 30 is provided with a window 132 through which the cell-containing medium in the culture tank 30 can be observed.
  • a material of the window 132 for example, glass and resin can be used.
  • the cell incubator according to the embodiment may include a temperature controller for heating and cooling the window 132.
  • the temperature control unit may be a transparent heater such as a transparent conductive film that is disposed on the window 132 and heats the window.
  • the cell incubator according to the embodiment may include a temperature control unit for heating and cooling the housing 31 or the cover 32 of the culture tank 30.
  • the temperature of the cell-containing medium in the culture tank 30 can be adjusted by adjusting the temperature of any one of the housing 31, the cover 32, and the window 132 with the temperature adjustment unit.
  • the cell incubator according to the embodiment may further include a thermometer that measures the temperature of the cell-containing medium in the culture tank 30.
  • the thermometer may measure the temperature of the cell-containing medium based on the temperature of the culture tank 30 without contacting the cell-containing medium, or may directly measure the temperature of the cell-containing medium by contacting the cell-containing medium. .
  • the temperature control unit may be feedback-controlled so that the temperature of the cell-containing medium becomes a predetermined temperature.
  • the culture tank 30 is provided with a supply port 231 for supplying a fluid into the culture tank 30 and a discharge port 331 for discharging the fluid from the culture tank 30.
  • a plug 33 shown in FIG. 2 to which a supply device such as a bag, a bellows, and a syringe for supplying a fluid can be connected is inserted into the supply port 231.
  • the supply device may be a fluid machine such as a pump.
  • the injection device may be directly connected to the supply port 231 shown in FIG.
  • the supply device is detachable from the supply port 231, and when the supply device is not connected to the supply port 231, the supply port 231 can be sealed and exchange of fluid inside and outside of the culture tank 30 via the supply port 231 can be performed. Does not occur.
  • the plug 33 may be a needleless connector.
  • the needleless connector may be a split septum type or a mechanical valve type.
  • the plug 33 includes a disk valve provided with a slit.
  • a supply device or a flow path connected to the supply device is inserted into the slit of the disk valve.
  • the slit is sealed.
  • the disc valve is in close contact with the outer periphery of the supply device or the flow path connected to the supply device. Therefore, even when the supply device or the flow path connected to the supply device is inserted into the plug 33, the outside air does not enter the culture tank 30 via the plug 33.
  • the plug 33 may be a connector into which a needle is inserted.
  • the plug 34 shown in FIG. 2 to which a discharge device such as a bag, a bellows, and a syringe for discharging the fluid in the culture tank 30 can be connected is inserted into the discharge port 331.
  • the ejector may be a fluid machine such as a pump.
  • a discharger may be directly connected to the discharge port 331 shown in FIG.
  • the ejector may actively suck the fluid in the culture tank 30.
  • the ejector may passively increase the internal volume according to the pressure in the culture tank 30 and receive the fluid pushed out from the culture tank 30.
  • the ejector can be attached to and detached from the outlet 331.
  • Plug 34 may be a needleless connector.
  • the needleless connector may be a split septum type or a mechanical valve type. Even when the ejector or the flow path connected to the ejector is inserted into the plug 34, the outside air does not enter the culture tank 30 via the plug 34.
  • the plug 34 may be a connector into which a needle is inserted.
  • the culture tank 30 is in a state in which the culture tank 30 is in close contact with the culture medium holding tank 40 with the culture side plate 21, the culture component transmitting member 10, and the culture medium side plate 22 interposed therebetween.
  • the cell-containing medium is injected into the culture vessel 30 from the supply port 231 while the air in the culture vessel 30 is exhausted from the discharge port 331, whereby the cell-containing medium is put into the culture vessel 30 shown in FIG. It is possible. Further, it is possible to completely eliminate the air layer in the culture tank 30. However, an air layer may remain in the culture tank 30.
  • the cell incubator according to the embodiment can hold the culture tank 30 and may further include a culture tank holding member capable of adjusting the inclination of the culture tank 30. By adjusting the inclination of the culture tank 30, it becomes easy to discharge gas such as air in the culture tank 30.
  • the supply port 231 and the discharge port 331 of the culture tank 30 can be closed with a stopper or the like.
  • the plug 33 and the plug 34 connected to the supply port 231 and the discharge port 331 of the culture tank 30 can be closed.
  • the supply port 231 of the culture tank 30 may be shielded from the outside by being connected to the supply device, and the discharge port 331 of the culture tank 30 may be shielded from the outside by being connected to the discharger. It is possible.
  • the supply port 231 and the discharge port 331 are closed and the culture tank 30 is brought into close contact with the culture medium holding tank 40 as shown in FIG. 2, the inside of the culture tank 30 is sealed from the air outside the culture tank 30.
  • the culture tank 30 may be embedded with a gas impermeable material. In other words, the culture tank 30 may be embedded in a gas impermeable substance.
  • the culture medium holding tank 40 shown in FIG. 1 is provided with an opening 140 shown in FIG. 3 for exposing the culture component transmitting member 10 through the opening of the culture medium side plate 22.
  • the opening 140 is covered with the culture component transmitting member 10 shown in FIG.
  • the medium holding tank 40 shown in FIG. 3 is provided with an inlet 240 for introducing a fluid into the medium holding tank 40 and an outlet 340 for discharging the fluid from the medium holding tank 40.
  • a plurality of current plates 41 may be arranged in the culture medium holding tank 40.
  • the plurality of current plates 41 are arranged, for example, so as to alternately protrude from the opposed inner walls of the culture medium holding tank 40.
  • the medium holding tank 40 is in a state of being in close contact with the culture tank 30 with the medium side plate 22, the culture component transmitting member 10, and the culture side plate 21 shown in FIG.
  • the cell culture medium is injected into the culture medium holding tank 40 from the inlet 240 while discharging the air in the culture medium holding tank 40 from the discharge port 340 shown in FIG. It is possible to put the cell culture medium inside.
  • the cell culture medium is injected into the culture medium holding tank 40 from the introduction port 240 while discharging the cell culture medium in the culture medium holding tank 40 from the outlet port 340. It is possible to flow the cell culture medium into the culture medium holding tank 40.
  • the culture medium flows along the plurality of current plates 41 from the inlet 240 to the outlet 340 in the medium holding tank 40. Therefore, an opportunity for the components of the culture medium to come into contact with the culture component permeable member 10 is secured.
  • one or a plurality of outlets 241 communicating with the inlet 240 shown in FIG. 3 may be provided on the inner wall of the culture medium holding tank 40.
  • the plurality of discharge ports 241 shown in FIG. 4 are provided, for example, in a horizontal row.
  • the number and arrangement of the plurality of discharge ports 241 may be arranged uniformly or randomly.
  • the number and arrangement of the plurality of outlets 241 are set according to characteristics such as viscosity of the culture medium.
  • FIG. 5 by discharging the culture medium from the plurality of discharge ports 241, it is possible to improve the uniformity of the culture medium in contact with the culture component transmitting member 10 in the culture medium holding tank 40.
  • a discharge block 145 provided with one or more discharge ports 241 may be insertable into the inner wall of the culture medium holding tank 40.
  • the ejection blocks 145 having different patterns such as the number and arrangement of the plurality of ejection ports 241 may be prepared and used depending on the characteristics of the culture medium and the cells to be cultured.
  • the upper side of the inner wall of the culture medium holding tank 40 with respect to gravity may be bent or curved upward or downward.
  • the lower side of the inner wall of the culture medium holding tank 40 with respect to gravity may be bent or curved upward or downward.
  • openings 242 may be provided near the plurality of discharge ports 241 on the inner wall of the medium holding tank 40. As the culture medium discharged from the plurality of discharge ports 241 accumulates in the culture medium holding tank 40, the air in the culture medium holding tank 40 flows out of the opening 242 to the outside. After the culture medium is placed in the culture medium holding tank 40, the opening 242 may be closed.
  • the culture medium channel 200 may include a resin tube, a silicon tube, or the like.
  • the culture medium channel 200 may be embedded with a gas impermeable material.
  • the culture medium channel 200 may be embedded in a gas impermeable substance.
  • the culture medium channel 200 may be a hole provided in a member made of resin, glass, metal, or the like. In this case, for example, the medium channel 200 is formed by attaching members provided with concave portions to each other.
  • the medium flow path 200 may be provided with a fluid machine for introducing a medium into the medium holding tank 40 and discharging the medium from the medium holding tank 40.
  • the fluid machine includes, for example, an introduction fluid machine 51 for introducing a culture medium into the culture medium holding tank 40 and a discharge fluid machine 52 for discharging the culture medium from the culture medium holding tank 40.
  • a positive displacement pump can be used as the introduction fluid machine 51 and the discharge fluid machine 52 shown in FIG.
  • positive displacement pumps include reciprocating pumps, including piston pumps, plunger pumps, and diaphragm pumps, or rotary pumps, including gear, vane, and screw pumps.
  • Examples of the diaphragm pump include a tubing pump and a piezoelectric (piezo) pump.
  • the tubing pump is sometimes called a peristaltic pump.
  • a microfluidic chip module in which various types of pumps are combined may be used.
  • liquid can be sent without the pump directly contacting the medium inside the medium flow path 200 shown in FIG.
  • a syringe pump may be used as the introduction fluid machine 51 and the discharge fluid machine 52.
  • Even pumps other than hermetic pumps can be reused by heat sterilization or the like.
  • the introduction fluid machine 51 When the introduction fluid machine 51 is a hermetic pump, the introduction fluid machine 51 includes a pump head 151 and a drive unit 251 such as a motor as shown in FIG.
  • the pump head 151 and the drive unit 251 are detachable.
  • the pump head 151 is provided with a roller for squeezing a medium flow path such as a tube from the outside.
  • the driving unit 251 rotates the rollers of the pump head 151.
  • the discharge fluid machine 52 When the discharge fluid machine 52 is a hermetic pump, the discharge fluid machine 52 includes a pump head 152 and a drive unit 252 such as a motor.
  • the pump head 152 and the drive unit 252 are detachable.
  • the pump head 152 is provided with a roller for squeezing a medium flow path such as a tube from the outside.
  • the driving unit 252 rotates the rollers of the pump head 152.
  • the culture medium channel 200 may be provided with a culture medium tank 60 in which a culture medium can be inserted.
  • the culture medium that has entered the culture medium tank 60 from the culture medium flow path 200 flows out to the culture medium flow path 200 again.
  • the capacity of the medium circulating between the medium flow path 200 and the medium holding tank 40 can be increased.
  • the medium tank 60 may be provided with a supply port for supplying a fluid into the medium tank 60 and an outlet for discharging the fluid from the medium tank 60.
  • a plug 61 shown in FIG. 6 to which a supply device such as a bag for supplying fluid, a bellows, a syringe, or the like can be connected is inserted into a supply port of the culture medium tank 60.
  • the supply device may be a fluid machine such as a pump. However, a supply device may be directly connected to the supply port of the culture medium tank 60.
  • the supply device is detachable from the supply port, and when the supply device is not connected to the supply port, the supply port can be hermetically sealed, and exchange of fluid inside and outside of the medium flow path 200 via the supply port does not occur.
  • the supply port is shielded from the outside by being connected to the supply device.
  • the plug 61 may be a needleless connector.
  • the needleless connector may be a split septum type or a mechanical valve type. Even when the supply device or the flow path connected to the supply device is inserted into the plug 61, the outside air does not enter the medium tank 60 via the plug 61.
  • the plug 61 may be a connector into which a needle is inserted.
  • a plug 62 to which a discharger such as a bag, a bellows, and a syringe for discharging the fluid in the culture medium tank 60 is inserted into the discharge port of the culture medium tank 60.
  • the ejector may be a fluid machine such as a pump.
  • a discharger may be directly connected to the discharge port of the culture medium tank 60.
  • the ejector may actively aspirate the fluid in the media flow path.
  • the ejector may passively increase the internal volume in response to the pressure in the medium flow path and receive the fluid pushed out of the medium flow path.
  • the ejector can be attached to and detached from the outlet, and when the ejector is not connected to the outlet, the outlet can be sealed so that exchange of fluid inside and outside the medium flow path 200 via the outlet does not occur.
  • the outlet is shielded from the outside by being connected to the ejector.
  • the plug 62 may be a needleless connector.
  • the needleless connector may be a split septum type or a mechanical valve type. Even when the ejector or the flow path connected to the ejector is inserted into the plug 62, the outside air does not enter the medium tank 60 via the plug 62.
  • the plug 62 may be a connector into which a needle is inserted.
  • the medium holding tank 40 shown in FIG. 1 is in close contact with the culture tank 30 with the medium side plate 22, the culture component transmitting member 10, and the culture side plate 21 interposed therebetween, and the medium shown in FIG.
  • the culture medium is discharged from the culture medium holding tank 40, the culture medium flow path 200 and the culture medium tank 60 through the outlet.
  • the culture medium By injecting the culture medium into the culture medium holding tank 40, the culture medium channel 200 and the culture medium tank 60 from the supply port of the tank 60, it is possible to put the culture medium into the culture medium holding tank 40, the culture medium flow path 200 and the culture medium tank 60. is there.
  • the air layer in the medium holding tank 40, the medium flow path 200, and the medium tank 60 may be completely eliminated, or the air layer may remain.
  • the supply device may actively inject the culture medium into the culture medium flow channel 200, or the culture medium in the supply device may be sucked into the culture medium flow passage 200 which has been reduced in pressure by driving the fluid machine, and The internal volume may decrease passively.
  • the ejector may actively suck the air in the culture medium channel 200, or the air in the culture medium channel 200, which has been increased in pressure by the driving of the fluid machine, flows into the ejector, and the inside of the ejector The volume may increase passively.
  • the culture medium in the culture medium tank 60 is discharged from the supply opening of the culture medium tank 60 while the culture medium in the culture medium tank 60 is discharged from the discharge opening of the culture medium tank 60.
  • the cell medium can be replaced in the medium tank 60.
  • the feeder may actively inject a new culture medium into the culture medium flow path 200, or a new culture medium in the supply may be sucked into the culture flow path 200 which has been reduced in pressure by driving the fluid machine.
  • the internal volume within may be passively reduced.
  • the ejector may actively suck the old medium in the medium flow path 200, or the old medium in the medium flow path 200, which has been increased in pressure by driving the fluid machine, flows into the ejector, and May be passively increased.
  • the supply port for supplying the culture medium into the culture medium channel 200 and the culture medium holding tank 40 and the discharge port for discharging the air from the culture medium flow path 200 and the culture medium holding tank 40 are provided in the culture medium tank 60 of the culture medium flow path 200. May be provided in a portion other than the portion where is provided.
  • a supply port for supplying the culture medium into the culture medium channel 200 and the culture medium holding tank 40 and an outlet for discharging the air from the culture medium flow path 200 and the culture medium holding tank 40 are provided in the culture medium flow path 200. It may be.
  • the cell incubator according to the embodiment may include a temperature controller for heating and cooling at least one of the medium holding tank 40, the medium flow path 200, and the medium tank 60.
  • the temperature of the culture medium can be adjusted by adjusting the temperature of any one of the culture medium holding tank 40, the culture medium flow path 200, and the culture medium tank 60 with the temperature adjustment unit.
  • the cell incubator according to the embodiment may further include a thermometer that measures the temperature of the medium. The thermometer may measure the temperature of the culture medium based on the temperature of at least one of the culture medium holding tank 40, the culture medium flow path 200, and the culture medium tank 60 without contacting the culture medium. The temperature may be measured directly. In this case, the temperature control unit may be feedback-controlled so that the temperature of the culture medium becomes a predetermined temperature.
  • the culture medium holding tank 40, the culture medium flow path 200, the pump head 151, the pump head 152, and the culture medium tank 60 may be stored in the flow path case 70.
  • the culture medium holding tank 40, the culture medium flow path 200, the pump head 151, the pump head 152, and the culture medium tank 60 may be completely embedded in the gas impermeable substance.
  • the culture medium channel 200 may be provided in a tunnel shape in the gas impermeable material.
  • a hole for inserting a shaft into the pump head 151, a hole for inserting a shaft into the pump head 152, a hole for inserting the plug 61 into the supply port of the medium tank 60, and A hole for inserting the plug 62 is provided at the outlet of the culture medium tank 60.
  • the hole for inserting the plug 61 into the supply port of the medium tank 60 and the hole for inserting the plug 62 into the outlet of the medium tank 60 may be able to be closed.
  • the drive unit 251 of the introduction fluid machine 51 and the drive unit 252 of the discharge fluid machine 52 may be arranged on a substrate-shaped drive unit holding member 80.
  • the drive unit holding member 80 is provided with a hole for inserting the plug 61 into the supply port of the culture tank 60 and a hole 82 for inserting the plug 62 into the discharge port of the culture tank 60.
  • the hole for inserting the plug 61 into the supply port of the medium tank 60 and the hole 82 for inserting the plug 62 into the outlet of the medium tank 60 may be able to be closed.
  • the drive unit holding member 80 is brought into close contact with the flow path case 70 via the packing 90 shown in FIG.
  • the packing 90 suppresses air from entering the flow path case 70 from the contact portion between the flow path case 70 and the driving unit holding member 80.
  • the culture medium may be introduced into the culture medium holding tank 40, and the fluid machine for discharging the culture medium from the culture medium holding tank 40 may be covered with a fluid machine outside air blocking member.
  • the fluid machine outside air shutoff member includes an introduction fluid machine outside air shutoff member 351 that covers the drive unit 251 of the introduction fluid machine 51 disposed on the drive unit holding member 80, and a drive unit.
  • a discharge fluid machine external air blocking member 352 that covers the drive unit 252 of the discharge fluid machine 52 disposed on the holding member 80.
  • the flow path case 70 and the drive unit holding member 80 are detachable.
  • the drive unit holding member 80 is brought into close contact with the flow path case 70, and the hole for inserting the plug 61 into the supply port of the culture tank 60 and the hole for inserting the plug 62 into the discharge port of the culture tank 60 are closed and introduced.
  • the drive unit 251 of the fluid machine 51 is covered with the outside air blocking member 351 for the introduction fluid machine, and the drive unit 252 of the fluid machine 52 for discharge is covered with the outside air blocking member 352 for the discharge fluid machine, the inside of the flow path case 70 is formed. It is cut off from the outside air, and the outside air cannot enter the flow path case 70. Therefore, exchange of gas inside and outside the flow path case 70 does not occur.
  • the medium holding tank 40 may be embedded with a gas impermeable substance. In other words, the culture medium holding tank 40 may be embedded in a gas impermeable substance.
  • the plug 62 is inserted into the hole of the flow path case 70 for inserting the plug 61 into the supply port of the culture medium tank 60 and the discharge port of the culture medium tank 60.
  • the hole of the flow path case 70 By closing the hole of the flow path case 70, the inside of the flow path case 70 is sealed, and the substance in the flow path case 70 is prevented from flowing out and the outside air entering the flow path case 70. It is possible to
  • the flow path case 70 including the medium flow path 200 and the pump heads 151 and 152 therein is disposable.
  • the driving unit holding member 80 holding the driving units 251 and 252 can be repeatedly used.
  • the amount of the medium fed into the culture medium holding tank 40 by the introduction fluid machine 51 shown in FIG. 2 is the same as the amount of the medium discharged from the culture medium holding tank 40 by the discharge fluid machine 52.
  • the introduction fluid machine 51 and the discharge fluid machine 52 are controlled.
  • the introduction fluid machine 51 and the discharge fluid machine 52 may send the culture medium into the culture medium holding tank 40 at all times, or may send the culture medium at appropriate intervals.
  • the flow rate of the medium sent into the medium holding tank 40 may or may not be constant.
  • the medium and the cell mass in the medium are monitored by an imaging device, and the flow rate of the medium fed into the medium holding tank 40 is increased or decreased according to the state of the medium and the cell mass in the medium. May be.
  • the start and end of the feeding of the medium may be started.
  • the flow rate of the medium to be fed may be increased or decreased depending on the state of the medium and the cell mass in the medium.
  • ⁇ ⁇ In a stirred medium, cells may randomly collide with each other and combine to form cell clusters (colonies) of various sizes. Therefore, homogeneity between colonies may not be maintained. Furthermore, in a colony that is too large, nutrients and growth factors may not reach the colony, resulting in differentiation and cell death from inside. On the other hand, a colony that is too small may not be suitable for subculture. On the other hand, in the culture tank 30 shown in FIG. 2, the flow rate of the culture medium is slow or the culture medium does not flow, so that the frequency of collision between cells is low. Therefore, clonality can be maintained in the colony.
  • the cell when the cell is a stem cell such as an iPS cell, it is possible to secure the clonality of a stem cell derived from one cell. Further, since the frequency of collision between the stem cells is low, the size of the colony of the stem cells can be kept uniform.
  • the cell incubator according to the embodiment may further include a photographing device such as a photo camera or a video camera that photographs the cell-containing medium in the culture tank 30 through the window 132 of the cover 32 of the culture tank 30.
  • a photographing device such as a photo camera or a video camera that photographs the cell-containing medium in the culture tank 30 through the window 132 of the cover 32 of the culture tank 30.
  • the cell incubator according to the embodiment for example, since cells are cultured in a completely closed system, it is possible to reduce the risk of cross-contamination due to leakage of cells from the culture device. Further, for example, even when cells are infected with a virus such as the HIV hepatitis virus, it is possible to reduce the risk of infection of the operator due to leakage of the cells. Further, it is possible to reduce the risk that the medium in the cell incubator is contaminated with bacteria, viruses, molds and the like in the air outside the cell incubator. Furthermore, according to the cell incubator according to the embodiment, it is possible to culture cells without using a CO 2 incubator.
  • the culture medium flow path 200 may not be connected to the culture medium holding tank 40 shown in FIG.
  • the cells may be subjected to suspension culture or adhesion culture.
  • the surface of the culture side plate 21 shown in FIG. 1 may be cell-adhesive, or the surface of the culture component transmitting member 10 may be cell-adhesive.
  • the cells may be induced in the culture tank 30 of the cell incubator according to the embodiment while the cells are cultured.
  • the medium flow path may be used without being connected to the medium holding tank or the culture tank, and the cells may be cultured or induced in the medium flow path as a closed system.
  • the closed system is not limited to the cell incubator shown in FIGS.
  • the closed system may be a container.
  • the container may be a tube or a flask.
  • the container may be made of resin or glass.
  • the periphery of the cap or lid of the container may be wound with a film such as a paraffin film.
  • Example 1 The stem cell medium (DMEM / F12 containing 20% KnockOut SR (registered trademark, ThermoFisher SCIENTIFIC)) was gelled to prepare a gel medium. The pH of the gel medium was adjusted between 4.0 and 10.0. 2 ⁇ 10 5 cells / mL of iPS cells formed into a single cell or cell mass were added to the gel medium. A gel medium containing iPS cells was placed in a 15 mL Falcon tube (registered trademark, Corning).
  • DMEM / F12 containing 20% KnockOut SR registered trademark, ThermoFisher SCIENTIFIC
  • the caps of some of the Falcon tubes are tightly tightened, and furthermore, the periphery of the Falcon tubes and the caps is wrapped around with a paraffin film (Parafilm, registered trademark, Bemis), the inside of the Falcon tubes is shielded from the outside air, and the gas in the Falcon tubes is (Air) was not completely exchanged with the outside air.
  • a paraffin film Paraffin film, registered trademark, Bemis
  • the inside of the Falcon tubes is shielded from the outside air
  • the gas in the Falcon tubes is (Air) was not completely exchanged with the outside air.
  • Other Falcon tubes only closed the cap and did not wrap the paraffin film.
  • the Falcon tube that was not wound with a paraffin film was placed in an incubator at 37 ° C. and a carbon dioxide concentration of 5%, and suspension culture of iPS cells was started.
  • the falcon tube wound with a paraffin film was placed in a thermostat at 37 ° C., and suspension culture of iPS cells was started without placing the tube in a CO 2 incubator.
  • a thermostat a bead bath, a water bath, and a thermostat capable of electronically controlling the temperature were used.
  • the thermostat was located in the laboratory and was not shielded from the air in the laboratory.
  • the cap of each Falcon tube was opened, and 2 mL of the gel medium having a pH between 4.0 and 10.0 was added to the Falcon tube. After the addition of the gel medium, as described above, the cap was closed, and the Falcon tube placed in the thermostat was wrapped around the cap with a paraffin film.
  • the cap of the Falcon tube is opened, and the cell mass of iPS cells formed in the gel medium is collected using a filter, washed with PBS, and washed with PBS. Put in. Further, 500 ⁇ L of a cell dissociation reagent (TrypLE Select, registered trademark, Thermo Fisher) was added to the cell mass, and the cell mass was incubated for 5 minutes in a CO 2 incubator.
  • a cell dissociation reagent TerypLE Select, registered trademark, Thermo Fisher
  • a stem cell culture medium (DMEM / F12 containing 20% KnockOut SR (registered trademark, ThermoFisher SCIENTIFIC)) was placed in the Falcon tube, and the cell mass was suspended.
  • Cell. 2 mL of a stem cell medium (DMEM / F12 containing 20% KnockOut SR (registered trademark, ThermoFisher SCIENTIFIC)) was added to the Falcon tube, and the Falcon tube was centrifuged at 200 g using a centrifuge. After centrifugation, the supernatant in the Falcon tube was removed, and the gel medium for the iPS cells was placed in the Falcon tube. Thereafter, iPS cells were subjected to suspension culture in a sealed Falcon tube for 7 to 10 days while adding a gel medium once every two days as described above.
  • DMEM / F12 containing 20% KnockOut SR registered trademark, ThermoFisher SCIENTIFIC
  • TRA-1-60 is a representative surface antigen of pluripotent stem cells, and it is known that the expression level is reduced in differentiated cells.
  • the iPS cells cultured by placing the Falcon tube in the incubator and the Falcon tube were placed in the bead bath. All of the cultured iPS cells were almost 100% TRA1-60 positive. Similar results were obtained with iPS cells cultured in a Falcon tube placed in a thermostat other than the bead bath. Therefore, it was shown that when the container was closed to form a closed system, stem cells could be cultured for a long period of time while maintaining pluripotency in an undifferentiated state without controlling the carbon dioxide concentration in the container.
  • Example 2 A gel medium was prepared in the same manner as in Example 1. 2 ⁇ 10 5 cells / mL of single-cell iPS cells were added to the gel medium. A gel medium containing 2 mL of iPS cells was placed in a gas-impermeable tube with 2 mL rubber packing so that no air layer was left inside. Thereafter, the cap of the tube was tightly tightened, and the periphery of the tube and the cap was wrapped with a paraffin film to block the inside of the tube from the outside air and prevent the outside air from entering the tube. This prevented the gel medium from contacting the gas (air) layer during the culture.
  • a thermostat a bead bath, a water bath, and a thermostat capable of electronically controlling the temperature were used. The thermostat was located in the laboratory and was not shielded from the air in the laboratory. During the culture, no medium was added or replaced. 10 to 11 days after the start of the culture in the tube, the cap of the tube was opened, the cell mass of iPS cells formed in the gel medium was collected using a filter, washed with PBS, and placed in the tube. .
  • a cell dissociation reagent (TrypLE Select, registered trademark, Thermo Fisher) was added to the cell mass, and the cell mass was incubated for 5 minutes in a CO 2 incubator. Next, the tube was removed from the incubator, and 500 ⁇ L of a stem cell culture medium (DMEM / F12 containing 20% KnockOut SR (registered trademark, ThermoFisher SCIENTIFIC)) was placed in the tube, the cell mass was suspended, and the iPS cells were converted into single cells. did.
  • DMEM / F12 containing 20% KnockOut SR registered trademark, ThermoFisher SCIENTIFIC
  • DMEM / F12 containing 20% KnockOut SR registered trademark, ThermoFisher SCIENTIFIC
  • KnockOut SR registered trademark, ThermoFisher SCIENTIFIC
  • the tube was placed in the incubator, and the cultured iPS cells were observed with a camera and a microscope. As shown in FIG. 10, it was confirmed that a uniform cell mass was formed. Similar results were obtained with iPS cells cultured in a tube placed in a thermostat outside the incubator.
  • Example 3 A gel medium was prepared in the same manner as in Example 1. Single cell iPS cells were added to the gel medium. The gel medium containing 2 mL of iPS cells was placed in a 15 mL Falcon tube. Thereafter, the cap of the Falcon tube was tightly closed.
  • the Falcon tube was placed in a CO 2 incubator at 37 ° C., and suspension culture of iPS cells was started. Thereafter, once every two days, the cap of the Falcon tube was opened, and 2 mL of the gel medium having a pH between 4.0 and 10.0 was added to the Falcon tube. After the addition of the gel medium, the cap was closed as described above.
  • the cap of the Falcon tube is opened, and the cell mass of iPS cells formed in the gel medium is collected using a filter, washed with PBS, and washed with PBS. Put in. Further, 500 ⁇ L of a cell dissociation reagent (TrypLE Select, registered trademark, Thermo Fisher) was added to the cell mass, and the cell mass was incubated for 5 minutes in a CO 2 incubator.
  • a cell dissociation reagent TerypLE Select, registered trademark, Thermo Fisher
  • the Falcon tube was removed from the incubator, and 500 ⁇ L of a medium containing 20% KnockOut SR (registered trademark, ThermoFisher SCIENTIFIC), GlutaMAX (registered trademark, ThermoFisher SCIENTIFIC), and a non-essential amino acid (NEAA) in the falcon tube was used.
  • the cell mass was suspended to convert the iPS cells into single cells.
  • 2 mL of a stem cell medium (DMEM / F12 containing 20% KnockOut SR (registered trademark, ThermoFisher SCIENTIFIC)) was added to the Falcon tube, and the Falcon tube was centrifuged at 200 g using a centrifuge.
  • iPS cells were subjected to suspension culture in a sealed Falcon tube for 7 to 10 days while adding a gel medium once every two days as described above.
  • Example 4 The growth factors were added to a medium (StemSpan H3000, registered trademark, STEMCELL Technologies Inc.), and deacylated gellan gum was further added to the medium to prepare a gel medium.
  • a medium StemSpan H3000, registered trademark, STEMCELL Technologies Inc.
  • the prepared gel medium was placed in a 15 mL tube, and 2 ⁇ 10 5 blood cells (mononuclear cells) were seeded on the gel medium. Thereafter, the 15 mL tube was placed in a 37 ° C. CO 2 incubator, and blood cells were cultured for 7 days. Thereafter, a Sendai virus vector (CytoTune-iPS2.0, ID Pharma Co., Ltd.) carrying OCT3 / 4, SOX2, KLF4, and cMYC was added to the gel medium so that the multiplicity of infection (MOI) became 10.0, and blood was added. Cells were infected with Sendai virus.
  • a Sendai virus vector (CytoTune-iPS2.0, ID Pharma Co., Ltd.) carrying OCT3 / 4, SOX2, KLF4, and cMYC was added to the gel medium so that the multiplicity of infection (MOI) became 10.0, and blood was added. Cells were infected with Sendai virus.
  • a stem cell medium (DMEM / F12 containing 20% KnockOut SR (registered trademark, ThermoFisher SCIENTIFIC)) was added to the gel medium, and the Sendai virus was added to the flask seeded with feeder cells.
  • a medium containing the infected cells was added, the flask was left for 15 days, and cells infected with Sendai virus were adherently cultured. There was no air layer in the flask.
  • the periphery of the cap of the flask was wrapped with a paraffin film, the inside of the flask was completely closed, no medium exchange and no gas exchange were performed, and no control of the CO 2 concentration in the flask was performed.
  • Example 5 A gel medium prepared in the same manner as in Example 4 was placed in a 15 mL tube, and 2 ⁇ 10 5 blood cells (mononuclear cells) were seeded on the gel medium. Thereafter, the 15 mL tube was placed in a 37 ° C. CO 2 incubator, and blood cells were cultured for 7 days. Thereafter, a Sendai virus vector (CytoTune-iPS2.0, ID Pharma Co., Ltd.) carrying OCT3 / 4, SOX2, KLF4, and cMYC was added to the gel medium so that the multiplicity of infection (MOI) became 10.0, and blood was added. Cells were infected with Sendai virus.
  • a Sendai virus vector (CytoTune-iPS2.0, ID Pharma Co., Ltd.) carrying OCT3 / 4, SOX2, KLF4, and cMYC was added to the gel medium so that the multiplicity of infection (MOI) became 10.0, and blood was added. Cells were infected with Sendai virus.
  • a gelled stem cell medium (DMEM / F12 containing 20% KnockOut SR (registered trademark, ThermoFisher SCIENTIFIC)) was added to the gel medium, and 15 mL of the Sendai virus was infected.
  • the medium containing the cells was placed in a 15 mL tube, the 15 mL tube was left for 15 days, and cells infected with Sendai virus were subjected to suspension culture. There was no air layer in the 15 mL tube. During that time, the inside of the 15 mL tube was completely closed, the medium exchange and gas exchange were not performed at all, and the CO 2 concentration in the 15 mL tube was not controlled.
  • a semipermeable membrane 110 (Asahi Kasei Corporation or SPECTRUM) is sandwiched between a culture side plate 21 and a culture side plate 22, and furthermore, a semipermeable membrane 110, a culture side plate 21, and a culture side plate. 22 was sandwiched between the culture tank 30 and the medium holding tank 40.
  • a stem cell medium (Reprocell) containing 20% of alternative serum (KnockOut SR, registered trademark, Gibco) was gelled to prepare a gel medium.
  • a cell-containing medium was prepared by adding 2 ⁇ 10 5 iPS cells / mL into single cells to the gel medium.
  • the cell-containing medium was put into a syringe, and the syringe was connected to the supply port 231 of the culture tank 30 via the plug 33. An empty syringe was connected to the outlet 331 of the culture tank 30 via the plug 34.
  • the cell-containing medium in the syringe was injected into the culture tank 30 from the supply port 231 of the culture tank 30. Due to the increase in the pressure in the culture tank 30, the piston of the syringe connected to the outlet 331 rises passively, and the air in the culture tank 30 moves into the syringe connected to the outlet 331 of the culture tank 30. .
  • the cell-containing medium was injected into the culture tank 30 until the air layer in the culture tank 30 completely disappeared. Thereafter, the supply port 231 and the discharge port 331 of the culture tank 30 were shielded.
  • the gel medium was put into a syringe, and the syringe was connected to the inlet 240 of the medium holding tank 40 via the plug 61. An empty syringe was connected to the outlet 340 of the culture medium holding tank 40 via the plug 62. Next, the gel medium in the syringe was injected into the medium holding tank 40 from the inlet 240 of the medium holding tank 40. The syringe connected to the outlet 340 of the medium holding tank 40 passively rises due to the pressure increase in the medium holding tank 40, and the air in the medium holding tank 40 is connected to the outlet 340 of the medium holding tank 40. Moved into the syringe.
  • the gel medium was injected into the medium holding tank 40 until the air layer in the medium holding tank 40 completely disappeared. Thereafter, the inlet 240 and the outlet 340 of the culture medium holding tank 40 were shielded. Thereby, the inside of the culture tank 30 and the medium holding tank 40 was sealed, and the gas exchange between the inside and the outside of the culture tank 30 and the medium holding tank 40 was completely prevented.
  • the suspension culture of iPS cells was started in the culture tank 30. Thereafter, once every two days, 2 mL of the gel medium in the medium holding tank 40 was replaced with 2 mL of a fresh gel medium. After 7 to 10 days from the start of the culture in the culture tank 30, the cell-containing medium in the culture tank 30 is discharged with a syringe, and the cell mass of iPS cells formed in the gel medium is collected using a filter. , Washed with PBS and placed in a Falcon tube. Furthermore, 500 ⁇ L of a cell dissociating enzyme (TrypLE Select, Thermo Fisher) was added to the cell mass, and the cell mass was incubated in a CO 2 incubator for 5 minutes.
  • a cell dissociating enzyme TrypLE Select, Thermo Fisher
  • the Falcon tube was taken out of the incubator, and 500 ⁇ L of the cell culture medium was placed in the Falcon tube, and the cell mass was suspended to make the iPS cells into a single cell.
  • 2 mL of the cell culture medium was added to the Falcon tube, and the Falcon tube was centrifuged at 200 g using a centrifuge. After centrifugation, the supernatant in the Falcon tube was removed, and the iPS cells and the gel medium were placed in the Falcon tube to prepare a cell-containing medium. Thereafter, in the same manner as described above, the cell-containing medium was injected into the culture tank 30 and the iPS cells were subjected to suspension culture once every two days for 7 to 10 days while replacing the 2 mL gel medium in the medium holding tank 40.
  • the iPS cells were dispensed, and the iPS cells were fixed using 4% -paraformaldehyde. Furthermore, the expression level of the cell surface antigen TRA-1-60 in the fixed iPS cells was measured using a flow cytometer. As a result, as shown in FIG. 23, the iPS cells on day 39 from the start of the culture were 90% or more TRA-1-60 positive. Therefore, it was shown that stem cells can be cultured for a long period of time while maintaining pluripotency in an undifferentiated state without controlling the carbon dioxide concentration in the container when the container is sealed.
  • Example 7 A cell-containing medium was prepared in the same manner as in Example 6. A cell incubator similar to the cell incubator shown in FIG. 2 was prepared. The cell-containing medium was injected into the culture tank 30 until the air layer in the culture tank 30 completely disappeared. Thereafter, the supply port and the discharge port of the culture tank 30 were shielded. Further, the medium holding tank 40, the medium flow path 200, and the medium tank 60 were filled with a gel medium. Thereafter, the inlet and outlet of the medium tank 60 were shielded. Thereby, the inside of the culture tank 30 and the medium holding tank 40 was sealed, and the gas exchange between the inside and the outside of the culture tank 30 and the medium holding tank 40 was completely prevented.
  • the gel medium was circulated in the medium holding tank 40, the medium flow path 200, and the medium tank 60, and the suspension culture of the iPS cells was started in the culture tank 30. Thereafter, once every two to six days, 10 mL of the gel medium in the medium tank 60 was replaced with 10 mL of fresh gel medium. After 7 to 10 days from the start of the culture in the culture tank 30, the cell-containing medium in the culture tank 30 is discharged with a syringe, subjected to the same subculture treatment as in Example 6, and the cells are treated as described above. The containing medium was injected into the culture tank 30 and the iPS cells were subjected to suspension culture for 7 to 10 days while changing the 10 mL gel medium in the medium tank 60 once every four days.
  • Example 8 The growth factors were added to a medium (StemSpan H3000, registered trademark, STEMCELL Technologies Inc.), and deacylated gellan gum was further added to the medium to prepare a gel medium.
  • a medium StemSpan H3000, registered trademark, STEMCELL Technologies Inc.
  • the prepared gel medium was placed in a 15 mL tube, and 2 ⁇ 10 5 blood cells were seeded on the gel medium. Thereafter, the 15 mL tube was placed in a CO 2 incubator, and blood cells (monocytes) were cultured for 7 days. Thereafter, a Sendai virus vector (CytoTune-iPS2.0, ID Pharma Co., Ltd.) carrying OCT3 / 4, SOX2, KLF4, and cMYC was added to the gel medium so that the multiplicity of infection (MOI) became 10.0, and blood was added. Cells were infected with Sendai virus.
  • a Sendai virus vector (CytoTune-iPS2.0, ID Pharma Co., Ltd.) carrying OCT3 / 4, SOX2, KLF4, and cMYC was added to the gel medium so that the multiplicity of infection (MOI) became 10.0, and blood was added. Cells were infected with Sendai virus.
  • a gelled stem cell medium (DMEM / F12 containing 20% KnockOut @ SR (registered trademark, ThermoFisher @ SCIENTIFIC)) was added to the gel medium, and 15 mL of the Sendai virus was infected.
  • the culture medium containing cells was put into the culture tank 30 shown in FIGS. 20 and 21, and the gel medium was injected into the culture medium holding tank 40.
  • the insides of the culture tank 30 and the medium holding tank 40 were sealed, so that gas exchange did not completely occur between the inside and the outside of the culture tank 30 and the medium holding tank 40.
  • TRA-1-60 was positive for 90% or more, and it was confirmed that reprogramming was almost complete. Therefore, it was shown that iPS cells can be induced from cells other than stem cells in a completely closed environment without performing medium exchange and gas exchange.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Developmental Biology & Embryology (AREA)
  • Transplantation (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

