WO2020037661A1 - 在无人机与自动驾驶车辆之间进行货物传输的方法及自动驾驶车辆 - Google Patents

在无人机与自动驾驶车辆之间进行货物传输的方法及自动驾驶车辆 Download PDF

Info

Publication number
WO2020037661A1
WO2020037661A1 PCT/CN2018/102287 CN2018102287W WO2020037661A1 WO 2020037661 A1 WO2020037661 A1 WO 2020037661A1 CN 2018102287 W CN2018102287 W CN 2018102287W WO 2020037661 A1 WO2020037661 A1 WO 2020037661A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
autonomous
vehicle
cargo
autonomous vehicle
Prior art date
Application number
PCT/CN2018/102287
Other languages
English (en)
French (fr)
Inventor
周鹏跃
Original Assignee
周鹏跃
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 周鹏跃 filed Critical 周鹏跃
Priority to CN201880095176.6A priority Critical patent/CN112888630A/zh
Priority to PCT/CN2018/102287 priority patent/WO2020037661A1/zh
Publication of WO2020037661A1 publication Critical patent/WO2020037661A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D9/00Equipment for handling freight; Equipment for facilitating passenger embarkation or the like

Definitions

  • the invention relates to a method for transferring cargo between an unmanned aerial vehicle and an autonomous vehicle, and an autonomous vehicle.
  • Autonomous driving can free the driver's hands and feet.
  • the driver does not need to hold the steering wheel, shift gears, pedal accelerators, brakes, etc.
  • the personnel inside the autonomous vehicle are as if they are in a moving room and can travel. Dining, office, entertainment, and even daily living in autonomous vehicles.
  • people will spend more time in self-driving vehicles in the driving state, and the demand for receiving and sending goods (including mailed parcels and takeaway meals) in the self-driving vehicles in the driving state will also follow Growth.
  • a method for transferring cargo between a drone and an autonomous vehicle includes the following steps:
  • a drone in flight arrives above a self-driving vehicle in a driving state, and the two automatically remain relatively stationary and at a relatively high interval;
  • the drone in the flight grabs the goods pushed by the autonomous vehicle or drops the goods carried by the drone to the autonomous vehicle.
  • FIG. 1 is a flowchart of a method for transferring cargo between a drone and an autonomous vehicle according to an embodiment of the present invention
  • FIG. 2 is a schematic perspective view of an autonomous vehicle provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a cargo carrying platform of the autonomous vehicle shown in FIG. 2 located outside the autonomous vehicle body;
  • FIG. 4 is a schematic diagram of a cargo carrying platform of the cargo transfer mechanism in FIG. 3 located outside the autonomous driving vehicle body;
  • FIG. 5 is a schematic cross-sectional view of the cargo bearing platform in FIG. 3;
  • FIG. 6 is an internal schematic diagram of the autonomous driving vehicle shown in FIG. 2;
  • FIG. 7 is a schematic diagram of a cargo carrying platform of the cargo transfer mechanism shown in FIG. 6 located inside an autonomous driving body;
  • FIG. 8 is a schematic diagram after the tarpaulin is removed in FIG. 7;
  • FIG. 8 is a schematic diagram after the tarpaulin is removed in FIG. 7;
  • FIG. 9 is a partially enlarged schematic view at A in FIG. 8; FIG.
  • FIG. 10 is a schematic diagram of the tarpaulin and the lifting plate in a separated state in FIG. 7;
  • FIG. 11 is a schematic perspective view of a second lifting component in FIG. 4;
  • FIG. 12 is a partially enlarged schematic diagram at B in FIG. 11; FIG.
  • FIG. 13 is a schematic diagram of a cargo loading platform of an autonomous driving vehicle located outside the autonomous driving vehicle body according to another embodiment of the present invention.
  • FIG. 14 is a schematic perspective view of the cargo transfer mechanism in FIG. 13;
  • FIG. 15 is a partially enlarged schematic diagram at C in FIG. 14.
  • FIG. 1 shows a method of cargo transfer between a drone and an autonomous vehicle, and a preferred embodiment of the autonomous vehicle.
  • the method for transferring cargo between the drone and the autonomous vehicle and the autonomous vehicle can be implemented in many different forms and are not limited to the embodiments described herein. Rather, the purpose of these embodiments is to make the disclosure of the method of cargo transfer between drones and autonomous vehicles and the disclosure of autonomous vehicles more thorough and comprehensive.
  • a method for transferring cargo between a drone and an autonomous vehicle includes the following steps:
  • step S110 the drone in the flying state arrives above the autonomous driving vehicle in the driving state, and the two automatically keep relatively stationary and maintain a relative height interval.
  • the drone in the flying state and the autonomous vehicle in the driving state are relatively stationary in the dimension of the plane of motion of the autonomous vehicle. In some of these embodiments, the drone in flight and the autonomous vehicle in driving state are relatively stationary in the horizontal direction.
  • the autonomous vehicle is communicatively connected to the drone, that is, the autonomous vehicle establishes data communication with the drone, and can perform data interaction.
  • the communication connection can use wide area communication technology, such as 4G / 5G technology, or local area communication technology, such as WIFI / LoRa technology.
  • an autonomous vehicle sends its own speed and location information to the drone in real time, and the speed and location information is measured by sensors built into the autonomous vehicle, such as an inertial navigation unit, a global satellite positioning system , Lidar, etc.
  • the drone automatically adjusts its speed and position in real time according to the speed information and position information of the self-driving vehicle, so that the drone in the flying state and the self-driving vehicle in the driving state keep relatively stationary and maintain a relative height. interval.
  • the speed according to the present invention includes a speed magnitude and a speed direction.
  • the drone sends its own speed and position information to the autonomous vehicle in real time, and the speed and position information is measured by sensors built in the drone, such as inertial navigation unit, global satellite positioning system , Lidar, etc.
  • the autonomous vehicle automatically adjusts its speed and position in real time according to the speed information and position information of the drone, or the autonomous vehicle directly sends instructions to control the drone's flight speed according to the speed information and position information of the drone so as to be in a flying state
  • the unmanned aerial vehicle and the self-driving vehicle in the driving state automatically keep relatively stationary and maintain a relatively high interval.
  • the drone and the autonomous vehicle send their speed information and position information to each other in real time, and automatically adjust their speed and position according to the speed information and position information of each other to control the flight status
  • the unmanned aerial vehicle and the self-driving vehicle in the driving state automatically keep relatively stationary and maintain a relatively high interval.
  • the autonomous vehicle sends the next target path or path point to the drone in real time, so that the drone can automatically automatically track the next target path or path point of the autonomous vehicle to improve unmanned
  • the machine tracks the vehicle's response speed and accuracy.
  • the autonomous vehicle directly sends instructions to control the drone's flight speed, so that the drone can directly and automatically track the next target path or path point of the autonomous vehicle.
  • next target path or path point of the autonomous vehicle according to the present invention is generated in real time by the autonomous vehicle according to a preset navigation path and the surrounding traffic environment, and is transmitted to the motion control system of the autonomous vehicle. Do it.
  • the autonomous vehicle in certain situations, such as when an autonomous vehicle is driving on a highway and maintains a wide distance from the front and rear vehicles, the autonomous vehicle is controlled to travel at a constant speed, so that the drone can adjust the flight speed and Autonomous vehicles remain relatively stationary. In this way, the following difficulty of the drone can be reduced.
  • the drone is controlled to fly at a constant speed, so that the autonomous driving vehicle can adjust the running speed and keep relatively stationary with the drone. In this way, it is possible to reduce the difficulty of following an autonomous vehicle.
  • a self-driving vehicle is provided with a short-range positioning broadcast base station, such as a UWB positioning broadcast base station.
  • the drone measures the position information and speed information of the drone relative to the autonomous vehicle according to signals broadcast by the base station.
  • the auxiliary control of the drone in flight and the autonomous vehicle in driving state automatically remain relatively stationary.
  • the autonomous vehicle and the drone may not be connected in communication, that is, the autonomous vehicle and the drone have not established data communication and do not perform data interaction.
  • the drone measures the position information and speed information of the autonomous vehicle relative to the drone through the on-board camera according to the beacon on the autonomous vehicle to assist in controlling the unmanned vehicle in the flight state.
  • the man-machine and the self-driving vehicle in the driving state automatically remain relatively stationary.
  • the beacon is placed on the roof of the autonomous vehicle.
  • the beacon may be provided on the side panel of the autonomous vehicle, and the beacon may also be located at the front or rear of the autonomous vehicle.
  • the autonomous vehicle measures the position information and speed information of the drone relative to the autonomous vehicle through the on-board camera according to the beacon on the drone or the cargo to assist in controlling the flight status Drones and autonomous vehicles that are in a driving state automatically remain relatively stationary.
