WO2020038180A1 - 海绵状金纳米粒子/石墨相氮化碳复合材料电化学传感器用于氯霉素检测 - Google Patents

海绵状金纳米粒子/石墨相氮化碳复合材料电化学传感器用于氯霉素检测 Download PDF

Info

Publication number
WO2020038180A1
WO2020038180A1 PCT/CN2019/097805 CN2019097805W WO2020038180A1 WO 2020038180 A1 WO2020038180 A1 WO 2020038180A1 CN 2019097805 W CN2019097805 W CN 2019097805W WO 2020038180 A1 WO2020038180 A1 WO 2020038180A1
Authority
WO
WIPO (PCT)
Prior art keywords
sponge
calcination
chloramphenicol
electrochemical sensor
composite material
Prior art date
Application number
PCT/CN2019/097805
Other languages
English (en)
French (fr)
Inventor
王宗花
袁月环
张菲菲
Original Assignee
青岛大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛大学 filed Critical 青岛大学
Publication of WO2020038180A1 publication Critical patent/WO2020038180A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles

Definitions

  • the disclosure belongs to the field of composite nanomaterial application, and particularly relates to a sponge-like Au / gC 3 N 4 composite material and a preparation method and application thereof.
  • Chloramphenicol is a broad-spectrum antibiotic that inhibits bacterial growth. As an effective antibacterial drug, it has a low cost and can strongly inhibit Gram-negative bacteria such as Escherichia coli and Salmonella, so it is widely used in the breeding industry. Because chloramphenicol has a strong toxic effect on human health, many countries, including China, have banned the use of chloramphenicol in food production animals. At present, there are many methods for detecting chloramphenicol and its derivatives, such as chromatography, capillary zone electrophoresis, enzyme-linked immunosorbent assay, and chemiluminescence. However, the instrument is expensive and the sample processing is tedious and time-consuming. For this reason, low-cost, high-sensitivity and fast detection electrochemical methods have been developed for the detection of chloramphenicol with good detection results.
  • Gold nanoparticle is a kind of nanomaterial with high catalytic activity, which can promote many electrochemical reactions.
  • graphite-phase carbon nitride gC 3 N 4
  • gC 3 N 4 has been widely used in fields such as electrocatalysis and photoelectric detection.
  • gC 3 N 4 has a graphite-like electronic structure, but contains more elements of N than graphene.
  • the surface of gC 3 N 4 produced by thermal polymerization contains more Lewis base sites, so it is more It is easy to construct electrochemical sensors by hydrogen bonding.
  • the present disclosure mainly relates to a sponge-like Au / gC 3 N 4 composite material and a preparation method and application thereof.
  • a method for preparing a sponge-like Au / gC 3 N 4 composite material includes the following steps:
  • the carboxyl-modified gC 3 N 4 solid is dispersed in methanol and mixed with an aqueous solution of chloroauric acid, and subjected to ultrasonic treatment. After the end of the ultrasonication, a heating reflux treatment is performed. After the reflux is completed, the sponge-like Au / is obtained. gC 3 N 4 composite material.
  • a sponge-like Au / gC 3 N 4 composite material prepared by using the above method is provided.
  • an electrochemical sensor and a method of manufacturing the same including a substrate electrode, and,
  • the sponge-like Au / gC 3 N 4 composite material is attached to the base electrode.
  • an application of the sponge-like Au / gC 3 N 4 composite material or the electrochemical sensor in detecting chloramphenicol is provided.
  • a method for detecting chloramphenicol includes using the sponge-like Au / gC 3 N 4 composite material or the electrochemical sensor for detection. step.
  • the Au / gC 3 N 4 composite material in the present disclosure presents a fluffy sponge-like structure and is inlaid with gold nanoparticles, which is due to its self-assembly under the action of gC 3 N 4 under organic solvents.
  • the sheet structure from which the massive substrate was peeled was curled to form a sponge-like structure.
  • a method for preparing a shaped Au / gC 3 N 4 composite material includes the following steps:
  • the carboxyl-modified gC 3 N 4 solid is dispersed in methanol and mixed with an aqueous solution of chloroauric acid, and subjected to ultrasonic treatment. After the end of the ultrasonication, a heating reflux treatment is performed. After the reflux is completed, the sponge-like Au / is obtained. gC 3 N 4 composite material.
  • the raw material in order to make the yield of gC 3 N 4 solids higher, is melamine.