閉鎖系内で細胞を培養又は誘導することを含む、細胞の培養又は誘導方法が提供される。

Description

細胞の培養又は誘導方法
 本発明は細胞技術に関し、細胞の培養又は誘導方法に関する。
 胚性幹細胞(ES細胞)は、ヒトやマウスの初期胚から樹立された幹細胞である。ES細胞は、生体に存在する全ての細胞へと分化できる多能性を有する。現在、ヒトES細胞は、パーキンソン病、若年性糖尿病、及び白血病等、多くの疾患に対する細胞移植療法に利用可能である。しかし、ES細胞の移植には障害もある。特に、ES細胞の移植は、不成功な臓器移植に続いて起こる拒絶反応と同様の免疫拒絶反応を惹起しうる。また、ヒト胚を破壊して樹立されるES細胞の利用に対しては、倫理的見地から批判や反対意見が多い。
 このような背景の状況の下、京都大学の山中伸弥教授は、4種の遺伝子:OCT3/4、KLF4、c-MYC、及びSOX2を体細胞に導入することにより、誘導多能性幹細胞(iPS細胞)を樹立することに成功した。これにより、山中教授は、2012年のノーベル生理学・医学賞を受賞した(例えば、特許文献1、2参照。)。iPS細胞は、拒絶反応や倫理的問題のない理想的な多能性細胞である。したがって、iPS細胞は、細胞移植療法への利用が期待されている。
特許第4183742号公報 特開2014-114997号公報
 iPS細胞に限らず、様々な細胞を効率よく簡便に培養又は誘導可能な方法が望まれている。そこで、本発明は、細胞を効率よく簡便に培養又は誘導可能な方法を提供することを目的の一つとする。
 本発明の態様によれば、閉鎖系内で細胞を培養又は誘導することを含む、細胞の培養又は誘導方法が提供される。
 上記の方法において、誘導が、リプログラミング、初期化、分化転換、分化誘導及び細胞の運命変更の少なくともいずれかを含んでもよい。
 上記の方法において、閉鎖系内と外部との間でガスの交換が生じなくともよい。
 上記の方法が、閉鎖系内の温度を制御することをさらに含んでいてもよい。
 上記の方法の培養することにおいて、閉鎖系が密閉されていてもよい。
 上記の方法において、閉鎖系が密閉された状態で、閉鎖系内に外気が進入しなくともよい。
 上記の方法において、閉鎖系が密閉された状態で、閉鎖系内に閉鎖系外の細胞、微生物、ウイルス、及び塵が進入しなくともよい。
 上記の方法において、閉鎖系が密閉された状態で、閉鎖系内の物質が閉鎖系外に流出しなくともよい。
 上記の方法において、閉鎖系内に二酸化炭素ガス、窒素ガス、及び酸素ガスの少なくともいずれかが供給されなくともよい。
 上記の方法において、閉鎖系内の培地のpHが所定の範囲内に保たれてもよい。
 上記の方法において、閉鎖系の少なくとも一部が、ガス非透過性物質に埋め込まれることにより形成されていてもよい。
 上記の方法において、閉鎖系の少なくとも一部が、ガス非透過性物質からなってもよい。
 上記の方法において、閉鎖系内で培地を補充又は交換しながら細胞を培養又は誘導してもよい。
 上記の方法において、閉鎖系内で培地を循環しながら細胞を培養又は誘導してもよい。
 上記の方法において、閉鎖系が細胞を培養する培養槽を備え、培養槽内に流体を供給するための供給口と、閉鎖系内の流体を排出するための排出口と、が、培養槽に設けられており、供給口及び排出口が密閉可能であってもよい。
 上記の方法において、供給口に流体を供給するための供給器が着脱可能であり、排出口に流体を排出するための排出器が着脱可能であり、供給器から培養槽内に流体を供給すると、培養槽内の流体が排出器内に移動してもよい。
 上記の方法において、供給器から培養槽内に培地を供給すると、培養槽内の空気が排出器内に移動してもよい。
 上記の方法において、供給器から培養槽内に培地を供給すると、培養槽内の培地が排出器内に移動してもよい。
 上記の方法において、培地が細胞を含有してもよい。
 上記の方法において、供給器から培養槽内に流体を供給する際に、外気が培養槽内に進入しなくともよい。
 上記の方法において、培養することにおいて、閉鎖系内の二酸化炭素濃度が制御されなくともよい。
 上記の方法の培養することにおいて、閉鎖系外の二酸化炭素濃度が制御されなくともよい。
 上記の方法の培養することにおいて、閉鎖系内の半透膜を介して閉鎖系内の物質が移動してもよい。
 上記の方法において、閉鎖系が、細胞を培養する培養槽と、培養槽に接続された流路と、を備え、培地が培養槽と流路を循環してもよい。
 上記の方法において、流路において外部とガスの交換が生じなくともよい。
 上記の方法において、培地が循環することにより、培養槽内の培地のpHが所定の範囲内に保たれてもよい。
 上記の方法において、培養が浮遊培養であってもよい。
 上記の方法において、培養が接着培養であってもよい。
 上記の方法において、閉鎖系内のゲル培地中で細胞を培養してもよい。
 上記の方法において、閉鎖系内の液体培地中で細胞を培養してもよい。
 上記の方法において、閉鎖系内の培地が攪拌されてもよい。
 上記の方法において、閉鎖系内の培地が攪拌されなくともよい。
 上記の方法が、細胞を継代することをさらに含んでもよい。
 上記の方法において、播種と継代の間に培地の追加及び交換をしなくともよい。
 上記の方法において、播種と継代の間に培地の追加又は交換をしてもよい。
 上記の方法において、継代と継代の間に培地の追加及び交換をしなくともよい。
 上記の方法において、継代と継代の間に培地の追加又は交換をしてもよい。
 上記の方法において、細胞が幹細胞であってもよい。
 上記の方法において、幹細胞がiPS細胞、ES細胞、又は体性幹細胞であってもよい。
 上記の方法の培養することにおいて、幹細胞が未分化状態を維持してもよい。
 上記の方法において、培養することにおいて、幹細胞が多能性を維持してもよい。
 上記の方法において、細胞が体細胞であってもよい。
 上記の方法において、細胞が、血液系細胞、神経系細胞、心筋系細胞、上皮系細胞、間葉系細胞、肝細胞、インスリン産生細胞、網膜色素上皮細胞、及び角膜細胞から選択される少なくとも一つであってもよい。
 上記の方法において、細胞が誘導因子を導入された細胞であってもよい。
 上記の方法において、閉鎖系内の培地に誘導因子を添加し、閉鎖系内で培養されている細胞に誘導因子を導入してもよい。
 上記の方法において、細胞が幹細胞に誘導されてもよい。
 上記の方法において、幹細胞がiPS細胞であってもよい。
 上記の方法において、細胞が血液系細胞であってもよい。
 上記の方法において、細胞が別種の細胞に誘導されてもよい。
 上記の方法において、細胞が血液系細胞であり、閉鎖系内の培地に誘導因子を添加し、閉鎖系内で培養されている血液系細胞に誘導因子を導入し、血液系細胞をiPS細胞に誘導してもよい。
 上記の方法において、誘導因子がプラスミドに含まれていてもよい。
 上記の方法において、誘導因子がRNAであってもよい。
 上記の方法において、誘導因子がセンダイウイルスに含まれていてもよい。
 また、本発明の態様によれば、培養成分が透過可能な培養成分透過部材と、培養成分透過部材の一方の面を覆う、細胞含有培地を保持し、細胞を培養するための培養槽と、培養成分透過部材の他方の面を覆う、培地を保持するための培地保持槽と、を備える、細胞培養器を用意することと、培養槽中で細胞を培養又は誘導することと、を含む、細胞の培養又は誘導方法が提供される。
 上記の方法において、誘導が、リプログラミング、初期化、分化転換、分化誘導及び細胞の運命変更の少なくともいずれかを含んでいてもよい。
 上記の方法において、細胞培養器の内部が外部から閉鎖されていてもよい。
 上記の方法において、細胞培養器内の培地のpHが所定の範囲内に保たれてもよい。
 上記の方法において、培養が浮遊培養であってもよい。
 上記の方法において、細胞が幹細胞であってもよい。
 上記の方法において、細胞が体細胞であってもよい。
 上記の方法において、細胞が、血液系細胞、神経系細胞、心筋系細胞、上皮系細胞、間葉系細胞、肝細胞、インスリン産生細胞、網膜色素上皮細胞、及び角膜細胞から選択される少なくとも一つであってもよい。
 上記の方法において、細胞が誘導因子を導入された細胞であってもよい。
 上記の方法において、培養槽内の培地に誘導因子を添加し、培養槽内で培養されている細胞に誘導因子を導入してもよい。
 上記の方法において、細胞が別種の細胞に誘導されてもよい。
 上記の方法において、細胞培養器が、培養成分透過部材の培養槽側の面に重ねられた、開口が設けられた培養側プレートをさらに備えていてもよい。
 上記の方法において、細胞培養器が、培養成分透過部材の培地保持槽側の面に重ねられた、開口が設けられた培地側プレートをさらに備えていてもよい。
 上記の方法において、培養側プレートが濃色であってもよい。
 上記の方法が、培養側プレートの開口が設けられていない部分を背景にして細胞又は細胞からなる細胞塊を観察することをさらに含んでいてもよい。
 上記の方法が、培養側プレートの開口が設けられていない部分を背景にして細胞又は細胞からなる細胞塊を撮影することをさらに含んでいてもよい。
 上記の方法が、培地保持槽の培地を補充又は置換することをさらに含んでいてもよい。
 本発明によれば、細胞を効率よく簡便に培養又は誘導可能な方法を提供可能である。
実施形態に係る細胞培養器の分解斜視図である。 実施形態に係る細胞培養器の斜視図である。 実施形態に係る細胞培養器の一部の正面図である。 実施形態に係る細胞培養器の一部の斜視図である。 実施形態に係る細胞培養器の一部の正面図である。 実施形態に係る細胞培養器の背面図である。 実施形態に係る細胞培養器の分解斜視図である。 実施例1に係る培養方法で培養された細胞の光学顕微鏡写真である。 実施例1に係る培養方法で培養された細胞をフローサイトメトリーで分析した結果を示すヒストグラムである。 図10(a)は、実施例2に係る培養方法で使用されたチューブの写真である。図10(b)は、実施例2に係る培養方法で培養された細胞の光学顕微鏡写真である。 実施例2に係る培養方法で培養された細胞をフローサイトメトリーで分析した結果を示すヒストグラムである。 実施例3に係る培養方法で培養された細胞の光学顕微鏡写真である。 実施例3に係る培養方法で培養された細胞をフローサイトメトリーで分析した結果を示すヒストグラムである。 実施例4に係る人工多能性幹細胞の作製方法で使用されたフラスコの写真である。 実施例4に係る人工多能性幹細胞の作製方法で作製された細胞の光学顕微鏡写真である。 実施例4に係る人工多能性幹細胞の作製方法で作製された細胞のコロニー数をコロニーの形態ごとに示すグラフである。 実施例4に係る人工多能性幹細胞の作製方法で作製された細胞をフローサイトメトリーで分析した結果を示すヒストグラムである。 実施例5に係る人工多能性幹細胞の作製方法で作製された細胞の光学顕微鏡写真である。 実施例5に係る人工多能性幹細胞の作製方法で作製された細胞をフローサイトメトリーで分析した結果を示すヒストグラムである。 実施例6に係る細胞培養器の分解斜視図である。 実施例6に係る細胞培養器の斜視図である。 実施例6に係る細胞塊の顕微鏡写真である。 実施例6に係るiPS細胞のフローサイトメトリーの結果を示すヒストグラムである。 実施例7に係る細胞塊の顕微鏡写真である。 実施例7に係るiPS細胞のフローサイトメトリーの結果を示すヒストグラムである。 実施例8に係る細胞塊の顕微鏡写真である。 実施例8に係るiPS細胞のフローサイトメトリーの結果を示すヒストグラムである。
 実施形態に係る細胞の培養方法は、閉鎖系内で細胞を培養することを含む。閉鎖系とは、例えば、完全に閉鎖された系であり、閉鎖系内と外部との間でガスの交換が生じない。閉鎖系は、例えば密閉されており、閉鎖系内に外気が進入しない。例えば、閉鎖系内に閉鎖系外の細胞、微生物、ウイルス、及び塵が進入しない。例えば、閉鎖系内の物質が閉鎖系外に流出しない。
 細胞は、閉鎖系内の液体培地中で培養されてもよいし、ゲル培地中で培養されてもよい。また、細胞は、閉鎖系内で接着培養されてもよいし、浮遊培養されてもよい。閉鎖系内で細胞を培養している間、培地は攪拌されてもよいし、攪拌されなくともよい。細胞を接着培養する際には、フィーダー細胞を用いてもよいし、フィーダー細胞を用いなくともよい。細胞を浮遊培養する際には、フィーダー細胞を用いなくともよい。
 閉鎖系内で培養される細胞は、ヒトを含む動物細胞であってもよいし、昆虫細胞であってもよいし、植物細胞であってもよい。
 閉鎖系内で培養される細胞は、例えば体細胞であってもよいし、分化細胞であってもよいし、未分化細胞であってもよいし、幹細胞であってもよい。閉鎖系内で培養される細胞は、特に限定されないが、例えば、血液系細胞、神経系細胞、心筋系細胞、上皮系細胞、血管内皮細胞、間葉系細胞、線維芽細胞、肝細胞、インスリン産生細胞、網膜色素上皮細胞、及び角膜細胞であってもよい。
 血液系細胞は、T細胞、B細胞、NK細胞、NKT細胞、メガカリオサイト、マクロファージ、顆粒球、好中球、好酸球、造血幹細胞、血液幹・前駆細胞、赤血球、白血球及び血小板等の血液細胞であってもよい。神経系細胞は、神経細胞及びグリア細胞、オリゴデンドロサイト、神経幹細胞であってもよい。心筋系細胞は、心筋幹細胞及び心筋細胞、ペースメーカー細胞であってもよい。上皮系細胞は、ケラチノサイト、腸管上皮細胞、口腔上皮、角膜上皮細胞上皮細胞であってもよい。間葉系細胞は、真皮細胞、骨芽細胞、脂肪細胞、筋細胞、及び軟骨細胞等であってもよい。
 幹細胞は、例えば、人工多能性幹(iPS)細胞、胚性幹細胞(ES細胞)及び体性幹細胞である。体性幹細胞は、間葉系幹細胞であってもよい。細胞が幹細胞である場合、幹細胞は、培地中で、未分化の状態を維持し、多能性を維持したまま増殖する。
 例えば、幹細胞は、浮遊培養される前に、シングルセル又は細胞塊に分解され、シングルセル又は細胞塊に分解された幹細胞が、培地に入れられる。シングルセル又は細胞塊は、クローナリティを保ったまま増殖し、培地中でコロニーを形成する。
 幹細胞は、例えば、幹細胞用培地中で培養される。幹細胞用培地としては、例えば、mTeSR1(登録商標、STEMCELL TECHNOLOGIES)等のヒトES/iPS培地を使用可能である。
 ただし、幹細胞用培地は、これに限定されず、種々の幹細胞培地が使用可能である。例えば、20%KnockOut SR(登録商標、ThermoFisher SCIENTIFIC)、GlutaMAX(登録商標、ThermoFisher SCIENTIFIC)、及び非必須アミノ酸(NEAA)を含む培地を幹細胞培地として使用してもよい。あるいは、Primate ES Cell Medium、Reprostem、ReproFF、ReproFF2、ReproXF(Reprocell)、TeSR2、TeSRE8、ReproTeSR(STEMCELL Technologies)、PluriSTEM(登録商標)Human ES/iPS Medium(Merck)、NutriStem (登録商標)XF/FF Culture Medium for Human iPS and ES Cells、Pluriton reprogramming medium(Stemgent)、PluriSTEM(登録商標)、Stemfit AK02N、Stemfit AK03(Ajinomoto)、ESC-Sure(登録商標)serum and feeder free medium for hESC/iPS(Applied StemCell)、及びL7(登録商標)hPSC Culture System (LONZA)等を幹細胞培地として使用してもよい。
 閉鎖系内の培地は、閉鎖系内で培養される細胞の種類に応じて、適宜選択される。例えば、細胞が血液系細胞である場合、血液系細胞に適した培地が閉鎖系に入れられる。例えば、細胞が間葉系細胞である場合、間葉系細胞に適した培地が閉鎖系に入れられる。
 培地は、例えば、basic fibroblast growth factor(bFGF)等の成長因子を含まなくともよい。あるいは、培地は、bFGF等の成長因子を、400μg/L以下、40μg/L以下、あるいは10μg/L以下の低濃度で含んでもよい。
 また、培地は、tgf-βを含まなくともよい。あるいは、培地は、tgf-βを2μg/L(2ng/mL)以下、600ng/L以下、300ng/L以下、あるいは100ng/L以下の低濃度で含んでもよい。
 培地は、カドヘリン、ラミニン、フィブロネクチン、及びビトロネクチンからなる群から選択される少なくとも1種の物質を含んでいてもよい。
 培地がゲル培地である場合、ゲル培地は、例えば、培地に脱アシル化ジェランガムを終濃度が0.001重量%から0.5重量%、0.005重量%から0.1重量%、あるいは0.01重量%から0.05重量%となるよう添加することにより調製される。
 ゲル培地は、ジェランガム、ヒアルロン酸、ラムザンガム、ダイユータンガム、キサンタンガム、カラギーナン、フコイダン、ペクチン、ペクチン酸、ペクチニン酸、ヘパラン硫酸、ヘパリン、ヘパリチン硫酸、ケラト硫酸、コンドロイチン硫酸、デルタマン硫酸、ラムナン硫酸、及びそれらの塩からなる群から選択される少なくとも1種の高分子化合物を含んでいてもよい。また、ゲル培地は、メチルセルロースを含んでいてもよい。メチルセルロースを含むことにより、細胞同士の凝集がより抑制される。
 あるいは、ゲル培地は、poly(glycerol monomethacrylate) (PGMA)、poly(2-hydroxypropyl methacrylate) (PHPMA)、Poly (N-isopropylacrylamide) (PNIPAM)、amine terminated、carboxylic acid terminated、maleimide terminated、N-hydroxysuccinimide (NHS) ester terminated、triethoxysilane terminated、Poly (N-isopropylacrylamide-co-acrylamide)、Poly (N-isopropylacrylamide-co-acrylic acid)、Poly (N-isopropylacrylamide-co-butylacrylate)、Poly (N-isopropylacrylamide-co-methacrylic acid)、Poly (N-isopropylacrylamide-co-methacrylic acid-co-octadecyl acrylate)、及びN-Isopropylacrylamideから選択される少なくの温度感受性ゲルを含んでいてもよい。
 なお、本開示において、ゲル状の培地あるいはゲル培地とは、ポリマー培地を包含する。
 閉鎖系内で細胞を培養している間、閉鎖系内の培地の温度は、例えば、0℃以上、4℃以上、15℃以上、20℃以上、あるいは34℃以上に保たれる。また、閉鎖系内で細胞を培養している間、閉鎖系内の培地の温度は、例えば、45℃以下、39℃以下、あるいは20℃以下に保たれる。閉鎖系内で細胞を培養している間、ヒーター及びクーラー等の温度制御装置を用いて、閉鎖系内の培地の温度を制御してもよい。
 閉鎖系に入れられる培地のpHは、例えば、4.0以上、5.0以上、6.0以上、7.0以上、あるいは8.0以上である。また、閉鎖系に入れられる培地のpHは、例えば、10.0以下、9.0以下、8.8以下、あるいは8.0以下である。閉鎖系内に入れられた培地は、閉鎖系内に存在することにより、細胞を培養している間、pHが上記範囲内に保たれる傾向にある。閉鎖系に入れられる培地のpHが7.0以上あるいは8.0以上であると、閉鎖系内で細胞を培養中に乳酸を中和してpHの低下を抑制するので、好ましい。
