WO2022121729A1 - 一种电子设备 - Google Patents

一种电子设备 Download PDF

Info

Publication number
WO2022121729A1
WO2022121729A1 PCT/CN2021/134309 CN2021134309W WO2022121729A1 WO 2022121729 A1 WO2022121729 A1 WO 2022121729A1 CN 2021134309 W CN2021134309 W CN 2021134309W WO 2022121729 A1 WO2022121729 A1 WO 2022121729A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
piezoelectric
electronic device
electrode
display module
Prior art date
Application number
PCT/CN2021/134309
Other languages
English (en)
French (fr)
Inventor
付从华
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022121729A1 publication Critical patent/WO2022121729A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • G06F1/181Enclosures

Definitions

  • the present application relates to the field of communication technologies, and in particular, to an electronic device.
  • the purpose of the present application is to provide an electronic device to solve the problem that the design of a sound pickup hole easily leads to a decrease in sound pickup performance.
  • an electronic device including:
  • a display module the display module and the casing are enclosed to form a accommodating cavity
  • the sound pickup module is located in the accommodating cavity, the sound pickup module is arranged on the inner side of the display module, and is connected with the inner side of the display module;
  • the display module receives a vibration signal, the sound pickup module outputs an electrical signal according to the vibration signal;
  • a signal processing unit the signal processing unit is located in the accommodating cavity, and the signal processing unit is electrically connected with the sound pickup module.
  • the pickup module is arranged on the inner side of the display module of the electronic device, and the pickup module collects the vibration signal transmitted by the display module and converts it into an electrical signal and outputs it to the signal processing unit for processing, thereby
  • the electronic device can cancel the sound pickup hole, so as to avoid the problem of liquid and dust entering the sound pickup hole from affecting the sound pickup function.
  • FIG. 1 shows one of the schematic structural diagrams of an electronic device according to an embodiment of the present application
  • FIG. 2 shows the second schematic structural diagram of the electronic device according to the embodiment of the present application
  • FIG. 3 shows one of the schematic structural diagrams of the piezoelectric sensor according to the embodiment of the present application
  • FIG. 4 shows a schematic diagram of the arrangement of the first electrodes according to the embodiment of the present application.
  • FIG. 5 shows one of the schematic diagrams of the piezoelectric sensor according to the embodiment of the present application for picking up sound signals
  • FIG. 6 is a schematic diagram showing the arrangement position of the piezoelectric sensor and the display module according to the embodiment of the present application.
  • FIG. 7 shows a schematic diagram of the arrangement of piezoelectric sensors according to an embodiment of the present application.
  • FIG. 8 shows the second schematic diagram of the piezoelectric sensor according to the embodiment of the present application for picking up sound signals
  • FIG. 9 shows the third schematic structural diagram of the electronic device according to the embodiment of the present application.
  • FIG. 10 shows one of the operation schematic diagrams of touch detection according to an embodiment of the present application.
  • FIG. 11 shows the second schematic diagram of the touch detection operation according to the embodiment of the present application.
  • FIG. 12 shows the third schematic diagram of the touch detection operation according to the embodiment of the present application.
  • FIG. 13 shows the second schematic structural diagram of the piezoelectric sensor according to the embodiment of the present application.
  • FIG. 14 shows a schematic diagram of fingerprint recognition of a piezoelectric sensor according to an embodiment of the present application
  • FIG. 15 is a schematic diagram showing the configuration flow of the working mode of the piezoelectric sensor according to the embodiment of the present application.
  • FIG. 16 is a schematic diagram of the piezoelectric sensor implementing the sound pickup function according to the embodiment of the present application.
  • FIG. 17 is a schematic diagram of touch detection implemented by a piezoelectric sensor according to an embodiment of the present application.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • an embodiment of the present application provides an electronic device, including:
  • a display module 2, the display module 2 and the casing 1 are enclosed to form a accommodating cavity;
  • the pickup module 3 is located in the accommodating cavity, and the pickup module 3 is arranged on the inner side of the display module 2, and is connected with the inner side of the display module 2. Fittingly connected; when the display module 2 receives a vibration signal, the sound pickup module 3 outputs an electrical signal according to the vibration signal;
  • a signal processing unit 4 the signal processing unit 4 is located in the receiving cavity, and the signal processing unit is electrically connected with the sound pickup module 3 .
  • the display module 2 shown can be a display screen of an electronic device, and the pickup module 3 is arranged inside the electronic device and is connected to the inner side of the display module 2.
  • the sound pickup module 3 can be arranged below the display screen by means of pasting or the like, so as to pick up the sound signal above the display screen.
  • the thickness of the organic light-emitting semiconductor (Organic Electroluminescence Display, OLED) display screen is small, usually less than 1mm. Such as the sound of the user making a phone call; on the other hand, the thickness of the pickup module 3 itself can be made very thin, reaching a thickness of less than 0.3mm, which is easier to be excited by an external sound source to generate vibration, which can ensure the sensitivity of pickup.
  • the pickup module 1 collects vibration signals or deformations caused by sounds located outside the display module, converts these signals into electrical signals, and outputs the electrical signals to the signal processing unit for signal processing, so that they can be transmitted to other electronic equipment or storage. sound file.
  • the pickup module is arranged on the inner side of the display module of the electronic device, and the pickup module collects the vibration signal transmitted by the display module, converts it into an electrical signal, and outputs it to the signal processing unit for processing, thereby realizing the screen display.
  • the electronic device can cancel the pickup hole to avoid the problem of liquid and dust entering the pickup hole from affecting the pickup function.
  • the pickup module 2 includes at least one piezoelectric sensor 31;
  • the piezoelectric sensor 31 includes a piezoelectric layer, a second electrode and at least two first electrodes, and the first surface of the piezoelectric layer is provided with There are the at least two first electrodes, the at least two first electrodes are arranged at intervals to form an electrode array, the second surface of the piezoelectric layer is provided with a second electrode, the first electrode and the second electrode are opposite polarity;
  • the first surface is the surface of the piezoelectric layer facing the display module 2
  • the second surface is the surface of the piezoelectric layer facing away from the display module 2 or the first surface
  • One surface is the surface of the piezoelectric layer facing away from the display module
  • the second surface is the surface of the piezoelectric layer facing the display module.
  • the piezoelectric sensor 31 is shown in FIG. 3 , a plurality of the first electrodes are arranged in an array and arranged on the first surface of the piezoelectric layer of the piezoelectric sensor 31 , and the second electrode is a common electrode and is arranged on the first surface of the piezoelectric layer of the piezoelectric sensor 31 . the second surface of the piezoelectric layer of the piezoelectric sensor.
  • the piezoelectric sensor 31 layer is composed of piezoelectric material, such as piezoelectric ceramics. Piezoelectric material has remarkable piezoelectric properties, and when it vibrates under the action of an external force (for example, under the action of a sound signal outside the display module) and deforms, the first surface and the second surface produce different differences. The electric charge forms a potential difference, that is, the piezoelectric effect.
  • the second electrode on the second surface is a common electrode, has good electrical conductivity, and can be formed on the second surface (eg, the lower surface) of the piezoelectric material through a coating process.
  • a silver film can be plated on the lower surface of the piezoelectric material.
  • the piezoelectric sensor is shown in FIG. 3 .
  • the first electrode disposed on the first surface of the piezoelectric layer of the piezoelectric sensor 31 forms an electrode array.
  • the electrode array is composed of several electrodes.
  • the electrodes have good electrical conductivity and can be formed on the first surface of the piezoelectric material by a coating process. (eg: upper surface).
  • a coating process eg: upper surface.
  • 9 electrodes are arranged on the upper surface of the piezoelectric layer of the piezoelectric sensor 31 to form an electrode array, and the 9 electrodes are the first electrode.
  • the piezoelectric layer When the piezoelectric sensor 31 vibrates under the action of an external force (for example, someone is talking loudly nearby, or a speaker is playing music), the piezoelectric layer will generate a potential difference between the first surface and the second surface due to the piezoelectric effect.
  • the common electrode ie, the second electrode
  • the electrode array ie, the first electrode
  • the 3 ⁇ 3 electrode array and the common electrode constitute 9 small signal sources.
  • the electrical signal of the above signal source can be collected by the voltage collection circuit, and output to the signal processing unit 4 for processing.
  • the sound pickup module further includes: a preprocessing module; one end of the preprocessing module is connected to the piezoelectric sensor, and the other end of the preprocessing module is connected to the signal processing unit.
  • the preprocessing module can perform noise reduction processing on the electrical signal converted by the piezoelectric sensor, and then input it to the signal processing unit, thereby improving the signal-to-noise ratio of the electrical signal.
  • the preprocessing module may be a noise reduction module, which is used to remove part of the noise of the electrical signal; the preprocessing module may also be a filtering module, which can filter the electrical signal; the preprocessing module may also be Other processing modules that improve pickup sensitivity and signal-to-noise ratio.
