WO2020037885A1 - 复合传感器、复合传感器的制作方法及复合传感器系统 - Google Patents

复合传感器、复合传感器的制作方法及复合传感器系统 Download PDF

Info

Publication number
WO2020037885A1
WO2020037885A1 PCT/CN2018/120295 CN2018120295W WO2020037885A1 WO 2020037885 A1 WO2020037885 A1 WO 2020037885A1 CN 2018120295 W CN2018120295 W CN 2018120295W WO 2020037885 A1 WO2020037885 A1 WO 2020037885A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
piezoelectric
circuit
electrical signal
physiological electrical
Prior art date
Application number
PCT/CN2018/120295
Other languages
English (en)
French (fr)
Inventor
黄品高
方鹏
李光林
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2020037885A1 publication Critical patent/WO2020037885A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass

Definitions

  • the present disclosure relates to the technical field of sensors, for example, to a composite sensor, a manufacturing method of the composite sensor, and a composite sensor system.
  • Physiological electrical signal sensors and mechanical signal sensors are widely used in rehabilitation aids.
  • One of the key technologies of intelligent prosthetics is to use physiological electrical signals and mechanical signals to extract human motion intentions.
  • the acquisition of high-quality signals and multiple signals can improve the recognition rate of human motion intentions and improve the control performance of the system, and the performance, volume, and integration of sensors are directly related to the performance of these devices.
  • the collection of physiological electrical signals and mechanical signals is mainly performed by placing different sensors at different positions. When multiple sensors are used for signal acquisition at the same time, not only the acquisition system is complicated and the space utilization is limited, and multiple sensors cannot be used for the same Area signals are acquired simultaneously.
  • the present disclosure provides a composite sensor, a manufacturing method of the composite sensor, and a composite sensor system, which can simultaneously measure different physical quantities in the same area, reduce the volume of the sensor, and improve space utilization.
  • An embodiment of the present disclosure provides a composite sensor including a piezoelectric electret sensor, an insulating layer, and a physiological electrical signal sensor;
  • the insulation layer is disposed between the piezoelectric electret sensor and the physiological electrical signal sensor, wherein the physiological electrical signal sensor includes a collection electrode.
  • the piezoelectric electret sensor is provided with two wire interfaces; the physiological electrical signal sensor further includes two electrode interfaces.
  • An embodiment of the present disclosure also provides a method for manufacturing a composite sensor, the method includes:
  • a collection electrode of a physiological electrical signal sensor is generated on the metal layer by using a set electrode template.
  • the first setting method includes evaporation or lamination.
  • the second setting method includes evaporation or magnetron sputtering.
  • the method before forming the insulating layer on the piezoelectric electret sensor in a first setting manner, the method further includes:
  • the two metal terminals were connected to two metal electrodes respectively to obtain a piezoelectric electret sensor.
  • An embodiment of the present disclosure further provides a composite sensor system, which includes: the composite sensor, a signal acquisition circuit, a main control circuit, a wireless transmission module, and a data processing module;
  • the output end of the composite sensor is connected to the input end of the signal acquisition circuit, the output end of the signal acquisition circuit is connected to the input end of the main control circuit, and the output end of the main control circuit is connected to the wireless transmission.
  • the input of the module is connected;
  • the control end of the main control circuit is respectively connected to the controlled end of the signal acquisition circuit and the controlled end of the wireless transmission module; the main control circuit is configured to control the signal acquisition circuit to collect the composite sensor induction The received composite sensing signal; the main control circuit is further configured to control the wireless transmission module to send the composite sensing signal to the data processing module; the data processing module is configured to respond to the received composite sensing signal The signal is processed.
  • the signal acquisition circuit includes a piezoelectric signal acquisition circuit and a physiological electrical signal acquisition circuit
  • An output terminal of the piezoelectric electret sensor is connected to an input terminal of the piezoelectric signal acquisition circuit, and an output terminal of the physiological electrical signal sensor is connected to an input terminal of the physiological electrical signal acquisition circuit.
  • the signal acquisition circuit further includes a piezoelectric signal processing circuit and a physiological electrical signal processing circuit;
  • the piezoelectric signal processing circuit is disposed between the piezoelectric electret sensor and the piezoelectric signal acquisition circuit. An input terminal of the piezoelectric signal processing circuit and an output terminal of the piezoelectric electret sensor. Connected; the output end of the piezoelectric signal processing circuit is connected to the input end of the piezoelectric signal acquisition circuit;
  • the physiological electrical signal processing circuit is disposed between the physiological electrical signal sensor and the physiological electrical signal acquisition circuit.
  • An input terminal of the physiological electrical signal processing circuit is connected to an output terminal of the physiological electrical signal sensor.
