WO2020038383A1 - 液流电池电解液的纯化方法和纯化装置 - Google Patents
液流电池电解液的纯化方法和纯化装置 Download PDFInfo
- Publication number
- WO2020038383A1 WO2020038383A1 PCT/CN2019/101694 CN2019101694W WO2020038383A1 WO 2020038383 A1 WO2020038383 A1 WO 2020038383A1 CN 2019101694 W CN2019101694 W CN 2019101694W WO 2020038383 A1 WO2020038383 A1 WO 2020038383A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cathode
- purified
- electrolyte
- anode
- ions
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04276—Arrangements for managing the electrolyte stream, e.g. heat exchange
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/18—Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/18—Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
- H01M8/184—Regeneration by electrochemical means
- H01M8/188—Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the invention relates to a method and a device for purifying an electrolyte of a flow battery, in particular to a method and a device for purifying an electrolyte of an all-vanadium flow battery.
- Flow battery technology has the natural advantages of large-scale energy storage: the amount of stored electricity is linearly proportional to the volume of the electrolyte, and the charge and discharge power is determined by the size and number of the stack, so different designs from kW to MW can be designed according to demand. Charging and discharging power, continuous flow batteries with different energy storage volume for 1 hour to several days. Based on commonly used inorganic acids and electrolytes, the chemical composition of the electrolyte is stable, easy to store, has a small impact on the environment, and has a very low self-discharge coefficient, making it suitable for long-term storage of electrical energy.
- the reaction temperature of the battery is normal temperature and pressure.
- the electrolyte flow process is a natural water-based circulation heat dissipation system with extremely high safety performance.
- the impact of the accident is much lower than other large energy storage solutions. Due to its stable and reliable charge-discharge cycle, there is no upper limit for the theoretical charge-discharge times.
- the existing method for preparing the raw materials of mainstream mainstream vanadium electrolytes is to analyze the pure aluminum salt, sodium salt, calcium salt, etc. through traditional addition, and perform a series of processes such as vanadium precipitation, filtration, and impurity removal to remove relatively high Fe content. , Al, Si, Na, K, Cr and other elements, so as to obtain high-purity starting materials such as vanadium pentoxide or vanadium sulfate.
- Citation 1 relates to a method for preparing a high-purity and high-concentration vanadium electrolyte, which uses qualified vanadium produced by a vanadium plant as a raw material, and undergoes four steps of impurity removal, vanadium precipitation, reduction, extraction, and degreasing.
- the impurity and one-step reduction process effectively removes impurities in the electrolyte, and obtains a high-purity, high-concentration vanadium sulfate electrolyte for a full-vanadium flow battery with a concentration of 1 to 4M.
- Citation 2 provides a method for preparing high-purity vanadium oxide, which is obtained by re-dissolving the crude vanadium oxide product, three times filtration, two times impurity removal, vanadium precipitation, filtration, washing, drying, and calcining. Vanadium oxide.
- High-purity vanadium oxide with an impurity content for example, Cr, Si, Fe, Al, K, Na
- vanadium oxide obtained by this method not exceeding 10 ppm.
- Citation 3 discloses that anion exchange resins transformed with sulfuric acid are used to adsorb and enrich pentavalent vanadium in the leachate of traditional vanadium slag extraction or vanadium extraction from stone coal, or to extract and enrich the extracted leachate with sulfuric acid converted extractant. After pentavalent vanadium, a method for directly reducing and desorbing or re-extracting pentavalent vanadium with a reducing agent to obtain a vanadium battery electrolyte.
- Citation 4 discloses a method for purifying a vanadium sulfate solution by adding a reducing agent and performing multi-stage countercurrent extraction and multi-stage countercurrent back extraction, which is mainly aimed at the ferric ion impurities.
- Cited Document 5 discloses a method for removing impurity chromium ions by electrolysis, which is directed to an electrolytic solution with excessive chromium impurities.
- the traditional impurity removal process can only remove ordinary impurities with a relatively high content, and vanadium sulfate pentahydrate or vanadium pentoxide as the initial raw materials. Some of these impurities have a low content of metal ions such as precious metal ions and are not easy. Remove. Not only is the traditional process relatively tedious and complicated, the removal effect of precious metal ions is not ideal. This not only greatly increases the production cost of the electrolyte, limits the range of choice of the initial raw materials, but also catalyzes the side reactions of the flow battery, generating a large amount of dangerous gases, which makes the electrolyte quickly fail.
- the technical problem to be solved by the present invention is to remove the precious metal ions in the electrolytic solution of the vanadium flow battery with a simpler and efficient way.
- the present invention is aimed at the requirement of higher purity of the initial raw materials in the preparation process of the electrolyte of the current all-vanadium flow battery.
- the invention proposes a method for selectively removing the total vanadium flow by using an electrochemical method. Very harmful metal elements during battery charging and discharging, especially those purification methods of precious metal elements that are difficult to remove using traditional methods.
- the present invention first provides a method for purifying an electrolyte of a flow battery, which includes the steps of: providing an electrolytic cell having an anode, an anolyte, a cathode, and a separator; a step of passing an electrolyte to be purified through a surface of the cathode;
- the cathode is metallic mercury, and when the electrolytic solution to be purified passes through the surface of the cathode, a reduction reaction occurs at least in a part of the surface area of the cathode under an external current.
- a space is formed between the cathode and the separator, so that the electrolytic solution to be purified passes through.
- the electrolytic solution to be purified contains metal ions and V ions.
- the anolyte contains V ions
- the V ions have a valence state lower than positive pentavalent.
- the anode is an anode containing a carbon-based material
- the anode is a graphite plate and / or a graphite felt.
- the cathode is taken out, and metallic mercury is recovered by distillation, and is continuously recycled as a cathode material.
- the present invention also provides a purification device for a flow battery electrolyte, which is characterized by comprising the following structure: an electrolytic cell; a cathode material introduction / export port, wherein the electrolytic cell includes an anode, an anolyte, a cathode, and A separator, the cathode is metallic mercury, and a space is formed between the cathode surface and the separator, and the space can accommodate the electrolyte to be purified or can pass the electrolyte to be purified.
- the purification device may be connected to a device for preparing an electrolytic solution to be purified.