  • the signal processing unit 4 collects the voltage values of each channel of the 3 ⁇ 3 electrode array (one electrode corresponds to one channel) on the one hand, and on the other hand, uses various methods to The voltage values of the channels are accumulated. In this way, weak single-channel signals can be accumulated to obtain stronger signals.
  • the signals of the electrode (1, 1), the electrode (2, 1), and the electrode (3, 1) can be digitized, and then the signals are accumulated to obtain the first-level accumulated signal.
  • a noise reduction module can also be added to remove a part of the noise from the electrical signals of each channel and then accumulate them to avoid the accumulation of noise, thereby improving the signal-to-noise ratio of the first accumulated signal.
  • the signals of electrode (1, 2), electrode (2, 2), and electrode (3, 2) are accumulated to obtain a second accumulated signal, and electrode (1, 3), electrode (2, 3), electrode (3 , 3)
  • the signals are accumulated to obtain the third accumulated signal.
  • the first accumulated signal, the second accumulated signal, and the third accumulated signal are further accumulated to obtain a fourth accumulated signal.
  • a noise reduction module can be added to remove a part of noise from the three accumulated signals and then accumulate them to avoid the accumulation of noise, thereby further improving the signal-to-noise ratio of the fourth accumulated signal.
  • the conversion of a sound signal to an electrical signal can be realized through the accumulation of signals of multiple channels, and a certain pickup sensitivity and signal-to-noise ratio can be guaranteed.
  • the piezoelectric sensor 31 can be arranged under the display module 2 of the electronic device by means of pasting or the like, so as to pick up a part of the sound signal above the display screen.
  • the piezoelectric sensor 31 includes a piezoelectric layer, the piezoelectric layer is made of piezoelectric material, the first electrode is arranged on the first surface of the piezoelectric material, and the common electrode is arranged on the second surface of the piezoelectric material, that is, the The second electrode, the sound wave located outside the display module 2 can be transmitted to the piezoelectric sensor 31 through the display module 2 .
  • the sound pickup module 3 may include at least two piezoelectric sensors, the at least two piezoelectric sensors are distributed at intervals, and the working frequency bands of each piezoelectric sensor are different.
  • a plurality of piezoelectric sensors 31 can be arranged under the display module 2, and the sound waves on the outside of the display module 2 are transmitted to the plurality of piezoelectric sensors through the display module 2.
  • the piezoelectric sensor converts the sound signal into an electrical signal and transmits it to the signal processing unit 4 for processing.
  • a high-frequency piezoelectric sensor 311 , an intermediate-frequency piezoelectric sensor 312 , and a low-frequency piezoelectric sensor 313 can be provided.
  • the resonant frequencies of the above three piezoelectric sensors are different, and the resonant frequencies are respectively distributed in the high-frequency, mid-frequency, and low-frequency in the audio domain. frequency band.
  • the resonant frequency of the high-frequency piezoelectric sensor is about 15KHz
  • the resonance frequency of the medium-frequency piezoelectric sensor is about 5KHz
  • the resonance frequency of the low-frequency piezoelectric sensor is about 500Hz.
  • a high-frequency piezoelectric sensor can be set at 15KHz, 13KHz, and 10KHz, so as to improve the signal-to-noise ratio of the picked-up audio signal as much as possible, loudness and reduce distortion.
  • the at least two piezoelectric sensors are arranged at intervals to form an n*m sensor matrix; the projection of the sensor matrix on the display module is located within the target area on the display module; wherein n, m All are positive integers.
  • the target area can be set according to the user's habit, for example, it is set at the position where the display module is close to the bottom end of the electronic device, and the sensor matrix is set under the display module and is at the position close to the bottom end of the electronic device, which is convenient for the user. Better pickup during calls.
  • the sensor matrix may include: a high frequency sensor area, an intermediate frequency sensor area and a low frequency sensor area;
  • the signal processing unit includes a first synthesizing unit, a second synthesizing unit, a third synthesizing unit and a fourth synthesizing unit; the input end of the first synthesizing unit and at least two high-frequency sensors in the high-frequency sensor area respectively; the input end of the second synthesis unit is respectively connected with at least two intermediate frequency sensors in the intermediate frequency sensor area; the input end of the third synthesis unit is connected with at least two low frequency sensors in the low frequency sensor area are respectively connected; the input end of the fourth synthesis unit is respectively connected with the output end of the first synthesis unit, the output end of the second synthesis unit and the output end of the third synthesis unit.
  • FIG. 8 Taking FIG. 8 as an example to illustrate the principle of picking up sound signals when multiple piezoelectric sensors 31 are installed, a 3 ⁇ 3 piezoelectric sensor matrix is arranged below the display screen (ie, the display module 2 ), and the first from left to right
  • the three piezoelectric sensors 31 in the column are high-frequency piezoelectric sensors, which are responsible for responding to the high-frequency components in the sound, and send the high-frequency components to the first synthesis unit 41 in the signal processing unit.
  • the first synthesis unit can be High frequency synthesis unit (High Band, HB).
  • the second column is an intermediate frequency piezoelectric sensor, and the signal is sent to the second synthesis unit 42, which may be an intermediate frequency synthesis unit (Middle Band, MB);
  • the third column is a low frequency piezoelectric sensor, and the signal is sent to the second synthesis unit 42.
  • the third synthesis unit may be a low frequency synthesis unit (Low Band, LB,).
  • the fourth synthesis unit 44 in the signal processing unit 4 further synthesizes the synthesized signals of the HB, MB, and LB synthesis units into a full-band signal (Full Band, FB), which is the picked-up complete audio signal.
  • the sound pickup module formed by the piezoelectric sensor of the present application is arranged below the display module of the electronic device.
  • the electronic device can cancel the traditional electret and MEMS microphone pickup device, and replace it with the above-mentioned piezoelectric sensor to realize non-porous pickup. sound design.
  • the piezoelectric layer of the piezoelectric sensor When the piezoelectric layer of the piezoelectric sensor is deformed under the action of external force (for example: pressing or tapping the part with a finger), the deformation amount of each area of the entire piezoelectric layer is usually different, as shown in Figure 3- Figure 4, then The 3 ⁇ 3 electrode array and the common electrode constitute 9 small signal sources. The potential difference collected is significantly different.
  • the signal processing unit can determine the central area where the external force acts through the amplitude distribution. For example: when it is found that the potential difference between the electrodes (2, 2) and the second electrode is the largest, it means that the center of action of the external force is in the area corresponding to the electrodes (2, 2).
  • the piezoelectric sensor 31 in the pickup module can be further used as a pressure sensor, and it is possible to realize the identification of the pressure center position, so as to provide a better experience for the human-computer interaction of the electronic device.
  • the electrode array may include at least two electrode regions, each of which has a different operating frequency band.
  • the target area in the at least two electrode areas is the sound pickup electrode area, which can convert the vibration signal transmitted by the display module into an electrical signal.
  • the electrode array includes two electrode areas, the first electrode area is the sound pickup electrode area, the second electrode area is the touch detection electrode area, and the electrodes of the sound pickup electrode area are used to pick up the vibration transmitted by the display module Signals; the touch detection area is used to detect operation signals such as tapping, pressing, etc. that the user acts on the display module (such as a display screen), so as to realize a plurality of different functions.
  • the first electrode region and the second electrode region may be different electrode regions of the same piezoelectric sensor, or may be different electrode regions of different piezoelectric sensors.
  • the signal processing unit may include: processing sub-units correspondingly connected to the electrode regions; each of the electrode regions is respectively connected to one of the processing sub-units. Each electrode area is respectively connected with a processing subunit, which is used to process the electrical signals transmitted by the electrode area connected to it.
  • the electrode array includes two electrode areas, and the first electrode area is the pickup electrode area.
  • the second electrode area is the touch detection electrode area
  • the signal processing unit includes a first processing subunit and a second processing subunit
  • the first processing subunit is connected to the first electrode area, and is used for The electrical signal transmitted by the first electrode area and corresponding to the sound signal (that is, the vibration signal transmitted by the display module) is processed
  • the second processing subunit is connected to the second electrode area, and is used for transmitting the second electrode area.
  • the electrical signal corresponding to the user operation signal is processed.
  • a piezoelectric sensor (a single large-area sensor) or a piezoelectric sensor matrix is hidden and arranged under the display module 2 (such as a display screen). (a large-area array composed of multiple piezoelectric sensors).
  • the first electrode area 12 of the piezoelectric sensor 31 (or matrix) can pick up the sound signal on the other side of the display screen.
  • the weak deformation of the display screen will be transmitted to the second electrode area 13 of the piezoelectric sensor (or matrix) below, and received by the second electrode area 13 .
