WO2020039819A1 - 建設機械 - Google Patents

建設機械 Download PDF

Info

Publication number
WO2020039819A1
WO2020039819A1 PCT/JP2019/028746 JP2019028746W WO2020039819A1 WO 2020039819 A1 WO2020039819 A1 WO 2020039819A1 JP 2019028746 W JP2019028746 W JP 2019028746W WO 2020039819 A1 WO2020039819 A1 WO 2020039819A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
gravity
angular acceleration
turning
inertia
Prior art date
Application number
PCT/JP2019/028746
Other languages
English (en)
French (fr)
Inventor
直裕 原
愼吾 江口
圭史 山中
達也 藤森
山田 正樹
健佑 金田
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to EP19851785.6A priority Critical patent/EP3842594B1/en
Priority to US17/269,389 priority patent/US11976442B2/en
Publication of WO2020039819A1 publication Critical patent/WO2020039819A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • E02F9/121Turntables, i.e. structure rotatable about 360°
    • E02F9/123Drives or control devices specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • E02F3/325Backhoes of the miniature type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models

Definitions

  • the present disclosure relates to a construction machine that is turned by an electric turning motor.
  • Patent Documents 1 and 2 a hybrid type electric swing type construction machine in which an upper swing body is driven by an electric swing motor and a work machine and a traveling body are driven by a hydraulic actuator has been developed.
  • a working machine such as a boom and an arm is mounted on the upper rotating body.
  • the work implement has a large weight, and the upper revolving superstructure has a different moment of inertia depending on whether the boom or the arm is extended or contracted.
  • a torque is generated by gravity to go down the sloping ground around the rotation axis of the upper swing body. This torque is known to adversely affect the turning operation.
  • Patent Document 1 discloses that in order to reliably maintain the stationary state of the upper revolving structure on a slope, when the operation lever is in the neutral position and the target speed of the upper revolving structure falls below a predetermined threshold, the control command of the electric revolving motor is issued. A technique for switching control from speed control to position control is disclosed.
  • Patent Literature 2 discloses a turning drive control device for a construction machine driven to be turned by an electric motor, provided that the construction machine is not located on a flat ground, and when a turning operation in a direction opposite to the turning operation direction is detected, a reverse direction is detected.
  • a control device for reducing the turning motion of the vehicle is disclosed.
  • Patent Documents 1 and 2 do not consider a torque component generated by gravity and that this torque component changes due to expansion and contraction of a boom or an arm. The behavior differs between when turning and when turning in a direction down a slope, and the operability of turning is impaired.
  • the present disclosure provides a construction machine capable of performing a turning operation comfortably on a slope without causing an adverse effect of a torque component generated by gravity.
  • the construction machine of the present disclosure includes: An upper rotating body having a working machine, A lower traveling body that supports the upper revolving body to be pivotable via a pivot axis; An electric turning motor that turns the upper turning body, A rotation speed acquisition unit that acquires a value representing the rotation speed of the upper revolving unit, A posture sensor for detecting a current posture of the upper rotating body, A torque command value generation unit that outputs a torque command value to the electric swing motor according to an operation amount of an operation unit, A reference angular acceleration calculation unit that calculates a reference angular acceleration to be generated when the electric swing motor is driven with the torque command value, A reference gravity torque calculation unit that calculates a reference gravity torque, which is a torque component generated around the turning axis due to gravity in the reference posture, based on a deviation between the actual angular acceleration obtained from the rotation speed and the reference angular acceleration and the current posture; , Based on the reference gravity torque and the current posture, a gravity compensation torque calculation unit that calculates a gravity compensation torque for compens
  • the torque command value is set so as to cancel the torque component generated around the turning axis by gravity in the current posture. Since the feedforward control is performed for correction, even if the rotation speed is not actually delayed due to the torque component generated by gravity, it is possible to perform control to cancel the rotation in advance.
  • the reference gravity which is a torque component generated around the rotation axis by gravity in the reference attitude, is used.
  • the torque is calculated, even if the weight changes or the boom or the arm expands and contracts, the torque component due to gravity generated in the current posture can be appropriately canceled. Therefore, it is possible to comfortably perform a turning operation on a slope without causing an adverse effect of the torque component generated by gravity.
  • FIG. 2 is a plan view showing the backhoe of the first embodiment.
  • the figure which shows the electric circuit mounted in the backhoe of 1st Embodiment FIG. 2 is a diagram illustrating a turning control controller according to the first embodiment.
  • FIG. 4 is a diagram illustrating a turning control controller according to a second embodiment.
  • the backhoe 1 includes a lower traveling body 11, a work implement 12, and an upper revolving superstructure 13.
  • the lower traveling unit 11 is driven by receiving power from the engine 2 housed inside the upper revolving unit 13, and causes the backhoe 1 to travel.
  • the lower traveling body 11 includes a pair of left and right crawlers 11a, 11a and a pair of left and right traveling motors 11b, 11b.
  • the left and right traveling motors 11b, 11b which are hydraulic motors, drive the left and right crawlers 11a, 11a, respectively, so that the backhoe 1 can move forward and backward.
  • the lower traveling body 11 is provided with a blade 11c and a blade cylinder 11d for rotating the blade 11c in a vertical direction.
  • the work machine 12 is driven by receiving power from the engine 2 to perform excavation work such as earth and sand.
  • the work machine 12 includes a boom 12a, an arm 12b, and a bucket 12c, and enables excavation work by independently driving these.
  • the boom 12a, the arm 12b, and the bucket 12c each correspond to a working unit, and the backhoe 1 has a plurality of working units.
  • One end of the boom 12a is supported by a front portion of the upper swing body 13, and is rotated by a boom cylinder 12d which is movable in a stretchable manner.
  • the arm 12b has one end supported by the other end of the boom 12a, and is rotated by an arm cylinder 12e that is movable in a stretchable manner.
  • One end of the bucket 12c is supported by the other end of the arm 12b, and the bucket 12c is rotated by a bucket cylinder 12f that is movable in a retractable manner.
  • the upper swing body 13 is configured to be able to swing with respect to the lower traveling body 11 via a swing bearing (not shown) that is a swing axis.
  • a cabin 131, a bonnet 132, a counter weight 133, an electric turning motor 134, an engine 2, an attitude sensor 130, and the like are arranged on the upper turning body 13.
  • the upper swing body 13 swings through a swing bearing (not shown) by the driving force of the electric swing motor 134.
  • the motor generator 3 driven by the engine 2 and the hydraulic pump 4 are disposed on the upper swing body 13.
  • the hydraulic pump 4 supplies hydraulic oil to each hydraulic motor and each cylinder.
  • the posture sensor 130 detects the current posture of the upper swing body 13.
  • the current attitude is represented by a roll angle whose rotation axis is the front-rear direction of the upper swing body 13 and a pitch angle whose rotation axis is the left-right direction of the upper swing body 13.
  • the yaw angle about the vertical axis of the upper swing body 13 as a rotation axis is not used because it can be determined by the rotation of the electric swing motor 134.
  • the attitude sensor 130 is a gyroscope, but is not limited to this, and can be variously changed.
  • the cabin 131 is erected on the left side of the upper swing body 13.
  • a driver's seat 131a is arranged in the cabin 131.
  • a pair of operation levers 131c are arranged on the left and right sides of the driver's seat 131a, and a pair of traveling levers 131b, 131b are arranged in front of the driver's seat 131a.
  • the operator controls the engine 2, each hydraulic motor, each hydraulic cylinder, and the like by sitting on the driver's seat 131a and operating the work operation lever 131c, the travel levers 131b, 131b, etc., to perform travel, turning, work, and the like. It can be carried out.
  • a bonnet 132 and a counter weight 133 are vertically arranged.
  • the counter weight 133 is provided upright at the rear end of the upper revolving unit 13 and covers the engine 2.
  • the bonnet 132 extends upward from the upper end of the counterweight 133 to reach the lower end of the rear wall of the cabin 131, and covers the engine 2 together with the counterweight 133.
  • the rear end of the upper swing body 13 is formed in an arc shape in a plan view, and the bonnet 132 and the counterweight 133 are formed to be curved along the rear end of the upper swing body 13.
  • the backhoe 1 of the present embodiment is of a so-called small backward turning type.
  • the backhoe 1 includes a turning control controller 5, an inverter 31, a battery 32, and an electric turning motor 134.
  • the turning control controller 5 drives the electric turning motor 134 based on the turning operation amount of the work operation lever 131c (operation unit), the current posture detected by the posture sensor 130, and the number of motor revolutions per unit time [rpm].
  • the electric turning motor 134 is controlled by the turning control controller 5 via the inverter 31.
  • the electric swing motor 134 is connected to the battery 32 via the inverter 31.
  • Battery 32 supplies drive energy to electric swing motor 134.
  • the battery 32 is arranged on the right side of the cabin 131 as shown in FIG.
  • the inverter 31 controls the electric swing motor 134.
  • the inverter 31 discharges the electric power of the battery 32 and drives the electric turning motor 134 based on the torque command value from the turning control controller 5.
  • the inverter 31 inputs the number of revolutions of the electric swing motor 134 per unit time to the swing control controller 5 as a rotation speed acquisition unit.
  • a separate sensor for detecting the rotation speed of the upper swing body 13 may be provided.
  • the turning control controller 5 has a torque command value generation unit 50.
