WO2020038028A1 - 夜景拍摄方法、装置、电子设备及存储介质 - Google Patents

夜景拍摄方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2020038028A1
WO2020038028A1 PCT/CN2019/088017 CN2019088017W WO2020038028A1 WO 2020038028 A1 WO2020038028 A1 WO 2020038028A1 CN 2019088017 W CN2019088017 W CN 2019088017W WO 2020038028 A1 WO2020038028 A1 WO 2020038028A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
exposure
sensitivity
acquired
images
Prior art date
Application number
PCT/CN2019/088017
Other languages
English (en)
French (fr)
Inventor
王宇鹭
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to AU2019326496A priority Critical patent/AU2019326496B2/en
Priority to JP2021500825A priority patent/JP7371081B2/ja
Priority to KR1020217001996A priority patent/KR102642993B1/ko
Publication of WO2020038028A1 publication Critical patent/WO2020038028A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/64Computer-aided capture of images, e.g. transfer from script file into camera, check of taken image quality, advice or proposal for image composition or decision on when to take image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/741Circuitry for compensating brightness variation in the scene by increasing the dynamic range of the image compared to the dynamic range of the electronic image sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/161Detection; Localisation; Normalisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/61Control of cameras or camera modules based on recognised objects
    • H04N23/611Control of cameras or camera modules based on recognised objects where the recognised objects include parts of the human body
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/667Camera operation mode switching, e.g. between still and video, sport and normal or high- and low-resolution modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/684Vibration or motion blur correction performed by controlling the image sensor readout, e.g. by controlling the integration time
    • H04N23/6845Vibration or motion blur correction performed by controlling the image sensor readout, e.g. by controlling the integration time by combination of a plurality of images sequentially taken
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/743Bracketing, i.e. taking a series of images with varying exposure conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/76Circuitry for compensating brightness variation in the scene by influencing the image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/587Control of the dynamic range involving two or more exposures acquired sequentially, e.g. using the combination of odd and even image fields
    • H04N25/589Control of the dynamic range involving two or more exposures acquired sequentially, e.g. using the combination of odd and even image fields with different integration times, e.g. short and long exposures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10144Varying exposure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • G06T2207/30201Face