- the method for purifying the electrolyte of a flow battery according to the present invention is an electrochemical method, which can selectively and efficiently remove harmful precious metal ions, avoid harmful side reactions, and greatly reduce the production cost of the electrolyte, which greatly Widening the range of choice of starting materials.
- the purification method of the invention has extremely high practical application value for reducing the overall battery system cost and increasing the life of the electrolyte.
- the purification device of the present invention can be connected to a device for preparing an electrolytic solution to be purified, thereby obtaining a purified high-purity electrolytic solution from a low-cost raw material through a simple device and operation at one time.
- the present invention uses liquid metal mercury as an electrolytic electrode, and the precious metal ions present in the electrolyte of the flow battery to be purified form an amalgam with the metal mercury during the electrolysis process, thereby permitting the subsequent treatment of the mixture of metal mercury and amalgam,
- the metal mercury is recovered by distillation and classification, and the recovered metal mercury can be returned to the cathode in the purification device of the present invention for repeated use. Therefore, such a method can realize the reuse of metallic mercury at the cathode, and the recycling of metallic mercury is simple and easy to operate.
- FIG. 1 is a schematic view showing an apparatus for purifying an electrolyte of a flow battery according to the present invention.
- a method for purifying an electrolyte of a flow battery which includes the following steps:
- the cathode is metallic mercury, and when the electrolytic solution to be purified passes through the surface of the cathode, a reduction reaction occurs at least in a part of the surface area of the cathode under an external current.
- the anode comprises an anode material.
- the anode material may include a carbon-based material having a porous structure, and at the same time, the pores can form a communication structure that accommodates or allows an electrolyte to flow.
- the porous structure may be formed by a foaming method or a woven or non-woven method.
- the above-mentioned non-woven method can be constituted by, for example, superposing and compressing carbon fiber filaments, or processing the fiber filaments formed by the electrospinning process to obtain a porous fiber aggregate having a certain shape.
- the anode material in the present invention may be selected from, for example, carbon felt, carbon paper, carbon fiber, graphite plate, graphite felt, etc., preferably graphite plate and / or graphite felt.
- the anolyte suitable for the present invention is a vanadium electrolyte containing valence V ions below +5 valence, which may include +4 valence V ions, +3 valence V ions, +2 valence V ions, for example. Or a mixture thereof.
- the electrolytic solution is a strong acid solution of vanadium, and the strong acid may be selected from sulfuric acid or hydrochloric acid.
- the method for preparing the anolyte is also not particularly limited, and can be prepared using a method conventional in the art.
- vanadium ions in the anolyte lose electrons and are oxidized to vanadium ions with higher valence.
- the separator suitable for the present invention allows ionic substances to pass through.
- Suitable membrane materials for the separator include a polymer diaphragm or a composite diaphragm containing a polymer and an inorganic substance.
- the separator may comprise a sheet of woven or non-woven plastic having an active ion exchange material such as resin or functionality embedded in a heterogeneous manner (such as coextrusion) or a homogeneous manner (such as radiation grafting) .
- the separator may have a high current efficiency Ev and a high Coulomb efficiency E I and may be designed as a porous membrane that limits the mass transfer through the membrane while still promoting ion transfer.
- the separator may be made of a polyolefin material or a fluorinated polymer, and may have a specified thickness and pore size.
- the membrane may be a proton exchange membrane, an anion exchange membrane, a cation exchange membrane, or the like.
- NAFION-117 membrane available from DuPont of the United States can be used.
- One manufacturer with the ability to make these films and other films consistent with the disclosed embodiments is Daramic Microporous Products, LP, N. Community House Rd., Suite 35, Charlotte, NC28277.
- the membrane may be a non-selective microporous plastic separator, which is also manufactured by Daramic Microporous Products LP.
- liquid metal mercury is used as the cathode.
- a space is formed between the separator and the cathode. In the space, the electrolyte of the vanadium flow battery to be purified is allowed to pass.
- an electrolyte that has not been purified at all, or an electrolyte that has been purified to remove or partially remove elements such as Cr, Si, Fe, Al, K, and Na can be used. liquid.
- the above-mentioned electrolytic solution to be purified contains other metal elements which are difficult to be removed by traditional purification methods, especially precious metal elements, such as silver, gold, platinum and the like.
- the purification method of the present invention is not limited to the above noble metal elements, as long as the reduction potential of the metal ion is higher than the hydrogen evolution potential and can form an amalgam with mercury, it can be removed by the method of the present invention.
- the electrolyte of the vanadium flow battery to be purified flows over the surface of metallic mercury. Under the action of an external current, it is reduced to a simple substance on the surface of the mercury electrode. Further, these metallic simple substances are alloyed with metallic mercury to form Amalgam. When the electrolytic reaction proceeds to a certain extent, the mixture of metallic mercury and amalgam in the cathode is discharged.
- the above-excluded mixture is subjected to distillation treatment. Metal mercury that has not formed an amalgam is purified and recovered, and the amalgam is recovered after being enriched and purified. Further, the recovered metallic mercury is redirected back to the cathode and recycled again.
- the electrolyte of the vanadium flow battery to be purified flows in a space formed by the separator and metallic mercury to complete the above reaction.
- the metal mercury may be arranged in multiple layers.
- a second embodiment of the present invention relates to a purification device for a flow battery electrolyte, including the following structure:
- the electrolytic cell includes an anode, a cathode, and a separator.
- the cathode is metallic mercury
- a space is formed between the surface of the cathode and the separator, and the space can accommodate the electrolyte to be purified or can pass the electrolyte to be purified.
- the electrolytic cell is divided into an anode portion and a cathode portion by a separator.
- the anode portion includes an anode material, and the anode material is the same as the anode material in the first embodiment of the present invention.
- the cathode portion includes a cathode and a space formed between the separator and the cathode.
- the separator and the cathode are the same as those described in the first embodiment of the present invention.
- the space formed between the separator and the cathode is not particularly limited as long as it can provide a flow path for the electrolytic solution to be purified and a reduction reaction of metal ions therein.
- the cathode is provided as a multilayer cathode, so that more electrolyte solution to be purified passing through the surface of the cathode per unit time is increased, and purification efficiency is improved.
- the cathode part of the purification device for the electrolytic solution of the flow battery provided by the present invention includes an inlet and an outlet for the cathode material.