  • the internal signal processing unit includes a first processing subunit corresponding to the first electrode area 12, and a second processing subunit corresponding to the second electrode area 13, then the signal processing unit can obtain each piezoelectric The sensor, or even the piezoelectric signal picked up by each electrode of each piezoelectric sensor, can also identify the area where the finger is pressed and tapped by judging the strength of the piezoelectric signal of each piezoelectric sensor and electrode.
  • the relative positions of the first electrode area and the second electrode area can be set according to actual operation requirements, such as left-right arrangement, up-down arrangement, and the like.
  • the second electrode area 13 which is used for touch detection, as shown in FIG. 10 and FIG. 11 , many new experiences of human-computer interaction can be provided according to the area recognition of finger pressing and tapping.
  • the second electrode area 13 can also be divided into two areas, only the second electrode area 13 is shown in FIG. 10 and FIG. 11 , and the first electrode area can be arranged below the second electrode area .
  • the electronic device When the user taps the lower left area of the display screen corresponding to the second electrode area 13 with a finger, the electronic device will perform a volume reduction action; when the user taps the lower right area of the display screen corresponding to the second electrode area 13 , the electronic device will perform the volume up action.
  • FIG. 10 and FIG. 11 many new experiences of human-computer interaction can be provided according to the area recognition of finger pressing and tapping.
  • the second electrode area 13 can also be divided into two areas, only the second electrode area 13 is shown in FIG. 10 and FIG. 11 , and the first electrode area can be arranged below the second electrode area .
  • the electronic device 12 taking the first electrode area 12 and the second electrode area 13 as an example, when the screen of the electronic device is turned off and standby, the user taps the second electrode area 13 of the pressure sensor with a finger , the electronic device will wake up the display function. Users can easily double-click to wake up the electronic device to view the time, short messages and other content.
  • the sound pickup function can be realized, and on the other hand, it can also be used for touch detection to realize the pressure interaction function.
  • the electrode array may include three electrode areas: a sound pickup electrode area, a fingerprint recognition electrode area, and a touch detection electrode area.
  • the sound pickup electrode area is used to pick up the sound signal transmitted by the display module
  • the fingerprint recognition electrode area is used for fingerprint recognition
  • the touch detection area is used for touch detection, so as to realize a piezoelectric sensor or a pressure sensor.
  • the electrical sensor matrix fulfills three different functions.
  • the piezoelectric layer includes at least two functional regions, and each of the functional regions has different piezoelectric parameters.
  • the difference in the piezoelectric parameters may be that the parameters of the piezoelectric materials constituting the piezoelectric layer are different.
  • the piezoelectric layer is made of piezoelectric material, and the piezoelectric layer includes a sound pickup area, a fingerprint identification area and a touch detection area.
  • the material parameters of the three areas Differently, in this embodiment, different functional modules are distinguished on the piezoelectric material.
  • the piezoelectric sensor is composed of several pixels, and the single-pixel structure includes piezoelectric materials of various specifications. At least one of the thickness, area, and material of these piezoelectric materials may be different, so that each type of piezoelectric material may be different. The sensitivity and resonance frequency band of the specifications are different.
  • a first electrode is arranged on the first surface of the piezoelectric layer, and a second electrode is arranged on the second surface of the piezoelectric material, that is, the common electrode.
  • a piezoelectric sensor composed of piezoelectric materials 31 is attached to the inner side of the display module 2 through adhesive.
  • piezoelectric material (1, 1) is less sensitive and can only pick up strong signals (eg: finger taps on the screen), so this area can be used for touch detection; piezoelectric material (1, 2) is sensitive to The frequency is very high, but it is only sensitive to signals in the frequency range of 20Hz to 20KHz.
  • piezoelectric materials (1, 3) have high resonance frequencies (eg: 10MHz) and are not sensitive to low-frequency signals. , which is only used for transmitting ultrasonic signals and receiving ultrasonic echoes, that is, fingerprint recognition, and this part of the area is used for fingerprint recognition. In this way, when the electronic device needs different functions, it is only necessary to collect the electrode voltage at the substrate corresponding to the piezoelectric material, so as to realize the simultaneous operation of multiple functions.
  • the electronic device further includes a detection module and a control module connected to the detection module; the detection module is used to detect the working state of the electronic device; the control module is connected to the piezoelectric sensor, The control module is used for controlling the working mode of the piezoelectric sensor according to the working state.
  • the working modes may include: a voice pickup mode, a fingerprint recognition mode, and a touch detection mode.
  • the piezoelectric sensor may be integrated with the fingerprint sensor of the electronic device, or the fingerprint identification sensor may be multiplexed into the piezoelectric sensor.
  • the substrate (ie, piezoelectric material) of the piezoelectric sensor 31 is coated with electrodes on both sides, and the electrode on the second surface opposite to the display module 2 is usually a whole piece of common electrode, which is close to the display module.
  • the electrodes on the first surface of the module are electrode arrays.
  • the piezoelectric sensor 31 is attached to the display module 2 through an adhesive, so as to discharge the air between the piezoelectric material and the display module 1 .
  • the piezoelectric material can be excited to vibrate ultrasonic waves, and the ultrasonic waves pass through the adhesive and the display module 2 to reach the fingerprint on the surface of the finger 14 .
  • the fingerprint ridge on the surface of the finger is the skin, and the acoustic impedance of the skin is close to and in direct contact with the display module.
  • Ultrasonic energy is transmitted into the skin and absorbed by the skin, and the emitted ultrasonic energy is extremely small.
  • the acoustic impedance of air and air is significantly larger than that of the display module.
  • the ultrasonic waves are totally reflected at the interface between the display module 2 and the air, the transmitted energy is extremely small, and the reflected ultrasonic energy is high.
  • the piezoelectric material in the corresponding area of the fingerprint valley acts on the piezoelectric effect.
  • the electric charge is generated to form a voltage, and a fingerprint pattern can be formed by collecting the voltage signal on the electrode array.
  • the piezoelectric sensor is used for fingerprint identification, that is, it works in the fingerprint identification mode.
  • the piezoelectric sensor can also be used for sound pickup and touch detection.
  • the ultrasonic fingerprint recognition function, the sound pickup function, and the touch detection function can be separated by scene.
  • the piezoelectric sensor will be configured In the fingerprint recognition mode, ultrasonic transmission and reception are performed, that is, the electronic device can drive the piezoelectric sensor to transmit ultrasonic waves and then receive its echo signals.
  • the operating frequency of the piezoelectric material is relatively high (such as: above 1MHz, even to tens of MHz), and the ultrasonic transmission and reception are realized in time division (ie: first send and then receive, not simultaneously send and receive) .
  • the piezoelectric sensor When the detection module of the electronic device detects that the electronic device is in a state of collecting sound (eg, during a call), the piezoelectric sensor will be configured in a pickup mode to receive audio. In this mode, the piezoelectric material will respond to vibrations within and outside the audio frequency range. By adding a filter to the signal processing circuit, the noise beyond the audio frequency range can be filtered out (see f1 and f3 in Figure 16) to preserve Signals in the range of 20Hz ⁇ 20KHz (f2 in Figure 16), to achieve sound pickup.
  • the piezoelectric controller When the detection module of the electronic device detects that the electronic device is in a state of capturing touch actions (eg, listening to music, taking pictures, playing videos), the piezoelectric controller will be configured in a touch detection mode to perform low-frequency reception. In this mode, the signal received by the piezoelectric material of the piezoelectric sensor, on the one hand, will be amplified and compared with the reference voltage to filter out weak signals with low amplitude (which can solve the problem of false touches very well); on the other hand The interaction type judgment will be performed on the compared signals to identify the interaction actions such as single click and double click.
  • f1 is a weak signal (such as the voice of a person speaking)
  • f2 is a signal that manually taps the screen (such as double-tapping the screen with a finger)
  • f3 is a continuous strong signal (such as: motor vibration in the terminal).
  • Comparator 15 can filter out f1.
  • the waveform judgment module 16 judges the duration of the high-amplitude signal (the single-click, double-click, long-press and other waveforms can be judged by multiple delay sampling)
  • f3 can be filtered to obtain the required f2 signal. Because the waveform judgment module belongs to a digital circuit, after passing through this module, f2 will be automatically shaped into a regular square wave signal for subsequent circuits.
  • the working mode of the piezoelectric sensor is controlled according to the current working state of the electronic device, so that it can work in sound pickup according to requirements.
  • the use of piezoelectric sensors can realize multiple functions such as fingerprint recognition, sound pickup, touch interaction, etc., saving the structural space of electronic equipment.
  • the pickup module is arranged on the inner side of the display module of the electronic device, and the pickup module collects the vibration signal transmitted by the display module, converts it into an electrical signal, and outputs it to the signal processing unit for processing, thereby realizing the screen display.
  • the electronic device can cancel the pickup hole to avoid the problem of liquid and dust entering the pickup hole from affecting the pickup function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