 閉鎖系内で細胞を培養している間、閉鎖系内に二酸化炭素ガス、窒素ガス、及び酸素ガスの少なくともいずれか、あるいは全てを供給しなくともよい。また、閉鎖系内で細胞を培養している間、閉鎖系内の二酸化炭素濃度を制御しなくともよい。閉鎖系内で細胞を培養している間、閉鎖系外の二酸化炭素濃度を制御しなくともよい。例えば、閉鎖系を、二酸化炭素(CO)インキュベーター内に配置しなくともよい。ただし、閉鎖系を、二酸化炭素(CO)インキュベーター内に配置することは妨げられない。
 閉鎖系内で細胞を培養する際には、閉鎖系内に空気層等のガス層がないか、少ないことが好ましい。そのため、閉鎖系内にはガス層が残らないか、少なくなるように、閉鎖系内に培地が充填されることが好ましい。
 閉鎖系内で細胞を培養している間、培地は、外気に触れないように、閉鎖系内で循環させてもよい。閉鎖系内において、細胞懸濁液と、循環する培地との間に、半透膜を配置し、半透膜を介して、培地の有効成分を細胞懸濁液に浸透させてもよい。
 閉鎖系内で、細胞は、例えば、3時間以上、1日以上、14日以上、あるいは30日以上培養される。ただし、継代、培地の交換、及び培地の追加の際には、閉鎖系は開放されてもよい。
 なお、細胞の播種と継代に間に、培地の交換及び追加を行わなくともよい。この場合、播種と継代の間では、閉鎖系が全く開放されることなく、閉鎖系内の細胞は培養される。播種と継代の間、例えば、1日以上、5日以上、あるいは10日以上、閉鎖系が全く開放されることなく、閉鎖系内の細胞は培養される。
 細胞の継代と継代に間に、培地の交換及び追加を行わなくともよい。この場合、継代と継代の間では、閉鎖系が全く開放されることなく、閉鎖系内の細胞は培養される。継代と継代の間、例えば、1日以上、5日以上、あるいは10日以上、閉鎖系が全く開放されることなく、閉鎖系内の細胞は培養される。
 あるいは、細胞の播種と継代に間に、閉鎖系を開放し、培地の追加又は交換をしてもよい。また、細胞の継代と継代に間に、閉鎖系を開放し、培地の追加又は交換をしてもよい。培地の追加又は交換は、1日以上おき、2日以上おき、あるいは5日以上おきにしてもよい。培地に追加又は交換と継代のとき以外は、閉鎖系が全く開放されることなく、閉鎖系内の細胞は培養される。
 また、実施形態に係る細胞の誘導方法は、閉鎖系内で細胞を誘導することを含む。閉鎖系は、上述したとおりである。誘導とは、リプログラミング、初期化、分化転換(Transdifferentiation or Lineage reprogramming)、分化誘導及び細胞の運命変更(Cell fate reprogramming)等を指す。
 閉鎖系内で誘導される細胞は、予め閉鎖系外で誘導因子を導入された細胞であってもよい。あるいは、閉鎖系内の培地に誘導因子を添加し、閉鎖系内で培養されている誘導因子を導入されていない細胞に誘導因子を導入して、閉鎖系内で細胞を誘導してもよい。
 閉鎖系内で誘導される細胞は、動物細胞であってもよいし、植物細胞であってもよい。
 細胞は、閉鎖系内の液体培地中で誘導されてもよいし、閉鎖系内のゲル培地中で誘導されてもよい。また、細胞は、閉鎖系内で接着培養されながら誘導されてもよいし、浮遊培養されながら誘導されてもよい。閉鎖系内で細胞を誘導している間、培地は攪拌されてもよいし、攪拌されなくともよい。細胞を接着培養しながら誘導する際には、フィーダー細胞を用いてもよいし、フィーダー細胞を用いなくともよい。細胞を浮遊培養しながら誘導する際には、フィーダー細胞を用いなくともよい。
 閉鎖系内で細胞は、iPS細胞等の幹細胞に誘導されてもよい。閉鎖系内で細胞は、幹細胞以外の別種の細胞に誘導されてもよい。閉鎖系内でiPS細胞及びES細胞等の幹細胞が、別種の細胞に誘導されてもよい。
 閉鎖系内でiPS細胞に誘導される細胞は、血液細胞等の血液系細胞であってもよい。あるいは、閉鎖系内でiPS細胞に誘導される細胞は、繊維芽細胞、髄幹細胞、ケラチノサイト、毛乳頭細胞、口腔上皮細胞、及び体性幹前駆細胞等であってもよい。閉鎖系内で細胞は、例えば、血液系細胞、神経系細胞、心筋系細胞、上皮系細胞、間葉系細胞、肝細胞、インスリン産生細胞、網膜色素上皮細胞、及び角膜細胞に誘導されてもよい。
 血液細胞は、血液から分離される。血液は、例えば末梢血及び臍帯血であるが、これらに限定されない。血液は、成年から採取されてもよいし、未成年から採取されてもよい。採血の際には、エチレンジアミン四酢酸(EDTA)、ヘパリン、及び生物学的製剤基準血液保存液A液(ACD-A)液等の抗凝固剤を用いる。
 血液細胞は、例えば、単核球細胞(Mono nuclear cell)、好中球、好酸球、リンパ球、マクロファージ、血液幹・前駆細胞、及び血管内皮細胞等の有核細胞であり、赤血球、及び血小板を含まない。血液細胞は、例えば血管内皮前駆細胞、血液幹・前駆細胞、T細胞、又はB細胞であってもよい。T細胞は、例えばαβT細胞である。
 単核球細胞は、血液細胞の分離用媒体、及び遠心分離装置等を用いて、血液から分離される。血液細胞の分離用媒体としてFicoll(GEヘルスケア)を使用する場合の、単核球細胞の分離方法は、以下のとおりである。
 低温では単核球細胞の分離精度が悪くなる傾向にあるため、遠心機を4℃から42℃好ましくは18℃に設定する。成年又は未成年のヒトから10μLから50mLの血液を採血し、血液が固まらないように血液にEDTAを含むキレート剤を加えて優しく混ぜる。また、ヒトリンパ球分離用の媒体(Ficoll-Paque PREMIUM、GEヘルスケアジャパン)を5mLずつ2本の15mLチューブに分注する。5mLの血液に対して5mLのPBSを加えて希釈し、チューブ中のヒトリンパ球分離用の媒体の上に5mLずつ重層する。この時、界面を乱さないように、希釈血液をチューブの管壁を伝わらせてゆっくりと媒体上に加える。
 チューブ中の溶液を、10×gから1000×g、好ましくは400×gで、4℃から42℃好ましくは18℃で5分から2時間、好ましくは30分間遠心する。遠心後、チューブ中に白く濁った中間層が現れる。この白く濁った中間層は、単核球細胞を含んでいる。チューブ中の白く濁った中間層をピペットマンでゆっくりと回収し、新しい15mLチューブに移す。この際、下層は吸い取らないようにする。白く濁った中間層は、1本のチューブより1mL程度回収できる。2本分の中間層をまとめて1本のチューブに移す。
 回収した単核球細胞に対し、1mLから48mL、好ましくは12mLのPBSを加えて、溶液をさらに10×gから1000×g、好ましくは200×g、4℃から42℃、好ましくは18℃で1分から60分、好ましくは10分間遠心する。その後、アスピレータを用いて溶液の上清を吸引して除去し、1mLから12mL、好ましくは3mLの既知組成無血清造血細胞培地(X-VIVO(登録商標)10、ロンザ)を加えて懸濁し、単核球細胞懸濁液を得る。そのうち10μLの単核球細胞懸濁液をトリパンブルーで染色して血球計算盤でカウントする。
 採血管としてバキュテイナ(登録商標、BD)を使用する場合の、単核球細胞の分離方法は、以下のとおりである。
 低温では単核球細胞の分離精度が悪くなる傾向にあるため、遠心機を4℃から42℃、好ましくは18℃に設定する。成年又は未成年のヒトから、採血管(バキュテイナ(登録商標)、BD)を用いて8mL採血し、転倒混和して抗凝固剤と混和する。その後、バランスを調整し、溶液を4℃から42℃、好ましくは18℃、100×gから3000×g、好ましくは1500×gから1800×gでスイングロータで1分から60分、好ましくは20分間遠心する。遠心後、血漿層である上層を取り除き、ピペッティングして単核球層とゲルに張り付いている血球を懸濁して懸濁液を得る。得られた懸濁液を、別の15mLチューブに移す。
 15mLチューブの懸濁液に1mLから14mL、好ましくは12mLのPBSを加えて、懸濁液を4℃から42℃、好ましくは18℃、100×gから3000×g、好ましくは200×gで1分から60分、好ましくは5分間遠心する。遠心後、上清をアスピレータで除去する。また、溶血剤(PharmLyse(登録商標)、10倍濃度、BD)を滅菌水で1倍濃度に希釈する。15mLチューブ中のペレットをタッピングでほぐし、1mLから14mL、好ましくは1mLの溶血剤を加える。その後、室温で遮光し、1分間から60分間、好ましくは1分間溶液を静置する。
 次に、15mLチューブに1mLから14mL、好ましくは12mLのPBSを加えて、4℃から42℃、好ましくは室温で、100×gから3000×g、好ましくは200×gで1分から60分、5分間遠心する。遠心後、上清をアスピレータで除去し、1mLから15mL、好ましくは3mLの既知組成無血清造血細胞培地(X-VIVO(登録商標)10、ロンザ)を加えて懸濁し、単核球細胞懸濁液を得る。そのうち10μLの単核球細胞懸濁液をトリパンブルーで染色して血球計算盤でカウントする。
 血液から単核球細胞を分離する方法は、上記の方法に限られず、例えば、透析膜を使用して、血液から単核球を分離してもよい。また、全血単核球濃縮用ピュアセルセレクトシステム(登録商標、PALL)、血球細胞除去用浄化器(セルソーバE、登録商標、旭化成)、及び血小板製剤用白血球除去フィルター(セパセルPL、登録商標、PLX-5B-SCD、旭化成)等のフィルターも使用可能である。
 単核球細胞は、赤血球を重力沈降又は遠心分離することにより有核細胞を分離することが可能な赤血球沈降剤を用いて分離されてもよい。赤血球沈降剤の例としては、HetaSep(登録商標、STEMCELL Technologies)及びHES40(NIPRO)が挙げられる。
 また、単核球細胞としては、Cellular Technology Limited社から販売されているCTL-UP1や、Sanguine Biosciences社のPBMC-001等を使用してもよい。
 あるいは、血液細胞としては、セルバンカー1、ステムセルバンカー GMPグレード、及びステムセルバンカー DMSOフリー GMPグレード(ゼノアック)等の細胞凍結保存液を用いて凍結保存された血液細胞を解凍して用いてもよい。
 単核球細胞を解凍する際には、まず、15mLチューブに1mLから15mL、好ましくは8mLの既知組成無血清造血細胞培地(X-VIVO(登録商標)10、ロンザ)を入れておき、凍結した単核球細胞の入ったチューブを4℃から42℃、好ましくは37℃の温浴槽にいれて、単核球細胞を溶かし始める。その後、少し氷が残っている状態で、単核球細胞の入ったチューブを温浴槽から引きあげ、単核球細胞を既知組成無血清造血細胞培地の入ったチューブに移す。そのうち10μLの単核球細胞懸濁液をトリパンブルーで染色して血球計算盤でカウントする。
 血液細胞は、細胞表面マーカーに基づいて分離されてもよい。血液幹・前駆細胞は、CD34が陽性である。T細胞は、CD3、CD4、CD8のいずれかが陽性である。B細胞は、CD10、CD19、CD20のいずれかが陽性である。血液幹・前駆細胞、T細胞、又はB細胞は、例えば、自動磁気細胞分離装置及び免疫磁気ビーズを用いて、血液細胞から分離される。あるいは、予め分離された単核球細胞を用意してもよい。ただし、細胞表面マーカーに基づいて分離されていない血液細胞を用いてもよい。
 CD34陽性細胞は、幹・前駆細胞であり、リプログラミングされやすい傾向にある。また、CD3陽性細胞であるT細胞を用いてiPS細胞を作製すると、T細胞由来のiPS細胞はTCRリコンビネーションの型を保持しているので、T細胞に効率的に分化誘導できる傾向にある。
 接着培養されている細胞に、誘導因子を導入する。あるいは、ゲル培地で浮遊培養されている細胞に、誘導因子を導入する。誘導因子はRNAであってもよい。誘導因子は、センダイウイルスに含まれていてもよい。あるいは、誘導因子は、トランスフェクションにより細胞に導入されてもよい。誘導因子はDNAであってもよい。誘導因子は、プラスミドに含まれていてもよい。
 誘導因子は、例えば、アデノウイルス、レンチウイルス、及びレトロウイルスに含まれていてもよい。
 誘導因子はタンパク質であってもよい。
 センダイウイルスとしては、CytoTune(登録商標、Invitrogen)が使用可能である。センダイウイルスの力価(タイター)の指標としては、感染多重度(MOI)が挙げられる。センダイウイルスのMOIは、例えば、0.1から100.0、あるいは1.0から50.0である。
 細胞を幹細胞に誘導する場合、例えば細胞に導入される誘導因子は、OCT3/4のmRNA、SOX2のmRNA、KLF4のmRNA、及びc-MYCのmRNAを含む。誘導因子として、OCT4を改良したMOを使用してもよい。また、誘導因子は、LIN28A、FOXH1、LIN28B、GLIS1、p53-dominant negative、p53-P275S、L-MYC、NANOG、DPPA2、DPPA4、DPPA5、ZIC3、BCL-2、E-RAS、TPT1、SALL2、NAC1、DAX1、TERT、ZNF206、FOXD3、REX1、UTF1、KLF2、KLF5、ESRRB、miR-291-3p、miR-294、miR-295、NR5A1、NR5A2、TBX3、MBD3sh、TH2A、TH2B、及びP53DDからなる群から選択される少なくとも一つの因子のmRNAをさらに含んでいてもよい。これらのmRNAは、TriLinkから入手可能である。
 誘導因子に含まれるmRNAは、プソイドウリジン(Ψ)、5-メチルシトシン(mC)、5-メチルウリジン(5meU又はmU)、N1-メチルシュードウリジン(me1Ψ)、5-メトキシウリジン(5moU)、5-ヒドロキシメチルウリジン(5hmU)、5-フォーミルウリジン(5fU)、5-カルボキシメチルエステルウリジン(5camU)、チエノグアノシン(thG)、N4-メチルシチジン(meC)、5-メチルシチジン(mC)、5-メチオキシチジン(5moC)、5-ヒドロキシメチルシチジン(5hmC)、5-ヒドロキシシチジン(5hoC)、5-フォルムシチジン(5fC)、5-カルボキシシチジン(5caC)、N-メチル-2-アミノアデノシン(mDAP)、ジアミノプリン(DAP)、2’-O-メチルウリジン(Um又はm2’-OU)、2-チオウリジン(sU)、及びN-メチルアデノシン(mA)からなる群から選択される少なくとも1つで修飾されていてもよい。
 シトシンは5-メチルシトシン(mC)で置換されてもよい。ウラシルはシュードウラシルで置換されてもよい。
 誘導因子に含まれるmRNAは、ポリアデニル化されていてもよい。
 誘導因子に含まれるmRNAは、インビトロで転写される(IVT)RNAのポリアデニル化によって調製されてもよい。mRNAは、ポリ(A)末端をコードするDNAテンプレートを用いることによって、IVTの間にポリアデニル化されてもよい。mRNAがキャッピングされてもよい。細胞における発現の効率性を最大化するために、大部分のmRNA分子がキャップを含有することが好ましい。mRNAは5’cap[m7G(5’)ppp(5’)G]構造を有していてもよい。当該配列はmRNAを安定化させ、転写を促進させる配列である。5’triphosphateをもつmRNAからは、脱リン酸化処理により5’triphosphateを取り除いてもよい。mRNAはAnti-Reverse Cap Analog(ARCA)として[3’O-Me-m7G(5’)ppp(5’)G]を有していてもよい。ARCAは転写開始点より前に挿入される配列であり、転写されるmRNAの効率は二倍となる。mRNAはPolyAテールを有していてもよい。
 誘導因子に含まれるmRNAは、リボヌクレアーゼIII(RNaseIII)で処理されていてもよい。
 また、誘導因子に含まれるmRNAは、自己増殖能を持つリプリケイティブRNAであってもよい。リプリケイティブRNAとは、自己増殖能を持つRNAであり、通常のRNAと異なり、RNAの複製に必要なタンパク質を発現させる能力を併せ持っている。リプリケイティブRNAはアルファウイルスの一種であるベネズエラ馬脳炎(VEE)ウイルス由来である。リプリケイティブRNAを細胞にトランスフェクションすると、リプログラミング因子を作り続けるRNAを細胞に発現させることができるため、誘導因子RNAを細胞に複数回導入することを省くことが可能となる。
 リプリケイティブRNAの配列は、アルファウイルスレプリコンRNA、東部ウマ脳炎ウイルス(EEE)、ベネズエラウマ脳炎ウイルス(VEE)、エバーグレーズ(Everglades)ウイルス、ムカンボ(Mucambo)ウイルス、ピクスナ(Pixuna)ウイルス、及び西部ウマ脳炎ウイルス(WEE)からなる群から選択されるアルファウイルスから得られる配列を含んでいてよい。
 また、リプリケイティブRNAは、シンドビス(Sindbis)ウイルス、セムリキ森林(Semliki Forest)ウイルス、ミデルブルグ(Middelburg)ウイルス、チクングニア(Chikungunya)ウイルス、オニョンニョン(O’nyong-nyong)ウイルス、ロスリバー(Ross River)ウイルス、バーマフォレスト(Barmah Forest)ウイルス、ゲタ(Getah)ウイルス、サギヤマ(Sagiyama)ウイルス、ベバル(Bebaru)ウイルス、マヤロ(Mayaro)ウイルス、ウナ(Una)ウイルス、アウラ(Aura)ウイルス、ワタロア(Whataroa)ウイルス、ババンキ(Babanki)ウイルス、Kyzylagachウイルス、ハイランドJ(Highlands J)ウイルス、フォートモーガン(Fort Morgan)ウイルス、ヌドゥム(Ndumu)ウイルス、及びバギークリーク(Buggy Creek)ウイルスからなる群から選択されるアルファウイルスから得られる配列を含んでいてよい。
 リプリケイティブRNAは、例えば、5’から3’に向かって、(VEE RNAレプリカーゼ)-(プロモーター)-(RF1)-(自己切断型ペプチド)-(RF2)-(自己切断型ペプチド)-(RF3)-(IRESもしくはコアプロモーター)-(RF4)-(IRESもしくは任意のプロモーター)-(任意に選択可能なマーカー)-(VEE 3’UTR及びポリAテール)-(任意に選択可能なマーカー)-プロモーターを含んでいる。上記のRF1-4は、多能性細胞への細胞の脱分化を誘導する因子である。上記のRF2-3、RF3-4、RF4は任意である。上記のRF1-4は、OCT-4、KLF4、SOX-2、c-MYC、LIN28A、LIN28B、GLIS1、FOXH1、p53-dominant negative、p53-P275S、L-MYC、NANOG、DPPA2、DPPA4、DPPA5、ZIC3、BCL-2、E-RAS、TPT1、SALL2、NAC1、DAX1、TERT、ZNF206、FOXD3、REX1、UTF1、KLF2、KLF5、ESRRB、miR-291-3p、miR-294、miR-295、NR5A1、NR5A2、TBX3、MBD3sh、TH2A、及びTH2Bからなる群から選択されてもよい。
 誘導因を導入される細胞が培養される培地は、誘導因を導入される細胞の種類に応じて適宜選択される。また、誘導因を導入された細胞が培養される培地は、誘導因を導入された細胞の種類に応じて適宜選択される。
 上述したように、培地は、例えば、bFGF等の成長因子を含まなくてもよいし、あるいは、成長因子を低濃度で含んでいてもよい。また、培地は、tgf-βを含まないか、tgf-βを低濃度で含んでいてもよい。培地は、カドヘリン、ラミニン、フィブロネクチン、及びビトロネクチンからなる群から選択される少なくとも1種の物質を含んでいてもよい。
 培地がゲル培地である場合、培地は、上述したように少なくとも1種の高分子化合物を含んでいてもよい。また、ゲル培地は、メチルセルロースを含んでいてもよい。あるいは、ゲル培地は、上述したように、温度感受性ゲルを含んでいてもよい。