  • a secondary calcination method is used. If the melamine is directly calcined in the air, part of the melamine is oxidized by oxygen in the air to generate CO 2 .
  • the inert gas is argon.
  • the calcination temperature is 500 to 600 ° C. and the heating rate is 2.5 to 3.5 ° C. / min.
  • the calcination temperature is 550 ° C, and the heating rate is 3 ° C / min.
  • the calcination time is 4.5 to 5.5 h.
  • the calcination time is 5h.
  • the calcination time is 1.5 to 2.5 h.
  • the calcination time is 2h.
  • the product after primary calcination is ground into a powder and then subjected to secondary calcination.
  • the carboxyl-modified gC 3 N 4 solid has a nanosheet structure, and the fluffy sponge-like rod-like structure can be obtained after the gC 3 N 4 nanosheet is subjected to reflux treatment.
  • GC 3 N 4 has a larger specific surface area, and a rich network structure can enable gold nanoparticles to be uniformly loaded in their pores, and also can better fix precious metal nanoparticles.
  • the feed mass ratio of the carboxy-modified gC 3 N 4 , methanol, and chloroauric acid is (8-12): (2.5-5): (1-2), It is further 10: 3: 1.
  • the concentration of the chloroauric acid aqueous solution is 0.8 to 1.2 mg / ml.
  • the ultrasonic time is 0.5 to 1.5 h.
  • the ultrasound time is 1 h.
  • the reflux conditions are: refluxing stirring at 70-90 ° C. for 45-50 hours.
  • the reflux stirring time is 48 h.
  • a sponge-like composite material Au / gC 3 N 4 is obtained by refluxing chloroauric acid and gC 3 N 4 nanosheets together.
  • Au nanoparticles can enter the sponge-like gC 3 N 4 material as an intercalation metal to prevent them from stacking.
  • the sponge-like gC 3 N 4 material can promote the uniform loading of Au nanoparticles and save the amount of precious metals. It can effectively reduce the particle size of precious metals and increase its specific surface area.
  • the spongy gC 3 N 4 material can loosen porous channels and can adsorb more small biological molecules, which is more conducive to the electrochemical reaction of biological molecules. It was used in the electrochemical detection of chloramphenicol, and the results showed that the composite material had excellent catalytic performance for chloramphenicol.
  • the synthesis of gold nanoparticles does not require the addition of other reducing agents, and the heating generated by the carbon nitride during the curling process is used to induce the reduction of chloroauric acid to gold nanoparticles, followed by gold nanoparticles.
  • the intercalation metal enters the carbon nitride layer to form the material into a three-dimensional structure, which effectively increases the surface area of the composite material.
  • a sponge-like Au / gC 3 N 4 composite material prepared by using the above method is provided.
  • the shape of the sponge-like structure in the present disclosure is: it is peeled off from a block-like structure, but does not form a sheet-like structure.
  • the loading amount of gold nanoparticles in the composite material is: the total mass of nano-gold supported on 100 mg of gC 3 N 4 is 7-12 mg.
  • an electrochemical sensor including a substrate electrode, and,
  • the sponge-like Au / gC 3 N 4 composite material is attached to the base electrode.
  • the base electrode is a glassy carbon electrode.
  • a method for preparing the electrochemical sensor includes the following steps:
  • the sponge-like Au / gC 3 N 4 composite was washed with water, then dried, and then dispersed with water to a dispersion having a concentration of 1 to 5 mg / ml.
  • the base electrode was firstly subjected to aluminum powder. After grinding, ultrasonic cleaning was performed with ethanol and water, and after drying with nitrogen, 4-8 ⁇ L of the dispersion was applied to the base electrode to prepare an Au / gC 3 N 4 modified electrode, which is an electrochemical sensor.
  • the obtained composite material was washed with secondary water, dried in a vacuum drying box, and dispersed into a dispersion liquid with a concentration of 1 mg / ml with secondary water.
  • the base electrode was firstly subjected to aluminum powder. After grinding, ultrasonic cleaning was performed with ethanol and secondary water, and after drying with nitrogen, 6 ⁇ L of the above dispersion was applied to the substrate electrode to prepare an Au / gC 3 N 4 modified electrode, which is an electrochemical sensor.