- the guide outlet is provided at the lowermost part of the cathode portion, and the introduction opening may be set at a position higher than the guide outlet.
- distillation equipment there is no particular limitation on the distillation equipment, and conventional equipment for metal mercury distillation can be used. Distilled metal mercury is recovered or directly returned to the purification device for the electrolyte of the flow battery through a pipe and an inlet. This operation realizes the recycling of metallic mercury, which is conducive to improving the efficiency of the entire process.
- the purification apparatus shown in FIG. 1 is provided with an electrolytic cell and a cathode substance introduction / exit port.
- the electrolytic cell includes an anode on the upper side, a cathode on the lower side, a separator existing between the anode and the cathode, and a space between the surface of the cathode and the separator.
- the purification device of the present invention further includes: a power source such as a DC stabilized power source (not shown in FIG. 1), wherein the anode and the cathode are respectively connected to the positive electrode and the negative electrode of the power source; Liquid containers; containers containing catholyte (that is, the electrolyte to be purified); containers containing metallic mercury; circulation pumps connected to the anolyte and catholyte, respectively.
- a power source such as a DC stabilized power source (not shown in FIG. 1), wherein the anode and the cathode are respectively connected to the positive electrode and the negative electrode of the power source
- Liquid containers containers containing catholyte (that is, the electrolyte to be purified)
- containers containing metallic mercury containers containing metallic mercury
- circulation pumps connected to the anolyte and catholyte, respectively.
- the cathode is a cavity.
- metallic mercury is introduced as a cathode from the inlet / outlet port shown in FIG. 1.
- the cathode and the anode are separated by a separator.
- the anolyte is the same as that described in the first embodiment of the present invention.
- the electrolytic solution to be purified is used as the catholyte.
- the electrolytic solution to be purified is an electrolytic solution containing metal ions and V ions.
- the metal ion is not particularly limited.
- the metal ion may be one or more selected from the group consisting of Au ion, Ag ion, Pt ion, Cu ion, Zn ion, Sn ion, and Ni ion.
- the technical solution of the present invention Particularly suitable for the removal of precious metal ions such as Au ions, Ag ions, Pt ions.
- the preparation method of the electrolytic solution to be purified there is no particular limitation on the preparation method of the electrolytic solution to be purified, and it can be prepared using methods conventional in the art, as long as it contains the above-mentioned metal ions and V ions.
- the valence state of the V ion in the electrolytic solution to be purified is not particularly limited, and may be any valence state from +2 valence to +5 valence.
- an electrolytic solution containing a hydrochloric acid solution of V 2+ and VO 2+ is continuously produced by an electrochemical-chemical method.
- a mixing tank containing a mixed solution of a hydrochloric acid solution containing V 2+ and a hydrochloric acid solution containing VO 2+ in the method may be used as the accommodating electrolytic solution to be purified in the present invention.
- the container, and thus the electrolytic solution prepared from the method can be directly purified by the purification device of the present invention.
- an important feature of the purification device of the present invention is that it can be connected to other electrolyte preparation devices to be purified, and the electrolyte prepared by the electrolyte preparation device is used as the cathode electrode liquid of the present invention, so that low-purity raw materials can be used. High-purity electrolyte was prepared in one shot.
- the anolyte as described above can be passed through the anode in a controlled manner by a circulation pump.
- the flow rate can be controlled to 0.1-10 L / min.
- the interconnected porous channels in the anode material provide a flow space for the above flow.
- the porous setting can provide a larger reaction surface area, which can make the above electrolyte have as many reaction surfaces as possible with the anode material.
- the electrolyte to be purified is used as the catholyte in a controlled manner by a circulating pump Through the space between the diaphragm and the cathode surface.
- the flow rate of the electrolyte to be purified can be controlled to 0.1-10L / min. From the viewpoint of sufficiently removing metal impurity ions, the flow rate is preferably 1-5 L / min.
- a power source (not shown in FIG. 1) is turned on, in which an anode and a cathode are respectively connected to a positive electrode and a negative electrode of the power source, thereby charging the electrolytic solution.
- V ions with a valence of less than +5 in the anolyte undergo an oxidation reaction on the anode surface to generate V ions with a higher valence.
- the reaction formula is as follows:
- the metal ions in the electrolyte to be purified undergo a reduction reaction at least in part of the surface area of the cathode to form a metal.
- the reaction formula is as follows:
- V m + represents a + m-valent V ion
- M n + represents a + n-valent impurity metal ion in the electrolytic solution to be purified
- m is a number less than 5
- n is 1 or 2
- m + n is less than Is equal to 5.
- V ions in the electrolytic solution to be purified also react at the cathode to form lower-priced V ions. Therefore, it is necessary to control the reduction potential of the metal ions higher than V 2+ so that no vanadium is precipitated. Furthermore, it is necessary to control the reduction potential of the metal ions to be higher than the hydrogen evolution potential, so that no hydrogen is generated during the reduction process.
- the advantage of the mercury electrode is that the hydrogen evolution potential is greatly reduced, making it difficult to produce hydrogen, so that some metals that are not easily reduced can form an amalgam and be removed.
- the current can be controlled to tens to hundreds of amps and the voltage can be controlled to 1.5-2V according to the specific electrode area.
- the metal ions in the electrolyte to be purified form a metal through a reduction reaction on the surface of the mercury electrode, and the metal forms amalgam with the cathode metal mercury, thereby removing the metal ions from the electrolyte to be purified Remove.
- the content of metal impurity ions in the purified electrolytic solution can be controlled according to actual needs, and is usually 10 ppm or less, preferably 5 ppm or less, and more preferably 1 ppm or less.
- the metal mercury can be taken out from the inlet / outlet and distilled to separate it into pure mercury and metal residues.
- the obtained pure mercury can be recycled as a cathode material. Distillation may be performed by a normal distillation operation.
- purification can be performed one or more times as needed until the content of metal impurity ions in the electrolyte meets the requirements.
- the electrolyte to be purified can be circulated through the space between the diaphragm and the surface of the cathode with a circulation pump.
- the purification method of the present invention can simply and effectively remove harmful metal ions, greatly reduce the production cost of the electrolytic solution, and greatly expand the selection range of the starting materials. Moreover, it is important that the purification device of the present invention can be connected with an electrolyte preparation device in another patent, and a high-purity vanadium electrolyte can be obtained from a low-cost, low-purity V 2 O 5 at one time.