  • the beacon is placed on the bottom of the drone or the cargo. In other embodiments, the beacon may be provided on the side panel of the drone or the cargo.
  • the beacon is an ARUCO code.
  • the methods in the above embodiments can be used alone or combined in several ways to achieve that the drone in the flying state reaches the top of the autonomous driving vehicle in the driving state, and the two automatically maintain Relatively stationary and spaced relatively high.
  • step S120 the drone in the flying state grabs the goods pushed by the autonomous driving vehicle or drops the goods carried by the drone to the autonomous driving vehicle.
  • the drone in the flight state is flying close to the autonomous vehicle in the height direction, so as to grab the goods pushed by the autonomous vehicle or deliver the goods carried by the drone to the autonomous vehicle. That is, in this embodiment, when the two are kept relatively horizontal in the horizontal direction, the drone in the flying state automatically descends a certain height, and the distance between the drone and the autonomous vehicle is reduced in the height direction.
  • a rangefinder is provided on the bottom of the drone, which can measure the distance between the bottom of the drone and the roof of the autonomous vehicle or the top of the cargo to be grabbed to achieve the drone's descent Height up to the bottom of the drone and the roof of the autonomous vehicle to maintain a proper distance to load the cargo, or the drone's grasping mechanism can grab the cargo exposed from the sunroof of the autonomous vehicle.
  • the rangefinder can also be mounted on the roof of an autonomous vehicle.
  • the drone is lowered to a certain height until the bottom of the drone is 20 to 60 cm from the roof of the autonomous vehicle. In this way, it can ensure that the drone does not collide with the self-driving vehicle when the drone descends and grabs the cargo, and it can also ensure that when the drone puts the cargo into the driving vehicle, the height of the cargo falling is appropriate, and it is not easy for the cargo to be horizontal. The situation of deviation is convenient for accurate delivery of goods. After the drone drops or grabs the cargo, it raises its height and flies away from the autonomous vehicle, thereby completing the transfer of cargo with the autonomous vehicle.
  • the grabbing mechanism of the drone in the flying state moves toward the autonomous vehicle in the height direction to grab the goods pushed by the autonomous vehicle or drop the goods carried by the drone to Autonomous vehicles.
  • the cargo carrying platform of the autonomous vehicle moves toward the drone in a height direction, so that the drone can grab the goods located on the cargo carrying platform or the drone can be placed on the cargo carrying platform. goods.
  • the drone in the flight state when a man-machine arrives above a self-driving vehicle in a driving state, after the sunroof of the self-driving vehicle is automatically opened, the cargo carrying platform in the self-driving vehicle moves toward the drone in a height direction to move outside the self-driving vehicle.
  • Drone fixing device to fix the drone landing on the roof, so that the drone fixing device can be omitted, and the time-consuming process of taking off and landing can be saved, and the cargo transfer between the drone and the autonomous vehicle can be improved. In addition, it can avoid the impact of the drone landing on the roof and the noise caused by it, and reduce the impact on the comfort of the people in the car.
  • an autonomous driving vehicle 20 is used in conjunction with the drone 30 to transfer cargo 40 between the drone 30 and the autonomous vehicle 20.
  • the autonomous vehicle 20 includes an autonomous vehicle body 22 and a cargo transport mechanism 24.
  • a sunroof 212 is opened on the roof 210 of the autonomous driving vehicle body 22, and a door panel 214 for closing the sunroof 212 is provided on the roof 210.
  • the sunroof 212 is square. In other embodiments, the sunroof 212 may be circular, regular hexagon, or the like.
  • the door panel 214 is an open door panel.
  • the number of the door panel 214 is two, and the two door panels 200 are oppositely disposed.
  • One side of the door panel 214 away from the other door panel 214 is rotatably connected to the roof 210.
  • the side where the door panel 214 is rotatably connected to the roof 210 is the first side 2142, and the side where the door panel 214 is opposite to the first side 2142 is the second side 2144.
  • the door panel 214 may also be a push-pull door panel, and the door panel 214 may also be a single panel.
  • the autonomous vehicle 20 further includes a seat 220 that is disposed on the bottom plate 230 of the autonomous vehicle 20 and that the seat 220 is disposed around the sunroof 212, that is, the edge of the seat 220 near the bottom plate 230 It is arranged to form a central movable area 232 in a central area of the bottom plate 230.
  • the cargo transfer mechanism 24 includes a cargo carrying platform 300.
  • the cargo carrying platform 300 can pass back and forth through the sunroof 212 to switch positions between the inside and the outside of the sunroof 212, that is, in the autonomous driving body 22. Internal and external switching positions. Therefore, the cargo carrying platform 300 can transfer the cargo 40 in the autonomous driving vehicle body 22 to the outside of the autonomous driving vehicle body 22 for grabbing by the drone 30.
  • the cargo carrying platform 300 can also receive the cargo 40 delivered by the drone 30 outside the autonomous vehicle body 22 and transmit the cargo 40 into the autonomous vehicle body 22.
  • the cargo transport mechanism 24 further includes a first lifting assembly 400, a lifting plate 500, and a second lifting assembly 600.
  • the first lifting assembly 400 is located in the autonomous driving vehicle body 22 and is connected to the autonomous driving vehicle body 22.
  • the lifting plate 500 is provided on the first lifting component 400 and can be moved back and forth between the bottom plate 230 and the roof 210 of the autonomous driving vehicle body 22 driven by the first lifting component 400.
  • the second lifting assembly 600 is disposed on the lifting plate 500.
  • the cargo carrying platform 300 is disposed on the second lifting assembly 600, and the cargo carrying platform 300 can move close to or away from the lifting plate 500 driven by the second lifting assembly 600.
  • the first lifting assembly 400, the lifting plate 500, the second lifting assembly 600, and the cargo carrying platform 300 are all located in the autonomous driving body 22, and the first lifting assembly 400 drives the lifting plate 500 toward the autonomous driving body
  • the roof 210 of 22 is moved, and the sunroof 212 is closed in the autonomous vehicle body 22.
  • the second lifting assembly 600 and the cargo carrying platform 300 are exposed at the sunroof 212.
  • the second lifting assembly 600 drives the cargo carrying platform 300 away from the lifting plate 500, so that the cargo carrying platform 300 is moved from the inside of the autonomous driving vehicle body 22 to the outside of the autonomous driving vehicle body 22, please refer to FIG. 3 for details.
  • the first lifting assembly 400 is raised first, and the second lifting assembly 600 is raised later.
  • the second lifting assembly 600 may be raised first, and the first lifting assembly 400 may be raised later; the first lifting assembly 400 and the second lifting assembly 600 may be raised simultaneously.
  • the second lifting assembly 600 drives the cargo carrying platform 300 located outside the autonomous driving vehicle body 22 to move closer to the lifting plate 500 so that the distance between the cargo carrying platform 300 and the lifting plate 500 is minimized. Then, the first lifting assembly 400 drives the lifting plate 500 to move toward the bottom plate 230 of the autonomous driving vehicle body 22, so that the cargo carrying platform 300 is moved from outside the autonomous driving vehicle body 22 into the autonomous driving vehicle body 22.
  • the second lifting assembly 600 is lowered first, and the first lifting assembly 400 is lowered later. In other application scenarios, the first lifting assembly 400 is lowered first, and the second lifting assembly 600 is lowered later; the first lifting assembly 400 and the second lifting assembly 600 may be lowered simultaneously.
  • the lifting plate 500 can close the sunroof 212 inside the autonomous driving vehicle body 22 when transferring the cargo 40, thereby reducing unmanned persons in the flight state.
  • the influence of the noise of the aircraft 30 on the personnel in the vehicle effectively prevents the influence of the air flow when the drone 30 descends on the personnel in the vehicle, and effectively prevents rainwater from falling into the autonomous driving vehicle body 22 from the sunroof 212.
  • the lifting plate 500 located in the autonomous vehicle body 22 can be used as a table to store mobile phones, computers, fruits, snacks and other items.
  • first lifting module 400 and the second lifting module 600 cooperate to lift the cargo bearing platform 300, which can avoid the height of the single lifting module being too large, which causes the lifting module to be easily affected by the external environment and cannot stably support the cargo bearing platform 300.
  • the cargo carrying platform 300 includes a main body 310 and a baffle 320 disposed around the main body 310. In this way, the goods 40 can be prevented from sliding out of the goods carrying platform 300.
  • the cargo carrying platform 300 further includes a buffer layer 330 provided on the surface of the body 310.
  • the buffer layer 330 may be a soft material layer such as a rubber layer or a foam layer. In this way, when the drone 30 drops the cargo 40 on the cargo carrying platform 300, the buffer layer 330 can protect the body 310 and the cargo 40 and prevent the body 310 and the cargo 40 from being damaged.
  • one end of the first lifting assembly 400 is connected to the roof 210 of the self-driving vehicle body 22, and the other end is connected to the lifting plate 500. In this way, it is possible to effectively prevent the first lifting assembly 400 from occupying the position of the bottom plate 230.