  • the torque command value generation unit 50 outputs a torque command value for the electric turning motor 134 according to the operation amount of the work operation lever 131c as an operation unit.
  • the torque command value generation unit 50 is a conventional turning control on a flat ground, and although not described in detail, a target rotation speed determined according to an operation amount and an actual rotation speed represented by a motor rotation speed per unit time. The torque command value is output so that the deviation from the speed is eliminated.
  • the turning control controller 5 includes a reference gravity torque calculation unit 51, a gravity compensation torque calculation unit 52, and a correction unit 53.
  • the reference gravity torque calculation unit 51 calculates a reference gravity torque TGBASE_SWING, which is a torque component generated around the turning axis due to gravity in the reference posture.
  • a reference gravity torque TGBASE_SWING which is a torque component generated around the turning axis due to gravity in the reference posture.
  • the inclination angle is 90 degrees
  • the posture where the bucket position is 90 degrees from the front is used as the reference posture.
  • This reference posture is a posture in which a moment of force generated by gravity acts on the rotation axis 100%.
  • the reference gravity torque calculation unit 51 calculates a reference gravity torque based on a deviation between a reference angular acceleration to be generated when the electric turning motor is driven by the torque command value and an actual angular acceleration and a current posture.
  • the gravity compensation torque calculation unit 52 calculates a gravity compensation torque for compensating a torque component generated around the turning axis due to gravity in the current posture based on the reference gravity torque calculated by the reference gravity torque calculation unit 51 and the current posture. I do. This utilizes the fact that it can be calculated from the reference gravity torque and the current attitude (roll angle, pitch angle) using the inner product. The detailed formula will be described later.
  • the correction unit 53 uses the gravity compensation torque calculated by the gravity compensation torque calculation unit 52 to correct the torque command value with the gravity compensation torque so as to cancel the torque component generated around the turning axis due to gravity in the current posture.
  • the reason for the addition in the figure is that the gravity compensation torque is calculated as minus for canceling.
  • the pre-correction torque command calculation unit 54 calculates a pre-correction torque command value based on the torque command value corrected by the correction unit 53 and the gravity compensation torque used by the correction unit 53.
  • the torque command value used for estimating the reference angular acceleration is calculated by subtracting the gravity compensation torque component from the current torque command value (after correction).
  • the unit of tTCal is Newton meters.
  • "i-1" attached to the corrected torque command value and gravity compensation torque means the previous value. i indicates the present time, and i-1 indicates the previous value. Unless otherwise indicated, it is the current value.
  • the phase compensating unit 55 performs a process of delaying the phase of the torque command value before being input to the reference angular acceleration calculating unit 57 that calculates a reference angular acceleration to be generated when the electric swing motor 134 is driven with the torque command value. Do. It has been found that even if a current corresponding to the torque command value is input to the electric swing motor 134, a desired angular acceleration does not appear immediately, and the phase (time) is slightly delayed. That is, due to a delay due to communication or a delay due to current control of the inverter, the turning motion (angular acceleration) estimated from the torque command value currently instructed and the turning motion (actual angular acceleration) currently detected are interposed. Time axis shift occurs.
  • the phase compensating unit 55 compensates for the shift of the time axis (phase). Specifically, in the present embodiment, a low-pass filter is applied to the torque command value.
  • a low-pass filter is used, but the present invention is not limited to this as long as the torque command value can be delayed. Note that the phase compensator 55 can be omitted although the accuracy is deteriorated.
  • the viscous friction removing unit 56 removes the viscous friction torque from the torque command value because the viscous friction torque required to maintain the motor rotation speed ⁇ SWING [rpm] does not contribute to the increase or decrease of the angular acceleration.
  • K CVIS is a coefficient of viscous friction. It should be noted that the viscous friction removing unit 56 can be omitted although the accuracy is deteriorated.
  • the table is correlation data 57a in which a value (reciprocal of inertia) representing the inertia of the upper swing body 13 including the work implement 12 is associated in advance with the reference gravity torque.
  • the reference gravity torque and the inertia do not have a 1: 1 relationship, and the inertia cannot be directly calculated from the reference gravity torque.
  • the variables that are not determined in the correlation data 57a are approximated as having little change in the backhoe 1.
  • a value representing the inertia (the reciprocal of the inertia) can be derived, and the reference angular acceleration can be calculated.
  • a predicted value or an actually measured value is used as the correlation data 57a.
  • the angular acceleration deviation calculation unit 58 calculates a deviation DelAcc between the actual angular acceleration ActAcc obtained from a value representing the rotation speed (motor rotation speed) and the reference angular acceleration ReferAcc.
  • the actual angular acceleration ActAcc is calculated from the forward difference of the motor speed [rpm] as shown in the following equation.
  • Actual angular acceleration ActAcc ( ⁇ SWING - ⁇ SWING, i-1 ) / ⁇ T [s]
  • Angular acceleration deviation DelAcc -(ActAcc-ReferAcc)
  • the reference gravity torque calculation unit 51 newly calculates the reference gravity torque TGBASE_SWING based on the previously calculated reference gravity torque TGBASE_SWING i-1 , the angular acceleration deviation DelAcc, and the current posture (roll angle, pitch angle). Is a learning unit that calculates As described above, since the reference gravity torque calculation unit 51 performs the calculation using the reference gravity torque TGBASE_SWING i ⁇ 1 calculated last time, the previous result can be learned and the compensation accuracy can be improved.
  • a new reference value is obtained by executing a learning process of cumulatively multiplying the value obtained by multiplying the angular acceleration deviation DelAcc by a gain to the previous reference gravity torque TGBASE_SWING i-1.
  • the gravity torque TGBASE_SWING is calculated.
  • Reference gravity torque TGBASE_SWING Reference gravity torque TGBASE_SWING i-1 + gain x angular acceleration deviation DelAcc
  • the reference gravity torque calculation unit 51 is a learning unit that performs a learning process of cumulatively integrating the previously calculated reference gravity torque TGBASE_SWING i ⁇ 1.
  • the learning process may not be performed.
  • the reference gravity torque TGBASE_SWING may be directly calculated, or a table or function form for outputting the reference gravity torque TGBASE_SWING with the angular acceleration deviation DelAcc as an input value. It may be.
  • the gravity compensation torque calculation unit 52 compensates for a torque component generated around the turning axis due to gravity in the current posture.
  • the learning stop determination unit 59 determines whether or not the learning is to be stopped.
  • the state in which the learning should be stopped is a state in which the upper swing body 13 is accelerating in a direction going down the inclined surface, or a state in which the upper swing body 13 is decelerating in the direction going up the inclined surface.
  • the learning stop determination unit 59 outputs the determination result as a learning feasibility flag.
  • the learning availability flag is input to the reference gravity torque calculator 51.
  • the reference gravity torque calculation unit 51 uses the previously calculated reference gravity torque as a new reference gravity torque and uses the angular acceleration deviation. It is configured not to execute the learning process.
  • Reference gravity torque TGBASE_SWING Reference gravity torque TGBASE_SWING i-1 + gain x angular acceleration deviation DelAcc
  • the cause of the deviation between the reference angular acceleration to be generated based on the torque command and the actual angular acceleration is a change in the moment of inertia caused by the expansion and contraction of the boom or the arm, and a change in the gravitational torque caused by a change in the load. Since it is impossible to distinguish which of the inertia moment and the gravitational torque is changing, when the inertia moment and the gravitational torque are both increasing or when both the inertia moment and the gravitational torque are decreasing Then, learning becomes possible.
  • the first method is a method for determining whether or not the direction in which gravity is applied matches the turning force direction of the motor. If they match, learning is possible, and if they do not match, learning is stopped. Specifically, it is determined whether or not the sign of the gravity compensation torque TG_SWING generated around the pivot axis of gravity matches the sign of the torque (SWING_TRQ_FIN-TG_SWING) that contributes to acceleration of the pivot axis. The product of (SWING_TRQ_FIN-TG_SWING) and TG_SWING is calculated. If the result is positive, the signs match and learning is possible. If the result is negative, the signs do not match and learning is stopped.
  • the second method it is possible to determine whether the upper revolving unit 13 is operating in the direction of going down the slope or in the direction of ascending based on the current posture and the actual turning speed. Further, depending on whether the absolute value of the speed is increasing or decreasing, the upper revolving structure 13 is accelerating in the direction going down the inclined surface, or the upper revolving structure 13 is decelerating in the direction going up the inclined surface. It is determined whether it is in the state.
  • FIG. 8 shows the result of the backhoe turning control of the first embodiment.
  • FIG. 9 shows the result of the conventional turning control without correction by the gravity compensation torque.
  • the torque, the target rotation speed, and the actual rotation speed when the backhoe is arranged on a 15-degree slope and the upper swing body 13 is turned are shown.