本申请公开了一种电子设备,包括:壳体;显示模组,所述显示模组与所述壳体围合形成容纳腔;拾音模组,所述拾音模组位于所述容纳腔内,所述拾音模组设置于所述显示模组的内侧面,且与所述显示模组的内侧面贴合连接;在所述显示模组接收到振动信号的情况下,所述拾音模组根据所述振动信号输出电信号;信号处理单元,所述信号处理单元位于所述容纳腔内,且所述信号处理单元与所述拾音模组电连接。

Description

一种电子设备
相关申请的交叉引用
本申请主张在2020年12月07日在中国提交的中国专利申请No.202011432166.2的优先权,其全部内容通过引用包含于此。
技术领域
本申请涉及通信技术领域,尤其涉及一种电子设备。
背景技术
随着通信技术的发展,电子产品的种类越来越多,功能也越来越集中,对于电子设备的可靠性的要求也越来越严苛。例如:智能终端的防水要求越来越高,因此催生了一系列无孔化的技术。在现有技术中,智能终端等电子设备的拾音功能,通常是依靠设计在外观面上的拾音孔传声到内置麦克风,拾音孔的设计容易带来进液、进尘方面的问题,影响拾音效果,甚至导致产品丧失拾音功能。
发明内容
本申请旨在提供一种电子设备,用以解决拾音孔的设计易导致拾音性能降低的问题。
第一方面,本申请实施例提供了一种电子设备,包括:
壳体;
显示模组,所述显示模组与所述壳体围合形成容纳腔;
拾音模组,所述拾音模组位于所述容纳腔内,所述拾音模组设置于所述显示模组的内侧面,且与所述显示模组的内侧面贴合连接;在所述显示模组接收到振动信号的情况下,所述拾音模组根据所述振动信号输出电信号;
信号处理单元,所述信号处理单元位于所述容纳腔内,且所述信号处理单元与所述拾音模组电连接。
这样,本申请的上述方案,将拾音模组设置在电子设备的显示模组内侧面,拾音模组采集显示模组传递的振动信号并转换为电信号输出至信号处理单元进行处理,从而实现屏下拾音,电子设备可以取消拾音孔,避免拾音孔的进液、进尘等问题影响拾音功能。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1表示本申请实施例的电子设备的结构示意图之一;
图2表示本申请实施例的电子设备的结构示意图之二;
图3表示本申请实施例的压电传感器的结构示意图之一;
图4表示本申请实施例的第一电极的排布示意图;
图5表示本申请实施例的压电传感器拾取声音信号的原理图之一;
图6表示本申请实施例的压电传感器与显示模组的设置位置示意图;
图7表示本申请实施例的压电传感器的排布示意图;
图8表示本申请实施例的压电传感器拾取声音信号的原理图之二;
图9表示本申请实施例的电子设备的结构示意图之三;
图10表示本申请实施例的触控检测的操作示意图之一;
图11表示本申请实施例的触控检测的操作示意图之二;
图12表示本申请实施例的触控检测的操作示意图之三;
图13表示本申请实施例的压电传感器的结构示意图之二;
图14表示本申请实施例压电传感器的指纹识别示意图;
图15表示本申请实施例压电传感器的工作模式配置流程示意图;
图16表示本申请实施例压电传感器实现拾音功能的示意图;
图17表示本申请实施例压电传感器实现触控检测的示意图。
具体实施方式
下面将详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
下面结合描述根据本发明实施例的电子设备。
如图1和图2所示,本申请的实施例提供一种电子设备,包括:
壳体1;
显示模组2,所述显示模组2与所述壳体1围合形成容纳腔;
拾音模组3,所述拾音模组3位于所述容纳腔内,所述拾音模组3设置于所述显示模组2的内侧面,且与所述显示模组2的内侧面贴合连接;在所述显示模组2接收到振动信号的情况下,所述拾音模组3根据所述振动信号输出电信号;
信号处理单元4,所述信号处理单元4位于所述容纳腔内,且所述信号处理单元与所述拾音模组3电连接。
所示显示模组2可以为电子设备的显示屏,所述拾音模组3设置于电子设备内部,与所述显示模组2的内侧面贴合连接,具体地,以所述显示模组为显示屏为例,所述拾音模组3可以通过粘贴等方式设置在显示屏的下方,即可拾取显示屏上方的声音信号。有机发光半导体(Organic Electroluminescence Display,OLED)显示屏的厚度较小,通常为1mm以下,薄形化的显示屏对声音的阻挡能力较小,因此位于显示屏下方的拾音模组3能够拾取到诸如用户打电话的声音;另一方面,拾音模组3本身的厚度可以做到很薄,达到0.3mm以下的厚度,较容易被外部音源激励产生振动,能够保证拾音的灵敏度。
拾音模组1采集位于显示模组外部声音导致的振动信号或形变,并将这些信号转换为电信号,将电信号输出到信号处理单元进行信号处理,从而可以传输到另外的电子设备或者存储声音文件。
本申请的实施例,将拾音模组设置在电子设备的显示模组内侧面,拾音模组采集显示模组传递的振动信号并转换为电信号输出至信号处理单元进行处理,从而实现屏下拾音,电子设备可以取消拾音孔,避免拾音孔的进液、进尘等问题影响拾音功能。
具体地,所述拾音模组2包括至少一个压电传感器31;所述压电传感器31包括压电层、第二电极和至少两个第一电极,所述压电层的第一表面设有所述至少两个第一电极,所述至少两个第一电极间隔排列以形成电极阵列,所述压电层的第二表面设有第二电极,所述第一电极和第二电极的极性相反;
其中,所述第一表面为所述压电层朝向所述显示模组2的表面,所述第 二表面为所述压电层背向所述显示模组2的表面,或者,所述第一表面为所述压电层背向所述显示模组的表面,所述第二表面为所述压电层朝向所述显示模组的表面。
压电传感器31如图3所示,多个所述第一电极排列成阵列的形式设置在所述压电传感器31的压电层的第一表面,所述第二电极为公共电极,设置在所述压电传感器的压电层的第二表面。所述压电传感器31层由压电材料构成,所述压电材料例如压电陶瓷。压电材料具有显著的压电特性,当在外力的作用下振动(例如在显示模组外部的声音信号的作用下振动)产生形变时,所述第一表面和所述第二表面产生不同的电荷,形成电势差,即压电效应。
所述第二表面的第二电极为公共电极,具有良好的导电特性,可以通过镀膜工艺生成在压电材料的第二表面(如:下表面)。例如:可以在压电材料的下表面镀一层银膜。所述压电传感器如图3所示。