Definitions

  • the present disclosure relates to the field of imaging technology, and in particular, to a night scene shooting method, device, electronic device, and storage medium.
  • mobile terminal equipment such as smart phones, tablet computers, etc.
  • mobile terminal devices have built-in cameras, and with the enhancement of mobile terminal processing capabilities and the development of camera technology, the performance of built-in cameras is getting stronger and the quality of captured images is getting higher and higher.
  • mobile terminal devices are simple to operate and portable, and more and more users in daily life use mobile terminal devices such as smartphones and tablets to take pictures.
  • the present disclosure aims to solve at least one of the technical problems in the related art.
  • the night scene shooting method, device, electronic device and storage medium proposed in the present disclosure are used to solve the problems in the related art that images shot in night scenes not only have a limited dynamic range, but also have low overall brightness and affect the user experience.
  • An embodiment of the first aspect of the present disclosure provides a night scene shooting method, which is applied to a camera module, and the method includes:
  • the acquired multiple frames are synthesized to generate a target image.
  • the night scene shooting method obtains the degree of shake of the camera module, adjusts the reference sensitivity according to the degree of shake, and determines the exposure duration of multiple frames of images to be acquired based on the brightness information and the reference sensitivity of the shooting scene. And the exposure time of the multiple frames of images to be collected, and the collected multiple frames of images are synthesized to generate a target image. Because the multi-frame images are taken with the reference sensitivity, in order to control the image noise at a low level, the value of the reference sensitivity takes into account the degree of jitter, which does not make the shooting time too long, and avoids drag in the image Shadow. The multi-frame images obtained in this way have higher image quality. Processing these images together can further reduce noise and increase dynamic range. In night scene shooting, better shooting effects can be obtained.
  • the embodiment of the second aspect of the present disclosure proposes another night scene shooting method, which is applied to a camera module, and the method includes:
  • the acquired multiple frames are synthesized to generate a target image.
  • the night scene shooting method obtains the degree of shake of the camera module, adjusts the exposure time according to the degree of shake, and determines the sensitivity of the images to be collected in multiple frames based on the brightness information and exposure duration of the shooting scene; Capture the image sensitivity and exposure time to capture the image, and combine the collected multiple frames to generate the target image. Therefore, after determining the exposure duration, the sensitivity of multiple frames of images to be acquired is determined according to the brightness information and exposure duration of the shooting scene, so that image acquisition is performed according to the exposure duration and sensitivity of the images of multiple frames to be acquired to synthesize and generate a target image. , Not only improves the dynamic range and overall brightness of night shot images, effectively suppresses noise in the image, but also suppresses ghosting caused by hand-shake, improves the quality of night shot images, and improves the user experience.
  • An embodiment of the third aspect of the present disclosure provides another night scene shooting method, which is applied to a camera module.
  • the method includes:
  • the acquired multiple frames are synthesized to generate a target image.
  • the exposure duration of multiple frames of images to be collected under the brightness of the shooting scene and the sensitivity required for the corresponding images to be collected are adjusted according to each Frame the image to be captured with the exposure time and sensitivity to capture the image, and combine the collected multiple frames of images to generate the target image. Therefore, image acquisition is performed according to the exposure duration and sensitivity of multiple frames of images to be collected to generate a target image, which not only improves the dynamic range and overall brightness of the night scene captured image, effectively suppresses noise in the image, but also suppresses handheld ghosting caused by jitter improves the quality of night shot images and improves the user experience.
  • An embodiment of the fourth aspect of the present disclosure proposes a night scene photographing device applied to a camera module, where the device includes:
  • An acquisition module configured to acquire a degree of jitter of the camera module
  • An adjustment module configured to adjust a reference sensitivity according to the degree of jitter
  • a determining module configured to determine the exposure duration of multiple frames of images to be acquired according to the brightness information of the shooting scene and the reference sensitivity
  • An acquisition module configured to acquire an image according to the reference sensitivity and the exposure duration of the multiple frames of images to be acquired
  • a generating module is configured to synthesize the collected multiple frames of images to generate a target image.
  • the night scene shooting device obtains the degree of shake of the camera module, adjusts the reference sensitivity according to the degree of shake, and determines the exposure duration of multiple frames of images to be collected based on the brightness information and the reference sensitivity of the shooting scene.
  • An image is acquired by the sensitivity and the exposure duration of the multiple frames of images to be acquired, and the acquired multiple frames are synthesized to generate a target image.
  • the exposure duration of multiple frames of the image to be collected is determined according to the brightness information and the reference sensitivity of the shooting scene, so that image acquisition is performed according to the reference sensitivity and exposure time of the multiple frames of image to be collected to synthesize
  • Generating the target image not only improves the dynamic range and overall brightness of the night scene captured image, effectively suppresses noise in the image, but also suppresses ghosting caused by hand-shake, improves the quality of the night scene captured image, and improves the user experience.
  • An embodiment of the fifth aspect of the present disclosure proposes another night scene photographing device applied to a camera module, where the device includes:
  • An acquisition module configured to acquire a degree of jitter of the camera module
  • An adjustment module configured to adjust an exposure duration according to the degree of dithering
  • a determining module configured to determine the sensitivity of images to be acquired in multiple frames according to the brightness information of the shooting scene and the exposure duration;
  • An acquisition module configured to acquire an image according to the sensitivity of the multiple frames of images to be acquired and the exposure duration
  • a generating module is configured to synthesize the collected multiple frames of images to generate a target image.
  • the night scene shooting device obtains the degree of shake of the camera module, adjusts the exposure time according to the degree of shake, and determines the sensitivity of the images to be collected in multiple frames based on the brightness information and exposure duration of the shooting scene; Capture the image sensitivity and exposure time to capture the image, and combine the collected multiple frames to generate the target image. Therefore, after determining the exposure duration, the sensitivity of multiple frames of images to be acquired is determined according to the brightness information and exposure duration of the shooting scene, so that image acquisition is performed according to the exposure duration and sensitivity of the images of multiple frames to be acquired to synthesize and generate a target image. , Not only improves the dynamic range and overall brightness of night shot images, effectively suppresses noise in the image, but also suppresses ghosting caused by hand-shake, improves the quality of night shot images, and improves the user experience.
  • An embodiment of the sixth aspect of the present disclosure proposes another night scene photographing device applied to a camera module.
  • the device includes:
  • An acquisition module configured to acquire a degree of jitter of the camera module
  • An adjustment module configured to adjust the exposure duration of multiple frames of images to be acquired under the brightness of the shooting scene and the sensitivity required for the corresponding images to be acquired according to the brightness of the shooting scene;
  • An acquisition module configured to acquire an image according to an exposure duration and sensitivity of an image to be acquired in each frame
  • a generating module is configured to synthesize the collected multiple frames of images to generate a target image.
  • the night scene shooting device obtains the degree of shake of the camera module, and adjusts the exposure duration of multiple frames of images to be captured under the brightness of the shooting scene and the sensitivity required for the corresponding images to be captured according to the brightness of the shooting scene.
  • Frame the image to be captured with the exposure time and sensitivity to capture the image and combine the collected multiple frames of images to generate the target image. Therefore, image acquisition is performed according to the exposure duration and sensitivity of multiple frames of images to be collected to generate a target image, which not only improves the dynamic range and overall brightness of the night scene captured image, effectively suppresses noise in the image, but also suppresses handheld ghosting caused by jitter improves the quality of night shot images and improves the user experience.
  • An embodiment of the seventh aspect of the present disclosure proposes a night scene camera processing method for a camera module, where the method includes:
  • the acquired multiple frames of images are synthesized to generate a target image.
  • the night scene camera processing method can detect the current jitter of the camera module in the night scene shooting mode, and determine the number of images to be acquired and the correspondence of each frame of images to be acquired according to the current jitter. Based on the light sensitivity of the current shooting scene and the reference sensitivity corresponding to each frame of the to-be-acquired image to determine the exposure time corresponding to each frame of the to-be-acquired image, and then based on the reference sensitivity and exposure time of each frame-to-be-acquired image. , Sequentially collecting multiple frames of images, and synthesizing the collected multiple frames of images to generate a target image.
  • the number of images to be acquired and the reference sensitivity are determined according to the current jitter of the camera module, and the exposure time corresponding to each frame of the image to be acquired is determined according to the illumination of the current shooting scene, so that multiple different photos are taken by shooting
  • Combining images with long exposure time not only improves the dynamic range and overall brightness of the captured image in night scene shooting mode, effectively suppresses noise in the captured image, but also suppresses ghosting and blurring caused by hand-held shake, which improves the night shot image. Quality and improved user experience.
  • An embodiment of the eighth aspect of the present disclosure provides a night scene camera processing device for a camera module, where the device includes:
  • a first detection module configured to detect a current shake degree of the camera module in a night scene shooting mode
  • a first determining module configured to determine the number of images to be acquired and a reference sensitivity corresponding to each frame of images to be acquired according to the current jitter of the camera module;
  • a second determining module configured to determine an exposure duration corresponding to each frame of the to-be-acquired image according to the light intensity of the current shooting scene and the reference sensitivity corresponding to the image to be-collected each frame;
  • a first acquisition module configured to sequentially acquire multiple frames of images according to the reference sensitivity and exposure duration corresponding to each frame of images to be acquired;
  • a synthesis module is configured to synthesize the collected multiple frames of images to generate a target image.
  • the night scene camera processing device of the camera module can detect the current jitter level of the camera module in the night scene shooting mode, and determine the number of images to be acquired and the correspondence of each frame to be acquired according to the current jitter level. Based on the light sensitivity of the current shooting scene and the reference sensitivity corresponding to each frame of the to-be-acquired image to determine the exposure time corresponding to each frame of the to-be-acquired image, and then based on the reference sensitivity and exposure time of each to-be-acquired image , Sequentially collecting multiple frames of images, and synthesizing the collected multiple frames of images to generate a target image.
  • the number of images to be acquired and the reference sensitivity are determined according to the current jitter of the camera module, and the exposure time corresponding to each frame of the image to be acquired is determined according to the illumination of the current shooting scene, so that multiple different photos are taken by shooting
  • Combining images with long exposure time not only improves the dynamic range and overall brightness of the captured image in night scene shooting mode, effectively suppresses noise in the captured image, but also suppresses ghosting and blurring caused by hand-held shake, which improves the night shot image. Quality and improved user experience.
  • An embodiment of the ninth aspect of the present disclosure provides an electronic device, a camera module, a memory, a processor, and a computer program stored on the memory and executable on the processor, the processor being connected to the camera module, When the processor executes the computer program, the night scene shooting method as described in the above embodiment or the camera module night scene shooting processing method is implemented.
  • An embodiment of the tenth aspect of the present disclosure provides an image processing circuit, where the image processing circuit includes an image signal processing ISP processor and a graphics processor GPU;
  • the ISP processor is connected to a camera module and is configured to adjust a reference sensitivity according to the degree of shake of the camera module; determine the exposure of multiple frames of images to be collected according to the brightness information of the shooting scene and the reference sensitivity. Duration; controlling the camera module to acquire images according to the reference sensitivity and the exposure duration of the multiple frames of images to be acquired;
  • the GPU is electrically connected to the ISP processor, and is configured to synthesize the acquired multiple frames of images to generate a target image.
  • An embodiment of the eleventh aspect of the present disclosure provides a storage medium.
  • the night scene shooting method described in the foregoing embodiment is implemented, or the camera module night scene shooting processing method is implemented. .
  • FIG. 1 is a schematic flowchart of a first night scene shooting method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a second night scene shooting method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a third night scene shooting method according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of a fourth night scene shooting method according to an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of a fifth night scene shooting method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of a sixth night scene shooting method according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of a seventh night scene shooting method according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of an eighth night scene shooting method according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of a ninth night scene shooting method according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of a tenth night scene shooting method according to an embodiment of the present disclosure
  • FIG. 11 is a schematic flowchart of an eleventh night scene shooting method according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic flowchart of a twelfth night scene shooting method according to an embodiment of the present disclosure
  • FIG. 13 is a schematic flowchart of a thirteenth night scene shooting method according to an embodiment of the present disclosure
  • FIG. 14 is a schematic flowchart of a fourteenth night scene shooting method according to an embodiment of the present disclosure.
  • 15 is a schematic structural diagram of a night scene photographing device according to an embodiment of the present disclosure.
  • 16 is a schematic structural diagram of another night scene photographing apparatus according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of another night scene photographing device according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic flowchart of a night scene imaging processing method of a camera module according to an embodiment of the present disclosure
  • 19 is a schematic structural diagram of a night scene camera processing device of a camera module according to an embodiment of the present disclosure.
  • 20 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • 21 is a schematic diagram of an electronic device according to an embodiment of the present disclosure.
  • FIG. 22 is a schematic diagram of an image processing circuit according to an embodiment of the present disclosure.
  • an embodiment of the present disclosure proposes a night scene shooting method.
  • the exposure duration of the image is acquired according to the reference sensitivity and the exposure duration of the multiple frames of images to be acquired, and the acquired multiple frames of images are synthesized to generate a target image.
  • the value of the reference sensitivity takes into account the degree of jitter, which does not make the shooting time too long, and avoids drag in the image Shadow.
  • the multi-frame images obtained in this way have higher image quality. Processing these images together can further reduce noise and increase dynamic range. In night scene shooting, better shooting effects can be obtained.
  • FIG. 1 is a schematic flowchart of a first night scene shooting method according to an embodiment of the present disclosure.
  • the night scene shooting method according to the embodiment of the present disclosure is applied to a camera module
  • the camera module may be a hardware device such as a mobile phone, a tablet computer, a personal digital assistant, a wearable device, and other operating systems and imaging devices.
  • the night scene shooting method is applied to a camera module and includes the following steps:
  • Step 101 Obtain the degree of shake of the camera module.
  • displacement information may be collected according to a displacement sensor provided in the electronic device, and further, the degree of shake of the camera module may be determined according to the collected displacement information of the electronic device.
  • the current jitter degree of the electronic device that is, the current jitter degree of the camera module may be determined by acquiring the current gyro-sensor information of the electronic device.
  • the gyroscope is also called angular velocity sensor, which can measure the rotational angular velocity when the physical quantity is deflected and tilted.
  • the gyroscope can measure the movement of rotation and deflection very well, so that it can accurately analyze and judge the actual movement of the user.
  • the gyroscope information (gyro information) of the electronic device may include the movement information of the mobile phone in three dimensions in the three-dimensional space, and the three dimensions of the three-dimensional space may be respectively represented in the three directions of the X-axis, Y-axis, and Z-axis.
  • the X-axis, Y-axis, and Z-axis are perpendicular to each other.
  • the current jitter degree of the camera module may be determined according to the current gyro information of the electronic device.
  • the absolute value threshold of the gyro movement in the three directions can be preset, and the camera module is determined according to the relationship between the acquired absolute value of the current gyro movement in the three directions and the preset threshold. The current degree of jitter.
  • the preset thresholds are the first threshold A, the second threshold B, and the third threshold C, and A ⁇ B ⁇ C.
  • the sum of the absolute values of the gyro motion in the three directions currently obtained is S . If S ⁇ A, determine the current jitter of the camera module as “no shake”; if A ⁇ S ⁇ B, you can determine the current jitter of the camera module as “slight shake”; if B ⁇ S ⁇ C, Then, it can be determined that the current shake degree of the camera module is "small shake”; if S> C, it can be determined that the current shake degree of the camera module is "large shake”.
  • the number of thresholds and specific values of each threshold can be preset according to actual needs, and the mapping relationship between the gyro information and the degree of camera module shake can be preset according to the relationship between the gyro information and each threshold.
  • Step 102 Adjust the reference sensitivity according to the degree of shaking.
  • the sensitivity also known as the ISO value, refers to an index that measures the sensitivity of the negative to light.
  • the sensitivity of a digital camera is a kind of index similar to the sensitivity of a film.
  • the ISO of a digital camera can be adjusted by adjusting the sensitivity of the photosensitive device or combining the sensing points. Combining several adjacent photosensitive points to improve the ISO. It should be noted that, whether it is digital or negative photography, in order to reduce the exposure time, the use of a relatively high sensitivity will usually introduce more noise, resulting in lower image quality.
  • the reference sensitivity may be the lowest sensitivity that is adjusted according to the current shake degree of the camera module during the current shooting according to the current shake degree of the camera module. For example, when adjusting the reference sensitivity corresponding to the degree of shake according to the degree of shake, if the current reference sensitivity and the degree of shake exactly match, the result of the adjustment is that the reference sensitivity remains unchanged. This situation also belongs to the category of "adjustment" in the embodiments of the present disclosure.
  • the camera module is composed of multiple lenses, so different lenses can correspond to different sensitivities in the same shooting environment.
  • the reference sensitivity adjusted in this step should be aimed at For the shooting process performed by one of the multiple lenses, during this shooting process, the same reference sensitivity is used to collect multiple frames of images.
  • the reference sensitivity in this step is a low value to reduce image noise.
  • the sensitivity of the captured image will affect the overall shooting time. If the shooting time is too long, the degree of shake of the camera module may be increased during handheld shooting, which will affect the image quality. Therefore, the reference sensitivity corresponding to the image to be acquired in each frame can be adjusted according to the current jitter degree of the camera module, so that the shooting duration is controlled within a proper range.
  • the reference sensitivity corresponding to each frame of the image to be collected can be appropriately compressed to a smaller value to effectively suppress the noise of each frame of the image and improve the quality of the captured image ; If the current jitter of the camera module is large, the reference sensitivity corresponding to each frame of the image to be collected can be appropriately increased to a larger value to shorten the shooting time.
  • the reference sensitivity can be determined to a smaller value to obtain a higher quality image as much as possible, such as determining the reference sensitivity to 100; if If the current jitter of the camera module is determined to be "slightly jitter", the reference sensitivity may be determined to be a large value to reduce the shooting time. For example, the reference sensitivity is determined to be 200. If the current jitter of the camera module is determined to be "Small shake”, you can further increase the reference sensitivity to reduce the shooting time, for example, determine the reference sensitivity is 220; if you determine that the current camera module's current shake level is "large shake", you can determine that the current shake level is too high. Large, you can further increase the reference sensitivity at this time to reduce the shooting time, for example, determine the reference sensitivity is 250.
  • the above examples are merely exemplary and cannot be regarded as limiting the present disclosure.
  • the reference sensitivity can be adjusted to obtain the optimal solution.
  • the mapping relationship between the shake degree of the camera module and the reference sensitivity corresponding to each frame of the image to be acquired can be preset according to actual needs.
  • the reference sensitivity is not limited to be adjusted based on only the degree of shake of the camera module, and the reference sensitivity may be comprehensively determined according to multiple parameters such as the degree of shake and brightness information of the shooting scene. It is not limited here.
  • Step 103 Determine the exposure duration of the images to be acquired in multiple frames according to the brightness information and the reference sensitivity of the shooting scene.
  • the exposure time refers to the time that light passes through the lens.
  • the images to be acquired in multiple frames are two frames or more than two frames, which is not limited in the embodiments of the present disclosure.
  • the brightness information of the shooting scene may be obtained by metering using a light metering module in the camera module, or may be obtained through brightness information in a preview image, which is not limited herein.
  • the brightness information generally uses the illuminance of the shooting scene as a brightness measurement index. Those skilled in the art can know that other indicators may also be used for brightness measurement, which are all within the scope of this embodiment.
  • an automatic exposure control (Auto Exposure Control (AEC) algorithm) is used to determine the exposure amount corresponding to the current brightness information, and further, according to the brightness information and the reference sensitivity information of the shooting scene, it is used for multiple frames of images to be collected. The exposure time is determined for each frame of images to be acquired.
  • AEC Automatic Exposure Control
  • the exposure amount is related to the aperture, the exposure duration, and the sensitivity.
  • the aperture is the clear aperture, which determines the amount of light passing through in a unit time.
  • Step 104 Acquire an image according to the reference sensitivity and the exposure duration of the images to be acquired in multiple frames.
  • the camera module is controlled to acquire images based on the reference sensitivity and exposure duration of the images to be acquired in each frame, and details are not described herein.
  • image collection based on the same reference sensitivity not only helps to reduce the noise of multi-frame images, but also avoids the technology of increasing the noise of multi-frame images acquired due to increased sensitivity. problem.
  • step 105 the collected multiple frames of images are synthesized to generate a target image.
  • multiple frames of images may be sequentially acquired according to the reference sensitivity and exposure duration, and the acquired multiple frames of images may be synthesized.
  • the target image For generate the target image.
  • the night scene shooting method of the embodiment of the present disclosure by obtaining the degree of shake of the camera module, adjusting the reference sensitivity according to the degree of shake, and determining the exposure duration of multiple frames of images to be collected according to the brightness information and the reference sensitivity of the shooting scene, according to the reference Acquire images by sensitivity and exposure time of multiple frames of images to be acquired, and synthesize and process the collected images to generate a target image.
  • image acquisition is performed based on the reference sensitivity and exposure duration of multiple frames of images to be collected to generate a target image, which not only improves the dynamic range and overall brightness of the night scene captured image, effectively suppresses noise in the image, but also suppresses ghosting caused by hand-shake improves the quality of night shot images and improves the user experience.
  • step 102 the exposure duration of the image to be acquired in each frame may also be determined based on the reference exposure determined by metering and the exposure compensation level of each frame. To obtain images with different dynamic ranges, so that the synthesized image has a higher dynamic range, and improve the overall brightness and quality of the image.
  • FIG. 2 is a schematic flowchart of a second night scene shooting method according to an embodiment of the present disclosure. As shown in FIG. 2, step 102 specifically includes:
  • Step 201 Determine a reference exposure amount according to the brightness information of the shooting scene.
  • the reference exposure amount refers to an exposure amount adapted to the brightness information of the current shooting scene after the brightness information of the current shooting scene is obtained by metering the preview image, and is determined by looking up a table or the like.
  • the value of the reference exposure can be the product of the reference sensitivity and the reference exposure duration.
  • Step 202 Determine a reference exposure duration according to the reference exposure amount and the reference sensitivity.
  • the reference exposure amount includes the reference exposure duration and the reference sensitivity. Therefore, after determining the reference sensitivity according to the degree of shake of the camera module and the reference exposure amount according to the illumination of the shooting scene, the The reference exposure and reference sensitivity determine the duration of the reference exposure.
  • Step 203 Adjust the exposure compensation mode according to the degree of shaking.
  • the exposure compensation mode is used to indicate the number of frames of the image to be acquired and the exposure compensation level set for multiple frames of the image to be acquired.
  • the mapping relationship between the degree of shake of the camera module and the exposure compensation mode may be used to determine the number of images to be acquired according to the current degree of shake of the camera module. Number of frames and exposure compensation mode for multiple frames of images to be acquired.
  • the camera module shake degree can be "no shake", the corresponding EV value range of the exposure compensation mode is preset to -6 to 2, and the difference between adjacent EV values is 0.5;
  • the degree of dithering is "slightly dithering", the EV value range of the corresponding exposure compensation mode is preset to -5 to 1, and the difference between adjacent EV values is 1, and so on.
  • the anti-shake performance of the camera module may be determined first to adjust the exposure compensation mode in combination with the degree of shake and anti-shake performance of the camera module.
  • the anti-shake performance of the camera module has a certain relationship with the attribute information of each component in the camera module, so the anti-shake performance of the camera module can be determined according to the attribute information of each component in the camera module. Adjust the exposure compensation mode based on the degree of camera shake and anti-shake performance.
  • the preset time range can be appropriately extended, because a camera module that can achieve optical image stabilization function, during the shooting process, when the camera module shakes , It can offset a part of the jitter itself, so that compared with a camera module that cannot achieve optical image stabilization, at the same degree of jitter, the ghost and blur in the image collected by the camera module that can achieve optical image stabilization function To a lesser extent. Therefore, compared with a camera module that cannot achieve optical image stabilization, the preset time range can be appropriately expanded, especially the upper limit of the time range, to obtain a better-quality image.
  • FIG. 3 is a schematic flowchart of a third night scene shooting method according to an embodiment of the present disclosure. As shown in FIG. 3, step 203 may further include the following sub-steps:
  • Sub-step 2031 Adjust the number of frames of the image to be acquired according to the degree of jitter.
  • the number of frames of the image to be captured and the sensitivity of the captured image will affect the overall shooting time. If the shooting time is too long, it may cause the degree of shake of the camera module to increase during handheld shooting, thereby affecting the image quality. That is, the number of frames of the image to be acquired has an inverse relationship with the degree of jitter. Therefore, the number of image frames to be acquired can be adjusted according to the current jitter level of the camera module so that the shooting duration is controlled within a proper range.
  • the current jitter of the camera module is small, more frames of images can be collected to effectively suppress the noise of each frame of the image and improve the quality of the captured image; if the current jitter of the camera module is large, then You can capture fewer frames to shorten the shooting time.
  • the current shooting mode may be a tripod. At this time, more frames of images can be collected to obtain a higher quality image as much as possible, such as It is determined that the number of images to be acquired is 17 frames; if it is determined that the current jitter of the camera module is “slight jitter”, it may be determined that the current shooting mode may be a handheld shooting mode. At this time, images of fewer frames can be collected to reduce the shooting time.
  • the number of images to be acquired is 7 frames; if it is determined that the current jitter of the camera module is “small jitter”, it may be determined that the current shooting mode may be a handheld shooting mode. At this time, the number of images to be acquired can be further reduced to reduce shooting Duration, for example, determine the number of images to be acquired is 5 frames; if the current degree of jitter of the camera module is determined to be "large jitter", it can be determined that the current degree of jitter is too large, and the number of images to be acquired can be further reduced at this time, or It does not adopt the method of collecting multiple frames of images to reduce the length of the shooting. For example, it is determined that the images to be collected are 3 frames.
  • the above examples are merely exemplary and cannot be regarded as limiting the present disclosure.
  • the degree of jitter of the camera module changes, the number of image frames to be acquired can be changed to obtain an optimal solution.
  • the mapping relationship between the degree of jitter of the camera module and the number of image frames to be collected can be preset according to actual needs.
  • Sub-step 2032 detecting whether a human face is included in the image collected by the camera module.
  • Face recognition technology is to identify the identity by analyzing and comparing the visual characteristic information of the face. It belongs to the biometric recognition technology, which distinguishes the individual organisms from the biological characteristics of the organisms (generally specifically people).
  • face recognition technology has been applied in many fields, such as digital camera face autofocus and smile shutter technology; corporate and residential security and management; access control systems; camera surveillance systems, etc.
  • Commonly used face recognition algorithms include: Feature-based recognition algorithms (Feature-based recognition algorithms), Appearance-based recognition algorithms (Template-based recognition algorithms) recognition algorithms), algorithms using neural networks for recognition (Recognition algorithms, neural networks), and so on.
  • the metering module of the camera module automatically performs metering based on the human face area, and is determined based on the metering result of the human face area Reference exposure.
  • the light intensity of the face area is usually low, which results in a determined reference exposure amount that is higher than the reference exposure amount determined when the face is not included.
  • Overexposed frames easily lead to overexposure of the human face area, which results in poor target image effect. Therefore, for the same degree of jitter, the corresponding exposure compensation mode needs to have a lower exposure compensation range compared to when the image captured by the camera module includes a human face and when it does not include a human face.
  • step 2033 if a human face is included, it is determined that the exposure compensation mode is a first mode that matches the adjusted frame number.
  • sub-step 2034 if the human face is not included, it is determined that the exposure compensation mode is a second mode that matches the adjusted frame number.
  • the exposure compensation level value range corresponding to the second mode is larger than the exposure compensation level value range corresponding to the first mode.
  • the degree of camera shake is "slight shake”
  • the corresponding preset exposure compensation modes are the first mode and the second mode, where each EV value corresponding to the first mode is [0, 0, 0, 0 , -2, -4, -6], and each EV value corresponding to the second mode is [+1, +1, +1, +1, 0, -3, -6].
  • the corresponding preset exposure compensation modes include a first mode and a second mode, where each EV value corresponding to the first mode is [0, 0 , 0, 0, -2, -4, -6], each EV value corresponding to the second mode is [+1, +1, +1, +1, 0, -3, -6], it can be seen that the first The exposure compensation range of the mode is smaller than the exposure compensation range of the second mode.
  • the preset exposure compensation mode is the first mode that matches the adjusted frame number, that is, each EV value is [0, 0, 0, 0, -2 , -4, -6]; if it is detected that the image currently captured by the camera module does not include a human face, determine that the preset exposure compensation mode is the second mode that matches the adjusted frame number, that is, each EV value is [+ 1, +1, +1, +1, 0, -3, -6].
  • Step 204 Compensate the reference exposure duration according to the exposure compensation level set for the images to be acquired in each frame to obtain the exposure duration of the images to be acquired in each frame.
  • different exposure compensation strategies may be adopted for each frame of images to be acquired through exposure compensation levels, so that the images to be acquired correspond to different exposure amounts to obtain images with different dynamic ranges.
  • the exposure compensation mode refers to a combination of exposure compensation values (Exposure Value, EV for short) preset for each frame of images to be acquired.
  • Exposure Value Exposure Value
  • Exposure compensation level is a parameter that adjusts the amount of exposure, so that some images are underexposed, some images are overexposed, and some images can be properly exposed.
  • the EV value is the same.
  • the EV value refers to the exposure amount obtained when the sensitivity is 100
  • the aperture factor is f1
  • the exposure duration is 1 second.
  • the exposure amount is increased by one stop, that is, the exposure time is doubled, or the sensitivity is doubled, or the aperture is increased by one stop, and the EV value is increased by 1, that is, the exposure amount corresponding to EV1 is twice the exposure amount corresponding to EV0.
  • Table 1 the corresponding relationship with the EV value when the exposure duration, aperture, and sensitivity are individually changed.
  • the exposure amount when the EV value is 0 in a digital camera may be obtained by metering ambient light in a shooting scene.
  • EV refers to the difference between the exposure amount corresponding to the camera metering data and the actual exposure amount.
  • EV + 1 exposure compensation refers to an increase of one exposure relative to the exposure amount corresponding to the camera metering data.
  • the actual exposure is twice the exposure corresponding to the camera's metering data.
  • the EV value corresponding to the determined reference exposure amount can be preset to 0, and EV + 1 means to increase the exposure by one step, that is, the exposure amount is twice the reference exposure amount.
  • EV + 2 means to increase the exposure by two stops, that is, the exposure is 4 times the reference exposure, and EV-1 means to decrease the exposure by one stop, that is, the exposure is 0.5 times the reference exposure, and so on.
  • the range of EV values corresponding to the exposure compensation mode may be [+1, +1, +1, +1, 0, -3, -6].
  • frames with exposure compensation mode of EV + 1 can solve the problem of noise.
  • Time-domain noise reduction is performed through frames with higher brightness, which suppresses noise while improving details in the dark.
  • Frames with exposure compensation mode of EV-6 can solve the problem.
  • the problem of overexposure of highlights preserves the details of highlight areas; frames with exposure compensation modes of EV0 and EV-3 can be used to maintain the transition between highlights and dark areas, and maintain a good light and dark transition effect.
  • each EV value corresponding to the exposure compensation mode can be specifically set according to actual needs, or it can be obtained according to the set EV value range and based on the principle that the difference between the EV values is equal.
  • the embodiment of the present disclosure does not limit this.
  • the size of the aperture may be constant, and each to-be-acquired image is acquired using a determined reference sensitivity. Therefore, according to the current jitter level of the camera module, it is determined After the current number of images to be acquired, the exposure time corresponding to each frame of images to be acquired can be determined according to a preset exposure compensation mode that matches the current number of images to be acquired, and a reference exposure time.
  • the exposure compensation mode corresponding to the image to be collected is EV + 1
  • the exposure duration corresponding to the image to be collected is twice the reference duration
  • the exposure compensation mode corresponding to the image to be collected is EV-1
  • the waiting time The exposure time corresponding to the captured image is 0.5 times the reference duration, and so on.
  • the corresponding EV range of the corresponding preset exposure compensation mode may be [+1, +1, +1, +1 , 0, -3, -6], according to the reference exposure amount and reference sensitivity, determine that the reference exposure time is 100 milliseconds, then the exposure time corresponding to each frame of the image to be collected is 200 milliseconds, 200 milliseconds, 200 milliseconds, 200 Millisecond, 100 millisecond, 12.5 millisecond, 6.25 millisecond.
  • the night scene shooting method determines the reference exposure amount according to the brightness information of the shooting scene, determines the reference exposure duration according to the reference exposure amount and the reference sensitivity, and adjusts the exposure compensation mode according to the degree of shake of the camera module.
  • the exposure compensation level set for each frame of images to be acquired compensates the reference exposure time to obtain the exposure time of each frame of images to be acquired. Therefore, the reference exposure and the exposure compensation level of each frame are determined by the brightness information of the shooting scene to determine the exposure time for capturing each frame of the image.
  • the reference exposure and the exposure compensation level of each frame are determined by the brightness information of the shooting scene to determine the exposure time for capturing each frame of the image.
  • FIG. 4 is a schematic flowchart of a fourth night scene shooting method according to an embodiment of the present disclosure, which may specifically include the following steps:
  • Step 301 Determine, according to the screen content of the preview screen, that the current shooting scene belongs to a night scene.
  • a preview screen of a current shooting scene may be obtained through an imaging device, and is used to determine whether the current shooting scene belongs to a night scene.
  • the contents of the preview screen are also different. Based on the screen contents of the preview scene of the current shooting scene and the ambient brightness values of each area, it is determined whether the current shooting scene belongs to a night scene.
  • the picture content of the preview screen includes the night sky or night light sources, or the ambient brightness values in each area of the preview screen match the brightness distribution characteristics of the image under the night environment, it can be determined that the current shooting scene belongs to the night scene.
  • Step 302 Identify a night scene mode applicable to the current shooting scene according to the degree of shake of the camera module and / or whether the preview screen includes a human face.
  • the displacement information provided by the imaging device can be acquired through the displacement sensor provided by the imaging device, and then the current shake degree of the camera module is determined according to the obtained displacement information. Therefore, it can be judged by the degree of shake of the camera module whether the user fixes the imaging device on a tripod for shooting or shoots in a handheld mode. Furthermore, according to the current shaking degree of the camera module, a night scene mode applicable to the current shooting scene is identified. Among them, the night scene mode is a tripod mode or a handheld mode.
  • the night view mode applicable to the current shooting scene may be identified by determining that the preview screen of the imaging device is sufficient to include a human face.
  • the metering module of the camera module automatically performs metering based on the human face area, and determines the reference exposure amount based on the photometric result of the human face area.
  • the light intensity of the face area is usually low, which results in a determined reference exposure amount that is higher than the reference exposure amount determined when the face is not included.
  • Overexposed frames easily lead to overexposure of the human face area, resulting in poor imaging results of the collected images. Therefore, for the same degree of jitter, compared with the case where the face is included in the preview picture, the night scene mode is different.
  • Step 303 Determine a preset exposure compensation value for each frame of the image to be acquired according to the exposure compensation mode corresponding to the night scene mode.
  • the camera module has different degrees of jitter, and the night scene mode applicable to the current shooting scene is also different. Therefore, the preset exposure compensation values of the determined images to be collected for each frame are also different.
  • the mapping relationship between the degree of shake of the camera module and the exposure compensation value can be preset to determine the preset exposure compensation value of the image to be acquired in each frame currently based on the degree of shake of the camera module. .
  • the range of EV values of the exposure compensation values corresponding to the images to be collected in each frame is preset to -6 to 2, and the difference between adjacent EV values The value is 0.5; the jitter degree of the camera module is "slight jitter”, and the EV value range of the exposure compensation value corresponding to each frame of the image to be collected is preset to -5 to 1, and the difference between adjacent EV values The value is 1, and so on.
  • the preview picture of the camera module includes a human face.
  • the night scene mode applicable to the current shooting scene is different, and the frames determined from this
  • the exposure compensation value preset for the image to be acquired is also different.
  • different exposure compensation values can be determined for each frame of images to be acquired according to whether a preview picture includes a human face. Therefore, for the same degree of jitter, it can correspond to multiple exposure compensation values.
  • the degree of camera shake is "slight shake”
  • the preset exposure compensation value for each frame of the image to be collected includes two cases: the face and the face.
  • the light intensity of the face area is usually low, which results in a determined reference exposure amount that is higher than the reference exposure amount determined when the face is not included.
  • the corresponding exposure compensation mode needs to have a lower exposure compensation range. Therefore, for the same degree of jitter, compared with the case where the face is included in the preview screen compared to when no face is included, after determining the current degree of jitter of the camera module and whether the preview screen contains a face, it can be determined from the current The preset exposure compensation value matches the actual situation.
  • the night scene mode applicable to the current shooting scene is identified Then, according to the night scene mode, a preset exposure compensation value for each frame of images to be acquired is determined.
  • a night scene mode in the shooting scene is determined, and then a preset exposure compensation value for each frame to be acquired is determined, which is further used to determine each frame to be
  • the exposure time of the captured image is updated according to the upper limit of the exposure time of at least one frame of the image to be collected.
  • the exposure is controlled based on the exposure time and sensitivity of each of the updated frames of the image to be collected, and then imaging is performed, which not only improves the night scene shooting mode Lower the dynamic range and overall brightness of the captured image, and effectively suppress the noise in the captured image, improve the quality of the night scene captured image, and improve the user experience.
  • FIG. 5 is a schematic flowchart of a fifth night scene shooting method according to an embodiment of the present disclosure. As shown in FIG. 5, step 102 may include the following steps:
  • Step 401 Determine the degree of shake of the camera module.
  • the displacement information may be collected according to a displacement sensor provided in the electronic device, and further, the degree of shake of the camera module may be determined according to the collected displacement information of the electronic device.
  • the preset sensitivity of the image to be collected in each frame is the same, the preset sensitivity of the image to be collected in each frame may be determined according to the degree of shaking of the camera module.
  • Step 402 Determine whether the degree of shake of the camera module is greater than or equal to the shake threshold
  • the degree of shake of the camera module is compared with a preset shake threshold to determine the sensitivity value of the reference sensitivity according to the degree of shake.
  • step 403 if the degree of shaking is greater than or equal to the shaking threshold, it is determined that the reference sensitivity is the first sensitivity value.
  • the determined degree of shake of the camera module is greater than or equal to the shake threshold, and at this time, the reference sensitivity is determined to be the first sensitivity value.
  • the reference sensitivity can be increased to reduce the shooting duration, for example, the reference sensitivity is determined to be 800.
  • step 404 if the degree of dithering is less than the dithering threshold, it is determined that the reference sensitivity is the second sensitivity value.
  • the determined degree of shake of the camera module is less than a shake threshold, and at this time, it is determined that the reference sensitivity is the second sensitivity value.
  • the first light sensitive value is greater than the second light sensitive value
  • the first light sensitive value is a preset multiple of the second light sensitive value
  • the preset multiple takes a value greater than or equal to two.
  • the second sensitivity value may be the minimum sensitivity of the imaging device, that is, the value of the second sensitivity value is 100 ISO, and accordingly, the value range of the first sensitivity value is It can be 200, 400, 800 or higher.
  • the reference sensitivity can be determined to be 100.
  • the degree of shaking is compared with the threshold of shaking. If the degree of shaking is greater than or equal to the threshold of shaking, it is determined that the reference sensitivity is the first sensitivity value, and if the degree of shaking is less than the threshold of shaking , Determine that the reference sensitivity is the second sensitivity value. Therefore, the sensitivity value of the reference sensitivity is determined by the shake degree of the camera module to further determine the exposure time according to the sensitivity value, thereby not only improving the dynamic range and overall brightness of the captured image in the night scene shooting mode, but also effectively suppressing the captured image. The noise in the image improves the quality of the night shot image and improves the user experience.
  • step 102 after determining the exposure time required for each frame of the image to be acquired under the light intensity of the shooting scene, The determined exposure time is compared with the upper limit determined according to the degree of jitter of the camera module, so as to reduce the exposure time of the image to be collected whose exposure time is longer than the upper limit of the exposure time, and to avoid image distortion caused by overexposure when the exposure time is too long , Jitter causes the picture to be blurred, and the shooting time is too long.
  • FIG. 6 is a schematic flowchart of a sixth night scene shooting method according to an embodiment of the present disclosure. As shown in FIG. 6, after step 103, the following steps are further included:
  • Step 501 Determine an upper limit of the duration according to the degree of jitter of the camera module.
  • the displacement information may be collected according to a displacement sensor provided in the imaging device, and further, the degree of shake of the camera module may be determined according to the collected displacement information of the imaging device. Further, the determined shake degree of the camera module is compared with a preset shake threshold to determine an upper limit of the exposure time.
  • the jitter threshold is a jitter value preset in the imaging device and used to determine a preset sensitivity value.
  • the camera module has a large degree of jitter, if a longer exposure time is set, it may lead to an increase in the overall shooting time and increase the degree of jitter in the imaging device, so that the final image may appear due to jitter. causes ghosting and noticeable blurring of the image. Therefore, when the degree of shake of the camera module is large, a shorter exposure time can be set to avoid ghosting or blurring of the captured image.
  • the degree of jitter of the imaging device is less than the jitter threshold, it is determined that the upper limit of the exposure duration of the images to be acquired in each frame in the current shooting scene is the second duration.
  • the first duration is shorter than the second duration, and the first duration ranges from 150ms to 300ms; the second duration ranges from 4.5s to 5.5s.
  • Step 502 Compare the exposure duration of the image to be collected in each frame with a set upper limit.
  • the exposure time of each frame to be acquired is determined according to the reference sensitivity determined by the camera module.
  • the reference sensitivity determined by the camera module.
  • the exposure time of each frame of the image to be collected is compared with the set upper limit to avoid the exposure time being too long. Overexposure causes image distortion.
  • step 503 if there is a first image in the to-be-collected image whose exposure duration is greater than the upper limit, the exposure duration of the first image is reduced to the upper limit.
  • the corresponding exposure duration in the to-be-acquired image is longer than the upper limit, it may cause the overall shooting duration to be prolonged, exacerbate the degree of jitter in the imaging device, and thus may cause ghosts in the final captured image due to jitter. Shadows and images are clearly blurred.
  • the exposure duration can be compared with a preset upper limit to determine whether the exposure duration corresponding to the image to be collected in each frame is greater than the upper limit.
  • the determined exposure time in the image to be collected is compared with the first upper limit. If the exposure time in the image to be collected is greater than the first time
  • the upper limit of the first image reduces the exposure duration of the first image to the upper limit of the duration. Among them, the upper limit of the first duration is 300ms.
  • the exposure time of a frame to be acquired is 350ms, and because the exposure time of the frame is greater than the first upper limit, the exposure time of the frame is reduced, and the exposure time of the frame to be acquired is set to 300ms .
  • the determined exposure duration in the image to be acquired is compared with the second upper limit, and when the exposure duration corresponding to the first image in the image to be acquired is greater than
  • the exposure duration corresponding to the first image is set to the upper limit of the second duration, which is 5.5s.
  • the exposure time of an image to be collected in a frame is 6s, because the exposure time of the image in the frame is greater than the upper limit of the second duration, the exposure time of the image in the frame is reduced, and the exposure time of the image in the frame is set to 5.5 s.
  • Step 504 Increase the sensitivity of the first image according to the ratio of the exposure duration before the reduction to the reduced exposure duration of the first image.
  • the exposure amount is the product of the sensitivity and the exposure duration
  • the exposure amount of the first image when the exposure amount of the first image is determined, it can be increased according to the ratio of the exposure duration before the reduction of the first image to the exposure duration after the reduction.
  • the sensitivity of the first image to maintain the brightness of the captured image.
  • the exposure duration and the reference exposure amount when the exposure compensation level is EV0 are 2s and 100 ISO, respectively.
  • the exposure duration and sensitivity are 8s and 100ISO respectively. Since the exposure duration is 8s and is greater than the maximum duration of 5s, the exposure duration of EV + 2 is set to 5s.
  • the ISO value is determined to be 8/5 * 100ISO or 160ISO. Therefore, by updating the exposure duration of the image to be collected in the frame, while ensuring the exposure amount, the image brightness is improved, and the image distortion caused by overexposure caused by the long exposure time is avoided.
  • the exposure time of each frame to be captured is compared with the set upper limit. If there is a first Image, reducing the exposure duration of the first image to the upper limit of the duration, and increasing the sensitivity of the first image according to the ratio of the exposure duration before the reduction of the first image to the reduced exposure duration. Therefore, the exposure time of the image whose exposure time is longer than the upper limit is reduced to the upper limit, thereby avoiding that the overall shooting time is prolonged due to the exposure time being too long, which exacerbates the degree of jitter of the camera module, so that ghosts and blurry images due to jitter may appear in the final captured image.
  • FIG. 7 is a schematic flowchart of a seventh night scene shooting method according to an embodiment of the present disclosure. As shown in FIG. 7, after step 103, the following steps are further included:
  • Step 601 Compare the exposure duration of the image to be collected in each frame with a set lower limit.
  • the exposure time of each frame to be acquired is determined according to the reference sensitivity determined by the camera module.
  • the reference sensitivity determined by the camera module.
  • the exposure time of each frame of the image to be collected is compared with the set lower limit, so that Adjust the exposure time.
  • the lower limit of the duration is greater than or equal to 10 ms.
  • the lower limit of the exposure duration is also determined according to the degree of jitter of the camera module.
  • the lower limit of the exposure duration is also determined according to the degree of jitter of the camera module.
  • step 602 if there is a second image in the to-be-collected image whose exposure duration is less than the lower limit of duration, the exposure duration of the second image is increased to the lower limit of duration.
  • the exposure duration corresponding to the image to be acquired is shorter than the lower limit of the duration, it may cause excessive noise in the image to be difficult to eliminate. Therefore, when the exposure duration corresponding to an image to be acquired in a frame is less than the lower limit, the exposure duration corresponding to the image to be acquired in the frame is increased to the lower limit.
  • Step 603 Determine a ratio between the exposure duration after the second image is increased and the exposure duration before the increase.
  • the exposure duration before the second image is increased is 8ms
  • the exposure duration of the second image is increased to the preset lower limit of 10ms
  • the ratio between the exposure duration of and the exposure duration before the increase is 10/8.
  • step 604 if there is a first image in the remaining frames of images to be acquired with an exposure duration greater than the upper limit, the exposure duration of the first image is reduced according to the upper limit.
  • a first image with an exposure duration greater than the upper limit of the duration is also present in the remaining frames of the to-be-collected image, and the first image may be Is reduced to the maximum duration.
  • Step 605 Increase the sensitivity of the first image according to the ratio of the exposure time before and after the first image is reduced.
  • step 605 in the embodiment of the present disclosure, refer to the implementation process of step 504 in the foregoing embodiment, and details are not described herein again.
  • Step 606 Update the sensitivity or exposure duration of the remaining frames of images to be acquired based on the ratio of the remaining frames of images to be collected whose exposure time is greater than or equal to the lower limit of the duration.
  • the ratio and the rest The product of the sensitivity or exposure time before updating of the images to be acquired in each frame is used as the sensitivity or exposure time after updating of the images to be acquired in the remaining frames.
  • the preset sensitivity value of each frame is determined to be 100 ISO according to the degree of jitter of the camera module, and the exposure duration of the 4 frames of image to be captured is 100ms, 200ms, 400ms, and 800ms, respectively.
  • the value is 10ms / 1.5ms, that is, 20/3. Therefore, it is determined that the exposure time of the four frames to be collected is expanded to the original 20/3 times of 100ms, 200ms, 400ms and 800ms.
  • the method for updating the sensitivity is similar to the method for updating the exposure duration. It is only necessary to replace the exposure duration with the sensitivity, but it should be noted that the exposure duration and update can only be updated according to the aforementioned to-be-collected images that are less than the lower limit of the duration.
  • One of the ratio between the previous exposure time and the exposure time and the sensitivity is updated. If the exposure time and the sensitivity need to be updated at the same time, the ratio needs to be assigned according to the weight and then updated. For example, the exposure duration and the sensitivity are each half weighted. If the ratio between the updated exposure duration of the to-be-collected image smaller than the lower duration and the exposure duration before the update is R, the exposure duration is enlarged to the original R / 2 To increase the sensitivity to the original R / 2 times.
  • the exposure time of the image to be collected for each frame is compared with the set lower limit. There is a second image in the image with an exposure duration that is shorter than the lower limit. Increase the exposure duration of the second image to the lower limit. Determine the ratio between the increased exposure duration of the second image and the exposure duration before the increase. For the remaining frames to be acquired with a duration greater than or equal to the lower limit of the duration, the sensitivity or exposure duration of the remaining frames to be acquired according to the ratio is updated.
  • the exposure time of the images to be collected for each frame is determined, and then the sensitivity and exposure time of the images to be collected for each frame are updated according to the lower and upper limit of the exposure time, and finally the exposure time and sensitivity of the images to be collected are updated for each frame. It can control the exposure, and then imaging, which not only improves the dynamic range and overall brightness of the captured image in the night scene shooting mode, but also effectively suppresses the noise in the captured image, improves the quality of the night scene captured image, and improves the user experience.
  • the exposure duration when shooting a night scene, can also be adjusted according to the degree of shake of the camera module, and then the sensitivity of multiple frames of images to be acquired is determined according to the exposure duration, so that Capture the image by the sensitivity and exposure time of the image to be acquired. Different from adjusting the exposure duration based on the reference sensitivity in the implementation provided in FIG. 1, the sensitivity is adjusted based on the exposure duration. Similarly, the sensitivity can be controlled to a lower level in combination with the degree of dithering.
  • FIG. 8 is a schematic flowchart of an eighth night scene shooting method according to an embodiment of the present application.
  • the method specifically includes the following steps:
  • Step 701 Obtain the degree of jitter of the camera module.
  • step 701 for the implementation process of step 701, refer to the implementation process of step 101 in the foregoing embodiment, and details are not described herein again.
  • Step 702 Adjust the exposure duration according to the degree of dithering.
  • the exposure time refers to the time that light passes through the lens.
  • the exposure time can be adjusted according to the degree of shake of the camera module.
  • the camera module has a large degree of jitter
  • Step 703 Determine the sensitivity of the images to be acquired in multiple frames according to the brightness information and the exposure duration of the shooting scene.
  • the brightness information of the shooting scene may be obtained by metering using a light metering module in the camera module, or may be the illumination of the shooting scene, or may be obtained through the brightness information in the preview image. This is not limited.
  • the exposure amount is related to the aperture, the exposure duration, and the sensitivity.
  • the aperture is the clear aperture, which determines the amount of light passing through in a unit time. After determining the exposure duration of multiple frames of images to be collected and the aperture size is the same, after determining the exposure amount corresponding to each frame of images to be collected according to the brightness information of the shooting scene, you can, according to the exposure time of each frame of images to be collected To determine the sensitivity of the image to be acquired for each frame.
  • Step 704 Acquire an image according to the sensitivity and exposure time of the images to be acquired in multiple frames.
  • the camera module is controlled to acquire images according to the sensitivity and exposure duration of the images to be collected in each frame, and details are not described herein.
  • step 705 the collected multiple frames of images are synthesized to generate a target image.
  • step 705 for the implementation process of step 705, refer to the implementation process of step 105 in the foregoing embodiment, and details are not described herein again.
  • the night scene shooting method obtains the degree of shake of the camera module, adjusts the exposure time according to the degree of shake, and determines the sensitivity of the images to be collected in multiple frames based on the brightness information and exposure duration of the shooting scene. Capture the image sensitivity and exposure time to capture the image, and combine the collected multiple frames to generate the target image. Therefore, after determining the exposure duration, the sensitivity of multiple frames of images to be acquired is determined according to the brightness information and exposure duration of the shooting scene, so that image acquisition is performed according to the exposure duration and sensitivity of the images of multiple frames to be acquired to synthesize and generate a target image. , Not only improves the dynamic range and overall brightness of night shot images, effectively suppresses noise in the image, but also suppresses ghosting caused by hand-shake, improves the quality of night shot images, and improves the user experience.
  • step 702 the exposure compensation level set for each frame of images to be acquired and the exposure duration corresponding to each exposure compensation level may be determined based on the degree of jitter.
  • the synthesized image has a higher dynamic range, and the overall brightness and quality of the image are improved.
  • Step 801 Determine the exposure duration corresponding to each exposure compensation level according to the degree of jitter.
  • exposure compensation is a control method of exposure, which is a combination of the shutter and aperture parameters obtained after the object is metered by electronic equipment, and then the shutter speed obtained by manually changing the metering is compensated by the exposure compensation.
  • Exposure compensation levels include high compensation levels, low compensation levels less than high compensation levels, and transition levels between high and low compensation levels.
  • the current camera module has different degrees of jitter, different exposure compensation levels corresponding to multiple frames of images to be acquired, and different exposure durations corresponding to different exposure compensation levels. Therefore, the exposure duration corresponding to each exposure compensation level can be determined according to the degree of jitter, so as to establish a correspondence relationship between each exposure compensation level and exposure duration.
  • the camera module shake degree can be "no shake”
  • the corresponding EV value range of the exposure compensation level is preset to -6 ⁇ 2
  • the difference between adjacent EV values is 0.5, while setting a longer
  • the exposure duration of the camera module is set to "slightly shake” the camera module
  • the EV value range of the corresponding exposure compensation level is preset to -5 to 1
  • the difference between adjacent EV values is 1, while setting the Short exposure duration, etc.
  • Step 802 Adjust the exposure compensation mode according to the degree of shaking.
  • the exposure compensation mode is used to indicate the number of frames of the image to be acquired and the exposure compensation level set for each frame of the image to be acquired.
  • the current jitter of the camera module is different, and the number of determined images to be acquired may also be different.
  • the number of images to be acquired is different, different exposure compensation modes need to be adopted. Therefore, in a possible implementation form of the embodiment of the present disclosure, a mapping relationship between the degree of shake of the camera module and the exposure compensation mode may be established to determine the number of images to be acquired according to the current degree of shake of the camera module. Number of frames and the exposure compensation mode set for each frame of images to be acquired.
  • the camera module shake degree can be "no shake", the corresponding EV value range of the exposure compensation mode is preset to -6 to 2, and the difference between adjacent EV values is 0.5;
  • the degree of dithering is "slightly dithering", the EV value range of the corresponding exposure compensation mode is preset to -5 to 1, and the difference between adjacent EV values is 1, and so on.
  • the anti-shake performance of the camera module may be determined first to adjust the exposure compensation mode in combination with the degree of shake and anti-shake performance of the camera module.
  • the anti-shake performance of the camera module has a certain relationship with the attribute information of each component in the camera module, so the anti-shake performance of the camera module can be determined according to the attribute information of each component in the camera module. Adjust the exposure compensation mode based on the degree of camera shake and anti-shake performance.
  • the preset time range can be appropriately extended, because a camera module that can achieve optical image stabilization function, during the shooting process, when the camera module shakes , It can offset a part of the jitter itself, so that compared with a camera module that cannot achieve optical image stabilization, at the same degree of jitter, the ghost and blur in the image collected by the camera module that can achieve optical image stabilization function To a lesser extent. Therefore, compared with a camera module that cannot achieve optical image stabilization, the preset time range can be appropriately expanded, especially the upper limit of the time range, to obtain a better-quality image.
  • the number of frames of an image to be acquired may be adjusted according to the degree of jitter of the camera module, and further, the camera module detects whether the captured image includes a human face to adjust the exposure compensation mode of each frame.
  • the number of frames of the image to be captured and the sensitivity of the captured image will affect the overall shooting time. If the shooting time is too long, it may cause the degree of shake of the camera module to increase during handheld shooting, thereby affecting the image quality. That is, the number of frames of the image to be acquired has an inverse relationship with the degree of jitter. Therefore, the number of image frames to be acquired can be adjusted according to the current jitter level of the camera module so that the shooting duration is controlled within a proper range.
  • the current jitter of the camera module is small, more frames of images can be collected to effectively suppress the noise of each frame of the image and improve the quality of the captured image; if the current jitter of the camera module is large, then You can capture fewer frames to shorten the shooting time.
  • the current shooting mode may be a tripod. At this time, more frames of images can be collected to obtain a higher quality image as much as possible, such as It is determined that the number of images to be acquired is 17 frames; if it is determined that the current jitter of the camera module is “slight jitter”, it may be determined that the current shooting mode may be a handheld shooting mode. At this time, images of fewer frames can be collected to reduce the shooting time.
  • the number of images to be acquired is 7 frames; if it is determined that the current jitter of the camera module is “small jitter”, it may be determined that the current shooting mode may be a handheld shooting mode. At this time, the number of images to be acquired can be further reduced to reduce shooting Duration, for example, determine the number of images to be acquired is 5 frames; if the current degree of jitter of the camera module is determined to be "large jitter", it can be determined that the current degree of jitter is too large, and the number of images to be acquired can be further reduced at this time, or It does not adopt the method of collecting multiple frames of images to reduce the length of the shooting. For example, it is determined that the images to be collected are 3 frames.
  • the above examples are merely exemplary and cannot be regarded as limiting the present disclosure.
  • the degree of jitter of the camera module changes, the number of image frames to be acquired can be changed to obtain an optimal solution.
  • the mapping relationship between the degree of jitter of the camera module and the number of image frames to be collected can be preset according to actual needs.
  • Face recognition technology is to identify the identity by analyzing and comparing the visual characteristic information of the face. It belongs to the biometric recognition technology, which distinguishes the individual organisms from the biological characteristics of the organisms (generally specifically people).
  • face recognition technology has been applied in many fields, such as digital camera face autofocus and smile shutter technology; corporate and residential security and management; access control systems; camera surveillance systems, etc.
  • Commonly used face recognition algorithms include: Feature-based recognition algorithms (Feature-based recognition algorithms), Appearance-based recognition algorithms (Template-based recognition algorithms) recognition algorithms), algorithms using neural networks for recognition (Recognition algorithms, neural networks), and so on.
  • the metering module of the camera module automatically performs metering based on the human face area, and is determined based on the metering result of the human face area Reference exposure.
  • the light intensity of the face area is usually low, which results in a determined reference exposure amount that is higher than the reference exposure amount determined when the face is not included.
  • Overexposed frames easily lead to overexposure of the human face area, which results in poor target image effect. Therefore, for the same degree of jitter, the corresponding exposure compensation mode needs to have a lower exposure compensation range compared to when the image captured by the camera module includes a human face and when it does not include a human face.
  • the exposure compensation mode is the first mode that matches the adjusted frame number.
  • the exposure compensation mode is a second mode that conforms to the adjusted frame number.