  • an application of the sponge-like Au / gC 3 N 4 composite material or an electrochemical sensor in detecting chloramphenicol is provided.
  • a method for detecting chloramphenicol includes a step of detecting using the sponge-like Au / gC 3 N 4 composite material or the electrochemical sensor.
  • the method for detecting chloramphenicol specifically includes the following steps:
  • Working curve drawing Place the electrochemical sensor in the chloramphenicol standard solutions of different concentrations and perform square wave voltammetry to obtain the response peak currents of chloramphenicol standard solutions of different concentrations. Concentration and response peak current, draw a linear relationship curve;
  • Detection of samples Placing a sponge-shaped Au / gC 3 N 4 composite electrode electrochemical sensor in a sample to be tested and performing a square wave voltammetry test to obtain the response peak current of the sample to be tested, and then according to the linear relationship Curve to get the concentration of chloramphenicol in the test sample.
  • the solid obtained above was dispersed in methanol, 1 ml (1 mg / ml) of a chloroauric acid aqueous solution was added, and ultrasonication was performed for about 1 hour, so that the chloroauric acid aqueous solution was uniformly adsorbed on the carrier. After the end of the ultrasound, the system was transferred to a three-necked flask and stirred at 80 ° C under reflux for 48 hours. After the end of the reflux, the mixture was centrifuged and washed at 90 ° C under vacuum overnight to obtain a pale purple solid powder (gold is lavender) Disperse it in an aqueous solution and set aside.
  • the Au / gC 3 N 4 composite material has a fluffy sponge-like structure and is inlaid with gold nanoparticles. This is due to the self-assembly of gC 3 N 4 under the action of organic solvents, and the sheet structure is curled to form a sponge-like structure.
  • the mechanism is: Au (III) ions are adsorbed on the surface of gC 3 N 4 with negative charge by partially replacing the Cl - ligand and serve as the nucleation center of AuNPs, among which gC 3 N 4 surface functional groups and AuCl 4 - redox reaction occurs between, thereby generating a surface AuNPs in 3 N 4 gC.
  • the glassy carbon electrode was first polished with an aluminum powder having a diameter of 0.3 ⁇ m for about 3 minutes, and then polished with an aluminum powder having a diameter of 0.05 ⁇ m for 5 minutes. Then, ultrasonic cleaning was performed with ethanol and secondary water respectively, and after drying with nitrogen, gC 3 N 4 modified electrode and Au / gC 3 N 4 modified electrode were prepared to perform cyclic voltammetry on chloramphenicol. An Au / gC 3 N 4 modified electrode was prepared to perform square wave voltammetry on chloramphenicol.
  • Example 1 Using gC 3 N 4 and HAuCl 4 synthesized in Example 1 as starting materials, weigh 1.5 g of gC 3 N 4 and add 100 mL of deionized water; under stirring, add 1 mg / ml HAuCl 4 and continue stirring for 30 minutes. Trisodium citrate solution was added until the reaction was complete. Then, the reaction mixture solution was separated, washed 5 times with deionized water, and dried at 90 ° C. for 10 hours to obtain a sheet-shaped Au / gC 3 N 4 product.
  • the solid obtained above was dispersed in methanol, and 1 ml (1.2 mg / ml) of a chloroauric acid aqueous solution was added, followed by sonication for about 1 hour, so that the chloroauric acid aqueous solution was uniformly adsorbed on the carrier. After the sonication, the system was transferred to a three-necked flask and stirred at 90 ° C under reflux for 48 hours. After the reflux was completed, the mixture was centrifuged and washed at 90 ° C under vacuum overnight to obtain a pale purple solid powder (gold is lavender) That is Au / gC 3 N 4 composite material.
  • the solid obtained above was dispersed in methanol, 1 ml (1 mg / ml) of a chloroauric acid aqueous solution was added, and ultrasonication was performed for about 1 hour, so that the chloroauric acid aqueous solution was uniformly adsorbed on the carrier. After the end of the ultrasound, the system was transferred to a three-necked flask and stirred at 70 ° C for 50 hours under reflux. After the end of the reflux, the mixture was centrifuged and washed at 90 ° C under vacuum overnight to obtain a pale purple solid powder (gold is lavender). Disperse it in an aqueous solution and set aside.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nanotechnology (AREA)
  • Catalysts (AREA)
  • Powder Metallurgy (AREA)