设置在所述压电传感器31压电层的第一表面的第一电极形成电极阵列,电极阵列有若干电极构成,电极具有良好的导电特性,可以通过镀膜工艺生成在压电材料的第一表面(如:上表面)。如图4所示,为便于叙述,以3×3阵列为例,在压电传感器31的压电层的上表面布置有9个电极,构成电极阵列,该9个电极即为所述第一电极。
当压电传感器31在外力作用下振动时(如:附近有人大声讲话、有音箱播放音乐),压电层会因为压电效应在所述第一表面、第二表面产生电势差。如图3所示,为便于描述,假设公共电极(即所述第二电极)聚集负电荷,电极阵列(即所述第一电极)聚集正电荷,即电极阵列的电势高于公共电极。则3×3的电极阵列与公共电极构成了9个小的信号源。可以通过电压采集电路采集上述信号源的电信号,并输出到信号处理单元4处理。
可选地,所述拾音模组还包括:预处理模块;所述预处理模块的一端与所述压电传感器连接,所述预处理模块的另一端与所述信号处理单元连接。所述预处理模块可以将所述压电传感器转换形成的电信号进行降噪处理,再输入至所述信号处理单元,从而提高电信号的信噪比。其中,所述预处理模 块可以为降噪模块,用于将电信号的部分噪声去掉;所述预处理模块还可以为滤波模块,能够对电信号进行滤波处理;所述预处理模块还可以为其他能够提高拾音灵敏度和信噪比的处理模块。
以图5为例,说明所述压电传感器31拾取声音信号的原理。当外部音源激励压电传感器的压电层产生振动时,信号处理单元4一方面采集3×3电极阵列各个通道(一个电极对应一个通道)的电压值,另一方面则通过各种方式将各个通道的电压值累加。如此,可以将微弱的单通道信号,累加得到较强的信号。作为示例,可以将电极(1,1)、电极(2,1)、电极(3,1)的信号数字化,然后进行信号累加得到第一级累加信号。在这个过程中,还可以加入降噪模块,将各个通道的电信号去掉一部分噪声再累加,避免噪声的累加,从而提高第一累加信号的信噪比。如此类推,将电极(1,2)、电极(2,2)、电极(3,2)信号累加得到第二累加信号,将电极(1,3)、电极(2,3)、电极(3,3)信号累加得到第三累加信号。再将第一累加信号、第二累加信号、第三累加信号进一步累加得到第四累加信号。在此过程中,可以加入降噪模块,将三个累加信号去掉一部分噪声再累加,避免噪声的累加,从而进一步提高第四累加信号的信噪比。如此,可以通过多个通道的信号累加,实现声音信号向电信号的转换,并能够保证一定的拾音灵敏度和信噪比。
如图6所示,可以通过粘贴等方式将所述压电传感器31设置在电子设备的显示模组2下方,即可拾取一部分显示屏上方的声音信号。所述压电传感器31包括压电层,压电层由压电材料构成,在压电材料的第一表面设置所述第一电极,在压电材料的第二表面设置公共电极,即所述第二电极,位于所述显示模组2外部的声波可以通过所述显示模组2传递至所述压电传感器31。
可选地,所述拾音模组3可以包括至少两个压电传感器,所述至少两个压电传感器间隔分布,每个所述压电传感器的工作频段不同。如图7所示,可以在显示模组2下方设置多个压电传感器31,在所述显示模组2外侧的声波经由所述显示模组2传递至所述多个压电传感器,由所述压电传感器将声音信号转换为电信号传输至信号处理单元4进行处理。作为示例,可以设置 高频压电传感器311、中频压电传感器312、低频压电传感器313,上述三种压电传感器的谐振频率不同,谐振频率分别分布在音频域内的高频段、中频段、低频段。例如:高频压电传感器的谐振频率在15KHz左右,中频压电传感器的谐振频率在5KHz左右,低频压电传感器的谐振频率在500Hz左右。其中,高频压电传感器也可以有多个,并且谐振频率可以各不相同,例如可以在15KHz、13KHz、10KHz各设置一个高频压电传感器,以尽可能提高拾取的音频信号信噪比、响度,并降低失真率。
具体地,所述至少两个压电传感器间隔排列形成n*m传感器矩阵;所述传感器矩阵在所述显示模组的投影,位于所述显示模组上的目标区域之内;其中n、m均为正整数。所述目标区域可以根据用户的习惯设置,例如设置在所述显示模组靠近电子设备底端的位置,所述传感器矩阵设置在显示模组下方,且为靠近所述电子设备底端的位置,便于用户通话的时候更好的拾音。
进一步地,所述传感器矩阵可以包括:高频传感器区域、中频传感器区域以及低频传感器区域;
所述信号处理单元包括第一合成单元、第二合成单元、第三合成单元以及第四合成单元;所述第一合成单元的输入端与所述高频传感器区域中的至少两个高频传感器分别连;所述第二合成单元的输入端与所述中频传感器区域中的至少两个中频传感器分别连接;所述第三合成单元的输入端与所述低频传感器区域中的至少两个低频传感器分别连接;所述第四合成单元的输入端与所述第一合成单元的输出端、所述第二合成单元的输出端以及所述第三合成单元的输出端分别连接。
以图8为例说明设置多个压电传感器31时的拾取声音信号的原理,显示屏(即所述显示模组2)下方布置有3×3的压电传感器矩阵,从左往右第一列的3个压电传感器31为高频压电传感器,负责响应声音中的高频分量,并将高频分量送入信号处理单元中的第一合成单元41,所述第一合成单元可以为高频合成单元(High Band,HB)。同理,第二列为中频压电传感器,信号送入第二合成单元42,所述第二合成单元可以为中频合成单元(Middle Band, MB);第三列为低频压电传感器,信号送入第三合成单元42,所述第三合成单元可以为低频合成单元(Low Band,LB,)。信号处理单元4中的第四合成单元44再将HB、MB、LB合成单元的合成信号进行二次合成为全频段信号(Full Band,FB),即为拾取的完整音频信号。
本申请的压电传感器构成的拾音模组设置在电子设备的显示模组下方,电子设备可以取消传统的驻极体、微机电麦克风拾音器件,而以上述压电传感器代替,实现无孔拾音设计。
当压电传感器的压电层在外力作用下产生形变时(如:用手指按压、敲击局部),整个压电层各个区域的形变量通常不一样,如图3-图4所示,则3×3的电极阵列与公共电极构成了9个小的信号源采集到的电势差有显著差异。信号处理单元通过幅度分布,即可判断外力作用的中心区域。例如:当发现电极(2,2)与第二电极之间的电势差最大时,说明外力作用中心就在电极(2,2)对应区域。利用该特性,可以进一步利用所述拾音模组中的压电传感器31兼做压力传感器,并有可能实现压力中心位置的识别,以为电子设备的人机交互提供更好的体验。