  • the exposure compensation level value range corresponding to the second mode is larger than the exposure compensation level value range corresponding to the first mode.
  • the degree of camera shake is "slight shake”
  • the corresponding preset exposure compensation modes are the first mode and the second mode, where each EV value corresponding to the first mode is [0, 0, 0, 0 , -2, -4, -6], and each EV value corresponding to the second mode is [+1, +1, +1, +1, 0, -3, -6].
  • the corresponding preset exposure compensation modes include a first mode and a second mode, where each EV value corresponding to the first mode is [0, 0 , 0, 0, -2, -4, -6], each EV value corresponding to the second mode is [+1, +1, +1, +1, 0, -3, -6], it can be seen that the first The exposure compensation range of the mode is smaller than the exposure compensation range of the second mode.
  • the preset exposure compensation mode is the first mode that matches the adjusted frame number, that is, each EV value is [0, 0, 0, 0, -2 , -4, -6]; if it is detected that the image currently captured by the camera module does not include a human face, determine that the preset exposure compensation mode is the second mode that matches the adjusted frame number, that is, each EV value is [+ 1, +1, +1, +1, 0, -3, -6].
  • Step 803 Determine the exposure duration of the image to be acquired for each frame according to the exposure compensation level set for each frame of the image to be acquired and the exposure duration corresponding to each exposure compensation level.
  • the exposure time for each frame to be acquired can be determined.
  • the exposure duration corresponding to each exposure compensation level is determined according to the degree of shake of the camera module, and the exposure compensation mode is adjusted, and further, the exposure compensation level set according to the image to be acquired for each frame and the exposure compensation level are corresponding.
  • the exposure duration is determined by the exposure duration of the image to be acquired for each frame.
  • step 703 according to the brightness information and exposure duration of the shooting scene, the sensitivity of the images to be collected in multiple frames is determined, and the determined The sensitivity of the frame to be acquired is compared with the set upper limit of the sensitivity to reduce the sensitivity of the to-be-acquired image whose sensitivity is greater than the upper limit of the sensitivity. It avoids the technical problem that the sensitivity value is high during the process of collecting images, which causes the noise of the collected images to increase. The following describes the above process in detail with reference to FIG. 10. As shown in FIG. 10, after step 703, it may further include:
  • Step 901 Determine an upper limit of the sensitivity according to the degree of shaking of the camera module.
  • the displacement information may be collected according to a displacement sensor provided in the electronic device, and further, the degree of shake of the camera module may be determined according to the collected displacement information of the electronic device.
  • the upper limit of the sensitivity of the images to be collected in each frame may be determined according to the degree of jitter of the camera module.
  • the degree of shake of the camera module may be compared with a preset shake threshold to determine an upper limit of sensitivity according to the degree of shake.
  • the jitter threshold is a value used to measure the degree of jitter.
  • the determined degree of shake of the camera module is greater than or equal to the shake threshold, and at this time, the upper limit of the sensitivity is determined to be the first sensitivity value.
  • the sensitivity value is determined to be 800.
  • the determined degree of shake of the camera module is less than the shake threshold, and at this time, it is determined that the upper limit of the sensitivity is the second sensitivity value.
  • the first light sensitive value is greater than the second light sensitive value, the first light sensitive value is a preset multiple of the second light sensitive value, and the preset multiple takes a value greater than or equal to two.
  • the second sensitivity value can be the minimum sensitivity of the imaging device, that is, the value of the second sensitivity value is 100 ISO. Accordingly, the value range of the first sensitivity value can be 200, 400, 800 or higher.
  • the degree of shake of the camera module is small, a lower sensitivity can be set to obtain a higher quality image as much as possible.
  • the sensitivity can be determined to be 100.
  • Step 902 Compare the sensitivity of the image to be collected in each frame with a set upper limit of sensitivity.
  • the sensitivity of the image to be collected in each frame is compared with the set upper limit of the sensitivity to The sensitivity of the captured image is adjusted to help reduce the noise of each frame of the collected image, to avoid the situation that the image noise increases when the sensitivity is increased.
  • step 903 if there is a first image in the image to be collected with a sensitivity greater than the upper limit of the sensitivity, the sensitivity of the first image is reduced according to the upper limit of the sensitivity.
  • the corresponding sensitivity in the image to be collected is greater than the upper limit of the sensitivity, it may cause more noise in the process of capturing the image, which may cause serious noise in the final captured image.
  • the sensitivity of the image to be collected in each frame can be compared with the upper limit of the sensitivity to determine whether there is a first image in the image to be collected whose sensitivity is greater than the upper limit of the sensitivity .
  • the determined sensitivity in the image to be collected is compared with the upper limit of the sensitivity.
  • the first image reduces the sensitivity of the first image according to the upper limit of the sensitivity.
  • the upper limit of the sensitivity is the first sensitivity value.
  • the determined sensitivity in the image to be acquired is compared with the upper limit of the sensitivity, and when the first image in the image to be acquired has a sensitivity greater than
  • the sensitivity is upper limit
  • the sensitivity of the first image is decreased according to the sensitivity upper limit.
  • the upper limit of the sensitivity is the second sensitivity value.
  • Step 904 Increase the exposure duration of the first image according to the ratio of the sensitivity before the reduction of the first image to the sensitivity after the reduction.
  • the exposure amount is the product of the sensitivity and the exposure duration
  • the exposure amount of the first image when the exposure amount of the first image is determined, it can be increased according to the ratio of the sensitivity before the reduction of the first image to the sensitivity after the reduction.
  • the exposure time of the first image is long to maintain the brightness of the captured image.
  • the upper limit of sensitivity is determined according to the degree of shaking of the camera module, and the sensitivity of the image to be collected in each frame is compared with the set upper limit of sensitivity.
  • the first image reduces the sensitivity of the first image according to the upper limit of the sensitivity, and increases the exposure duration of the first image according to the ratio of the sensitivity before the reduction of the first image to the sensitivity after the reduction.
  • the sensitivity of an image to be acquired with a sensitivity greater than the upper limit of sensitivity is reduced to the upper limit of sensitivity, thereby avoiding the introduction of more noise into the captured image due to the higher sensitivity, thereby making the final The captured image appears blurry.
  • step 703 according to the brightness information and exposure duration of the shooting scene, the sensitivity of the images to be collected for multiple frames is determined, and each frame is The sensitivity of the image to be collected is compared with the lower limit of sensitivity to adjust the sensitivity of the second image in the to-be-acquired image that has a sensitivity lower than the lower limit of sensitivity according to the lower limit of sensitivity.
  • FIG. 11 is a schematic flowchart of an eleventh night scene shooting method according to an embodiment of the present disclosure. As shown in FIG. 11, after step 703, the following steps are further included:
  • step 1001 the sensitivity of the image to be acquired in each frame is compared with a set lower limit of sensitivity.
  • the lower limit of the sensitivity is determined according to the sensitivity of the sensor in the camera module to light, for example, it can be 80.
  • the sensitivity of each frame to be collected is determined according to the exposure time determined by the degree of jitter of the camera module.
  • the sensitivity of each frame to be collected is determined according to the exposure time determined by the degree of jitter of the camera module.
  • the sensitivity of the images to be collected in each frame is compared with the set lower limit of the sensitivity, so that the lower limit of the sensitivity is determined according to the lower limit of the sensitivity Adjust the sensitivity.
  • step 1002 if a second image with a sensitivity lower than the lower sensitivity limit exists in the image to be collected, the sensitivity of the second image is increased according to the lower sensitivity limit.
  • the phenomenon of blurring may occur in the image captured at night. Therefore, when the sensitivity corresponding to an image to be acquired in a frame is less than the lower sensitivity limit, the sensitivity corresponding to the image to be acquired in the frame is increased to the lower sensitivity limit.
  • the sensitivity When capturing images in a night scene, the sensitivity is low with the same amount of exposure, and the exposure time needs to be increased, which leads to an increase in the overall shooting time and exacerbates the degree of jitter of the camera module, so that the final captured image ghosting and blurry images may occur due to jitter. Therefore, when a second image having a sensitivity lower than the lower limit of sensitivity exists in the image to be collected, the sensitivity corresponding to the second image is increased to the lower limit of sensitivity.
  • Step 1003 Determine a ratio between the sensitivity after the second image is increased and the sensitivity before the increase.
  • the preset lower limit of the sensitivity is 80
  • the sensitivity before the second image is increased to 20
  • the sensitivity after the second image is increased to 80
  • the sensitivity of the second image after the increase may be determined.
  • the ratio between the sensitivities before the increase is 8/2.
  • Step 1004 For the remaining frames of images to be acquired with sensitivity greater than or equal to the lower limit of sensitivity, the sensitivity or exposure duration of the remaining frames of images to be acquired is updated according to the ratio.
  • the ratio is determined.
  • the product of the sensitivity or exposure time before the update of the images to be collected in the remaining frames is used as the sensitivity or exposure time after the images in the remaining frames are updated.
  • the update method of the exposure time is similar to the update method of the sensitivity. It is only necessary to replace the sensitivity with the exposure time. However, it should be noted that the update of the sensitivity and One of the ratio between the sensitivity before the update, the exposure duration, and the sensitivity. If the exposure duration and the sensitivity need to be updated at the same time, the ratio needs to be assigned according to the weight and then updated. For example, the exposure duration and the sensitivity are each half weighted. If the ratio between the updated exposure duration of the to-be-collected image smaller than the lower duration and the exposure duration before the update is R, the exposure duration is enlarged to the original R / 2 To increase the sensitivity to the original R / 2 times.
  • the sensitivity of the image to be collected in each frame is compared with the set lower limit of sensitivity. If a second image with a sensitivity lower than the lower limit of sensitivity exists in the image to be collected, the second is increased according to the lower limit of sensitivity Sensitivity of the image. Determine the ratio between the increased sensitivity of the second image and the sensitivity before the increase. For the remaining frames whose sensitivity is greater than or equal to the lower sensitivity limit, the images to be acquired are updated according to the ratio. Sensitivity or exposure duration of the frame to be acquired. Thus, the sensitivity of each frame to be acquired is determined, and then the sensitivity and exposure time of each frame to be acquired are updated according to the lower limit of the sensitivity. Exposure control, and then imaging, not only improves the dynamic range and overall brightness of the captured image in the night scene shooting mode, but also effectively suppresses noise in the captured image, improves the quality of the night scene captured image, and improves the user experience.
  • the exposure duration of multiple frames of images to be acquired and the corresponding images to be acquired may be adjusted according to the brightness of the camera module according to the brightness information of the shooting scene.
  • the required sensitivity is based on the exposure time and sensitivity of the image to be captured for each frame.
  • Step 1101 Obtain the degree of jitter of the camera module.
  • step 1101 for the implementation process of step 1101, refer to the implementation process of step 101 in the foregoing embodiment, and details are not described herein again.
  • Step 1102 Adjust the exposure duration of the images to be acquired in multiple frames and the sensitivity required for the corresponding images to be acquired according to the brightness information of the shooting scene.
  • the brightness information of the shooting scene can be obtained by metering using a light metering module in the camera module, or can be obtained from the brightness of the shooting scene, or obtained through the brightness information in the preview image, which is not limited herein.
  • the exposure time and sensitivity under the brightness information of the shooting scene can be adjusted for multiple frames of images to be acquired, and the exposure time and sensitivity can be adjusted simultaneously.
  • the exposure duration and sensitivity can be adjusted simultaneously.
  • query the exposure table to obtain the exposure duration and sensitivity of the corresponding images to be collected.
  • the inquiry exposure duration of each frame of the image to be collected is adjusted so that the sensitivity of the corresponding image to be collected is lower than the sensitivity threshold corresponding to the degree of dithering.
  • the exposure table records exposure parameters corresponding to the brightness information of different shooting scenes. Exposure parameters include aperture parameters, exposure compensation levels, exposure duration, and sensitivity.
  • the shake degree of the camera module can be compared with a preset shake threshold value to determine the sensitivity threshold value according to the shake degree.
  • the jitter threshold is a value used to measure the degree of jitter.
  • the query exposure duration of the image to be collected in each frame is adjusted according to the degree of jitter to make the sensitivity of the corresponding image to be collected Below the sensitivity threshold corresponding to the degree of jitter. Therefore, when capturing an image, the phenomenon that the captured image has a lot of noise due to the large sensitivity is avoided, which causes the phenomenon that the final captured image appears blurred.
  • the exposure duration may be determined first, and then the sensitivity is determined. First, obtain the degree of shake of the camera module, and adjust the exposure duration according to the degree of shake. Furthermore, according to the brightness information of the shooting scene and the exposure duration, the sensitivity of the images to be acquired in multiple frames is determined. For a specific implementation manner, refer to the embodiment corresponding to FIG. 8, which is not described in this embodiment.
  • the sensitivity may be determined first, and then the exposure duration is determined. First, obtain the shaking degree of the camera module. Further, the reference sensitivity is adjusted according to the degree of shaking, and the exposure duration of the images to be collected for multiple frames is determined according to the brightness information of the shooting scene and the reference sensitivity. For a specific implementation manner, refer to the embodiment corresponding to FIG. 1, which is not described in this embodiment.
  • Step 1103 Acquire an image according to the exposure duration and sensitivity of the image to be acquired in each frame.
  • step 1104 the collected multiple frames of images are synthesized to generate a target image.
  • step 1103 and step 1104 in the embodiment of the present disclosure refer to the implementation process of step 101 and step 105 in the foregoing embodiment, respectively, and details are not described herein again.
  • the exposure time of multiple frames of images to be captured and the sensitivity required for the corresponding images to be captured are adjusted according to the brightness information of the shooting scene. Capture the image's exposure time and sensitivity to capture the image, and combine the collected multiple frames of images to generate the target image. Therefore, image acquisition is performed according to the exposure duration and sensitivity of multiple frames of images to be collected to generate a target image, which not only improves the dynamic range and overall brightness of the night scene captured image, effectively suppresses noise in the image, but also suppresses handheld ghosting caused by jitter improves the quality of night shot images and improves the user experience.
  • step 1102 according to the degree of dithering, the exposure duration of multiple frames of images to be acquired and the location of corresponding images to be acquired are adjusted according to the brightness information of the shooting scene.
  • the determined exposure time can be compared with the upper limit of the time determined according to the degree of jitter of the camera module, so as to reduce the exposure time of the image to be acquired with an exposure time greater than the upper limit of the time length, and avoid excessive exposure time.
  • the overexposure caused the image distortion, the blurring of the picture, and the situation that the shooting time is too long.
  • Step 1201 Determine the upper limit of the duration according to the degree of jitter.
  • the displacement information may be collected according to a displacement sensor provided in the imaging device, and further, the degree of shake of the camera module may be determined according to the collected displacement information of the imaging device. Further, the determined shake degree of the camera module is compared with a preset shake threshold to determine an upper limit of the exposure time.
  • the jitter threshold is a jitter value preset in the imaging device and used to determine a preset sensitivity value.
  • the degree of jitter of the imaging device is less than the jitter threshold, it is determined that the upper limit of the exposure duration of the images to be acquired in each frame in the current shooting scene is the second duration.
  • the first duration is shorter than the second duration, and the first duration ranges from 150ms to 300ms; the second duration ranges from 4.5s to 5.5s.
  • Step 1202 Compare the exposure duration of the image to be collected in each frame with a set upper limit.
  • the exposure duration of each frame to be acquired can be determined by querying the exposure table according to the brightness information of the shooting scene.
  • the specific implementation process refer to the implementation process of step 1102 in the foregoing embodiment, and details are not described herein again.
  • step 1203 if there is a first image in the to-be-collected image whose exposure duration is greater than the upper limit, the exposure duration of the first image is reduced according to the upper limit.
  • Step 1204 Increase the sensitivity of the first image according to the ratio of the exposure duration before the reduction to the reduced exposure duration of the first image.
  • the exposure time of each frame to be captured is compared with the set upper limit. If there is a first According to the upper limit of the duration of the image, the exposure duration of the first image is reduced, and the sensitivity of the first image is increased according to the ratio of the exposure duration before the reduction of the first image to the reduced exposure duration. Therefore, the exposure time of the image whose exposure time is longer than the upper limit is reduced to the upper limit, thereby avoiding that the overall shooting time is prolonged due to the exposure time being too long, which exacerbates the degree of jitter of the camera module, so that ghosts and blurry images due to jitter may appear in the final captured image.
  • step 1102 according to the degree of dithering, the exposure duration of multiple frames of images to be acquired and the location of corresponding images to be acquired are adjusted according to the brightness information of the shooting scene After determining the required sensitivity, the determined exposure time is compared with the lower limit of the time determined according to the degree of jitter of the camera module to adjust the exposure time that is less than the lower limit of the time according to the lower limit of the exposure time.
  • Step 1301 Compare the exposure duration of the image to be acquired in each frame with a set lower limit.
  • the exposure duration of each frame to be acquired can be determined by querying the exposure table according to the brightness information of the shooting scene.
  • the specific implementation process refer to the implementation process of step 1102 in the foregoing embodiment, and details are not described herein again.
  • the exposure time of each frame of the image to be collected is compared with the set lower limit, so that Adjust the exposure time.
  • the lower limit of the duration is greater than or equal to 10 ms.
  • the lower limit of the exposure time is also determined according to the degree of jitter of the camera module.
  • the lower limit of the exposure time is also determined according to the degree of jitter of the camera module.
  • step 1302 if there is a second image in the to-be-collected image with an exposure duration less than the lower limit of the duration, the exposure duration of the second image is increased according to the lower limit of the duration.
  • the exposure duration corresponding to the image to be acquired is shorter than the lower limit of the duration, it may cause excessive noise in the image to be difficult to eliminate. Therefore, when the exposure duration corresponding to an image to be acquired in a frame is less than the lower limit, the exposure duration corresponding to the image to be acquired in the frame is increased to the lower limit.
  • Step 1303 Determine a ratio between an exposure duration after the second image is increased and an exposure duration before the increase.
  • the exposure duration before the second image is increased is 8ms
  • the exposure duration of the second image is increased to the preset lower limit of 10ms
  • the ratio between the exposure duration of and the exposure duration before the increase is 10/8.
  • Step 1304 For the remaining frames of the image to be acquired whose exposure time is greater than or equal to the lower limit of the duration, the sensitivity or exposure time of the remaining images to be acquired is updated according to the ratio.
  • the ratio and the rest The product of the sensitivity or exposure time before updating of the images to be acquired in each frame is used as the sensitivity or exposure time after updating of the images to be acquired in the remaining frames.
  • the update method of the sensitivity is similar to the update method of the exposure duration. It is only necessary to replace the exposure duration with the sensitivity, but it should be noted that only after the image to be acquired that is smaller than the lower limit of the duration is updated.
  • One of the ratio between the exposure duration and the exposure duration before the update the exposure duration and the sensitivity are updated. If the exposure duration and the sensitivity need to be updated at the same time, the ratio needs to be assigned according to the weight and then updated. For example, the exposure duration and the sensitivity are each half weighted. If the ratio between the updated exposure duration of the to-be-collected image smaller than the lower duration and the exposure duration before the update is R, the exposure duration is enlarged to the original R / 2 To increase the sensitivity to the original R / 2 times.
  • the query exposure duration of each frame of the image to be collected is adjusted according to the degree of dithering, so that the sensitivity of the corresponding image to be collected is lower than the sensitivity threshold corresponding to the degree of dithering, and then the Compare the exposure time with the set lower limit. If there is a second image in the to-be-collected image whose exposure time is shorter than the lower limit, increase the exposure time of the second image according to the lower limit to determine the increased exposure time of the second image.
  • the ratio between the exposure durations before the increase, and for the remaining frames to be acquired for the exposure duration that is greater than or equal to the lower limit of the duration, the sensitivity or exposure duration of the remaining frames to be acquired is updated according to the ratio.
  • the exposure time of the images to be collected in each frame is determined, and then the sensitivity and exposure time of the images to be collected in each frame are updated according to the lower limit of the exposure time.
  • Exposure control, and then imaging not only improves the dynamic range and overall brightness of the captured image in the night scene shooting mode, but also effectively suppresses noise in the captured image, improves the quality of the night scene captured image, and improves the user experience.
  • the present disclosure also proposes a night scene photographing device.
  • FIG. 15 is a schematic structural diagram of a night scene photographing apparatus according to an embodiment of the present disclosure.
  • the night scene photographing device 100 is applied to a camera module and includes: an acquisition module 110, an adjustment module 120, a determination module 130, a collection module 140, and a generation module 150.
  • the obtaining module 110 is configured to obtain a degree of shaking of the camera module.
  • the adjusting module 120 is configured to adjust the reference sensitivity according to the degree of shaking.
  • the determining module 130 is configured to determine the exposure duration of the images to be acquired in multiple frames according to the brightness information of the shooting scene and the reference sensitivity.
  • the acquisition module 140 is configured to acquire an image according to a reference sensitivity and an exposure duration of multiple frames of images to be acquired.
  • the generating module 150 is configured to synthesize the collected multiple frames of images to generate a target image.
  • the determining module 130 includes:
  • the first determining unit is configured to determine a reference exposure amount according to the brightness information of the shooting scene.
  • the second determining unit is configured to determine a reference exposure duration according to the reference exposure amount and the reference sensitivity.
  • the exposure compensation unit is configured to compensate the reference exposure duration according to the exposure compensation level set for the images to be collected in each frame to obtain the exposure duration of the images to be collected in each frame.
  • the determining module 130 further includes:
  • a third determining unit configured to adjust the exposure compensation mode according to the degree of shaking
  • the exposure compensation mode is used to indicate the number of frames of the image to be acquired and the exposure compensation level set for each frame of the image to be acquired.
  • the third determining unit is configured to:
  • Adjusting the number of frames of the image to be acquired according to the degree of jitter detecting whether a face has been included in the image acquired by the camera module; if a face is included, determining that the exposure compensation mode is a Mode; if no human face is included, determine that the exposure compensation mode is a second mode that conforms to the adjusted frame number; wherein the exposure compensation level of the second mode is greater than the exposure compensation level of the first mode. Value range.
  • the frame number of the image to be collected has an inverse relationship with the jitter degree.
  • the adjustment module 120 includes:
  • the first adjusting unit is configured to determine the reference sensitivity as the first sensitivity value if the degree of shaking is greater than or equal to the shaking threshold.
  • the second adjusting unit is configured to determine that the reference sensitivity is the second sensitivity value if the degree of shaking is less than the shaking threshold; wherein the first sensitivity value is greater than the second sensitivity value.
  • the first sensitivity value is a preset multiple of the second sensitivity value, and the preset multiple is greater than or equal to 2; the second sensitivity value is the minimum sensitivity of the camera module.
  • the night scene photographing apparatus 100 further includes:
  • the first comparison module is configured to compare the exposure duration of the image to be acquired in each frame with a set upper limit.
  • the exposure duration reduction module is configured to reduce the exposure duration of the first image to the upper limit of the duration if there is a first image in the image to be collected with an exposure duration greater than the upper limit of the duration.
  • the night scene photographing apparatus 100 further includes:
  • the duration upper limit determining module is configured to determine the upper limit of the duration according to the degree of shaking of the camera module.
  • the duration upper limit determination module includes:
  • a fifth determining unit is configured to determine that if the degree of jitter is greater than or equal to the jitter threshold, the upper limit of the duration is the first duration.
  • a sixth determining unit is configured to determine that the upper limit of the duration is the second duration if the degree of the dither is less than the threshold of the dither; wherein the first duration is less than the second duration.
  • the value of the first duration ranges from 150 ms to 300 ms; and the value of the second duration ranges from 4.5s to 5.5s.
  • the night scene photographing apparatus 100 further includes:
  • the sensitivity increasing module is configured to increase the sensitivity of the first image according to the ratio of the exposure duration before the reduction of the first image to the exposure duration after the reduction.
  • the night scene photographing apparatus 100 further includes:
  • the second comparison module is configured to compare the exposure duration of the image to be acquired in each frame with a set lower limit of the duration.
  • the exposure duration increasing module is configured to increase the exposure duration of the second image to the lower duration if there is a second image in the image to be collected with an exposure duration less than the lower duration.
  • the night scene photographing apparatus 100 further includes:
  • a ratio determining module configured to determine a ratio between an exposure duration after the second image is increased and an exposure duration before the increase
  • An update module is used to update the sensitivity or exposure duration of the remaining frames of images to be acquired based on the ratio of the remaining frames of images to be acquired whose exposure time is greater than or equal to the lower limit of time.
  • the update module is used to:
  • the product of the ratio and the sensitivity of the remaining frames of images before being updated is used as the updated images of the remaining frames of images to be acquired Sensitivity
  • the product of the ratio and the exposure time before the remaining frames to be acquired images are updated as the remaining frames to be acquired images are updated After the exposure.
  • the update module may also be used: if there is a first image in the remaining frames of images to be acquired with an exposure time greater than the upper limit of the duration, reduce the exposure time of the first image according to the upper limit of the duration; The ratio of exposure time before and after the first image is reduced, and the sensitivity of the first image is increased.
  • the lower limit of the duration is greater than or equal to 10 ms.
  • the night scene shooting device obtains the degree of shake of the camera module, adjusts the reference sensitivity according to the degree of shake, and determines the exposure duration of multiple frames of images to be collected based on the brightness information and the reference sensitivity of the shooting scene.
  • Sensitivity and exposure time of multiple frames of images to be acquired Images are collected and the acquired multiple frames are synthesized to generate a target image. Therefore, image acquisition is performed according to the reference sensitivity and exposure duration of each frame to be acquired to synthesize and generate a target image, which not only improves the dynamic range and overall brightness of the night scene captured image, effectively suppresses noise in the image, but also suppresses the image.
  • ghosting caused by hand-shake improves the quality of night shot images and improves the user experience.
  • the present disclosure also proposes another night scene photographing device.
  • FIG. 16 is a schematic structural diagram of another night scene photographing apparatus according to an embodiment of the present disclosure.
  • the night scene photographing device 200 is applied to a camera module and includes an acquisition module 210, an adjustment module 220, a determination module 230, a collection module 240, and a generation module 250.
  • the obtaining module 210 is configured to obtain a shaking degree of the camera module.
  • the adjusting module 220 is configured to adjust the exposure duration according to the degree of shaking.
  • the determining module 230 is configured to determine the sensitivity of the image to be acquired in multiple frames according to the brightness information and the exposure duration of the shooting scene.
  • the acquisition module 240 is configured to acquire an image according to the sensitivity and exposure duration of the images to be acquired in multiple frames.
  • the generating module 250 is configured to synthesize the collected multiple frames of images to generate a target image.
  • the adjustment module 220 includes:
  • the first adjusting unit is configured to determine an exposure duration corresponding to each exposure compensation level according to the degree of shaking.
  • the second adjusting unit is configured to determine the exposure duration of the image to be acquired in each frame according to the exposure compensation level set for each frame of the image to be acquired and the exposure duration corresponding to each exposure compensation level.
  • the adjustment module 220 may further include:
  • a third adjustment unit configured to adjust the exposure compensation mode according to the degree of shaking
  • the exposure compensation mode is used to indicate the number of frames of the image to be acquired and the exposure compensation level set for each frame of the image to be acquired.
  • the third adjustment unit is specifically configured to:
  • the exposure compensation mode is a first mode conforming to the adjusted frame number
  • the exposure compensation level range of the second mode is larger than the exposure compensation level range of the first mode.
  • the number of frames of the image to be acquired has an inverse relationship with the degree of jitter.
  • the night scene photographing apparatus 200 further includes:
  • the comparison module is configured to compare the sensitivity of the image to be collected in each frame with a set upper limit of sensitivity.
  • the sensitivity reduction module is configured to reduce the sensitivity of the first image according to the upper limit of the sensitivity if there is a first image in the image to be collected having a sensitivity greater than the upper limit of the sensitivity.
  • the night scene photographing apparatus 200 further includes:
  • the sensitivity upper limit determining module is configured to determine the upper limit of the sensitivity according to the degree of shaking of the camera module.
  • the sensitivity upper limit determination module is specifically configured to:
  • the degree of dithering is greater than or equal to the dithering threshold, determine that the upper limit of the sensitivity is the first photosensitive value
  • the first photosensitive value is greater than the second photosensitive value.
  • the first sensitivity value is a preset multiple of the second sensitivity value, and the preset multiple is greater than or equal to 2; the second sensitivity value is the minimum sensitivity of the camera module.
  • the night scene photographing apparatus 200 further includes:
  • the exposure duration increasing module is configured to increase the exposure duration of the first image according to the ratio of the sensitivity before the reduction of the first image to the sensitivity after the reduction.
  • the night scene photographing apparatus 200 further includes:
  • the comparison module is configured to compare the sensitivity of the image to be collected in each frame with a set lower limit of sensitivity.
  • the sensitivity increasing module is configured to increase the sensitivity of the second image according to the lower sensitivity limit if a second image having a sensitivity lower than the lower sensitivity limit exists in the image to be collected.
  • the night scene photographing apparatus 200 further includes:
  • the ratio determination module is configured to determine a ratio between the sensitivity after the second image is increased and the sensitivity before the increase.
  • An update module is configured to update the sensitivity or exposure duration of the remaining frames of images to be acquired according to the ratio for the remaining frames of images to be acquired with sensitivity greater than or equal to the lower limit of sensitivity.
  • the night scene shooting device obtains the degree of shake of the camera module, adjusts the exposure time according to the degree of shake, and determines the sensitivity of the images to be collected in multiple frames based on the brightness information and exposure duration of the shooting scene; Capture the image sensitivity and exposure time to capture the image, and combine the collected multiple frames to generate the target image. Therefore, after determining the exposure duration, the sensitivity of multiple frames of images to be acquired is determined according to the brightness information and exposure duration of the shooting scene, so that image acquisition is performed according to the exposure duration and sensitivity of the images of multiple frames to be acquired to synthesize and generate a target image. , Not only improves the dynamic range and overall brightness of night shot images, effectively suppresses noise in the image, but also suppresses ghosting caused by hand-shake, improves the quality of night shot images, and improves the user experience.
  • the present disclosure also proposes another night scene photographing device.
  • FIG. 17 is a schematic structural diagram of another night scene photographing apparatus according to an embodiment of the present disclosure.
  • the night scene photographing device 300 is applied to a camera module and includes an acquisition module 310, an adjustment module 320, a collection module 330, and a generation module 340.
  • the obtaining module 310 is configured to obtain a shaking degree of the camera module.
  • the adjusting module 320 is configured to adjust the exposure duration of the images to be acquired in multiple frames and the sensitivity required for the corresponding images to be acquired according to the brightness of the shooting scene.
  • the acquisition module 330 is configured to acquire an image according to an exposure duration and a sensitivity of an image to be acquired in each frame.
  • the generating module 340 is configured to synthesize the collected multiple frames of images to generate a target image.
  • the adjustment module 320 may include:
  • the query unit is configured to query the exposure table according to the brightness information of the shooting scene and the exposure compensation level set for each frame of the image to be acquired, to obtain the exposure duration and sensitivity of the corresponding image to be acquired.
  • the first adjusting unit is configured to adjust the query exposure duration of each frame of the image to be collected according to the degree of dithering, so that the sensitivity of the corresponding image to be collected is lower than the sensitivity threshold corresponding to the degree of dithering.
  • the adjustment module 320 may further include:
  • a second adjustment unit configured to adjust the exposure compensation mode according to the degree of shaking
  • the exposure compensation mode is used to indicate the number of frames of the image to be acquired and the exposure compensation level set for each frame of the image to be acquired.
  • the second adjustment unit is specifically configured to:
  • the exposure compensation mode is a first mode conforming to the adjusted frame number
  • the exposure compensation level range of the second mode is larger than the exposure compensation level range of the first mode.
  • the night scene photographing apparatus 300 further includes:
  • the comparison module is configured to compare the exposure duration of the image to be acquired in each frame with a set upper limit.
  • the reducing module is configured to reduce the exposure duration of the first image according to the upper limit of the duration of the first image in the image to be acquired if the exposure duration is greater than the upper limit of the duration.
  • the night scene photographing apparatus 300 further includes:
  • the duration upper limit determining module is configured to determine the upper limit of the duration according to the degree of jitter.
  • the duration upper limit determining module is specifically used for:
  • the degree of jitter is greater than or equal to the jitter threshold, determine that the upper limit of the duration is the first duration
  • the degree of jitter is less than the jitter threshold, determine that the upper limit of the duration is the second duration
  • the first duration is shorter than the second duration.
  • the first duration value ranges from 150ms to 300ms; the second duration value ranges from 4.5s to 5.5s.
  • the night scene photographing apparatus 300 further includes:
  • the sensitivity increasing module is configured to increase the sensitivity of the first image according to the ratio of the exposure duration before the reduction of the first image to the exposure duration after the reduction.
  • the night scene photographing apparatus 300 further includes:
  • the comparison module is configured to compare the exposure duration of the image to be collected in each frame with a set lower limit.
  • the increasing module is used to increase the exposure duration of the second image according to the lower duration limit if there is a second image in the image to be collected with an exposure duration less than the lower duration limit.
  • the night scene photographing apparatus 300 further includes:
  • a ratio determination module configured to determine a ratio between an exposure duration after the second image is increased and an exposure duration before the increase
  • An update module is configured to update the sensitivity or exposure duration of the remaining frames of images to be acquired based on the ratio of the remaining frames of images to be acquired whose exposure time is greater than or equal to the lower limit of the duration.
  • the night scene shooting device obtains the degree of shake of the camera module, and adjusts the exposure duration of multiple frames of images to be captured under the brightness of the shooting scene and the sensitivity required for the corresponding images to be captured according to the brightness of the shooting scene.
  • Frame the image to be captured with the exposure time and sensitivity to capture the image and combine the collected multiple frames of images to generate the target image. Therefore, image acquisition is performed according to the exposure duration and sensitivity of multiple frames of images to be collected to generate a target image, which not only improves the dynamic range and overall brightness of the night scene captured image, effectively suppresses noise in the image, but also suppresses handheld ghosting caused by jitter improves the quality of night shot images and improves the user experience.
  • FIG. 18 is a schematic flowchart of a night scene imaging processing method of a camera module according to an embodiment of the present disclosure.
  • the camera module night scene photography processing method includes the following steps:
  • Step 1801 In the night scene shooting mode, detect the current jitter of the camera module.
  • the current jitter degree of the mobile phone that is, the current jitter degree of the camera module may be determined by acquiring the current gyro-sensor information of the electronic device.
  • Gyroscope is also called angular velocity sensor, which can measure the angular velocity of rotation when the physical quantity is deflected and tilted.
  • the gyroscope can measure the movement of rotation and deflection very well, so that it can accurately analyze and judge the actual movement of the user.
  • the gyroscope information (gyro information) of the electronic device may include the movement information of the mobile phone in three dimensions in the three-dimensional space, and the three dimensions of the three-dimensional space may be respectively represented in the three directions of the X-axis, Y-axis, and Z-axis. Among them, The X-axis, Y-axis, and Z-axis are perpendicular to each other.
  • the current jitter degree of the camera module may be determined according to the current gyro information of the electronic device.
  • the absolute value threshold of the gyro movement in the three directions can be preset, and the camera module is determined according to the relationship between the acquired absolute value of the current gyro movement in the three directions and the preset threshold. The current degree of jitter.
  • the preset thresholds are the first threshold A, the second threshold B, and the third threshold C, and A ⁇ B ⁇ C.
  • the sum of the absolute values of the gyro motion in the three directions currently obtained is S . If S ⁇ A, determine the current jitter of the camera module as “no shake”; if A ⁇ S ⁇ B, you can determine the current jitter of the camera module as “slight shake”; if B ⁇ S ⁇ C, Then, it can be determined that the current shake degree of the camera module is "small shake”; if S> C, it can be determined that the current shake degree of the camera module is "large shake”.
  • the number of thresholds and specific values of each threshold can be preset according to actual needs, and the mapping relationship between the gyro information and the degree of camera module shake can be preset according to the relationship between the gyro information and each threshold.
  • Step 1802 Determine the number of images to be acquired and the reference sensitivity corresponding to each frame of images to be acquired according to the current jitter of the camera module.
  • the sensitivity also known as the ISO value, refers to an index that measures the sensitivity of the negative to light.
  • the sensitivity of a digital camera is a kind of index similar to the sensitivity of a film.
  • the ISO of a digital camera can be adjusted by adjusting the sensitivity of the photosensitive device or combining the sensing points. Combining several adjacent photosensitive points to improve the ISO. It should be noted that, whether it is digital or negative photography, in order to reduce the exposure time, the use of a relatively high sensitivity will usually introduce more noise, resulting in lower image quality.
  • the reference sensitivity refers to the lowest sensitivity that is adjusted according to the current degree of shake of the camera module to match the current degree of shake.
  • the reference sensitivity corresponding to each frame of the image to be collected may be the same or different, and the specific value is related to the current jitter of the camera module that collects the image of the frame.
  • the number of captured images and the sensitivity of the captured images will affect the overall shooting time. If the shooting time is too long, the degree of shake of the camera module may be increased during handheld shooting, which will affect the image quality. Therefore, the number of images to be acquired and the reference sensitivity corresponding to each frame of images to be acquired can be determined according to the current jitter level of the camera module, so that the shooting duration is controlled within a suitable range.
  • the current jitter of the camera module is small, more frames of images can be collected, and the reference sensitivity corresponding to each frame of images to be collected can be appropriately compressed to a smaller value to effectively suppress the image of each frame.
  • Noise improve the quality of captured images; if the current camera module has a large degree of jitter, it can collect fewer frames of images, and the reference sensitivity corresponding to each frame of images to be collected can be appropriately increased to a larger value to shorten Shooting time.
  • the current shake degree of the camera module is "no shake”
  • the reference sensitivity is determined to be smaller.
  • Value to try to obtain a higher quality image for example, determine the number of images to be captured is 17 frames, and the reference sensitivity is 100; if it is determined that the current jitter of the camera module is "slight jitter", it may be determined that the current may be handheld Shooting mode. At this time, you can collect fewer frames of the image and determine the reference sensitivity to a larger value to reduce the shooting time. For example, determine the number of images to be captured is 7 frames and the reference sensitivity is 200.
  • the current jitter level of the module is "small jitter", you can determine that the current handheld shooting mode is possible. At this time, you can further reduce the number of images to be collected, and further increase the reference sensitivity to reduce the shooting time, such as determining the time to be collected.
  • the number of images is 5 frames, and the reference sensitivity is 220; if the current jitter degree of the camera module is determined to be "large jitter", the current jitter can be determined. The degree of jitter is too large. At this time, you can further reduce the number of images to be collected, or take pictures without collecting multiple frames, and further increase the reference sensitivity to reduce the shooting time, such as determining that the image to be collected is 3 frames. ,
  • the reference sensitivity is 250.
  • both the number of images to be acquired and the reference sensitivity can be changed at the same time, or one of them can be changed to obtain the optimal solution.
  • the mapping relationship between the degree of jitter of the camera module and the number of images to be acquired and the reference sensitivity corresponding to each frame of images to be acquired can be preset according to actual needs.
  • Step 1803 Determine the exposure duration corresponding to the image to be collected for each frame according to the illumination of the current shooting scene and the reference sensitivity corresponding to the image to be collected for each frame.
  • the exposure time refers to the time that light passes through the lens.
  • the light metering module in the camera module can be used to obtain the light intensity of the current shooting scene, and an automatic exposure control (Auto Exposure Control (AEC) algorithm) can be used to determine the exposure amount corresponding to the current light intensity, and then according to The determined exposure amount and the reference sensitivity corresponding to each frame of images to be acquired determine the exposure time corresponding to each frame of images to be acquired.
  • AEC Automatic Exposure Control
  • the exposure amount is related to the aperture, the exposure duration, and the sensitivity.
  • the aperture is the clear aperture, which determines the amount of light passing through in a unit time.
  • the exposure time corresponding to each frame of the image to be acquired is different to obtain images with different dynamic ranges, so that the synthesized image has a higher dynamic range and improves the overall brightness and quality of the image. That is, in a possible implementation form of the embodiment of the present disclosure, the above step 1803 may include:
  • an exposure duration corresponding to the image to be acquired in each frame is determined.
  • the reference exposure amount refers to a normal exposure amount corresponding to the lightness of the current shooting scene determined according to the lightness of the current shooting scene.
  • the reference exposure time can be determined according to the reference sensitivity and the reference exposure.
  • different exposure compensation strategies can be adopted for each frame of images to be acquired through preset exposure compensation modes, so that the images to be acquired correspond to different exposure amounts to obtain images with different dynamic ranges.
  • the preset exposure compensation mode refers to a combination of exposure compensation values (Exposure Value, EV for short) preset for each frame of images to be acquired.
  • Exposure Value Exposure Value
  • Exposure compensation level is a parameter that adjusts the amount of exposure, so that some images are underexposed, some images are overexposed, and some images can be properly exposed.
  • the EV value is the same.
  • the EV value when the EV value is 0, it refers to the exposure obtained when the sensitivity is 100, the aperture factor is f1, and the exposure duration is 1 second; when the exposure is increased by one stop, the exposure duration is doubled, or The EV value is doubled, or the aperture is increased by one stop, the EV value is increased by 1, that is, the exposure amount corresponding to EV1 is twice the exposure amount corresponding to EV0.
  • the specific exposure time, aperture, and sensitivity are individually changed, the corresponding relationship with the EV value can be seen in Table 1.
  • the exposure amount when the EV value is 0 in a digital camera may be obtained by metering ambient light in a shooting scene.
  • EV refers to the difference between the exposure amount corresponding to the camera metering data and the actual exposure amount.
  • EV + 1 exposure compensation refers to an increase of one exposure relative to the exposure amount corresponding to the camera metering data.
  • the actual exposure is twice the exposure corresponding to the camera's metering data.
  • the EV value corresponding to the determined reference exposure amount can be preset to 0, and EV + 1 means to increase the exposure by one step, that is, the exposure amount is twice the reference exposure amount.
  • EV + 2 means to increase the exposure by two stops, that is, the exposure is 4 times the reference exposure, and EV-1 means to reduce the exposure by one stop, that is, the exposure is 0.5 times the reference exposure, and so on.
  • the range of EV values corresponding to the preset exposure compensation mode may be [+1, +1, +1, +1, 0, -3, -6].
  • frames with exposure compensation mode of EV + 1 can solve the problem of noise.
  • Time-domain noise reduction is performed through frames with higher brightness, which suppresses noise while improving details in the dark.
  • Frames with exposure compensation mode of EV-6 can solve the problem.
  • the problem of overexposure of highlights preserves the details of highlight areas; frames with exposure compensation modes of EV0 and EV-3 can be used to maintain the transition between highlights and dark areas, and maintain a good light and dark transition effect.
  • each EV value corresponding to the preset exposure compensation mode can be specifically set according to actual needs, or it can be determined according to the set EV value range and based on the principle that the difference between the EV values is equal. As a result, this embodiment of the present disclosure does not limit this.
  • the size of the aperture may be constant, and each to-be-acquired image is acquired using a determined reference sensitivity. Therefore, according to the current jitter level of the camera module, it is determined After the current number of images to be acquired, the exposure time corresponding to each frame of images to be acquired can be determined according to a preset exposure compensation mode that matches the current number of images to be acquired, and a reference exposure time.
  • the exposure compensation mode corresponding to the image to be collected is EV + 1
  • the exposure duration corresponding to the image to be collected is twice the reference duration
  • the exposure compensation mode corresponding to the image to be collected is EV-1
  • the waiting time The exposure time corresponding to the captured image is 0.5 times the reference duration, and so on.
  • the corresponding EV range of the corresponding preset exposure compensation mode may be [+1, +1, +1, +1 , 0, -3, -6], according to the reference exposure amount and reference sensitivity, determine that the reference exposure time is 100 milliseconds, then the exposure time corresponding to each frame of the image to be collected is 200 milliseconds, 200 milliseconds, 200 milliseconds, 200 Millisecond, 100 millisecond, 12.5 millisecond, 6.25 millisecond.
  • an exposure compensation mode consistent with the current situation may be determined according to the real-time situation of the camera module. That is, in a possible implementation form of the embodiment of the present disclosure, before determining the exposure duration corresponding to the image to be acquired for each frame according to the reference exposure duration and the preset exposure compensation mode, the method further includes:
  • the mapping relationship between the degree of shake of the camera module and the exposure compensation mode may be preset, so as to determine the current image to be acquired according to the degree of shake of the camera module. Match the number of preset exposure compensation modes.
  • the camera module shake degree can be "no shake", the corresponding EV value range of the exposure compensation mode is preset to -6 to 2, and the difference between adjacent EV values is 0.5;
  • the degree of dithering is "slightly dithering", the EV value range of the corresponding exposure compensation mode is preset to -5 to 1, and the difference between adjacent EV values is 1, and so on.
  • determining the preset exposure compensation mode may further include:
  • the preset exposure compensation mode is the second mode according to the current shaking degree of the camera module, wherein the exposure compensation range corresponding to the second mode is larger than the exposure compensation range corresponding to the first mode.
  • Face recognition technology is to identify the identity by analyzing and comparing the visual characteristic information of the face. It belongs to the biometric recognition technology, which distinguishes the individual organisms from the biological characteristics of the organisms (generally specifically people).
  • face recognition technology has been applied in many fields, such as digital camera face autofocus and smile shutter technology; corporate and residential security and management; access control systems; camera surveillance systems, etc.
  • Commonly used face recognition algorithms include: Feature-based recognition algorithms (Feature-based recognition algorithms), Appearance-based recognition algorithms (Template-based recognition algorithms) recognition algorithms), algorithms using neural networks for recognition (Recognition algorithms, neural networks), and so on.
  • the metering module of the camera module automatically performs metering based on the human face area, and is determined based on the metering result of the human face area Reference exposure.
  • the light intensity of the face area is usually low, which results in a determined reference exposure amount that is higher than the reference exposure amount determined when the face is not included.
  • Overexposed frames easily lead to overexposure of the human face area, which results in poor target image effect. Therefore, for the same degree of jitter, the corresponding exposure compensation mode of the current captured image of the camera module containing a human face compared to when it does not include a human face needs to have a lower exposure compensation range.
  • the degree of camera shake is "slight shake”
  • the corresponding preset exposure compensation modes are the first mode and the second mode, where each EV value corresponding to the first mode is [0, 0, 0, 0 , -2, -4, -6], and each EV value corresponding to the second mode is [+1, +1, +1, +1, 0, -3, -6].
  • the corresponding preset exposure compensation modes include a first mode and a second mode, where each EV value corresponding to the first mode is [0, 0 , 0, 0, -2, -4, -6], each EV value corresponding to the second mode is [+1, +1, +1, +1, 0, -3, -6], it can be seen that the first The exposure compensation range of the mode is smaller than the exposure compensation range of the second mode.
  • the preset exposure compensation mode is the first mode, that is, each EV value is [0, 0, 0, 0, -2, -4, -6 ]; If it is detected that the image currently captured by the camera module does not include a human face, determine that the preset exposure compensation mode is the second mode, that is, each EV value is [+1, +1, +1, +1, 0 , -3, -6].
  • the performance of the components in the camera module may also affect the exposure compensation mode. That is, in a possible implementation form of the embodiment of the present disclosure, before the preset exposure compensation mode is determined, the attribute information of each device in the camera module can also be determined; and then based on the attribute information of each device and the current degree of jitter, Preset exposure compensation mode. For example, for different sensors, apertures, shutters, lenses, and different AEC algorithms, there may be gaps in the specific EV values corresponding to the exposure compensation mode.
  • step 1804 multiple frames of images are sequentially acquired according to the reference sensitivity and exposure duration corresponding to the images to be acquired for each frame.
  • Step 1805 Perform synthesis processing on the collected multiple frames of images to generate a target image.
  • multiple frames of images can be sequentially acquired according to the reference sensitivity and exposure duration, and the acquired multiple frames of images can be synthesized. Processing to generate a target image.
  • the above step 1805 may include:
  • the night scene camera processing method of the camera module can detect the current jitter degree of the camera module in the night scene shooting mode, and determine the number of images to be acquired and the corresponding number of images to be acquired per frame according to the current jitter degree. Reference sensitivity, and then determine the exposure duration corresponding to each frame of the to-be-acquired image based on the light intensity of the current shooting scene and the reference sensitivity corresponding to each frame of the to-be-acquired image, and then according to the reference sensitivity and exposure duration of each to-be-acquired image, Collect multiple frames of images in sequence, and synthesize the collected multiple frames of images to generate a target image.
  • the number of images to be acquired and the reference sensitivity are determined according to the current jitter of the camera module, and the exposure time corresponding to each frame of the image to be acquired is determined according to the illumination of the current shooting scene, so that multiple different photos are taken by shooting
  • Combining images with long exposure time not only improves the dynamic range and overall brightness of the captured image in night scene shooting mode, effectively suppresses noise in the captured image, but also suppresses ghosting and blurring caused by hand-held shake, which improves the night shot image. Quality and improved user experience.
  • FIG. 19 is a schematic structural diagram of a night scene camera processing device for a camera module according to an embodiment of the present disclosure.
  • the camera module night scene camera processing device 400 includes: a first detection module 410, a first determination module 420, a second determination module 430, a first acquisition module 440, and a synthesis module 450.
  • a first detection module 410 configured to detect a current shake degree of a camera module in a night scene shooting mode
  • a first determining module 420 configured to determine the number of images to be acquired and the reference sensitivity corresponding to each frame of images to be acquired according to the current jitter of the camera module;
  • a second determining module 430 configured to determine an exposure duration corresponding to each frame of the to-be-acquired image according to the illumination intensity of the current shooting scene and the reference sensitivity corresponding to the image to be-collected per frame;
  • a first acquisition module 440 configured to sequentially acquire multiple frames of images according to the reference sensitivity and exposure duration corresponding to the images to be acquired for each frame;
  • a synthesis module 450 is configured to perform synthesis processing on the collected multiple frames of images to generate a target image.
  • the camera module night scene imaging processing device provided by the embodiment of the present disclosure may be configured in any electronic device to perform the foregoing camera module night scene imaging processing method.
  • the above-mentioned camera module night scene camera processing device 400 may further include:
  • a second detection module configured to detect whether an exposure duration corresponding to the image to be acquired in each frame is within a preset duration range
  • a second updating module configured to update the exposure duration of the at least one frame of the to-be-acquired image according to the preset duration range if the exposure duration of the at least one frame of the to-be-acquired image is not within the preset duration range, so as to The exposure duration of the at least one frame of images to be acquired is within the preset duration range.
  • the above-mentioned camera module night scene camera processing device 400 further includes:
  • a third determining module is configured to determine the preset duration range according to a setting manner of an optical device in the camera component.
  • the above-mentioned camera module night scene camera processing device 400 further includes:
  • An exposure amount adjustment mode determining module configured to determine an exposure amount adjustment mode corresponding to the image to be acquired for each frame according to a difference between an exposure time before the update of the at least one frame of images to be acquired and an updated exposure time;
  • An adjustment module is configured to adjust the sensitivity and exposure time of the image to be acquired in each frame according to the exposure amount adjustment mode.
  • the second determining module 430 is configured to:
  • an exposure duration corresponding to the image to be acquired in each frame is determined.
  • the second determining module 430 may be further configured to:
  • the second determining module 430 may be further configured to:
  • the preset exposure compensation mode is the second mode according to the current shaking degree of the camera module, wherein the exposure compensation range corresponding to the second mode is larger than the exposure compensation range corresponding to the first mode.
  • the second determining module 430 may be further configured to:
  • the above-mentioned synthesis module 450 is configured to:
  • the night scene camera processing device of the camera module can detect the current jitter level of the camera module in the night scene shooting mode, and determine the number of images to be acquired and the correspondence of each frame to be acquired according to the current jitter level. Based on the light sensitivity of the current shooting scene and the reference sensitivity corresponding to each frame of the to-be-acquired image to determine the exposure time corresponding to each frame of the to-be-acquired image, and then based on the reference sensitivity and exposure time of each to-be-acquired image , Sequentially collecting multiple frames of images, and synthesizing the collected multiple frames of images to generate a target image.
  • the number of images to be acquired and the reference sensitivity are determined according to the current jitter of the camera module, and the exposure time corresponding to each frame of the image to be acquired is determined according to the illumination of the current shooting scene, so that multiple different photos are taken by shooting
  • Combining images with long exposure time not only improves the dynamic range and overall brightness of the captured image in night scene shooting mode, effectively suppresses noise in the captured image, but also suppresses ghosting and blurring caused by hand-held shake, which improves the night shot image. Quality and improved user experience.
  • the present disclosure also proposes an electronic device.
  • the electronic device 500 includes: a camera module 510, a processor 520, a memory 530, and a computer stored in the memory and operable on the processor.
  • Program the processor 520 is connected to the camera module 510, and when the processor executes the computer program, the camera module night scene camera processing method described in the above embodiment is implemented.
  • FIG. 21 is a schematic diagram illustrating a principle of an electronic device according to an embodiment of the present disclosure.
  • the memory 530 of the electronic device 600 includes a non-volatile memory 80, an internal memory 82, and a processor 520.
  • the memory 530 stores computer-readable instructions.
  • the processor 520 executes the night view processing method of the camera module according to any one of the foregoing embodiments.
  • the electronic device 600 includes a processor 520, a camera module 510, a non-volatile memory 80, an internal memory 82, a display screen 83, and an input device 84 connected through a system bus 81.
  • the non-volatile memory 80 of the electronic device 600 stores an operating system and computer-readable instructions.
  • the computer-readable instructions may be executed by the processor 520 to implement the exposure control method according to the embodiment of the present disclosure.
  • the processor 520 is used to provide computing and control capabilities to support the operation of the entire electronic device 600.
  • the internal memory 82 of the electronic device 600 provides an environment for execution of computer-readable instructions in the non-volatile memory 80.
  • the display screen 83 of the electronic device 600 may be a liquid crystal display or an electronic ink display, and the input device 84 may be a touch layer covered on the display screen 83, or may be a button, a trackball, or a touch button provided on the housing of the electronic device 600. Board, which can also be an external keyboard, trackpad, or mouse.
  • the electronic device 600 may be a mobile phone, a tablet computer, a notebook computer, a personal digital assistant or a wearable device (such as a smart bracelet, a smart watch, a smart helmet, a smart glasses), and the like. Those skilled in the art can understand that the structure shown in FIG.
  • 21 is only a schematic diagram of a part of the structure related to the solution of the present disclosure, and does not constitute a limitation on the electronic device 600 to which the solution of the present disclosure is applied.
  • the specific electronic device 600 may include more or fewer components than shown in the figure, or combine certain components, or have a different component arrangement.
  • FIG. 22 is a schematic diagram of an image processing circuit provided by an embodiment of the present disclosure.
  • the electronic device in FIG. 20 may further include an image processing circuit 90.
  • the image processing circuit 90 may It is implemented using hardware and / or software components, including various processing units that define an ISP (Image Signal Processing) pipeline.
  • FIG. 21 is a schematic diagram of an image processing circuit 90 in one embodiment. As shown in FIG. 21, for convenience of explanation, only aspects of the image processing technology related to the embodiments of the present disclosure are shown.
  • the image processing circuit 90 includes an ISP processor 91 (the ISP processor 91 serves as the processor 320) and a control logic 92.
  • the image data captured by the camera 93 is first processed by the ISP processor 91.
  • the ISP processor 91 analyzes the image data to capture image statistical information that can be used to determine one or more control parameters of the camera 93.
  • the camera module 310 may include one or more lenses 932 and an image sensor 934.
  • the image sensor 934 may include a color filter array (such as a Bayer filter). The image sensor 934 may obtain light intensity and wavelength information captured by each imaging pixel, and provide a set of raw image data that can be processed by the ISP processor 91.
  • the sensor 94 (such as a gyroscope) may provide parameters (such as image stabilization parameters) of the acquired image processing to the ISP processor 91 based on the interface type of the sensor 94.
  • the sensor 94 interface may be a SMIA (Standard Mobile Imaging Architecture) interface, other serial or parallel camera interfaces, or a combination of the foregoing interfaces.
  • the image sensor 934 may also send the original image data to the sensor 94.
  • the sensor 94 may provide the original image data to the ISP processor 91 based on the interface type of the sensor 94, or the sensor 94 stores the original image data into the image memory 95.
  • the ISP processor 91 processes the original image data pixel by pixel in a variety of formats. For example, each image pixel may have a bit depth of 8, 10, 12, or 14 bits, and the ISP processor 91 may perform one or more image processing operations on the original image data and collect statistical information about the image data. The image processing operations may be performed with the same or different bit depth accuracy.
  • the ISP processor 91 may also receive image data from the image memory 95.
  • the sensor 94 interface sends the original image data to the image memory 95, and the original image data in the image memory 95 is then provided to the ISP processor 91 for processing.
  • the image memory 95 may be a memory 330, a part of the memory 330, a storage device, or a separate dedicated memory in an electronic device, and may include a DMA (Direct Memory Access) feature.
  • DMA Direct Memory Access
  • the ISP processor 91 may perform one or more image processing operations, such as time-domain filtering.
  • the processed image data may be sent to the image memory 95 for further processing before being displayed.
  • the ISP processor 91 receives processing data from the image memory 95, and performs processing on the image data in the original domain and in the RGB and YCbCr color spaces.
  • the image data processed by the ISP processor 91 may be output to a display 97 (the display 97 may include a display screen 83) for viewing by a user and / or further processing by a graphics engine or a GPU (Graphics Processing Unit).
  • the output of the ISP processor 91 can also be sent to the image memory 95, and the display 97 can read image data from the image memory 95.
  • the image memory 95 may be configured to implement one or more frame buffers.
  • the output of the ISP processor 91 may be sent to an encoder / decoder 96 to encode / decode image data.
  • the encoded image data can be saved and decompressed before being displayed on the display 97 device.
  • the encoder / decoder 96 may be implemented by a CPU or a GPU or a coprocessor.
  • the statistical data determined by the ISP processor 91 may be sent to the control logic unit 92.
  • the statistical data may include image sensor 934 statistical information such as auto exposure, auto white balance, auto focus, flicker detection, black level compensation, and lens 932 shading correction.
  • the control logic 92 may include a processing element and / or a microcontroller that executes one or more routines (such as firmware). The one or more routines may determine the control parameters of the camera 93 and the ISP processor according to the received statistical data. 91 control parameters.
  • control parameters of the camera 93 may include sensor 94 control parameters (such as gain, integration time for exposure control, anti-shake parameters, etc.), camera flash control parameters, lens 932 control parameters (such as focus distance for focusing or zooming), or these parameters The combination.
  • the ISP control parameters may include gain levels and color correction matrices for automatic white balance and color adjustment (eg, during RGB processing), and lens 932 shading correction parameters.
  • the ISP processor adjusts the reference sensitivity according to the degree of camera module shake; and determines based on the brightness information of the shooting scene and the reference sensitivity Exposure time of multiple frames of images to be collected; controlling the camera module to acquire images based on the reference sensitivity and exposure time of the images of multiple frames to be acquired; the GPU synthesizes the acquired multiple frames of images to generate a target image.
  • an embodiment of the present disclosure further provides a storage medium.
  • the processor When an instruction in the storage medium is executed by a processor, the processor is implemented to implement the storage medium described in the foregoing embodiment when the storage medium is executed.
  • Night scene shooting method and camera module night scene shooting processing method When an instruction in the storage medium is executed by a processor, the processor is implemented to implement the storage medium described in the foregoing embodiment when the storage medium is executed.
  • the program can be stored in a non-volatile computer-readable storage medium.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Human Computer Interaction (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Studio Devices (AREA)
  • Exposure Control For Cameras (AREA)
  • Image Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本公开提出了一种夜景拍摄方法、装置、电子设备及存储介质,其中,方法包括:获取摄像模组的抖动程度,根据抖动程度,调整基准感光度,根据拍摄场景的亮度信息和基准感光度,确定多帧待采集图像的曝光时长,根据基准感光度和多帧待采集图像的曝光时长采集图像,将采集的多帧图像合成,以生成目标图像。由此,根据各帧待采集图像的基准感光度和曝光时长进行图像采集,以合成生成目标图像,不仅提升了夜景拍摄图像的动态范围和整体亮度,有效抑制了图像中的噪声,而且抑制了手持抖动导致的鬼影,提高了夜景拍摄图像的质量,改善了用户体验。