Abstract

本申请制备了一种新型的海绵状Au/g-C3N4复合材料电化学传感器。金纳米颗粒具有优异的电催化性能,通过与石墨相氮化碳共同回流得到海绵状的复合材料,其导电性得到明显的改善,同时对氯霉素的电化学行为具有良好的促进作用。通过电化学表征发现,海绵状金/氮化碳复合材料对氯霉素具有优异的催化性能,其具有较宽的检测范围,有望应用于食品中氯霉素残留的检测。

Description

海绵状金纳米粒子/石墨相氮化碳复合材料电化学传感器用于氯霉素检测 技术领域
本公开属于复合纳米材料应用领域,具体涉及一种海绵状Au/g-C 3N 4复合材料及其制备方法与应用。
背景技术
这里的陈述仅提供与本公开有关的背景信息,而不必然构成现有技术。
氯霉素是一种具有抑制细菌生长作用的广谱抗生素。作为一种有效的抗菌药物,其具有较低的成本,能够对大肠埃希菌和沙门菌等革兰阴性菌有较强的抑制作用,因此被广泛应用在养殖业。氯霉素由于对人类的健康具有较强的毒性作用,包括中国在内的许多国家已经禁止将氯霉素应用食品生产动物。目前用于氯霉素及其衍生物检测的方法有很多,如色谱法,毛细管区带电泳,酶联免疫法和化学发光法等。但其仪器较为昂贵,且样品处理繁琐耗时较长。为此,低成本、高灵敏度及检测快捷的电化学方法被开发出来,用于检测氯霉素,具有良好的检测效果。
金纳米粒子是一种具有高催化活性的纳米材料,对于许多电化学反应具有良好的促进作用,但其由于粒径较小,容易发生聚沉,因此,如何促使其分散均匀是一个亟待解决的问题。近年来,石墨相氮化碳(g-C 3N 4)作为一种典型的二维材料而被广泛应用于电催化、光电检测等领域。g-C 3N 4具有类石墨相的电子结构,但相较于石墨烯而言,含有更加丰富的N元素,通过热聚合反应生成的g-C 3N 4表面含有较多的Lewis碱位点,因此更容易通过氢键键合作用构建电化学传感器。
发明内容
针对现有技术,本公开主要涉及一种海绵状Au/g-C 3N 4复合材料及其制备方法与应用。
首先,在本公开的一个或一些实施方式中,提供一种海绵状Au/g-C 3N 4复合材料的制备方法,该方法包括以下步骤:
g-C 3N 4的制备:以二氰二胺、尿素或三聚氰胺为原料,在惰性气体的气氛下进行一次煅烧得到g-C 3N 4固体;然后在空气中进行二次煅烧得到羧基修饰的g-C 3N 4固体;
海绵状Au/g-C 3N 4复合材料的制备:
将所述羧基修饰的g-C 3N 4固体分散至甲醇中,并与氯金酸水溶液混合,超声处理,超声结束后进行加热回流处理,回流结束后,分离、洗涤和干燥,得到海绵状Au/g-C 3N 4复合材料。
其次,在本公开的又一个或一些实施方式中,提供采用上述方法制备得到的海绵状Au/g-C 3N 4复合材料。
以及,在本公开的又一个或一些实施方式中,提供一种电化学传感器及其制备方法,该电化学传感器包括基底电极,以及,
上述海绵状Au/g-C 3N 4复合材料,该复合材料附着在所述基底电极上。
再次,在本公开的又一个或一些实施方式中,提供所述海绵状Au/g-C 3N 4复合材料或所述电化学传感器在检测氯霉素中的应用。
最后,在本公开的又一个或一些实施方式中,提供了一种检测氯霉素的方法,该方法包括采用所述海绵状Au/g-C 3N 4复合材料或所述电化学传感器进行检测的步骤。
本公开中的一个技术方案具有如下有益效果:
(1)本公开中的Au/g-C 3N 4复合材料呈现为蓬松的海绵状结构,同时镶嵌有金纳米颗粒,这是由于其在g-C 3N 4在有机溶剂的作用下发生自组装,未剥离出块状基体的片层结构卷曲形成海绵状结构。
(2)随着氯霉素的广泛使用,准确、快速检测氯霉素成为一个重大的挑战。在本公开中,我们设计制备了一种新型的海绵状Au/g-C 3N 4复合材料电化学传感器。金纳米颗粒具有优异的电催化性能,通过与石墨相氮化碳共同回流得到海绵状的复合材料,其导电性得到明显的改善,同时对氯霉素的电化学行为具有良好的促进作用。通过电化学表征发现,海绵状金/氮化碳复合材料对氯霉素具有优异的催化性能,其具有较宽的检测范围,有望应用于食品中氯霉素残留的检测。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本公开提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本公开所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作和/或它们的组合。
正如背景技术所介绍的,现有技术中氯霉素的检测方法存在一定的不足,为了解决如上的技术问题,本公开提出了一种在本公开的一个或一些实施方式中,提供一种海绵状Au/g-C 3N 4复合材料的制备方法,该方法包括以下步骤:
g-C 3N 4的制备:以二氰二胺、尿素或三聚氰胺为原料,在惰性气体的气氛下进行一次煅烧得到g-C 3N 4固体;然后在空气中进行二次煅烧得到羧基修饰的g-C 3N 4固体;