具体地,所述电极阵列可以包括至少两个电极区域,每个所述电极区域的工作频段不同。该实施例中,所述至少两个电极区域中的目标区域为拾音电极区域,可以将显示模组传递的振动信号转换为电信号。例如:所述电极阵列包括两个电极区域,第一电极区域为拾音电极区域,第二电极区域为触控检测电极区域,所述拾音电极区域的电极用于拾取显示模组传递的振动信号;所述触控检测区域用于检测用户作用在显示模组(如显示屏)上的敲击、按压等操作信号,从而实现多个不同功能。需要说明的是,所述第一电极区域和所述第二电极区域可以为同一压电传感器的不同电极区域,也可以为不同压电传感器的不同电极区域。
所述信号处理单元可以包括:与所述电极区域对应连接的处理子单元;每个所述电极区域分别对应连接一个所述处理子单元。每个电极区域分别对应连接一个处理子单元,该处理子单元用于处理与其连接的电极区域传输的 电信号,例如:所述电极阵列包括两个电极区域,第一电极区域为拾音电极区域,第二电极区域为触控检测电极区域,则所述信号处理单元包括第一处理子单元和第二处理子单元,所述第一处理子单元与所述第一电极区域连接,用于对第一电极区域传输的与声音信号(即显示模组传递的振动信号)对应的电信号进行处理;所述第二处理子单元与所述第二电极区域连接,用于对第二电极区域传输的与用户操作信号对应的电信号进行处理。
如图9所示的电子设备,以所述电极区域为两个为例,在显示模组2(例如显示屏)下方隐藏布置有压电传感器(单颗大面积传感器),或压电传感器矩阵(多颗压电传感器构成的大面积阵列)。一方面,压电传感器31(或矩阵)的第一电极区域12可以拾取显示屏另外一侧的声音信号。另一方面,当手指按压或敲击在显示屏上时,显示屏发生的微弱形变会传递给下方的压电传感器(或矩阵)的第二电极区域13,被所述第二电极区域13接收。内部的信号处理单元包括与第一电极区域12对应的第一处理子单元,以及与所述第二电极区域13对应的第二处理子单元,则所述信号处理单元可以获取每一颗压电传感器,甚至是每一颗压电传感器的每一个电极拾取到的压电信号,也就可以通过判断每个压电传感器、电极的压电信号强弱识别手指按压、敲击的区域。
所述第一电极区域和所述第二电极区域的相对位置可以根据实际操作需求设置,例如左右排布、上下排布等。
对于第二电极区域,用于进行触控检测,如图10和图11所示,根据手指按压、敲击的区域识别,可以提供诸多人机交互的新体验。例如:所述第二电极区域13还可以区分为两个区域,图10和图11中仅显示所述第二电极区域13,所述第一电极区域可以设置在所述第二电极区域的下方。当用户通过手指敲击所述第二电极区域13对应的显示屏的左下区域时,电子设备将执行音量减小动作;当敲击所述第二电极区域13对应的显示屏的右下区域时,电子设备将执行音量增加动作。或者,如图12所示,以所述第一电极区域12和所述第二电极区域13左右排为例,当电子设备灭屏待机时,用户通过 手指敲击压力传感器的第二电极区域13的附近区域,电子设备将唤醒显示功能。用户可以很方便的实现双击唤醒电子设备以查看时间、短消息等内容。
该实施例中,利用压电传感器,一方面可以实现拾音功能,另一方面还可以用于触控检测实现压力交互功能。
可选地,所述电极阵列可以包括:拾音电极区域、指纹识别电极区域以及触控检测电极区域三个电极区域。所述拾音电极区域用于拾取显示模组传递的声音信号,所述指纹识别电极区域用于进行指纹识别,所述触控检测区域用于进行触控检测,从而实现一个压电传感器或者压电传感器矩阵实现三种不同功能。
作为本申请的可选实施例,所述压电层包括至少两个功能区域,每个所述功能区域的压电参数不同。所述压电参数不同可以为构成所述压电层的压电材料的参数不同。
以所述压电层包括三个功能区域为例,所述压电层由压电材料构成,所述压电层包括拾音区域、指纹识别区域以及触控检测区域,三个区域的材料参数不同,该实施例在压电材料上,区分不同的功能模块。如图13所示,所述压电传感器由若干像素构成,单像素结构包括多种规格的压电材料,这些压电材料的厚度、面积、材质中的至少一者可能存在差异,导致每种规格的敏感度、谐振频带不同,在压电层的第一表面设置第一电极,在压电材料的第二表面设置第二电极,即所述公共电极,由压电材料构成的压电传感器31通过粘合剂贴合在所述显示模组2的内侧面。例如,压电材料(1,1)敏感度较低只能拾取较强的信号(如:手指敲击屏幕),因此该区域可以用于进行触控检测;压电材料(1,2)敏感度很高但是只对20Hz~20KHz频段的信号敏感,可拾取音频信号,该部分区域用于拾音;压电材料(1,3)谐振频率很高(如:10MHz),对低频信号不敏感,只用于发射超声波信号和接收超声波回波,即指纹识别,则该部分区域用于进行指纹识别。这样,在电子设备需要不同的功能时,采集对应压电材料的基体处的电极电压即可,从而实现多功能的同时工作。
可选地,所述电子设备还包括检测模块以及与所述检测模块连接的控制模块;所述检测模块用于检测所述电子设备的工作状态;所述控制模块与所述压电传感器连接,所述控制模块用于根据所述工作状态控制所述压电传感器的工作模式。所述工作模式可以包括:拾音模式、指纹识别模式以及触控检测模式。
其中,所述压电传感器可以与所述电子设备的指纹传感器集成为一体,也可以将所述指纹识别传感器复用为所述压电传感器。
如图14所示,所述压电传感器31的基体(即压电材料)双面涂覆有电极,与显示模组2相背的第二表面的电极通常为一整片公共电极,靠近显示模组的第一表面的电极为电极阵列。所述压电传感器31通过粘合剂与显示模组2贴合,以便排出压电材料与显示模组1之间的空气。当通过电极对压电层两面施加调制后的电压,即可激发压电材料振动超声波,超声波通过粘合剂、显示模组2到达手指14表面的指纹。手指表面指纹脊为皮肤,皮肤的声阻抗与显示模组接近且为直接接触,超声波能透射到皮肤内被皮肤吸收,发射的超声波能量极小;而手指表面指纹谷与显示模组中间残留有空气,空气的声阻抗显著大于显示模组,超声波在显示模组2与空气界面发声全反射,透射能量极小,反射回来的超声波能量较高。当反射回来的超声波透过显示模组2、粘合剂到达压电材料时(此时电极施加的电压信号撤销,变成电压采集电极),指纹谷对应区域的压电材料在压电效应作用下产生电荷形成电压,通过采集电极阵列上的电压信号即可形成指纹图案,此时所述压电传感器作指纹识别作用,即工作在指纹识别模式。