  • An output terminal of the physiological electrical signal processing circuit is connected to an input terminal of the physiological electrical signal acquisition circuit.
  • the piezoelectric signal processing circuit includes a piezoelectric signal amplification circuit, a first filter circuit, and a first analog-to-digital conversion circuit;
  • the physiological electrical signal processing circuit includes a biological point signal amplification circuit, a second filter, and The second analog-to-digital conversion circuit.
  • the composite sensor provided by the present disclosure provides a physiological electrical signal acquisition electrode on a piezoelectric electret sensor, so that the sensor can simultaneously collect pressure and physiological electrical signals, thereby reducing the volume of the sensor and improving space utilization.
  • FIG. 1 is a schematic structural diagram of a composite sensor according to an embodiment
  • FIG. 3 is a schematic structural diagram of a composite sensor system according to an embodiment
  • FIG. 4 is a schematic structural diagram of a composite sensor system according to another embodiment.
  • FIG. 1 is a schematic structural diagram of a composite sensor according to an embodiment.
  • the composite sensor includes a piezoelectric electret sensor 110, an insulation layer 120, and a physiological electrical signal sensor 130.
  • the insulating layer 120 is disposed between the piezoelectric electret sensor 110 and the physiological electrical signal sensor 130.
  • the physiological electrical signal sensor 130 includes a collection electrode.
  • the piezoelectric electret can also be called a ferroelectric electret, which is a piezoelectric material based on a polymer space charge electret, which is similar to the hysteresis polarization phenomenon.
  • the piezoelectric properties of a piezoelectric electret result from the combination of a permanent charge stored internally and a heterogeneous cell structure. After charging or polarization, the charges of two polarities are stored on the upper and lower gas-polymer interfaces of the inner cavity, respectively, forming a quasi-permanent macroscopic dipole.
  • the piezoelectric electret receives pressure in the normal direction, the inner dipole distance decreases due to the compressibility of the internal cavity.
  • the insulating layer 120 may be an insulating film, which functions to isolate the physiological electrical signal sensor 130 from the piezoelectric electret sensor 110, and enables the physiological electrical signal sensor and the piezoelectric electret sensor to interact with each other during signal acquisition. Do not interfere.
  • the physiological electrical signals may include signals such as electrocardiogram, electroencephalogram, myoelectricity, and gastric electricity.
  • the physiological electrical signal acquisition electrode may be a conductive electrode.
  • the insulating layer 120 may be formed on the piezoelectric electret sensor by evaporation or lamination.
  • the material of the insulating layer may be any insulating material such as plastic or ceramic.
  • the formation process of the physiological electrical signal acquisition electrode may be firstly forming a metal layer on the insulating layer 120 by evaporation or magnetron sputtering, and then using a set electrode template to generate a physiological electrical signal acquisition electrode on the metal layer.
  • the metal may be a metal with conductive properties, such as silver, gold, or aluminum.
  • the piezoelectric electret sensor 110 is provided with two wire interfaces as interfaces for outputting a pressure signal.
  • the physiological electrical signal sensor 130 further includes two electrode interfaces as an interface for outputting physiological electrical signals.
  • the composite sensor provided in this embodiment provides a physiological electrical signal sensor on a piezoelectric electret sensor, so that the sensor can simultaneously collect pressure and physiological electrical signals, thereby reducing the volume of the sensor and improving space utilization.
  • FIG. 2 is a method for manufacturing a composite sensor according to an embodiment. This method is used to manufacture the composite sensor described in the above embodiments. As shown in FIG. 2, the method includes the following steps.
  • Step 210 An insulating layer is formed on the piezoelectric electret sensor in a first setting manner.
  • the first setting method may include evaporation or lamination, and the thickness of the insulating layer may be in the micrometer range.
  • Step 220 Attach a metal layer to the insulating layer in a second setting manner.
  • the second setting method may include evaporation or magnetron sputtering.
  • the thickness of the metal layer may be on the micrometer level.
  • Step 230 Use a set electrode template to generate a collection electrode of a physiological electrical signal sensor on the metal layer.
  • the set electrode template is covered on the insulating layer to generate a physiological electrical signal acquisition electrode.
  • the method before forming the insulating layer on the piezoelectric electret sensor in the first setting manner, the method further includes the following steps: performing a gas diffusion expansion treatment on the original piezoelectric material thin film; at a set temperature Use the set corona tip voltage to charge the processed original piezoelectric material film for a set time to obtain a piezoelectric electret film; use vacuum evaporation to generate two metals on both surfaces of the piezoelectric electret film Electrode to obtain a metallized film; fold the metallized film symmetrically, and glue the inner surfaces of the folded metallized film together with conductive tape; connect two metal terminals to two metal electrodes respectively to obtain a piezoelectric Electret sensor.
  • the set temperature is room temperature.