Description

夜景拍摄方法、装置、电子设备及存储介质
相关申请的交叉引用
本公开要求OPPO广东移动通信有限公司于2018年08月22日提交的、发明名称为“摄像模组夜景摄像处理方法、装置、电子设备及存储介质”的中国专利申请号“201810963331.3”的优先权。
技术领域
本公开涉及成像技术领域,尤其涉及一种夜景拍摄方法、装置、电子设备及存储介质。
背景技术
随着智能终端技术的发展,移动终端设备(如智能手机、平板电脑等)的使用越来越普及。绝大多数移动终端设备都内置有摄像头,并且随着移动终端处理能力的增强以及摄像头技术的发展,内置摄像头的性能越来越强大,拍摄图像的质量也越来越高。如今,移动终端设备均操作简单又便于携带,在日常生活中越来越多的用户使用智能手机、平板电脑等移动终端设备拍照。
智能移动终端在给人们的日常拍照带来便捷的同时,人们对拍摄的图像质量的要求也越来越高。然而,由于专业水平限制,人们不知如何根据拍摄场景设置合适的拍摄参数,尤其在夜景这一特殊场景中,图像质量较低。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本公开提出的夜景拍摄方法、装置、电子设备及存储介质,用于解决相关技术中,在夜景场景中拍摄的图像不仅动态范围有限,而且整体亮度低,影响用户体验的问题。
本公开第一方面实施例提出了一种夜景拍摄方法,应用于摄像模组,所述方法包括:
获取所述摄像模组的抖动程度;
根据所述抖动程度,调整基准感光度;
根据拍摄场景的亮度信息和所述基准感光度,确定多帧待采集图像的曝光时长;
根据所述基准感光度和所述多帧待采集图像的曝光时长采集图像;
将采集的多帧图像合成,以生成目标图像。
本公开实施例的夜景拍摄方法,通过获取摄像模组的抖动程度,根据抖动程度,调整基准感光度,根据拍摄场景的亮度信息和基准感光度,确定多帧待采集图像曝光时长,根据基准感光度和所述多帧待采集图像的曝光时长采集图像,将采集的多帧图像合成,以生成目标图像。由于拍摄的多帧图像均采用了基准感光度,以便于图像噪声控制在较低水平,同时,基准感光度的取值考虑到了抖动程度,不会使得拍摄时长过长,避免了图像中的拖影。采用该种方式获得的多帧图像,图像质量较高,对这些图像合成处理能够进一步降低噪声,提高动态范围。在夜景拍摄中,能够获得较佳的拍摄效果。
本公开第二方面实施例提出了另一种夜景拍摄方法,应用于摄像模组,所述方法包括:
获取所述摄像模组的抖动程度;
根据所述抖动程度,调整曝光时长;
根据拍摄场景的亮度信息和所述曝光时长,确定多帧待采集图像的感光度;
根据所述多帧待采集图像的感光度和所述曝光时长采集图像;
将采集的多帧图像合成,以生成目标图像。
本公开实施例的夜景拍摄方法,通过获取摄像模组的抖动程度,根据抖动程度,调整曝光时长,根据拍摄场景的亮度信息和曝光时长,确定多帧待采集图像的感光度;根据多帧待采集图像的感光度和曝光时长采集图像,将采集的多帧图像合成,以生成目标图像。由此,在确定曝光时长后,根据拍摄场景的亮度信息和曝光时长确定多帧待采集图像的感光度,从而根据多帧待采集图像的曝光时长和感光度进行图像采集,以合成生成目标图像,不仅提升了夜景拍摄图像的动态范围和整体亮度,有效抑制了图像 中的噪声,而且抑制了手持抖动导致的鬼影,提高了夜景拍摄图像的质量,改善了用户体验。
本公开第三方面实施例提出了又一种夜景拍摄方法,应用于摄像模组,所述方法包括:
获取所述摄像模组的抖动程度;
根据所述抖动程度,调整在拍摄场景的亮度下多帧待采集图像的曝光时长和相应待采集图像所需的感光度;
根据各帧待采集图像的曝光时长和感光度采集图像;
将采集的多帧图像合成,以生成目标图像。
本公开实施例的夜景拍摄方法,通过获取摄像模组的抖动程度,根据抖动程度,调整在拍摄场景的亮度下多帧待采集图像的曝光时长和相应待采集图像所需的感光度,根据各帧待采集图像的曝光时长和感光度采集图像,将采集的多帧图像合成,以生成目标图像。由此,根据多帧待采集图像的曝光时长和感光度进行图像采集,以合成生成目标图像,不仅提升了夜景拍摄图像的动态范围和整体亮度,有效抑制了图像中的噪声,而且抑制了手持抖动导致的鬼影,提高了夜景拍摄图像的质量,改善了用户体验。
本公开第四方面实施例提出了一种夜景拍摄装置,应用于摄像模组,所述装置包括:
获取模块,用于获取所述摄像模组的抖动程度;
调整模块,用于根据所述抖动程度,调整基准感光度;
确定模块,用于根据拍摄场景的亮度信息和所述基准感光度,确定多帧待采集图像的曝光时长;
采集模块,用于根据所述基准感光度和所述多帧待采集图像的曝光时长采集图像;
生成模块,用于将采集的多帧图像合成,以生成目标图像。
本公开实施例的夜景拍摄装置,通过获取摄像模组的抖动程度,根据抖动程度,调整基准感光度,根据拍摄场景的亮度信息和基准感光度,确定多帧待采集图像的曝光时长,根据基准感光度和所述多帧待采集图像的曝光时长采集图像,将采集的多帧图像合成,以生成目标图像。由此,在确定基准感光度后,根据拍摄场景的亮度信息和基准感光度确定多帧待采集图像的曝光时长,从而根据多帧待采集图像的基准感光度和曝光时长进行图像采集,以合成生成目标图像,不仅提升了夜景拍摄图像的动态范围和整体亮度,有效抑制了图像中的噪声,而且抑制了手持抖动导致的鬼影,提高了夜景拍摄图像的质量,改善了用户体验。
本公开第五方面实施例提出了另一种夜景拍摄装置,应用于摄像模组,所述装置包括:
获取模块,用于获取所述摄像模组的抖动程度;
调整模块,用于根据所述抖动程度,调整曝光时长;
确定模块,用于根据拍摄场景的亮度信息和所述曝光时长,确定多帧待采集图像的感光度;
采集模块,用于根据所述多帧待采集图像的感光度和所述曝光时长采集图像;
生成模块,用于将采集的多帧图像合成,以生成目标图像。
本公开实施例的夜景拍摄装置,通过获取摄像模组的抖动程度,根据抖动程度,调整曝光时长,根据拍摄场景的亮度信息和曝光时长,确定多帧待采集图像的感光度;根据多帧待采集图像的感光度和曝光时长采集图像,将采集的多帧图像合成,以生成目标图像。由此,在确定曝光时长后,根据拍摄场景的亮度信息和曝光时长确定多帧待采集图像的感光度,从而根据多帧待采集图像的曝光时长和感光度进行图像采集,以合成生成目标图像,不仅提升了夜景拍摄图像的动态范围和整体亮度,有效抑制了图像中的噪声,而且抑制了手持抖动导致的鬼影,提高了夜景拍摄图像的质量,改善了用户体验。
本公开第六方面实施例提出了又一种夜景拍摄装置,应用于摄像模组,所述装置包括:
获取模块,用于获取所述摄像模组的抖动程度;
调整模块,用于根据所述抖动程度,调整在拍摄场景的亮度下多帧待采集图像的曝光时长和相应待采集图像所需的感光度;
采集模块,用于根据各帧待采集图像的曝光时长和感光度采集图像;
生成模块,用于将采集的多帧图像合成,以生成目标图像。
本公开实施例的夜景拍摄装置,通过获取摄像模组的抖动程度,根据抖动程度,调整在拍摄场景的亮度下多帧待采集图像的曝光时长和相应待采集图像所需的感光度,根据各帧待采集图像的曝光时长和感光度采集图像,将采集的多帧图像合成,以生成目标图像。由此,根据多帧待采集图像的曝光时长和感光度进行图像采集,以合成生成目标图像,不仅提升了夜景拍摄图像的动态范围和整体亮度,有效抑制了图像中的噪声,而且抑制了手持抖动导致的鬼影,提高了夜景拍摄图像的质量,改善了用户体验。
本公开第七方面实施例提出了一种摄像模组夜景摄像处理方法,所述方法包括:
在夜景拍摄模式下,检测摄像模组当前的抖动程度;
根据所述摄像模组当前的抖动程度,确定待采集的图像数量及每帧待采集图像对应的基准感光度;
根据当前拍摄场景的光照度及所述每帧待采集图像对应的基准感光度,确定每帧待采集图像对应的曝光时长;
根据所述每帧待采集图像对应的基准感光度及曝光时长,依次采集多帧图像;
将所述采集的多帧图像进行合成处理,以生成目标图像。
本公开实施例提供的摄像模组夜景摄像处理方法,可以在夜景拍摄模式下,检测摄像模组当前的抖动程度,并根据当前的抖动程度,确定待采集的图像数量及每帧待采集图像对应的基准感光度,之后根据当前拍摄场景的光照度及每帧待采集图像对应的基准感光度,确定每帧待采集图像对应的曝光时长,进而根据每帧待采集图像对应的基准感光度及曝光时长,依次采集多帧图像,并将采集的多帧图像进行合成处理,以生成目标图像。由此,通过根据摄像模组当前的抖动程度,确定待采集图像的数量及基准感光度,并且根据当前拍摄场景的光照度,确定了每帧待采集图像对应的曝光时长,从而通过拍摄多张不同曝光时长的图像进行合成,不仅提升了夜景拍摄模式下拍摄图像的动态范围和整体亮度,有效抑制了拍摄图像中的噪声,而且抑制了手持抖动导致的鬼影和模糊,提高了夜景拍摄图像的质量,改善了用户体验。
本公开第八方面实施例提出了一种摄像模组夜景摄像处理装置,所述装置包括:
第一检测模块,用于在夜景拍摄模式下,检测摄像模组当前的抖动程度;
第一确定模块,用于根据所述摄像模组当前的抖动程度,确定待采集的图像数量及每帧待采集图像对应的基准感光度;
第二确定模块,用于根据当前拍摄场景的光照度及所述每帧待采集图像对应的基准感光度,确定每帧待采集图像对应的曝光时长;
第一采集模块,用于根据所述每帧待采集图像对应的基准感光度及曝光时长,依次采集多帧图像;
合成模块,用于将所述采集的多帧图像进行合成处理,以生成目标图像。
本公开实施例提供的摄像模组夜景摄像处理装置,可以在夜景拍摄模式下,检测摄像模组当前的抖动程度,并根据当前的抖动程度,确定待采集的图像数量及每帧待采集图像对应的基准感光度,之后根据当前拍摄场景的光照度及每帧待采集图像对应的基准感光度,确定每帧待采集图像对应的曝光时长,进而根据每帧待采集图像对应的基准感光度及曝光时长,依次采集多帧图像,并将采集的多帧图像进行合成处理,以生成目标图像。由此,通过根据摄像模组当前的抖动程度,确定待采集图像的数量及基准感光度,并且根据当前拍摄场景的光照度,确定了每帧待采集图像对应的曝光时长,从而通过拍摄多张不同曝光时长的图像进行合成,不仅提升了夜景拍摄模式下拍摄图像的动态范围和整体亮度,有效抑制了拍摄图像中的噪声,而且抑制了手持抖动导致的鬼影和模糊,提高了夜景拍摄图像的质量,改善了用户体验。
本公开第九方面实施例提出了一种电子设备,摄像模组、存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器与所述摄像模组连接,所述处理器执行所述计算机程序时,实现如上述实施例中所述的夜景拍摄方法,或者,摄像模组夜景摄像处理方法。
本公开第十方面实施例提出了一种图像处理电路,所述图像处理电路包括图像信号处理ISP处理器和图形处理器GPU;
所述ISP处理器,与摄像模组连接,用于根据所述摄像模组的抖动程度,调整基准感光度;根据拍摄场景的亮度信息和所述基准感光度,确定多帧待采集图像的曝光时长;根据所述基准感光度和所述多帧待采集图像的曝光时长控制所述摄像模组采集图像;
所述GPU,与所述ISP处理器电连接,用于将采集的多帧图像进行合成处理,以生成目标图像。
本公开第十一方面实施例提出了一种存储介质,当所述存储介质中的指令由处理器执行时,实现上述实施例中所述的夜景拍摄方法,或者,摄像模组夜景摄像处理方法。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开实施例提供的第一种夜景拍摄方法的流程示意图;
图2为本公开实施例提供的第二种夜景拍摄方法的流程示意图;
图3为本公开实施例提供的第三种夜景拍摄方法的流程示意图;
图4为本公开实施例提供的第四种夜景拍摄方法的流程示意图;
图5为本公开实施例提供的第五种夜景拍摄方法的流程示意图;
图6为本公开实施例提供的第六种夜景拍摄方法的流程示意图;
图7为本公开实施例提供的第七种夜景拍摄方法的流程示意图;
图8为本公开实施例提供的第八种夜景拍摄方法的流程示意图;
图9为本公开实施例提供的第九种夜景拍摄方法的流程示意图;
图10为本公开实施例提供的第十种夜景拍摄方法的流程示意图;
图11为本公开实施例提供的第十一种夜景拍摄方法的流程示意图;
图12为本公开实施例提供的第十二种夜景拍摄方法的流程示意图;
图13为本公开实施例提供的第十三种夜景拍摄方法的流程示意图;
图14为本公开实施例提供的第十四种夜景拍摄方法的流程示意图;
图15为本公开实施例提供的一种夜景拍摄装置的结构示意图;
图16为本公开实施例提供的另一种夜景拍摄装置的结构示意图;
图17为本公开实施例提供的又一种夜景拍摄装置的结构示意图;
图18为本公开实施例所提供的一种摄像模组夜景摄像处理方法的流程示意图;
图19为本公开实施例提供的一种摄像模组夜景摄像处理装置的结构示意图;
图20为本公开实施例提供的一种电子设备的结构示意图;
图21为本公开实施例提供的一种电子设备的原理示意图;
图22为本公开实施例提供的一种图像处理电路的原理示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
相关技术中,对于光圈比较小的移动终端设备,在夜景场景中拍摄图像时,由于光线比较暗,如果通过增加待采集图像的曝光时长提高亮度,可能会由于抖动导致拍摄的图像存在拖影;如果提高感光度值来获取图像,则会在拍摄的过程中引入噪声,导致图像画面模糊。由此,在夜景场景中拍摄的图像不仅动态范围和整体亮度低,噪声水平高,而且容易出现鬼影和模糊的情况,影响用户体验。
针对上述问题,本公开实施例提出了一种夜景拍摄方法,通过获取摄像模组的抖动程度,根据抖动程度,调整基准感光度,根据拍摄场景的亮度信息和基准感光度,确定多帧待采集图像的曝光时长,根据基准感光度和所述多帧待采集图像的曝光时长采集图像,将采集的多帧图像合成,以生成目标图像。由于拍摄的多帧图像均采用了基准感光度,以便于图像噪声控制在较低水平,同时,基准感光度的取值考虑到了抖动程度,不会使得拍摄时长过长,避免了图像中的拖影。采用该种方式获得的多帧图像,图像质量较高,对这些图像合成处理能够进一步降低噪声,提高动态范围。在夜景拍摄中,能够获得较佳的拍摄效果。
下面参考附图对本公开提供的夜景拍摄方法、装置、电子设备及存储介质进行详细描述。
图1为本公开实施例提供的第一种夜景拍摄方法的流程示意图。
本公开实施例的夜景拍摄方法,应用于摄像模组,该摄像模组可以为手机、平板电脑、个人数字助理、穿戴式设备等具有各种操作系统、成像设备的硬件设备。
如图1所示,该夜景拍摄方法,应用于摄像模组,包括以下步骤:
步骤101,获取摄像模组的抖动程度。
在本公开实施例中,为了确定摄像模组的抖动程度,可以根据电子设备中设置的位移传感器,采集位移信息,进而,根据采集到的电子设备的位移信息,确定摄像模组的抖动程度。
本领域技术人员可以知晓,还可以根据连续采集的预览画面中同一对象的位移程度,抖动程度。移位越大则抖动程度越大;反之位移越小,抖动程度越小。
作为一种示例,可以通过获取电子设备当前的陀螺仪(Gyro-sensor)信息,确定电子设备当前的抖动程度,即摄像模组当前的抖动程度。
其中,陀螺仪又叫角速度传感器,可以测量物理量偏转、倾斜时的转动角速度。在电子设备中,陀螺仪可以很好的测量转动、偏转的动作,从而可以精确分析判断出使用者的实际动作。电子设备的陀螺仪信息(gyro信息)可以包括手机在三维空间中三个维度方向上的运动信息,三维空间的三个维度可以分别表示为X轴、Y轴、Z轴三个方向,其中,X轴、Y轴、Z轴为两两垂直关系。
需要说明的是,在本公开实施例一种可能的实现形式中,可以根据电子设备当前的gyro信息,确定摄像模组当前的抖动程度。电子设备在三个方向上的gyro运动的绝对值越大,则摄像模组的抖动程度越大。具体的,可以预设在三个方向上gyro运动的绝对值阈值,并根据获取到的当前在三个方向上的gyro运动的绝对值之和,与预设的阈值的关系,确定摄像模组的当前的抖动程度。
举例来说,假设预设的阈值为第一阈值A、第二阈值B、第三阈值C,且A<B<C,当前获取到的在三个方向上gyro运动的绝对值之和为S。若S<A,则确定摄像模组当前的抖动程度为“无抖动”;若A<S<B,则可以确定摄像模组当前的抖动程度为“轻微抖动”;若B<S<C,则可以确定摄像模组当前的抖动程度为“小抖动”;若S>C,则可以确定摄像模组当前的抖动程度为“大抖动”。
需要说明的是,上述举例仅为示例性的,不能视为对本公开的限制。实际使用时,可以根据实际需要预设阈值的数量和各阈值的具体数值,以及根据gyro信息与各阈值的关系,预设gyro信息与摄像模组抖动程度的映射关系。
步骤102,根据抖动程度,调整基准感光度。
其中,感光度,又称为ISO值,是指衡量底片对于光的灵敏程度的指标。对于感光度较低的底片,需要曝光更长的时间以达到跟感光度较高的底片相同的成像效果。数码相机的感光度是一种类似于胶卷感光度的一种指标,数码相机的ISO可以通过调整感光器件的灵敏度或者合并感光点来调整,也就是说,可以通过提升感光器件的光线敏感度或者合并几个相邻的感光点来达到提升ISO的目的。需要说明的是,无论是数码或是底片摄影,为了减少曝光时间,使用相对较高的感光度通常会引入较多的噪声,从而导致图像质量降低。
在本公开实施例中,基准感光度,可以是在当前拍摄时,根据摄像模组当前的抖动程度,调整的与当前的抖动程度相适应的最低感光度。例如,根据抖动程度,调整与抖动程度相应的基准感光度时,如果当前基准感光度与抖动程度刚好相适应,则调整的结果是基准感光度保持不变。此种情形也属于本公开实施例中“调整”的范畴。
此外,在一种可能的应用场景下,摄像模组是由多个镜头构成的,从而不同的镜头在同一拍摄环境下也可以对应不同的感光度,本步骤中调整的基准感光度应当是针对多个镜头中的一个镜头执行的拍摄过程来说,在这个拍摄过程中,采集多帧图像均采用同一基准感光度。
本步骤中的基准感光度为较低值以降低图像噪声,通过同时采集多帧感光度较低的图像,并将采集的多帧图像合成以生成目标图像的方式,不仅可以提升夜景拍摄图像的动态范围和整体亮度,并且通过控制感光度的值,有效抑制图像中的噪声,提高夜景拍摄图像的质量。
可以理解的是,采集图像的感光度会影响到整体的拍摄时长,拍摄时长过长,可能会导致手持拍摄时摄像模组的抖动程度加剧,从而影响图像质量。因此,可以根据摄像模组当前的抖动程度,调整各帧待采集图像对应的基准感光度,以使得拍摄时长控制在合适的范围内。
具体的,若摄像模组当前的抖动程度较小,则可以将每帧待采集图像对应的基准感光度可以适当压缩为较小的值,以有效抑制每帧图像的噪声、提高拍摄图像的质量;若摄像模组当前的抖动程度较大,则可以将每帧待采集图像对应的基准感光度可以适当提高为较大的值,以缩短拍摄时长。
举例来说,若确定摄像模组当前的抖动程度为“无抖动”,则可以将基准感光度确定为较小的值,以尽量获得更高质量的图像,比如确定基准感光度为100;若确定摄像模组当前的抖动程度为“轻微抖动”,则可以将基准感光度确定为较大的值,以降低拍摄时长,比如确定基准感光度为200;若确定摄像模组当前的抖动程度为“小抖动”,则可以进一步增大基准感光度,以降低拍摄时长,比如确定基准感光度为220;若确定摄像模组当前的抖动程度为“大抖动”,则可以确定当前的抖动程度过大,此时可以进一步增大基准感光度,以降低拍摄时长,比如确定基准感光度为250。
需要说明的是,上述举例仅为示例性的,不能视为对本公开的限制。实际使用时,当摄像模组的抖动程度变化时,可以通过调整基准感光度,以获得最优的方案。其中,摄像模组的抖动程度与每帧待采 集图像对应的基准感光度的映射关系,可以根据实际需要预设。
但是,本公开实施例中,不限于仅根据摄像模组的抖动程度调整基准感光度,还可以根据抖动程度以及拍摄场景的亮度信息等多个参数综合确定基准感光度。在此不做限定。
步骤103,根据拍摄场景的亮度信息和基准感光度,确定多帧待采集图像的曝光时长。
其中,曝光时长,是指光线通过镜头的时间。多帧待采集图像为两帧或者多于两帧,本公开实施例中对此不做限定。
在本公开实施例中,拍摄场景的亮度信息,可以利用摄像模组中的测光模块测光得到,也可以是通过预览图像中的亮度信息获取到的,在此不做限定。该亮度信息通常以拍摄场景的光照度作为亮度衡量指标,本领域技术人员可以知晓,还可以采用其他指标进行亮度衡量,均在本实施例的范围之内。
具体地,利用自动曝光控制(Auto Exposure Control,简称AEC)算法,确定当前亮度信息对应的曝光量,进而,根据拍摄场景的亮度信息和基准感光度这两方面信息,为多帧待采集图像中每一帧待采集图像确定曝光时长。
需要说明的是,曝光量与光圈、曝光时长和感光度有关。其中,光圈也就是通光口径,决定单位时间内光线通过的数量。当每一帧待采集图像对应的基准感光度相同,并且光圈大小相同时,当前拍摄场景的光照度对应的曝光量越大,每一帧待采集图像对应的曝光时长越大。
步骤104,根据基准感光度和多帧待采集图像的曝光时长采集图像。
本公开实施例中,在确定多帧待采集图像的基准感光度和曝光时长后,控制摄像模组根据各帧待采集图像的基准感光度和曝光时长采集图像,在此不做具体赘述。
需要说明的是,在采集多帧图像时,基于同一基准感光度进行图像采集,不仅有助于减少多帧图像的噪点,还避免了由于感光度增大导致采集的多帧图像噪声增加的技术问题。
步骤105,将采集的多帧图像合成,以生成目标图像。
在本公开实施例中,确定了多帧待采集图像对应的基准感光度及曝光时长之后,即可根据基准感光度及曝光时长,依次采集多帧图像,并将采集到的多帧图像合成,以生成目标图像。本公开实施例的夜景拍摄方法,通过获取摄像模组的抖动程度,根据抖动程度,调整基准感光度,根据拍摄场景的亮度信息和基准感光度,确定多帧待采集图像的曝光时长,根据基准感光度和多帧待采集图像的曝光时长采集图像,将采集的各帧图像合成处理,以生成目标图像。由此,根据多帧待采集图像的基准感光度和曝光时长进行图像采集,以合成生成目标图像,不仅提升了夜景拍摄图像的动态范围和整体亮度,有效抑制了图像中的噪声,而且抑制了手持抖动导致的鬼影,提高了夜景拍摄图像的质量,改善了用户体验。
在图1所述实施例的基础上,在一种可能场景下,上述步骤102中,还可以基于测光确定的基准曝光量和各帧的曝光补偿等级,确定各帧待采集图像的曝光时长,以获得不同动态范围的图像,使得合成后的图像具有更高的动态范围,提高图像的整体亮度和质量。参见图2,图2为本公开实施例提供的第二种夜景拍摄方法的流程示意图,如图2所示,步骤102具体包括:
步骤201,根据拍摄场景的亮度信息,确定基准曝光量。
本公开实施例中,基准曝光量,是指通过对预览图像进行测光获取的当前拍摄场景的亮度信息之后,通过查表等方式确定的与当前拍摄场景的亮度信息相适应的曝光量。基准曝光量的取值可以是基准感光度与基准曝光时长之间的乘积。
步骤202,根据基准曝光量及基准感光度,确定基准曝光时长。
本公开实施例中,基准曝光量,包括基准曝光时长和基准感光度,因此,在根据摄像模组的抖动程度确定基准感光度,以及根据拍摄场景的光照度,确定基准曝光量后,即可根据基准曝光量及基准感光度,确定基准曝光时长。
步骤203,根据抖动程度,调整曝光补偿模式。
其中,曝光补偿模式,用于指示待采集图像的帧数和多帧待采集图像设定的曝光补偿等级。
可以理解的是,摄像模组当前的抖动程度不同,确定出的待采集的图像数量也可以不同,而待采集的图像数量不同时,需要采用不同的曝光补偿模式。因此,在本公开实施例一种可能的实现形式中,可以通过摄像模组的抖动程度与曝光补偿模式的映射关系,以根据摄像模组当前的抖动程度,确定出与当前待采集的图像数量的帧数和多帧待采集图像设定的曝光补偿模式。
比如,可以将摄像模组抖动程度为“无抖动”,对应的曝光补偿模式的EV值范围预设为-6~2,且相 邻的EV值之间的差值为0.5;将摄像模组抖动程度为“轻微抖动”,对应的曝光补偿模式的EV值范围预设为-5~1,且相邻的EV值之间的差值为1,等等。
作为一种可能的实现方式,可以首先确定摄像模组的防抖性能,以结合摄像模组的抖动程度和防抖性能,调整曝光补偿模式。
需要说明的是,摄像模组的防抖性能与摄像组件中各元器件的属性信息有一定的关系,因此可以根据摄像组件中各元器件的属性信息以确定摄像模组的防抖性能,以结合摄像模组的抖动程度和防抖性能,调整曝光补偿模式。
举例来说,若摄像组件中光学器件的设置方式为光学防抖,则可以适当扩大预设的时长范围,因为可实现光学防抖功能的摄像模组,在拍摄过程中,摄像模组抖动时,其自身可以抵消掉一部分的抖动,从而与不可实现光学防抖的摄像模组相比,在相同的抖动程度下,可实现光学防抖功能的摄像模组采集到的图像中鬼影和模糊的程度较轻。因此,与不可实现光学防抖的摄像模组相比,可以适当扩大预设的时长范围,特别是时长范围的上限,以获得质量更好的图像。
作为另一种可能的实现方式,可以根据摄像模组的抖动程度与摄像模组已采集的图像中是否包含人脸,调整各帧的曝光补偿模式。下面结合图3对上述过程进行详细介绍,图3为本公开实施例提供的第三种夜景拍摄方法的流程示意图,如图3所示,步骤203还可以包括如下子步骤:
子步骤2031,根据抖动程度,调整待采集图像的帧数。
可以理解的是,待采集的图像的帧数以及采集图像的感光度会影响到整体的拍摄时长,拍摄时长过长,可能会导致手持拍摄时摄像模组的抖动程度加剧,从而影响图像质量。也就是说,待采集图像的帧数与抖动程度具有反向关系。因此,可以根据摄像模组当前的抖动程度,调整待采集的图像帧数以使得拍摄时长控制在合适的范围内。
具体的,若摄像模组当前的抖动程度较小,则可以采集较多帧的图像,以有效抑制每帧图像的噪声、提高拍摄图像的质量;若摄像模组当前的抖动程度较大,则可以采集较少帧的图像,以缩短拍摄时长。
举例来说,若确定摄像模组当前的抖动程度为“无抖动”,则可以确定当前可能为脚架拍摄模式,此时可以采集较多帧的图像,以尽量获得更高质量的图像,比如确定待采集的图像数量为17帧;若确定摄像模组当前的抖动程度为“轻微抖动”,则可以确定当前可能为手持拍摄模式,此时可以采集较少帧的图像,以降低拍摄时长,比如确定待采集的图像数量为7帧;若确定摄像模组当前的抖动程度为“小抖动”,则可以确定当前可能为手持拍摄模式,此时可以进一步减少待采集图像的数量,以降低拍摄时长,比如确定待采集的图像数量为5帧;若确定摄像模组当前的抖动程度为“大抖动”,则可以确定当前的抖动程度过大,此时可以进一步减少待采集图像的数量,或不采用采集多帧图像的方式拍摄,以降低拍摄时长,比如确定待采集的图像为3帧。
需要说明的是,上述举例仅为示例性的,不能视为对本公开的限制。实际使用时,当摄像模组的抖动程度变化时,既可以改变待采集的图像帧数,以获得最优的方案。其中,摄像模组的抖动程度与待采集的图像帧数的映射关系,可以根据实际需要预设。
子步骤2032,检测摄像模组已采集的图像中是否包含人脸。
在本公开实施例中,被摄物体是否包含人脸可通过人脸识别技术来确定。人脸识别技术,是通过分析比较人脸视觉特征信息进行身份鉴别,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。目前,人脸识别技术已应用在众多领域当中,例如,数码相机人脸自动对焦和笑脸快门技术;企业、住宅安全和管理;门禁系统;摄像监视系统等。常用的人脸识别算法包括:基于人脸特征点的识别算法(Feature-based recognition algorithms)、基于整幅人脸图像的识别算法(Appearance-based recognition algorithms)、基于模板的识别算法(Template-based recognition algorithms)、利用神经网络进行识别的算法(Recognition algorithms using neural network)等等。
需要说明的是,当检测到摄像模组当前采集的图像中包含人脸时,摄像模组的测光模块会自动以人脸区域为主进行测光,并根据人脸区域的测光结果确定基准曝光量。然而,在夜景模式中,人脸区域的光照度通常较低,从而导致确定的基准曝光量,与未包含人脸时确定的基准曝光量相比较高,若在包含人脸时仍然采集过多的过曝帧,则容易导致人脸区域过曝,从而导致目标图像的效果较差。因此,对于相同的抖动程度,摄像模组已采集的图像中包含人脸与未包含人脸时相比,其对应的曝光补偿模式需要具有较低的曝光补偿范围。
子步骤2033,若包含人脸,确定曝光补偿模式为符合调整后帧数的第一模式。
子步骤2034,若不包含人脸,确定曝光补偿模式为符合调整后帧数的第二模式。
其中,第二模式对应的曝光补偿等级取值范围大于第一模式对应的曝光补偿等级取值范围。
在本公开实施例一种可能的实现形式中,对于相同的抖动程度,可以根据摄像模组当前采集的图像中是否包含人脸,采用不同的曝光补偿策略。因此,对于相同的抖动程度,可以对应于多个曝光补偿模式。比如,摄像模组的抖动程度为“轻微抖动”,对应的预设的曝光补偿模式有第一模式和第二模式,其中,第一模式对应的各EV值为[0、0、0、0、-2、-4、-6],第二模式对应的各EV值为[+1、+1、+1、+1、0、-3、-6]。在确定了摄像模组当前的抖动程度,以及根据摄像模组当前采集的图像中是否包含人脸之后,即可确定出与当前的实际情况相符的预设的曝光补偿模式。
举例来说,假设摄像模组当前的抖动程度为“轻微抖动”,对应的预设的曝光补偿模式有第一模式和第二模式,其中,第一模式对应的各EV值为[0、0、0、0、-2、-4、-6],第二模式对应的各EV值为[+1、+1、+1、+1、0、-3、-6],可见,第一模式的曝光补偿范围小于第二模式的曝光补偿范围。若检测到摄像模组当前采集的图像中包含人脸,则确定预设的曝光补偿模式为符合调整后帧数的第一模式,即各EV值为[0、0、0、0、-2、-4、-6];若检测到摄像模组当前采集的图像中未包含人脸,则确定预设的曝光补偿模式为符合调整后帧数的第二模式,即各EV值为[+1、+1、+1、+1、0、-3、-6]。
步骤204,根据各帧待采集图像设定的曝光补偿等级,对基准曝光时长进行补偿以得到各帧待采集图像的曝光时长。
在本公开实施例中,可以通过曝光补偿等级,对每帧待采集图像分别采取不同的曝光补偿策略,使得待采集图像对应于不同的曝光量,以获得具有不同动态范围的图像。
需要说明的是,曝光补偿模式是指为每帧待采集图像分别预设的曝光补偿等级(Exposure Value,简称EV)的组合。在曝光量最初的定义中,曝光量并不是指一个准确的数值,而是指“能够给出相同的曝光量的所有相机光圈与曝光时长的组合”。感光度、光圈和曝光时长确定了相机的曝光量,不同的参数组合可以产生相等的曝光量。曝光补偿等级是对曝光量进行调整的参数,使得某些图像欠曝光,某些图像过曝光,还可以使得某些图像恰当曝光。
为了说明EV值与感光度、光圈和曝光时长三者之间的关系,下面将结合具体数据进行说明。比如,同一拍摄场景下,在感光度相同的情况下,使用1/125秒曝光时长和f11的光圈组合,与使用1/250秒曝光时间与f8快门的组合,获得的曝光量是相同的,即EV值是相同的。在传统相机中,EV值为0时,是固定指感光度为100、光圈系数为f1、曝光时长为1秒时获得的曝光量。曝光量增加一档,即曝光时长增加一倍,或者感光度增加一倍,或者光圈增加一档,EV值增加1,也就是说,EV1对应的曝光量是EV0对应的曝光量的两倍。如表1所示,为曝光时长、光圈、感光度分别单独变化时,与EV值的对应关系。
需要说明的是,在数码相机中EV值为0时的曝光量,可以是在拍摄场景下对环境光进行测光得到的。
表1
Figure PCTCN2019088017-appb-000001
摄影技术进入到数码时代之后,相机内部的测光功能已经非常强大,EV则经常用来表示曝光刻度上的一个级差,许多相机都允许设置曝光补偿,并通常用EV来表示。在这种情况下,EV是指相机测光数据对应的曝光量与实际曝光量的差值,比如EV+1的曝光补偿是指相对于相机测光数据对应的曝光量增加一档曝光,即实际曝光量为相机测光数据对应的曝光量的两倍。
在本公开实施例中,确定曝光补偿模式时,可以将确定的基准曝光量对应的EV值预设为0,EV+1是指增加一档曝光,即曝光量为基准曝光量的2倍,EV+2是指增加两档曝光,即曝光量为基准曝光量的4倍,EV-1是指减少一档曝光,即曝光量为基准曝光量的0.5倍等等。
举例来说,若待采集的图像数量为7帧,则曝光补偿模式对应的EV值范围可以是[+1、+1、+1、+1、0、-3、-6]。其中,曝光补偿模式为EV+1的帧,可以解决噪声问题,通过亮度比较高的帧进行时域降噪,在提升暗部细节的同时抑制噪声;曝光补偿模式为EV-6的帧,可以解决高光过曝的问题,保留高光区域的细节;曝光补偿模式为EV0和EV-3的帧,则可以用于保持高光到暗区之间的过渡,保持较好的明暗过渡的效果。
需要说明的是,曝光补偿模式对应的各EV值既可以是根据实际需要具体设置的,也可以是根据设置的EV值范围,并依据各EV值之间的差值相等的原则求得的,本公开实施例对此不做限定。
在本公开实施例一种可能的实现形式中,光圈的大小可以是不变的,并且使用确定的基准感光度采集各待采集的图像,因此,在根据摄像模组当前的抖动程度,确定了当前待采集的图像数量之后,即可根据预设的与当前待采集的图像数量相符的曝光补偿模式,以及基准曝光时长,确定出每帧待采集图像对应的曝光时长。具体的,若待采集图像对应的曝光补偿模式为EV+1,则该待采集图像对应的曝光时长为基准时长的2倍;若待采集图像对应的曝光补偿模式为EV-1,则该待采集图像对应的曝光时长为基准时长的0.5倍,以此类推。
举例来说,假设根据摄像模组当前的抖动程度,确定待采集的图像数量为7帧,对应的预设的曝光补偿模式对应的EV范围可以是[+1、+1、+1、+1、0、-3、-6],根据基准曝光量和基准感光度,确定出基准曝光时长为100毫秒,则每帧待采集图像对应的曝光时长分别为200毫秒、200毫秒、200毫秒、200毫秒、100毫秒、12.5毫秒、6.25毫秒。
本公开实施例的夜景拍摄方法,通过根据拍摄场景的亮度信息,确定基准曝光量,根据基准曝光量及基准感光度,确定基准曝光时长,根据摄像模组的抖动程度,调整曝光补偿模式,根据各帧待采集图像设定的曝光补偿等级,对基准曝光时长进行补偿以得到各帧待采集图像的曝光时长。由此,通过拍摄场景的亮度信息确定基准曝光和各帧的曝光补偿等级,以确定采集各帧图像的曝光时长,根据不同曝光时长采集各帧图像时,不仅提升了夜景拍摄模式下拍摄图像的动态范围和整体亮度,而且有效抑制了拍摄图像中的噪声,提高了夜景拍摄图像的质量,改善了用户体验。
在图2所述实施例的基础上,作为另一种可能的实现方式,本公开实施例中,预先设定了多种夜景模式,不同夜景模式对应了不同的曝光补模式,参见图4,图4为本公开实施例提供的第四种夜景拍摄方法的流程示意图,具体可以包括以下步骤:
步骤301,根据预览画面的画面内容,确定当前拍摄场景属于夜景场景。
本公开实施例中,可以通过成像设备获取当前拍摄场景的预览画面,用于确定当前拍摄场景是否属于夜景场景。
具体地,由于不同场景下环境亮度值不同,预览画面内容也不相同,根据当前拍摄场景预览画面的画面内容以及各区域的环境亮度值,判断当前拍摄场景是否属于夜景场景。
例如,预览画面的画面内容包括夜晚天空或者夜景灯源等,或者预览画面的各区域中环境亮度值符合夜景环境下图像的亮度分布特性,即可确定当前拍摄场景属于夜景场景。
步骤302,根据摄像模组的抖动程度和/或预览画面是否包含人脸,识别当前拍摄场景适用的夜景模式。
在本公开实施例中,可以通过成像设备设置的位移传感器,采集得到成像设备在拍摄过程中的位移信息,进而根据获取的位移信息确定摄像模组当前的抖动程度。由此,可通过摄像模组的抖动程度判断使用者是将成像设备固定在脚架上进行拍摄还是通过手持模式拍摄。进而,根据摄像模组当前的抖动程度,识别当前拍摄场景适用的夜景模式。其中,夜景模式,即采用脚架模式或者手持模式。
作为另一种可能的实现方式,可通过确定成像设备的预览画面是够包含人脸,进而识别当前拍摄场景适用的夜景模式。
需要说明的是,当检测到预览画面包含人脸时,摄像模组的测光模块会自动以人脸区域为主进行测光,并根据人脸区域的测光结果确定基准曝光量。然而,在夜景场景中,人脸区域的光照度通常较低,从而导致确定的基准曝光量,与未包含人脸时确定的基准曝光量相比较高,若在包含人脸时仍然采集过 多的过曝帧,则容易导致人脸区域过曝,从而导致采集图像的成像效果较差。因此,对于相同的抖动程度,预览画面中包含人脸与未包含人脸时相比,采用的夜景模式不相同。
步骤303,根据夜景模式对应的曝光补偿模式,确定各帧待采集图像预设的曝光补偿值。
作为一种可能的实现方式,摄像模组的抖动程度不同,适用当前拍摄场景的夜景模式也不相同,因此,确定出的各帧待采集的图像预设的曝光补偿值也不相同。在本公开实施例中,可以预设摄像模组的抖动程度与曝光补偿值之间的映射关系,以根据摄像模组的抖动程度,确定出当前各帧待采集的图像预设的曝光补偿值。
例如,可以将摄像模组的抖动程度为“无抖动”时,各帧待采集的图像对应的曝光补偿值的EV值范围预设为-6~2,且相邻的EV值之间的差值为0.5;将摄像模组的抖动程度为“轻微抖动”,各帧待采集的图像对应的曝光补偿值的EV值范围预设为-5~1,且相邻的EV值之间的差值为1,等等。
作为另一种可能的实现形式,检测摄像模组的预览画面是否包含人脸,预览画面中包含人脸与不包含人脸时,适用当前拍摄场景的夜景模式不相同,由此确定的各帧待采集图像预设的曝光补偿值也不相同。
作为又一种可能的实现方式,对于相同的抖动程度,可以根据预览画面中是否包含人脸,确定各帧待采集图像采用不同的曝光补偿值。因此,对于相同的抖动程度,可以对应于多个曝光补偿值。比如,摄像模组的抖动程度为“轻微抖动”,各帧待采集图像预设的曝光补偿值有包含人脸和不含人脸两种情况。
在夜景模式中,当待采集图像中包含人脸时,人脸区域的光照强度通常较低,从而导致确定的基准曝光量,与未包含人脸时确定的基准曝光量相比较高,若在包含人脸时仍然采集过多的过曝帧,则容易导致人脸区域过曝,从而导致采集图像的成像效果较差,其对应的曝光补偿模式需要具有较低的曝光补偿范围。因此,对于相同的抖动程度,预览画面中包含人脸与未包含人脸时相比,在确定了摄像模组当前的抖动程度,以及预览画面是否包含人脸之后,即可确定出与当前的实际情况相符的预设的曝光补偿值。
本公开实施例中,通过获取预览画面,根据预览画面的画面内容,确定当前拍摄场景属于夜景场景,根据成像设备的抖动程度和/或预览画面是否包含人脸,识别当前拍摄场景适用的夜景模式,进而,根据夜景模式,确定各帧待采集图像预设的曝光补偿值。由此,根据成像设备的抖动程度和/或预览画面是否包含人脸,确定该拍摄场景下的夜景模式,进而确定各帧待采集图像预设的曝光补偿值,进一步的用于确定各帧待采集图像的曝光时长,根据时长上限更新至少一帧待采集图像的曝光时长,最终根据更新后的各帧待采集图像的曝光时长和感光度,进行曝光控制,进而成像,不仅提升了夜景拍摄模式下拍摄图像的动态范围和整体亮度,而且有效抑制了拍摄图像中的噪声,提高了夜景拍摄图像的质量,改善了用户体验。
在图1所述实施例的基础上,在一种可能的实现场景下,根据摄像模组的抖动程度确定基准感光度时,可以通过判断抖动程度与预设的抖动阈值之间的关系,以确定各帧待采集图像的基准感光度的感光值,进而提高拍摄图像的质量。下面结合图5对上述过程进行详细介绍,图5为本公开实施例提供的第五种夜景拍摄方法的流程示意图,如图5所示,步骤102可以包括以下步骤:
步骤401,确定摄像模组的抖动程度。
具体地,为了确定抖动程度,可以根据电子设备中设置的位移传感器,采集位移信息,进而,根据采集到的电子设备的位移信息,确定摄像模组的抖动程度。当各帧待采集图像预设的感光度相同时,可以根据摄像模组的抖动程度,确定各帧待采集图像预设的感光度。
步骤402,判断摄像模组的抖动程度是否大于或等于抖动阈值
本公开实施例中,在确定摄像模组的抖动程度后,将摄像模组的抖动程度与预设的抖动阈值进行比较,以根据抖动程度确定基准感光度的感光值。
步骤403,若抖动程度大于或等于抖动阈值,确定基准感光度为第一感光值。
作为一种可能的情况,在确定摄像模组的抖动程度后,确定的摄像模组的抖动程度大于或者等于抖动阈值,此时,确定基准感光度为第一感光值。
可以理解为,在摄像模组的抖动程度较大时,可以通过增大基准感光度,以降低拍摄时长,例如确定基准感光度为800。
步骤404,若抖动程度小于抖动阈值,确定基准感光度为第二感光值。
作为一种可能的情况,在确定摄像模组的抖动程度后,确定的摄像模组的抖动程度小于抖动阈值,此时,确定基准感光度为第二感光值。