  • one end of the first lifting assembly 400 may be connected to the bottom plate 230 of the autonomous driving vehicle body 22, and the other end is connected to the lifting plate 500. It should be noted that when one end of the first lifting assembly 400 is connected to the bottom plate 230 of the autonomous driving vehicle body 22, the lifting plate 500 and the second lifting assembly 600 may be omitted. At this time, the cargo bearing platform 300 may be directly set on the first The lifting assembly 400 is near one end of the top plate 210.
  • the first lifting assembly 400 includes a plurality of first support rods 410, and each first support rod 410 includes a plurality of first partial rods 412 connected in turn, and a first partial rod 412 at the end. It is rotatably connected to the roof 210 of the self-driving car body 22, and the other first partial rod 412 at the end is rotatably connected to the lifting plate 500.
  • each of the first support rods 410 includes two first sub-rods 412, and ends of the two first sub-rods 412 overlap and are rotatably connected through a rotation shaft passing through the overlapping area.
  • the first lifting assembly 400 further includes a first guide rail 420 and a first hinge base 430.
  • the number of the first guide rails 420 is two.
  • the two first guide rails 420 are disposed on the roof 210 in parallel and spaced apart from each other.
  • the two first guide rails 420 are respectively disposed adjacent to the first sides 2142 of the two door panels 214, and the two first guide rails 420. 420 are respectively disposed in parallel with the first sides 2142 of the two door panels 214.
  • the number of the first support rods 410 is four, and a first branch rod 412 of each first support rod 410 is rotatably connected to an end of a first guide rail 420 through a first hinge base 430 (in this case, the first hinge The seat 430 is fixedly connected to the first guide rail 420, and the first hinge seat 430 is rotatably connected to the first branch lever 412.
  • a first branch lever 412 of each first support rod 410 is connected to the lifting plate 500 through a first hinge seat 430.
  • Rotational connection at this time, the first hinge base 430 is fixedly connected to the lifting plate 500, and the first sub-rod 412 is rotationally connected to the first hinge base 430).
  • the first lifting component 400 can be lifted by pulling outward or pushing inward the two first sub-rods 412 located at the same end of the lifting plate 500.
  • the first hinge base 430 is disposed on the first guide rail 420 and is thus indirectly disposed on the roof 210. In other embodiments, the first hinge base 430 may also be directly disposed on the roof 210. At this time, the first guide rail 420 may be omitted.
  • the cargo transfer mechanism 24 further includes a tarpaulin cover 700.
  • the tarpaulin cover 700 is set on a plurality of first support rods 410.
  • the roof 210 of the driving body 22 is fixedly connected, and the other end is detachably connected to the lifting plate 500, and one end of the waterproof cover 700 far from the roof 210 of the autonomous driving body 22 can be retracted along the first support rod 410 to lift
  • the boards 500 are connected or spaced.
  • the entirety of the tarpaulin cover 700 and the lifting plate 500 can block rainwater and make the tarpaulin 700 through a pipeline.
  • the entire body formed with the lifting plate 500 communicates with the drainage pipe on the roof 210, which can drain the accumulated rainwater, and can effectively prevent rainwater from falling into the automatic condition when the door plate 214 is not completely closed during the lifting plate 500 lifting process.
  • Driving inside the vehicle body 22 affects people and objects in the vehicle body.
  • a passage for the supplies 40 can be formed, so that people in the car can pick up and place the goods 40.
  • the tarpaulin cover 700 is magnetically connected to the lifting plate 500, so that the tarpaulin 700 is detachably connected to the lifting plate 500.
  • the tarpaulin cover 700 includes a tarpaulin sleeve 710 and a magnetic suction ring 720 provided at an end of the tarpaulin sleeve 710 near the lifting plate 500, and the lifting plate 500 is a magnetic suction plate.
  • the lifting plate 500 and the tarpaulin 700 are transparent. Therefore, the sunroof 212 can be prevented from being blocked by the lifting plate 500 and the tarpaulin 700, and the light projected from the sunroof 212 can enter the autonomous driving vehicle body 22 through the lifting plate 500 and the tarpaulin 700, thereby improving the comfort of the personnel in the car.
  • the second lifting assembly 600 includes a second support rod 610 and a second guide rail 620 provided on the lifting plate 500.
  • the middle portions of the two second support rods 610 are rotatably connected to form a support bracket 602.
  • the two ends of the support bracket 602 on one side are a first end 6022 and a second end 6024, respectively.
  • the first end 6022 and the second end 6024 are rotatably connected to the cargo bearing platform 300, and the two ends of the support bracket 602 on the other side are respectively.
  • the third end 6026 and the fourth end 6028, the third end 6026 is rotatably connected to the second rail 620, and the fourth end 6028 is slidably connected to the second rail 620.
  • the second lifting assembly 600 further includes a second hinge base 630, the first end 6022 and the second end 6024 are rotatably connected to the cargo bearing platform 300 through a second hinge base 630, respectively, and the third end 6026 and The fourth end 6028 is rotatably connected to the second guide rail 620 through a second hinge base 630.
  • the second guide rail 620 is provided with a sliding groove 622.
  • the sliding groove 622 extends along the extending direction of the second guide rail 620.
  • One end of the second hinge base 630 connected to the fourth end 6028 is inserted into the slide.
  • the groove 622 is slidable along the extending direction of the sliding groove 622.
  • the number of the second guide rails 620 is two, and the two second guide rails 620 are arranged in parallel and spaced apart, and are arranged in parallel with the first guide rail 420.
  • the number of the support brackets 602 is two, and the two support brackets 602 are respectively provided on the two second guide rails 620.
  • the second lifting assembly 600 further includes a connecting rod 640 and a telescopic member 650.
  • the number of the connecting rods 640 is two, namely the first connecting rod 642 and the second connecting rod 644. Two ends of the rod 642 are respectively connected to the third ends 6026 of the two support brackets 602, and two ends of the second connection rod 644 are respectively connected to the fourth ends 6028 of the two support brackets 602.
  • the fixed end 652 of the telescopic element 650 is connected to the first connecting rod 642, and the movable end 654 of the telescopic element 650 is connected to the second connecting rod 644.
  • the fourth end 6028 slides along the second guide rail 620, and the distance between the first connecting rod 642 and the second connecting rod 644 changes, thereby supporting the height of the bracket 602 and then lifting.
  • the cargo transport mechanism 24 further includes a third lifting assembly 800 and a fourth lifting assembly 900.
  • the third lifting assembly 800 includes a third support rod 810 provided on the door panel 214, and the third support rod 810 can move back and forth between the first side 2142 and the second side 2144 of the door panel 214.
  • One end of the fourth lifting assembly 900 is connected to the third support rod 810, and the other end is connected to the cargo carrying platform 300.
  • the cargo carrying platform 300 can be moved toward or away from the bottom plate 230 by the fourth lifting assembly 900.
  • the third support rod 810 In a state where the sunroof 212 is closed by two door panels 214, the third support rod 810 is located near the first side 2142, and the cargo carrying platform 300 can be moved closer to the bottom plate 230 by the fourth lifting assembly 900, so that people in the vehicle can The goods 40 are placed on the loading platform 300.
  • the loading platform 300 can also be used as a table.
  • the third support rod 810 moves the second side 2144 from the first side 2142 of the door panel 214, thereby driving the cargo carrying platform 300 to move the second side 2144 from the first side 2142, as shown in the figure.
  • the drone 20 can further facilitate the grabbing of the cargo 40 on the cargo carrying platform 300, or the drone 20 can drop the carried cargo 40 on the cargo carrying platform 300.
  • the number of the third supporting rods 810 is two, the two third supporting rods 810 are respectively disposed on the two door panels 214, and the two third supporting rods 810 are arranged in parallel.
  • the structure of the fourth lifting assembly 900 is similar to that of the first lifting assembly 400, and includes four fourth support rods 910.
  • Each fourth support rod 910 includes a plurality of second sub-rods 912 connected in turn, one at the end.
  • the second sub-rod 912 is rotatably connected to one end of the third support rod 810, and the other second sub-rod 912 at the end is rotatably connected to the cargo bearing platform 300.
  • the third lifting assembly 800 further includes a third guide rail 820 and a third hinge base 830.
  • the third guide rail 820 is rotatably connected to the third support rod 810 through the third hinge base 830.
  • the second split rod 912 is fixedly connected to the third guide rail 820.
  • first ends of the third supporting rod 810 are respectively provided with a first connecting base 812, and the first connecting base 812 is rotatably connected with the third hinge base 830.
  • Second ends of the third guide rail 820 are respectively provided with a second connection base 822, and the second connection base 822 is fixedly connected to the second sub-rod 912.
  • the cargo transfer mechanism 24 further includes a tarpaulin cover 100a.
  • the tarpaulin cover 100a can be moved toward the sunroof 212 to close the sunroof 212.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种在无人机(30)与自动驾驶车辆(20)之间进行货物(40)传输的方法及自动驾驶车辆(20)。该方法包括如下步骤:处于飞行状态下的无人机(30)飞抵处于驾驶状态下的自动驾驶车辆(20)的上方,并且两者自动保持相对静止且保持相对高度间隔;处于飞行状态下的无人机(30)抓取自动驾驶车辆(20)推出的货物(40)或将无人机(30)携带的货物(40)投放至自动驾驶车辆(20)。在抓取及投放货物的过程中,无人机不需要降落在自动驾驶车辆的车顶上,不受车顶面积局限而无法降落。