- 100L of 2.5mol / L V 3+ / V 2+ hydrochloric acid solution was introduced at a flow rate of 5L / min, and passed through an anode of an electrolytic cell composed of graphite felt and a graphite bipolar plate; 2.5L was passed at a flow rate of 2.5L / min.
- 100 L of mol / L V 3+ / V 4+ mixed hydrochloric acid solution which flows through the cathode of the electrolytic cell composed of cavity and metallic mercury, in which the Ag + content is 150 ppm, the Au + content is 80 ppm, and the Pt + content is 20 ppm
- the Cu 2+ content is 200 ppm.
- a current of 40 mA / cm 2 is applied to the electrolytic cell, so that the V 2+ of the anode undergoes an oxidation reaction, and the impurity metal ion of the cathode undergoes a reduction reaction.
- a pump is used to make the electrolyte of the anode and the cathode circulate through the electrolytic cell five times to achieve the purpose of removing the impurity metal ions to the maximum.
- the impurity content of the purified catholyte was less than 1 ppm.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
一种液流电池电解液的纯化方法和纯化装置。该液流电池电解液的纯化方法可以简单有效地选择性除去有害的金属离子,避免了有害的副反应并且大大降低了电解液的生产成本,极大拓宽了初始原料的选择范围,具有极高的实际应用价值。并且,该电解液的纯化装置可与制备待纯化电解液的装置相连,由低纯度原料一次性得到高纯度电解液。
Description
本发明涉及液流电池电解液的纯化方法和纯化装置,特别是纯化全钒液流电池电解液的方法和装置。
液流电池技术有大规模储能的天然优势:储电量的大小与电解液体积成线性正比,充放电功率由电堆尺寸及数量决定,所以能按照需求,设计出从kW到MW级别不同的充放电功率,可持续放电1小时到数天的不同储能体量的液流电池。基于常用无机酸,无机盐的电解液化学成分稳定,储存方便,对环境影响小,自放电系数极低,适合长期的电能储存。电池反应温度为常温常压,电解液流动过程是自然的水基循环散热系统,安全性能极高,事故影响远低于其他大型储能方案。由于其稳定可靠的充放电循环,理论充放电次数没有上限。
根据液流电池的工作原理,电池充电过程中,电能经由电堆转化为化学能,而化学能是储存在电解液中。由于电解液在充放电过程中发生的电化学反应,对溶液中的杂质,尤其是金属离子杂质十分敏感。大部分贵金属元素,比如银,金,铂等,即使在很低的浓度下,也会催化液流电池的副反应,产生大量危险气体,使电解液很快失效。因此保证电解液的纯度,除去有效离子之外的贵金属离子杂质,是电解液制备过程中十分重要的一个环节。
现有的主流全钒电解液的初始原料制备方法是通过传统的加入分析纯铝盐、钠盐、钙盐等,进行沉钒、过滤、除杂等一系列工艺,除去含量相对较高的Fe、Al、Si、Na、K、Cr等元素,从而制得高纯度五氧化二钒或硫酸 氧钒等初始原料。
引用文献1涉及一种高纯度高浓度钒电解液的制备方法,其采用了钒厂生产的合格钒为原料,经过除杂、沉钒、还原、萃取、除油几个步骤,经过四步除杂、一步还原的过程,有效去除了电解液中的杂质,得到浓度为1~4M的高纯度、高浓度的全钒液流电池的硫酸氧钒电解液。
引用文献2提供了一种制备高纯度钒氧化物的方法,其通过对钒氧化物粗品进行重溶、三次过滤、两次除杂、沉钒、过滤、洗涤、烘干、煅烧而得到高纯度钒氧化物。通过该方法制得的除氧化钒之外的其它杂质(例如Cr、Si、Fe、Al、K、Na)含量不超过10ppm的高纯度钒氧化物。
引用文献3公开了用硫酸转型后的阴离子交换树脂吸附富集传统钒渣提钒或石煤提钒过程中浸出液中的五价钒后,或用硫酸转型后的萃取剂萃取富集浸出液中的五价钒后,直接用还原剂还原解吸或还原反萃五价钒,从而得到钒电池电解液的方法。
引用文献4公开了一种通过加入还原剂并进行多级逆流萃取和多级逆流反萃取来提纯硫酸氧钒溶液的方法,其主要针对三价铁杂质离子。
引用文献5公开了一种通过电解除去杂质铬离子的方法,其针对的是铬杂质超标的电解液。
虽然上述引用文献1和2中能够制得相对高纯度的钒电解液,但是其过程繁琐,而且对于含量较低的贵金属杂质元素,通过上述方法可能难以去除。引用文献3中采用离子交换树脂富集五价钒然后还原来制备钒电解液,该方法虽然省去了传统工艺中的除杂、沉钒等繁琐的过程,但是原料中的其它金属阳离子也会被离子交换树脂吸附而混入钒电解液中,而该文献中对此没有提及。引用文献4和5公开的方法仅针对特定的杂质离子,难以一次性除去多种金属离子。
因此,目前仍需要操作简单、成本较低且能够一次性去除多种金属离子,尤其是以较为简单的方式除去贵金属离子的纯化电解液的方法。
引用文献列表
引用文献1:CN103515642A
引用文献2:CN103482702A
引用文献3:CN103427104A
引用文献4:CN102683733A
引用文献5:CN103466704A
发明内容
发明要解决的问题
由上述可知,传统的除杂工艺只能去除相对含量较高的普通杂质,而作为初始原料的五水硫酸氧钒或五氧化二钒,其中有些杂质金属离子如贵金属离子含量很低,而且不易除去。传统工艺不但过程相对冗长繁杂,对贵金属金属离子的去除效果并不理想。这不但大大增加了电解液的制作成本,限制了初始原料的选择范围,还会催化液流电池的副反应,产生大量危险气体,使电解液很快失效。