其中,第一感光值大于第二感光值,第一感光值为第二感光值的预设倍数,预设倍数取值大于等于2。作为一种可能的实现方式,为了获得较低的噪声,第二感光值可以为成像设备的最小感光度,即第二感光值的取值为100ISO,相应地,第一感光值的取值范围可以为200、400、800或者更高。
可以理解为,在摄像模组的抖动程度较小时,可以通过设置较小的基准感光度以尽量获得更高质量的图像,例如,可以确定基准感光度为100。
本公开实施例中,通过确定摄像模组的抖动程度后,将抖动程度与抖动阈值进行比较,若抖动程度大于或等于抖动阈值,确定基准感光度为第一感光值,若抖动程度小于抖动阈值,确定基准感光度为第二感光值。由此,通过摄像模组的抖动程度确定基准感光度的感光值,以进一步根据感光值确定曝光时长,从而不仅提升了夜景拍摄模式下拍摄图像的动态范围和整体亮度,而且有效抑制了拍摄图像中的噪声,提高了夜景拍摄图像的质量,改善了用户体验。
在图1所述实施例的基础上,在另一种可能的场景下,在执行步骤102中根据基准感光度,确定各帧待采集图像在拍摄场景的光照度下所需的曝光时长后,可以将确定的曝光时长与根据摄像模组的抖动程度确定的时长上限进行比较,以减小曝光时长大于时长上限的待采集图像的曝光时长,避免了曝光时长过长时引起的过曝导致图像失真,抖动导致画面模糊,以及拍摄时长过长的情况。下面结合图6对上述过程进行详细介绍,图6为本公开实施例提供的第六种夜景拍摄方法的流程示意图,如图6所示,步骤103之后还包括以下步骤:
步骤501,根据摄像模组的抖动程度,确定时长上限。
作为一种可能的情况,为了确定抖动程度,可以根据成像设备中设置的位移传感器,采集位移信息,进而,根据采集到的成像设备的位移信息,确定摄像模组的抖动程度。进一步地,根据确定的摄像模组的抖动程度与预设的抖动阈值进行比较,以确定曝光时长上限。
作为一可能的情况,当摄像模组的抖动程度大于或等于抖动阈值时,确定当前拍摄场景中各帧待采集图像的曝光时长上限为第一时长。其中,抖动阈值,为成像设备中预先设定的用于确定预设感光度取值的抖动值。
可以理解为,在摄像模组的抖动程度较大时,如果设置较长的曝光时长,可能导致整体的拍摄时长延长,加剧成像设备的抖动程度,从而使得最终拍摄到的图像中可能出现由于抖动导致的鬼影和图像明显模糊的情况。因此,在摄像模组的抖动程度较大时,可以设置较短时间的曝光时长,以避免拍摄的图像出现鬼影或者模糊的情况。
作为另一可能的情况,当成像设备的抖动程度小于抖动阈值时,确定当前拍摄场景中各帧待采集图像的曝光时长上限为第二时长。
可以理解为,在摄像模组的抖动程度较小时,可以通过设置较长的曝光时长,以拍摄得到较高质量的图像。
其中,第一时长小于第二时长,并且,第一时长取值范围为150ms至300ms;第二时长取值范围为4.5s至5.5s。
步骤502,将各帧待采集图像的曝光时长与设定的时长上限比较。
本公开实施例中,将各帧待采集图像的曝光时长,是根据摄像模组确定的基准感光度确定的,具体实现过程参见上述实施例中步骤102的实现过程,在此不再赘述。
在根据基准感光度确定各帧待采集图像在拍摄场景的光照度下所需的曝光时长后,将各帧待采集图像的曝光时长与设定的时长上限比较,以避免了曝光时长过长时引起的过曝导致图像失真的情况。
步骤503,若待采集图像中存在曝光时长大于时长上限的第一图像,将第一图像的曝光时长减小至时长上限。
具体地,若待采集图像中存在对应的曝光时长大于时长上限的情况,则可能导致整体的拍摄时长延长,加剧成像设备的抖动程度,从而使得最终拍摄到的图像中可能出现由于抖动导致的鬼影和图像明显模糊。
因此,在确定出各帧待采集的图像对应的曝光时长之后,即可将各曝光时长与预设的时长上限相比较,以判断各帧待采集图像对应的曝光时长是否均大于时长上限。
作为一种可能的情况,当摄像模组的抖动程度大于或等于抖动阈值时,确定的待采集图像中的曝光时长与第一时长上限进行比较,若待采集图像中存在曝光时长大于第一时长上限的第一图像,将第一图像的曝光时长减小至时长上限。其中,第一时长上限为300ms。
例如,假如某一帧待采集图像的曝光时长为350ms,由于该帧图像的曝光时长大于第一时长上限,则减小该帧图像的曝光时长,将该帧待采集图像的曝光时长设为300ms。
作为一种可能的情况,当摄像模组的抖动程度小于抖动阈值时,确定的待采集图像中的曝光时长与第二时长上限进行比较,当待采集图像中存在第一图像对应的曝光时长大于第二时长的时长上限时,将第一图像对应的曝光时长设定为第二时长的时长上限,即5.5s。
例如,假如某一帧待采集图像的曝光时长为6s,由于该帧图像的曝光时长大于第二时长上限,则减小该帧图像的曝光时长,将该帧待采集图像的曝光时长设为5.5s。
步骤504,根据第一图像减小前的曝光时长与减小后的曝光时长之比,增大第一图像的感光度。
具体地,由于曝光量为感光度与曝光时长的乘积,因此,在第一图像的曝光量确定时,可以根据第一图像减小前的曝光时长与减小后的曝光时长之比,增大第一图像的感光度,以维持拍摄图像的亮度。
举例来说,根据当前拍摄场景的亮度信息,确定曝光补偿等级为EV0时的曝光时长和基准曝光量分别为2s和100ISO。当待采集图像的曝光补偿等级为EV+2时,则曝光时长和感光度分别为8s和100ISO,由于曝光时长为8s时大于时长上限5s,则将EV+2的曝光时长取值为5s,ISO值确定为8/5*100ISO即160ISO。由此,通过对该帧待采集图像的曝光时长进行更新,在保证曝光量的同时,提高了图像亮度,避免了曝光时间过长引起的过曝导致图像失真。
本公开实施例中,通过根据摄像模组的抖动程度,确定时长上限,将各帧待采集图像的曝光时长与设定的时长上限比较,若待采集图像中存在曝光时长大于时长上限的第一图像,将第一图像的曝光时长减小至时长上限,根据第一图像减小前的曝光时长与减小后的曝光时长之比,增大第一图像的感光度。由此,将待采集图像的曝光时长大于时长上限的图像的曝光时长,减小为时长上限,从而避免了由于曝光时长过长导致整体的拍摄时长延长,加剧摄像模组的抖动程度,从而使得最终拍摄到的图像中可能出现由于抖动导致的鬼影和图像明显模糊。
在图1所述实施例的基础上,在又一种可能的场景下,根据基准感光度,确定各帧待采集图像在拍摄场景的光照度下所需的曝光时长后,将确定的曝光时长与根据摄像模组的抖动程度确定的时长下限进行比较,以根据曝光时长下限对小于时长下限的曝光时长进行调整。下面结合图7对上述过程进行详细介绍,图7为本公开实施例提供的第七种夜景拍摄方法的流程示意图,如图7所示,步骤103之后还包括以下步骤:
步骤601,将各帧待采集图像的曝光时长与设定的时长下限比较。
本公开实施例中,各帧待采集图像的曝光时长,是根据摄像模组确定的基准感光度确定的,具体实现过程参见上述实施例中步骤102的实现过程,在此不再赘述。
在根据基准感光度确定各帧待采集图像在拍摄场景的光照度下所需的曝光时长后,将各帧待采集图像的曝光时长与设定的时长下限比较,以根据时长下限对小于时长下限的曝光时长进行调整。其中,时长下限大于或等于10ms。
需要说明的是,曝光时长下限也是根据摄像模组的抖动程度确定的,具体的实现过程参见上述实施例中步骤501的实现过程,在此不再赘述。
步骤602,若待采集图像中存在曝光时长小于时长下限的第二图像,将第二图像的曝光时长增大至时长下限。
本公开实施例中,若待采集图像对应的曝光时长小于时长下限的图像,则可能导致图像中的噪声过大难以消除。因此,当某一帧待采集图像对应的曝光时长小于时长下限时,将该帧待采集图像对应的曝光时长增大为时长下限。
步骤603,确定第二图像增大后的曝光时长与增大前的曝光时长之间的比值。
举例来说,预设的时长下限等于10ms,第二图像增大前的曝光时长为8ms,将第二图像的曝光时长增大为预设的时长下限10ms,则可以确定第二图像增大后的曝光时长与增大前的曝光时长之间的比值为10/8。
步骤604,若其余各帧待采集图像中存在曝光时长大于时长上限的第一图像,根据时长上限,减小 第一图像的曝光时长。
本公开实施例中,在确定待采集图像中存在曝光时长小于时长下限的第二图像后,在其余的各帧待采集图像中同时存在曝光时长大于时长上限的第一图像,可以将第一图像的曝光时长减小为时长上限。具体的实现过程,参见上述实施例中步骤503的实现过程,在此不再赘述。
步骤605,根据第一图像减小前后的曝光时长之比,增大第一图像的感光度。
本公开实施例中,步骤605的实现过程,可以参见上述实施例中步骤504的实现过程,在此不再赘述。
步骤606,对曝光时长大于或等于时长下限的其余各帧待采集图像,根据比值,更新其余各帧待采集图像的感光度或曝光时长。
具体地,对于曝光时长大于或等于时长下限的其余各帧待采集图像,在确定小于时长下限的待采集图像更新后的曝光时长与更新前的曝光时长之间的比值后,将该比值与其余各帧待采集图像更新前的感光度或曝光时长乘积,作为其余各帧待采集图像更新后的感光度或曝光时长。
作为一种示例,假如曝光时长大于或等于时长下限的待采集图像为4帧,根据摄像模组的抖动程度确定各帧预设的感光度值均为100ISO,且4帧待采集图像的曝光时长分别为100ms、200ms、400ms和800ms。鉴于小于时长下限的待采集图像更新后的曝光时长与更新前的曝光时长之间的比值为10ms/1.5ms,即20/3,由此,确定这4帧待采集图像的曝光时长扩大为原来100ms、200ms、400ms和800ms的20/3倍。
对感光度的更新方式与曝光时长的更新方式类似,仅需要将曝光时长替换为感光度即可,但需要注意的是,仅可根据前述小于时长下限的待采集图像更新后的曝光时长与更新前的曝光时长之间的比值,更新曝光时长和感光度中的一个,若需要对曝光时长和感光度同时更新,则需要依权重对该比值进行分配后,进行更新。例如:对曝光时长和感光度各占一半权重,若前述小于时长下限的待采集图像更新后的曝光时长与更新前的曝光时长之间的比值为R,将曝光时长扩大为原来的R/2倍,将感光度扩大为原来的R/2倍。
本公开实施例中,根据基准感光度,确定各帧待采集图像在拍摄场景的光照度下所需的曝光时长后,将各帧待采集图像的曝光时长与设定的时长下限比较,若待采集图像中存在曝光时长小于时长下限的第二图像,将第二图像的曝光时长增大至时长下限,确定第二图像增大后的曝光时长与增大前的曝光时长之间的比值,对曝光时长大于或等于时长下限的其余各帧待采集图像,根据比值,更新其余各帧待采集图像的感光度或曝光时长。由此,确定了各帧待采集图像的曝光时长,进而根据曝光时长下限与时长上限更新各帧待采集图像的感光度和曝光时长,最终根据更新后的各帧待采集图像的曝光时长和感光度,进行曝光控制,进而成像,不仅提升了夜景拍摄模式下拍摄图像的动态范围和整体亮度,而且有效抑制了拍摄图像中的噪声,提高了夜景拍摄图像的质量,改善了用户体验。
作为本公开实施例的另一种可能的实现方式,在夜景拍摄时,还可以根据摄像模组的抖动程度调整曝光时长,进而根据曝光时长确定多帧待采集图像的感光度,以根据多帧待采集图像的感光度和曝光时长采集图像。不同于图1提供的实现方式中基于基准感光度调整曝光时长,而是基于曝光时长调整感光度,同样可以结合抖动程度,将感光度控制在较低水平。下面结合图8对上述过程进行详细介绍,图8为本申请实施例提供的第八种夜景拍摄方法的流程示意图。
如图8所示,该方法具体包括以下步骤:
步骤701,获取摄像模组的抖动程度。
本公开实施例中,步骤701的实现过程,可以参见上述实施例中步骤101的实现过程,在此不再赘述。
步骤702,根据抖动程度,调整曝光时长。
其中,曝光时长,是指光线通过镜头的时间。
本公开实施例中,电子设备获取到摄像模组的抖动程度后,可以根据摄像模组的抖动程度,调整曝光时长。
作为一种可能的情况,在摄像模组的抖动程度较大时,如果设置较长时间的曝光时长,可能导致整体的拍摄时长延长,加剧成像设备的抖动程度,从而使得最终拍摄到的图像中可能出现由于抖动导致的鬼影和图像明显模糊的情况。因此,在摄像模组的抖动程度较大时,可以设置较短时间的曝光时长,以 避免拍摄的图像出现鬼影或者模糊的情况。
作为另一种可能的情况,在摄像模组的抖动程度较小时,可以通过设置较长的曝光时长,从而使得拍摄的过程中获取到更多的图像信息,以拍摄得到较高质量的图像。
步骤703,根据拍摄场景的亮度信息和曝光时长,确定多帧待采集图像的感光度。
在本公开实施例中,拍摄场景的亮度信息,可以利用摄像模组中的测光模块测光得到,也可以是拍摄场景的光照度,也可以是通过预览图像中的亮度信息获取到的,在此不做限定。
具体地,曝光量与光圈、曝光时长和感光度有关。其中,光圈也就是通光口径,决定单位时间内光线通过的数量。当确定多帧待采集图像的曝光时长后,并且光圈大小相同时,根据拍摄场景的亮度信息确定每一帧待采集图像对应的曝光量后,即可,根据每一帧待采集图像的曝光时长,确定各帧待采集图像的感光度。
步骤704,根据多帧待采集图像的感光度和曝光时长采集图像。
本公开实施例中,在确定多帧待采集图像的感光度和曝光时长后,控制摄像模组根据各帧待采集图像的感光度和曝光时长采集图像,在此不做具体赘述。
需要说明的是,通过曝光时长将多帧待采集图像的感光度限定在较低值时,不仅有助于减少多帧图像的噪点,还避免了由于感光度增大导致采集的多帧图像噪声增加的技术问题。
步骤705,将采集的多帧图像合成,以生成目标图像。
本公开实施例中,步骤705的实现过程,可以参见上述实施例中步骤105的实现过程,在此不再赘述。
本公开实施例的夜景拍摄方法,通过获取摄像模组的抖动程度,根据抖动程度,调整曝光时长,根据拍摄场景的亮度信息和曝光时长,确定多帧待采集图像的感光度,根据多帧待采集图像的感光度和曝光时长采集图像,将采集的多帧图像合成,以生成目标图像。由此,在确定曝光时长后,根据拍摄场景的亮度信息和曝光时长确定多帧待采集图像的感光度,从而根据多帧待采集图像的曝光时长和感光度进行图像采集,以合成生成目标图像,不仅提升了夜景拍摄图像的动态范围和整体亮度,有效抑制了图像中的噪声,而且抑制了手持抖动导致的鬼影,提高了夜景拍摄图像的质量,改善了用户体验。
在图8所述实施例的基础上,在一种可能场景下,上述步骤702中,还可以基于抖动程度,确定各帧待采集图像设定的曝光补偿等级和各曝光补偿等级对应的曝光时长,以确定各帧待采集图像的曝光时长,以获得不同动态范围的图像,使得合成后的图像具有更高的动态范围,提高图像的整体亮度和质量。下面结合图9对上述过程进行详细介绍,图9为本公开实施例提供的第九种夜景拍摄方法的流程示意图,如图9所示,步骤702具体还可以包括:
步骤801,根据抖动程度,确定各曝光补偿等级对应的曝光时长。
其中,曝光补偿是曝光的一种控制方式,是通过电子设备对被摄体测光以后,得出的快门和光圈组合的参数,再通过曝光补偿人为改变这一次测光得出的快门速度。曝光补偿等级包括高补偿等级、小于高补偿等级的低补偿等级以及处于高补偿等级和低补偿等级之间的过渡等级。
本公开实施例中,摄像模组当前的抖动程度不同,多帧待采集图像对应的曝光补偿等级不同,不同曝光补偿等级对应的曝光时长也不相同。因此,可以根据抖动程度,确定各曝光补偿等级对应的曝光时长,以建立各曝光补偿等级与曝光时长之间的对应关系。
比如,可以将摄像模组抖动程度为“无抖动”,对应的曝光补偿等级的EV值范围预设为-6~2,且相邻的EV值之间的差值为0.5,同时设置较长的曝光时长;将摄像模组抖动程度为“轻微抖动”,对应的曝光补偿等级的EV值范围预设为-5~1,且相邻的EV值之间的差值为1,同时设置较短的曝光时长,等等。
步骤802,根据抖动程度,调整曝光补偿模式。
其中,曝光补偿模式,用于指示待采集图像的帧数和各帧待采集图像设定的曝光补偿等级。
可以理解的是,摄像模组当前的抖动程度不同,确定出的待采集的图像数量也可以不同,而待采集的图像数量不同时,需要采用不同的曝光补偿模式。因此,在本公开实施例一种可能的实现形式中,可以建立摄像模组的抖动程度与曝光补偿模式的映射关系,以根据摄像模组当前的抖动程度,确定出与当前待采集的图像数量的帧数和各帧待采集图像设定的曝光补偿模式。
比如,可以将摄像模组抖动程度为“无抖动”,对应的曝光补偿模式的EV值范围预设为-6~2,且相 邻的EV值之间的差值为0.5;将摄像模组抖动程度为“轻微抖动”,对应的曝光补偿模式的EV值范围预设为-5~1,且相邻的EV值之间的差值为1,等等。
作为一种可能的实现方式,可以首先确定摄像模组的防抖性能,以结合摄像模组的抖动程度和防抖性能,调整曝光补偿模式。
需要说明的是,摄像模组的防抖性能与摄像组件中各元器件的属性信息有一定的关系,因此可以根据摄像组件中各元器件的属性信息以确定摄像模组的防抖性能,以结合摄像模组的抖动程度和防抖性能,调整曝光补偿模式。
举例来说,若摄像组件中光学器件的设置方式为光学防抖,则可以适当扩大预设的时长范围,因为可实现光学防抖功能的摄像模组,在拍摄过程中,摄像模组抖动时,其自身可以抵消掉一部分的抖动,从而与不可实现光学防抖的摄像模组相比,在相同的抖动程度下,可实现光学防抖功能的摄像模组采集到的图像中鬼影和模糊的程度较轻。因此,与不可实现光学防抖的摄像模组相比,可以适当扩大预设的时长范围,特别是时长范围的上限,以获得质量更好的图像。
作为另一种可能的实现方式,可以根据摄像模组的抖动程度调整待采集图像的帧数,进而,摄像模组检测已采集的图像中是否包含人脸,以调整各帧的曝光补偿模式。
可以理解的是,待采集的图像的帧数以及采集图像的感光度会影响到整体的拍摄时长,拍摄时长过长,可能会导致手持拍摄时摄像模组的抖动程度加剧,从而影响图像质量。也就是说,待采集图像的帧数与抖动程度具有反向关系。因此,可以根据摄像模组当前的抖动程度,调整待采集的图像帧数以使得拍摄时长控制在合适的范围内。
具体的,若摄像模组当前的抖动程度较小,则可以采集较多帧的图像,以有效抑制每帧图像的噪声、提高拍摄图像的质量;若摄像模组当前的抖动程度较大,则可以采集较少帧的图像,以缩短拍摄时长。
举例来说,若确定摄像模组当前的抖动程度为“无抖动”,则可以确定当前可能为脚架拍摄模式,此时可以采集较多帧的图像,以尽量获得更高质量的图像,比如确定待采集的图像数量为17帧;若确定摄像模组当前的抖动程度为“轻微抖动”,则可以确定当前可能为手持拍摄模式,此时可以采集较少帧的图像,以降低拍摄时长,比如确定待采集的图像数量为7帧;若确定摄像模组当前的抖动程度为“小抖动”,则可以确定当前可能为手持拍摄模式,此时可以进一步减少待采集图像的数量,以降低拍摄时长,比如确定待采集的图像数量为5帧;若确定摄像模组当前的抖动程度为“大抖动”,则可以确定当前的抖动程度过大,此时可以进一步减少待采集图像的数量,或不采用采集多帧图像的方式拍摄,以降低拍摄时长,比如确定待采集的图像为3帧。
需要说明的是,上述举例仅为示例性的,不能视为对本公开的限制。实际使用时,当摄像模组的抖动程度变化时,既可以改变待采集的图像帧数,以获得最优的方案。其中,摄像模组的抖动程度与待采集的图像帧数的映射关系,可以根据实际需要预设。
在本公开实施例中,被摄物体是否包含人脸可通过人脸识别技术来确定。人脸识别技术,是通过分析比较人脸视觉特征信息进行身份鉴别,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。目前,人脸识别技术已应用在众多领域当中,例如,数码相机人脸自动对焦和笑脸快门技术;企业、住宅安全和管理;门禁系统;摄像监视系统等。常用的人脸识别算法包括:基于人脸特征点的识别算法(Feature-based recognition algorithms)、基于整幅人脸图像的识别算法(Appearance-based recognition algorithms)、基于模板的识别算法(Template-based recognition algorithms)、利用神经网络进行识别的算法(Recognition algorithms using neural network)等等。
需要说明的是,当检测到摄像模组当前采集的图像中包含人脸时,摄像模组的测光模块会自动以人脸区域为主进行测光,并根据人脸区域的测光结果确定基准曝光量。然而,在夜景模式中,人脸区域的光照度通常较低,从而导致确定的基准曝光量,与未包含人脸时确定的基准曝光量相比较高,若在包含人脸时仍然采集过多的过曝帧,则容易导致人脸区域过曝,从而导致目标图像的效果较差。因此,对于相同的抖动程度,摄像模组已采集的图像中包含人脸与未包含人脸时相比,其对应的曝光补偿模式需要具有较低的曝光补偿范围。
在一种可能的场景下,若检测得到已采集的图像中包含人脸,确定曝光补偿模式为符合调整后帧数的第一模式。
在另一种可能的场景下,若检测得到已采集的图像中不包含人脸,确定曝光补偿模式为符合调整后帧数的第二模式。
其中,第二模式对应的曝光补偿等级取值范围大于第一模式对应的曝光补偿等级取值范围。
在本公开实施例一种可能的实现形式中,对于相同的抖动程度,可以根据摄像模组当前采集的图像中是否包含人脸,采用不同的曝光补偿策略。因此,对于相同的抖动程度,可以对应于多个曝光补偿模式。比如,摄像模组的抖动程度为“轻微抖动”,对应的预设的曝光补偿模式有第一模式和第二模式,其中,第一模式对应的各EV值为[0、0、0、0、-2、-4、-6],第二模式对应的各EV值为[+1、+1、+1、+1、0、-3、-6]。在确定了摄像模组当前的抖动程度,以及根据摄像模组当前采集的图像中是否包含人脸之后,即可确定出与当前的实际情况相符的预设的曝光补偿模式。
举例来说,假设摄像模组当前的抖动程度为“轻微抖动”,对应的预设的曝光补偿模式有第一模式和第二模式,其中,第一模式对应的各EV值为[0、0、0、0、-2、-4、-6],第二模式对应的各EV值为[+1、+1、+1、+1、0、-3、-6],可见,第一模式的曝光补偿范围小于第二模式的曝光补偿范围。若检测到摄像模组当前采集的图像中包含人脸,则确定预设的曝光补偿模式为符合调整后帧数的第一模式,即各EV值为[0、0、0、0、-2、-4、-6];若检测到摄像模组当前采集的图像中未包含人脸,则确定预设的曝光补偿模式为符合调整后帧数的第二模式,即各EV值为[+1、+1、+1、+1、0、-3、-6]。
步骤803,根据各帧待采集图像设定的曝光补偿等级和各曝光补偿等级对应的曝光时长,确定各帧待采集图像的曝光时长。
本公开实施例中,根据摄像模组的抖动程度,确定各帧待采集图像设定的曝光补偿等级以及各曝光补偿等级对应的曝光时长后,即可确定各帧待采集图像的曝光时长。
本公开实施例中,根据摄像模组的抖动程度,确定各曝光补偿等级对应的曝光时长,以及调整曝光补偿模式,进而,根据各帧待采集图像设定的曝光补偿等级和各曝光补偿等级对应的曝光时长,确定各帧待采集图像的曝光时长。由此,通过不同的曝光时长采集多帧图像,避免了曝光时长过长时引起的过曝导致图像失真,抖动导致画面模糊,以及拍摄时长过长的情况。
在图8所述实施例的基础上,在一种可能的实现场景下,在执行步骤703中根据拍摄场景的亮度信息和曝光时长,确定多帧待采集图像的感光度后,将确定的各帧待采集图像的感光度与设定的感光度上限进行比较,以减小感光度大于感光度上限的待采集图像的感光度。避免了在采集图像过程中,感光度值较高,导致采集的图像噪点增加的技术问题。下面结合图10对上述过程进行详细介绍,如图10所示,步骤703之后,还可以包括:
步骤901,根据摄像模组的抖动程度,确定感光度上限。
具体地,为了确定抖动程度,可以根据电子设备中设置的位移传感器,采集位移信息,进而,根据采集到的电子设备的位移信息,确定摄像模组的抖动程度。当各帧待采集图像预设的感光度不同时,可以根据摄像模组的抖动程度,确定各帧待采集图像的感光度上限。
作为一种可能的实现方式,在确定摄像模组的抖动程度后,可以将摄像模组的抖动程度与预设的抖动阈值进行比较,以根据抖动程度确定的感光度上限。其中,抖动阈值,为用于衡量抖动程度数值。
作为一种可能的情况,在确定摄像模组的抖动程度后,确定的摄像模组的抖动程度大于或者等于抖动阈值,此时,确定感光度上限为第一感光值。
可以理解为,在摄像模组的抖动程度较大时,可以通过增大感光度,以降低拍摄时长,例如确定感光值为800。
作为另一种可能的情况,在确定摄像模组的抖动程度后,确定的摄像模组的抖动程度小于抖动阈值,此时,确定感光度上限为第二感光值。
其中,第一感光值大于第二感光值,第一感光值为第二感光值的预设倍数,预设倍数取值大于等于2。
举例来说,为了获得较低的噪声,第二感光值可以为成像设备的最小感光度,即第二感光值的取值为100ISO,相应地,第一感光值的取值范围可以为200、400、800或者更高。
可以理解为,在摄像模组的抖动程度较小时,可以通过设置较小的感光度以尽量获得更高质量的图像,例如,可以确定感光度为100。
步骤902,将各帧待采集图像的感光度与设定的感光度上限比较。
本公开实施例中,在拍摄场景的亮度信息和曝光时长确定各帧待采集图像的感光度后,将各帧待采集图像的感光度与设定的感光度上限进行比较,以对各帧待采集图像的感光度进行调整,从而有助于减 少采集的各帧图像的噪点,以避免了感光度增大时导致图像噪声增加的情况。
步骤903,若待采集图像中存在感光度大于感光度上限的第一图像,根据感光度上限,减小第一图像的感光度。
本实施例中,若待采集图像中存在对应的感光度大于感光度上限的情况,则可能导致拍摄图像的过程中引入较多的噪声,从而导致最终拍摄得到的图像中噪声严重。
因此,在确定各帧待采集图像的感光度后,即可将各帧待采集图像的感光度与感光度上限进行比较,以判断待采集图像中是否存在感光度大于感光度上限的第一图像。
作为一种可能的情况,当摄像模组的抖动程度大于或等于抖动阈值时,确定的待采集图像中的感光度与感光度上限进行比较,若待采集图像中存在感光度大于感光度上限的第一图像,根据感光度上限,减小第一图像的感光度。此时,感光度上限为第一感光值。
作为另一种可能的情况,当摄像模组的抖动程度小于抖动阈值时,确定的待采集图像中的感光度与感光度上限进行比较,当待采集图像中存在第一图像对应的感光度大于感光度上限时,根据感光度上限,减小第一图像的感光度。此时,感光度上限为第二感光值。
步骤904,根据第一图像减小前的感光度与减小后的感光度之比,增大第一图像的曝光时长。
具体地,由于曝光量为感光度与曝光时长的乘积,因此,在第一图像的曝光量确定时,可以根据第一图像减小前的感光度与减小后的感光度之比,增大第一图像的曝光时长,以维持拍摄图像的亮度。
由此,通过对该帧待采集图像的曝光时长进行更新,在保证曝光量的同时,提高了图像亮度,避免了曝光时间过长引起的过曝导致图像失真。
本公开实施例中,根据摄像模组的抖动程度,确定感光度上限,将各帧待采集图像的感光度与设定的感光度上限比较,若待采集图像中存在感光度大于感光度上限的第一图像,根据感光度上限,减小第一图像的感光度,根据第一图像减小前的感光度与减小后的感光度之比,增大第一图像的曝光时长。由此,将待采集图像中感光度大于感光度上限的图像的感光度,减小为感光度上限,从而避免了由于感光度较大,导致拍摄的图像中引入较多的噪点,从而使得最终拍摄的图像出现模糊的现象。
在图8所述实施例的基础上,在另一种可能的实现场景下,在执行步骤703中根据拍摄场景的亮度信息和曝光时长,确定多帧待采集图像的感光度后,将各帧待采集图像的感光度与感光度下限进行比较,以根据感光度下限对待采集图像中存在感光度小于感光度下限的第二图像的感光度进行调整。下面结合图11对上述过程进行详细介绍,图11为本公开实施例提供的第十一种夜景拍摄方法的流程示意图,如图11所示,步骤703之后还包括以下步骤:
步骤1001,将各帧待采集图像的感光度与设定的感光度下限比较。
其中,感光度下限,是根据摄像模组中传感器对光线的敏感程度确定的,例如,可以为80。
本公开实施例中,各帧待采集图像的感光度,是根据摄像模组的抖动程度确定的曝光时长确定的,具体的实现过程参见上述实施例中步骤703的实现过程,在此不再赘述。
在根据拍摄场景的亮度信息和曝光时长,确定多帧待采集图像的感光度后,将各帧待采集图像的感光度与设定的感光度下限比较,以根据感光度下限对小于感光度下限的感光度进行调整。
步骤1002,若待采集图像中存在感光度小于感光度下限的第二图像,根据感光度下限,增大第二图像的感光度。
本公开实施例中,若待采集图像存在感光度小于感光度下限的第二图像,则可能夜景拍摄的图像出现模糊的现象。因此,当某一帧待采集图像对应的感光度小于感光度下限时,将该帧待采集图像对应的感光度增大为感光度下限。
在夜景场景下采集图像时,在曝光量不变的情况下,感光度较低,需要增加曝光时长,导致整体的拍摄时长延长,加剧摄像模组的抖动程度,从而使得最终拍摄到的图像中可能出现由于抖动导致的鬼影和图像明显模糊。因此,当待采集图像中存在感光度小于感光度下限的第二图像,将第二图像对应的感光度增大为感光度下限。
步骤1003,确定第二图像增大后的感光度与增大前的感光度之间的比值。
举例来说,预设的感光度下限为80,第二图像增大前的感光度为20,第二图像增大后的感光度为80,则可以确定第二图像增大后的感光度与增大前的感光度之间的比值为8/2。
步骤1004,对感光度大于或等于感光度下限的其余各帧待采集图像,根据比值,更新其余各帧待 采集图像的感光度或曝光时长。
具体地,对于感光度大于或等于感光度下限的其余各帧待采集图像,在确定小于感光度下限的待采集图像更新后的感光度与更新前的感光度之间的比值后,将该比值与其余各帧待采集图像更新前的感光度或曝光时长乘积,作为其余各帧待采集图像更新后的感光度或曝光时长。
对曝光时长的更新方式与感光度的更新方式类似,仅需要将感光度替换为曝光时长即可,但需要注意的是,仅可根据前述小于感光度下限的待采集图像更新后的感光度与更新前的感光度之间的比值,更新曝光时长和感光度中的一个,若需要对曝光时长和感光度同时更新,则需要依权重对该比值进行分配后,进行更新。例如:对曝光时长和感光度各占一半权重,若前述小于时长下限的待采集图像更新后的曝光时长与更新前的曝光时长之间的比值为R,将曝光时长扩大为原来的R/2倍,将感光度扩大为原来的R/2倍。
本公开实施例中,将各帧待采集图像的感光度与设定的感光度下限比较,若待采集图像中存在感光度小于感光度下限的第二图像,根据感光度下限,增大第二图像的感光度,确定第二图像增大后的感光度与增大前的感光度之间的比值,对感光度大于或等于感光度下限的其余各帧待采集图像,根据比值,更新其余各帧待采集图像的感光度或曝光时长。由此,确定了各帧待采集图像的感光度,进而根据感光度下限更新各帧待采集图像的感光度和曝光时长,最终根据更新后的各帧待采集图像的曝光时长和感光度,进行曝光控制,进而成像,不仅提升了夜景拍摄模式下拍摄图像的动态范围和整体亮度,而且有效抑制了拍摄图像中的噪声,提高了夜景拍摄图像的质量,改善了用户体验。
作为本公开实施例的又一种可能的实现方式,在夜景拍摄时,还可以根据摄像模组的抖动程度,调整在拍摄场景的亮度信息下多帧待采集图像的曝光时长和相应待采集图像所需的感光度,根据各帧待采集图像的曝光时长和感光度采集图像。下面结合图12对上述过程进行详细介绍,如图12所示,该方法应用于摄像模组,具体包括以下步骤:
步骤1101,获取摄像模组的抖动程度。
本公开实施例中,步骤1101的实现过程,可以参见前述实施例中步骤101的实现过程,在此不再赘述。
步骤1102,根据抖动程度,调整在拍摄场景的亮度信息下多帧待采集图像的曝光时长和相应待采集图像所需的感光度。
其中,拍摄场景的亮度信息,可以利用摄像模组中的测光模块测光得到,也可以是拍摄场景的光照度,也可以是通过预览图像中的亮度信息获取到的,在此不做限定。
具体地,根据抖动程度,可以对多帧待采集图像先后调整在拍摄场景的亮度信息下的曝光时长和感光度,还可以同步调整曝光时长和感光度。
作为第一种可能的实现方式,可以同步调整曝光时长和感光度。首先根据所述拍摄场景的亮度信息和各帧待采集图像设定的曝光补偿等级,查询曝光表,得到相应待采集图像的曝光时长和感光度。进一步的,根据所述抖动程度,调整各帧待采集图像的查询到的曝光时长,以使相应待采集图像的感光度低于所述抖动程度对应的感光度阈值。其中,曝光表中记录了不同拍摄场景的亮度信息所对应的曝光参数。曝光参数包括光圈参数、曝光补偿等级、曝光时长和感光度等等。在确定摄像模组的抖动程度后,可以将摄像模组的抖动程度与预设的抖动阈值进行比较,以根据抖动程度确定的感光度阈值。其中,抖动阈值,为用于衡量抖动程度数值。
需要说明的是,根据摄像模组的抖动程度,调整曝光补偿模式的具体实现过程,参见前述实施例,在此不再赘述。
本实施例中,通过查询曝光表,得到各帧待采集图像的曝光时长和感光度后,根据抖动程度,调整各帧待采集图像的查询到的曝光时长,以使相应待采集图像的感光度低于抖动程度对应的感光度阈值。由此,避免了在采集图像时,由于感光度较大导致拍摄的图像噪点较多,从而导致最终拍摄的图像出现模糊的现象。
作为第二种可能的实现方式,可以先确定曝光时长,后确定感光度。首先,获取摄像模组的抖动程度,根据所述抖动程度,调整曝光时长。进而,根据拍摄场景的亮度信息和所述曝光时长,确定多帧待采集图像的感光度。具体实现方式可参见图8对应的实施例,本实施例对此不再赘述。
作为第三种可能的实现方式,可以先确定感光度,后确定曝光时长。首先,获取所述摄像模组的抖 动程度。进而,根据所述抖动程度,调整基准感光度,根据拍摄场景的亮度信息和所述基准感光度,确定多帧待采集图像的曝光时长。具体实现方式可参见图1对应的实施例,本实施例对此不再赘述。
步骤1103,根据各帧待采集图像的曝光时长和感光度采集图像。
步骤1104,将采集的多帧图像合成,以生成目标图像。
本公开实施例中,步骤1103和步骤1104的实现过程,可以分别参见前述实施例中步骤101和步骤105的实现过程,在此不再赘述。
本公开实施例中,通过获取摄像模组的抖动程度,根据抖动程度,调整在拍摄场景的亮度信息下多帧待采集图像的曝光时长和相应待采集图像所需的感光度,根据各帧待采集图像的曝光时长和感光度采集图像,将采集的多帧图像合成,以生成目标图像。由此,根据多帧待采集图像的曝光时长和感光度进行图像采集,以合成生成目标图像,不仅提升了夜景拍摄图像的动态范围和整体亮度,有效抑制了图像中的噪声,而且抑制了手持抖动导致的鬼影,提高了夜景拍摄图像的质量,改善了用户体验。
在图12所述实施例的基础上,在一种可能的场景下,在执行步骤1102中根据抖动程度,调整在拍摄场景的亮度信息下多帧待采集图像的曝光时长和相应待采集图像所需的感光度之后,可以将确定的曝光时长与根据摄像模组的抖动程度确定的时长上限进行比较,以减小曝光时长大于时长上限的待采集图像的曝光时长,避免了曝光时长过长时引起的过曝导致图像失真,抖动导致画面模糊,以及拍摄时长过长的情况。下面结合图13对上述过程进行详细介绍,如图13所示,步骤1102之后还包括以下步骤:
步骤1201,根据抖动程度,确定时长上限。
作为一种可能的情况,为了确定抖动程度,可以根据成像设备中设置的位移传感器,采集位移信息,进而,根据采集到的成像设备的位移信息,确定摄像模组的抖动程度。进一步地,根据确定的摄像模组的抖动程度与预设的抖动阈值进行比较,以确定曝光时长上限。
作为一可能的情况,当摄像模组的抖动程度大于或等于抖动阈值时,确定当前拍摄场景中各帧待采集图像的曝光时长上限为第一时长。其中,抖动阈值,为成像设备中预先设定的用于确定预设感光度取值的抖动值。
可以理解为,在摄像模组的抖动程度较大时,可以通过设置较短的曝光时长,可能导致整体的拍摄时长延长,加剧成像设备的抖动程度,从而使得最终拍摄到的图像中可能出现由于抖动导致的鬼影和图像明显模糊的情况。
作为另一可能的情况,当成像设备的抖动程度小于抖动阈值时,确定当前拍摄场景中各帧待采集图像的曝光时长上限为第二时长。
可以理解为,在摄像模组的抖动程度较小时,可以通过设置较长的曝光时长,以拍摄得到较高质量的图像。
其中,第一时长小于第二时长,并且,第一时长取值范围为150ms至300ms;第二时长取值范围为4.5s至5.5s。
步骤1202,将各帧待采集图像的曝光时长与设定的时长上限比较。
本公开实施例中,将各帧待采集图像的曝光时长,可以根据拍摄场景的亮度信息查询曝光表确定,具体实现过程参见上述实施例中步骤1102的实现过程,在此不再赘述。
在根据拍摄场景的亮度信息和各帧待采集图像设定的曝光补偿等级,查询曝光表,得到相应待采集图像的曝光时长后,将各帧待采集图像的曝光时长与设定的时长上限比较,以避免了曝光时长过长时引起的过曝导致图像失真的情况。
步骤1203,若待采集图像中存在曝光时长大于时长上限的第一图像,根据时长上限,减小第一图像的曝光时长。
步骤1204,根据第一图像减小前的曝光时长与减小后的曝光时长之比,增大第一图像的感光度。
本公开实施例中,步骤1203和步骤1204的具体实现过程,可以参见前述实施例中步骤503和步骤504的实现过程,在此不再赘述。
本公开实施例中,通过根据摄像模组的抖动程度,确定时长上限,将各帧待采集图像的曝光时长与设定的时长上限比较,若待采集图像中存在曝光时长大于时长上限的第一图像,根据时长上限,减小第一图像的曝光时长,根据第一图像减小前的曝光时长与减小后的曝光时长之比,增大第一图像的感光度。由此,将待采集图像的曝光时长大于时长上限的图像的曝光时长,减小为时长上限,从而避免了由于曝 光时长过长导致整体的拍摄时长延长,加剧摄像模组的抖动程度,从而使得最终拍摄到的图像中可能出现由于抖动导致的鬼影和图像明显模糊。
在图12所述实施例的基础上,在一种可能的场景下,在执行步骤1102中根据抖动程度,调整在拍摄场景的亮度信息下多帧待采集图像的曝光时长和相应待采集图像所需的感光度之后,将确定的曝光时长与根据摄像模组的抖动程度确定的时长下限进行比较,以根据曝光时长下限对小于时长下限的曝光时长进行调整。下面结合图14对上述过程进行详细介绍,如图14所示,步骤1102之后还包括以下步骤:
步骤1301,将各帧待采集图像的曝光时长与设定的时长下限比较。
本公开实施例中,将各帧待采集图像的曝光时长,可以根据拍摄场景的亮度信息查询曝光表确定,具体实现过程参见上述实施例中步骤1102的实现过程,在此不再赘述。
在根据基准感光度确定各帧待采集图像在拍摄场景的光照度下所需的曝光时长后,将各帧待采集图像的曝光时长与设定的时长下限比较,以根据时长下限对小于时长下限的曝光时长进行调整。其中,时长下限大于或等于10ms。
需要说明的是,曝光时长下限也是根据摄像模组的抖动程度确定的,具体的实现过程参见上述实施例中步骤1201的实现过程,在此不再赘述。
步骤1302,若待采集图像中存在曝光时长小于时长下限的第二图像,根据时长下限,增大第二图像的曝光时长。
本公开实施例中,若待采集图像对应的曝光时长小于时长下限的图像,则可能导致图像中的噪声过大难以消除。因此,当某一帧待采集图像对应的曝光时长小于时长下限时,将该帧待采集图像对应的曝光时长增大为时长下限。
步骤1303,确定第二图像增大后的曝光时长与增大前的曝光时长之间的比值。
举例来说,预设的时长下限等于10ms,第二图像增大前的曝光时长为8ms,将第二图像的曝光时长增大为预设的时长下限10ms,则可以确定第二图像增大后的曝光时长与增大前的曝光时长之间的比值为10/8。
步骤1304,对曝光时长大于或等于时长下限的其余各帧待采集图像,根据比值,更新其余各帧待采集图像的感光度或曝光时长。
具体地,对于曝光时长大于或等于时长下限的其余各帧待采集图像,在确定小于时长下限的待采集图像更新后的曝光时长与更新前的曝光时长之间的比值后,将该比值与其余各帧待采集图像更新前的感光度或曝光时长乘积,作为其余各帧待采集图像更新后的感光度或曝光时长。
需要说明的是,对感光度的更新方式与曝光时长的更新方式类似,仅需要将曝光时长替换为感光度即可,但需要注意的是,仅可根据前述小于时长下限的待采集图像更新后的曝光时长与更新前的曝光时长之间的比值,更新曝光时长和感光度中的一个,若需要对曝光时长和感光度同时更新,则需要依权重对该比值进行分配后,进行更新。例如:对曝光时长和感光度各占一半权重,若前述小于时长下限的待采集图像更新后的曝光时长与更新前的曝光时长之间的比值为R,将曝光时长扩大为原来的R/2倍,将感光度扩大为原来的R/2倍。
本公开实施例中,根据抖动程度,调整各帧待采集图像的查询到的曝光时长,以使相应待采集图像的感光度低于抖动程度对应的感光度阈值后,将各帧待采集图像的曝光时长与设定的时长下限比较,若待采集图像中存在曝光时长小于时长下限的第二图像,根据时长下限,增大第二图像的曝光时长,确定第二图像增大后的曝光时长与增大前的曝光时长之间的比值,对曝光时长大于或等于时长下限的其余各帧待采集图像,根据比值,更新其余各帧待采集图像的感光度或曝光时长。由此,确定了各帧待采集图像的曝光时长,进而根据曝光时长下限更新各帧待采集图像的感光度和曝光时长,最终根据更新后的各帧待采集图像的曝光时长和感光度,进行曝光控制,进而成像,不仅提升了夜景拍摄模式下拍摄图像的动态范围和整体亮度,而且有效抑制了拍摄图像中的噪声,提高了夜景拍摄图像的质量,改善了用户体验。