  • the set temperature is a temperature in the range of 20 degrees Celsius to 30 degrees Celsius.
  • the voltage at the corona tip is set to -20 kilovolts (kV) and the set duration is 60 seconds.
  • the connection area of each metal terminal can be covered with silver paste to ensure stable electrical contact.
  • an insulating layer is first formed on the piezoelectric electret sensor in a first setting manner, then a metal layer is adhered on the insulating layer in a second setting manner, and finally, the electrode layer is set on the metal layer using a set electrode template.
  • the collection electrode that generates the physiological electrical signal sensor on the piezoelectric electret sensor forms a composite sensor, which can simultaneously collect pressure and physiological electrical signals, thereby reducing the volume of the sensor and improving space utilization.
  • FIG. 3 is a schematic structural diagram of a composite sensor system according to an embodiment.
  • the composite sensor system includes: a composite sensor 310, a signal acquisition circuit 320, a main control circuit 330, a wireless transmission module 340, and a data processing module 350.
  • the output of the composite sensor 310 is connected to the input of the signal acquisition circuit 320, the output of the signal acquisition circuit 320 is connected to the input of the main control circuit 330, and the output of the main control circuit 330 is connected to the input of the wireless transmission module 340;
  • the control end of the main control circuit 330 is respectively connected to the controlled end of the signal acquisition circuit 320 and the controlled end of the wireless transmission module 340; the main control circuit 330 is configured to control the signal acquisition circuit 320 to collect the composite sensing signal sensed by the composite sensor 310 The main control circuit 330 is further configured to control the wireless transmission module 340 to send the composite sensing signal to the data processing module 350; the data processing module 350 is configured to process the received composite sensing signal.
  • the wireless transmission module 340 may be a Bluetooth module or a WIreless-FIdelity (WIFI) module.
  • the data processing module 350 may be a device with a data processing capability, such as a computer or a mobile terminal.
  • FIG. 4 is a schematic structural diagram of a composite sensor system according to another embodiment.
  • the composite sensor 310 in the composite sensor system provided in this embodiment includes a piezoelectric electret sensor 311 and a physiological electrical signal sensor 312;
  • a signal acquisition circuit 320 includes a piezoelectric signal acquisition circuit 321 and a physiological electrical signal acquisition circuit 322;
  • the output of the piezoelectric electret sensor 311 is connected to the input of the piezoelectric signal acquisition circuit 321, and the output of the physiological electrical signal sensor 312 is connected to a physiological electrical signal
  • An input terminal of the acquisition circuit 322 is connected.
  • the signal acquisition circuit 320 further includes a piezoelectric signal processing circuit 323 and a physiological electrical signal processing circuit 324.
  • the piezoelectric signal processing circuit 323 is disposed between the piezoelectric electret sensor 311 and the piezoelectric signal acquisition circuit 321.
  • the input terminal of the piezoelectric signal processing circuit 323 is connected to the output terminal of the piezoelectric electret sensor 311;
  • the output terminal of the piezoelectric signal processing circuit 323 is connected to the input terminal of the piezoelectric signal acquisition circuit 321;
  • the physiological electrical signal processing circuit 324 is disposed between the physiological electrical signal sensor 312 and the physiological electrical signal acquisition circuit 322.
  • the input of the physiological electrical signal processing circuit 324 is connected to the output of the physiological electrical signal sensor 312.
  • the output of the physiological electrical signal processing circuit 324 is connected to the physiological electrical An input terminal of the signal acquisition circuit 322 is connected.
  • the piezoelectric signal processing circuit 323 includes a piezoelectric signal amplification circuit, a first filter circuit, and a first analog-to-digital conversion circuit;
  • the physiological electrical signal processing circuit 324 includes a biological point signal amplifier circuit, a second filter circuit, and The second analog-to-digital conversion circuit.
  • the piezoelectric signal processing circuit 323 is configured to send the processed piezoelectric signal to the piezoelectric signal acquisition circuit 321 after the piezoelectric signal is amplified, filtered, and analog-to-digital converted.
  • 321 is configured to send the piezoelectric signal to the main control circuit 330;
  • physiological electrical signal processing circuit 324 is configured to send the physiological electrical signal to the physiological electrical signal acquisition circuit 322 after amplifying, filtering, and analog-to-digital conversion of the physiological electrical signal,
  • the physiological electrical signal acquisition circuit 322 is configured to send the physiological electrical signal to the main control circuit 330.
  • the main control circuit 330 is configured to packetize the received piezoelectric signal and physiological electrical signal information data and send it to the wireless transmission module 340, and the wireless transmission module 340 is configured to send the packaged sensing signal to the data processing module 350.
  • the composite sensor system provided in this embodiment can simultaneously collect pressure and physiological electrical signals, thereby reducing the volume of the sensor and improving space utilization.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