鉴于现有技术以上存在的缺陷,本发明所要解决的技术问题在于利用更为简便的方式高效的去除用于钒液流电池的电解液中的贵金属离子。
用于解决问题的方案
本发明就是针对现今全钒液流电池电解液制备过程中,对初始原料较高的纯度要求,经过本发明发明人努力研究,提出了一种可以使用电化学方法选择性去除对全钒液流电池充放电过程中十分有害的金属元素,尤其是那些使用传统方法难以去除的贵金属元素的纯化方法。
本发明首先提供一种液流电池电解液的纯化方法,其包括如下步骤:提 供具有阳极、阳极电解液、阴极以及隔膜的电解池的步骤:将待纯化电解液通过阴极表面的步骤;其中,所述阴极为金属汞,所述待纯化的电解液在通过阴极表面时,在外接电流作用下,至少在部分阴极表面区域发生还原反应。
根据以上所述的纯化方法,其中所述阴极与所述隔膜之间形成空间,以使得所述待纯化的电解液通过。
根据以上所述的纯化方法,其中所述待纯化的电解液中包含金属离子和V离子。
根据以上所述的纯化方法,其中在汞电极表面,所述金属离子还原电位高于析氢电位。
根据以上所述的纯化方法,其中所述阳极电解液中含有V离子,所述V离子具有低于正五价的价态。
根据以上所述的纯化方法,其中所述阳极为包含碳系材料的阳极,优选的,所述阳极为石墨板和/或石墨毡。
根据以上所述的纯化方法,其中在所述纯化进行完毕或者进行到任意程度时,将阴极取出,并通过蒸馏回收金属汞,继续作为阴极材料循环使用。
另外,本发明还提供一种液流电池电解液的纯化装置,其特征在于,包括如下结构:电解池;阴极物质导入/导出口,其中,所述电解池包括阳极、阳极电解液、阴极以及隔膜,所述阴极为金属汞,并且在阴极表面与隔膜之间形成空间,所述空间能够容纳待纯化的电解液或者能够使得待纯化的电解液通过。
根据以上所述的纯化装置,其特征在于,所述纯化装置可与制备待纯化的电解液的装置相连。
发明的效果
本发明的液流电池电解液的纯化方法及其装置能够实现如下的技术效 果:
(1)本发明的上述纯化液流电池电解液的方法为电化学方法,可以简单有效的选择性除去有害的贵金属离子,避免了有害的副反应并且大大降低了电解液的生产成本,极大拓宽了初始原料的选择范围。本发明的纯化方法对降低整体电池系统成本和增加电解液的寿命具有极高的实际应用价值。
(2)本发明的纯化装置可与制备待纯化的电解液的装置相连,从而从低成本原料通过简单的装置和操作一次性得到纯化的高纯度电解液。
(3)本发明利用液体金属汞作为电解电极,存在于待纯化液流电池电解液中的贵金属离子在电解过程中与金属汞形成汞齐,从而在后续处理金属汞与汞齐混合物时,允许通过蒸馏的分类方式回收金属汞,回收得到的金属汞可以继续回到本发明纯化装置中的阴极重复使用。因此,这样的方法能够实现阴极的金属汞重复使用,并且回收金属汞简单易操作。
图1为示出本发明的用于纯化液流电池电解液的装置的示意图。
<第一实施方式>
本发明的第一实施方式中,提供了一种液流电池电解液的纯化方法,其特征在于,包括如下步骤:
提供具有阳极、阳极电解液、阴极以及隔膜的电解池的步骤:
将待纯化电解液通过阴极表面的步骤;
其中,所述阴极为金属汞,所述待纯化的电解液在通过阴极表面时,在外接电流作用下,至少在部分阴极表面区域发生还原反应。
阳极以及阳极电解液
在本发明的实施方案中,所述阳极包括阳极材料。所述阳极材料可以包括具有多孔结构的碳系材料,同时这些孔能够形成容纳或允许电解液流动的连通结构。所述多孔结构可以通过发泡的方法形成或者以纺织或非纺织的方法来形成。所述的非纺织的方法,例如可以通过碳系纤维丝的叠加、压缩而构成,或者通过将静电纺丝工艺形成的纤维丝进行加工而得到具有一定形状的多孔状纤维聚集体。典型地,本发明中的阳极材料可以选自:例如碳毡、碳纸、碳纤维、石墨板、石墨毡等,优选石墨板和/或石墨毡。
对于阳极电解液,适合本发明的阳极电解液为含有低于+5价的价态的V离子的钒电解液,例如可包括+4价V离子、+3价V离子、+2价V离子或其混合物。电解液为钒的强酸溶液,所述的强酸可以选自硫酸或盐酸。关于阳极电解液的制备方法也没有特别限定,可使用本领域常规的方法来制备。
在电解过程中,在阳极材料表面,阳极电解液中的钒离子失去电子而被氧化成为更高价态的钒离子。
隔膜
适用于本发明的隔膜允许离子性物质穿过,合适的用于隔膜的膜材料包括聚合物材质隔膜或者包含聚合物以及无机物的复合隔膜。在一些实施方案中,隔膜可以包含纺织或无纺塑料的片,其具有以异质方式(如共挤出)或同质方式(如辐射接枝)嵌入的活性离子交换材料如树脂或官能度。在一些实施方案中,隔膜可以具有高电流效率Ev和高库伦效率E
I,并且可以设计为在仍然促进离子传递的同时将通过该膜的质量传递限制为最小的多孔膜。在一些实施方案中,隔膜可以由聚烯烃材料或氟化的聚合物制成,并且可以具有指定的厚度和孔径。在一些实施方案中,隔膜可以为质子交换膜、阴离子交换膜、阳离子交换膜等。例如,可使用购自美国杜邦公司的NAFION-117膜。一个具有制造这些膜和与所公开的实施方案一致的其他膜的能力的制造商是Daramic Microporous Products,L.P.,N.Community House Rd.,Suite35, Charlotte,NC28277。在某些实施方案中,隔膜可以是非选择性微孔塑料隔离体,其也由Daramic Microporous Products L.P制造。
阴极以及待纯化的钒液流电池电解液
本发明中,使用液体金属汞作为阴极。并且,在隔膜与阴极之间形成空间。在所述空间中,允许待纯化的钒液流电池电解液通过。
对于本发明的待纯化的钒液流电池电解液,可以使用完全未经过纯化的电解液,也可以使用经过纯化而去除或部分去除了Cr、Si、Fe、Al、K、Na等元素的电解液。上述待纯化的电解液中,含有其他的难以通过传统纯化方法而去除的金属元素,尤其是贵金属元素,例如银、金、铂等元素。同时,对于本发明的纯化方法并不局限于上述贵金属元素,只要是该金属离子的还原电位高于析氢电位并且可以与汞形成汞齐即可以通过本发明的方法而被清除。
在电解过程中,待纯化的钒液流电池电解液流经金属汞的表面,在外接电流作用下,在汞电极表面被还原为金属单质,进一步,这些金属单质与金属汞进行合金化,形成汞齐。当电解反应进行到一定程度时,将阴极中的金属汞与汞齐的混合物排出。
对于上述排除的混合物进行蒸馏处理,没有形成汞齐的金属汞经纯化回收,汞齐经过富集和纯化处理,进行回收。进一步,上述经过回收的金属汞被重新导回阴极而被再次循环利用。
