WO2020037659A1 - 用于检测钢卷侧面的形状缺陷的方法、装置、系统和计算机可读介质 - Google Patents

用于检测钢卷侧面的形状缺陷的方法、装置、系统和计算机可读介质 Download PDF

Info

Publication number
WO2020037659A1
WO2020037659A1 PCT/CN2018/102279 CN2018102279W WO2020037659A1 WO 2020037659 A1 WO2020037659 A1 WO 2020037659A1 CN 2018102279 W CN2018102279 W CN 2018102279W WO 2020037659 A1 WO2020037659 A1 WO 2020037659A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate point
steel coil
dimensional model
shape defect
coordinate
Prior art date
Application number
PCT/CN2018/102279
Other languages
English (en)
French (fr)
Inventor
姚铁
俞志光
Original Assignee
西门子股份公司
姚铁
俞志光
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西门子股份公司, 姚铁, 俞志光 filed Critical 西门子股份公司
Priority to PCT/CN2018/102279 priority Critical patent/WO2020037659A1/zh
Publication of WO2020037659A1 publication Critical patent/WO2020037659A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Definitions

  • the present invention relates to the field of metal processing, and in particular, to a method, an apparatus, a system, a computer-readable medium, and a computer program product for detecting a shape defect on the side of a steel coil.
  • the billet is generally formed into a strip-shaped steel strip by rolling. Since the formed steel strip will be very long, the steel strip will be coiled into a steel coil at the end of the rolling process. During coiling, the tension of the steel strip may fluctuate due to complex operating conditions, so the coiler must be constantly adjusted to keep the coils flat and tight.
  • any small control error of the coiler may also cause shape defects on both sides of the coil. These shape defects usually include irregular edges of the steel coils, the appearance of towers, and so on. Defects in shape will not only cause problems in the subsequent packaging and transportation of steel coils, but also fail to meet market demand and affect the sales of steel coils.
  • embodiments of the present invention provide a method, an apparatus, a system, a computer-readable medium, and a computer program product for detecting a shape defect on the side of a steel coil, which can improve the accuracy of shape defect detection and effectiveness.
  • a method for detecting a shape defect on a side of a steel coil includes: performing a three-dimensional scan on a first side and a second side of the steel coil to construct a phase similar to the first side. A corresponding first three-dimensional model and a second three-dimensional model corresponding to the second side; determining the target based on the first three-dimensional model, the second three-dimensional model, and a target width of a steel strip forming the steel coil Whether the steel coil has shape defects.
  • the determining whether the steel coil has a shape defect based on the first three-dimensional model, the second three-dimensional model, and a target width of a steel strip forming the steel coil includes: The first coordinate point on the first three-dimensional model is determined to determine a second coordinate point on the second three-dimensional model, wherein the second coordinate point and the first coordinate point are coincident when projected onto a reference plane, so The reference plane is perpendicular to the axis of the steel coil, and the first coordinate point is any coordinate point on the first three-dimensional model; based on the target width of the steel strip, the first coordinate point, and the The second coordinate point, determining a deviation between the actual width of the steel strip and the target width of the steel strip at the position of the first coordinate point; if the deviation is greater than a predetermined threshold, determining the first The position of the coordinate point is a position where the shape defect exists.
  • the deviation is calculated based on the points on the two-dimensional three-dimensional model at the corresponding positions and the target width of the steel strip, and the existence of the shape defect can be determined based on the deviation.
  • the shape defect can be simply and efficiently determined, and Can improve the accuracy of shape defect detection.
  • the determining a second coordinate point on the second three-dimensional model includes determining whether a target coordinate point exists in a point cloud obtained by performing a three-dimensional scanning on the second side, wherein, The target coordinate point and the first coordinate point are coincident when projected onto the reference plane; if the target coordinate point exists in the point cloud, the target coordinate point is used as the second coordinate Point; if the target coordinate point does not exist in the point cloud, select an adjacent coordinate point adjacent to the target coordinate point in the point cloud, and interpolate the adjacent coordinate point to Determining the second coordinate point.
  • the x-axis and y-axis of the first three-dimensional coordinate system in which the first three-dimensional model is located and the second three-dimensional coordinate system in which the second three-dimensional model is located are coincident, respectively, and the x
  • the plane formed by the axis and the y-axis is the reference plane, the first coordinate point is represented by (x, y, z), and the second coordinate point is represented by (x, y, z ');