一种复合传感器、复合传感器的制作方法及复合传感器系统。该复合传感器包括:压电驻极体传感器(110)、绝缘层(120)和生理电信号传感器(130);绝缘层(120)设置于压电驻极体传感器(110)和生理电信号传感器(130)之间,其中,生理电信号传感器(130)包括采集电极。

Description

复合传感器、复合传感器的制作方法及复合传感器系统
本公开要求在2018年8月24日提交中国专利局、申请号为201810974073.9的中国专利申请的优先权,该申请的全部内容通过引用结合在本公开中。
技术领域
本公开涉及传感器技术领域,例如涉及一种复合传感器、复合传感器的制作方法及复合传感器系统。
背景技术
生理电信号传感器和机械信号传感器广泛地用在康复辅助设备中,如智能假肢的关键技术之一是采用生理电信号和机械信号提取人体运动意图。高质量信号和多元信号的获取能够提高人体运动意图的识别率且提高系统的控制性能,而传感器的性能、体积和集成度直接关系到这些设备的性能。生理电信号和机械信号的采集主要是通过在不同位置放置不同的传感器进行采集,当同时采用多种传感器进行信号采集时,不仅导致采集系统复杂和空间利用率有限,而且多种传感器无法对同一区域的信号进行同步采集。
发明内容
本公开提供一种复合传感器、复合传感器的制作方法及复合传感器系统,可以实现同时对同一区域不同物理量的测量,减小传感器的体积,提高空间利用率。
本公开实施例提供了一种复合传感器,包括:压电驻极体传感器、绝缘层和生理电信号传感器;
所述绝缘层设置于所述压电驻极体传感器和所述生理电信号传感器之间,其中,所述生理电信号传感器包括采集电极。
在一实施例中,所述压电驻极体传感器上设置有两个导线接口;所述生理电信号传感器还包括两个电极接口。
本公开实施例还提供了一种复合传感器的制作方法,该方法包括:
在压电驻极体传感器上以第一设定方式形成绝缘层;
在所述绝缘层上以第二设定方式附着金属层;
利用设定电极模板在所述金属层上生成生理电信号传感器的采集电极。
在一实施例中,所述第一设定方式包括蒸镀或者层压。
在一实施例中,所述第二设定方式包括蒸镀或者磁控溅射。
在一实施例中,在压电驻极体传感器上以第一设定方式形成绝缘层之前,还包括:
对原始压电材料薄膜进行气体扩散膨胀处理;
在设定温度下使用设定电晕尖端电压对处理后的原始压电材料充电设定时长,获得压电驻极体薄膜;
利用真空蒸发的方式在所述压电驻极体薄膜的两个表面上生成两个金属电极,获得金属化薄膜;
将所述金属化薄膜对称折叠,且将折叠后的金属化薄膜的内表面通过导电胶带粘合在一起;
将两个金属端子分别连接到两个金属电极上,获得压电驻极体传感器。
本公开实施例还提供了一种复合传感器系统,该系统包括:上述的复合传感器、信号采集电路、主控电路、无线传输模块和数据处理模块;
所述复合传感器的输出端与所述信号采集电路的输入端相连,所述信号采集电路的输出端和所述主控电路的输入端相连,所述主控电路的输出端和所述无线传输模块的输入端相连;
所述主控电路的控制端分别与所述信号采集电路的受控端和所述无线传输模块的受控端相连;所述主控电路设置为控制所述信号采集电路采集所述复合传感器感应到的复合传感信号;所述主控电路还设置为控制所述无线传输模块将所述复合传感信号发送至所述数据处理模块;所述数据处理模块设置为对接收到的复合传感信号进行处理。
在一实施例中,所述信号采集电路包括压电信号采集电路和生理电信号采集电路;
所述压电驻极体传感器的输出端与所述压电信号采集电路的输入端相连,所述生理电信号传感器的输出端与所述生理电信号采集电路的输入端相连。
在一实施例中,所述信号采集电路还包括压电信号处理电路和生理电信号处理电路;
所述压电信号处理电路设置于所述压电驻极体传感器和所述压电信号采集电路之间,所述压电信号处理电路的输入端与所述压电驻极体传感器的输出端 相连;所述压电信号处理电路的输出端与所述压电信号采集电路的输入端相连;