 閉鎖系内で細胞を誘導している間、閉鎖系内の培地の温度は、例えば、上述した閉鎖系内で細胞を培養している間の温度と同様である。
 細胞が誘導される閉鎖系に入れられる培地のpHは、例えば、上述した細胞が培養される閉鎖系に入れられる培地のpHと同様である。
 閉鎖系内で細胞を誘導している間、閉鎖系内に二酸化炭素ガス、窒素ガス、及び酸素ガスの少なくともいずれか、あるいは全てを供給しなくともよい。また、閉鎖系内で細胞を誘導している間、閉鎖系内の二酸化炭素濃度を制御しなくともよい。閉鎖系内で細胞を誘導している間、閉鎖系外の二酸化炭素濃度を制御しなくともよい。例えば、閉鎖系を、二酸化炭素(CO)インキュベーター内に配置しなくともよい。ただし、閉鎖系を、二酸化炭素(CO)インキュベーター内に配置することは妨げられない。
 閉鎖系内で細胞を誘導する際には、閉鎖系内に空気層等のガス層がないか、少ないことが好ましい。そのため、閉鎖系内にはガス層が残らないか、少なくなるように、閉鎖系内に培地が充填されることが好ましい。
 閉鎖系内で細胞を誘導している間、培地は、外気に触れないように、閉鎖系内で循環させてもよい。閉鎖系内において、細胞懸濁液と、循環する培地との間に、半透膜を配置し、半透膜を介して、培地の有効成分を細胞懸濁液に浸透させてもよい。
 閉鎖系内で、細胞は、例えば、1日以上、14日以上、あるいは30日以上培養されながら誘導される。ただし、継代、培地の交換、及び培地の追加の際には、閉鎖系は開放されてもよい。
 なお、細胞の播種と継代に間に、培地の交換及び追加を行わなくともよい。この場合、播種と継代の間では、閉鎖系が全く開放されることなく、閉鎖系内の細胞は培養されながら誘導される。播種と継代の間、例えば、1日以上、5日以上、あるいは10日以上、閉鎖系が全く開放されることなく、閉鎖系内の細胞は培養されながら誘導される。
 細胞の継代と継代に間に、培地の交換及び追加を行わなくともよい。この場合、継代と継代の間では、閉鎖系が全く開放されることなく、閉鎖系内の細胞は培養されながら誘導される。継代と継代の間、例えば、1日以上、5日以上、あるいは10日以上、閉鎖系が全く開放されることなく、閉鎖系内の細胞は培養されながら誘導される。
 あるいは、細胞の播種と継代に間に、閉鎖系を開放し、培地の追加又は交換をしてもよい。また、細胞の継代と継代に間に、閉鎖系を開放し、培地の追加又は交換をしてもよい。培地の追加又は交換は、1日以上おき、2日以上おき、あるいは5日以上おきにしてもよい。培地に追加又は交換と継代のとき以外は、閉鎖系が全く開放されることなく、閉鎖系内の細胞は培養されながら誘導される。
 誘導因子を導入された細胞がiPS細胞に誘導(リプログラミング)されたか否かは、例えば、細胞の形態から確認することができる。あるいは、細胞がiPS細胞に誘導されたか否かは、サイトフローメータで、未分化であることを示す細胞表面マーカーであるTRA-1-60、TRA-1-81、SSEA-1、及びSSEA5から選択される少なくとも一つの表面マーカーが陽性であるか否かを分析することにより行うことができる。TRA-1-60は、iPS/ES細胞に特異的な抗原であり、分化細胞では検出されない。iPS細胞はTRA-1-60陽性画分からのみできることから、TRA-1-60陽性細胞はiPS細胞の種と考えられる。
 実施形態に係る内部で細胞を培養又は誘導するための閉鎖系は、例えば、図1に示すような細胞培養器を備えていてもよい。細胞培養器は、培養成分が透過可能な培養成分透過部材10と、培養成分透過部材10の一方の面を覆う、細胞含有培地を保持し、細胞を培養するための培養槽30と、培養成分透過部材10の他方の面を覆う、培地を保持するための培地保持槽40と、を備える。培養槽30内の細胞含有培地は、培養成分透過部材10に接触可能である。また、培地保持槽40内の培地は、培養成分透過部材10に接触可能である。培地保持槽40内の培地は、細胞を含有していない。
 培養成分透過部材10は、培地保持槽40内の培地の有効成分を、培養槽30内の細胞含有培地中に透過させる。また、培養成分透過部材10は、培養槽30内の細胞含有培地中の老廃物を、培地保持槽40内の培地中に透過させてもよい。培養成分透過部材10としては、例えば、半透膜及びメッシュが使用可能である。半透膜は、透析膜を含む。
 培養成分透過部材10が半透膜である場合、半透膜の分画分子量は、例えば、0.1KDa以上、10KDa以上、あるいは50KDa以上である。半透膜は、例えば、セルロースエステル、エチルセルロース、セルロースエステル類、再生セルロース、ポリスルホン、ポリアクリルニトリル、ポリメチルメタクリレート、エチレンビニルアルコール共重合体、ポリエステル系ポリマーアロイ、ポリカーボネート、ポリアミド、セルロースアセテート、セルロースジアセテート、セルローストリアセテート、銅アンモニウムレーヨン、鹸化セルロース、ヘモファン膜、フォスファチジルコリン膜、及びビタミンEコーティング膜等からなる。
 培養成分透過部材10がメッシュである場合、メッシュは、培養槽30内で培養される細胞又は細胞塊よりも小さい孔を有する。これにより、培養槽30内の細胞又は細胞塊が培地保持槽40内に移動することが妨げられる。メッシュの材料は、例えば樹脂及び金属であるが、特に限定されない。培養成分透過部材10の表面は、細胞非接着性であってもよい。
 実施形態に係る細胞培養器は、培養成分透過部材10を挟む、それぞれ開口が設けられた培養側プレート21及び培地側プレート22と、をさらに備えていてもよい。培養側プレート21及び培地側プレート22は、培養槽30内の細胞含有培地及び培地保持槽40内の培地の圧力により、培養成分透過部材10が変動することを抑制するよう、培養成分透過部材10を挟み込むようにして、培養成分透過部材10を保持する。これにより、圧力変動により、培養成分透過部材10が培養槽30あるいは培地保持槽40の内壁に接触することが抑制される。培養側プレート21及び培地側プレート22は、培養槽30内の細胞含有培地及び培地保持槽40内の培地から受ける圧力で変動しない硬さを有する。培養側プレート21及び培地側プレート22の材料は、例えば樹脂及び金属であるが、特に限定されない。培養側プレート21の表面は、細胞非接着性であってもよい。なお、培養成分透過部材10が培養槽30内の細胞含有培地及び培地保持槽40内の培地から受ける圧力により変動しない場合、培養側プレート21及び培地側プレート22は省略されてもよい。
 培養側プレート21には、培養槽30内の細胞含有培地が培養成分透過部材10に接することができるよう、開口が設けられている。また、培地側プレート22には、培地保持槽40内の培地が培養成分透過部材10に接することができるよう、開口が設けられている。培養側プレート21の開口を介して、培養槽30内の細胞含有培地の成分及び培地保持槽40内の培地の成分が培養成分透過部材10を透過可能である。培養側プレート21及び培地側プレート22のそれぞれに設けられた開口の形状は、例えば円であるが、特に限定されない。培養側プレート21及び培地側プレート22のそれぞれに設けられた開口は、培養成分透過部材10が変動することを抑制できる範囲内の大きさを有する。開口は、例えば、格子状に、あるいはランダムに、培養側プレート21及び培地側プレート22のそれぞれに設けられる。
 培養側プレート21は、例えば黒色等の濃色を有していてもよい。培養側プレート21が濃色を有していると、培養側プレート21を背景として、細胞含有培地中の細胞を高いコントラストで視認したり、画像化したりすることが可能である。培養側プレート21の開口が設けられていない部分の面積等の大きさが、細胞あるいは細胞塊よりも大きいと、培養側プレート21の開口が設けられていない部分を背景として細胞あるいは細胞塊を高いコントラストで視認したり、画像化したりすることが容易になる。ただし、細胞あるいは細胞塊に照射する光を調整することにより、培養成分透過部材10や培養側プレート21が透明であっても、細胞あるいは細胞塊を視認したり、画像化したりすることも可能である。
 培養槽30と、培地保持槽40と、は、ネジ、ピンあるいは電磁石等で固定されてもよい。培養槽30の接触部と、培養側プレート21の一方の面の少なくとも一部と、が密着する。培養側プレート21の他方の面の少なくとも一部と、培養成分透過部材10の一方の面の少なくとも一部と、が密着する。培養成分透過部材10の他方の面の少なくとも一部と、培地側プレート22の一方の面の少なくとも一部と、が密着する。培地側プレート22の他方の面の少なくとも一部と、培地保持槽40の接触部と、が密着する。密着させる際には、適宜、パッキン等を使用してもよい。パッキンは、例えば、培養成分透過部材10と培養槽30の間に配置されてもよい。パッキンは、培養成分透過部材10の外周と培養槽30の間に配置されてもよい。培養成分透過部材10と培養槽30の間に配置されるパッキンの外径は、培養成分透過部材10の外径より大きくてもよい。また、パッキンは、例えば、培養成分透過部材10と培地保持槽40の間に配置されてもよい。パッキンは、培養成分透過部材10の外周と培地保持槽40の間に配置されてもよい。培養成分透過部材10と培地保持槽40の間に配置されるパッキンの外径は、培養成分透過部材10の外径より大きくてもよい。
 培養槽30は、例えば、筐体31及び筐体31を覆うカバー32を備える。筐体31及びカバー32は一体化していてもよい。培養槽30の内壁には、細胞が接着しないよう、poly-HEMA(poly 2-hydroxyethyl methacrylate)等の細胞非接着性物質をコーティングして、培養槽30の内壁を細胞非接着性にしてもよい。筐体31には、培養側プレート21の開口を介して培養成分透過部材10を露出させるための開口131が設けられている。図2に示すように、培養槽30のカバー32には、培養槽30内の細胞含有培地を観察可能な窓132が設けられている。窓132の材料としては、例えば、ガラス及び樹脂が使用可能である。
 実施形態に係る細胞培養器は、窓132を加熱及び冷却するための、温度調節部を備えていてもよい。温度調節部は、窓132に配置され、窓を加熱する透明導電膜等の透明ヒーターであってもよい。あるいは、実施形態に係る細胞培養器は、培養槽30の筐体31又はカバー32を加熱及び冷却するための温度調節部を備えていてもよい。筐体31、カバー32、及び窓132のいずれかを温度調節部で温度調節することにより、培養槽30内の細胞含有培地を温度調節することが可能である。実施形態に係る細胞培養器は、培養槽30内の細胞含有培地の温度を測る温度計をさらに備えていてもよい。温度計は、細胞含有培地に接触することなく培養槽30の温度に基づいて細胞含有培地の温度を測ってもよいし、細胞含有培地に接触して細胞含有培地の温度を直接測ってもよい。この場合、細胞含有培地の温度が所定の温度となるよう、温度調節部がフィードバック制御されてもよい。
 図1に示すように、培養槽30には、培養槽30内に流体を供給するための供給口231と、培養槽30内の流体を排出するための排出口331と、が、設けられている。例えば、供給口231に、流体を供給するためのバッグ、蛇腹及びシリンジ等の供給器を接続可能な図2に示すプラグ33が挿入される。供給器は、ポンプ等の流体機械であってもよい。ただし、図1に示す供給口231に、注入装置が直接接続されてもよい。供給器は供給口231に着脱可能であり、供給器が供給口231に接続されていない場合は、供給口231は密閉可能であり、供給口231を介した培養槽30内外の流体の交換が生じない。
 プラグ33は、ニードルレスコネクターであってもよい。ニードルレスコネクターは、スプリットセプタム型であってもよいし、メカニカルバルブ型であってもよい。プラグ33がスプリットセプタム型のニードレスコネクターである場合、プラグ33は、スリットが設けられたディスク弁を備える。培養槽30内に流体を供給する際には、ディスク弁のスリットに供給器あるいは供給器に接続された流路が挿入される。スリットに供給器あるいは供給器に接続された流路が挿入されていない場合、スリットは密閉する。スリットに供給器あるいは供給器に接続された流路が挿入された場合、ディスク弁は供給器あるいは供給器に接続された流路の外周に密着する。したがって、プラグ33に供給器あるいは供給器に接続された流路が挿入された場合も、プラグ33を介して外気が培養槽30内に進入しない。ただし、プラグ33は、針が刺入されるコネクターであってもよい。
 また、例えば、排出口331に、培養槽30内の流体を排出するためのバッグ、蛇腹及びシリンジ等の排出器が接続可能な図2に示すプラグ34が挿入される。排出器は、ポンプ等の流体機械であってもよい。ただし、図1に示す排出口331に、排出器が直接接続されてもよい。排出器は、能動的に培養槽30内の流体を吸引してもよい。あるいは、排出器は、培養槽30内の圧力に応じて受動的に内部容積を増加させ、培養槽30から押し出された流体を受容してもよい。排出器は排出口331に着脱可能であり、排出器が排出口331に接続されていない場合は、排出口331は密閉可能であり、排出口331を介した培養槽30内外の流体の交換が生じない。プラグ34は、ニードルレスコネクターであってもよい。ニードルレスコネクターは、スプリットセプタム型であってもよいし、メカニカルバルブ型であってもよい。プラグ34に排出器あるいは排出器に接続された流路が挿入された場合も、プラグ34を介して外気が培養槽30内に進入しない。ただし、プラグ34は、針が刺入されるコネクターであってもよい。
 例えば、培養槽30が、培養側プレート21、培養成分透過部材10、及び培地側プレート22を間に挟んで培地保持槽40に密着している状態であり、培養槽30内に空気が入っている場合、排出口331から培養槽30内の空気を排出しながら、供給口231から培養槽30内に細胞含有培地を注入することにより、図2に示す培養槽30内に細胞含有培地を入れることが可能である。また、培養槽30内の空気層を完全になくすことも可能である。ただし、培養槽30内に空気層が残っていてもよい。培養槽30内に既に細胞含有培地が入っている場合、図1に示す排出口331から培養槽30内の細胞含有培地を排出しながら、供給口231から培養槽30内に別の細胞含有培地を注入することにより、図2に示す培養槽30内の細胞含有培地の少なくとも一部を置換することが可能である。
 実施形態に係る細胞培養器は、培養槽30を保持可能であり、培養槽30の傾きを調整可能な培養槽保持部材をさらに備えていてもよい。培養槽30の傾きを調整することにより、培養槽30内の空気等のガスを排出することが容易になる。
 培養槽30の供給口231及び排出口331は、栓等により閉塞可能である。あるいは、培養槽30の供給口231及び排出口331にそれぞれ接続されるプラグ33及びプラグ34が閉塞可能である。また、あるいは、培養槽30の供給口231は供給器に接続されることによって、外部から遮蔽され、培養槽30の排出口331は排出器に接続されることによって、外部から遮蔽されることが可能である。供給口231及び排出口331が閉塞され、図2に示すように培養槽30が培地保持槽40に密着させられた場合、培養槽30内は培養槽30外の空気から密閉される。これにより、培養槽30内に外気が進入することが抑制され、培養槽30内の細胞含有培地のpHの変化が抑制され、所定の範囲内に保たれる。なお、本発明者らの知見により、細胞は、完全に閉鎖された密閉空間で培養可能であるため、培養槽30内に、二酸化炭素ガス、窒素ガス、及び酸素ガス等を積極的に供給しなくともよい。そのため、培養槽30をCOインキュベーター内に配置しなくともよい。また、密閉されている培養槽30内に、培養槽30外に存在する細胞、微生物、ウイルス、及び塵等が進入しないため、培養槽30内の清浄度が保たれる。そのため、培養槽30をクリーンルーム内に配置しなくともよい。培養槽30は、ガス非透過性物質で包埋されていてもよい。換言すれば、培養槽30は、ガス非透過性物質中に埋め込まれていてもよい。
 図1に示す培地保持槽40には、培地側プレート22の開口を介して培養成分透過部材10を露出させるための図3に示す開口140が設けられている。開口140は、図1に示す培養成分透過部材10で覆われる。また、図3に示す培地保持槽40には、培地保持槽40内に流体を導入するための導入口240と、培地保持槽40内の流体を排出するための排出口340が設けられている。さらに、培地保持槽40内には、複数の整流板41が配置されていてもよい。複数の整流板41は、例えば、培地保持槽40の対向する内壁から、交互に突出するように配置されている。
 例えば、培地保持槽40が、図1に示す培地側プレート22、培養成分透過部材10、及び培養側プレート21を間に挟んで培養槽30に密着している状態であり、培地保持槽40内に空気が入っている場合、図3に示す排出口340から培地保持槽40内の空気を排出しながら、導入口240から培地保持槽40内に細胞培地を注入することにより、培地保持槽40内に細胞培地を入れることが可能である。また、培地保持槽40内に既に培地が入っている場合、排出口340から培地保持槽40内の細胞培地を排出しながら、導入口240から培地保持槽40内に細胞培地を注入することにより、培地保持槽40内に細胞培地を流すことが可能である。
 複数の整流板41が培地保持槽40内に配置されている場合、培地保持槽40内において、培地は、導入口240から排出口340に向かって、複数の整流板41に沿って流れる。そのため、培地の成分が、培養成分透過部材10に接触する機会が確保される。
 あるいは、図4に示すように、培地保持槽40の内壁に、図3に示す導入口240に連通する1又は複数の吐出口241を設けてもよい。図4に示す複数の吐出口241は、例えば、横一列に設けられる。複数の吐出口241の数や、配列は、均等に配置されてもよいし、ランダムに配置されてもよい。複数の吐出口241の数や、配列は、培地の粘度等の特性に応じて設定される。図5に示すように、培地を複数の吐出口241から吐出することにより、培地保持槽40内において、培養成分透過部材10に接触する培地の均一性を向上することが可能である。
 培地保持槽40の内壁には、1又は複数の吐出口241が設けられた吐出ブロック145が挿入可能であってもよい。例えば、複数の吐出口241の数や配列等のパターンが異なる吐出ブロック145を用意して、培地や培養される細胞の特性に応じて使い分けてもよい。培地保持槽40の内壁の重力に対して上側は、上方又は下方に屈曲又は湾曲していてもよい。培地保持槽40の内壁の重力に対して下側は、上方又は下方に屈曲又は湾曲していてもよい。
 図4及び図5に示すように、培地保持槽40の内壁の複数の吐出口241近傍には、開口242が設けられていてもよい。複数の吐出口241から吐出された培地が培地保持槽40内に貯まるにつれて、培地保持槽40内の空気が開口242から外部に流出する。培地を培地保持槽40に入れた後、開口242は密閉してもよい。
 図3に示すように、培地保持槽40の導入口240と排出口340は、培地流路200で接続され、培地保持槽40と、培地流路200と、の間を培地が循環可能であってもよい。培地流路200は、樹脂チューブやシリコンチューブ等を備えていてもよい。培地流路200は、ガス非透過性物質で包埋されていてもよい。換言すれば、培地流路200は、ガス非透過性物質中に埋め込まれていてもよい。例えば、培地流路200は、樹脂、ガラス、及び金属等からなる部材中に設けられた孔であってもよい。この場合、例えば、凹部が設けられた部材同士を貼りあわせることにより、培地流路200が形成される。培地流路200には、培地を培地保持槽40内に導入し、培地を培地保持槽40内から排出するための流体機械が設けられていてもよい。流体機械は、例えば、培地を培地保持槽40内に導入するための導入用流体機械51と、培地を培地保持槽40内から排出するための排出用流体機械52と、を備える。