待纯化的钒液流电池电解液在隔膜与金属汞所形成的空间内进行流动从而完成上述反应。在本发明的优选的一些实施方案中,为了扩大金属汞与待纯化电解液的接触面积,可以将金属汞进行多层布置。
<第二实施方式>
本发明的第二实施方式涉及一种液流电池电解液的纯化装置,包括如下结构:
电解池;
阴极物质导入/导出口,
其中,所述电解池包括阳极、阴极以及隔膜,
所述阴极为金属汞,并且
在阴极表面与隔膜之间形成空间,所述空间能够容纳待纯化的电解液或者能够使得待纯化的电解液通过。
所述电解池由隔膜分隔成阳极部分和阴极部分,阳极部分中包括阳极材料,所述阳极材料与本发明的第一实施方式中的阳极材料相同。
所述阴极部分包括阴极以及隔膜与所述阴极之间形成的空间。所述隔膜和阴极与本发明第一实施方式中的描述相同。对于隔膜与阴极之间形成的空间,只要是能够提供待纯化的电解液的流动通道以及使其中的金属离子进行还原反应就没有特别的限定。在本发明优选的实施方案中,将阴极设置为多层阴极,以使得单位时间内更多的经过阴极表面的待纯化的电解液量增加,提高纯化效率。
在本发明所提供的液流电池电解液的纯化装置的阴极部分包括阴极物质的导入口和导出口。优选的,将导出口设置在阴极部分的最下方,将导入口设置在位置高于导出口的位置即可。在纯化过程进行一定时间后,需要将含有汞齐的阴极进行处理,则通过导出口可以方便的将阴极物质导出。进而,导出的阴极物质进入到蒸馏设备中。
对于蒸馏设备,没有特别的限定,可以使用本领域常规的用于金属汞蒸馏的设备。蒸馏出的金属汞进行回收或者经由管道和导入口直接回到上述液流电池电解液的纯化装置中。这样的操作实现了金属汞的循环使用,有利于提高整个过程的效率。
以下参考附图更加详细地说明本发明的钒液流电池电解液的纯化方法。
图1所示的纯化装置中,设置有电解池和阴极物质导入/导出口。所述电解池包括上侧的阳极、下侧的阴极、存在于阳极与阴极之间的隔膜、以及在 阴极表面与隔膜之间的空间。
另外,虽然图1中未示出,但是本发明的纯化装置还包括:电源如直流稳压电源(图1中未示出),其中阳极和阴极分别与电源的正极和负极连接;容纳阳极电解液的容器;容纳阴极电解液(即待纯化电解液)的容器;容纳金属汞的容器;分别与阳极电解液和阴极电解液连接的循环泵等。
在本发明的实施方案中,阴极是一个空腔。在纯化电解液时,从图1所示的导入/导出口导入金属汞作为阴极。
阴极与阳极通过隔膜分隔。
在本发明的实施方案中,阳极电解液与本发明第一实施方式中的描述相同。
在本发明的实施方案中,使用待纯化的电解液作为阴极电解液。所述待纯化的电解液为含有金属离子和V离子的电解液。其中,金属离子没有特别限定,例如可选自Au离子、Ag离子、Pt离子、Cu离子、Zn离子、Sn离子、Ni离子等中的一种或多种,如上文所述,本发明技术方案特别适用于Au离子、Ag离子、Pt离子等的贵金属离子的去除。
关于待纯化的电解液的制备方法没有特别限定,可使用本领域常规的方法制备,只要其中含有上述的金属离子和V离子即可。关于待纯化电解液中的V离子的价态没有特别限定,可为+2价至+5价的任何价态。
具体地,通过使用含有贵金属杂质离子的低纯度V
2O
5为原料,通过电化学-化学法连续地生产含有V
2+与VO
2+的盐酸溶液的电解液。在具体操作中,可将该方法中容纳含有V
2+的盐酸溶液与含有VO
2+的盐酸溶液的混合溶液(即待纯化电解液)的混合罐用作本发明的容纳待纯化电解液的容器,由此从该方法制得的电解液可直接通过本发明的纯化装置进行纯化。上述方法与本发明方法的联用的优点在于,可以从低成本的低纯度原料V
2O
5通过简单的操作一次性得到高纯度的电解液。
因此,本发明的纯化装置的重要特征在于,其可与其他的待纯化电解液 制备装置连接,将由所述电解液制备装置制备的电解液作为本发明的阴极电极液,从而可以由低纯度原料一次性制得高纯度电解液。
在纯化电解液时,可通过循环泵使如上所述的阳极电解液以受控的方式流经阳极。例如,可将流动速度控制为0.1-10L/min。阳极材料中的相互连通的多孔通道为上述流动提供流动空间,多孔的设置可以提供更大的反应表面积,可以使得上述电解液尽可能的与阳极材料具有更多的反应表面。
在阳极电解液以受控的方式流经阳极的同时,从容纳有含V离子和杂质金属离子的待纯化电解液的容器,通过循环泵将待纯化电解液作为阴极电解液以受控的方式通过隔膜与阴极表面之间的空间。待纯化电解液的流动速度可控制为0.1-10L/min。从充分地除去金属杂质离子的观点,该流动速度优选为1-5L/min。
然后,接通电源(图1中未示出),其中阳极和阴极分别与电源的正极和负极连接,从而对电解液进行充电。由此,阳极电解液中低于+5价的价态的V离子在阳极表面发生氧化反应而生成更高价态的V离子,反应式如下所示:
阳极反应:V
m+-ne
-→V
(m+n)+
同时,待纯化电解液中的金属离子至少在部分阴极表面区域发生还原反应而形成金属,反应式如下所示:
阴极反应:M
n++ne
-→M
以上的总反应可以表示为:
总反应:V
m++M
n+→M+V
(m+n)+
上述反应式中,V
m+表示+m价的V离子,M
n+表示待纯化电解液中的+n价的杂质金属离子,m为小于5的数,n为1或2,且m+n小于等于5。
另外,虽然没有示出反应式,但是待纯化电解液中的V离子也会在阴极发生反应而形成更低价态的V离子。因此,需要控制金属离子的还原电位高 于V
2+,从而使得不会有钒沉淀。更进一步,需要控制金属离子的还原电位高于析氢电位,从而使得在还原过程中不会有氢气产生。汞电极的优点在于大大降低了析氢电位,使得氢气很难产生,从而一些不易被还原的金属可以形成汞齐被除去。
在纯化时电解液时,根据具体的电极面积,可将电流控制在数十到数百安培,电压控制在1.5-2V。
如上所述,在纯化过程中,待纯化电解液中的金属离子通过在汞电极表面发生还原反应而形成金属,并且该金属与阴极金属汞形成汞齐,从而将金属离子从待纯化电解液中除去。
关于纯化后的电解液中的金属杂质离子含量,可根据实际需要进行控制,通常为10ppm以下,优选为5ppm以下,更优选为1ppm以下。
在纯化进行完毕即杂质离子含量已满足要求或者进行到任意程度时,可以将金属汞从导入/导出口取出,并进行蒸馏以分为纯汞和金属残留物。而得到的纯汞可以作为阴极材料循环使用。关于蒸馏,通过通常的蒸馏操作进行即可。
另外,纯化可根据需要进行一次或多次,直至电解液中的金属杂质离子的含量满足要求。当需要纯化多次时,可将待纯化电解液用循环泵循环通过隔膜与阴极表面之间的空间。
由上述纯化电解液的方法的说明可知,本发明的纯化方法能够简单有效的选择性除去有害的金属离子,大大降低了电解液的生产成本,极大拓宽了初始原料的选择范围。并且,重要的是,本发明的纯化装置可与另一专利中的电解液制备装置相连,由低成本的低纯度V