所述生理电信号处理电路设置于所述生理电信号传感器和所述生理电信号采集电路之间,所述生理电信号处理电路的输入端与所述生理电信号传感器的输出端相连,所述生理电信号处理电路的输出端与所述生理电信号采集电路的输入端相连。
在一实施例中,所述压电信号处理电路包括压电信号放大电路、第一滤波电路及第一模数转换电路;所述生理电信号处理电路包括生物点信号放大电路、第二滤波及第二模数转换电路。
本公开提供的复合传感器通过在压电驻极体传感器上设置生理电信号采集电极,使得传感器可以同时进行压力和生理电信号的采集,从而减小传感器的体积,提高空间利用率。
附图说明
图1是一实施例提供的一种复合传感器的结构示意图;
图2是一实施例提供的一种复合传感器的制作方法;
图3是一实施例提供的一种复合传感器系统的结构示意图;
图4是另一实施例提供的一种复合传感器系统的结构示意图。
具体实施方式
下面结合附图和实施例对本公开进行说明。此处所描述的具体实施例仅仅用于解释本公开,而非对本公开的限定。另外,为了便于描述,附图中仅示出了与本公开相关的部分而非全部结构。
实施例一
图1为一实施例提供的一种复合传感器的结构示意图。如图1所示,该复合传感器包括:压电驻极体传感器110、绝缘层120和生理电信号传感器130。绝缘层120设置于压电驻极体传感器110和生理电信号传感器130之间。
在一实施例中,生理电信号传感器130包括采集电极。
其中,压电驻极体也可以称为铁电驻极体,是一种基于聚合物空间电荷驻极体的压电材料,具体类似磁滞的极化现象。压电驻极体的压电特性源于内部存储的永久电荷与异质细胞结构的组合。在充电或者极化后,两个极性的电荷分别存储在内腔的上部和下部气体-聚合物界面上,形成准永久性宏观偶极子。 当压电驻极体在法线方向收到压力,就会因为内腔的可压缩性,导致宏观偶极子内距减小。此时,电极上的补偿电荷也减少,从而产生电荷信号。绝缘层120可以是一层绝缘薄膜,起到将生理电信号传感器130与压电驻极体传感器110隔绝开来的作用,使生理电信号传感器与压电驻极体传感器在进行信号采集时互不干扰。生理电信号可以包括心电、脑电、肌电和胃电等信号。在一实施例中,生理电信号采集电极可以是一个导电电极。
本实施例中,绝缘层120可以以蒸镀或者层压的方式在压电驻极体传感器形成,绝缘层的材料可以是塑料或陶瓷等任意绝缘材料。生理电信号采集电极的形成过程可以是首先在绝缘层120上以蒸镀或者磁控溅射的方式形成一金属层,然后利用设定电极模板在金属层上生成生理电信号采集电极。在一实施例中,金属可以是银、金或铝等具有导电性能的金属。
在一实施例中,压电驻极体传感器110上设置有两个导线接口,作为压力信号输出的接口。生理电信号传感器130还包括两个电极接口,作为生理电信号输出的接口。
本实施例提供的复合传感器通过在压电驻极体传感器上设置生理电信号传感器,使得传感器可以同时进行压力和生理电信号的采集,从而减小传感器的体积,提高空间利用率。
实施例二
图2为一实施例提供的一种复合传感器的制作方法。该方法用于制造上述实施例所述的复合传感器。如图2所示,该方法包括如下步骤。
步骤210,在压电驻极体传感器上以第一设定方式形成绝缘层。
在一实施例中,第一设定方式可以包括蒸镀或者层压,绝缘层的厚度可以是微米级别。
步骤220,在绝缘层上以第二设定方式附着金属层。
在一实施例中,第二设定方式可以包括蒸镀或者磁控溅射。金属层的厚度可以是微米级别。
步骤230,利用设定电极模板在金属层上生成生理电信号传感器的采集电极。
在一实施例中,将设定电极模板覆盖在绝缘层上,从而生成生理电信号采集电极。
在一实施例中,在所述在压电驻极体传感器上以第一设定方式形成绝缘层 之前,还包括如下步骤:对原始压电材料薄膜进行气体扩散膨胀处理;在设定温度下使用设定电晕尖端电压对处理后的原始压电材料薄膜充电设定时长,获得压电驻极体薄膜;利用真空蒸发的方式在压电驻极体薄膜的两个表面上生成两个金属电极,获得金属化薄膜;将金属化薄膜对称折叠,且将折叠后的金属化薄膜的内表面通过导电胶带粘合在一起;将两个金属端子分别连接到两个金属电极上,获得压电驻极体传感器。