Description

在无人机与自动驾驶车辆之间进行货物传输的方法及自动驾驶车辆 技术领域
本发明涉及一种在无人机与自动驾驶车辆之间进行货物传输的方法以及自动驾驶车辆。
背景技术
自动驾驶能解放驾驶员的手和脚,不需要驾驶员握持方向盘、变换档位、脚踏加速器及刹车等,位于自动驾驶车辆内的人员如同位于一间移动的房间里,可以在行驶的自动驾驶车辆内用餐、办公、娱乐,甚至日常的起居。由此人们会花更多的时间的待在行驶状态下的自动驾驶车辆内,而对于在行驶状态下的自动驾驶车辆内收寄货物(包括邮寄的包裹、外卖餐食)的需求也会随之增长。
发明内容
一种在无人机与自动驾驶车辆之间进行货物传输的方法,包括如下步骤:
处于飞行状态下的无人机飞抵处于驾驶状态下的自动驾驶车辆的上方,并且两者自动保持相对静止且保持相对高度间隔;以及
处于飞行状态下的无人机抓取自动驾驶车辆推出的货物或将无人机携带的货物投放至自动驾驶车辆。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为本发明一实施例提供的在无人机与自动驾驶车辆之间进行货物传输的方法的流程图;
图2为本发明一实施例提供的自动驾驶车辆的立体示意图;
图3为图2所示的自动驾驶车辆的货物承载台位于自动驾驶车体之外的示意图;
图4为图3中的货物传送机构的货物承载台位于自动驾驶车体之外的示意图;
图5为图3中的货物承载台的剖面示意图;
图6为图2所示的自动驾驶车辆的内部示意图;
图7为图6所示的货物传送机构的货物承载台位于自动驾驶车体之内的示意图;
图8为图7除去防水布套后的示意图;
图9为图8中A处的局部放大示意图;
图10为图7中防水布套与升降板处于分离状态下的示意图;
图11为图4中的第二升降组件的立体示意图;
图12为图11中B处的局部放大示意图;
图13为本发明另一实施例提供的自动驾驶车辆的货物承载台位于自动驾驶车体之外的示意图;
图14为图13中的货物传送机构的立体示意图;
图15为图14中C处的局部放大示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对在无人机与自动驾驶车辆之间进行货物传输的方法以及自动驾驶车辆进行更全面的描述。附图中给出了在无人机与自动驾驶车辆之间进行货物传输的方法以及自动驾驶车辆的首选实施例。但是,在无人机与自动驾驶车辆之间进行货物传输的方法以及自动驾驶车辆可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对在无人机与自动驾驶车辆之间进行货物传输的方法以及自动驾驶车辆的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在涂布装置的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参见图1,一种在无人机与自动驾驶车辆之间进行货物传输的方法,包括如下步骤:
步骤S110,处于飞行状态下的无人机飞抵处于驾驶状态下的自动驾驶车辆的上方,并且两者自动保持相对静止且保持相对高度间隔。
需要说明的是,处于飞行状态下的无人机与处于驾驶状态下的自动驾驶车辆,在自动驾驶车辆的运动平面的维度上相对静止。在其中一些实施例中,处于飞行状态下的无人机与处于驾驶状态下的自动驾驶车辆,在水平方向上相对静止。
在其中一些实施例中,自动驾驶车辆与无人机通信连接,也即自动驾驶车辆与无人机建立数据通信,可以进行数据交互。该通信连接既可以采用广域通信技术,例如4G/5G技术,也可以采用局域通信技术,比如WIFI/LoRa技术等。
在其中一个具体的实施例中,自动驾驶车辆实时向无人机发送自身的速度信息及位置信息,该速度和位置信息由自动驾驶车辆内置的传感器测量所得,比如惯性导航单元、全球卫星定位系统、激光雷达等。无人机根据自动驾驶车辆的速度信息及位置信息实时自动调整自身的速度及位置,以使处于飞行状态下的无人机与处于驾驶状态下的自动驾驶车辆保自动持相对静止且保持相对高度间隔。需要说明的是,本发明所述的速度包括速度大小以及速度方向。
在其中一个具体的实施例中,无人机实时向自动驾驶车辆发送自身的速度信息及位置信息,该速度和位置信息由无人机内置的传感器测量所得,比如惯性导航单元,全球卫星定位系统、激光雷达等。自动驾驶车辆自动根据无人机的速度信息及位置信息实时调整自身的速度及位置或者自动驾驶车辆根据无人机的速度信息及位置信息直接发送指令控制无人机飞行速度,以使处于飞行状态下的无人机与处于驾驶状态下的自动驾驶车辆自动保持相对静止且保持相对高度间隔。
在其中一个具体的实施例中,无人机与自动驾驶车辆实时向对方发送自 身的速度信息及位置信息,并根据对方的速度信息和位置信息自动调节各自的速度及位置,以控制处于飞行状态下的无人机与处于驾驶状态下的自动驾驶车辆自动保持相对静止且保持相对高度间隔。
在其中一个具体的实施例中,自动驾驶车辆实时发送下一步的目标路径或路径点至无人机,实现无人机直接自动追踪自动驾驶车辆下一步的目标路径或路径点,以提高无人机追踪车辆的响应速度和精度。
在其中一个具体的实施例中,自动驾驶车辆直接发送指令控制无人机飞行速度,实现无人机直接自动追踪自动驾驶车辆下一步的目标路径或路径点。
需要说明的是,本发明所述的自动驾驶车辆下一步的目标路径或路径点由自动驾驶车辆根据预先设定的导航路径以及周边的交通环境实时生成,并传递给自动驾驶车辆的运动控制系统予以执行。
在其中一个具体的实施例中,在特定情况,比如自动驾驶车辆行驶在高速公路且与前后车辆保持较宽距离的情况下,控制自动驾驶车辆匀速行驶,以便于无人机调整飞行速度而与自动驾驶车辆保持相对静止。如此,可以降低无人机的跟随难度。
在其中一个具体的实施例中,控制无人机匀速飞行,以便于自动驾驶车辆调整行驶速度而与无人机保持相对静止。如此,可以降低自动驾驶车辆的跟随难度。
在其中一个具体的实施例中,自动驾驶车辆设有短距定位广播基站,例如UWB定位广播基站,无人机根据基站广播的信号测量无人机相对自动驾驶车辆的位置信息和速度信息,以辅助控制处于飞行状态下的无人机与处于驾驶状态下的自动驾驶车辆自动保持相对静止。
在其中一些实施例中,自动驾驶车辆与无人机也可以不通信连接,也即 自动驾驶车辆与无人机未建立数据通信,不进行数据交互。
在其中一个具体的实施例中,无人机根据自动驾驶车辆上的信标,通过机载的摄像头测量自动驾驶车辆相对无人机的位置信息和速度信息,以辅助控制处于飞行状态下的无人机与处于驾驶状态下的自动驾驶车辆自动保持相对静止。
在其中一个具体的实施例中,信标设于自动驾驶车辆的车顶上。在其他实施例中,信标也可以设于自动驾驶车辆的侧板上,信标也可以位于自动驾驶车辆的车头、车尾等部位。
在其中一个具体的实施例中,自动驾驶车辆根据无人机或者货物上的信标,通过车载的摄像头测量无人机相对自动驾驶车辆的位置信息和速度信息,以辅助控制处于飞行状态下的无人机与处于驾驶状态下的自动驾驶车辆自动保持相对静止。
在其中一个具体的实施例中,信标设于无人机或者货物的底部上。在其他实施例中,信标也可以设于无人机或者货物的侧板上。
在其中一个具体的实施例中,信标为ARUCO码。
需要说明的是,以上实施例中的方式可以单独采用,也可以几种方式组合,以实现处于飞行状态下的无人机飞抵处于驾驶状态下的自动驾驶车辆的上方,并且两者自动保持相对静止且保持相对高度间隔。
步骤S120,处于飞行状态下的无人机抓取自动驾驶车辆推出的货物或将无人机携带的货物投放至自动驾驶车辆。
在其中一个具体的实施例中,处于飞行状态下的无人机在高度方向上靠近自动驾驶车辆飞行,以抓取自动驾驶车辆推出的货物或将无人机携带的货物投放至自动驾驶车辆。也即在本实施例中,在两者保持水平方向相对静止 的情况下,处于飞行状态下的无人机自动下降一定高度,无人机与自动驾驶车辆在高度方向缩小间隔。