  • the target rotation speed is 0 at the time of turning for 14 to 18 seconds and at the time of turning for 19 to 24 seconds, but the actual rotation speed is negatively reduced.
  • a load weight calculation unit 60 that calculates the load weight of the work machine 12 is provided.
  • the loaded weight calculation unit 60 receives data from a sensor 61 such as a hydraulic pressure sensor for measuring the hydraulic pressure for driving the work implement 12 or a load cell for measuring the weight, and calculates the loaded weight.
  • a correlation data 57a is provided in which a value (reciprocal of the inertia) indicating the inertia of the upper swing body 13 including the work implement 12 is associated in advance with the load weight and the reference gravity torque.
  • the value indicating the inertia is the reciprocal of the inertia, but is not limited thereto, and may be the inertia.
  • the correlation data 57a employs a two-dimensional map, but may be variously changed as long as the data indicating the inertia is associated with the load weight and the reference gravity torque.
  • the reference gravity torque and the inertia do not have a 1: 1 relationship, and the inertia cannot be directly calculated from the reference gravity torque.
  • the correlation data is previously associated as an approximate value, a value representing the inertia (the reciprocal of the inertia) can be derived, and the reference angular acceleration can be calculated.
  • the unknown term is only the turning radius, and the accuracy of the inertia can be improved as compared with the first embodiment.
  • a turning radius calculation unit 62 that calculates the turning radius of the work machine 12 is provided.
  • the turning radius calculation unit 62 inputs data from the position detection sensor 63 that detects the stroke positions of the boom cylinder 12d and the arm cylinder 12e, specifies the angles of the boom 12a and the arm 12b from the stroke positions, and determines the turning radius from each angle. Is calculated based on forward dynamics.
  • a correlation data 57a is provided in which a value (reciprocal of inertia) indicating the inertia of the upper revolving unit 13 including the work implement 12 is associated in advance with the turning radius and the reference gravity torque.
  • the value indicating the inertia is the reciprocal of the inertia, but is not limited thereto, and may be the inertia.
  • the correlation data 57a employs a two-dimensional map. However, the correlation data 57a can be variously changed as long as the data indicating the inertia is associated with the turning radius and the reference gravity torque.
  • the reference gravity torque and the inertia do not have a 1: 1 relationship, and the inertia cannot be directly calculated from the reference gravity torque.
  • the correlation data is previously associated as an approximate value, a value representing the inertia (the reciprocal of the inertia) can be derived, and the reference angular acceleration can be calculated.
  • the unknown term is only the loaded weight, and the accuracy of the inertia can be improved as compared with the first embodiment.
  • the construction machine includes: An upper rotating body 13 having a working machine 12, A lower traveling body 11 that rotatably supports the upper revolving body 13 via a pivot axis; An electric turning motor 134 for turning the upper turning body 13, A rotation speed acquisition unit (inverter 31) for acquiring a value (the number of motor rotations per unit time) representing the rotation speed of the upper swing body 13; A posture sensor 130 that detects the current posture of the upper-part turning body 13, A torque command value generation unit 50 that outputs a torque command value to the electric swing motor 134 according to the operation amount of the operation unit; A reference angular acceleration calculation unit 57 for calculating a reference angular acceleration ReferAcc to be generated when the electric swing motor 134 is driven by the torque command value, Based on the deviation between the actual angular acceleration ActAcc obtained from the rotation speed and the reference angular acceleration ReferAcc and the current posture, a reference gravity torque calculation unit 51 that calculates a reference gravity torque TGBASE_SWING which is a
  • a gravity compensation torque calculation unit 52 that calculates a gravity compensation torque TG_SWING for compensating a torque component generated around the turning axis due to gravity in the current posture based on the reference gravity torque TGBASE_SWING and the current posture;
  • a correction unit 53 that corrects the torque command value with the gravity compensation torque TG_SWING so as to cancel a torque component generated around the turning axis due to gravity in the current posture; Is provided.
  • the torque command value is set so as to cancel the torque component generated around the turning axis by gravity in the current posture. Therefore, even if the rotation speed is not actually delayed due to the torque component generated by gravity, it is possible to perform the control to cancel in advance. Nevertheless, based on the deviation between the reference angular acceleration ReferAcc and the actual angular acceleration ActAcc to be generated when the electric turning motor 134 is driven with the torque command value and the current posture, the torque component generated around the turning axis due to gravity in the reference posture.
  • the reference gravity torque calculation unit 51 executes a learning process for cumulatively integrating a value based on the deviation DelAcc and the current posture with respect to the reference gravity torque TGBASE_SWING i-1 calculated last time. Then, the reference gravity torque TGBASE_SWING is newly calculated.
  • the cause of the deviation between the reference angular acceleration ReferAcc to be generated based on the torque command and the actual angular acceleration ActAcc is caused by a change in the moment of inertia caused by the expansion and contraction of the boom or the arm, and a change in the gravitational torque caused by a change in the load capacity. is there. Since it is impossible to distinguish which of the inertia moment and the gravitational torque is changing, when both the inertia moment and the gravitational torque are increasing or when both the inertia moment and the gravitational torque are decreasing Then, learning becomes possible.
  • a learning stop determination unit 59 that determines whether learning is to be stopped is provided.
  • the state in which the learning should be stopped is a state in which the upper swing body 13 is accelerating in a direction going down the inclined surface, or a state in which the upper swing body 13 is decelerating in the direction going up the inclined surface.
  • the reference gravity torque calculation unit 51 sets the previously calculated reference gravity torque TGBASE_SWING i-1 as a new reference gravity torque TGBASE_SWING, and calculates the deviation. It is configured not to execute the learning process using DelAcc.
  • the previously calculated reference gravity torque TGBASE_SWING i-1 is used as a new reference. Since the learning process using the deviation DelAcc is not executed with the gravity torque TGBASE_SWING, erroneous learning can be prevented, and the compensation accuracy can be improved.
  • the phase compensation unit 55 that performs a process of delaying the phase of the torque command value is provided.
  • a correlation data 57a in which a value (reciprocal of the inertia) representing the inertia of the upper revolving unit 13 including the work implement 12 and the reference gravity torque TGBASE_SWING are associated in advance is provided.
  • the reference angular acceleration calculation unit 57 calculates a reference angular acceleration ReferAcc based on a value (reciprocal of inertia) representing inertia corresponding to the reference gravity torque TGBASE_SWING in the correlation data 57a and a torque command value.
  • the reference gravity torque and the inertia do not have a 1: 1 relationship, and the inertia cannot be directly calculated from the reference gravity torque.
  • the variables that are not determined in the correlation data 57a are approximated as having little change in the backhoe 1.
  • a value representing the inertia (the reciprocal of the inertia) can be derived, and the reference angular acceleration ReferAcc can be calculated.
  • a loading weight calculation unit 60 that calculates the loading weight of the work machine 12,
  • a correlation data 57a in which a value (reciprocal of the inertia) indicating the inertia of the upper revolving unit 13 including the work implement 12 is associated with the loading weight and the reference gravity torque TGBASE_SWING in advance is provided.
  • the reference angular acceleration calculator 57 calculates the reference angular acceleration ReferAcc based on the reference gravity torque TGBASE_SWING and the value (reciprocal of the inertia) representing the inertia corresponding to the loaded weight in the correlation data 57a and the torque command value.
  • the reference gravity torque and the inertia do not have a 1: 1 relationship, and the inertia cannot be directly calculated from the reference gravity torque.
  • the variables that are not determined in the correlation data 57a are approximated as having little change in the backhoe 1.
  • a value representing the inertia (the reciprocal of the inertia) can be derived, and the reference angular acceleration ReferAcc can be calculated.
  • the unknown term is only the turning radius, and the accuracy of the inertia can be improved as compared with the first embodiment.
  • a turning radius calculation unit 62 that calculates a turning radius of the work machine 12,
  • a correlation data 57a in which a value (reciprocal of the inertia) indicating the inertia of the upper revolving unit 13 including the work implement 12 is associated with the turning radius and the reference gravity torque TGBASE_SWING in advance is provided.
  • the reference angular acceleration calculation unit 57 calculates the reference angular acceleration ReferAcc based on the reference gravity torque TGBASE_SWING and the value representing the inertia (reciprocal of the inertia) corresponding to the turning radius in the correlation data 57a and the torque command value.
  • the reference gravity torque and the inertia do not have a 1: 1 relationship, and the inertia cannot be directly calculated from the reference gravity torque.
  • the variables that are not determined in the correlation data 57a are approximated as having little change in the backhoe 1.
  • a value representing the inertia (the reciprocal of the inertia) can be derived, and the reference angular acceleration ReferAcc can be calculated.
  • the unknown term is only the loaded weight, and the accuracy of the inertia can be improved as compared with the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Mechanical Engineering (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computational Linguistics (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