在一实施例中,设定温度为室温。例如设定温度为20摄氏度-30摄氏度范围内的温度。
在一实施例中,设定电晕尖端电压为-20千伏(kV),设定时长为60秒。在一实施例中,在每个金属端子的连接区域可以使用银浆覆盖,从而确保稳定的电接触。
本实施例的技术方案,首先在压电驻极体传感器上以第一设定方式形成绝缘层,然后在绝缘层上以第二设定方式附着金属层,最后利用设定电极模板在金属层上生成生理电信号传感器的采集电极。在压电驻极体传感器上生成生理电信号传感器的采集电极形成复合传感器,该复合传感器可以同时进行压力和生理电信号的采集,从而减小传感器的体积,提高空间利用率。
实施例三
图3为一施例提供的一种复合传感器系统的结构示意图。如图3所示,该复合传感器系统包括:复合传感器310、信号采集电路320、主控电路330、无线传输模块340和数据处理模块350。
复合传感器310的输出端与信号采集电路320的输入端相连,信号采集电路320的输出端和主控电路330的输入端相连,主控电路330的输出端和无线传输模块340的输入端相连;
主控电路330的控制端分别与信号采集电路320的受控端和无线传输模块340的受控端相连;主控电路330设置为控制信号采集电路320采集复合传感器310感应到的复合传感信号;主控电路330还设置为控制无线传输模块340将复合传感信号发送至数据处理模块350;数据处理模块350设置为对接收到的复合传感信号进行处理。
在一实施例中,无线传输模块340可以是蓝牙模块或者无线保真(WIreless-FIdelity,WIFI)模块。数据处理模块350可以是计算机或者移动终端等具有数据处理能力的设备。
图4为另一实施例提供的一种复合传感器系统的结构示意图。如图4所示,在图3所示的复合传感器系统的基础上,本实施例提供的复合传感器系统中的复合传感器310包括压电驻极体传感器311和生理电信号传感器312;信号采集电路320包括压电信号采集电路321和生理电信号采集电路322;压电驻极体传感器311的输出端与压电信号采集电路321的输入端相连,生理电信号传感器312的输出端与生理电信号采集电路322的输入端相连。
在一实施例中,,信号采集电路320还包括压电信号处理电路323和生理电信号处理电路324;压电信号处理电路323设置于压电驻极体传感器311和压电信号采集电路321之间,压电信号处理电路323的输入端与压电驻极体传感器311的输出端相连;压电信号处理电路323的输出端与压电信号采集电路321的输入端相连;生理电信号处理电路324设置于生理电信号传感器312和生理电信号采集电路322之间,生理电信号处理电路324的输入端与生理电信号传感器312的输出端相连,生理电信号处理电路324的输出端与生理电信号采集电路322的输入端相连。
在一实施例中,压电信号处理电路323包括压电信号放大电路、第一滤波电路及第一模数转换电路;生理电信号处理电路324包括生物点信号放电路大、第二滤波电路及第二模数转换电路。
在一实施例中,压电信号处理电路323设置为对压电信号进行放大、滤波及模数转换处理后,将处理后的压电信号发送至压电信号采集电路321,压电信号采集电路321设置为将压电信号发送至主控电路330;生理电信号处理电路324设置为对生理电信号进行放大、滤波及模数转换处理后,将生理电信号发送至生理电信号采集电路322,生理电信号采集电路322设置为将生理电信号发送至主控电路330。主控电路330设置为对接收到的压电信号及生理电信号信息数据打包处理后,发送至无线传输模块340,无线传输模块340设置为将打包后的传感信号发送至数据处理模块350。
本实施例提供的复合传感器系统可以同时进行压力和生理电信号的采集,从而减小传感器的体积,提高空间利用率。