在其中一个具体的实施例中,无人机的底部设有测距仪,可以测量无人机的底部与自动驾驶车辆的车顶或待抓取货物的顶部的距离,以实现无人机下降高度直至无人机的底部和自动驾驶车辆的车顶保持合适的间距以投放货物,或者无人机的抓取机构能够抓取到从自动驾驶车辆的天窗露出的货物。在其他实施例中,测距仪也可以安装在自动驾驶车辆的车顶。
在其中一个具体的实施例中,无人机下降一定高度直至无人机的底部与自动驾驶车辆的车顶间隔20~60厘米。如此,既能保证无人机下降抓取货物时,无人机不与自动驾驶车辆碰撞,还能保证无人机向动驾驶车辆投放货物时,货物跌落的高度适当,不易发生货物在水平方向偏移的情况,便于货物准确投放。无人机在投放或抓取货物后,提升高度并飞离自动驾驶车辆,从而完成与自动驾驶车辆之间的货物传输。
在其中一个具体的实施例中,处于飞行状态下的无人机的抓取机构在高度方向上朝向自动驾驶车辆移动,以抓取自动驾驶车辆推出的货物或将无人机携带的货物投放至自动驾驶车辆。
在其中一个具体的实施例中,自动驾驶车辆的货物承载台在高度方向上朝向无人机移动,以便于无人机抓取位于货物承载台上的货物或便于无人机向货物承载台投放货物。
在其中一个具体的实施例中,在处于飞行状态下的无人机抓取自动驾驶车辆推出的货物或将无人机携带的货物投放至自动驾驶车辆的步骤之前,当处于飞行状态下的无人机飞抵处于驾驶状态下的自动驾驶车辆的上方时,自动驾驶车辆的天窗自动打开后,自动驾驶车辆内的货物承载台在高度方向上 朝向无人机移动,以移动至自动驾驶车辆外。
在上述在无人机与自动驾驶车辆之间进行货物传输的方法中,由于处于飞行状态下的无人机与处于驾驶状态下的自动驾驶车辆能够自动保持相对静止,只需要无人机距离无人驾驶汽车车顶一定高度就可实现货物的抓取和投放。在抓取及投放货物的过程中,无人机不需要降落在自动驾驶车辆的车顶上,不受部分自动驾驶车辆的车顶面积局限而无法降落,相应地,无需在自动驾驶车辆上设置无人机固定装置,以将降落在车顶上的无人机固定,从而可以省略无人机固定装置,而且可以节省起降过程的耗时,提高无人机与自动驾驶车辆之间货物传输效率,此外,还能避免无人机降落对车顶产生的撞击以及由此产生的噪声,降低对车内人员舒适度的影响。
如图2及图3所示,一种自动驾驶车辆20,该自动驾驶车辆20,用于与无人机30配合使用,以在无人机30与自动驾驶车辆20之间进行货物40传输。
自动驾驶车辆20包括自动驾驶车体22以及货物传送机构24。
自动驾驶车体22的车顶210开设有天窗212,车顶210上设有用于封闭天窗212的门板214。
在其中一些实施例中,天窗212呈方形。在其他实施例中,天窗212也可以呈圆形、正六边形等。
在其中一些实施例中,门板214为外开式门板,门板214的数目为两块,两块门板200相对设置,一块门板214远离另一块门板214的一侧与车顶210转动连接。其中,门板214与车顶210转动连接的一侧为第一侧2142,门板214与第一侧2142相对设置的一侧为第二侧2144。在其他实施例中,门板214也可以为推拉式门板,门板214也可以为一块。
在其中一些实施例中,自动驾驶车辆20还包括座椅220,座椅220设于自动驾驶车辆20的底板230上,且座椅220环绕天窗212设置,也即座椅220靠近底板230的边缘设置,以在底板230的中心区域形成中心活动区域232。
在其中一个具体的实施例中,座椅220为两个,分别邻近自动驾驶车辆20的车头240及车尾250设置。
如图3及图4所示,货物传送机构24包括货物承载台300,货物承载台300能往返穿过天窗212,以在天窗212的内侧与外侧切换位置,也即在自动驾驶车体22的内部与外部切换位置。从而货物承载台300能将自动驾驶车体22内的货物40传输至自动驾驶车体22外,以供无人机30抓取。货物承载台300还能在自动驾驶车体22外承接无人机30投放的货物40,并将货物40传输至自动驾驶车体22内。
在其中一些实施例中,货物传送机构24还包括第一升降组件400、升降板500以及第二升降组件600。第一升降组件400位于自动驾驶车体22内,且与自动驾驶车体22连接。升降板500设于第一升降组件400上,且在第一升降组件400的带动下,能在自动驾驶车体22的底板230与车顶210之间往返移动。第二升降组件600设于升降板500上。货物承载台300设于第二升降组件600上,且在第二升降组件600的带动下,货物承载台300能靠近或远离升降板500移动。
在其中一个应用场景中,第一升降组件400、升降板500、第二升降组件600及货物承载台300均位于自动驾驶车体22内,第一升降组件400带动升降板500朝向自动驾驶车体22的车顶210的移动,并在自动驾驶车体22内封闭天窗212,此时,第二升降组件600及货物承载台300于天窗212处露 出。然后第二升降组件600带动货物承载台300远离升降板500移动,从而实现货物承载台300由自动驾驶车体22内移动至自动驾驶车体22外,具体请参考图3。在上述应用场景中,第一升降组件400先升高,第二升降组件600后升高。在其他应用场景中,第二升降组件600可以先升高,第一升降组件400后升高;第一升降组件400与第二升降组件600可以同时升高。
在其中一个应用场景中,第二升降组件600带动位于自动驾驶车体22外的货物承载台300靠近升降板500移动,以使得货物承载台300与升降板500之间的间距最小。然后,第一升降组件400带动升降板500朝向自动驾驶车体22的底板230的移动,从而实现货物承载台300由自动驾驶车体22外移动至自动驾驶车体22内。在上述应用场景中,第二升降组件600先降低,第一升降组件400后降低。在其他应用场景中,第一升降组件400先降低,第二升降组件600后降低;第一升降组件400与第二升降组件600可以同时降低。
由于同时设置第一升降组件400、升降板500以及第二升降组件600,在传输货物40时,升降板500可以在自动驾驶车体22内封闭天窗212,从而可以降低处于飞行状态下的无人机30的噪声对车内人员的影响,有效避免无人机30下降时的气流对车内人员的影响,有效避免雨水自天窗212落入自动驾驶车体22内。而当不需要传输货物40时,位于自动驾驶车体22内的升降板500可以作为桌台来使用,以放置手机、电脑、水果、零食等物品。
此外,第一升降组件400与第二升降组件600配合升降货物承载台300,可以避免因单个升降组件升降的高度过大,而导致升降组件容易受外界环境影响,不能稳定支撑货物承载台300的情况发生。例如,当刮大风时,升降组件的高度越大,升降组件越容易晃动。
在其中一些实施例中,如图4及图5所示,货物承载台300包括本体310及环绕本体310设置的挡板320。如此,可以避免货物40滑出货物承载台300。
在其中一些实施例中,如图5所示,货物承载台300还包括设于本体310表面的缓冲层330。缓冲层330可以为橡胶层、泡沫层等软材料层。如此,无人机30在向货物承载台300投放货物40时,缓冲层330可以保护本体310及货物40,避免本体310及货物40损坏。
在其中一些实施例中,如图6及图7所示,第一升降组件400的一端与自动驾驶车体22的车顶210连接,另一端与升降板500连接。如此,可以有效避免第一升降组件400占据底板230的位置。在其他实施例中,第一升降组件400的一端也可以与自动驾驶车体22的底板230连接,另一端与升降板500连接。需要说明的是,当第一升降组件400的一端与自动驾驶车体22的底板230连接时,升降板500与第二升降组件600可以省略,此时可以将货物承载台300直接设于第一升降组件400靠近顶板210的一端。