所述压电传感器还可以复用为拾音、触控检测作用。可选地,可以通过场景分离超声波指纹识别功能、拾音功能、触控检测功能。如图15所示,判断电子设备的工作状态,当电子设备的检测模块检测到所述电子设备处于采集指纹状态时(如:锁屏状态、指纹支付状态),所述压电传感器将被配置为指纹识别模式,进行超声波收发,即电子设备可以驱动压电传感器发射超声波然后接收其回波信号。通常,指纹识别模式下,压电材料的工作频率较高 (如:1MHz以上,甚至到几十MHz),而且超声波发射、接收是时分实现的(即:先发再收,不会同时收发)。
当电子设备的检测模块检测到所述电子设备处于采集声音状态时(如:通话中),所述压电传感器将被配置为拾音模式,进行音频接收。该模式下,压电材料会响应音频范围之内、之外的振动,通过在信号处理电路上增加滤波器即可过滤掉超出音频范围的杂讯(如图16的f1、f3),以保留20Hz~20KHz范围内的信号(如图16的f2),实现拾音。
当电子设备的检测模块检测到所述电子设备处于采集触控动作状态时(如:听音乐、拍照、播放视频),所述压电控制器将被配置为触控检测模式,进行低频接收。该模式下,压电传感器的压电材料接收的信号,一方面会经过放大后与基准电压进行比较,以过滤掉幅度不高的弱信号(可以很好的解决误触问题);另一方面会对比较之后的信号进行交互类型判断,以识别类似单击、双击的交互动作。如图17,f1是弱信号(如:人讲话的声音),f2是人为敲击屏幕的信号(如:用手指双击屏幕),f3是持续的强信号(如:终端内马达振动),通过比较器15即可过滤掉f1。在通过波形判断模块16,判断高幅值信号持续的时间(可以通过多次延时采样判断单击、双击、长按等波形),即可过滤f3,从而得到需要的f2信号。因为波形判断模块属于数字电路,经过该模块后,f2会被自动整形成规则的方波信号,供后续电路使用。
该实施例通过将压电传感器复用为指纹识别、拾音、触控检测等多个功能,根据电子设备的当前工作状态控制所述压电传感器的工作模式,使其根据需求工作在拾音模式、指纹识别模式以及触控检测模式等不同的场景,利用压电传感器可以实现指纹识别、拾音、触控交互等多个功能,节省电子设备的结构空间。
本申请的实施例,将拾音模组设置在电子设备的显示模组内侧面,拾音模组采集显示模组传递的振动信号并转换为电信号输出至信号处理单元进行处理,从而实现屏下拾音,电子设备可以取消拾音孔,避免拾音孔的进液、进尘等问题影响拾音功能。
根据本发明实施例的电子设备的其他构成例如显示模组和壳体等以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种电子设备,包括:
    壳体;
    显示模组,所述显示模组与所述壳体围合形成容纳腔;
    拾音模组,所述拾音模组位于所述容纳腔内,所述拾音模组设置于所述显示模组的内侧面,且与所述显示模组的内侧面贴合连接;在所述显示模组接收到振动信号的情况下,所述拾音模组根据所述振动信号输出电信号;
    信号处理单元,所述信号处理单元位于所述容纳腔内,且所述信号处理单元与所述拾音模组电连接。
  2. 根据权利要求1所述的电子设备,其中,所述拾音模组包括至少一个压电传感器;
    所述压电传感器包括压电层、第二电极和至少两个第一电极,所述压电层的第一表面设有所述至少两个第一电极,所述至少两个第一电极间隔排列以形成电极阵列,所述压电层的第二表面设有第二电极,所述第一电极和第二电极的极性相反;
    其中,所述第一表面为所述压电层朝向所述显示模组的表面,所述第二表面为所述压电层背向所述显示模组的表面,或者,所述第一表面为所述压电层背向所述显示模组的表面,所述第二表面为所述压电层朝向所述显示模组的表面。
  3. 根据权利要求2所述的电子设备,其中,所述拾音模组包括至少两个压电传感器,所述至少两个压电传感器间隔分布,每个所述压电传感器的工作频段不同。
  4. 根据权利要求2所述的电子设备,其中,所述拾音模组还包括:预处理模块;
    所述预处理模块的一端与所述压电传感器连接,所述预处理模块的另一端与所述信号处理单元连接。
  5. 根据权利要求2所述的电子设备,其中,所述电极阵列包括至少两个电极区域,每个所述电极区域的工作频段不同。
  6. 根据权利要求5所述的电子设备,其中,所述信号处理单元包括:与所述电极区域对应连接的处理子单元;
    每个所述电极区域分别对应连接一个所述处理子单元。
  7. 根据权利要求2所述的电子设备,其中,
    所述压电层包括至少两个功能区域,每个所述功能区域的压电参数不同。
  8. 根据权利要求2所述的电子设备,其中,所述电子设备还包括检测模块以及与所述检测模块连接的控制模块,所述检测模块用于检测所述电子设备的工作状态;
    所述控制模块与所述压电传感器连接,所述控制模块用于根据所述工作状态控制所述压电传感器的工作模式。
  9. 根据权利要求3所述的电子设备,其中,所述至少两个压电传感器间隔排列形成n*m传感器矩阵;
    所述传感器矩阵在所述显示模组的投影,位于所述显示模组上的目标区域之内;
    其中n、m均为正整数。
  10. 根据权利要求9所述的电子设备,其中,所述传感器矩阵包括:高频传感器区域、中频传感器区域以及低频传感器区域;
    所述信号处理单元包括第一合成单元、第二合成单元、第三合成单元以及第四合成单元;
    所述第一合成单元的输入端与所述高频传感器区域中的至少两个高频传感器分别连;
    所述第二合成单元的输入端与所述中频传感器区域中的至少两个中频传感器分别连接;
    所述第三合成单元的输入端与所述低频传感器区域中的至少两个低频传感器分别连接;
    所述第四合成单元的输入端与所述第一合成单元的输出端、所述第二合成单元的输出端以及所述第三合成单元的输出端分别连接。
PCT/CN2021/134309 2020-12-07 2021-11-30 一种电子设备 WO2022121729A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011432166.2 2020-12-07
CN202011432166.2A CN112527061A (zh) 2020-12-07 2020-12-07 一种电子设备