建設機械は、上部旋回体13の現在姿勢を検出する姿勢センサ130と、操作部の操作量に応じて生成されるトルク指令値で電動旋回モータ134が駆動した際に発生すべき基準角加速度を算出する基準角加速度算出部57と、回転速度から求まる実角加速度と基準角加速度との偏差及び現在姿勢に基づき、基準姿勢において重力により旋回軸回りに発生するトルク成分である基準重力トルクを算出する基準重力トルク算出部51と、基準重力トルクと現在姿勢とに基づき、現在姿勢において重力により旋回軸回りに発生するトルク成分を補償するための重力補償トルクを算出する重力補償トルク算出部52と、現在姿勢において重力による旋回軸回りに発生するトルク成分を打ち消すように、トルク指令値を重力補償トルクで補正する補正部53と、を有する。

Description

建設機械
 本開示は、電動旋回モータにより旋回する建設機械に関する。
 例えば、特許文献1及び2に示すように、上部旋回体を電動旋回モータで駆動し、作業機や走行体を油圧アクチュエータで駆動するハイブリットタイプの電動旋回型建設機械が開発されている。上部旋回体には、キャビンやエンジンの他に、ブーム及びアーム等の作業機が搭載されている。作業機は自重が大きく、ブーム又はアームが伸長されている状態と収縮されている状態とでは、上部旋回体の慣性モーメントが異なる。傾斜地においては、重力によって上部旋回体の回転軸回りに傾斜地を下る方向へ向かうトルクが発生する。このトルクは、旋回動作に悪影響を与えることが知られている。
 特許文献1は、傾斜地において上部旋回体の静止状態を確実に維持するために、操作レバーが中立位置にあり上部旋回体の目標速度が所定閾値を下回った場合に、電動旋回モータの制御指令を速度制御から位置制御に制御を切り替える技術が開示されている。
 特許文献2は、電動機で旋回駆動される建設機械の旋回駆動制御装置として、建設機械が平坦地に位置しないことを条件に、旋回操作方向とは逆方向の旋回動作が検出されると逆方向の旋回動作を減じる制御装置が開示されている。
特開2012-122327公報 特開2010-138586号公報
 しかしながら、特許文献1,2は、重力により発生するトルク成分及びこのトルク成分がブーム又はアームの伸縮で変化することが考慮されていないので、操作量が同じであっても、傾斜地を登る方向に旋回するときと傾斜地を下る方向に旋回するときでは挙動が異なり、旋回の操作性が損なわれてしまう。
 特許文献2では、旋回操作方向とは逆方向の旋回動作が検知されるまで、逆方向の旋回動作を減じる制御が働かないので、上部旋回体の意図しない落下が必ず発生してしまう。
 特許文献1,2のいずれも、回転速度を検出して目標回転速度との偏差が小さくなるようにフィードバック制御しているので、傾斜地にて重力により発生するトルク成分の悪影響が実際に回転速度に悪影響を与えてから速度制御が動き出すので、旋回の操作性が損なわれてしまう。
 本開示は、上記課題に鑑み、重力により発生するトルク成分の悪影響を発現させず、傾斜地において快適に旋回操作を行うことが可能な建設機械を提供する。
 本開示の建設機械は、
 作業機を有する上部旋回体と、
 旋回軸を介して前記上部旋回体を旋回可能に支持する下部走行体と、
 前記上部旋回体を旋回させる電動旋回モータと、
 前記上部旋回体の回転速度を表す値を取得する回転速度取得部と、
 前記上部旋回体の現在姿勢を検出する姿勢センサと、
 操作部の操作量に応じて前記電動旋回モータに対するトルク指令値を出力するトルク指令値生成部と、
 前記トルク指令値で前記電動旋回モータが駆動した際に発生すべき基準角加速度を算出する基準角加速度算出部と、
 前記回転速度から求まる実角加速度と前記基準角加速度との偏差及び前記現在姿勢に基づき、基準姿勢において重力により旋回軸回りに発生するトルク成分である基準重力トルクを算出する基準重力トルク算出部と、
 前記基準重力トルクと前記現在姿勢とに基づき、前記現在姿勢において重力により旋回軸回りに発生するトルク成分を補償するための重力補償トルクを算出する重力補償トルク算出部と、
 前記現在姿勢において重力による旋回軸回りに発生するトルク成分を打ち消すように、前記トルク指令値を前記重力補償トルクで補正する補正部と、
 を備える。
 このように、基準姿勢で重力により旋回軸回りに発生するトルク成分である基準重力トルクと現在姿勢とに基づき、現在姿勢において重力により旋回軸回りに発生するトルク成分を打ち消すようにトルク指令値を補正するフィードフォワード制御であるので、重力によって発生するトルク成分に起因して回転速度の遅れが実際に発生しなくても、事前に打ち消す制御が可能となる。
 それでいて、トルク指令値で電動旋回モータが駆動した際に発生すべき基準角加速度と実角加速度との偏差及び現在姿勢に基づき、基準姿勢において重力により旋回軸回りに発生するトルク成分である基準重力トルクを算出しているので、重量が変化したり、ブーム又はアームが伸縮したりしても、現在姿勢で発生する重力によるトルク成分を適切に打ち消すことが可能となる。
 したがって、重力により発生するトルク成分の悪影響を発現させず、傾斜地において快適に旋回操作を行うことが可能となる。
第1実施形態のバックホーを示す側面図 第1実施形態のバックホーを示す平面図 第1実施形態のバックホーに搭載される電気回路を示す図 第1実施形態の旋回制御コントローラを示す図 基準姿勢の一例を示す図 第2実施形態の旋回制御コントローラを示す図 第3実施形態の旋回制御コントローラを示す図 第1実施形態のバックホーの旋回制御の結果を示す図 重力補償トルクによる補正のない従来の旋回制御の結果を示す図
 <第1実施形態>
 以下に、本開示の第1実施形態について図面を参照しながら説明する。
 図1及び図2に示すように、ハイブリッド建設機械の一例としてのバックホー1の概略構造について説明する。バックホー1は、下部走行体11と、作業機12と、上部旋回体13とを備える。
 下部走行体11は、上部旋回体13の内部に収容されるエンジン2からの動力を受けて駆動し、バックホー1を走行させる。下部走行体11は、左右一対のクローラ11a,11a及び左右一対の走行モータ11b,11bを備える。油圧モータである左右の走行モータ11b,11bが左右のクローラ11a,11aをそれぞれ駆動することでバックホー1の前後進を可能としている。また、下部走行体11には、ブレード11c、及びブレード11cを上下方向に回動させるためのブレードシリンダ11dが設けられている。
 作業機12は、エンジン2からの動力を受けて駆動し、土砂等の掘削作業を行うものである。作業機12は、ブーム12a、アーム12b、及びバケット12cを備え、これらを独立して駆動することによって掘削作業を可能としている。ブーム12a、アーム12b、及びバケット12cは、それぞれ作業部に相当し、バックホー1は、複数の作業部を有する。
 ブーム12aは、一端部が上部旋回体13の前部に支持されて、伸縮自在に可動するブームシリンダ12dによって回動される。また、アーム12bは、一端部がブーム12aの他端部に支持されて、伸縮自在に可動するアームシリンダ12eによって回動される。そして、バケット12cは、一端部がアーム12bの他端部に支持されて、伸縮自在に可動するバケットシリンダ12fによって回動される。
 上部旋回体13は、下部走行体11に対して旋回軸である旋回ベアリング(図示しない)を介して旋回可能に構成されている。上部旋回体13には、キャビン131、ボンネット132、カウンタウェイト133、電動旋回モータ134、エンジン2、姿勢センサ130等が配置されている。電動旋回モータ134の駆動力で上部旋回体13が旋回ベアリング(図示しない)を介して旋回する。また、上部旋回体13には、エンジン2により駆動される電動発電機3及び油圧ポンプ4が配設される。油圧ポンプ4が、各油圧モータや各シリンダに作動油を供給する。
 姿勢センサ130は、上部旋回体13の現在姿勢を検出する。現在姿勢は、上部旋回体13の前後方向を回転軸とするロール角度、及び、上部旋回体13の左右方向を回転軸とするピッチ角度で表現される。上部旋回体13の上下方向を回転軸とするヨー角度は、電動旋回モータ134の回転でわかるため、使用していない。本実施形態では、姿勢センサ130はジャイロスコープであるが、これに限定されず、種々変更可能である。
 キャビン131は、上部旋回体13の左側部に立設されている。キャビン131には、運転席131aが配置されている。運転席131aの左右に一対の作業操作レバー131c(図3参照)、前方に一対の走行レバー131b,131bが配置されている。オペレータは、運転席131aに着座して作業操作レバー131c、走行レバー131b,131b等を操作することによって、エンジン2、各油圧モータ、各油圧シリンダ等の制御を行い、走行、旋回、作業等を行うことができる。