在其中一些实施例中,第一升降组件400包括多根第一支撑杆410,每一第一支撑杆410包括多根依次转动连接的第一分杆412,末端的一根第一分杆412与自动驾驶车体22的车顶210转动连接,末端的另一根第一分杆412与升降板500转动连接。
在其中一个具体的实施例中,每一第一支撑杆410包括两根第一分杆412,两根第一分杆412的端部重叠,并通过穿过重叠区的转轴转动连接。
在其中一个具体的实施例中,如图7、图8及图9所示,第一升降组件400还包括第一导轨420以及第一铰链座430。第一导轨420的数目为两根,两根第一导轨420平行间隔设于车顶210上,且两根第一导轨420分别邻近两个门板214的第一侧2142设置,两根第一导轨420分别与两个门板214的 第一侧2142平行设置。
第一支撑杆410的数目为四根,每一第一支撑杆410的一第一分杆412通过一第一铰链座430与一第一导轨420的端部转动连接(此时,第一铰链座430与第一导轨420固定连接,第一铰链座430与第一分杆412转动连接),每一第一支撑杆410的一第一分杆412通过一第一铰链座430与升降板500转动连接(此时,第一铰链座430与升降板500固定连接,第一分杆412与第一铰链座430转动连接)。从而通过向外拉动或向内推动位于升降板500同一端的两根第一分杆412即可实现第一升降组件400升降。
在本实施例中,第一铰链座430设于第一导轨420上,从而间接设于车顶210上。在其他实施例中,第一铰链座430也可以直接设于车顶210上,此时,第一导轨420可以省略。
在其中一些实施例中,如图7及图10所示,货物传送机构24还包括防水布套700,防水布套700套设于多根第一支撑杆410上,防水布套700一端与自动驾驶车体22的车顶210固定连接,另一端与升降板500可拆卸连接,且防水布套700远离自动驾驶车体22的车顶210的一端能沿第一支撑杆410伸缩,以与升降板500连接或间隔。
其中,当防水布套700远离自动驾驶车体22的车顶210的一端与升降板500连接时,防水布套700与升降板500构成的整体可以阻隔雨水,并通过管路使得防水布套700与升降板500构成的整体与车顶210上的排水管路连通,即可将积蓄的雨水排出,进而可以有效避免在升降板500升降过程中,门板214未完全关闭的情况下雨水落入自动驾驶车体22内,影响车体内的人员和物品。而当防水布套700远离自动驾驶车体22的车顶210的一端远离升降板500时,可以形成供货物40流通的通道,以便于车内人员取放货物40。
在其中一些实施例中,防水布套700与升降板500磁吸连接,从而实现防水布套700与升降板500可拆卸连接。
在其中一个具体的实施例中,防水布套700包括防水布筒710及设于防水布筒710靠近升降板500的一端的磁吸环720,升降板500为磁吸板。
在其中一些实施例中,升降板500及防水布套700均透明。从而可以避免升降板500及防水布套700遮挡天窗212,自天窗212投射的光线可以透过升降板500及防水布套700进入自动驾驶车体22内,提高车内人员的舒适感。
在其中一些实施例中,如图4及图11所示,第二升降组件600包括第二支撑杆610及设于升降板500上的第二导轨620。两根第二支撑杆610的中部转动连接,构成支撑支架602。支撑支架602位于一侧的两端分别第一端6022以及第二端6024,第一端6022以及第二端6024分别与货物承载台300转动连接,支撑支架602位于另一侧的两端分别第三端6026以及第四端6028,第三端6026与第二导轨620转动连接,第四端6028与第二导轨620滑动连接。
在其中一些实施例中,第二升降组件600还包括第二铰链座630,第一端6022及第二端6024分别通过一第二铰链座630与货物承载台300转动连接,第三端6026以及第四端6028分别通过一第二铰链座630与第二导轨620转动连接。如图11及图12所示,第二导轨620上开设有滑槽622,滑槽622沿第二导轨620的延伸方向延伸,与第四端6028连接的第二铰链座630的一端插于滑槽622内,且能沿滑槽622的延伸方向滑动。
在其中一个具体的实施例中,第二导轨620的数目为两根,两根第二导轨620平行间隔排布,且与第一导轨420平行设置。支撑支架602的数目为 两个,两个支撑支架602分别设于两根第二导轨620上。
如图11及图12所示,第二升降组件600还包括连接杆640以及伸缩件650,连接杆640的数目为两根,分别为第一连接杆642及第二连接杆644,第一连接杆642的两端分别连接两个支撑支架602的第三端6026,第二连接杆644的两端分别连接两个支撑支架602的第四端6028。伸缩件650的固定端652与第一连接杆642连接,伸缩件650的活动端654与第二连接杆644连接。当伸缩件650伸缩时,第四端6028沿第二导轨620滑动,第一连接杆642与第二连接杆644之间的间距改变,从而支撑支架602的高度,进而实现升降。
在其中一些实施例中,如图13、图14及图15所示,货物传送机构24还包括第三升降组件800及第四升降组件900。第三升降组件800包括第三支撑杆810,第三支撑杆810设于门板214上,且第三支撑杆810能在门板214的第一侧2142与第二侧2144之间往返移动。第四升降组件900一端与第三支撑杆810连接,另一端与货物承载台300连接,货物承载台300能在第四升降组件900的带动下靠近或远离底板230移动。
在天窗212被两个门板214封闭的状态下,第三支撑杆810位于第一侧2142附近,货物承载台300可以在第四升降组件900的带动下靠近底板230移动,以便车内人员在货物承载台300上取放货物40,此时,货物承载台300也可以作为桌台来使用。而在打开两个门板214的过程中,第三支撑杆810从门板214的第一侧2142移动第二侧2144,从而带动货物承载台300从第一侧2142移动第二侧2144,具体如图13所示,进而可以便于无人机20抓取位于货物承载台300上的货物40,或便于无人机20在货物承载台300上投放携带的货物40。
在其中一个具体的实施例中,第三支撑杆810的数目为两根,两根第三支撑杆810分别设于两个门板214上,且两根第三支撑杆810平行排布。第四升降组件900的结构与第一升降组件400的结构类似,包括四根第四支撑杆910,每一第四支撑杆910包括多根依次转动连接的第二分杆912,末端的一根第二分杆912与第三支撑杆810的一端转动连接,末端的另一根第二分杆912与货物承载台300转动连接。
在其中一个具体的实施例中,第三升降组件800还包括第三导轨820以及第三铰链座830,第三导轨820通过第三铰链座830与第三支撑杆810转动连接。第二分杆912与第三导轨820固定连接。
在其中一个具体的实施例中,第三支撑杆810两端分别设有第一连接座812,第一连接座812与第三铰链座830转动连接。第三导轨820的两端分别设有第二连接座822,第二连接座822与第二分杆912固定连接。
在其中一些实施例中,货物传送机构24还包括防水布盖100a,当门板214打开,且货物承载台300伸出车体外后,防水布盖100a能朝向天窗212移动,以封闭天窗212。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施例,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应 以所附权利要求为准。