2O
5一次性得到高纯度的钒电解液。
实施例
以5L/min的流速通入2.5mol/L的V
3+/V
2+盐酸溶液100L,使之流过石墨毡和石墨双极板组成的电解池阳极;以5L/min的流速通入2.5mol/L的V
3+/V
4+混 合盐酸溶液100L,使之流过由空腔和金属汞构成的电解池阴极,其中Ag
+含量为150ppm,Au
+含量为80ppm,Pt
+含量为20ppm,Cu
2+含量为200ppm。对电解池施加40mA/cm
2的电流,从而使得阳极的V
2+发生氧化反应,阴极的杂质金属离子发生还原反应。利用泵使得阳极和阴极的电解液循环流过电解池五次,以达到最大限度去除杂质金属离子的目的。纯化后的阴极电解液各杂质含量均低于1ppm。
除非本申请中另外要求,在整个说明书和权利要求书中,词语“包括(comprise)”及其英文变体例如“包括(comprises)”和“包括(comprising)”应解释为开放式的、含括式的意义,即“包括但不限于”。
应当理解,在本申请说明书和附加的权利要求书中用到的单数形式的冠词“一”(对应于英文“a”、“an”和“the”)包括复数的对象,除非文中另外明确地规定。还应当理解,术语“或”通常以其包括“和/或”的含义而使用,除非文中另外明确地规定。
本发明公开的上述实施方案仅是说明性的并且用于教导本领域技术人员实施本发明的一般方法的目的。在不脱离本发明权利要求所述的精神和范围的情况下可以对本文表述的要素、材料等进行改变。因此,对本发明的实施方案的进一步修改在考虑到此说明书后对于本领域技术人员是显而易见的。
Claims (10)
- 一种液流电池电解液的纯化方法,其特征在于,包括如下步骤:提供具有阳极、阳极电解液、阴极以及隔膜的电解池的步骤:将待纯化的电解液通过阴极表面的步骤;其中,所述阴极为金属汞,所述待纯化的电解液在通过阴极表面时,在外接电流作用下,至少在部分阴极表面区域发生还原反应。
- 根据权利要求1所述的纯化方法,其特征在于,所述阴极与所述隔膜之间形成空间,以使得所述待纯化的电解液通过。
- 根据权利要求1或2所述的纯化方法,其特征在于,所述待纯化的电解液中包含金属离子和V离子。
- 根据权利要求3所述的纯化方法,其特征在于,在汞电极表面,所述金属离子还原电位高于析氢电位。
- 根据权利要求1-4任一项所述的纯化方法,其特征在于,所述阳极电解液中含有V离子,所述V离子具有低于正五价的价态。
- 根据权利要求1-5任一项所述的纯化方法,其特征在于,所述阳极为包含碳系材料的阳极,优选的,所述阳极为石墨板和/或石墨毡。
- 根据权利要求1-6任一项所述的纯化方法,其特征在于,在所述纯化进行完毕或者进行到任意程度时,将阴极取出,并通过蒸馏提纯及回收金属汞,继续作为阴极材料循环使用。
- 一种液流电池电解液的纯化装置,其特征在于,包括如下结构:电解池;阴极物质导入/导出口,其中,所述电解池包括阳极、阴极以及隔膜,所述阴极为金属汞,并且在阴极表面与隔膜之间形成空间,所述空间能够容纳待纯化的电解液或者能够使得待纯化的电解液通过。
- 根据权利要求8所述的纯化装置,其特征在于,所述阳极为包含碳系 材料的阳极,优选的,所述阳极为石墨板和/或石墨毡。
- 根据权利要求8或9所述的纯化装置,其特征在于,所述纯化装置可与制备待纯化的电解液的装置相连。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810973323.7A CN110858655B (zh) | 2018-08-24 | 2018-08-24 | 液流电池电解液的纯化方法和纯化装置 |
CN201810973323.7 | 2018-08-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020038383A1 true WO2020038383A1 (zh) | 2020-02-27 |
Family
ID=69593084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/101694 WO2020038383A1 (zh) | 2018-08-24 | 2019-08-21 | 液流电池电解液的纯化方法和纯化装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110858655B (zh) |
WO (1) | WO2020038383A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111430743B (zh) * | 2020-03-31 | 2021-06-01 | 湖南钒谷新能源技术有限公司 | 钒电池电解液还原装置 |
CN113564680B (zh) | 2021-09-26 | 2021-12-07 | 江苏泛宇能源有限公司 | 铁铬电解液的纯化方法及由此获得的铁铬电解液 |
CN117080491B (zh) * | 2023-10-18 | 2024-02-09 | 液流储能科技有限公司 | 液流电池电解液的纯化方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4191620A (en) * | 1978-11-13 | 1980-03-04 | Union Oil Company Of California | Electrochemical conversion of sulfur-containing anions to sulfur |
CN103466704A (zh) * | 2013-08-23 | 2013-12-25 | 攀钢集团攀枝花钢铁研究院有限公司 | 高纯硫酸氧钒的制备方法及其电解液和钒电池 |
CN103482702A (zh) * | 2013-09-03 | 2014-01-01 | 攀钢集团攀枝花钢铁研究院有限公司 | 制备高纯度钒氧化物的方法及钒电池用高纯度电解液 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103515641B (zh) * | 2012-06-18 | 2016-04-13 | 攀钢集团攀枝花钢铁研究院有限公司 | 一种三价钒离子电解液及其制备方法和一种钒电池 |