Publications (1)

Publication Number Publication Date
WO2022121729A1 true WO2022121729A1 (zh) 2022-06-16

Family

ID=74998771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134309 WO2022121729A1 (zh) 2020-12-07 2021-11-30 一种电子设备

Country Status (2)

Country Link
CN (1) CN112527061A (zh)
WO (1) WO2022121729A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112527061A (zh) * 2020-12-07 2021-03-19 维沃移动通信有限公司 一种电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101074895A (zh) * 2007-06-19 2007-11-21 杭州电子科技大学 阵列压电传感器
US20090290746A1 (en) * 2005-04-22 2009-11-26 Sharp Kabushiki Kaisha Card-type device and method for manufacturing same
CN109688524A (zh) * 2018-12-28 2019-04-26 上海创功通讯技术有限公司 声音拾取装置及电子设备
CN109688492A (zh) * 2018-12-28 2019-04-26 上海创功通讯技术有限公司 声音拾取装置及电子设备
CN110609589A (zh) * 2019-08-30 2019-12-24 Oppo广东移动通信有限公司 电子设备及其控制方法
CN112527061A (zh) * 2020-12-07 2021-03-19 维沃移动通信有限公司 一种电子设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2375306B1 (en) * 2010-04-08 2014-07-30 BlackBerry Limited Tactile feedback method and apparatus
CN103369439A (zh) * 2013-06-13 2013-10-23 瑞声科技(南京)有限公司 屏幕拾取声音系统以及应用该系统的终端设备
CN209044422U (zh) * 2017-12-27 2019-06-28 深圳信炜科技有限公司 电子设备
CN108881568B (zh) * 2018-05-17 2020-11-20 Oppo广东移动通信有限公司 显示屏发声的方法、装置、电子装置及存储介质
CN108933977A (zh) * 2018-09-27 2018-12-04 江苏鹿得医疗电子股份有限公司 心肺拾音装置
CN111405455B (zh) * 2019-01-02 2022-06-07 京东方科技集团股份有限公司 发声装置及其制作方法以及显示装置
CN110297521B (zh) * 2019-06-24 2021-06-15 Oppo广东移动通信有限公司 工作模式切换方法、装置、存储介质及电子设备
CN110213416B (zh) * 2019-06-24 2021-07-20 Oppo广东移动通信有限公司 超声波传感器模组、显示屏模组及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090290746A1 (en) * 2005-04-22 2009-11-26 Sharp Kabushiki Kaisha Card-type device and method for manufacturing same
CN101074895A (zh) * 2007-06-19 2007-11-21 杭州电子科技大学 阵列压电传感器
CN109688524A (zh) * 2018-12-28 2019-04-26 上海创功通讯技术有限公司 声音拾取装置及电子设备
CN109688492A (zh) * 2018-12-28 2019-04-26 上海创功通讯技术有限公司 声音拾取装置及电子设备
CN110609589A (zh) * 2019-08-30 2019-12-24 Oppo广东移动通信有限公司 电子设备及其控制方法
CN112527061A (zh) * 2020-12-07 2021-03-19 维沃移动通信有限公司 一种电子设备

Also Published As

Publication number Publication date
CN112527061A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
TWI831842B (zh) 具有可撓性基板之超音波指紋感測器
US9363595B2 (en) Microphone unit, and sound input device provided with same
US20150023138A1 (en) Ultrasonic Positioning System and Method Using the Same
US8787599B2 (en) Reduced microphone handling noise
US8039910B2 (en) Electro-acoustic sensing device
CN109445640B (zh) 显示屏及具有该显示屏的电子设备
TW201618490A (zh) 低功率聲音設備及操作方法
EP3247133B1 (en) Composite structure of piezoelectric receiver and ultrasonic wave generator
WO2022121729A1 (zh) 一种电子设备
CN110856090A (zh) 一种新型的抗射频干扰的微机电系统麦克风结构
CN209748809U (zh) 一种音频装置及电子设备
CN113099331B (zh) 麦克风组件及其音频信号调节方法、电子设备
CN106162476B (zh) 抗低频噪音的麦克风单体
US20160097856A1 (en) Acoustic apparatus with dual mems devices
CN210629859U (zh) 一种新型的抗射频干扰的微机电系统麦克风结构
WO2022121882A1 (zh) 一种电子设备
CN102196344B (zh) 拾音装置及使用该拾音装置的电子装置
JP5834818B2 (ja) マイクロホンユニット、及び、それを備えた音声入力装置
US20160097855A1 (en) Acoustic apparatus with ultrasonic detector
US20230403490A1 (en) Silicon-Based Microphone Apparatus And Electronic Device
US20200407215A1 (en) Mems microphone and mobile terminal
CN209748810U (zh) 一种音频装置及电子设备
CN212540713U (zh) 一种用于测距的mems麦克风系统
CN111010467A (zh) 电子设备
US7450150B2 (en) Integrated audio/video sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21902436

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21902436

Country of ref document: EP

Kind code of ref document: A1