 上部旋回体13の後端部には、ボンネット132とカウンタウェイト133が上下に配設されている。カウンタウェイト133は、上部旋回体13の後端部に立設され、エンジン2を覆う。ボンネット132は、カウンタウェイト133の上端部から上方へ延びてキャビン131の後壁下端部に達し、カウンタウェイト133とともにエンジン2を覆っている。上部旋回体13の後端部は、平面視で円弧状に形成されており、ボンネット132とカウンタウェイト133は、上部旋回体13の後端部に沿わせて湾曲して形成されている。本実施形態のバックホー1は、いわゆる後方小旋回型となっている。
 次に、バックホー1に搭載される電気回路の構成を説明する。図3に示すように、バックホー1は、旋回制御コントローラ5、インバータ31、バッテリ32、電動旋回モータ134と、を有する。旋回制御コントローラ5は、作業操作レバー131c(操作部)の旋回操作量と、姿勢センサ130が検出する現在姿勢と、単位時間あたりのモータ回転数[rpm]とに基づき、電動旋回モータ134の駆動を制御する。電動旋回モータ134は、インバータ31を介して旋回制御コントローラ5により制御される。電動旋回モータ134は、インバータ31を介してバッテリ32に接続されている。バッテリ32は、電動旋回モータ134へ駆動エネルギーを供給する。バッテリ32は、図2に示すように、キャビン131の右側に配置されている。インバータ31は、電動旋回モータ134を制御する。インバータ31は、旋回制御コントローラ5からのトルク指令値に基づいて、バッテリ32の電力を放電して電動旋回モータ134を駆動させる。インバータ31は、回転速度取得部として電動旋回モータ134の単位時間あたりの回転数を旋回制御コントローラ5へ入力する。勿論、上部旋回体13の回転速度を検出する別途のセンサを設けてもよい。
 次に、旋回制御コントローラ5の構成を説明する。図4に示すように、旋回制御コントローラ5は、トルク指令値生成部50を有する。
 トルク指令値生成部50は、操作部である作業操作レバー131cの操作量に応じて電動旋回モータ134に対するトルク指令値を出力する。トルク指令値生成部50は、従来の平坦地での旋回制御であり、詳細には説明しないが、操作量に応じて定まる目標回転速度と、単位時間あたりのモータ回転数に表される実回転速度との偏差が無くなるように、トルク指令値を出力する。
 重力により発生するトルク成分を打ち消すために、図4に示すように、旋回制御コントローラ5は、基準重力トルク算出部51と、重力補償トルク算出部52と、補正部53と、を有する。
 基準重力トルク算出部51は、基準姿勢において重力により旋回軸回りに発生するトルク成分である基準重力トルクTGBASE_SWINGを算出する。基準姿勢は種々設定可能であるが、本実施形態では、図5に示すように、斜面の角度が90度であり、バケット位置を前方から90度とした姿勢を基準姿勢としている。この基準姿勢は、重力により発生する力のモーメントが100%回転軸に作用する姿勢である。基準重力トルク算出部51は、トルク指令値で電動旋回モータが駆動した際に発生すべき基準角加速度と実角加速度との偏差及び現在姿勢に基づき、基準重力トルクを算出する。これは、現在、電動旋回モータ134に出力しているトルク指令値に基づき発生するべき基準角加速度を予測で算出し、予測した基準角加速度に対して実際の角加速度が遅ければ、重力の影響であり、逆に早くても重力の影響と考えられる。角加速度の偏差がなくなるようにすれば、真の基準重力トルクを算出できたことになる。
 重力補償トルク算出部52は、基準重力トルク算出部51が算出した基準重力トルクと現在姿勢とに基づき、現在姿勢において重力により旋回軸回りに発生するトルク成分を補償するための重力補償トルクを算出する。これは、基準重力トルクと、現在姿勢(ロール角、ピッチ角)とから、内積を利用して算出可能であることを利用している。詳細な式は後述する。
 補正部53は、重力補償トルク算出部52が算出した重力補償トルクを用い、現在姿勢において重力による旋回軸回りに発生するトルク成分を打ち消すように、トルク指令値を重力補償トルクで補正する。図中において加算となっているのは、重力補償トルクが、打ち消すためのマイナスとして算出されているからである。
 上記が概要であるが、続いて詳細に説明する。
 補正前トルク指令算出部54は、補正部53により補正された後のトルク指令値と、補正部53に用いられた重力補償トルクとに基づき、補正前のトルク指令値を算出する。基準角加速度の推定に用いるトルク指令値は、現在のトルク指令値(補正後)から重力補償トルク成分を差し引いたものとして算出するためである。式は次のようにあらわされる。
 補正前のトルク指令値tTCal[Nm]=補正後のトルク指令値i-1-重力補償トルクi-1
 tTCalの単位は、ニュートン・メートルである。ここで、補正後のトルク指令値と重力補償トルクに「i-1」がついているのは、前回の値という意味である。iは現時点を示し、i-1は前回値を示す。特に表記がない場合は、現在値である。
 位相補償部55は、トルク指令値で電動旋回モータ134が駆動した際に発生すべき基準角加速度を算出する基準角加速度算出部57に入力される前に、トルク指令値の位相を遅らせる処理を行う。これは、トルク指令値に応じた電流が電動旋回モータ134に入力されたとしても、即時に所望の角加速度が発現されるわけではなく、少し位相(時間)が遅れることが判明している。すなわち、通信による遅れやインバータの電流制御による遅れにより、現在指示しているトルク指令値から推定される旋回運動(角加速度)と、現在検出している旋回運動(実角加速度)との間に時間軸のずれが発生する。位相補償部55は、この時間軸(位相)のずれを補償する。具体的に、本実施形態では、トルク指令値にローパスフィルタを施している。式は次の通りである。
 補償後のトルク指令値tTCal_Filt = α * tTCal +(1-α)*tTCal_Filti-1
 本実施形態では、ローパスフィルタを使用しているが、トルク指令値を遅らせることができれば、これに限定されない。
 なお、位相補償部55は、精度が悪化するが省略可能である。
 粘性摩擦除去部56は、モータ回転数ωSWING[rpm]を維持するために必要な粘性摩擦トルクは角加速度の増減には寄与しないため、粘性摩擦トルクをトルク指令値から除去する。式は次の通りである。
  tTVis=KCVIS×ωSWING
  除去後のトルク指令値tTCal_Fin=tTCal_Filt - tTVis
  ここで、KCVISは粘性摩擦係数である。なお、粘性摩擦除去部56は、精度が悪化するが省略可能である。
 基準角加速度算出部57は、トルク指令値で電動旋回モータ134が駆動した際に発生すべき基準角加速度ReferAccを算出する。具体的には、トルク指令値tTCal_Finにイナーシャの逆数を乗算することで、角加速度ReferAccを算出している。式にすれば次の通りである。
 角加速度ReferAcc=トルク指令値tTCal_Fin * テーブル(TGBASE_SWING)
 イナーシャ(慣性モーメント)の逆数は、基準重力トルクTGBASE_SWINGを入力とするテーブルにより取得する。テーブルは、作業機12を含む上部旋回体13のイナーシャを表す値(イナーシャの逆数)を基準重力トルクに予め対応付けた相関データ57aである。基準重力トルクとイナーシャ(慣性モーメント)とは1:1の関係ではなく、基準重力トルクからイナーシャを直接算出できない。しかし、相関データ57aにおいて未確定の変数については、バックホー1では変化が少ないとして近似している。このように、相関データにおいて予め近似値として対応付けてあるので、イナーシャを表す値(イナーシャの逆数)を導出でき、基準角加速度を算出可能となる。相関データ57aには、予測値又は実測値が用いられる。
 角加速度偏差算出部58は、回転速度を表す値(モータ回転数)から求まる実角加速度ActAccと、基準角加速度ReferAccとの偏差DelAccを算出する。実角加速度ActAccは、次の式に示すように、モータ回転数[rpm]の前進差分により算出する。
 実角加速度ActAcc=(ωSWING - ωSWING,i-1)/ΔT[s]
 角加速度偏差DelAcc=-(ActAcc-ReferAcc)
 本実施形態において、基準重力トルク算出部51は、前回算出した基準重力トルクTGBASE_SWING i-1と、角加速度偏差DelAccと、現在姿勢(ロール角、ピッチ角)とに基づき、基準重力トルクTGBASE_SWINGを新たに算出する学習部である。このように、基準重力トルク算出部51は、前回算出した基準重力トルクTGBASE_SWING i-1を用いて計算を行うため、前回の結果を学習でき、補償精度を向上させることが可能となる。
 具体的には、次の式に示すように、角加速度偏差DelAccにゲインをかけたものを前回の基準重力トルクTGBASE_SWING i-1に累積的に積算する学習処理を実行することで、新たな基準重力トルクTGBASE_SWINGを算出している。