为了实现上述实施例,本公开还提出一种夜景拍摄装置。
图15为本公开实施例提供的一种夜景拍摄装置的结构示意图。
如图15所示,该夜景拍摄装置100,应用于摄像模组,包括:获取模块110、调整模块120、确定 模块130、采集模块140以及生成模块150。
获取模块110,用于获取摄像模组的抖动程度。
调整模块120,用于根据抖动程度,调整基准感光度。
确定模块130,用于根据拍摄场景的亮度信息和所述基准感光度,确定多帧待采集图像的曝光时长。
采集模块140,用于根据基准感光度和多帧待采集图像的曝光时长采集图像。
生成模块150,用于将采集的多帧图像合成,以生成目标图像。
作为一种可能的实现方式,确定模块130,包括:
第一确定单元,用于根据拍摄场景的亮度信息,确定基准曝光量。
第二确定单元,用于根据基准曝光量和基准感光度,确定基准曝光时长。
曝光补偿单元,用于根据各帧待采集图像设定的曝光补偿等级,对基准曝光时长进行补偿以得到各帧待采集图像的曝光时长。
作为另一种可能的实现方式,确定模块130,还包括:
第三确定单元,用于根据抖动程度,调整曝光补偿模式;
其中,曝光补偿模式,用于指示待采集图像的帧数和各帧待采集图像设定的曝光补偿等级。
作为另一种可能的实现方式,第三确定单元,用于:
根据所述抖动程度,调整待采集图像的帧数;检测所述摄像模组已采集的图像中是否包含人脸;若包含人脸,确定所述曝光补偿模式为符合调整后帧数的第一模式;若不包含人脸,确定所述曝光补偿模式为符合调整后帧数的第二模式;其中,所述第二模式的曝光补偿等级取值范围大于所述第一模式的曝光补偿等级取值范围。
作为另一种可能的实现方式,所述待采集图像的帧数与所述抖动程度具有反向关系。
作为另一种可能的实现方式,调整模块120,包括:
第一调整单元,用于若抖动程度大于或等于抖动阈值,确定基准感光度为第一感光值。
第二调整单元,用于若抖动程度小于抖动阈值,确定基准感光度为第二感光值;其中,第一感光值大于第二感光值。
作为另一种可能的实现方式,第一感光值为第二感光值的预设倍数,预设倍数取值大于等于2;第二感光值为摄像模组的最小感光度。
作为另一种可能的实现方式,夜景拍摄装置100,还包括:
第一比较模块,用于将各帧待采集图像的曝光时长与设定的时长上限比较。
曝光时长减小模块,用于若待采集图像中存在曝光时长大于时长上限的第一图像,将第一图像的曝光时长减小至时长上限。
作为另一种可能的实现方式,夜景拍摄装置100,还包括:
时长上限确定模块,用于根据摄像模组的抖动程度,确定所述时长上限。
作为另一种可能的实现方式,时长上限确定模块,包括:
第五确定单元,用于若抖动程度大于或等于抖动阈值,确定时长上限为第一时长。
第六确定单元,用于若抖动程度小于抖动阈值,确定时长上限为第二时长;其中,第一时长小于第二时长。
作为另一种可能的实现方式,第一时长取值范围为150ms至300ms;所述第二时长取值范围为4.5s至5.5s。
作为另一种可能的实现方式,夜景拍摄装置100,还包括:
感光度增大模块,用于根据第一图像减小前的曝光时长与减小后的曝光时长之比,增大第一图像的感光度。
作为另一种可能的实现方式,夜景拍摄装置100,还包括:
第二比较模块,用于将各帧待采集图像的曝光时长与设定的时长下限比较。
曝光时长增大模块,用于若待采集图像中存在曝光时长小于时长下限的第二图像,将第二图像的曝光时长增大至时长下限。
作为另一种可能的实现方式,夜景拍摄装置100,还包括:
比值确定模块,用于确定第二图像增大后的曝光时长与增大前的曝光时长之间的比值;
更新模块,用于对曝光时长大于或等于时长下限的其余各帧待采集图像,根据比值,更新其余各帧 待采集图像的感光度或曝光时长。
作为另一种可能的实现方式,更新模块,用于:
对曝光时长大于或等于所述时长下限的其余各帧待采集图像,将所述比值与所述其余各帧待采集图像更新前的感光度乘积,作为所述其余各帧待采集图像更新后的感光度;
或者,对曝光时长大于或等于所述时长下限的其余各帧待采集图像,将所述比值与所述其余各帧待采集图像更新前的曝光时长乘积,作为所述其余各帧待采集图像更新后的曝光时长。
作为另一种可能的实现方式,更新模块,还可以用于:若其余各帧待采集图像中存在曝光时长大于时长上限的第一图像,根据时长上限,减小第一图像的曝光时长;根据第一图像减小前后的曝光时长之比,增大第一图像的感光度。
作为另一种可能的实现方式,时长下限大于或等于10ms。
本公开实施例的夜景拍摄装置,通过获取摄像模组的抖动程度,根据抖动程度,调整基准感光度,根据拍摄场景的亮度信息和基准感光度,确定多帧待采集图像的曝光时长,根据基准感光度和多帧待采集图像的曝光时长采集图像,将采集的多帧图像合成,以生成目标图像。由此,根据各帧待采集图像的基准感光度和曝光时长进行图像采集,以合成生成目标图像,不仅提升了夜景拍摄图像的动态范围和整体亮度,有效抑制了图像中的噪声,而且抑制了手持抖动导致的鬼影,提高了夜景拍摄图像的质量,改善了用户体验。
为了实现上述实施例,本公开还提出另一种夜景拍摄装置。
图16为本公开实施例提供的另一种夜景拍摄装置的结构示意图。
如图16所示,该夜景拍摄装置200,应用于摄像模组,包括:获取模块210、调整模块220、确定模块230、采集模块240以及生成模块250。
获取模块210,用于获取摄像模组的抖动程度。
调整模块220,用于根据抖动程度,调整曝光时长。
确定模块230,用于根据拍摄场景的亮度信息和曝光时长,确定多帧待采集图像的感光度。
采集模块240,用于根据多帧待采集图像的感光度和曝光时长采集图像。
生成模块250,用于将采集的多帧图像合成,以生成目标图像。
作为一种可能的实现方式,调整模块220,包括:
第一调整单元,用于根据抖动程度,确定各曝光补偿等级对应的曝光时长。
第二调整单元,用于根据各帧待采集图像设定的曝光补偿等级和各曝光补偿等级对应的曝光时长,确定各帧待采集图像的曝光时长。
作为另一种可能的实现方式,调整模块220,还可以包括:
第三调整单元,用于根据抖动程度,调整曝光补偿模式;
其中,曝光补偿模式,用于指示待采集图像的帧数和各帧待采集图像设定的曝光补偿等级。
作为另一种可能的实现方式,第三调整单元,具体用于:
根据所述抖动程度,调整待采集图像的帧数;
检测所述摄像模组已采集的图像中是否包含人脸;
若包含人脸,确定所述曝光补偿模式为符合调整后帧数的第一模式;
若不包含人脸,确定所述曝光补偿模式为符合调整后帧数的第二模式;
其中,所述第二模式的曝光补偿等级取值范围大于所述第一模式的曝光补偿等级取值范围。
作为另一种可能的实现方式,待采集图像的帧数与抖动程度具有反向关系。
作为另一种可能的实现方式,夜景拍摄装置200,还包括:
比较模块,用于将各帧待采集图像的感光度与设定的感光度上限比较。
感光度减小模块,用于若待采集图像中存在感光度大于感光度上限的第一图像,根据感光度上限,减小第一图像的感光度。
作为另一种可能的实现方式,夜景拍摄装置200,还包括:
感光度上限确定模块,用于根据摄像模组的抖动程度,确定感光度上限。
作为另一种可能的实现方式,感光度上限确定模块,具体用于:
若抖动程度大于或等于抖动阈值,确定感光度上限为第一感光值;
若抖动程度小于抖动阈值,确定感光度上限为第二感光值;
其中,第一感光值大于第二感光值。
作为另一种可能的实现方式,第一感光值为第二感光值的预设倍数,预设倍数取值大于等于2;第二感光值为摄像模组的最小感光度。
作为另一种可能的实现方式,夜景拍摄装置200,还包括:
曝光时长增大模块,用于根据第一图像减小前的感光度与减小后的感光度之比,增大第一图像的曝光时长。
作为另一种可能的实现方式,夜景拍摄装置200,还包括:
比较模块,用于将各帧待采集图像的感光度与设定的感光度下限比较。
感光度增大模块,用于若待采集图像中存在感光度小于感光度下限的第二图像,根据感光度下限,增大第二图像的感光度。
作为另一种可能的实现方式,夜景拍摄装置200,还包括:
比值确定模块,用于确定第二图像增大后的感光度与增大前的感光度之间的比值。
更新模块,用于对感光度大于或等于感光度下限的其余各帧待采集图像,根据比值,更新其余各帧待采集图像的感光度或曝光时长。
本公开实施例的夜景拍摄装置,通过获取摄像模组的抖动程度,根据抖动程度,调整曝光时长,根据拍摄场景的亮度信息和曝光时长,确定多帧待采集图像的感光度;根据多帧待采集图像的感光度和曝光时长采集图像,将采集的多帧图像合成,以生成目标图像。由此,在确定曝光时长后,根据拍摄场景的亮度信息和曝光时长确定多帧待采集图像的感光度,从而根据多帧待采集图像的曝光时长和感光度进行图像采集,以合成生成目标图像,不仅提升了夜景拍摄图像的动态范围和整体亮度,有效抑制了图像中的噪声,而且抑制了手持抖动导致的鬼影,提高了夜景拍摄图像的质量,改善了用户体验。
为了实现上述实施例,本公开还提出又一种夜景拍摄装置。
图17为本公开实施例提供的又一种夜景拍摄装置的结构示意图。
如图17所示,该夜景拍摄装置300,应用于摄像模组,包括:获取模块310、调整模块320、采集模块330以及生成模块340。
获取模块310,用于获取摄像模组的抖动程度。
调整模块320,用于根据抖动程度,调整在拍摄场景的亮度下多帧待采集图像的曝光时长和相应待采集图像所需的感光度。
采集模块330,用于根据各帧待采集图像的曝光时长和感光度采集图像。
生成模块340,用于将采集的多帧图像合成,以生成目标图像。
作为一种可能的实现方式,调整模块320,可以包括:
查询单元,用于根据拍摄场景的亮度信息和各帧待采集图像设定的曝光补偿等级,查询曝光表,得到相应待采集图像的曝光时长和感光度。
第一调整单元,用于根据抖动程度,调整各帧待采集图像的查询到的曝光时长,以使相应待采集图像的感光度低于抖动程度对应的感光度阈值。
作为另一种可能的实现方式,调整模块320,还可以包括:
第二调整单元,用于根据抖动程度,调整曝光补偿模式;
其中,曝光补偿模式,用于指示待采集图像的帧数和各帧待采集图像设定的曝光补偿等级。
作为另一种可能的实现方式,第二调整单元,具体用于:
根据所述抖动程度,调整待采集图像的帧数;
检测所述摄像模组已采集的图像中是否包含人脸;
若包含人脸,确定所述曝光补偿模式为符合调整后帧数的第一模式;
若不包含人脸,确定所述曝光补偿模式为符合调整后帧数的第二模式;
其中,所述第二模式的曝光补偿等级取值范围大于所述第一模式的曝光补偿等级取值范围。
作为另一种可能的实现方式,该夜景拍摄装置300,还包括:
比较模块,用于将各帧待采集图像的曝光时长与设定的时长上限比较。
减小模块,用于若待采集图像中存在曝光时长大于时长上限的第一图像,根据时长上限,减小第一 图像的曝光时长。
作为另一种可能的实现方式,该夜景拍摄装置300,还包括:
时长上限确定模块,用于根据抖动程度,确定所述时长上限。
作为另一种可能的实现方式,时长上限确定模块,具体用于:
若抖动程度大于或等于抖动阈值,确定时长上限为第一时长;
若抖动程度小于抖动阈值,确定时长上限为第二时长;
其中,第一时长小于第二时长。
作为另一种可能的实现方式,第一时长取值范围为150ms至300ms;第二时长取值范围为4.5s至5.5s。
作为另一种可能的实现方式,该夜景拍摄装置300,还包括:
感光度增大模块,用于根据第一图像减小前的曝光时长与减小后的曝光时长之比,增大第一图像的感光度。
作为另一种可能的实现方式,该夜景拍摄装置300,还包括:
比较模块,用于将各帧待采集图像的曝光时长与设定的时长下限比较。
增大模块,用于若待采集图像中存在曝光时长小于时长下限的第二图像,根据时长下限,增大第二图像的曝光时长。
作为另一种可能的实现方式,该夜景拍摄装置300,还包括:
比值确定模块,用于确定所述第二图像增大后的曝光时长与增大前的曝光时长之间的比值;
更新模块,用于对曝光时长大于或等于时长下限的其余各帧待采集图像,根据比值,更新其余各帧待采集图像的感光度或曝光时长。
本公开实施例的夜景拍摄装置,通过获取摄像模组的抖动程度,根据抖动程度,调整在拍摄场景的亮度下多帧待采集图像的曝光时长和相应待采集图像所需的感光度,根据各帧待采集图像的曝光时长和感光度采集图像,将采集的多帧图像合成,以生成目标图像。由此,根据多帧待采集图像的曝光时长和感光度进行图像采集,以合成生成目标图像,不仅提升了夜景拍摄图像的动态范围和整体亮度,有效抑制了图像中的噪声,而且抑制了手持抖动导致的鬼影,提高了夜景拍摄图像的质量,改善了用户体验。
图18为本公开实施例所提供的一种摄像模组夜景摄像处理方法的流程示意图。
如图18所示,该摄像模组夜景摄像处理方法,包括以下步骤:
步骤1801,在夜景拍摄模式下,检测摄像模组当前的抖动程度。
在本公开实施例中,可以通过获取电子设备当前的陀螺仪(Gyro-sensor)信息,确定手机当前的抖动程度,即摄像模组当前的抖动程度。
陀螺仪又叫角速度传感器,可以测量物理量偏转、倾斜时的转动角速度。在电子设备中,陀螺仪可以很好的测量转动、偏转的动作,从而可以精确分析判断出使用者的实际动作。电子设备的陀螺仪信息(gyro信息)可以包括手机在三维空间中三个维度方向上的运动信息,三维空间的三个维度可以分别表示为X轴、Y轴、Z轴三个方向,其中,X轴、Y轴、Z轴为两两垂直关系。
需要说明的是,在本公开实施例一种可能的实现形式中,可以根据电子设备当前的gyro信息,确定摄像模组当前的抖动程度。电子设备在三个方向上的gyro运动的绝对值越大,则摄像模组的抖动程度越大。具体的,可以预设在三个方向上gyro运动的绝对值阈值,并根据获取到的当前在三个方向上的gyro运动的绝对值之和,与预设的阈值的关系,确定摄像模组的当前的抖动程度。
举例来说,假设预设的阈值为第一阈值A、第二阈值B、第三阈值C,且A<B<C,当前获取到的在三个方向上gyro运动的绝对值之和为S。若S<A,则确定摄像模组当前的抖动程度为“无抖动”;若A<S<B,则可以确定摄像模组当前的抖动程度为“轻微抖动”;若B<S<C,则可以确定摄像模组当前的抖动程度为“小抖动”;若S>C,则可以确定摄像模组当前的抖动程度为“大抖动”。
需要说明的是,上述举例仅为示例性的,不能视为对本公开的限制。实际使用时,可以根据实际需要预设阈值的数量和各阈值的具体数值,以及根据gyro信息与各阈值的关系,预设gyro信息与摄像模组抖动程度的映射关系。
步骤1802,根据所述摄像模组当前的抖动程度,确定待采集的图像数量及每帧待采集图像对应的基准感光度。
其中,感光度,又称为ISO值,是指衡量底片对于光的灵敏程度的指标。对于感光度较低的底片,需要曝光更长的时间以达到跟感光度较高的底片相同的成像。数码相机的感光度是一种类似于胶卷感光度的一种指标,数码相机的ISO可以通过调整感光器件的灵敏度或者合并感光点来调整,也就是说,可以通过提升感光器件的光线敏感度或者合并几个相邻的感光点来达到提升ISO的目的。需要说明的是,无论是数码或是底片摄影,为了减少曝光时间,使用相对较高的感光度通常会引入较多的噪声,从而导致图像质量降低。
在本公开实施例中,基准感光度,是指根据摄像模组当前的抖动程度,调整的与当前的抖动程度相适应的最低感光度。每帧待采集图像对应的基准感光度可以相同,也可以不同,具体的数值与采集该帧图像的摄像模组当前的抖动程度有关。
需要说明的是,在本公开实施例中,可以通过同时采集多帧感光度较低的图像,并将采集的多帧图像合成以生成目标图像的方式,不仅可以提升夜景拍摄图像的动态范围和整体亮度,并且通过控制感光度的值,有效抑制图像中的噪声,提高夜景拍摄图像的质量。
可以理解的是,采集的图像的数量以及采集图像的感光度会影响到整体的拍摄时长,拍摄时长过长,可能会导致手持拍摄时摄像模组的抖动程度加剧,从而影响图像质量。因此,可以根据摄像模组当前的抖动程度,确定待采集的图像数量以及每帧待采集图像对应的基准感光度,以使得拍摄时长控制在合适的范围内。
具体的,若摄像模组当前的抖动程度较小,则可以采集较多帧的图像,并且每帧待采集图像对应的基准感光度可以适当压缩为较小的值,以有效抑制每帧图像的噪声、提高拍摄图像的质量;若摄像模组当前的抖动程度较大,则可以采集较少帧的图像,并且每帧待采集图像对应的基准感光度可以适当提高为较大的值,以缩短拍摄时长。
举例来说,若确定摄像模组当前的抖动程度为“无抖动”,则可以确定当前可能为脚架拍摄模式,此时可以采集较多帧的图像,并将基准感光度确定为较小的值,以尽量获得更高质量的图像,比如确定待采集的图像数量为17帧,基准感光度为100;若确定摄像模组当前的抖动程度为“轻微抖动”,则可以确定当前可能为手持拍摄模式,此时可以采集较少帧的图像,并将基准感光度确定为较大的值,以降低拍摄时长,比如确定待采集的图像数量为7帧,基准感光度为200;若确定摄像模组当前的抖动程度为“小抖动”,则可以确定当前可能为手持拍摄模式,此时可以进一步减少待采集图像的数量,并进一步增大基准感光度,以降低拍摄时长,比如确定待采集的图像数量为5帧,基准感光度为220;若确定摄像模组当前的抖动程度为“大抖动”,则可以确定当前的抖动程度过大,此时可以进一步减少待采集图像的数量,或不采用采集多帧图像的方式拍摄,并进一步增大基准感光度,以降低拍摄时长,比如确定待采集的图像为3帧,基准感光度为250。
需要说明的是,上述举例仅为示例性的,不能视为对本公开的限制。实际使用时,当摄像模组的抖动程度变化时,既可以同时改变待采集的图像数量和基准感光度,也可以改变其中之一,以获得最优的方案。其中,摄像模组的抖动程度与待采集的图像数量及每帧待采集图像对应的基准感光度的映射关系,可以根据实际需要预设。
步骤1803,根据当前拍摄场景的光照度及所述每帧待采集图像对应的基准感光度,确定每帧待采集图像对应的曝光时长。
其中,曝光时长,是指光线通过镜头的时间。
在本公开实施例中,可以利用摄像模组中的测光模块,获取当前拍摄场景的光照度,并利用自动曝光控制(Auto Exposure Control,简称AEC)算法,确定当前光照度对应的曝光量,进而根据确定出的曝光量以及每帧待采集图像对应的基准感光度,确定每帧待采集图像对应的曝光时长。
需要说明的是,曝光量与光圈、曝光时长和感光度有关。其中,光圈也就是通光口径,决定单位时间内光线通过的数量。当每帧待采集图像对应的基准感光度相同,并且光圈大小相同时,当前拍摄场景的光照度对应的曝光量越大,每帧待采集图像对应的曝光时长越大。
进一步的,每帧待采集图像对应的曝光时长是不同的,以获得不同动态范围的图像,使得合成后的图像具有更高的动态范围,提高图像的整体亮度和质量。即在本公开实施例一种可能的实现形式中,上述步骤1803,可以包括:
根据所述当前拍摄场景的光照度,确定基准曝光量;
根据所述基准曝光量及所述每帧待采集图像对应的基准感光度,确定基准曝光时长;
根据所述基准曝光时长及预设的曝光补偿模式,确定所述每帧待采集图像对应的曝光时长。
其中,基准曝光量,是指根据当前拍摄场景的光照度,确定的当前拍摄场景的光照度对应的正常曝光量。光圈的大小确定时,即可根据基准感光度和基准曝光量,确定出基准曝光时长。
在本公开实施例中,可以通过预设曝光补偿模式,对每帧待采集图像分别采取不同的曝光补偿策略,使得待采集图像对应于不同的曝光量,以获得具有不同动态范围的图像。
需要说明的是,预设的曝光补偿模式是指为每帧待采集图像分别预设的曝光补偿等级(Exposure Value,简称EV)的组合。在曝光量最初的定义中,曝光量并不是指一个准确的数值,而是指“能够给出相同的曝光量的所有相机光圈与曝光时长的组合”。感光度、光圈和曝光时长确定了相机的曝光量,不同的参数组合可以产生相等的曝光量。曝光补偿等级是对曝光量进行调整的参数,使得某些图像欠曝光,某些图像过曝光,还可以使得某些图像恰当曝光。
为了说明EV值与感光度、光圈和曝光时长三者之间的关系,下面将结合具体数据进行说明。比如,同一拍摄场景下,在感光度相同的情况下,使用1/125秒曝光时长和f11的光圈组合,与使用1/250秒曝光时间与f8快门的组合,获得的曝光量是相同的,即EV值是相同的。在传统相机中,EV值为0时,是固定指感光度为100、光圈系数为f1、曝光时长为1秒时获得的曝光量;曝光量增加一档,即曝光时长增加一倍,或者感光度增加一倍,或者光圈增加一档,EV值增加1,也就是说,EV1对应的曝光量是EV0对应的曝光量的两倍。具体曝光时长、光圈、感光度分别单独变化时,与EV值的对应关系可参见表1。
需要说明的是,在数码相机中EV值为0时的曝光量,可以是在拍摄场景下对环境光进行测光得到的。
摄影技术进入到数码时代之后,相机内部的测光功能已经非常强大,EV则经常用来表示曝光刻度上的一个级差,许多相机都允许设置曝光补偿,并通常用EV来表示。在这种情况下,EV是指相机测光数据对应的曝光量与实际曝光量的差值,比如EV+1的曝光补偿是指相对于相机测光数据对应的曝光量增加一档曝光,即实际曝光量为相机测光数据对应的曝光量的两倍。
在本公开实施例中,预设曝光补偿模式时,可以将确定的基准曝光量对应的EV值预设为0,EV+1是指增加一档曝光,即曝光量为基准曝光量的2倍,EV+2是指增加两档曝光,即曝光量为基准曝光量的4倍,EV-1是指减少一档曝光,即曝光量为基准曝光量的0.5倍等等。
举例来说,若待采集的图像数量为7帧,则预设的曝光补偿模式对应的EV值范围可以是[+1、+1、+1、+1、0、-3、-6]。其中,曝光补偿模式为EV+1的帧,可以解决噪声问题,通过亮度比较高的帧进行时域降噪,在提升暗部细节的同时抑制噪声;曝光补偿模式为EV-6的帧,可以解决高光过曝的问题,保留高光区域的细节;曝光补偿模式为EV0和EV-3的帧,则可以用于保持高光到暗区之间的过渡,保持较好的明暗过渡的效果。
需要说明的是,预设的曝光补偿模式对应的各EV值既可以是根据实际需要具体设置的,也可以是根据设置的EV值范围,并依据各EV值之间的差值相等的原则求得的,本公开实施例对此不做限定。
在本公开实施例一种可能的实现形式中,光圈的大小可以是不变的,并且使用确定的基准感光度采集各待采集的图像,因此,在根据摄像模组当前的抖动程度,确定了当前待采集的图像数量之后,即可根据预设的与当前待采集的图像数量相符的曝光补偿模式,以及基准曝光时长,确定出每帧待采集图像对应的曝光时长。具体的,若待采集图像对应的曝光补偿模式为EV+1,则该待采集图像对应的曝光时长为基准时长的2倍;若待采集图像对应的曝光补偿模式为EV-1,则该待采集图像对应的曝光时长为基准时长的0.5倍,以此类推。
举例来说,假设根据摄像模组当前的抖动程度,确定待采集的图像数量为7帧,对应的预设的曝光补偿模式对应的EV范围可以是[+1、+1、+1、+1、0、-3、-6],根据基准曝光量和基准感光度,确定出基准曝光时长为100毫秒,则每帧待采集图像对应的曝光时长分别为200毫秒、200毫秒、200毫秒、200毫秒、100毫秒、12.5毫秒、6.25毫秒。
进一步的,预设的曝光补偿模式可以有多种,实际使用时,可以根据摄像模组的实时情况,确定与当前情况相符的曝光补偿模式。即在本公开实施例一种可能的实现形式中,根据基准曝光时长及预设的曝光补偿模式,确定每帧待采集图像对应的曝光时长之前,还包括:
根据所述摄像模组当前的抖动程度,确定所述预设的曝光补偿模式。
可以理解的是,摄像模组当前的抖动程度不同,确定出的待采集的图像数量也可以不同,而待采集 的图像数量不同时,需要采用不同的曝光补偿模式。因此,在本公开实施例一种可能的实现形式中,可以预设摄像模组的抖动程度与曝光补偿模式的映射关系,以根据摄像模组当前的抖动程度,确定出与当前待采集的图像数量相符的预设的曝光补偿模式。
比如,可以将摄像模组抖动程度为“无抖动”,对应的曝光补偿模式的EV值范围预设为-6~2,且相邻的EV值之间的差值为0.5;将摄像模组抖动程度为“轻微抖动”,对应的曝光补偿模式的EV值范围预设为-5~1,且相邻的EV值之间的差值为1,等等。
进一步的,人脸拍摄和纯景物拍摄可以采用不同的曝光补偿策略,以进一步提高拍摄图像的效果。即在本公开实施例一种可能的实现形式中,确定预设的曝光补偿模式,还可以包括:
检测所述摄像模组当前采集的图像中是否包含人脸;
若包括,则根据所述摄像模组当前的抖动程度,确定所述预设的曝光补偿模式为第一模式;
否则,根据所述摄像模组当前的抖动程度,确定所述预设的曝光补偿模式为第二模式,其中,第二模式对应的曝光补偿范围,大于所述第一模式对应的曝光补偿范围。
在本公开实施例中,被摄物体是否包含人脸可通过人脸识别技术来确定。人脸识别技术,是通过分析比较人脸视觉特征信息进行身份鉴别,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。目前,人脸识别技术已应用在众多领域当中,例如,数码相机人脸自动对焦和笑脸快门技术;企业、住宅安全和管理;门禁系统;摄像监视系统等。常用的人脸识别算法包括:基于人脸特征点的识别算法(Feature-based recognition algorithms)、基于整幅人脸图像的识别算法(Appearance-based recognition algorithms)、基于模板的识别算法(Template-based recognition algorithms)、利用神经网络进行识别的算法(Recognition algorithms using neural network)等等。
需要说明的是,当检测到摄像模组当前采集的图像中包含人脸时,摄像模组的测光模块会自动以人脸区域为主进行测光,并根据人脸区域的测光结果确定基准曝光量。然而,在夜景模式中,人脸区域的光照度通常较低,从而导致确定的基准曝光量,与未包含人脸时确定的基准曝光量相比较高,若在包含人脸时仍然采集过多的过曝帧,则容易导致人脸区域过曝,从而导致目标图像的效果较差。因此,对于相同的抖动程度,摄像模组当前采集的图像中包含人脸与未包含人脸时相比,其对应的曝光补偿模式需要具有较低的曝光补偿范围。
在本公开实施例一种可能的实现形式中,对于相同的抖动程度,可以根据摄像模组当前采集的图像中是否包含人脸,采用不同的曝光补偿策略。因此,对于相同的抖动程度,可以对应于多个曝光补偿模式。比如,摄像模组的抖动程度为“轻微抖动”,对应的预设的曝光补偿模式有第一模式和第二模式,其中,第一模式对应的各EV值为[0、0、0、0、-2、-4、-6],第二模式对应的各EV值为[+1、+1、+1、+1、0、-3、-6]。在确定了摄像模组当前的抖动程度,以及根据摄像模组当前采集的图像中是否包含人脸之后,即可确定出与当前的实际情况相符的预设的曝光补偿模式。
举例来说,假设摄像模组当前的抖动程度为“轻微抖动”,对应的预设的曝光补偿模式有第一模式和第二模式,其中,第一模式对应的各EV值为[0、0、0、0、-2、-4、-6],第二模式对应的各EV值为[+1、+1、+1、+1、0、-3、-6],可见,第一模式的曝光补偿范围小于第二模式的曝光补偿范围。若检测到摄像模组当前采集的图像中包含人脸,则确定预设的曝光补偿模式为第一模式,即各EV值为[0、0、0、0、-2、-4、-6];若检测到摄像模组当前采集的图像中未包含人脸,则确定预设的曝光补偿模式为第二模式,即各EV值为[+1、+1、+1、+1、0、-3、-6]。
进一步的,摄像模组中的组件的性能,也可能对曝光补偿模式产生影响。即在本公开实施例一种可能的实现形式中,在确定预设的曝光补偿模式之前,还可以确定摄像组件中各器件的属性信息;进而根据各器件的属性信息及当前的抖动程度,确定预设的曝光补偿模式。比如,针对不同的传感器、光圈、快门、镜头,以及不同的AEC算法等,曝光补偿模式对应的具体EV值可能存在差距。
步骤1804,根据所述每帧待采集图像对应的基准感光度及曝光时长,依次采集多帧图像。
步骤1805,将所述采集的多帧图像进行合成处理,以生成目标图像。
在本公开实施例中,确定了每帧待采集图像对应的基准感光度及曝光时长之后,即可根据基准感光度及曝光时长,依次采集多帧图像,并将采集到的多帧图像进行合成处理,以生成目标图像。
进一步的,在对采集到的多帧图像进行合成处理时,可以为每帧图像设置不同的权重,以获得效果最佳的目标图像。即在本公开实施例一种可能的实现形式中,上述步骤1805,可以包括:
根据预设的所述多帧图像中每帧待采集图像对应的权重,将所述多帧图像进行合成处理。
本公开实施例的摄像模组夜景摄像处理方法,可以在夜景拍摄模式下,检测摄像模组当前的抖动程度,并根据当前的抖动程度,确定待采集的图像数量及每帧待采集图像对应的基准感光度,之后根据当前拍摄场景的光照度及每帧待采集图像对应的基准感光度,确定每帧待采集图像对应的曝光时长,进而根据每帧待采集图像对应的基准感光度及曝光时长,依次采集多帧图像,并将采集的多帧图像进行合成处理,以生成目标图像。由此,通过根据摄像模组当前的抖动程度,确定待采集图像的数量及基准感光度,并且根据当前拍摄场景的光照度,确定了每帧待采集图像对应的曝光时长,从而通过拍摄多张不同曝光时长的图像进行合成,不仅提升了夜景拍摄模式下拍摄图像的动态范围和整体亮度,有效抑制了拍摄图像中的噪声,而且抑制了手持抖动导致的鬼影和模糊,提高了夜景拍摄图像的质量,改善了用户体验。
图19为本公开实施例提供的一种摄像模组夜景摄像处理装置的结构示意图。
如图19所示,该摄像模组夜景摄像处理装置400,包括:第一检测模块410、第一确定模块420、第二确定模块430、第一采集模块440以及合成模块450。
第一检测模块410,用于在夜景拍摄模式下,检测摄像模组当前的抖动程度;
第一确定模块420,用于根据所述摄像模组当前的抖动程度,确定待采集的图像数量及每帧待采集图像对应的基准感光度;
第二确定模块430,用于根据当前拍摄场景的光照度及所述每帧待采集图像对应的基准感光度,确定每帧待采集图像对应的曝光时长;
第一采集模块440,用于根据所述每帧待采集图像对应的基准感光度及曝光时长,依次采集多帧图像;
合成模块450,用于将所述采集的多帧图像进行合成处理,以生成目标图像。
在实际使用时,本公开实施例提供的摄像模组夜景摄像处理装置,可以被配置在任意电子设备中,以执行前述摄像模组夜景摄像处理方法。
在本公开一种可能的实现形式中,上述摄像模组夜景摄像处理装置400,还可以包括:
第二检测模块,用于检测所述每帧待采集图像对应的曝光时长是否在预设时长范围内;
第二更新模块,用于若至少一帧待采集图像的曝光时长未在所述预设时长范围内,则根据所述预设时长范围,更新所述至少一帧待采集图像的曝光时长,以使所述至少一帧待采集图像的曝光时长位于所述预设的时长范围内。
进一步的,在本公开另一种可能的实现形式中,上述摄像模组夜景摄像处理装置400,还包括:
第三确定模块,用于根据所述摄像组件中光学器件的设置方式,确定所述预设时长范围。
进一步的,在本公开再一种可能的实现形式中,上述摄像模组夜景摄像处理装置400,还包括:
曝光量调整模式确定模块,用于根据所述至少一帧待采集图像更新前的曝光时长及更新后的曝光时长的差值,确定所述每帧待采集图像对应的曝光量调整模式;
调整模块,用于根据所述曝光量调整模式,调整所述每帧待采集图像的感光度及曝光时长。
在本公开一种可能的实现形式中,上述第二确定模块430,用于:
根据所述当前拍摄场景的光照度,确定基准曝光量;
根据所述基准曝光量及所述每帧待采集图像对应的基准感光度,确定基准曝光时长;
根据所述基准曝光时长及预设的曝光补偿模式,确定所述每帧待采集图像对应的曝光时长。
进一步的,在本公开另一种可能的实现形式中,上述第二确定模块430,还可以用于:
根据所述摄像模组当前的抖动程度,确定所述预设的曝光补偿模式。
进一步的,在本公开再一种可能的实现形式中,上述第二确定模块430,还可以用于:
检测所述摄像模组当前采集的图像中是否包含人脸;
若包括,则根据所述摄像模组当前的抖动程度,确定所述预设的曝光补偿模式为第一模式;
否则,根据所述摄像模组当前的抖动程度,确定所述预设的曝光补偿模式为第二模式,其中,第二模式对应的曝光补偿范围,大于所述第一模式对应的曝光补偿范围。
进一步的,在本公开又一种可能的实现形式中,上述第二确定模块430,还可以用于:
确定所述摄像组件中各器件的属性信息;
根据所述各器件的属性信息及所述当前的抖动程度,确定所述预设的曝光补偿模式。
在本公开一种可能的实现形式中,上述合成模块450,用于:
根据预设的所述多帧图像中每帧待采集图像对应的权重,将所述多帧图像进行合成处理。
本公开实施例提供的摄像模组夜景摄像处理装置,可以在夜景拍摄模式下,检测摄像模组当前的抖动程度,并根据当前的抖动程度,确定待采集的图像数量及每帧待采集图像对应的基准感光度,之后根据当前拍摄场景的光照度及每帧待采集图像对应的基准感光度,确定每帧待采集图像对应的曝光时长,进而根据每帧待采集图像对应的基准感光度及曝光时长,依次采集多帧图像,并将采集的多帧图像进行合成处理,以生成目标图像。由此,通过根据摄像模组当前的抖动程度,确定待采集图像的数量及基准感光度,并且根据当前拍摄场景的光照度,确定了每帧待采集图像对应的曝光时长,从而通过拍摄多张不同曝光时长的图像进行合成,不仅提升了夜景拍摄模式下拍摄图像的动态范围和整体亮度,有效抑制了拍摄图像中的噪声,而且抑制了手持抖动导致的鬼影和模糊,提高了夜景拍摄图像的质量,改善了用户体验。
为了实现上述实施例,本公开还提出一种电子设备,参见图20,该电子设备500包括:摄像模组510、处理器520、存储器530及存储在存储器上并可在处理器上运行的计算机程序,所述处理器520与所述摄像模组510连接,所述处理器执行所述计算机程序时,实现上述实施例中所述的摄像模组夜景摄像处理方法。
作为一种示例,请参阅图21,在图20所述电子设备的基础上,图21中为本公开实施例提供的一种电子设备的原理示例图。电子设备600的存储器530包括非易失性存储器80、内存储器82和处理器520。存储器530中存储有计算机可读指令。计算机可读指令被存储器执行时,使得处理器520执行上述任一实施方式的摄像模组夜景处理方法。
如图21所示,该电子设备600包括通过系统总线81连接的处理器520、摄像模组510、非易失性存储器80、内存储器82、显示屏83和输入装置84。其中,电子设备600的非易失性存储器80存储有操作系统和计算机可读指令。该计算机可读指令可被处理器520执行,以实现本公开实施方式的曝光控制方法。该处理器520用于提供计算和控制能力,支撑整个电子设备600的运行。电子设备600的内存储器82为非易失性存储器80中的计算机可读指令的运行提供环境。电子设备600的显示屏83可以是液晶显示屏或者电子墨水显示屏等,输入装置84可以是显示屏83上覆盖的触摸层,也可以是电子设备600外壳上设置的按键、轨迹球或触控板,也可以是外接的键盘、触控板或鼠标等。该电子设备600可以是手机、平板电脑、笔记本电脑、个人数字助理或穿戴式设备(例如智能手环、智能手表、智能头盔、智能眼镜)等。本领域技术人员可以理解,图21中示出的结构,仅仅是与本公开方案相关的部分结构的示意图,并不构成对本公开方案所应用于其上的电子设备600的限定,具体的电子设备600可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
作为一种可能的实现方式,请参阅图22,图22为本公开实施例提供的一种图像处理电路的原理示意图,图20中的电子设备还可以包括图像处理电路90,图像处理电路90可利用硬件和/或软件组件实现,包括定义ISP(Image Signal Processing,图像信号处理)管线的各种处理单元。图21为一个实施例中图像处理电路90的示意图。如图21所示,为便于说明,仅示出与本公开实施例相关的图像处理技术的各个方面。
如图21所示,图像处理电路90包括ISP处理器91(ISP处理器91作为处理器320)和控制逻辑器92。摄像头93捕捉的图像数据首先由ISP处理器91处理,ISP处理器91对图像数据进行分析以捕捉可用于确定摄像头93的一个或多个控制参数的图像统计信息。摄像模组310可包括一个或多个透镜932和图像传感器934。图像传感器934可包括色彩滤镜阵列(如Bayer滤镜),图像传感器934可获取每个成像像素捕捉的光强度和波长信息,并提供可由ISP处理器91处理的一组原始图像数据。传感器94(如陀螺仪)可基于传感器94接口类型把采集的图像处理的参数(如防抖参数)提供给ISP处理器91。传感器94接口可以为SMIA(Standard Mobile Imaging Architecture,标准移动成像架构)接口、其它串行或并行照相机接口或上述接口的组合。
此外,图像传感器934也可将原始图像数据发送给传感器94,传感器94可基于传感器94接口类型把原始图像数据提供给ISP处理器91,或者传感器94将原始图像数据存储到图像存储器95中。
ISP处理器91按多种格式逐个像素地处理原始图像数据。例如,每个图像像素可具有8、10、12或14比特的位深度,ISP处理器91可对原始图像数据进行一个或多个图像处理操作、收集关于图像数据的统计信息。其中,图像处理操作可按相同或不同的位深度精度进行。
ISP处理器91还可从图像存储器95接收图像数据。例如,传感器94接口将原始图像数据发送给图像存储器95,图像存储器95中的原始图像数据再提供给ISP处理器91以供处理。图像存储器95可为存储器330、存储器330的一部分、存储设备、或电子设备内的独立的专用存储器,并可包括DMA(Direct Memory Access,直接直接存储器存取)特征。
当接收到来自图像传感器934接口或来自传感器94接口或来自图像存储器95的原始图像数据时,ISP处理器91可进行一个或多个图像处理操作,如时域滤波。处理后的图像数据可发送给图像存储器95,以便在被显示之前进行另外的处理。ISP处理器91从图像存储器95接收处理数据,并对处理数据进行原始域中以及RGB和YCbCr颜色空间中的图像数据处理。ISP处理器91处理后的图像数据可输出给显示器97(显示器97可包括显示屏83),以供用户观看和/或由图形引擎或GPU(Graphics Processing Unit,图形处理器)进一步处理。此外,ISP处理器91的输出还可发送给图像存储器95,且显示器97可从图像存储器95读取图像数据。在一个实施例中,图像存储器95可被配置为实现一个或多个帧缓冲器。此外,ISP处理器91的输出可发送给编码器/解码器96,以便编码/解码图像数据。编码的图像数据可被保存,并在显示于显示器97设备上之前解压缩。编码器/解码器96可由CPU或GPU或协处理器实现。
ISP处理器91确定的统计数据可发送给控制逻辑器92单元。例如,统计数据可包括自动曝光、自动白平衡、自动聚焦、闪烁检测、黑电平补偿、透镜932阴影校正等图像传感器934统计信息。控制逻辑器92可包括执行一个或多个例程(如固件)的处理元件和/或微控制器,一个或多个例程可根据接收的统计数据,确定摄像头93的控制参数及ISP处理器91的控制参数。例如,摄像头93的控制参数可包括传感器94控制参数(例如增益、曝光控制的积分时间、防抖参数等)、照相机闪光控制参数、透镜932控制参数(例如聚焦或变焦用焦距)、或这些参数的组合。ISP控制参数可包括用于自动白平衡和颜色调整(例如,在RGB处理期间)的增益水平和色彩校正矩阵,以及透镜932阴影校正参数。
以下为运用图22中图像处理技术实现摄像模组夜景摄像处理方法的步骤:ISP处理器根据摄像模组的抖动程度,调整基准感光度;根据拍摄场景的亮度信息和所述基准感光度,确定多帧待采集图像的曝光时长;;根据所述基准感光度和所述多帧待采集图像的曝光时长控制所述摄像模组采集图像;GPU将采集的多帧图像进行合成处理,以生成目标图像。
为了实现上述实施例,本公开实施例还提供了一种存储介质,当所述存储介质中的指令由处理器执行时,使得所述处理器执行所述存储介质时实现上述实施例中所述的夜景拍摄方法以及摄像模组夜景摄像处理方法。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一非易失性计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)等。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (53)