CN103515642A (zh) * | 2012-06-25 | 2014-01-15 | 中国人民解放军63971部队 | 一种高纯度高浓度钒电池电解液的制备方法 |
US8871163B2 (en) * | 2012-09-18 | 2014-10-28 | American Vanadium Corp. | Vanadium oxide purification process |
CN103066312A (zh) * | 2012-12-21 | 2013-04-24 | 攀钢集团攀枝花钢铁研究院有限公司 | 一种钒液流电池用电解液的制备方法 |
-
2018
- 2018-08-24 CN CN201810973323.7A patent/CN110858655B/zh active Active
-
2019
- 2019-08-21 WO PCT/CN2019/101694 patent/WO2020038383A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4191620A (en) * | 1978-11-13 | 1980-03-04 | Union Oil Company Of California | Electrochemical conversion of sulfur-containing anions to sulfur |
CN103466704A (zh) * | 2013-08-23 | 2013-12-25 | 攀钢集团攀枝花钢铁研究院有限公司 | 高纯硫酸氧钒的制备方法及其电解液和钒电池 |
CN103482702A (zh) * | 2013-09-03 | 2014-01-01 | 攀钢集团攀枝花钢铁研究院有限公司 | 制备高纯度钒氧化物的方法及钒电池用高纯度电解液 |
Non-Patent Citations (2)
Title |
---|
GAO, HONG ET AL.: "Section 4, Mercury Cathode Separation", INSTRUMENT ANALYSIS, 31 December 1956 (1956-12-31), pages 79 - 82 * |
MITCHELL J. W.: "Purification of Analytical Reagents", TALANTA, vol. 29, no. 11, 31 December 1982 (1982-12-31), pages 993 - 1002, XP026749119, ISSN: 0039-9140, DOI: 10.1016/0039-9140(82)80240-3 * |
Also Published As
Publication number | Publication date |
---|---|
CN110858655A (zh) | 2020-03-03 |
CN110858655B (zh) | 2021-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102559772B1 (ko) | 리튬 함유 물질 처리 방법 | |
JP5429658B2 (ja) | リチウム同位体分離濃縮法および装置、並びに6Li同位体または7Li同位体高濃縮回収システムおよび回収方法 | |
WO2020038383A1 (zh) | 液流电池电解液的纯化方法和纯化装置 | |
KR101126286B1 (ko) | 고순도 탄산리튬의 제조 방법 | |
CN113564680B (zh) | 铁铬电解液的纯化方法及由此获得的铁铬电解液 | |
JP2012200666A (ja) | Li溶液回収装置及びLi溶液回収方法 | |
CN111446478B (zh) | 一种以富钒液为原料制备钒电池电解液的方法 | |
CN106186185A (zh) | 一种工业含镍废水回收制备高纯度镍盐的方法 | |
CN116837229B (zh) | 一种基于流动电极电化学选择性提锂的系统及方法和应用 | |
Shan et al. | Coupling redox flow desalination with lithium recovery from spent lithium-ion batteries | |
US20230201764A1 (en) | Device and method based on electrically-driven chemical carbon pump combined cycle for diluted carbon source | |
CN109970546B (zh) | 一种电子级柠檬酸的制备方法及其装置 | |
CN117043365A (zh) | 一种电脱嵌盐湖提锂用陶瓷膜电解槽、电脱嵌盐湖提锂的电解装置和方法 | |
CN112047546A (zh) | 一种阳极氧化含硝态氮的废水处理工艺 | |
CN114039117B (zh) | 一种废旧磷酸铁锂电池中锂的选择性回收方法 | |
CN115411326A (zh) | 一种以偏钒酸铵为原料的钒电解液及其制备方法 | |
CN114534501A (zh) | 一种用于分离硝酸和乙酸的电渗析装置和方法 | |
CN108288736B (zh) | 一种废旧铅酸蓄电池硫酸除氯系统及利用其除氯方法 | |
WO2019206121A1 (zh) | 液流电池电解液的制备方法和制备装置 | |
WO2024192617A1 (zh) | 一种提锂装置及提锂方法 | |
CN212077164U (zh) | 一种电能补给型电化学反应器 | |
JP7164882B2 (ja) | 水素同位体が濃縮された水または水溶液の製造方法、水素同位体濃度が低減された水素ガスの製造方法及び製造装置 | |
CN219099334U (zh) | 一种可移动式双氧水制备装置 | |
CN115612838B (zh) | 一种用于盐湖选择性提锂的装置及其应用 | |
CN217780824U (zh) | 一种镁空气海水淡化电池装置及并网设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19850926 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19850926 Country of ref document: EP Kind code of ref document: A1 |