 図1に示す導入用流体機械51及び排出用流体機械52としては、容積式ポンプが使用可能である。容積式ポンプの例としては、ピストンポンプ、プランジャーポンプ、及びダイヤフラムポンプを含む往復ポンプ、あるいは、ギアポンプ、ベーンポンプ、及びネジポンプを含む回転ポンプが挙げられる。ダイヤフラムポンプの例としては、チュービングポンプ及び圧電(ピエゾ)ポンプが挙げられる。チュービングポンプは、ペリスタルティックポンプと呼ばれる場合もある。また、様々な種類のポンプを組み合わせたマイクロ流体チップモジュールを用いてもよい。
 ペリスタポンプ(登録商標)、チュービングポンプ、及びダイヤフラムポンプ等の密閉型ポンプを用いると、図3に示す培地流路200内部の培地にポンプが直接接触することなく、送液することが可能である。あるいは、導入用流体機械51及び排出用流体機械52としては、シリンジポンプを使用してもよい。密閉型ポンプ以外のポンプであっても、加熱滅菌処理等により再利用が可能である。
 導入用流体機械51が密閉型ポンプである場合、図1に示すように、導入用流体機械51は、ポンプヘッド151と、モーター等の駆動部251と、を備える。ポンプヘッド151と、駆動部251と、は、着脱可能である。ポンプヘッド151は、チューブ等の培地流路を外側からしごくローラーを備える。駆動部251は、ポンプヘッド151のローラーを回転させる。排出用流体機械52が密閉型ポンプである場合、排出用流体機械52は、ポンプヘッド152と、モーター等の駆動部252と、を備える。ポンプヘッド152と、駆動部252と、は、着脱可能である。ポンプヘッド152は、チューブ等の培地流路を外側からしごくローラーを備える。駆動部252は、ポンプヘッド152のローラーを回転させる。
 図3に示すように、培地流路200には、培地が入ることができる培地タンク60が設けられていてもよい。培地流路200から培地タンク60に入った培地は、再び、培地流路200に流れ出ていく。培地タンク60を設けることにより、培地流路200と培地保持槽40との間を循環する培地の容量を大きくすることが可能である。
 培地タンク60には、培地タンク60内に流体を供給するための供給口と、培地タンク60内の流体を排出するための排出口と、が、設けられていてもよい。例えば、培地タンク60の供給口に、流体を供給するためのバッグ、蛇腹及びシリンジ等の供給器を接続可能な図6に示すプラグ61が挿入される。供給器は、ポンプ等の流体機械であってもよい。ただし、培地タンク60の供給口に、供給器が直接接続されてもよい。供給器は供給口に着脱可能であり、供給器が供給口に接続されていない場合は、供給口は密閉可能であり、供給口を介した培地流路200内外の流体の交換が生じない。あるいは、供給口は、供給器に接続されることによって、外部から遮蔽される。プラグ61は、ニードルレスコネクターであってもよい。ニードルレスコネクターは、スプリットセプタム型であってもよいし、メカニカルバルブ型であってもよい。プラグ61に供給器あるいは供給器に接続された流路が挿入された場合も、プラグ61を介して外気が培地タンク60内に進入しない。ただし、プラグ61は、針が刺入されるコネクターであってもよい。
 また、例えば、培地タンク60の排出口に、培地タンク60内の流体を排出するためのバッグ、蛇腹及びシリンジ等の排出器が接続可能なプラグ62が挿入される。排出器は、ポンプ等の流体機械であってもよい。ただし、培地タンク60の排出口に、排出器が直接接続されてもよい。排出器は、能動的に培地流路内の流体を吸引してもよい。あるいは、排出器は、培地流路内の圧力に応じて受動的に内部容積を増加させ、培地流路から押し出された流体を受容してもよい。排出器は排出口に着脱可能であり、排出器が排出口に接続されていない場合は、排出口は密閉可能であり、排出口を介した培地流路200内外の流体の交換が生じない。あるいは、排出口は、排出器に接続されることによって、外部から遮蔽される。プラグ62は、ニードルレスコネクターであってもよい。ニードルレスコネクターは、スプリットセプタム型であってもよいし、メカニカルバルブ型であってもよい。プラグ62に排出器あるいは排出器に接続された流路が挿入された場合も、プラグ62を介して外気が培地タンク60内に進入しない。ただし、プラグ62は、針が刺入されるコネクターであってもよい。
 例えば、図1に示す培地保持槽40が、培地側プレート22、培養成分透過部材10、及び培養側プレート21を間に挟んで培養槽30に密着している状態であり、図3に示す培地保持槽40、培地流路200及び培地タンク60内に空気が入っている場合、培地タンク60の排出口から培地保持槽40、培地流路200及び培地タンク60内の空気を排出しながら、培地タンク60の供給口から培地保持槽40、培地流路200及び培地タンク60内に培地を注入することにより、培地保持槽40、培地流路200及び培地タンク60内に培地を入れることが可能である。培地保持槽40、培地流路200及び培地タンク60内の空気層を完全になくしてもよいし、空気層が残っていてもよい。
 培地流路200に、培地が充填された供給器と空の排出器を接続し、流体機械を駆動させて、供給器から培地流路200に培地を導入させ、排出器に空気を導入させてもよい。この際、供給器が能動的に培地流路200に培地を注入してもよいし、流体機械の駆動により低圧になった培地流路200に供給器内の培地が吸引され、供給器内の内部容積が受動的に減少しもよい。また、排出器が能動的に培地流路200内の空気を吸引してもよいし、流体機械の駆動により高圧になった培地流路200内の空気が排出器に流入し、排出器の内部容積が受動的に増加してもよい。
 また、培地保持槽40、培地流路200及び培地タンク60内に既に培地が入っている場合、培地タンク60の排出口から培地タンク60内の培地を排出しながら、培地タンク60の供給口から培地タンク60内に培地を注入することにより、培地タンク60内に細胞培地を置換することが可能である。
 培地流路200に、培地が充填された供給器と空の排出器を接続し、流体機械を駆動させて、供給器から培地流路200に新しい培地を導入させ、排出器に古い培地を導入させてもよい。この際、供給器が能動的に培地流路200に新しい培地を注入してもよいし、流体機械の駆動により低圧になった培地流路200に供給器内の新しい培地が吸引され、供給器内の内部容積が受動的に減少しもよい。また、排出器が能動的に培地流路200内の古い培地を吸引してもよいし、流体機械の駆動により高圧になった培地流路200内の古い培地が排出器に流入し、排出器の内部容積が受動的に増加してもよい。
 培地流路200及び培地保持槽40内に培地を供給するための供給口と、培地流路200及び培地保持槽40内の空気を排出するための排出口は、培地流路200の培地タンク60が設けられた部分以外に設けられていてもよい。例えば、培地流路200及び培地保持槽40内に培地を供給するための供給口と、培地流路200及び培地保持槽40内の空気を排出するための排出口は、培地流路200に設けられていてもよい。
 実施形態に係る細胞培養器は、培地保持槽40、培地流路200、及び培地タンク60の少なくともいずれかを加熱及び冷却するための、温度調節部を備えていてもよい。培地保持槽40、培地流路200、及び培地タンク60のいずれかを温度調節部で温度調節することにより、培地を温度調節することが可能である。実施形態に係る細胞培養器は、培地の温度を測る温度計をさらに備えていてもよい。温度計は、培地に接触することなく培地保持槽40、培地流路200、及び培地タンク60の少なくともいずれかの温度に基づいて培地の温度を測ってもよいし、培地に接触して培地の温度を直接測ってもよい。この場合、培地の温度が所定の温度となるよう、温度調節部がフィードバック制御されてもよい。
 図3に示すように、培地保持槽40、培地流路200、ポンプヘッド151、ポンプヘッド152、及び培地タンク60は、流路ケース70内に格納されてもよい。流路ケース70内において、培地保持槽40、培地流路200、ポンプヘッド151、ポンプヘッド152、及び培地タンク60は、ガス非透過性物質中に完全に埋め込まれていてもよい。培地流路200は、ガス非透過性物質中にトンネル状に設けられていてもよい。例えば、流路ケース70には、ポンプヘッド151に軸を挿入するための穴、ポンプヘッド152に軸を挿入するための穴、培地タンク60の供給口にプラグ61を挿入するための穴、及び培地タンク60の排出口にプラグ62を挿入するための穴が設けられている。培地タンク60の供給口にプラグ61を挿入するための穴、及び培地タンク60の排出口にプラグ62を挿入するための穴は、塞ぐことが可能であってもよい。
 図7に示すように、導入用流体機械51の駆動部251及び排出用流体機械52の駆動部252は、基板状の駆動部保持部材80に配置されてもよい。駆動部保持部材80には、培地タンク60の供給口にプラグ61を挿入するための穴、及び培地タンク60の排出口にプラグ62を挿入するための穴82が設けられている。培地タンク60の供給口にプラグ61を挿入するための穴、及び培地タンク60の排出口にプラグ62を挿入するための穴82は、塞ぐことが可能であってもよい。
 駆動部保持部材80は、図1に示すパッキン90を介して、流路ケース70に密着させられる。パッキン90は、流路ケース70と駆動部保持部材80の接触部から流路ケース70内に空気が進入することを抑制する。
 培地を培地保持槽40内に導入し、培地を培地保持槽40内から排出するための流体機械を流体機械用外気遮断部材で覆ってもよい。流体機械用外気遮断部材は、例えば、図7に示すように、駆動部保持部材80に配置された導入用流体機械51の駆動部251を覆う導入用流体機械用外気遮断部材351と、駆動部保持部材80に配置された排出用流体機械52の駆動部252を覆う排出用流体機械用外気遮断部材352と、を備える。
 流路ケース70と、駆動部保持部材80と、は、着脱可能である。駆動部保持部材80を流路ケース70に密着させ、培地タンク60の供給口にプラグ61を挿入するための穴、及び培地タンク60の排出口にプラグ62を挿入するための穴を塞ぎ、導入用流体機械51の駆動部251を導入用流体機械用外気遮断部材351で覆い、排出用流体機械52の駆動部252を排出用流体機械用外気遮断部材352で覆うと、流路ケース70内が外気から遮断され、流路ケース70内に外気が進入することができなくなる。そのため、流路ケース70内外のガスの交換が生じなくなる。したがって、培地保持槽40及び培地流路200内に外気が進入しなくなる。培地流路用外気遮断部材の少なくとも一部を構成する流路ケース70内を外気から遮断することにより、培地流路200がガス透過性のチューブであっても、培地保持槽40及び培地流路200内の培地のpHの変動を抑制し、所定の範囲内に保つことが可能となる。
 なお、本発明者らの知見により、細胞は、完全に閉鎖された密閉空間で培養可能であるため、培地保持槽40及び培地流路200内に、二酸化炭素ガス、窒素ガス、及び酸素ガス等を積極的に供給しなくともよい。そのため、培地保持槽40及び培地流路200をCOインキュベーター内に配置しなくともよい。また、密閉されている培地保持槽40及び培地流路200内に、培地保持槽40及び培地流路200外に存在する細胞、微生物、ウイルス、及び塵等が進入しないため、培地保持槽40及び培地流路200内の清浄度が保たれる。そのため、培地保持槽40及び培地流路200をクリーンルーム内に配置しなくともよい。培地保持槽40は、ガス非透過性物質で包埋されていてもよい。換言すれば、培地保持槽40は、ガス非透過性物質中に埋め込まれていてもよい。
 流路ケース70から駆動部保持部材80を外した際、培地タンク60の供給口にプラグ61を挿入するための流路ケース70の穴、及び培地タンク60の排出口にプラグ62を挿入するための流路ケース70の穴を塞ぐことにより、流路ケース70内を密閉し、流路ケース70内部の物質が外部に流出したり、流路ケース70内に外気が進入したりすることを抑制することが可能である。
 内部に培地流路200及びポンプヘッド151、152を含む流路ケース70は、使い捨て可能である。一方、駆動部251、252を保持している駆動部保持部材80は、繰り返し利用することが可能である。
 例えば、図2に示す導入用流体機械51によって培地保持槽40内に送液される培地の量と、排出用流体機械52によって培地保持槽40から排出される培地の量と、が同じになるよう、導入用流体機械51及び排出用流体機械52は制御される。導入用流体機械51及び排出用流体機械52は、培地保持槽40内に、常時、培地を送液してもよいし、適宜間隔をおいて、培地を送液してもよい。
 培地を、常時、培地保持槽40内に送液する場合、培地保持槽40内に送液される培地の流量は、一定であっても、一定でなくてもよい。例えば、培地及び培地中の細胞塊を撮影装置で監視し、培地及び培地中の細胞塊の状態に応じて、培地保持槽40内に送液される培地の流量を増加させたり、減少させたりしてもよい。
 また、培地保持槽40内に培地を常時送液せずに、例えば、培地の状態、培地中の細胞塊の状態、細胞数、細胞塊数、培地の濁度、及びpHの変化に応じて、培地の送液の開始及び終了をしてもよい。この場合も、培地及び培地中の細胞塊の状態に応じて、送液される培地の流量を増加させたり、減少させたりしてもよい。
 攪拌されている培地中では、細胞同士がランダムに衝突し、結合して、様々な大きさの細胞塊(コロニー)が形成される場合がある。そのためコロニー間の均質性が保てない場合がある。さらに、大きすぎるコロニーにおいては、コロニーの中まで栄養や成長因子が届かず、内部から分化、細胞死してしまう場合がある。その一方で、小さすぎるコロニーは、継代培養には適さない場合がある。これに対し、図2に示す培養槽30内では、培地の流速が遅いか、培地が流動しないため、細胞同士が衝突する頻度が低い。そのため、コロニーにおいてクローナリティを維持することが可能である。したがって、例えば、細胞がiPS細胞等の幹細胞である場合、1つの細胞由来の幹細胞のクローナリティを担保することが可能である。また、幹細胞同士が衝突する頻度が低いため、幹細胞のコロニーの大きさを均質に保つことが可能である。
 実施形態に係る細胞培養器は、培養槽30のカバー32の窓132を介して、培養槽30内の細胞含有培地を撮影する写真カメラやビデオカメラ等の撮影装置をさらに備えていてもよい。
 実施形態に係る細胞培養器によれば、例えば、完全閉鎖系で細胞が培養されるため、培養装置からの細胞の漏れ出しによるクロスコンタミネーションのリスクを低減することが可能である。また、例えば、細胞がHIV肝炎ウイルス等のウイルスに感染している場合であっても、細胞の漏れ出しによるオペレーターへの感染のリスクを低減することが可能である。さらに、細胞培養器内の培地が、細胞培養器外の空気中の細菌、ウイルス及びカビ等にコンタミネーションするリスクを低減することが可能である。またさらに、実施形態に係る細胞培養器によれば、COインキュベーターを用いることなく、細胞を培養することも可能である。
 なお、例えば、培地の循環が不要な場合は、図3に示す培地保持槽40に培地流路200を接続しなくともよい。また、培養槽30内で細胞は浮遊培養されてもよいし、接着培養されてもよい。細胞が接着培養される場合、図1に示す培養側プレート21の表面が細胞接着性であってもよいし、培養成分透過部材10の表面が細胞接着性であってもよい。また、実施形態に係る細胞培養器の培養槽30内で、細胞を培養しながら誘導してもよい。さらに、培地流路が培地保持槽や培養槽に接続されずに使用され、閉鎖系としての培地流路内で細胞を培養又は誘導してもよい。
 閉鎖系は、図1から図7に示した細胞培養器に限定されない。例えば、閉鎖系は容器であってもよい。容器は、チューブやフラスコであってもよい。容器は、樹脂製であってもよいし、ガラス製であってもよい。容器内部を完全に閉鎖するために、容器のキャップや蓋等の周囲を、パラフィンフィルム等のフィルムで巻き付けてもよい。
 (実施例1)
 幹細胞培地(20%KnockOut SR(登録商標、ThermoFisher SCIENTIFIC)を含むDMEM/F12)をゲル化してゲル培地を作製した。ゲル培地のpHは、4.0から10.0の間に調整した。ゲル培地にシングルセル又は細胞塊にされたiPS細胞を2×10個/mLを添加した。15mLファルコンチューブ(登録商標、コーニング)にiPS細胞を含むゲル培地を入れた。その後、一部のファルコンチューブのキャップを固く締め、さらにファルコンチューブ及びキャップの周囲をパラフィンフィルム(パラフィルム、登録商標、Bemis)で巻きつけ、ファルコンチューブ内を外気から遮断し、ファルコンチューブ内のガス(空気)が完全に外気と交換されないようにした。他のファルコンチューブは、キャップを締めるのみで、パラフィンフィルムを巻きつけなかった。
 パラフィンフィルムで巻きつけなかったファルコンチューブを37℃、二酸化炭素濃度が5%のインキュベーター内に配置し、iPS細胞の浮遊培養を開始した。また、パラフィンフィルムで巻きつけたファルコンチューブを37℃の恒温槽に配置し、COインキュベーターには入れずにiPS細胞の浮遊培養を開始した。恒温槽としては、温度を電子的に制御することができるビーズバス、ウォーターバス及び恒温機を使用した。恒温槽は、実験室内に配置され、実験室内の空気から遮蔽されていなかった。その後、2日に一度、それぞれのファルコンチューブのキャップを開け、2mLのpHが4.0から10.0の間のゲル培地をファルコンチューブ内に追加した。ゲル培地を追加した後は、上記のとおり、キャップを締め、恒温槽に配置するファルコンチューブは、キャップの周囲をパラフィンフィルムで巻きつけた。
 ファルコンチューブ内での培養を開始してから7から10日後、ファルコンチューブのキャップを開け、ゲル培地中に形成されたiPS細胞の細胞塊をフィルターを用いて回収し、PBSで洗浄し、ファルコンチューブに入れた。さらに、細胞塊に500μLの細胞解離試薬(TrypLE Select、登録商標、Thermo Fisher)を添加し、COインキュベーター内で細胞塊を5分間インキュベートした。次に、インキュベーターからファルコンチューブを取り出し、ファルコンチューブ内に500μLの幹細胞培地(20%KnockOut SR(登録商標、ThermoFisher SCIENTIFIC)を含むDMEM/F12)を入れ、細胞塊を懸濁して、iPS細胞をシングルセルにした。ファルコンチューブ内に2mLの幹細胞培地(20%KnockOut SR(登録商標、ThermoFisher SCIENTIFIC)を含むDMEM/F12)を添加し、遠心機を用いて200gでファルコンチューブを遠心した。遠心後、ファルコンチューブ内の上清を除去し、iPS細胞をゲル培地をファルコンチューブに入れた。その後、上記と同様に、2日に一度ゲル培地を追加しながら、7から10日間、iPS細胞を密閉されたファルコンチューブ内で浮遊培養した。
 以後、上記と同様に、継代及び7から10日間の浮遊培養を繰り返し、合計して1か月以上、iPS細胞を密閉されたファルコンチューブ内で浮遊培養した。
 ファルコンチューブをインキュベーター内に配置して培養したiPS細胞、及びファルコンチューブをビーズバスに配置して培養したiPS細胞を顕微鏡で観察したところ、図8に示すように、いずれも、均一な細胞塊を形成していることが確認された。ビーズバス以外の恒温槽に配置されたファルコンチューブ内で培養されたiPS細胞でも同様の結果が得られた。
 また、継代時に、一部のシングルセルのiPS細胞を分注し、4%-パラホルムアルデヒドを用いてiPS細胞を固定した。さらに、フローサイトメーターを用いて、固定されたiPS細胞における細胞表面抗原TRA-1-60の発現量を測定した。TRA-1-60は、多能性幹細胞の代表的な表面抗原であり、分化した細胞では発現量が減少することが知られている。