Claims (10)

  1. 一种复合传感器,包括:压电驻极体传感器、绝缘层和生理电信号传感器;
    所述绝缘层设置于所述压电驻极体传感器和所述生理电信号传感器之间,其中,所述生理电信号传感器包括采集电极。
  2. 根据权利要求1所述的复合传感器,其中,所述压电驻极体传感器上设置有两个导线接口;所述生理电信号传感器还包括两个电极接口。
  3. 一种复合传感器的制作方法,包括:
    在压电驻极体传感器上以第一设定方式形成绝缘层;
    在所述绝缘层上以第二设定方式附着金属层;
    利用设定电极模板在所述金属层上生成生理电信号传感器的采集电极。
  4. 根据权利要求3所述的制作方法,其中,所述第一设定方式包括蒸镀或者层压。
  5. 根据权利要求3或4所述的制作方法,其中,所述第二设定方式包括蒸镀或者磁控溅射。
  6. 根据权利要求3-5任一项所述的制作方法,在所述在压电驻极体传感器上以第一设定方式形成绝缘层之前,还包括:
    对原始压电材料薄膜进行气体扩散膨胀处理;
    在设定温度下使用设定电晕尖端电压对处理后的原始压电材料薄膜充电设定时长,获得压电驻极体薄膜;
    利用真空蒸发的方式在所述压电驻极体薄膜的两个表面上生成两个金属电极,获得金属化薄膜;
    将所述金属化薄膜对称折叠,且将折叠后的金属化薄膜的内表面通过导电胶带粘合在一起;
    将两个金属端子分别连接到两个金属电极上,获得所述压电驻极体传感器。
  7. 一种复合传感器系统,包括:权利要求1或2所述的复合传感器、信号采集电路、主控电路、无线传输模块和数据处理模块;
    所述复合传感器的输出端与所述信号采集电路的输入端相连,所述信号采集电路的输出端和所述主控电路的输入端相连,所述主控电路的输出端和所述无线传输模块的输入端相连;
    所述主控电路的控制端分别与所述信号采集电路的受控端和所述无线传输模块的受控端相连;所述主控电路设置为控制所述信号采集电路采集所述复合 传感器感应到的复合传感信号;所述主控电路设置为控制所述无线传输模块将所述复合传感信号发送至所述数据处理模块;所述数据处理模块设置为对接收到的复合传感信号进行处理。
  8. 根据权利要求7所述的系统,其中,所述信号采集电路包括压电信号采集电路和生理电信号采集电路;
    其中,所述压电驻极体传感器的输出端与所述压电信号采集电路的输入端相连,所述生理电信号传感器的输出端与所述生理电信号采集电路的输入端相连。
  9. 根据权利要求8所述的系统,其中,所述信号采集电路还包括压电信号处理电路和生理电信号处理电路;
    其中,所述压电信号处理电路设置于所述压电驻极体传感器和所述压电信号采集电路之间,所述压电信号处理电路的输入端与所述压电驻极体传感器的输出端相连;所述压电信号处理电路的输出端与所述压电信号采集电路的输入端相连;
    所述生理电信号处理电路设置于所述生理电信号传感器和所述生理电信号采集电路之间,所述生理电信号处理电路的输入端与所述生理电信号传感器的输出端相连,所述生理电信号处理电路的输出端与所述生理电信号采集电路的输入端相连。
  10. 根据权利要求9所述的系统,其中,所述压电信号处理电路包括压电信号放大电路、第一滤波电路及第一模数转换电路;所述生理电信号处理电路包括生物点信号放大电路、第二滤波电路及第二模数转换电路。
PCT/CN2018/120295 2018-08-24 2018-12-11 复合传感器、复合传感器的制作方法及复合传感器系统 WO2020037885A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810974073.9 2018-08-24
CN201810974073.9A CN110857870A (zh) 2018-08-24 2018-08-24 复合传感器、复合传感器的制作方法及复合传感器系统

Publications (1)

Publication Number Publication Date
WO2020037885A1 true WO2020037885A1 (zh) 2020-02-27

Family

ID=69592279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120295 WO2020037885A1 (zh) 2018-08-24 2018-12-11 复合传感器、复合传感器的制作方法及复合传感器系统

Country Status (2)