 基準重力トルクTGBASE_SWING=基準重力トルクTGBASE_SWING i-1 +ゲイン×角加速度偏差DelAcc
 ゲインには、重力ベクトルと旋回方向との内積値[cos(ピッチ角)×sin(ロール角)]との積をとることで、傾斜により重力が旋回に寄与する場合のみ学習が有効になるようにしている。
 ゲイン=ゲイン定数×cos(ピッチ角)×sin(ロール角)
 なお、本実施形態では、基準重力トルク算出部51は、前回算出した基準重力トルクTGBASE_SWING i-1に累積的に積算する学習処理を実行する学習部であるが、学習処理を実行しなくてもよい。
 例えば、角加速度偏差DelAccに変換係数を掛けることで、基準重力トルクTGBASE_SWINGを直接算出するように構成してもよいし、角加速度偏差DelAccを入力値として基準重力トルクTGBASE_SWINGを出力するテーブル又は関数形式にしてもよい。
 重力補償トルク算出部52は、基準重力トルク算出部51が算出した基準重力トルクTGBASE_SWINGと現在姿勢(ロール角、ピッチ角)とに基づき、現在姿勢において重力により旋回軸回りに発生するトルク成分を補償するための重力補償トルクTG_SWINGを算出する。式は次の通りである。
 重力補償トルクTG_SWING=基準重力トルクTGBASE_SWING * cos(ピッチ角)×sin(ロール角)
 学習停止判定部59は、学習を停止すべき状態であるか否かを判定する。学習を停止すべき状態は、上部旋回体13が傾斜面を下る方向に加速している状態、又は、上部旋回体13が傾斜面を登る方向に減速している状態である。学習停止判定部59は、判定結果を学習可否フラグとして出力する。学習可否フラグは、基準重力トルク算出部51に入力される。基準重力トルク算出部51は、学習停止判定部59により学習を停止すべき状態であると判定された場合には、前回算出した基準重力トルクを新たな基準重力トルクとし、角加速度偏差を用いた学習処理を実行しないように構成されている。学習停止状態では、次の式で基準重力トルクが算出される。
 学習停止状態の式:
  基準重力トルクTGBASE_SWING=基準重力トルクTGBASE_SWING i-1
 一方、基準重力トルク算出部51は、学習停止判定部59により学習を停止すべき状態でないと判定された場合には、上記偏差を用いた学習処理を実行する。式を次に再掲する。
 学習状態の式:
  基準重力トルクTGBASE_SWING=基準重力トルクTGBASE_SWING i-1 +ゲイン×角加速度偏差DelAcc
 トルク指令に基づき発生すべき基準角加速度と実角加速度との偏差が生じる原因は、ブーム又はアームの伸縮に起因する慣性モーメントの変化、及び、積載量変化に起因する重力トルクの変化である。慣性モーメントと重力トルクのいずれが変化しているかを見分けることはできないため、慣性モーメント及び重力トルクが共に増大している状態であるか、慣性モーメント及び重力トルクが共に減少している状態であるときに、学習可能となる。一方、慣性モーメントが増大しているが重力トルクが減少している状態、又は、慣性モーメントが減少しているが重力トルクが増大している状態は、双方の成分が相反する方向に変化しており、誤学習となるため、学習を停止すべき状態である。
 そこで、上記学習を停止すべき状態であるかを判定して、学習を停止すべき状態であると判定された場合には、前回算出した基準重力トルクをそのまま新たな基準重力トルクとし、偏差を用いた学習処理を実行しないように構成しているので、誤学習を防止し、補償精度を向上させることが可能となる。
 学習停止判定部59の実装方法は2つ考えられる。
 第1方法は、重力がかかる方向とモータの旋回力方向が一致しているか否かを判定に用いる方法である。一致していれば学習可能であり、不一致であれば学習停止状態である。具体的には、重力の旋回軸回りに発生する重力補償トルクTG_SWINGと旋回軸の加速に寄与するトルク(SWING_TRQ_FIN-TG_SWING)の符号が一致するか否かを判定する。(SWING_TRQ_FIN-TG_SWING)とTG_SWINGの積を演算し、結果が正であれば符号が一致しており、学習可能であり、結果が負であれば符号が不一致であり、学習停止である。
 第2方法は、現在姿勢及び実旋回速度により上部旋回体13が斜面を下る方向に動作しているか、登る方向に動作しているのかを判定できる。また、速度の絶対が増加しているか減少しているかにより、上部旋回体13が傾斜面を下る方向に加速している状態、又は、上部旋回体13が傾斜面を登る方向に減速している状態であるかを判定する。
 第1実施形態の旋回制御の結果と、重力補償トルクによる補正のない従来の旋回制御の結果とを比較説明する。図8は、第1実施形態のバックホーの旋回制御の結果を示す。図9は、重力補償トルクによる補正のない従来の旋回制御の結果を示す。共にバックホーを15度の傾斜地に配置して上部旋回体13を旋回させたときの、トルク、目標回転速度、実回転速度を示している。図9に示すように、14~18秒の旋回時及び19~24秒の旋回時において目標回転速度が0であるものの、実回転速度がマイナスに落ち込んでいることが確認できる。これは、上部旋回体13が重力に負けて落下し始め、電磁ブレーキで停止させた様子を示している。
 図9に対して図8においては、目標回転速度が0のときに実回転速度が落ち込むことがなく、重力によるトルク成分を適切に補正していることが理解できる。基準姿勢において重力により発生するトルク成分である基準重力トルクTG_BASEはバラつきが生じるが、収束していることが理解できる。
 <第2実施形態>
 第2実施形態について説明する。第1実施形態と同じ部分には同じ符号を付して、説明を省略する。図6に示すように、作業機12の積載重量を算出する積載重量算出部60を設けている。積載重量算出部60は、作業機12を駆動する油圧を計測する油圧センサ又は重量を計測するロードセル等のセンサ61からデータを入力し、積載重量を算出する。
 また、作業機12を含む上部旋回体13のイナーシャを示す値(イナーシャの逆数)を、積載重量及び基準重力トルクに予め対応付けた相関データ57aを設けている。本実施形態では、イナーシャを示す値はイナーシャの逆数であるが、これに限定されず、イナーシャでもよい。本実施形態では、相関データ57aは、二次元マップを採用しているが、イナーシャを示す値を積載重量及び基準重力トルクに関連付けたデータであれば、種々変更可能である。
 基準重力トルクとイナーシャ(慣性モーメント)とは1:1の関係ではなく、基準重力トルクからイナーシャを直接算出できない。しかし、このように、相関データにおいて予め近似値として対応付けてあるので、イナーシャを表す値(イナーシャの逆数)を導出でき、基準角加速度を算出可能となる。
 さらに、基準重力トルクだけではなく、積載重量にも対応付けてあるので、未知の項が旋回半径だけとなり、イナーシャの精度を第1実施形態に比べて向上させることが可能となる。
 <第3実施形態>
 第3実施形態について説明する。第1実施形態と同じ部分には同じ符号を付して、説明を省略する。図7に示すように、作業機12の旋回半径を算出する旋回半径算出部62を設けている。旋回半径算出部62は、ブームシリンダ12d及びアームシリンダ12eのストローク位置を検出する位置検出センサ63からデータを入力し、ストローク位置からブーム12a及びアーム12bの角度を特定し、各々の角度から旋回半径を順動学に基づき算出する。
 また、作業機12を含む上部旋回体13のイナーシャを示す値(イナーシャの逆数)を、旋回半径及び基準重力トルクに予め対応付けた相関データ57aを設けている。本実施形態では、イナーシャを示す値はイナーシャの逆数であるが、これに限定されず、イナーシャでもよい。本実施形態では、相関データ57aは、二次元マップを採用しているが、イナーシャを示す値を旋回半径及び基準重力トルクに関連付けたデータであれば、種々変更可能である。
 基準重力トルクとイナーシャ(慣性モーメント)とは1:1の関係ではなく、基準重力トルクからイナーシャを直接算出できない。しかし、このように、相関データにおいて予め近似値として対応付けてあるので、イナーシャを表す値(イナーシャの逆数)を導出でき、基準角加速度を算出可能となる。
 さらに、基準重力トルクだけではなく、旋回半径にも対応付けてあるので、未知の項が積載重量だけとなり、イナーシャの精度を第1実施形態に比べて向上させることが可能となる。
 以上のように、第1~3実施形態の建設機械は、
 作業機12を有する上部旋回体13と、
 旋回軸を介して上部旋回体13を旋回可能に支持する下部走行体11と、
 上部旋回体13を旋回させる電動旋回モータ134と、
 上部旋回体13の回転速度を表す値(単位時間あたりのモータ回転数)を取得する回転速度取得部(インバータ31)と、
 上部旋回体13の現在姿勢を検出する姿勢センサ130と、
 操作部の操作量に応じて電動旋回モータ134に対するトルク指令値を出力するトルク指令値生成部50と、