海绵状Au/g-C 3N 4复合材料的制备:
将所述羧基修饰的g-C 3N 4固体分散至甲醇中,并与氯金酸水溶液混合,超声处理,超声结束后进行加热回流处理,回流结束后,分离、洗涤和干燥,得到海绵状Au/g-C 3N 4复合材料。
在本公开一个或一些具体的实施方式中,为了使g-C 3N 4固体的产率较高,所述原料为三聚氰胺。
在本公开中,为了高效率生成g-C 3N 4固体采用二次煅烧方法,若是在空气中直接煅烧三聚氰胺,部分三聚氰胺会被被空气中的氧氧化生成CO 2
在本公开一个或一些具体的实施方式中,所述惰性气体为氩气。
在本公开一个或一些具体的实施方式中,为得到表面积较大的g-C 3N 4固体,所述一次煅烧或二次煅烧中,煅烧温度为500~600℃,升温速率为2.5~3.5℃/min。
进一步的,所述煅烧温度为550℃,升温速率为3℃/min。
在本公开一个或一些具体的实施方式中,所述一次煅烧中,煅烧时间为4.5~5.5h。
进一步的,所述煅烧时间为5h。
在本公开一个或一些具体的实施方式中,所述二次煅烧中,煅烧时间为1.5~2.5h。
进一步的,所述煅烧时间为2h。
在本公开一个或一些具体的实施方式中,一次煅烧后的产物进行研磨成粉末在进行二次煅烧。
在本公开一个或一些具体的实施方式中,所述羧基修饰的g-C 3N 4固体为纳米片结构,将g-C 3N 4纳米片通过回流处理后可以得到蓬松的类似海绵的棒状结构,处理后的g-C 3N 4具有更大的比表面积,丰富的网络状结构可以使金纳米颗粒在其孔隙中均匀负载,同时也可以更好的固定贵金属纳米颗粒。
在本公开一个或一些具体的实施方式中,所述羧基修饰的g-C 3N 4、甲醇和氯金酸的投料质量比例为(8~12):(2.5~5):(1~2),进一步为10:3:1。
所述氯金酸水溶液的浓度为0.8~1.2mg/ml。
在本公开一个或一些具体的实施方式中,超声时间为0.5~1.5h。
进一步的,所述超声时间为1h。
在本公开一个或一些具体的实施方式中,回流条件为:70-90℃下回流搅拌45~50h。
进一步的,所述回流搅拌时间为48h。
在本公开中,通过将氯金酸和g-C 3N 4纳米片共同回流的方式得到海绵状复合材料Au/g-C 3N 4。Au纳米颗粒可以作为插层金属进入海绵状的g-C 3N 4材料内部,防止其发生堆叠;其次,海绵状的g-C 3N 4材料可以促进Au纳米颗粒的均匀负载,节约贵金属的使用量,同时能够有效地降低贵金属的粒径,增加其比表面积;同时,海绵状的g-C 3N 4材料疏松多孔道,能够吸附更多的生物小分子,更有利于生物分子电化学反应的进行。将其用于氯霉素的电化学检测,结果表明,复合材料对于氯霉素具有优异的催化性能。
在本公开中,合成金纳米颗粒无需加入其他的还原剂,而利用加热回流的方法使氮化碳在卷曲的过程中产生的作用力诱导氯金酸还原成金纳米颗粒,其次金纳米颗粒可以作为插层金属,进入氮化碳层间,使材料形成三维结构,有效的增加了复合材料的表面积。
在本公开的又一个或一些实施方式中,提供采用上述方法制备得到的海绵状Au/g-C 3N 4复合材料。
本公开中的海绵状结构形态为:由块状结构剥离,但并未形成片状结构。
该复合材料中金纳米粒子的负载量为:100mg的g-C 3N 4上负载的纳米金的总质量为7-12-mg。
在本公开的又一个或一些实施方式中,供一种电化学传感器,包括基底电极,以及,
上述海绵状Au/g-C 3N 4复合材料,该复合材料附着在所述基底电极上。
在本公开的一个或一些具体的实施方式中,所述基底电极为玻碳电极。
在本公开的一个或一些实施方式中,所述电化学传感器的制备方法,包括以下步骤:
首先,将所述海绵状Au/g-C 3N 4复合材料采用水进行洗涤,然后干燥,再用水将其分散成浓度为1~5mg/ml的分散液;其次,将基底电极先用铝粉进行打磨,分别采用乙醇和水进行超声清洗,用氮气吹干后,取4~8μL所述分散液滴涂到基底电极上,制备Au/g-C 3N 4修饰电极,即为电化学传感器。
进一步的,首先,将得到的复合材料用二次水洗涤之后,在真空干燥箱中烘干,用二次水分散成浓度为1mg/ml的分散液:其次,将基底电极先用铝粉进行打磨,分别采用乙醇和二次水进行超声清洗,用氮气吹干后,取6μL上述分散液滴涂到基底电极上,制备Au/g-C 3N 4修饰电极,即为电化学传感器。
在本公开的又一个或一些实施方式中,提供所述海绵状Au/g-C 3N 4复合材料或电化学传感器在检测氯霉素中的应用。
在本公开的又一个或一些实施方式中,提供了一种检测氯霉素的方法,该方法包括采用所述海绵状Au/g-C 3N 4复合材料或所述电化学传感器进行检测的步骤。
在本公开一个或一些具体的实施方式中,所述检测氯霉素的方法具体包括以下步骤:
标准溶液的配制:配制一组不同浓度的氯霉素标准溶液;
工作曲线绘制:将电化学传感器置于所述不同浓度的氯霉素标准溶液中进行方波伏安测试,得到不同浓度的氯霉素标准溶液的响应峰电流,再根据氯霉素标准溶液的浓度以及响应峰电流,绘制线性关系曲线;