  1. 一种夜景拍摄方法,应用于摄像模组,其特征在于,所述方法包括:
    获取所述摄像模组的抖动程度;
    根据所述抖动程度,调整基准感光度;
    根据拍摄场景的亮度信息和所述基准感光度,确定多帧待采集图像的曝光时长;
    根据所述基准感光度和所述多帧待采集图像的曝光时长采集图像;
    将采集的多帧图像合成,以生成目标图像。
  2. 根据权利要求1所述的方法,其特征在于,所述根据拍摄场景的亮度信息和所述基准感光度,确定多帧待采集图像的曝光时长,包括:
    根据所述拍摄场景的亮度信息,确定基准曝光量;
    根据所述基准曝光量和所述基准感光度,确定基准曝光时长;
    根据各帧待采集图像设定的曝光补偿等级,对所述基准曝光时长进行补偿以得到各帧待采集图像的曝光时长。
  3. 根据权利要求2所述的方法,其特征在于,所述根据各帧待采集图像设定的曝光补偿等级,对所述基准曝光时长进行补偿以得到各帧待采集图像的曝光时长之前,还包括:
    根据所述抖动程度,调整曝光补偿模式;
    其中,所述曝光补偿模式,用于指示待采集图像的帧数和各帧待采集图像设定的曝光补偿等级。
  4. 根据权利要求3所述的方法,其特征在于,所述根据抖动程度,调整曝光补偿模式,包括:
    根据所述抖动程度,调整待采集图像的帧数;
    检测所述摄像模组已采集的图像中是否包含人脸;
    若包含人脸,确定所述曝光补偿模式为符合调整后帧数的第一模式;
    若不包含人脸,确定所述曝光补偿模式为符合调整后帧数的第二模式;
    其中,所述第二模式的曝光补偿等级取值范围大于所述第一模式的曝光补偿等级取值范围。
  5. 根据权利要求4所述的方法,其特征在于,所述待采集图像的帧数与所述抖动程度具有反向关系。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述根据抖动程度,调整基准感光度,包括:
    若所述抖动程度大于或等于抖动阈值,确定所述基准感光度为第一感光值;
    若所述抖动程度小于所述抖动阈值,确定所述基准感光度为第二感光值;
    其中,所述第一感光值大于所述第二感光值。
  7. 根据权利要求6所述的方法,其特征在于,
    所述第一感光值为所述第二感光值的预设倍数,所述预设倍数取值大于等于2;
    所述第二感光值为所述摄像模组的最小感光度。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述根据拍摄场景的亮度信息和所述基准感光度,确定多帧待采集图像的曝光时长之后,还包括:
    将各帧待采集图像的曝光时长与设定的时长上限比较;
    若待采集图像中存在曝光时长大于时长上限的第一图像,将所述第一图像的曝光时长减小至所述时长上限。
  9. 根据权利要求8所述的方法,其特征在于,所述将各帧待采集图像的曝光时长与设定的时长上限比较之前,还包括:
    根据所述抖动程度,确定所述时长上限。
  10. 根据权利要求9所述的方法,其特征在于,所述根据抖动程度,确定所述时长上限,包括:
    若所述抖动程度大于或等于抖动阈值,确定所述时长上限为第一时长;
    若所述抖动程度小于抖动阈值,确定所述时长上限为第二时长;
    其中,所述第一时长小于所述第二时长。
  11. 根据权利要求10所述的方法,其特征在于,
    所述第一时长取值范围为150ms至300ms;
    所述第二时长取值范围为4.5s至5.5s。
  12. 根据权利要求8-11任一项所述的方法,其特征在于,所述将所述第一图像的曝光时长减小至所述时长上限之后,还包括:
    根据所述第一图像减小前的曝光时长与减小后的曝光时长之比,增大所述第一图像的感光度。
  13. 根据权利要求1-7任一项所述的方法,其特征在于,所述根据拍摄场景的亮度信息和所述基准感光度,确定多帧待采集图像的曝光时长之后,还包括:
    将各帧待采集图像的曝光时长与设定的时长下限比较;
    若待采集图像中存在曝光时长小于所述时长下限的第二图像,将所述第二图像的曝光时长增大至所述时长下限。
  14. 根据权利要求13所述的方法,其特征在于,所述将所述第二图像的曝光时长增大至所述时长下限之后,还包括:
    确定所述第二图像增大后的曝光时长与增大前的曝光时长之间的比值;
    对曝光时长大于或等于所述时长下限的其余各帧待采集图像,根据所述比值,更新所述其余各帧待采集图像的感光度或曝光时长。
  15. 根据权利要求14所述的方法,其特征在于,所述对曝光时长大于或等于所述时长下限的其余各帧待采集图像,根据所述比值,更新所述其余各帧待采集图像的感光度或曝光时长,包括:
    对曝光时长大于或等于所述时长下限的其余各帧待采集图像,将所述比值与所述其余各帧待采集图像更新前的感光度乘积,作为所述其余各帧待采集图像更新后的感光度;
    或者,对曝光时长大于或等于所述时长下限的其余各帧待采集图像,将所述比值与所述其余各帧待采集图像更新前的曝光时长乘积,作为所述其余各帧待采集图像更新后的曝光时长。
  16. 根据权利要求14或15所述的方法,其特征在于,所述对曝光时长大于或等于所述时长下限的其余各帧待采集图像,根据所述比值,更新所述其余各帧待采集图像的感光度或曝光时长之前,还包括:
    若所述其余各帧待采集图像中存在曝光时长大于时长上限的第一图像,根据所述时长上限,减小所述第一图像的曝光时长;
    根据所述第一图像减小前后的曝光时长之比,增大所述第一图像的感光度。
  17. 根据权利要求13-16任一项所述的方法,其特征在于,
    所述时长下限大于或等于10ms。
  18. 一种夜景拍摄方法,应用于摄像模组,其特征在于,所述方法包括:
    获取所述摄像模组的抖动程度;
    根据所述抖动程度,调整曝光时长;
    根据拍摄场景的亮度信息和所述曝光时长,确定多帧待采集图像的感光度;
    根据所述多帧待采集图像的感光度和所述曝光时长采集图像;
    将采集的多帧图像合成,以生成目标图像。
  19. 根据权利要求18所述的方法,其特征在于,所述根据所述抖动程度,调整曝光时长,包括:
    根据所述抖动程度,确定各曝光补偿等级对应的曝光时长;
    根据各帧待采集图像设定的曝光补偿等级和各曝光补偿等级对应的曝光时长,确定各帧待采集图像的曝光时长。
  20. 根据权利要求19所述的方法,其特征在于,所述根据各帧待采集图像设定的曝光补偿等级和各曝光补偿等级对应的曝光时长,确定各帧待采集图像的曝光时长之前,还包括:
    根据所述抖动程度,调整曝光补偿模式;
    其中,所述曝光补偿模式,用于指示待采集图像的帧数和各帧待采集图像设定的曝光补偿等级。
  21. 根据权利要求20所述的方法,其特征在于,所述根据抖动程度,调整曝光补偿模式,包括:
    根据所述抖动程度,调整待采集图像的帧数;
    检测所述摄像模组已采集的图像中是否包含人脸;
    若包含人脸,确定所述曝光补偿模式为符合调整后帧数的第一模式;
    若不包含人脸,确定所述曝光补偿模式为符合调整后帧数的第二模式;
    其中,所述第二模式的曝光补偿等级取值范围大于所述第一模式的曝光补偿等级取值范围。
  22. 根据权利要求18-21任一项所述的方法,其特征在于,所述根据拍摄场景的亮度信息和所述曝光时长,确定多帧待采集图像的感光度之后,还包括:
    将各帧待采集图像的感光度与设定的感光度上限比较;
    若待采集图像中存在感光度大于感光度上限的第一图像,根据所述感光度上限,减小所述第一图像的感光度。
  23. 根据权利要求22所述的方法,其特征在于,所述将各帧待采集图像的感光度与设定的感光度阈值比较之前,还包括:
    根据摄像模组的抖动程度,确定所述感光度上限。
  24. 根据权利要求23所述的方法,其特征在于,所述根据摄像模组的抖动程度,确定所述感光度上限,包括:
    若所述抖动程度大于或等于抖动阈值,确定所述感光度上限为第一感光值;
    若所述抖动程度小于抖动阈值,确定所述感光度上限为第二感光值;
    其中,所述第一感光值大于所述第二感光值。
  25. 根据权利要求22-24任一项所述的方法,其特征在于,所述根据所述感光度上限,减小所述第一图像的感光度之后,还包括:
    根据所述第一图像减小前的感光度与减小后的感光度之比,增大所述第一图像的曝光时长。
  26. 根据权利要求18-21任一项所述的方法,其特征在于,所述根据拍摄场景的亮度信息和所述曝光时长,确定多帧待采集图像的感光度之后,还包括:
    将各帧待采集图像的感光度与设定的感光度下限比较;
    若待采集图像中存在感光度小于所述感光度下限的第二图像,根据所述感光度下限,增大所述第二图像的感光度。
  27. 根据权利要求26所述的方法,其特征在于,所述根据所述感光度下限,增大所述第二图像的感光度之后,还包括:
    确定所述第二图像增大后的感光度与增大前的感光度之间的比值;
    对感光度大于或等于所述感光度下限的其余各帧待采集图像,根据所述比值,更新所述其余各帧待采集图像的感光度或曝光时长。
  28. 一种夜景拍摄方法,应用于摄像模组,其特征在于,所述方法包括:
    获取所述摄像模组的抖动程度;
    根据所述抖动程度,调整在拍摄场景的亮度信息下多帧待采集图像的曝光时长和相应待采集图像所需的感光度;
    根据各帧待采集图像的曝光时长和感光度采集图像;
    将采集的多帧图像合成,以生成目标图像。
  29. 根据权利要求28所述的方法,其特征在于,所述根据所述抖动程度,调整在拍摄场景的亮度下多帧待采集图像的曝光时长和相应待采集图像所需的感光度,包括:
    根据所述拍摄场景的亮度信息和各帧待采集图像设定的曝光补偿等级,查询曝光表,得到相应待采集图像的曝光时长和感光度;
    根据所述抖动程度,调整各帧待采集图像的查询到的曝光时长,以使相应待采集图像的感光度低于所述抖动程度对应的感光度阈值。
  30. 根据权利要求29所述的方法,其特征在于,所述根据所述拍摄场景的亮度信息和各帧待采集图像设定的曝光补偿等级,查询曝光表,得到相应待采集图像的曝光时长和感光度之前,还包括:
    根据所述抖动程度,调整曝光补偿模式;
    其中,所述曝光补偿模式,用于指示待采集图像的帧数和各帧待采集图像设定的曝光补偿等级。
  31. 根据权利要求30所述的方法,其特征在于,所述根据抖动程度,调整曝光补偿模式,包括:
    根据所述抖动程度,调整待采集图像的帧数;
    检测所述摄像模组已采集的图像中是否包含人脸;
    若包含人脸,确定所述曝光补偿模式为符合调整后帧数的第一模式;
    若不包含人脸,确定所述曝光补偿模式为符合调整后帧数的第二模式;
    其中,所述第二模式的曝光补偿等级取值范围大于所述第一模式的曝光补偿等级取值范围。
  32. 根据权利要求28-31任一项所述的方法,其特征在于,所述根据所述抖动程度,调整在拍摄场景的亮度信息下多帧待采集图像的曝光时长和相应待采集图像所需的感光度之后,还包括:
    将各帧待采集图像的曝光时长与设定的时长上限比较;
    若待采集图像中存在曝光时长大于时长上限的第一图像,根据所述时长上限,减小所述第一图像的曝光时长。
  33. 根据权利要求32所述的方法,其特征在于,所述将各帧待采集图像的曝光时长与设定的时长上限比较之前,还包括:
    根据所述抖动程度,确定所述时长上限。
  34. 根据权利要求33所述的方法,其特征在于,所述根据抖动程度,确定所述时长上限,包括:
    若所述抖动程度大于或等于抖动阈值,确定所述时长上限为第一时长;
    若所述抖动程度小于抖动阈值,确定所述时长上限为第二时长;
    其中,所述第一时长小于所述第二时长。
  35. 根据权利要求32-34任一项所述的方法,其特征在于,所述根据所述时长上限,减小所述第一图像的曝光时长之后,还包括:
    根据所述第一图像减小前的曝光时长与减小后的曝光时长之比,增大所述第一图像的感光度。
  36. 根据权利要求28-31任一项所述的方法,其特征在于,所述根据所述抖动程度,调整在拍摄场景的亮度信息下多帧待采集图像的曝光时长和相应待采集图像所需的感光度之后,还包括:
    将各帧待采集图像的曝光时长与设定的时长下限比较;
    若待采集图像中存在曝光时长小于所述时长下限的第二图像,根据所述时长下限,增大所述第二图像的曝光时长。
  37. 根据权利要求36所述的方法,其特征在于,所述根据所述时长下限,增大所述第二图像的曝光时长之后,还包括:
    确定所述第二图像增大后的曝光时长与增大前的曝光时长之间的比值;
    对曝光时长大于或等于所述时长下限的其余各帧待采集图像,根据所述比值,更新所述其余各帧待采集图像的感光度或曝光时长。
  38. 一种夜景拍摄装置,应用于摄像模组,其特征在于,所述装置包括:
    获取模块,用于获取所述摄像模组的抖动程度;
    调整模块,用于根据所述抖动程度,调整基准感光度;
    确定模块,用于根据拍摄场景的亮度信息和所述基准感光度,确定多帧待采集图像的曝光时长;
    采集模块,用于根据所述基准感光度和所述多帧待采集图像的曝光时长采集图像;
    生成模块,用于将采集的多帧图像合成,以生成目标图像。
  39. 一种夜景拍摄装置,应用于摄像模组,其特征在于,所述装置包括:
    获取模块,用于获取所述摄像模组的抖动程度;
    调整模块,用于根据所述抖动程度,调整曝光时长;
    确定模块,用于根据拍摄场景的亮度信息和所述曝光时长,确定多帧待采集图像的感光度;
    采集模块,用于根据所述多帧待采集图像的感光度和所述曝光时长采集图像;
    生成模块,用于将采集的多帧图像合成,以生成目标图像。
  40. 一种夜景拍摄装置,应用于摄像模组,其特征在于,所述装置包括:
    获取模块,用于获取所述摄像模组的抖动程度;
    调整模块,用于根据所述抖动程度,调整在拍摄场景的亮度下多帧待采集图像的曝光时长和相应待采集图像所需的感光度;
    采集模块,用于根据各帧待采集图像的曝光时长和感光度采集图像;
    生成模块,用于将采集的多帧图像合成,以生成目标图像。
  41. 一种摄像模组夜景摄像处理方法,其特征在于,包括:
    在夜景拍摄模式下,检测摄像模组当前的抖动程度;
    根据所述摄像模组当前的抖动程度,确定待采集的图像数量及每帧待采集图像对应的基准感光度;
    根据当前拍摄场景的光照度及所述每帧待采集图像对应的基准感光度,确定每帧待采集图像对应的曝光时长;
    根据所述每帧待采集图像对应的基准感光度及曝光时长,依次采集多帧图像;
    将采集的多帧图像进行合成处理,以生成目标图像。
  42. 根据权利要求41所述的方法,其特征在于,所述确定每帧待采集图像对应的曝光时长之后,还包括:
    检测所述每帧待采集图像对应的曝光时长是否在预设时长范围内;
    若至少一帧待采集图像的曝光时长未在所述预设时长范围内,则根据所述预设时长范围,更新所述至少一帧待采集图像的曝光时长,以使所述至少一帧待采集图像的曝光时长位于所述预设的时长范围内。
  43. 根据权利要求42所述的方法,其特征在于,所述检测所述每帧待采集图像对应的曝光时长是否在预设时长范围内之前,还包括:
    根据所述摄像组件中光学器件的设置方式,确定所述预设时长范围。
  44. 根据权利要求42所述的方法,其特征在于,所述更新所述至少一帧待采集图像的曝光时长之后,还包括:
    根据所述至少一帧待采集图像更新前的曝光时长及更新后的曝光时长的差值,确定所述每帧待采集图像对应的曝光量调整模式;
    根据所述曝光量调整模式,调整所述每帧待采集图像的感光度及曝光时长。
  45. 根据权利要求41-44任一所述的方法,其特征在于,所述根据当前拍摄场景的光照度及所述每帧待采集图像对应的基准感光度,确定每帧待采集图像对应的曝光时长,包括:
    根据所述当前拍摄场景的光照度,确定基准曝光量;
    根据所述基准曝光量及所述每帧待采集图像对应的基准感光度,确定基准曝光时长;
    根据所述基准曝光时长及预设的曝光补偿模式,确定所述每帧待采集图像对应的曝光时长。
  46. 根据权利要求45所述的方法,其特征在于,所述根据所述基准曝光时长及预设的曝光补偿模式,确定所述每帧待采集图像对应的曝光时长之前,还包括:
    根据所述摄像模组当前的抖动程度,确定所述预设的曝光补偿模式。
  47. 根据权利要求46所述的方法,其特征在于,所述确定所述预设的曝光补偿模式,包括:
    检测所述摄像模组当前采集的图像中是否包含人脸;
    若包括,则根据所述摄像模组当前的抖动程度,确定所述预设的曝光补偿模式为第一模式;
    否则,根据所述摄像模组当前的抖动程度,确定所述预设的曝光补偿模式为第二模式,其中,第二模式对应的曝光补偿范围,大于所述第一模式对应的曝光补偿范围。
  48. 根据权利要求46或47所述的方法,其特征在于,所述确定所述预设的曝光补偿模式之前,还包括:
    确定所述摄像组件中各器件的属性信息;
    所述确定所述预设的曝光补偿模式,包括:
    根据所述各器件的属性信息及所述当前的抖动程度,确定所述预设的曝光补偿模式。
  49. 如权利要求41-48任一所述的方法,其特征在于,所述将所述采集的多帧图像进行合成处理,以生成目标图像,包括:
    根据预设的所述多帧图像中每帧待采集图像对应的权重,将所述多帧图像进行合成处理。
  50. 一种摄像模组夜景摄像处理装置,其特征在于,包括:
    检测模块,用于在夜景拍摄模式下,检测摄像模组当前的抖动程度;
    第一确定模块,用于根据所述摄像模组当前的抖动程度,确定待采集的图像数量及每帧待采集图像对应的基准感光度;
    第二确定模块,用于根据当前拍摄场景的光照度及所述每帧待采集图像对应的基准感光度,确定每帧待采集图像对应的曝光时长;
    采集模块,用于根据所述每帧待采集图像对应的基准感光度及曝光时长,依次采集多帧图像;
    合成模块,用于将所述采集的多帧图像进行合成处理,以生成目标图像。
  51. 一种电子设备,其特征在于,所述电子设备包括:摄像模组、存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器与所述摄像模组连接,所述处理器执行所述计算机程序时,实现如权利要求1-17中任一项所述的夜景拍摄方法,或者,实现如权利要求18-27中任一项所 述的夜景拍摄方法,或者,实现如权利要求28-37中任一项所述的夜景拍摄方法,或者,实现如权利要求41-49中任一项所述的摄像模组夜景摄像处理方法。
  52. 一种图像处理电路,其特征在于,所述图像处理电路包括图像信号处理ISP处理器和图形处理器GPU;
    所述ISP处理器,与摄像模组连接,用于根据所述摄像模组的抖动程度,调整基准感光度;根据拍摄场景的亮度信息和所述基准感光度,确定多帧待采集图像的曝光时长;根据所述基准感光度和所述多帧待采集图像的曝光时长控制所述摄像模组采集图像;
    所述GPU,与所述ISP处理器电连接,用于将采集的多帧图像进行合成处理,以生成目标图像。
  53. 一种存储介质,其特征在于,当所述存储介质中的指令由处理器执行时,实现如权利要求1-17中任一项所述的夜景拍摄方法,或者,实现如权利要求18-27中任一项所述的夜景拍摄方法,或者,实现如权利要求28-37中任一项所述的夜景拍摄方法,或者,实现如权利要求41-49中任一项所述的摄像模组夜景摄像处理方法。
PCT/CN2019/088017 2018-08-22 2019-05-22 夜景拍摄方法、装置、电子设备及存储介质 WO2020038028A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2019326496A AU2019326496B2 (en) 2018-08-22 2019-05-22 Method for capturing images at night, apparatus, electronic device, and storage medium
JP2021500825A JP7371081B2 (ja) 2018-08-22 2019-05-22 夜景撮影方法、装置、電子機器および記憶媒体
KR1020217001996A KR102642993B1 (ko) 2018-08-22 2019-05-22 야경 촬영 방법, 장치, 전자설비, 및 저장 매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810963331.3 2018-08-22
CN201810963331.3A CN109005366B (zh) 2018-08-22 2018-08-22 摄像模组夜景摄像处理方法、装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2020038028A1 true WO2020038028A1 (zh) 2020-02-27