 トルク指令値で電動旋回モータ134が駆動した際に発生すべき基準角加速度ReferAccを算出する基準角加速度算出部57と、
 回転速度から求まる実角加速度ActAccと基準角加速度ReferAccとの偏差及び現在姿勢に基づき、基準姿勢において重力により旋回軸回りに発生するトルク成分である基準重力トルクTGBASE_SWINGを算出する基準重力トルク算出部51と、
 基準重力トルクTGBASE_SWINGと現在姿勢とに基づき、現在姿勢において重力により旋回軸回りに発生するトルク成分を補償するための重力補償トルクTG_SWINGを算出する重力補償トルク算出部52と、
 現在姿勢において重力による旋回軸回りに発生するトルク成分を打ち消すように、トルク指令値を重力補償トルクTG_SWINGで補正する補正部53と、
 を備える。
 このように、基準姿勢で重力により旋回軸回りに発生するトルク成分である基準重力トルクTGBASE_SWINGと現在姿勢とに基づき、現在姿勢において重力により旋回軸回りに発生するトルク成分を打ち消すようにトルク指令値を補正するフィードフォワード制御であるので、重力によって発生するトルク成分に起因して回転速度の遅れが実際に発生しなくても、事前に打ち消す制御が可能となる。
 それでいて、トルク指令値で電動旋回モータ134が駆動した際に発生すべき基準角加速度ReferAccと実角加速度ActAccとの偏差及び現在姿勢に基づき、基準姿勢において重力により旋回軸回りに発生するトルク成分である基準重力トルクTGBASE_SWINGを算出しているので、重量が変化したり、ブーム又はアームが伸縮したりしても、現在姿勢で発生する重力によるトルク成分を適切に打ち消すことが可能となる。
 したがって、重力により発生するトルク成分の悪影響を発現させず、傾斜地において快適に旋回操作を行うことが可能となる。
 第1~3実施形態において、基準重力トルク算出部51は、前回算出した基準重力トルクTGBASE_SWING i-1に対し、偏差DelAccと現在姿勢とに基づく値を累積的に積算する学習処理を実行することで、基準重力トルクTGBASE_SWINGを新たに算出する。
 このように、前回算出した基準重力トルクTGBASE_SWING i-1に、偏差DelAccと現在姿勢に基づく値を累積的に積算するので、前回の結果を学習でき、補償精度を向上させることが可能となる。
 トルク指令に基づき発生すべき基準角加速度ReferAccと実角加速度ActAccとの偏差が生じる原因は、ブーム又はアームの伸縮に起因する慣性モーメントの変化、及び、積載量変化に起因する重力トルクの変化である。慣性モーメントと重力トルクのいずれが変化しているかを見分けることはできないため、慣性モーメント及び重力トルクが共に増大している状態であるか、慣性モーメント及び重力トルクが共に減少している状態であるときに、学習可能となる。一方、慣性モーメントが増大しているが重力トルクが減少している状態、又は、慣性モーメントが減少しているが重力トルクが増大している状態は、双方の成分が相反しており、誤学習となるため、学習を停止すべき状態である。
 第1~3実施形態において、学習を停止すべき状態であるか否かを判定する学習停止判定部59を備える。学習を停止すべき状態は、上部旋回体13が傾斜面を下る方向に加速している状態、又は、上部旋回体13が傾斜面を登る方向に減速している状態である。基準重力トルク算出部51は、学習停止判定部59により学習を停止すべき状態であると判定された場合には、前回算出した基準重力トルクTGBASE_SWING i-1を新たな基準重力トルクTGBASE_SWINGとし、偏差DelAccを用いた学習処理を実行しないように構成されている。
 このように、上記学習を停止すべき状態であるかを判定して、学習を停止すべき状態であると判定された場合には、前回算出した基準重力トルクTGBASE_SWING i-1をそのまま新たな基準重力トルクTGBASE_SWINGとし、偏差DelAccを用いた学習処理を実行しないように構成しているので、誤学習を防止し、補償精度を向上させることが可能となる。
 第1~3実施形態において、基準角加速度算出部57にトルク指令値が入力される前に、トルク指令値の位相を遅らせる処理を行う位相補償部55を有する。
 通信による遅れやインバータの電流制御による遅れにより、現在指示しているトルク指令値から推定される旋回運動(基準角加速度ReferAcc)と、現在検出している旋回運動(実角加速度ActAcc)との間の時間軸のずれが発生する。しかし、このように、トルク指令値の位相を遅らせる処理によってこの時間軸のずれを補償することができ、両者の時間軸を合わせて制御の精度を向上させることが可能となる。
 第1実施形態において、作業機12を含む上部旋回体13のイナーシャを表す値(イナーシャの逆数)と基準重力トルクTGBASE_SWINGとを予め対応付けた相関データ57aを備える。基準角加速度算出部57は、相関データ57aにおける基準重力トルクTGBASE_SWINGに対応するイナーシャを表す値(イナーシャの逆数)と、トルク指令値とに基づき、基準角加速度ReferAccを算出する。
 基準重力トルクとイナーシャ(慣性モーメント)とは1:1の関係ではなく、基準重力トルクからイナーシャを直接算出できない。しかし、相関データ57aにおいて未確定の変数については、バックホー1では変化が少ないとして近似している。このように、相関データにおいて予め近似値として対応付けてあるので、イナーシャを表す値(イナーシャの逆数)を導出でき、基準角加速度ReferAccを算出可能となる。
 第2実施形態において、作業機12の積載重量を算出する積載重量算出部60と、
 作業機12を含む上部旋回体13のイナーシャを示す値(イナーシャの逆数)を、積載重量及び基準重力トルクTGBASE_SWINGに予め対応付けた相関データ57aと、を備える。
 基準角加速度算出部57は、相関データ57aにおける基準重力トルクTGBASE_SWING及び積載重量に対応するイナーシャを表す値(イナーシャの逆数)と、トルク指令値とに基づき、基準角加速度ReferAccを算出する。
 基準重力トルクとイナーシャ(慣性モーメント)とは1:1の関係ではなく、基準重力トルクからイナーシャを直接算出できない。しかし、相関データ57aにおいて未確定の変数については、バックホー1では変化が少ないとして近似している。このように、相関データにおいて予め近似値として対応付けてあるので、イナーシャを表す値(イナーシャの逆数)を導出でき、基準角加速度ReferAccを算出可能となる。
 さらに、基準重力トルクだけではなく、積載重量にも対応付けてあるので、未知の項が旋回半径だけとなり、イナーシャの精度を第1実施形態に比べて向上させることが可能となる。
 第3実施形態において、作業機12の旋回半径を算出する旋回半径算出部62と、
 作業機12を含む上部旋回体13のイナーシャを示す値(イナーシャの逆数)を、旋回半径及び基準重力トルクTGBASE_SWINGに予め対応付けた相関データ57aと、を備える。
 基準角加速度算出部57は、相関データ57aにおける基準重力トルクTGBASE_SWING及び旋回半径に対応するイナーシャを表す値(イナーシャの逆数)と、トルク指令値とに基づき、基準角加速度ReferAccを算出する。
 基準重力トルクとイナーシャ(慣性モーメント)とは1:1の関係ではなく、基準重力トルクからイナーシャを直接算出できない。しかし、相関データ57aにおいて未確定の変数については、バックホー1では変化が少ないとして近似している。このように、相関データにおいて予め近似値として対応付けてあるので、イナーシャを表す値(イナーシャの逆数)を導出でき、基準角加速度ReferAccを算出可能となる。
 さらに、基準重力トルクだけではなく、旋回半径にも対応付けてあるので、未知の項が積載重量だけとなり、イナーシャの精度を第1実施形態に比べて向上させることが可能となる。
 以上、本開示の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本開示の範囲は、上記した実施形態の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 上記の各実施形態で採用している構造を他の任意の実施形態に採用することは可能である。
1    バックホー(建設機械)
11   下部走行体
12   作業機
13   上部旋回体
130  姿勢センサ
131c 作業操作レバー(操作部)
134  電動旋回モータ
31   インバータ(回転速度取得部)
50   トルク指令値生成部
51   基準重力トルク算出部
52   重力補償トルク算出部
53   補正部
55   位相補償部
57   基準角加速度算出部
57a  相関データ
59   学習停止判定部
60   積載重量算出部
62   旋回半径算出部