样品的检测:将海绵状Au/g-C 3N 4复合材料修饰的电极电化学传感器置于待测样品中进行方波伏安测试,得到该待测样品的响应峰电流,再根据所述线性关系曲线,得到待测样品中氯霉素的浓度。
进一步的,所述线性方程为I=0.0112C CAP+6.2318,R 2=0.998,其中,C CAP为氯霉素的浓度。
为了使得本领域技术人员能够更加清楚地了解本公开的技术方案,以下将结合具体的实施例详细说明本公开的技术方案。
实施例1
(1)g-C 3N 4的制备:
称取5g三聚氰胺,在氩气的气氛中,以3℃/min的升温速率加热至550℃,并保持5小时。结束后,使其自然冷却至室温取出,得到浅黄色的块状g-C 3N 4固体。将上述得到的g-C 3N 4固体放于研钵中研磨成粉末,在空气中以3℃/min的升温速率加热至550℃并保持2小时,待自然冷却至室温后取出,得到羧基修饰的g-C 3N 4,呈深黄色。
(2)海绵状复合材料Au/g-C 3N 4的制备:
将上述得到的固体分散在甲醇中,加入1ml(1mg/ml)的氯金酸水溶液,超声约1小时,使氯金酸水溶液均匀的吸附到载体上。超声结束后,将体系转移至三口烧瓶中,在80℃下回流搅拌48小时,回流结束后,离心洗涤,并于90℃下真空过夜,得到淡紫黄色的固体粉末(金为淡紫),将其分散在水溶液中,备用。
Au/g-C 3N 4复合材料呈现为蓬松的海绵状结构,同时镶嵌有金纳米颗粒,这是由于其在g-C 3N 4在有机溶剂的作用下发生自组装,片层结构卷曲形成海绵状结构,对于Au NPs的形成,其机理是:Au(III)离子通过部分取代Cl -配体被吸附在具有负电荷的g-C 3N 4表面,并充当AuNPs的成核中心,其中,g-C 3N 4表面的官能团和AuCl 4 -之间发生了氧化还原反应,从而在g-C 3N 4表面生成AuNPs。
(3)电化学测试:
将玻碳电极先用直径为0.3微米的铝粉打磨约3分钟后,再用直径为0.05微米的铝粉打磨5分钟。然后,分别先用乙醇和二次水进行超声清洗,用氮气吹干后,制备g-C 3N 4修饰电极和Au/g-C 3N 4修饰电极对氯霉素进行循环伏安测试。制备 Au/g-C 3N 4修饰电极对氯霉素进行方波伏安测试。
实验例
以实施例1中合成的g-C 3N 4和HAuCl 4为起始原料,称取1.5g的g-C 3N 4,加去离子水100mL;在搅拌的条件下,向上述溶液中逐滴加入1mg/ml HAuCl 4,继续搅拌30分钟。加入柠檬酸三钠溶液,直到反应完全。然后将反应混合物溶液分离后,用去离子水洗涤5次,在90℃条件下干燥10小时得到片状的Au/g-C 3N 4产物。在氯霉素浓度为1mM的PBS缓冲溶液(pH=7.0)中的检测效果与实施例1中制备的复合材料相比,其用于定量的不可逆还原峰的峰电流差值降低40μA左右,两者差异显著。
实施例2 Au/g-C 3N 4复合材料的制备
(1)g-C 3N 4的制备:
称取5g三聚氰胺,在氩气的气氛中,以3.5℃/min的升温速率加热至580℃,并保持5.5小时。结束后,使其自然冷却至室温取出,得到浅黄色的块状g-C 3N 4固体。将上述得到的g-C 3N 4固体放于研钵中研磨成粉末,在空气中以3.5℃/min的升温速率加热至580℃并保持2.5小时,待自然冷却至室温后取出,得到羧基修饰的g-C 3N 4,呈深黄色。
(2)海绵状复合材料Au/g-C 3N 4的制备:
将上述得到的固体分散在甲醇中,加入1ml(1.2mg/ml)的氯金酸水溶液,超声约1小时,使氯金酸水溶液均匀的吸附到载体上。超声结束后,将体系转移至三口烧瓶中,在90℃下回流搅拌48小时,回流结束后,离心洗涤,并于90℃下真空过夜,得到淡紫黄色的固体粉末(金为淡紫),即为Au/g-C 3N 4复合材料。
实施例3 Au/g-C 3N 4复合材料的制备
(1)g-C 3N 4的制备:
称取5g三聚氰胺,在氩气的气氛中,以2.5℃/min的升温速率加热至530℃,并保持4.5小时。结束后,使其自然冷却至室温取出,得到浅黄色的块状g-C 3N 4固体。将上述得到的g-C 3N 4固体放于研钵中研磨成粉末,在空气中以2.5℃/min的升温速率加热至530℃并保持1.5小时,待自然冷却至室温后取出,得到羧基修饰的g-C 3N 4,呈深黄色。
(2)海绵状复合材料Au/g-C 3N 4的制备:
将上述得到的固体分散在甲醇中,加入1ml(1mg/ml)的氯金酸水溶液,超声约1小时,使氯金酸水溶液均匀的吸附到载体上。超声结束后,将体系转移至三口烧瓶中,在70℃下回流搅拌50小时,回流结束后,离心洗涤,并于90℃下真空过夜,得到淡紫黄色的固体粉末(金为淡紫),将其分散在水溶液中,备用。
上述实施例为本公开较佳的实施方式,但本公开的实施方式并不受上述实施例的限制,其他的任何未背离本公开的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本公开的保护范围之内。