Family

ID=64593679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088017 WO2020038028A1 (zh) 2018-08-22 2019-05-22 夜景拍摄方法、装置、电子设备及存储介质

Country Status (7)

Country Link
US (1) US11089207B2 (zh)
EP (1) EP3624439B1 (zh)
JP (1) JP7371081B2 (zh)
KR (1) KR102642993B1 (zh)
CN (1) CN109005366B (zh)
AU (1) AU2019326496B2 (zh)
WO (1) WO2020038028A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115243017A (zh) * 2022-08-03 2022-10-25 上海研鼎信息技术有限公司 一种改善图像质量的方法及设备

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3286915B1 (en) 2015-04-23 2021-12-08 Apple Inc. Digital viewfinder user interface for multiple cameras
US9716825B1 (en) 2016-06-12 2017-07-25 Apple Inc. User interface for camera effects
DK180859B1 (en) 2017-06-04 2022-05-23 Apple Inc USER INTERFACE CAMERA EFFECTS
US11112964B2 (en) 2018-02-09 2021-09-07 Apple Inc. Media capture lock affordance for graphical user interface
US10375313B1 (en) 2018-05-07 2019-08-06 Apple Inc. Creative camera
US11722764B2 (en) 2018-05-07 2023-08-08 Apple Inc. Creative camera
CN109005366B (zh) 2018-08-22 2020-04-28 Oppo广东移动通信有限公司 摄像模组夜景摄像处理方法、装置、电子设备及存储介质
DK201870623A1 (en) 2018-09-11 2020-04-15 Apple Inc. USER INTERFACES FOR SIMULATED DEPTH EFFECTS
US11770601B2 (en) 2019-05-06 2023-09-26 Apple Inc. User interfaces for capturing and managing visual media
US10674072B1 (en) 2019-05-06 2020-06-02 Apple Inc. User interfaces for capturing and managing visual media
US11321857B2 (en) 2018-09-28 2022-05-03 Apple Inc. Displaying and editing images with depth information
US11128792B2 (en) 2018-09-28 2021-09-21 Apple Inc. Capturing and displaying images with multiple focal planes
CN109547703B (zh) * 2018-12-28 2021-04-13 北京旷视科技有限公司 一种摄像设备的拍摄方法、装置、电子设备及介质
CN110062159A (zh) * 2019-04-09 2019-07-26 Oppo广东移动通信有限公司 基于多帧图像的图像处理方法、装置、电子设备
CN110072052B (zh) * 2019-04-09 2021-08-27 Oppo广东移动通信有限公司 基于多帧图像的图像处理方法、装置、电子设备
US11706521B2 (en) 2019-05-06 2023-07-18 Apple Inc. User interfaces for capturing and managing visual media
CN111901476B (zh) * 2019-05-06 2022-06-10 苹果公司 用于捕获和管理视觉媒体的用户界面
CN110248106B (zh) * 2019-06-13 2021-04-23 Oppo广东移动通信有限公司 图像降噪方法、装置、电子设备以及存储介质
CN110166711B (zh) * 2019-06-13 2021-07-13 Oppo广东移动通信有限公司 图像处理方法、装置、电子设备以及存储介质
CN110290314B (zh) * 2019-06-13 2021-01-15 Oppo广东移动通信有限公司 图像处理方法、装置、电子设备及存储介质
CN110233970B (zh) * 2019-06-27 2021-03-12 Oppo广东移动通信有限公司 图像处理方法和装置、电子设备、计算机可读存储介质
JP2021043296A (ja) * 2019-09-10 2021-03-18 株式会社ミツトヨ 画像検出装置
US11039074B1 (en) 2020-06-01 2021-06-15 Apple Inc. User interfaces for managing media
CN111988523B (zh) * 2020-08-14 2022-05-13 RealMe重庆移动通信有限公司 超级夜景图像生成方法及装置、终端和可读存储介质
US11212449B1 (en) 2020-09-25 2021-12-28 Apple Inc. User interfaces for media capture and management
KR20220126084A (ko) * 2021-03-08 2022-09-15 삼성전자주식회사 전자 장치의 촬영 방법 및 그 전자 장치
US11778339B2 (en) 2021-04-30 2023-10-03 Apple Inc. User interfaces for altering visual media
US11539876B2 (en) 2021-04-30 2022-12-27 Apple Inc. User interfaces for altering visual media
CN115314627B (zh) * 2021-05-08 2024-03-01 杭州海康威视数字技术股份有限公司 一种图像处理方法、系统及摄像机
CN115706766B (zh) * 2021-08-12 2023-12-15 荣耀终端有限公司 视频处理方法、装置、电子设备和存储介质
US11985747B2 (en) 2021-12-08 2024-05-14 Carlo Van de Roer Apparatus and method for filming a scene using lighting setups actuated repeatedly during each entire frame without visible flicker on set while acquiring images synchronously with the lighting setups only during a portion of each frame
CN114339001B (zh) * 2021-12-30 2023-09-12 维沃移动通信有限公司 图像传感器、曝光控制方法、摄像模组和电子设备
CN114928694A (zh) * 2022-04-25 2022-08-19 深圳市慧鲤科技有限公司 图像获取方法和装置、设备、介质
WO2023224216A1 (ko) * 2022-05-20 2023-11-23 삼성전자주식회사 저전력 프로세서를 이용하여 카메라의 광학식 흔들림 보정을 제어하는 장치 및 방법
CN115297269B (zh) * 2022-09-27 2023-04-07 荣耀终端有限公司 曝光参数的确定方法及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008068865A1 (ja) * 2006-12-06 2008-06-12 Panasonic Corporation 撮像装置
CN101345824A (zh) * 2007-07-09 2009-01-14 三星电子株式会社 补偿相机的手抖动的方法和设备
EP2521091A1 (en) * 2011-05-03 2012-11-07 ST-Ericsson SA Estimation of picture motion blurriness
CN103051841A (zh) * 2013-01-05 2013-04-17 北京小米科技有限责任公司 曝光时间的控制方法及装置
CN103561210A (zh) * 2013-10-24 2014-02-05 惠州Tcl移动通信有限公司 根据背景光拍照的方法及移动终端
CN107509044A (zh) * 2017-08-31 2017-12-22 广东欧珀移动通信有限公司 图像合成方法、装置、计算机可读存储介质和计算机设备
CN109005366A (zh) * 2018-08-22 2018-12-14 Oppo广东移动通信有限公司 摄像模组夜景摄像处理方法、装置、电子设备及存储介质

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4794786B2 (ja) * 2001-09-28 2011-10-19 株式会社リコー 撮像装置、自動露出方法、およびその方法をコンピュータが実行するためのプログラム
JP2006262220A (ja) 2005-03-18 2006-09-28 Seiko Epson Corp 撮像装置
JP2007225763A (ja) * 2006-02-22 2007-09-06 Sony Corp 撮像装置および撮像方法、並びにプログラム
JP5319078B2 (ja) * 2006-07-07 2013-10-16 オリンパスイメージング株式会社 カメラ、カメラの画像処理方法、プログラム、記録媒体
JP5148989B2 (ja) 2007-12-27 2013-02-20 イーストマン コダック カンパニー 撮像装置
JP2009182926A (ja) * 2008-02-01 2009-08-13 Canon Inc 撮像装置
JP5317737B2 (ja) * 2009-02-03 2013-10-16 キヤノン株式会社 撮像装置、その制御方法及びプログラム
JP2011135152A (ja) * 2009-12-22 2011-07-07 Olympus Corp 撮像装置及び撮像方法
JP5825946B2 (ja) 2011-09-09 2015-12-02 キヤノン株式会社 撮像装置及びその制御方法
WO2013094087A1 (ja) 2011-12-22 2013-06-27 パナソニック株式会社 撮像装置
CN103369228A (zh) 2012-03-26 2013-10-23 百度在线网络技术(北京)有限公司 摄像机设置方法、装置和摄像机
US8675964B2 (en) * 2012-06-06 2014-03-18 Apple Inc. Image fusion using intensity mapping functions
CN103841324A (zh) 2014-02-20 2014-06-04 小米科技有限责任公司 拍摄处理方法、装置和终端设备
US9210335B2 (en) * 2014-03-19 2015-12-08 Konica Minolta Laboratory U.S.A., Inc. Method for generating HDR images using modified weight
KR20160016068A (ko) 2014-08-01 2016-02-15 삼성전자주식회사 이미지 생성 방법 및 그 전자 장치
WO2018003799A1 (ja) * 2016-06-30 2018-01-04 富士フイルム株式会社 撮影装置及びその制御方法
CN107613190B (zh) * 2016-07-11 2020-11-03 中兴通讯股份有限公司 一种拍照方法及终端
CN106375676A (zh) * 2016-09-20 2017-02-01 广东欧珀移动通信有限公司 终端设备的拍照控制方法、装置和终端设备
CN107635101B (zh) * 2017-10-27 2020-07-03 Oppo广东移动通信有限公司 拍摄方法、装置、存储介质和电子设备
CN107820022A (zh) * 2017-10-30 2018-03-20 维沃移动通信有限公司 一种拍照方法及移动终端
CN108322669B (zh) * 2018-03-06 2021-03-23 Oppo广东移动通信有限公司 图像获取方法及装置、成像装置和可读存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008068865A1 (ja) * 2006-12-06 2008-06-12 Panasonic Corporation 撮像装置
CN101345824A (zh) * 2007-07-09 2009-01-14 三星电子株式会社 补偿相机的手抖动的方法和设备
EP2521091A1 (en) * 2011-05-03 2012-11-07 ST-Ericsson SA Estimation of picture motion blurriness
CN103051841A (zh) * 2013-01-05 2013-04-17 北京小米科技有限责任公司 曝光时间的控制方法及装置
CN103561210A (zh) * 2013-10-24 2014-02-05 惠州Tcl移动通信有限公司 根据背景光拍照的方法及移动终端
CN107509044A (zh) * 2017-08-31 2017-12-22 广东欧珀移动通信有限公司 图像合成方法、装置、计算机可读存储介质和计算机设备
CN109005366A (zh) * 2018-08-22 2018-12-14 Oppo广东移动通信有限公司 摄像模组夜景摄像处理方法、装置、电子设备及存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115243017A (zh) * 2022-08-03 2022-10-25 上海研鼎信息技术有限公司 一种改善图像质量的方法及设备
CN115243017B (zh) * 2022-08-03 2024-06-07 上海研鼎信息技术有限公司 一种改善图像质量的方法及设备

Also Published As

Publication number Publication date
US11089207B2 (en) 2021-08-10
AU2019326496B2 (en) 2022-01-27
AU2019326496A1 (en) 2021-03-11
CN109005366B (zh) 2020-04-28
KR20210024053A (ko) 2021-03-04
EP3624439B1 (en) 2023-11-22
KR102642993B1 (ko) 2024-03-04
JP7371081B2 (ja) 2023-10-30
EP3624439A2 (en) 2020-03-18
JP2021530911A (ja) 2021-11-11
CN109005366A (zh) 2018-12-14
EP3624439A3 (en) 2020-08-12
US20200068121A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
WO2020038028A1 (zh) 夜景拍摄方法、装置、电子设备及存储介质
CN108900782B (zh) 曝光控制方法、装置以及电子设备
CN110072051B (zh) 基于多帧图像的图像处理方法和装置
US11403740B2 (en) Method and apparatus for image capturing and processing
CN110072052B (zh) 基于多帧图像的图像处理方法、装置、电子设备
CN109788207B (zh) 图像合成方法、装置、电子设备及可读存储介质
WO2020034737A1 (zh) 成像控制方法、装置、电子设备以及计算机可读存储介质
WO2020038069A1 (zh) 曝光控制方法、装置和电子设备
US11532076B2 (en) Image processing method, electronic device and storage medium
WO2020057198A1 (zh) 图像处理方法、装置、电子设备及存储介质
WO2020038072A1 (zh) 曝光控制方法、装置和电子设备
CN110191291B (zh) 基于多帧图像的图像处理方法和装置
CN110166708B (zh) 夜景图像处理方法、装置、电子设备以及存储介质
CN109005369B (zh) 曝光控制方法、装置、电子设备以及计算机可读存储介质
CN109218627B (zh) 图像处理方法、装置、电子设备及存储介质
CN109348088B (zh) 图像降噪方法、装置、电子设备及计算机可读存储介质
WO2020207261A1 (zh) 基于多帧图像的图像处理方法、装置、电子设备
WO2020038087A1 (zh) 超级夜景模式下的拍摄控制方法、装置和电子设备
CN109151333B (zh) 曝光控制方法、装置以及电子设备
CN110264420B (zh) 基于多帧图像的图像处理方法和装置
CN109756680B (zh) 图像合成方法、装置、电子设备及可读存储介质
CN110276730B (zh) 图像处理方法、装置、电子设备
CN110113539A (zh) 曝光控制方法、装置、电子设备以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851519

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021500825

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217001996

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019326496

Country of ref document: AU

Date of ref document: 20190522

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19851519

Country of ref document: EP

Kind code of ref document: A1