Claims (20)

  1. 一种在无人机与自动驾驶车辆之间进行货物传输的方法,其特征在于,包括如下步骤:
    处于飞行状态下的无人机飞抵处于驾驶状态下的自动驾驶车辆的上方,并且两者自动保持相对静止且保持相对高度间隔;以及
    处于飞行状态下的无人机抓取自动驾驶车辆推出的货物或将无人机携带的货物投放至自动驾驶车辆。
  2. 根据权利要求1所述的方法,其特征在于,在处于飞行状态下的无人机飞抵处于驾驶状态下的自动驾驶车辆的上方,并且两者自动保持相对静止且保持相对高度间隔的步骤中:
    自动驾驶车辆实时向无人机发送自身的速度信息及位置信息,无人机根据自动驾驶车辆的速度信息及位置信息实时自动调整自身的速度及位置,以使处于飞行状态下的无人机与处于驾驶状态下的自动驾驶车辆自动保持相对静止且保持相对高度间隔;
    或者,无人机实时向自动驾驶车辆发送自身的速度信息及位置信息,自动驾驶车辆自动根据无人机的速度信息及位置信息实时调整自身的速度及位置或者自动驾驶车辆根据无人机的速度信息及位置信息直接发送指令控制无人机飞行速度,以使处于飞行状态下的无人机与处于驾驶状态下的自动驾驶车辆自动保持相对静止且保持相对高度间隔;
    或者,无人机与自动驾驶车辆实时向对方发送自身的速度信息及位置信息,并根据对方的速度信息和位置信息自动调节各自的速度及位置,以使处于飞行状态下的无人机与处于驾驶状态下的自动驾驶车辆自动保持相对静止且保持相对高度间隔。
  3. 根据权利要求1所述的方法,其特征在于,在处于飞行状态下的无人机飞抵处于驾驶状态下的自动驾驶车辆的上方,并且两者自动保持相对静止且保持相对高度间隔的步骤中:
    自动驾驶车辆实时发送下一步的目标路径或路径点至无人机,实现无人机直接自动追踪自动驾驶车辆下一步的目标路径或路径点;
    或者,自动驾驶车辆直接发送指令控制无人机飞行速度,实现无人机直接自动追踪自动驾驶车辆下一步的目标路径或路径点。
  4. 根据权利要求1所述的方法,其特征在于,在处于飞行状态下的无人机飞抵处于驾驶状态下的自动驾驶车辆的上方,并且两者自动保持相对静止且保持相对高度间隔的步骤中:
    自动驾驶车辆匀速行驶,以便于无人机调整飞行速度而与自动驾驶车辆保持相对静止;
    或者,无人机匀速飞行,以便于自动驾驶车辆调整行驶速度而与无人机保持相对静止。
  5. 根据权利要求1所述的方法,其特征在于,在处于飞行状态下的无人机飞抵处于驾驶状态下的自动驾驶车辆的上方,并且两者自动保持相对静止且保持相对高度间隔的步骤中:
    无人机根据自动驾驶车辆上的信标,测量自动驾驶车辆相对无人机的位置信息和速度信息,以使处于飞行状态下的无人机与处于驾驶状态下的自动驾驶车辆自动保持相对静止且保持相对高度间隔;
    或者,自动驾驶车辆根据无人机上的信标或无人机携带的货物上的信标,测量无人机相对自动驾驶车辆的位置信息和速度信息,以使处于飞行状态下的无人机与处于驾驶状态下的自动驾驶车辆自动保持相对静止且保持相对高 度间隔;
    或者,自动驾驶车辆设有短距定位广播基站,无人机根据基站广播的信号测量无人机相对自动驾驶车辆的位置信息和速度信息,以使处于飞行状态下的无人机与处于驾驶状态下的自动驾驶车辆自动保持相对静止且保持相对高度间隔。
  6. 根据权利要求1所述的方法,其特征在于,在处于飞行状态下的无人机抓取自动驾驶车辆推出的货物或将无人机携带的货物投放至自动驾驶车辆的步骤中:
    处于飞行状态下的无人机在高度方向上靠近自动驾驶车辆飞行,以抓取自动驾驶车辆推出的货物或将无人机携带的货物投放至自动驾驶车辆;
    或者,处于飞行状态下的无人机的抓取机构在高度方向上朝向自动驾驶车辆移动,以抓取自动驾驶车辆推出的货物或将无人机携带的货物投放至自动驾驶车辆;
    或者,自动驾驶车辆的货物承载台在高度方向上朝向无人机移动,以便于无人机抓取位于货物承载台上的货物或便于无人机向货物承载台投放货物。
  7. 根据权利要求1所述的方法,其特征在于,在处于飞行状态下的无人机抓取自动驾驶车辆推出的货物或将无人机携带的货物投放至自动驾驶车辆的步骤之前,当处于飞行状态下的无人机飞抵处于驾驶状态下的自动驾驶车辆的上方时,自动驾驶车辆的天窗自动打开后,自动驾驶车辆内的货物承载台在高度方向上朝向无人机移动,以移动至自动驾驶车辆外。
  8. 一种自动驾驶车辆,用于与无人机配合使用,以在无人机与自动驾驶车辆之间进行货物传输,其特征在于,包括:
    自动驾驶车体,所述自动驾驶车体的车顶开设有天窗,所述车顶上设有用于封闭所述天窗的门板;以及
    货物传送机构,包括货物承载台,所述货物承载台能往返穿过所述天窗,以在所述天窗的内侧与外侧切换位置,从而将所述自动驾驶车体内的货物传输至所述自动驾驶车体外,以供所述无人机抓取,或所述无人机将携带的货物投放至位于所述自动驾驶车体外的所述货物承载台后,所述货物承载台将货物传输至所述自动驾驶车体内。
  9. 根据权利要求8所述的自动驾驶车辆,其特征在于,所述货物承载台包括本体及设于所述本体表面的缓冲层。
  10. 根据权利要求8所述的自动驾驶车辆,其特征在于,所述货物传送机构还包括第一升降组件、升降板以及第二升降组件,所述第一升降组件位于所述自动驾驶车体内,且与所述自动驾驶车体连接,所述升降板设于所述第一升降组件上,且在所述第一升降组件的带动下,能在所述自动驾驶车体的底板与车顶之间往返移动,所述第二升降组件设于所述升降板上,所述货物承载台设于所述第二升降组件上,且在所述第二升降组件的带动下,所述货物承载台能靠近或远离所述升降板移动。
  11. 根据权利要求8所述的自动驾驶车辆,其特征在于,所述第一升降组件的一端与所述自动驾驶车体的车顶连接,另一端与所述升降板连接。
  12. 根据权利要求11所述的自动驾驶车辆,其特征在于,所述第一升降组件包括多根第一支撑杆,每一所述第一支撑杆包括多根依次转动连接的第一分杆,末端的一根第一分杆与所述自动驾驶车体的车顶转动连接,末端的另一根第一分杆与所述升降板转动连接。
  13. 根据权利要求12所述的自动驾驶车辆,其特征在于,所述第一升降 组件还包括第一导轨以及第一铰链座,所述第一导轨的数目为两根,两根所述第一导轨平行间隔设于所述车顶上;
    所述第一支撑杆的数目为四根,所述第一支撑杆的两端分别通过一所述第一铰链座与所述第一导轨的端部及所述升降板转动连接。
  14. 根据权利要求12所述的自动驾驶车辆,其特征在于,所述货物传送机构还包括防水布套,所述防水布套套设于多根所述第一支撑杆上,所述防水布套一端与所述自动驾驶车体的车顶固定连接,另一端与所述升降板可拆卸连接,且所述防水布套远离所述自动驾驶车体的车顶的一端能沿所述第一支撑杆伸缩,以与所述升降板连接或间隔。
  15. 根据权利要求14所述的自动驾驶车辆,其特征在于,所述升降板及所述防水布套均透明。
  16. 根据权利要求14所述的自动驾驶车辆,其特征在于,所述防水布套与所述升降板磁吸连接。
  17. 根据权利要求10所述的自动驾驶车辆,其特征在于,所述第二升降组件包括第二支撑杆及设于所述升降板上的第二导轨,两根所述第二支撑杆的中部转动连接,构成支撑支架,所述支撑支架位于一侧的两端分别为第一端以及第二端,所述第一端以及所述第二端分别与所述货物承载台转动连接,所述支撑支架位于另一侧的两端分别第三端以及第四端,所述第三端与所述第二导轨转动连接,所述第四端与所述第二导轨滑动连接。
  18. 根据权利要求17所述的自动驾驶车辆,其特征在于,所述第二升降组件还包括第二铰链座,所述第一端及所述第二端分别通过一所述第二铰链座与所述货物承载台转动连接,所述第三端以及所述第四端分别通过一所述第二铰链座与所述第二导轨转动连接;
    所述第二导轨上开设有滑槽,所述滑槽沿所述第二导轨的延伸方向延伸,与所述第四端连接的所述第二铰链座的一端插于所述滑槽内,且能沿所述滑槽的延伸方向滑动;
    所述第二导轨的数目为两根,两根所述第二导轨平行间隔排布,所述支撑支架的数目为两个,两个所述支撑支架分别设于两根所述第二导轨上;
    所述第二升降组件还包括连接杆以及伸缩件,所述连接杆的数目为两根,分别为第一连接杆及第二连接杆,所述第一连接杆的两端分别连接两个所述支撑支架的所述第三端,所述第二连接杆的两端分别连接两个所述支撑支架的所述第四端,所述伸缩件的固定端与所述第一连接杆连接,所述伸缩件的活动端与所述第二连接杆连接。
  19. 根据权利要求8所述的自动驾驶车辆,其特征在于,所述门板的数目为两块,两块所述门板相对设置,所述门板与所述车顶转动连接的一侧为第一侧,所述门板与所述第一侧相对设置的一侧为第二侧;
    所述货物传送机构还包括第三升降组件及第四升降组件,所述第三升降组件包括第三支撑杆,所述第三支撑杆设于所述门板上,且所述第三支撑杆能在门板的所述第一侧与所述第二侧之间往返移动,所述第四升降组件一端与所述第三支撑杆连接,另一端与所述货物承载台连接,所述货物承载台能在所述第四升降组件的带动下靠近或远离所述自动驾驶车体的底板移动。
  20. 根据权利要求19所述的自动驾驶车辆,其特征在于,所述货物传送机构还包括防水布盖,当所述门板打开后,所述防水布盖能朝向所述天窗移动,以封闭所述天窗。
PCT/CN2018/102287 2018-08-24 2018-08-24 在无人机与自动驾驶车辆之间进行货物传输的方法及自动驾驶车辆 WO2020037661A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880095176.6A CN112888630A (zh) 2018-08-24 2018-08-24 在无人机与自动驾驶车辆之间进行货物传输的方法及自动驾驶车辆
PCT/CN2018/102287 WO2020037661A1 (zh) 2018-08-24 2018-08-24 在无人机与自动驾驶车辆之间进行货物传输的方法及自动驾驶车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/102287 WO2020037661A1 (zh) 2018-08-24 2018-08-24 在无人机与自动驾驶车辆之间进行货物传输的方法及自动驾驶车辆