 その結果、図9に示すように、培養開始から8日目、28日目、及び38日目において、ファルコンチューブをインキュベーター内に配置して培養したiPS細胞、及びファルコンチューブをビーズバスに配置して培養したiPS細胞は、いずれも、ほぼ100%TRA1-60陽性であった。ビーズバス以外の恒温槽に配置されたファルコンチューブ内で培養されたiPS細胞でも同様の結果が得られた。したがって、容器を密閉して閉鎖系にすると、容器内の二酸化炭素濃度を制御せずとも、幹細胞を長期間にわたって、未分化状態で多能性を保ちながら培養できることが示された。
 (実施例2)
 実施例1と同様にゲル培地を作製した。ゲル培地にシングルセルにされたiPS細胞を2×10個/mLを添加した。2mLゴムパッキン付きガス非透過性チューブに、内部に空気層が残らないように2mLのiPS細胞を含むゲル培地を入れた。その後、チューブのキャップを固く締め、さらにチューブ及びキャップの周囲をパラフィンフィルムで巻きつけ、チューブ内を外気から遮断し、チューブ内に外気が侵入しないようにした。これにより、培養中に、ゲル培地がガス(空気)層に接触しないようにした。
 パラフィンフィルムで巻きつけたチューブのそれぞれを37℃のCOインキュベーター内及びCOインキュベーター外の37℃の恒温槽に配置し、iPS細胞の浮遊培養を開始した。恒温槽としては、温度を電子的に制御することができるビーズバス、ウォーターバス及び恒温機を使用した。恒温槽は、実験室内に配置され、実験室内の空気から遮蔽されていなかった。培養の途中、培地の追加又は交換をしなかった。チューブ内での培養を開始してから10から11日後、チューブのキャップを開け、ゲル培地中に形成されたiPS細胞の細胞塊をフィルターを用いて回収し、PBSで洗浄し、チューブに入れた。さらに、細胞塊に500μLの細胞解離試薬(TrypLE Select、登録商標、Thermo Fisher)を添加し、COインキュベーター内で細胞塊を5分間インキュベートした。次に、インキュベーターからチューブを取り出し、チューブ内に500μLの幹細胞培地(20%KnockOut SR(登録商標、ThermoFisher SCIENTIFIC)を含むDMEM/F12)を入れ、細胞塊を懸濁して、iPS細胞をシングルセルにした。チューブ内に2mLの幹細胞培地(20%KnockOut SR(登録商標、ThermoFisher SCIENTIFIC)を含むDMEM/F12)を添加し、遠心機を用いて200gでチューブを遠心した。遠心後、チューブ内の上清を除去し、iPS細胞の細胞数が2×10個/mLとなるよう、ゲル培地をチューブに入れた。その後、上記と同様に、ゲル培地の追加又は交換をせずに、5から11日間、iPS細胞を密閉されたチューブ内で浮遊培養した。
 以後、上記と同様に、継代及び5から11日間の浮遊培養を繰り返し、合計して1か月以上、iPS細胞を密閉されたチューブ内で浮遊培養した。
 チューブをインキュベーター内に配置して培養したiPS細胞をカメラ及び顕微鏡で観察したところ、図10に示すように、均一な細胞塊を形成していることが確認された。インキュベーター外の恒温槽に配置されたチューブ内で培養されたiPS細胞でも同様の結果が得られた。
 また、継代時に、一部のシングルセルのiPS細胞を分注し、4%-パラホルムアルデヒドを用いてiPS細胞を固定した。さらに、フローサイトメーターを用いて、固定されたiPS細胞における細胞表面抗原TRA-1-60の発現量を測定した。その結果、図11に示すように、培養開始から10日目、21日目、及び30日目において、チューブをインキュベーター内に配置して培養したiPS細胞は、90%以上TRA1-60陽性であった。インキュベーター外の恒温槽に配置されたチューブ内で培養されたiPS細胞でも同様の結果が得られた。したがって、容器を密閉すると、容器内の二酸化炭素濃度を制御せず、かつ培地の追加及び交換をせずとも、幹細胞を長期間にわたって、未分化状態で多能性を保ちながら培養できることが示された。
 (実施例3)
 実施例1と同様にゲル培地を作製した。ゲル培地にシングルセルにされたiPS細胞を添加した。15mLファルコンチューブに2mLのiPS細胞を含むゲル培地を入れた。その後、ファルコンチューブのキャップを固く締めた。
 ファルコンチューブを37℃、COインキュベーター内に配置し、iPS細胞の浮遊培養を開始した。その後、2日に一度、ファルコンチューブのキャップを開け、2mLのpHが4.0から10.0の間のゲル培地をファルコンチューブ内に追加した。ゲル培地を追加した後は、上記のとおり、キャップを締めた。
 ファルコンチューブ内での培養を開始してから7から10日後、ファルコンチューブのキャップを開け、ゲル培地中に形成されたiPS細胞の細胞塊をフィルターを用いて回収し、PBSで洗浄し、ファルコンチューブに入れた。さらに、細胞塊に500μLの細胞解離試薬(TrypLE Select、登録商標、Thermo Fisher)を添加し、COインキュベーター内で細胞塊を5分間インキュベートした。次に、インキュベーターからファルコンチューブを取り出し、ファルコンチューブ内に20%KnockOut SR(登録商標、ThermoFisher SCIENTIFIC)、GlutaMAX(登録商標、ThermoFisher SCIENTIFIC)、及び非必須アミノ酸(NEAA)を含む500μLの培地を入れ、細胞塊を懸濁して、iPS細胞をシングルセルにした。ファルコンチューブ内に2mLの幹細胞培地(20%KnockOut SR(登録商標、ThermoFisher SCIENTIFIC)を含むDMEM/F12)を添加し、遠心機を用いて200gでファルコンチューブを遠心した。遠心後、ファルコンチューブ内の上清を除去し、iPS細胞の細胞数が2×10個/mLとなるよう、ゲル培地をファルコンチューブに入れた。その後、上記と同様に、2日に一度ゲル培地を追加しながら、7から10日間、iPS細胞を密閉されたファルコンチューブ内で浮遊培養した。
 以後、上記と同様に、継代及び7から10日間の浮遊培養を繰り返し、合計して1か月以上、iPS細胞を密閉されたファルコンチューブ内で浮遊培養した。
 ファルコンチューブ内で培養したiPS細胞を顕微鏡で観察したところ、図12に示すように、いずれも、細胞塊を形成していることが確認された。また、実施例3と同様に、フローサイトメーターを用いて、iPS細胞における細胞表面抗原TRA-1-60の発現量を測定したところ、図13に示すように、培養開始から7から21日目におけるiPS細胞は、ほぼ100%TRA-1-60陽性であった。
 (実施例4)
 増殖因子を培地(StemSpan H3000、登録商標、STEMCELL Technologies Inc.)に添加し、さらに培地に脱アシル化ゲランガムを添加して、ゲル培地を用意した。
 用意したゲル培地を15mLチューブに入れ、ゲル培地に2×10個の血液細胞(単核球)を播種した。その後、15mLチューブを37℃のCOインキュベーター内に配置し、7日間、血液細胞を培養した。その後、ゲル培地にOCT3/4、SOX2、KLF4、cMYCを搭載するセンダイウイルスベクター(CytoTune-iPS2.0、株式会社IDファーマ)を感染多重度(MOI)が10.0となるよう添加し、血液細胞をセンダイウイルスに感染させた。
 ゲル培地にセンダイウイルスを添加した後、ゲル培地に30mLの幹細胞培地(20%KnockOut SR(登録商標、ThermoFisher SCIENTIFIC)を含むDMEM/F12)を添加し、フィーダー細胞を播種したフラスコに、センダイウイルスに感染した細胞を含む培地を入れ、15日間、フラスコを放置し、センダイウイルスに感染した細胞を接着培養した。フラスコ内には、空気層が全くなかった。その間、図14に示すように、フラスコのキャップ周辺をパラフィンフィルムで巻き付け、フラスコ内を完全に閉鎖し、培地交換及びガス交換を全く行わず、フラスコ内のCO濃度の制御もしなかった。
 15日後、細胞を顕微鏡で観察したところ、図15に示すように、ES細胞様コロニーを形成していることが確認された。図16に示すように、コロニーのうち100%近くがES細胞様コロニーであった。また、4%-パラホルムアルデヒドを用いて細胞を固定し、フローサイトメーターを用いて、固定された細胞における細胞表面抗原TRA-1-60の発現量を測定したところ、図17(a)に示すように、誘導前の細胞においては、ほぼ100%TRA-1-60陰性であったのに対し、図17(b)に示すように、誘導後の細胞においては、ほぼ100%TRA-1-60陽性であり、ほぼ完全にリプログラミングされていることが確認された。したがって、完全に閉鎖された環境下において、培地交換及びガス交換をすることなく、幹細胞以外の細胞からiPS細胞を誘導できることが示された。
 (実施例5)
 実施例4と同様に用意したゲル培地を15mLチューブに入れ、ゲル培地に2×10個の血液細胞(単核球)を播種した。その後、15mLチューブを37℃のCOインキュベーター内に配置し、7日間、血液細胞を培養した。その後、ゲル培地にOCT3/4、SOX2、KLF4、cMYCを搭載するセンダイウイルスベクター(CytoTune-iPS2.0、株式会社IDファーマ)を感染多重度(MOI)が10.0となるよう添加し、血液細胞をセンダイウイルスに感染させた。
 ゲル培地にセンダイウイルスを添加した後、ゲル培地に15mLのゲル化した幹細胞培地(20%KnockOut SR(登録商標、ThermoFisher SCIENTIFIC)を含むDMEM/F12)を添加し、そのうち15mLのセンダイウイルスに感染した細胞を含む培地を15mLチューブに入れ、15日間、15mLチューブを放置し、センダイウイルスに感染した細胞を浮遊培養した。15mLチューブ内には、空気層が全くなかった。その間、15mLチューブ内を完全に閉鎖し、培地交換及びガス交換を全く行わず、15mLチューブ内のCO濃度の制御もしなかった。
 15日後、細胞を顕微鏡で観察したところ、図18に示すように、ES細胞様コロニーを形成していることが確認された。また、4%-パラホルムアルデヒドを用いて細胞を固定し、フローサイトメーターを用いて、固定された細胞における細胞表面抗原TRA-1-60の発現量を測定したところ、図19に示すように、ほぼ100%TRA-1-60陽性であり、ほぼ完全にリプログラミングされていることが確認された。したがって、完全に閉鎖された環境下において、培地交換及びガス交換をすることなく、幹細胞以外の細胞からiPS細胞を誘導できることが示された。
 (実施例6)
 図20及び図21に示すように、半透膜110(旭化成株式会社又はSPECTRUM)を、培養側プレート21及び培地側プレート22で挟み、さらに、半透膜110、培養側プレート21及び培地側プレート22を、培養槽30及び培地保持槽40で挟み込んだ。
 20%の代替血清(KnockOut SR、登録商標、Gibco)を含む幹細胞培地(リプロセル)をゲル化してゲル培地を作製した。ゲル培地にシングルセルにされたiPS細胞を2×10個/mLを添加して、細胞含有培地を調製した。
 細胞含有培地をシリンジに入れ、シリンジをプラグ33を介して培養槽30の供給口231に接続した。また、空のシリンジをプラグ34を介して培養槽30の排出口331に接続した。次に、培養槽30の供給口231から培養槽30内に、シリンジ内の細胞含有培地を注入した。培養槽30内の圧力上昇により、排出口331に接続されたシリンジのピストンが受動的に上昇し、培養槽30内の空気は、培養槽30の排出口331に接続されたシリンジ内に移動した。培養槽30内の空気層が完全になくなるまで、培養槽30内に細胞含有培地を注入した。その後、培養槽30の供給口231及び排出口331を遮蔽した。
 ゲル培地をシリンジに入れ、シリンジをプラグ61を介して培地保持槽40の導入口240に接続した。また、空のシリンジをプラグ62を介して培地保持槽40の排出口340に接続した。次に、培地保持槽40の導入口240から培地保持槽40内に、シリンジ内のゲル培地を注入した。培地保持槽40内の圧力上昇により、培地保持槽40の排出口340に接続されたシリンジが受動的に上昇し、培地保持槽40内の空気は、培地保持槽40の排出口340に接続されたシリンジ内に移動した。培地保持槽40内の空気層が完全になくなるまで、培地保持槽40内にゲル培地を注入した。その後、培地保持槽40の導入口240及び排出口340を遮蔽した。これにより、培養槽30及び培地保持槽40内部を密閉し、培養槽30及び培地保持槽40の内部と外部とで、ガス交換が完全に生じないようにした。
 培養槽30内でiPS細胞の浮遊培養を開始した。その後、2日に一度、培地保持槽40内の2mLのゲル培地を、2mLの新鮮なゲル培地に交換した。培養槽30内での培養を開始してから7から10日後、培養槽30内の細胞含有培地をシリンジで排出し、ゲル培地中に形成されたiPS細胞の細胞塊をフィルターを用いて回収し、PBSで洗浄し、ファルコンチューブに入れた。さらに、細胞塊に500μLの細胞解離酵素(TrypLE Select、Thermo Fisher)を添加し、COインキュベーター内で細胞塊を5分間インキュベートした。次に、インキュベーターからファルコンチューブを取り出し、ファルコンチューブ内に500μLの細胞培地を入れ、細胞塊を懸濁して、iPS細胞をシングルセルにした。ファルコンチューブ内に2mLの細胞培地を添加し、遠心機を用いて200gでファルコンチューブを遠心した。遠心後、ファルコンチューブ内の上清を除去し、iPS細胞とゲル培地をファルコンチューブに入れて、細胞含有培地を調製した。その後、上記と同様に、細胞含有培地を培養槽30に注入し、2日に一度、培地保持槽40内の2mLのゲル培地を交換しながら、7から10日間、iPS細胞を浮遊培養した。
 以後、上記と同様に、継代及び7から10日間の浮遊培養を繰り返し、合計して1か月以上、iPS細胞を密閉された培養槽30内で浮遊培養した。
 培養槽30で培養したiPS細胞を顕微鏡で観察したところ、図22に示すように、いずれも、均一な細胞塊を形成していることが確認された。
 また、継代時に、一部のシングルセルのiPS細胞を分注し、4%-パラホルムアルデヒドを用いてiPS細胞を固定した。さらに、フローサイトメーターを用いて、固定されたiPS細胞における細胞表面抗原TRA-1-60の発現量を測定した。その結果、図23に示すように、培養開始から39日目におけるiPS細胞は、90%以上TRA-1-60陽性であった。したがって、容器を密閉すると、容器内の二酸化炭素濃度を制御せずとも、幹細胞を長期間にわたって、未分化状態で多能性を保ちながら培養できることが示された。
 (実施例7)
 実施例6と同様に細胞含有培地を調製した。また、図2に示した細胞培養器と同様の細胞培養器を用意した。培養槽30内の空気層が完全になくなるまで、培養槽30内に細胞含有培地を注入した。その後、培養槽30の供給口及び排出口を遮蔽した。また、培地保持槽40、培地流路200、及び培地タンク60をゲル培地で充填した。その後、培地タンク60の導入口及び排出口を遮蔽した。これにより、培養槽30及び培地保持槽40内部を密閉し、培養槽30及び培地保持槽40の内部と外部とで、ガス交換が完全に生じないようにした。
 培地保持槽40、培地流路200、及び培地タンク60内でゲル培地を循環させ、培養槽30内でiPS細胞の浮遊培養を開始した。その後、2から6日に一度、培地タンク60内の10mLのゲル培地を、10mLの新鮮なゲル培地に交換した。培養槽30内での培養を開始してから7から10日後、培養槽30内の細胞含有培地をシリンジで排出し、実施例6と同様の継代処理をして、上記と同様に、細胞含有培地を培養槽30に注入し、4日に一度、培地タンク60内の10mLのゲル培地を交換しながら、7から10日間、iPS細胞を浮遊培養した。
 以後、上記と同様に、継代及び7から10日間の浮遊培養を繰り返し、合計して1か月以上、iPS細胞を密閉された培養槽30内で浮遊培養した。
 培養槽30で培養したiPS細胞を顕微鏡で観察したところ、図24に示すように、いずれも、均一な細胞塊を形成していることが確認された。また、実施例6と同様に、フローサイトメーターを用いて、iPS細胞における細胞表面抗原TRA-1-60の発現量を測定したところ、図25に示すように、培養開始から15日目におけるiPS細胞は、ほぼ100%TRA-1-60陽性であった。
 (実施例8)
 増殖因子を培地(StemSpan H3000、登録商標、STEMCELL Technologies Inc.)に添加し、さらに培地に脱アシル化ゲランガムを添加して、ゲル培地を用意した。
 用意したゲル培地を15mLチューブに入れ、ゲル培地に2×10個の血液細胞を播種した。その後、15mLチューブをCOインキュベーター内に配置し、7日間、血液細胞(単核球)を培養した。その後、ゲル培地にOCT3/4、SOX2、KLF4、cMYCを搭載するセンダイウイルスベクター(CytoTune-iPS2.0、株式会社IDファーマ)を感染多重度(MOI)が10.0となるよう添加し、血液細胞をセンダイウイルスに感染させた。
 ゲル培地にセンダイウイルスを添加した後、ゲル培地に15mLのゲル化した幹細胞培地(20%KnockOut SR(登録商標、ThermoFisher SCIENTIFIC)を含むDMEM/F12)を添加し、そのうち15mLのセンダイウイルスに感染した細胞を含む培地を図20及び図21に示す培養槽30に入れ、ゲル培地を培地保持槽40に注入した。実施例6と同様に、培養槽30及び培地保持槽40内部を密閉し、培養槽30及び培地保持槽40の内部と外部とで、ガス交換が完全に生じないようにした。
 培養槽30内で誘導因子を導入された細胞の浮遊培養を開始した。その後、2日に一度、培地保持槽40内の2mLのゲル培地を、2mLの新鮮なゲル培地に交換した。
 15日後、細胞を顕微鏡で観察したところ、図26に示すように、ES細胞様コロニーを形成していることが確認された。また、4%-パラホルムアルデヒドを用いて細胞を固定し、フローサイトメーターを用いて、固定された細胞における細胞表面抗原TRA-1-60の発現量を測定したところ、図27に示すように、90%以上TRA-1-60陽性であり、ほぼ完全にリプログラミングされていることが確認された。したがって、完全に閉鎖された環境下において、培地交換及びガス交換をすることなく、幹細胞以外の細胞からiPS細胞を誘導できることが示された。
 10・・・培養成分透過部材、21・・・培養側プレート、22・・・培地側プレート、30・・・培養槽、31・・・筐体、32・・・カバー、33・・・プラグ、34・・・プラグ、40・・・培地保持槽、41・・・整流板、51・・・導入用流体機械、52・・・排出用流体機械、60・・・培地タンク、61・・・プラグ、62・・・プラグ、70・・・流路ケース、80・・・駆動部保持部材、82・・・穴、90・・・パッキン、110・・・半透膜、131・・・開口、132・・・窓、140・・・開口、145・・・吐出ブロック、151・・・ポンプヘッド、152・・・ポンプヘッド、200・・・培地流路、231・・・供給口、240・・・導入口、241・・・吐出口、242・・・開口、251・・・駆動部、252・・・駆動部、331・・・排出口、340・・・排出口、351・・・導入用流体機械用外気遮断部材、352・・・排出用流体機械用外気遮断部材、401・・・入力装置、402・・・出力装置、403・・・関係記憶装置、501・・・画像処理部、511・・・輪郭定義部、512・・・細胞評価部、513・・・統計処理部、514・・・密度算出部、515・・・培地評価部
 