 

Claims (7)

  1.  作業機を有する上部旋回体と、
     旋回軸を介して前記上部旋回体を旋回可能に支持する下部走行体と、
     前記上部旋回体を旋回させる電動旋回モータと、
     前記上部旋回体の回転速度を表す値を取得する回転速度取得部と、
     前記上部旋回体の現在姿勢を検出する姿勢センサと、
     操作部の操作量に応じて前記電動旋回モータに対するトルク指令値を出力するトルク指令値生成部と、
     前記トルク指令値で前記電動旋回モータが駆動した際に発生すべき基準角加速度を算出する基準角加速度算出部と、
     前記回転速度から求まる実角加速度と前記基準角加速度との偏差及び前記現在姿勢に基づき、基準姿勢において重力により旋回軸回りに発生するトルク成分である基準重力トルクを算出する基準重力トルク算出部と、
     前記基準重力トルクと前記現在姿勢とに基づき、前記現在姿勢において重力により旋回軸回りに発生するトルク成分を補償するための重力補償トルクを算出する重力補償トルク算出部と、
     前記現在姿勢において重力による旋回軸回りに発生するトルク成分を打ち消すように、前記トルク指令値を前記重力補償トルクで補正する補正部と、
     を備える、建設機械。
  2.  前記基準重力トルク算出部は、前回算出した前記基準重力トルクに対し、前記偏差と前記現在姿勢とに基づく値を累積的に積算する学習処理を実行することで、前記基準重力トルクを新たに算出する、請求項1に記載の建設機械。
  3.  学習を停止すべき状態であるか否かを判定する学習停止判定部を備え、
     前記学習を停止すべき状態は、前記上部旋回体が傾斜面を下る方向に加速している状態、又は、前記上部旋回体が傾斜面を登る方向に減速している状態であり、
     前記基準重力トルク算出部は、前記学習停止判定部により学習を停止すべき状態であると判定された場合には、前記前回算出した前記基準重力トルクを新たな前記基準重力トルクとし、前記偏差を用いた学習処理を実行しないように構成されている、請求項2に記載の建設機械。
  4.  前記基準角加速度算出部に前記トルク指令値が入力される前に、前記トルク指令値の位相を遅らせる処理を行う位相補償部を有する、請求項1~3のいずれかに記載の建設機械。
  5.  前記作業機を含む前記上部旋回体のイナーシャを表す値と前記基準重力トルクとを予め対応付けた相関データを備え、
     前記基準角加速度算出部は、前記相関データにおける前記基準重力トルクに対応する前記イナーシャを表す値と、前記トルク指令値とに基づき、前記基準角加速度を算出する、請求項1~4のいずれかに記載の建設機械。
  6.  前記作業機の積載重量を算出する積載重量算出部と、
     前記作業機を含む前記上部旋回体のイナーシャを示す値を、前記積載重量及び前記基準重力トルクに予め対応付けた相関データと、を備え、
     前記基準角加速度算出部は、前記相関データにおける前記基準重力トルク及び前記積載重量に対応する前記イナーシャを表す値と、前記トルク指令値とに基づき、前記基準角加速度を算出する、請求項1~4のいずれかに記載の建設機械。
  7.  前記作業機の旋回半径を算出する旋回半径算出部と、
     前記作業機を含む前記上部旋回体のイナーシャを示す値を、前記旋回半径及び前記基準重力トルクに予め対応付けた相関データと、を備え、
     前記基準角加速度算出部は、前記相関データにおける前記基準重力トルク及び前記旋回半径に対応する前記イナーシャを表す値と、前記トルク指令値とに基づき、前記基準角加速度を算出する、請求項1~4のいずれかに記載の建設機械。

     
PCT/JP2019/028746 2018-08-21 2019-07-23 建設機械 WO2020039819A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19851785.6A EP3842594B1 (en) 2018-08-21 2019-07-23 Construction machine
US17/269,389 US11976442B2 (en) 2018-08-21 2019-07-23 Construction machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018154735A JP6952659B2 (ja) 2018-08-21 2018-08-21 建設機械
JP2018-154735 2018-08-21

Publications (1)

Publication Number Publication Date
WO2020039819A1 true WO2020039819A1 (ja) 2020-02-27

Family

ID=69592491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028746 WO2020039819A1 (ja) 2018-08-21 2019-07-23 建設機械

Country Status (4)

Country Link
US (1) US11976442B2 (ja)
EP (1) EP3842594B1 (ja)
JP (1) JP6952659B2 (ja)
WO (1) WO2020039819A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022085112A (ja) * 2020-11-27 2022-06-08 日本航空電子工業株式会社 計測装置、計測方法、計測プログラム、記録媒体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138586A (ja) 2008-12-10 2010-06-24 Sumitomo (Shi) Construction Machinery Co Ltd 旋回駆動制御装置及びこれを含む建設機械
JP2010150898A (ja) * 2008-12-26 2010-07-08 Sumitomo (Shi) Construction Machinery Co Ltd 旋回駆動制御装置及びこれを含む建設機械
JP2011006862A (ja) * 2009-06-23 2011-01-13 Sumitomo (Shi) Construction Machinery Co Ltd 旋回駆動制御装置及びこれを含む建設機械
JP2012122327A (ja) 2004-05-13 2012-06-28 Komatsu Ltd 旋回制御装置、旋回制御方法、および建設機械
JP2015214808A (ja) * 2014-05-08 2015-12-03 住友建機株式会社 建設機械

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1961869B1 (en) * 2007-02-21 2018-10-10 Kobelco Construction Machinery Co., Ltd. Rotation control device and working machine therewith
CN104763014A (zh) * 2008-11-10 2015-07-08 住友重机械工业株式会社 混合式施工机械的控制方法
JP5298861B2 (ja) * 2009-01-06 2013-09-25 コベルコ建機株式会社 作業機械の旋回制御装置
KR20130140774A (ko) * 2010-12-15 2013-12-24 볼보 컨스트럭션 이큅먼트 에이비 하이브리드 건설기계용 선회 제어시스템
WO2013061893A1 (ja) * 2011-10-26 2013-05-02 住友重機械工業株式会社 ハイブリッドショベル及びハイブリッドショベルの制御方法
US20140173946A1 (en) * 2012-12-20 2014-06-26 Briggs & Stratton Corporation Zero-turn utility vehicle
JP6842856B2 (ja) * 2016-07-26 2021-03-17 川崎重工業株式会社 液圧駆動システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122327A (ja) 2004-05-13 2012-06-28 Komatsu Ltd 旋回制御装置、旋回制御方法、および建設機械
JP2010138586A (ja) 2008-12-10 2010-06-24 Sumitomo (Shi) Construction Machinery Co Ltd 旋回駆動制御装置及びこれを含む建設機械
JP2010150898A (ja) * 2008-12-26 2010-07-08 Sumitomo (Shi) Construction Machinery Co Ltd 旋回駆動制御装置及びこれを含む建設機械
JP2011006862A (ja) * 2009-06-23 2011-01-13 Sumitomo (Shi) Construction Machinery Co Ltd 旋回駆動制御装置及びこれを含む建設機械
JP2015214808A (ja) * 2014-05-08 2015-12-03 住友建機株式会社 建設機械

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3842594A4

Also Published As

Publication number Publication date
EP3842594B1 (en) 2023-06-07
JP2020029668A (ja) 2020-02-27
US20210172152A1 (en) 2021-06-10
JP6952659B2 (ja) 2021-10-20
US11976442B2 (en) 2024-05-07
EP3842594A4 (en) 2022-06-15
EP3842594A1 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
JP4946733B2 (ja) 旋回制御装置及びこれを備えた作業機械
KR101379970B1 (ko) 작업 기계의 선회 제어 장치
KR101671876B1 (ko) 선회제어장치 및 방법
JP6088508B2 (ja) ショベルの制御方法及び制御装置
EP2275606B1 (en) Rotation control device and working machine therewith
JP6247617B2 (ja) 建設機械
JPWO2009051247A1 (ja) 旋回駆動制御装置及びこれを含む建設機械
JP6673878B2 (ja) 建設機械の制御装置
EP3656930B1 (en) Wheel loader
JPWO2017104238A1 (ja) ショベルおよびその制御方法
KR20170120106A (ko) 건설 기계의 제어 장치
JP5031718B2 (ja) 旋回駆動制御装置及びこれを含む建設機械
WO2020039819A1 (ja) 建設機械
JP5907037B2 (ja) 移動体
JP6964054B2 (ja) 建設機械
JP6671849B2 (ja) ショベル、ショベルの制振方法
JP2019167731A (ja) ショベル
WO2023053700A1 (ja) 作業機械を制御するためのシステムおよび方法
JP6486664B2 (ja) ショベル
WO2020044921A1 (ja) ハイブリッド建設機械
JP2023085747A (ja) 作業車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019851785

Country of ref document: EP

Effective date: 20210322