Publications (1)

Publication Number Publication Date
WO2020037661A1 true WO2020037661A1 (zh) 2020-02-27

Family

ID=69591867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102287 WO2020037661A1 (zh) 2018-08-24 2018-08-24 在无人机与自动驾驶车辆之间进行货物传输的方法及自动驾驶车辆

Country Status (2)

Country Link
CN (1) CN112888630A (zh)
WO (1) WO2020037661A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130233964A1 (en) * 2012-03-07 2013-09-12 Aurora Flight Sciences Corporation Tethered aerial system for data gathering
WO2015117216A1 (ru) * 2014-02-06 2015-08-13 Владимир Александрович ДАВЫДОВ Площадка для посадки беспилотного летательного аппарата
CN205750546U (zh) * 2016-03-21 2016-11-30 普宙飞行器科技(深圳)有限公司 无人机着陆系统
CN106570666A (zh) * 2016-10-25 2017-04-19 北京印刷学院 一种应用于快递运输装置的智能控制系统
CN107697304A (zh) * 2017-08-31 2018-02-16 周鹏跃 无人机用货物收发系统及货物的收取和寄送方法
US20180196445A1 (en) * 2015-01-09 2018-07-12 Workhorse Group Inc. Package delivery by means of an automated multi-copter uas/uav dispatched from a conventional delivery vehicle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205802159U (zh) * 2016-07-05 2016-12-14 福建信邦物流科技有限公司 一种立体仓库输送线配套自动升降平台
CN206087328U (zh) * 2016-08-31 2017-04-12 马彦亭 一种用于无人机快递的自动收货装置
CN106503954A (zh) * 2016-12-05 2017-03-15 顺丰科技有限公司 移动式物流集成处理系统及物流处理方法
CN207225428U (zh) * 2017-09-28 2018-04-13 贵阳学院 一种组合式升降装卸搬运车
CN107600861B (zh) * 2017-09-29 2020-03-03 北京京东尚科信息技术有限公司 物流传站车及其内部货物调动方法、系统
CN207390181U (zh) * 2017-09-30 2018-05-22 周鹏跃 存取货系统
CN108008737A (zh) * 2017-11-29 2018-05-08 安徽玄同工业设计有限公司 一种车载无人机的施放及回收装置
CN108328353A (zh) * 2018-02-28 2018-07-27 上海拓攻机器人有限公司 一种移动式物流输送系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130233964A1 (en) * 2012-03-07 2013-09-12 Aurora Flight Sciences Corporation Tethered aerial system for data gathering
WO2015117216A1 (ru) * 2014-02-06 2015-08-13 Владимир Александрович ДАВЫДОВ Площадка для посадки беспилотного летательного аппарата
US20180196445A1 (en) * 2015-01-09 2018-07-12 Workhorse Group Inc. Package delivery by means of an automated multi-copter uas/uav dispatched from a conventional delivery vehicle
CN205750546U (zh) * 2016-03-21 2016-11-30 普宙飞行器科技(深圳)有限公司 无人机着陆系统
CN106570666A (zh) * 2016-10-25 2017-04-19 北京印刷学院 一种应用于快递运输装置的智能控制系统
CN107697304A (zh) * 2017-08-31 2018-02-16 周鹏跃 无人机用货物收发系统及货物的收取和寄送方法

Also Published As

Publication number Publication date
CN112888630A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
US10661899B2 (en) In flight transfer of packages between aerial drones
US9777502B2 (en) Multi-level fulfillment center for unmanned aerial vehicles
CN109891193B (zh) 使用交通工具的基于无人机的运送系统
JP7376573B2 (ja) セルフサービスパーセルキャビネット
US9975651B1 (en) Transfer station for transferring containers between unmanned aerial vehicles and unmanned ground vehicle
JP2020518515A (ja) 一体型陸上−航空輸送システム
AU2017289043B2 (en) Interactive transport services provided by unmanned aerial vehicles
US10647508B2 (en) Storage station for storing containers transported by unmanned vehicles
US20170158353A1 (en) Remote Aerodrome for UAVs
US20210279678A1 (en) Drone based delivery system using vehicles
WO2017216040A1 (en) Method and system for delivering items
CN109649671A (zh) 物流飞投系统的坐标平台
CN110001956B (zh) 管廊巡检装置及管廊巡检方法
CN109683620A (zh) 物流飞投系统无人机平台
CN111766896B (zh) 一种基于动基座的无人机控制方法及其系统
CA3087934A1 (en) Drone for low-noise delivery of objects
CN109683621A (zh) 一种物流飞投系统无人机
US20220221861A1 (en) Autonomous vehicle transportation systems and methods
WO2020037661A1 (zh) 在无人机与自动驾驶车辆之间进行货物传输的方法及自动驾驶车辆
CN209343199U (zh) 物流飞投系统无人机平台
JP2021024722A (ja) 配送方法および配送システム
CN107600427A (zh) 一种无人机空投平台
JP2011161981A (ja) 輸送システム
CN209343200U (zh) 一种物流飞投系统无人机
WO2023095924A1 (ja) システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930801

Country of ref document: EP

Kind code of ref document: A1