Claims (70)

  1.  閉鎖系内で細胞を培養又は誘導することを含む、細胞の培養又は誘導方法。
  2.  前記誘導が、リプログラミング、初期化、分化転換、分化誘導及び細胞の運命変更の少なくともいずれかを含む、請求項1に記載の方法。
  3.  前記閉鎖系内と外部との間でガスの交換が生じない、請求項1又は2に記載の方法。
  4.  前記閉鎖系内の温度を制御することをさらに含む、請求項1から3のいずれか1項に記載の方法。
  5.  前記培養することにおいて、前記閉鎖系が密閉されている、請求項1から4のいずれか1項に記載の方法。
  6.  前記閉鎖系が密閉された状態で、前記閉鎖系内に外気が進入しない、請求項1から5のいずれか1項に記載の方法。
  7.  前記閉鎖系が密閉された状態で、前記閉鎖系内に前記閉鎖系外の細胞、微生物、ウイルス、及び塵が進入しない、請求項1から6のいずれか1項に記載の方法。
  8.  前記閉鎖系が密閉された状態で、前記閉鎖系内の物質が前記閉鎖系外に流出しない、請求項1から7のいずれか1項に記載の方法。
  9.  前記閉鎖系内に二酸化炭素ガス、窒素ガス、及び酸素ガスの少なくともいずれかが供給されない、請求項1から8のいずれか1項に記載の方法。
  10.  前記閉鎖系内の培地のpHが所定の範囲内に保たれる、請求項1から9のいずれか1項に記載の方法。
  11.  前記閉鎖系の少なくとも一部が、ガス非透過性物質に埋め込まれることにより形成されている、請求項1から10のいずれか1項に記載の方法。
  12.  前記閉鎖系の少なくとも一部が、ガス非透過性物質からなる、請求項1から10のいずれか1項に記載の方法。
  13.  前記閉鎖系内で培地を補充又は交換しながら前記細胞を培養又は誘導する、請求項1から12のいずれか1項に記載の方法。
  14.  前記閉鎖系内で培地を循環しながら前記細胞を培養又は誘導する、請求項1から12のいずれか1項に記載の方法。
  15.  前記閉鎖系が前記細胞を培養する培養槽を備え、
     前記培養槽内に流体を供給するための供給口と、前記閉鎖系内の流体を排出するための排出口と、が、前記培養槽に設けられており、
     前記供給口及び前記排出口が密閉可能である、
     請求項1から14のいずれか1項に記載の方法。
  16.  前記供給口に流体を供給するための供給器が着脱可能であり、
     前記排出口に流体を排出するための排出器が着脱可能であり、
     前記供給器から前記培養槽内に流体を供給すると、前記培養槽内の流体が前記排出器内に移動する、
     請求項15に記載の方法。
  17.  前記供給器から前記培養槽内に培地を供給すると、前記培養槽内の空気が前記排出器内に移動する、請求項16に記載の方法。
  18.  前記供給器から前記培養槽内に培地を供給すると、前記培養槽内の培地が前記排出器内に移動する、請求項16に記載の方法。
  19.  前記培地が細胞を含有する、請求項17又は18に記載の方法。
  20.  前記供給器から前記培養槽内に流体を供給する際に、外気が前記培養槽内に進入しない、請求項16から19のいずれか1項に記載の方法。
  21.  前記培養することにおいて、前記閉鎖系内の二酸化炭素濃度が制御されない、請求項1から20のいずれか1項に記載の方法。
  22.  前記培養することにおいて、前記閉鎖系外の二酸化炭素濃度が制御されない、請求項1から21のいずれか1項に記載の方法。
  23.  前記培養することにおいて、前記閉鎖系内の半透膜を介して前記閉鎖系内の物質が移動する、請求項1から22のいずれか1項に記載の方法。
  24.  前記閉鎖系が、前記細胞を培養する培養槽と、前記培養槽に接続された流路と、を備え、
     培地が前記培養槽と前記流路を循環する、
     請求項1から23のいずれか1項に記載の方法。
  25.  前記流路において外部とガスの交換が生じない、請求項24に記載の方法。
  26.  前記培地が循環することにより、前記培養槽内の培地のpHが所定の範囲内に保たれる、請求項24又は25に記載の方法。
  27.  前記培養が浮遊培養である、請求項1から26のいずれか1項に記載の方法。
  28.  前記培養が接着培養である、請求項1から26のいずれか1項に記載の方法。
  29.  前記閉鎖系内のゲル培地中で前記細胞を培養する、請求項1から28のいずれか1項に記載の方法。
  30.  前記閉鎖系内の液体培地中で前記細胞を培養する、請求項1から28のいずれか1項に記載の方法。
  31.  前記閉鎖系内の培地が攪拌される、請求項1から30のいずれか1項に記載の方法。
  32.  前記閉鎖系内の培地が攪拌されない、請求項1から30のいずれか1項に記載の方法。
  33.  前記細胞を継代することをさらに含む、請求項1から32のいずれか1項に記載の方法。
  34.  播種と継代の間に培地の追加及び交換をしない、請求項33に記載の方法。
  35.  播種と継代の間に培地の追加又は交換をする、請求項33に記載の方法。
  36.  継代と継代の間に培地の追加及び交換をしない、請求項33に記載の方法。
  37.  継代と継代の間に培地の追加又は交換をする、請求項33に記載の方法。
  38.  前記細胞が幹細胞である、請求項1から37のいずれか1項に記載の方法。
  39.  前記幹細胞がiPS細胞、ES細胞、又は体性幹細胞である、請求項38に記載の方法。
  40.  前記培養することにおいて、前記幹細胞が未分化状態を維持する、請求項38又は39に記載の方法。
  41.  前記培養することにおいて、前記幹細胞が多能性を維持する、請求項38から40のいずれか1項に記載の方法。
  42.  前記細胞が体細胞である、請求項1から37のいずれか1項に記載の方法。
  43.  前記細胞が血液系細胞である、請求項1から37及び42のいずれか1項に記載の方法。
  44.  前記細胞が誘導因子を導入された細胞である、請求項1から43のいずれか1項に記載の方法。
  45.  前記閉鎖系内の培地に誘導因子を添加し、前記閉鎖系内で培養されている前記細胞に前記誘導因子を導入する、請求項1から43のいずれか1項に記載の方法。
  46.  前記細胞が幹細胞に誘導される、請求項44又は45に記載の方法。
  47.  前記幹細胞がiPS細胞である、請求項46に記載の方法。
  48.  前記細胞が血液系細胞である、請求項44から47のいずれか1項に記載の方法。
  49.  前記細胞が別種の細胞に誘導される、請求項44又は45に記載の方法。
  50.  前記細胞が血液系細胞であり、
     前記閉鎖系内の培地に誘導因子を添加し、前記閉鎖系内で培養されている前記血液系細胞に前記誘導因子を導入し、前記血液系細胞をiPS細胞に誘導する、請求項1から43のいずれか1項に記載の方法。
  51.  前記誘導因子がプラスミドに含まれる、請求項44から50のいずれか1項に記載の方法。
  52.  前記誘導因子がRNAである、請求項44から50のいずれか1項に記載の方法。
  53.  前記誘導因子がセンダイウイルスに含まれる、請求項44から50のいずれか1項に記載の方法。
  54.  培養成分が透過可能な培養成分透過部材と、
     前記培養成分透過部材の一方の面を覆う、細胞含有培地を保持し、細胞を培養するための培養槽と、
     前記培養成分透過部材の他方の面を覆う、培地を保持するための培地保持槽と、
     を備える、細胞培養器を用意することと、
     前記培養槽中で細胞を培養又は誘導することと、
     を含む、細胞の培養又は誘導方法。
  55.  前記誘導が、リプログラミング、初期化、分化転換、分化誘導及び細胞の運命変更の少なくともいずれかを含む、請求項54に記載の方法。
  56.  前記細胞培養器の内部が外部から閉鎖されている、請求項54又は55に記載の方法。
  57.  前記細胞培養器内の培地のpHが所定の範囲内に保たれる、請求項54から56のいずれか1項に記載の方法。
  58.  前記培養が浮遊培養である、請求項54から57のいずれか1項に記載の方法。
  59.  前記細胞が幹細胞である、請求項54から58のいずれか1項に記載の方法。
  60.  前記細胞が体細胞である、請求項54から58のいずれか1項に記載の方法。
  61.  前記細胞が血液系細胞である、請求項54から58及び60のいずれか1項に記載の方法。
  62.  前記細胞が誘導因子を導入された細胞である、請求項54から61のいずれか1項に記載の方法。
  63.  前記培養槽内の培地に誘導因子を添加し、前記培養槽内で培養されている前記細胞に前記誘導因子を導入する、請求項54から61のいずれか1項に記載の方法。
  64.  前記細胞が別種の細胞に誘導される、請求項62又は63に記載の方法。
  65.  前記細胞培養器が、前記培養成分透過部材の前記培養槽側の面に重ねられた、開口が設けられた培養側プレートをさらに備える、請求項54から64のいずれか1項に記載の方法。
  66.  前記細胞培養器が、前記培養成分透過部材の前記培地保持槽側の面に重ねられた、開口が設けられた培地側プレートをさらに備える、請求項54から65のいずれか1項に記載の方法。
  67.  前記培養側プレートが濃色である、請求項65に記載の方法。
  68.  前記培養側プレートの前記開口が設けられていない部分を背景にして前記細胞又は前記細胞からなる細胞塊を観察することをさらに含む、請求項65又は67に記載の方法。
  69.  前記培養側プレートの前記開口が設けられていない部分を背景にして前記細胞又は前記細胞からなる細胞塊を撮影することをさらに含む、請求項65又は67に記載の方法。
  70.  前記培地保持槽の前記培地を補充又は置換することをさらに含む、請求項54から69のいずれか1項に記載の方法。
PCT/JP2019/032438 2018-08-20 2019-08-20 細胞の培養又は誘導方法 WO2020040135A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19851814.4A EP3842526A4 (en) 2018-08-20 2019-08-20 METHOD FOR CULTIVATING OR INDUCING CELLS
CN201980054197.8A CN112601813A (zh) 2018-08-20 2019-08-20 细胞的培养或诱导方法
JP2020538405A JPWO2020040135A1 (ja) 2018-08-20 2019-08-20 細胞の培養又は誘導方法
US17/269,943 US20210198635A1 (en) 2018-08-20 2019-08-20 Cell culture or induction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862766598P 2018-08-20 2018-08-20
US62/766,598 2018-08-20