Claims (10)

  1. 一种海绵状Au/g-C 3N 4复合材料的制备方法,其特征是,该方法包括以下步骤:
    g-C 3N 4的制备:以二氰二胺、尿素或三聚氰胺为原料,在惰性气体的气氛下进行一次煅烧得到g-C 3N 4固体;然后在空气中进行二次煅烧得到羧基修饰的g-C 3N 4固体;
    海绵状Au/g-C 3N 4复合材料的制备:
    将所述羧基修饰的g-C 3N 4固体分散至甲醇中,并与氯金酸水溶液混合,超声处理,超声结束后进行加热回流处理,回流结束后,分离、洗涤和干燥,得到海绵状Au/g-C 3N 4复合材料。
  2. 如权利要求1所述的制备方法,其特征是:所述惰性气体为氩气;
    进一步的,所述一次煅烧或二次煅烧中,煅烧温度为500~600℃,升温速率为2.5~3.5℃/min;
    更进一步的,所述煅烧温度为550℃,升温速率为3℃/min;
    进一步的,所述一次煅烧中,煅烧时间为4.5~5.5h;
    更进一步的,所述煅烧时间为5h;
    进一步的,所述二次煅烧中,煅烧时间为1.5~2.5h;
    更进一步的,所述煅烧时间为2h;
    进一步的,所述羧基修饰的g-C 3N 4、甲醇和氯金酸水溶液的投料(8~12):(2.5~5):(1~2),进一步为10:3:1;所述氯金酸水溶液的浓度为0.8~1.2mg/ml;
    更进一步的,超声时间为0.5~1.5h。
  3. 如权利要求1所述的制备方法,其特征是:回流条件为:70-90℃下回流搅拌45~50h;
    进一步的,所述回流搅拌时间为48h。
  4. 采用权利要求1~3中任一项所述的方法制备得到的海绵状Au/g-C 3N 4复合材料。
  5. 一种电化学传感器,其特征是:包括基底电极,以及,
    权利要求4所述的海绵状Au/g-C 3N 4复合材料,该复合材料附着在所述基底电极上。
  6. 如权利要求5所述的电化学传感器,其特征是:所述基底电极为玻碳电极。
  7. 权利要求5或6所述的电化学传感器的制备方法,其特征是,该方法包括以下步骤:
    首先,将所述海绵状Au/g-C 3N 4复合材料采用水进行洗涤,然后干燥,再用水将其分散成浓度为1~5mg/ml的分散液;其次,将基底电极先用铝粉进行打磨,分别采用乙醇和水进行超声清洗,用氮气吹干后,取4~8μL所述分散液滴涂到基底电极上,制备Au/g-C 3N 4修饰电极,即为电化学传感器。
  8. 权利要求4所述的海绵状Au/g-C 3N 4复合材料或权利要求5所述的电化学传感器在检测氯霉素中的应用。
  9. 一种检测氯霉素的方法,该方法包括采用4所述的海绵状Au/g-C 3N 4复合材料或权利要求5所述的电化学传感器进行检测的步骤。
  10. 如权利要求9所述的方法,其特征是,具体包括以下步骤:
    标准溶液的配制:配制一组不同浓度的氯霉素标准溶液;
    工作曲线绘制:将电化学传感器置于所述不同浓度的氯霉素标准溶液中进行方波伏安测试,得到不同浓度的氯霉素标准溶液的响应峰电流,再根据氯霉素标准溶液的浓度以及响应峰电流,绘制线性关系曲线;
    样品的检测:将海绵状Au/g-C 3N 4复合材料修饰的电极电化学传感器置于待测样品中进行方波伏安测试,得到该待测样品的响应峰电流,再根据所述线性关系曲线,得到待测样品中氯霉素的浓度。
PCT/CN2019/097805 2018-08-23 2019-07-26 海绵状金纳米粒子/石墨相氮化碳复合材料电化学传感器用于氯霉素检测 WO2020038180A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810965274.2A CN109046429B (zh) 2018-08-23 2018-08-23 海绵状金纳米粒子/石墨相氮化碳复合材料电化学传感器用于氯霉素检测
CN201810965274.2 2018-08-23

Publications (1)

Publication Number Publication Date
WO2020038180A1 true WO2020038180A1 (zh) 2020-02-27

Family

ID=64756836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097805 WO2020038180A1 (zh) 2018-08-23 2019-07-26 海绵状金纳米粒子/石墨相氮化碳复合材料电化学传感器用于氯霉素检测

Country Status (2)

Country Link
CN (1) CN109046429B (zh)
WO (1) WO2020038180A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113466314A (zh) * 2021-07-05 2021-10-01 西安交通大学 基于功能化碳氮聚合物的电化学生物传感器及制备方法和应用
CN113848242A (zh) * 2021-09-26 2021-12-28 常州大学 一种检测合成大麻素rcs-4的电化学发光传感器及其制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109046429B (zh) * 2018-08-23 2020-09-04 青岛大学 海绵状金纳米粒子/石墨相氮化碳复合材料电化学传感器用于氯霉素检测
CN110487869A (zh) * 2019-08-12 2019-11-22 武汉理工大学 基于氮化碳量子点的电化学发光生物传感器及其制作方法
CN113219022A (zh) * 2021-03-16 2021-08-06 南京理工大学 一种多通道数字微流控检测平台及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104502585A (zh) * 2014-12-30 2015-04-08 中山大学 用于抗生素检测的纳米传感器及其制备方法和应用
CN105044083A (zh) * 2015-08-03 2015-11-11 济南大学 一种基于Au-g-C3N4纳米复合材料的甲胎蛋白的电致化学发光免疫传感器的制备方法及应用
WO2018033829A1 (en) * 2016-08-15 2018-02-22 Sabic Global Technologies B.V. Preparation of nitrogen rich three dimensional mesoporous carbon nitride and its sensing and photocatalytic properties
CN109046429A (zh) * 2018-08-23 2018-12-21 青岛大学 海绵状金纳米粒子/石墨相氮化碳复合材料电化学传感器用于氯霉素检测