Country Link
CN (1) CN110857870A (zh)
WO (1) WO2020037885A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111579891A (zh) * 2020-05-11 2020-08-25 北京理工大学 一种电量识别和刚度筛选的耦合式传感方法及其传感系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070089518A1 (en) * 2005-10-26 2007-04-26 Ericson Milton N Method and apparatus for orthopedic implant assessment
CN104161529A (zh) * 2014-09-05 2014-11-26 深圳先进技术研究院 足底压力分布检测系统及其制作方法
US9072463B2 (en) * 2009-01-27 2015-07-07 University Of Washington Prosthetic limb monitoring system
CN204500652U (zh) * 2015-03-18 2015-07-29 深圳市迈迪加科技发展有限公司 一种生理信号采集装置
CN107320116A (zh) * 2017-08-02 2017-11-07 深圳先进技术研究院 一种运动监控系统及其制作方法
CN107345825A (zh) * 2017-09-06 2017-11-14 中国科学院深圳先进技术研究院 集成检测传感器及触摸感应设备
CN207036311U (zh) * 2017-08-02 2018-02-23 深圳先进技术研究院 一种信号检测传感结构
CN207231534U (zh) * 2017-09-06 2018-04-13 中国科学院深圳先进技术研究院 集成检测传感器及触摸感应设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070089518A1 (en) * 2005-10-26 2007-04-26 Ericson Milton N Method and apparatus for orthopedic implant assessment
US9072463B2 (en) * 2009-01-27 2015-07-07 University Of Washington Prosthetic limb monitoring system
CN104161529A (zh) * 2014-09-05 2014-11-26 深圳先进技术研究院 足底压力分布检测系统及其制作方法
CN204500652U (zh) * 2015-03-18 2015-07-29 深圳市迈迪加科技发展有限公司 一种生理信号采集装置
CN107320116A (zh) * 2017-08-02 2017-11-07 深圳先进技术研究院 一种运动监控系统及其制作方法
CN207036311U (zh) * 2017-08-02 2018-02-23 深圳先进技术研究院 一种信号检测传感结构
CN107345825A (zh) * 2017-09-06 2017-11-14 中国科学院深圳先进技术研究院 集成检测传感器及触摸感应设备
CN207231534U (zh) * 2017-09-06 2018-04-13 中国科学院深圳先进技术研究院 集成检测传感器及触摸感应设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MA, XINGCHEN ET AL.: "Flexible film-transducers based on polypropylene piezoelectrets: Fabrication, properties, and applications in wearable devices", SENSORS AND ACTUATORS A, vol. 256, no. \, 17 January 2017 (2017-01-17), XP029933733, ISSN: 0924-4247, DOI: 20190415095542 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111579891A (zh) * 2020-05-11 2020-08-25 北京理工大学 一种电量识别和刚度筛选的耦合式传感方法及其传感系统
CN111579891B (zh) * 2020-05-11 2021-02-26 北京理工大学 一种电量识别和刚度筛选的耦合式传感方法及其传感系统

Also Published As

Publication number Publication date
CN110857870A (zh) 2020-03-03

Similar Documents

Publication Publication Date Title
TWI336770B (en) Sensor
CN109068477B (zh) 一种柔性压力温度集成薄膜阵列传感器敏感元及制备方法
JP2019012075A (ja) 指紋感知システムおよび方法
US10295422B2 (en) Quasi-differential capacitive MEMS pressure sensor and manufacturing methods thereof
WO2003086013A1 (fr) Detecteur de capacites
JP2012503355A (ja) 容量性マイクロマシン超音波トランスデューサ
CN204836579U (zh) 一种梳齿结构mems硅麦克风
CN104535227A (zh) 压入式介电高弹体压力传感器
WO2020037885A1 (zh) 复合传感器、复合传感器的制作方法及复合传感器系统
JP7062216B2 (ja) 超薄型高感度磁気センサ
TW200929852A (en) A micro-electromechanical capacitive sensing circuit
JPH0324793B2 (zh)
CN107345825A (zh) 集成检测传感器及触摸感应设备
CN203027480U (zh) 一种高灵敏度压电式硅麦克风
CN105867678A (zh) 一种具有指纹识别功能的全透明触控屏
CN103067838A (zh) 一种高灵敏度压电式硅麦克风及其制备方法
CN104394496B (zh) 一种小尺寸高灵敏度高信噪比的mems硅麦克风
CN207231534U (zh) 集成检测传感器及触摸感应设备
CN108065961B (zh) 超声波换能器器件、超声波探测器以及超声波装置
JP2003163996A (ja) エレクトレットシリコンコンデンサマイクロホン及びその製造方法
US20160309264A1 (en) Acoustic Apparatus Using Flex PCB Circuit With Integrated I/O Fingers
JP3472502B2 (ja) 半導体エレクトレットコンデンサマイクロホン
WO2017193744A1 (zh) 一种指纹传感器及应用其的智能设备
TWI291838B (en) Microphone structure
WO2022121729A1 (zh) 一种电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.07.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18930839

Country of ref document: EP

Kind code of ref document: A1