Publications (1)

Publication Number Publication Date
WO2020040135A1 true WO2020040135A1 (ja) 2020-02-27

Family

ID=69591192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032438 WO2020040135A1 (ja) 2018-08-20 2019-08-20 細胞の培養又は誘導方法

Country Status (5)

Country Link
US (1) US20210198635A1 (ja)
EP (1) EP3842526A4 (ja)
JP (1) JPWO2020040135A1 (ja)
CN (1) CN112601813A (ja)
WO (1) WO2020040135A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021038996A1 (ja) * 2019-08-29 2021-03-04 ファナック株式会社 細胞製造装置及びその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11898127B1 (en) 2022-09-26 2024-02-13 Upside Foods, Inc. Harvesting cell-based meat
WO2024072444A1 (en) * 2022-09-26 2024-04-04 Upside Foods, Inc. Harvesting cell-based meat

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108373A (ja) * 1984-10-30 1986-05-27 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー 細胞培養装置および方法
US5153131A (en) * 1990-12-11 1992-10-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High aspect reactor vessel and method of use
JP4183742B1 (ja) 2005-12-13 2008-11-19 国立大学法人京都大学 誘導多能性幹細胞の製造方法
JP2014114997A (ja) 2012-12-07 2014-06-26 Koken Ltd 局所空気清浄化装置
WO2017038887A1 (ja) * 2015-08-31 2017-03-09 アイ・ピース株式会社 多能性幹細胞製造システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026650A (en) * 1988-06-30 1991-06-25 The United States Of Amercia As Represented By The Administrator Of The National Aeronautics And Space Administration Horizontally rotated cell culture system with a coaxial tubular oxygenator
JP3865354B2 (ja) * 2000-03-02 2007-01-10 高木産業株式会社 細胞又は組織の培養方法
JP2003070458A (ja) * 2001-09-04 2003-03-11 Mitsubishi Heavy Ind Ltd 3次元クリノスタット、細胞培養装置、生物育成装置、及び材料形成装置
EP1577380B1 (en) * 2002-12-27 2013-06-05 Mitsubishi Heavy Industries, Ltd. Method of culturing multipotent stem cells and culture apparatus therefor
CN1942575B (zh) * 2004-04-13 2012-07-18 东洋制罐株式会社 双层培养容器以及培养方法
JP2007068447A (ja) * 2005-09-06 2007-03-22 Hiroshima Univ 幹細胞の培養方法及び幹細胞
GB0821636D0 (en) * 2008-11-26 2008-12-31 Ucl Business Plc Device
EP2843036A4 (en) * 2012-04-27 2015-04-22 Asahi Chemical Ind CELL CULTURE SYSTEM AND CELL CULTURE PROCESS
JP6249816B2 (ja) * 2013-03-28 2017-12-20 アークレイ株式会社 細胞培養装置、細胞培養システム、及び細胞培養方法
JP2016007170A (ja) * 2014-06-25 2016-01-18 カジックス株式会社 細胞培養容器
CN109477054A (zh) * 2016-07-22 2019-03-15 日产化学株式会社 液态培养基组合物的制造方法及用于该制造方法的制造装置
CN106635790B (zh) * 2016-09-01 2019-02-26 奥凯(苏州)生物技术有限公司 一种全封闭自动化细胞培养系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108373A (ja) * 1984-10-30 1986-05-27 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー 細胞培養装置および方法
US5153131A (en) * 1990-12-11 1992-10-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High aspect reactor vessel and method of use
JP4183742B1 (ja) 2005-12-13 2008-11-19 国立大学法人京都大学 誘導多能性幹細胞の製造方法
JP2014114997A (ja) 2012-12-07 2014-06-26 Koken Ltd 局所空気清浄化装置
WO2017038887A1 (ja) * 2015-08-31 2017-03-09 アイ・ピース株式会社 多能性幹細胞製造システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3842526A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021038996A1 (ja) * 2019-08-29 2021-03-04 ファナック株式会社 細胞製造装置及びその製造方法

Also Published As

Publication number Publication date
CN112601813A (zh) 2021-04-02
US20210198635A1 (en) 2021-07-01
EP3842526A1 (en) 2021-06-30
JPWO2020040135A1 (ja) 2021-08-10
EP3842526A4 (en) 2022-05-25

Similar Documents

Publication Publication Date Title
JP7351483B2 (ja) 多能性幹細胞製造システム、幹細胞の誘導方法、幹細胞の浮遊培養方法、幹細胞の浮遊培養器、人工多能性幹細胞の作製方法、及び動物細胞から特定の体細胞を作製する方法
WO2020040135A1 (ja) 細胞の培養又は誘導方法
US20230030031A1 (en) Cell treatment device, suspension culture vessel, and stem cell induction method
EP3981446A1 (en) Red blood cell removal device, mononuclear cell collector, cell culture device, cell culture system, cell culture method, and mononuclear cell collection method
JP2023011942A (ja) 神経系細胞の作製方法
CN110352238A (zh) 诱导性多能干细胞的制作方法
JP2014060991A (ja) 多孔質中空糸の内腔を用いる幹細胞の培養方法
JP2023086913A (ja) 細胞培養器
US20220403307A1 (en) Cell culture device
EP3992277A1 (en) Cell culturing vessel and cell culturing apparatus
JP2020036608A (ja) 多能性幹細胞製造システム、幹細胞の誘導方法、幹細胞の浮遊培養方法、幹細胞の浮遊培養器、人工多能性幹細胞の作製方法、及び動物細胞から特定の体細胞を作製する方法
JP7343881B2 (ja) 赤血球除去装置、単核球回収器、細胞培養装置、細胞培養システム、細胞培養方法、及び単核球の回収方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851814

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020538405

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019851814

Country of ref document: EP

Effective date: 20210322