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101816956B (zh) * 2010-04-20 2011-10-19 武汉理工大学 一种提高纳米金属颗粒在石墨化碳载体表面分散的方法
CN104525239A (zh) * 2015-01-09 2015-04-22 江苏大学 一种金钯合金/氮化碳复合纳米材料及其制备方法和用途
US10661257B2 (en) * 2016-02-16 2020-05-26 The George Washington University Doped graphitic carbon nitrides, methods of making and uses of the same
KR102243014B1 (ko) * 2016-07-28 2021-04-21 엑시온 랩스 인크. 유무기 다중접합 복합재료를 포함하는 광화학 반응의 항생 물질 구성요소
CN107116857A (zh) * 2017-04-01 2017-09-01 东华大学 三维多孔框架增强纤维海绵高效吸音材料及其制备
CN107247079B (zh) * 2017-07-19 2020-01-21 济南大学 一种简易的草甘膦农药的电致化学发光检测方法
CN107684924A (zh) * 2017-10-16 2018-02-13 南通纺织丝绸产业技术研究院 新型的银纳米颗粒修饰超薄石墨相氮化碳催化剂的制备方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104502585A (zh) * 2014-12-30 2015-04-08 中山大学 用于抗生素检测的纳米传感器及其制备方法和应用
CN105044083A (zh) * 2015-08-03 2015-11-11 济南大学 一种基于Au-g-C3N4纳米复合材料的甲胎蛋白的电致化学发光免疫传感器的制备方法及应用
WO2018033829A1 (en) * 2016-08-15 2018-02-22 Sabic Global Technologies B.V. Preparation of nitrogen rich three dimensional mesoporous carbon nitride and its sensing and photocatalytic properties
CN109046429A (zh) * 2018-08-23 2018-12-21 青岛大学 海绵状金纳米粒子/石墨相氮化碳复合材料电化学传感器用于氯霉素检测

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FU, YONGSHENG ET AL.: "Reduction of nitrophenols to aminophenols under concerted catalysis by Au/g-C3N4 contact system", APPLIED CATALYSIS B:ENVIRONMENTAL, 28 September 2016 (2016-09-28), pages 430 - 437, XP055687316 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113466314A (zh) * 2021-07-05 2021-10-01 西安交通大学 基于功能化碳氮聚合物的电化学生物传感器及制备方法和应用
CN113848242A (zh) * 2021-09-26 2021-12-28 常州大学 一种检测合成大麻素rcs-4的电化学发光传感器及其制备方法和应用
CN113848242B (zh) * 2021-09-26 2024-04-30 常州大学 一种检测合成大麻素rcs-4的电化学发光传感器及其制备方法和应用

Also Published As

Publication number Publication date
CN109046429B (zh) 2020-09-04
CN109046429A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
WO2020038180A1 (zh) 海绵状金纳米粒子/石墨相氮化碳复合材料电化学传感器用于氯霉素检测
Peng et al. Self-powered photoelectrochemical aptasensor based on phosphorus doped porous ultrathin g-C3N4 nanosheets enhanced by surface plasmon resonance effect
Zhang et al. Graphene‐based electrochemical glucose sensors: Fabrication and sensing properties
Zhang et al. Fixure-reduce method for the synthesis of Cu2O/MWCNTs nanocomposites and its application as enzyme-free glucose sensor
Zou et al. Micro/nano-structured ultrathin g-C3N4/Ag nanoparticle hybrids as efficient electrochemical biosensors for L-tyrosine
CN110887881B (zh) 一种基于甲醛媒介作用选择性检测l-色氨酸的方法
CN110412096B (zh) 还原氧化石墨烯@zif-8复合膜修饰电极的制备方法和检测应用
Lu et al. Enhanced electrochemiluminescence sensor for detecting dopamine based on gold nanoflower@ graphitic carbon nitride polymer nanosheet–polyaniline hybrids
CN108982631B (zh) 一种石墨烯单原子金复合材料及其制备方法和应用
CN101624171A (zh) Pt纳米颗粒—碳纳米管复合材料、制备方法及其应用
CN106744755A (zh) 黑磷纳米片与贵金属纳米粒子复合材料的制备方法
CN108195908B (zh) 一种钯-类石墨相氮化碳-碳纳米管复合电极及其制备方法和应用
Sakthivel et al. A facile synthesis of Cd (OH) 2‐rGO nanocomposites for the practical electrochemical detection of acetaminophen
Su et al. Noble metal nanostructure-decorated molybdenum disulfide nanocomposites: synthesis and applications
CN113881965B (zh) 一种以生物质碳源为模板负载金属纳米颗粒催化剂及其制备方法和应用
Sun et al. Periodic nanostructured Au arrays on an Si electrode for high-performance electrochemical detection of hydrogen peroxide without an enzyme
CN110133063A (zh) 一种钼酸铋/硼氮掺杂石墨烯光电功能材料的制备方法及其用途
CN111965355B (zh) 一种阴极光电化学免疫传感器及其制备方法与应用
Tian et al. A high sensitive electrochemical avian influenza virus H7 biosensor based on CNTs/MoSx aerogel
CN110039043B (zh) 三维铜@碳核壳纳米颗粒、其制备方法及其应用
CN105880629B (zh) 一种硼碳氮纳米片负载金属纳米粒子杂化材料的制备方法
CN109270141B (zh) 基于氧化石墨烯-多壁碳纳米管-金纳米棒复合材料的电化学传感器的制备方法
Wu et al. A self-powered electrochemical aptasensor for the detection of 17β-estradiol based on carbon nanocages/gold nanoparticles and DNA bioconjugate mediated biofuel cells
CN108776156B (zh) 一维α-Fe2O3纳米棒的制备方法及基于α-Fe2O3纳米棒的丙酮传感器
Yang et al. Trimetallic zeolitic imidazolate framework-derived hollow structure as a sensing material for nitrite electrochemical detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19852133

Country of ref document: EP

Kind code of ref document: A1