  • this embodiment provides a simple and reliable way to calculate the deviation of the side of the steel coil, thereby improving the efficiency of the shape defect detection.
  • this embodiment can avoid the situation where the actual width of the steel strip meets the requirements, but the steel coils are entirely shifted. If such an overall offset is used as a shape defect for shear correction, unnecessary losses will be caused. This embodiment can avoid such a loss.
  • the method further comprises: if the deviation is less than or equal to the predetermined threshold, determining an absolute difference between a first value and a second value, wherein the reference plane is set at Between the first side and the second side, the first value is a vertical distance from the first coordinate point to the reference plane, and the second value is the second coordinate point to the A vertical distance of a reference plane; if the absolute difference is greater than another predetermined threshold, determining that the position of the first coordinate point is a position where a shape defect exists.
  • the deviation is less than or equal to a predetermined threshold, it can be shown that the actual width of the steel strip meets the requirement of the target width, but by comparing the vertical distance from the first coordinate point to the reference plane and the vertical distance from the second coordinate point to the reference plane , Can further determine whether there is a shape defect caused by an error in the winding process and the like, which can further improve the accuracy of the shape defect detection.
  • the method further includes: if it is determined that the steel coil has a shape defect, determining a distance from a position where the shape defect exists to a head of the steel coil, as the shape defect exists in all places The position information on the coil is described.
  • the distance from the position of the shape defect to the head of the steel coil can be further determined, thereby effectively assisting the subsequent processing to correct the shape defect, for example, to the tower Shaped or uneven parts are cut, etc.
  • an apparatus for detecting a shape defect on a side of a steel coil includes: a building module for three-dimensionally scanning a first side and a second side of the steel coil to construct A first three-dimensional model corresponding to the first side and a second three-dimensional model corresponding to the second side; and a defect determination module, based on the first three-dimensional model, the second three-dimensional model, and forming The target width of the steel strip of the steel coil determines whether there is a shape defect in the steel coil.
  • the defect determination module when determining whether the steel coil has a shape defect, is specifically configured to: for a first coordinate point on the first three-dimensional model, determine the position on the second three-dimensional model.
  • the second coordinate point wherein the second coordinate point and the first coordinate point are coincident when projected onto a reference plane, the reference plane is perpendicular to the axis of the steel coil, and the first coordinate point is Any coordinate point on the first three-dimensional model; determining the steel strip at the position of the first coordinate point based on the target width of the steel strip, the first coordinate point, and the second coordinate point A deviation between the actual width of the steel strip and a target width of the steel strip; if the deviation is greater than a predetermined threshold, determining that the position of the first coordinate point is a position where the shape defect exists.
  • the deviation is calculated based on the points on the two-dimensional three-dimensional model at the corresponding positions and the target width of the steel strip, and the existence of the shape defect can be determined based on the deviation.
  • the shape defect can be simply and efficiently determined, and Can improve the accuracy of shape defect detection.
  • the defect determination module when determining the second coordinate point on the second three-dimensional model, is specifically configured to determine whether a point cloud obtained by performing a three-dimensional scan on the second side is There is a target coordinate point, wherein the target coordinate point and the first coordinate point are coincident when projected onto the reference plane; if the target coordinate point exists in the point cloud, the target coordinate point is Used as the second coordinate point; if the target coordinate point does not exist in the point cloud, selecting an adjacent coordinate point adjacent to the target coordinate point in the point cloud, and comparing the phase Interpolate adjacent coordinate points to determine the second coordinate point.
  • the x-axis and y-axis of the first three-dimensional coordinate system where the first three-dimensional model is located and the second three-dimensional coordinate system where the second three-dimensional model is located are coincident, and the x-axis
  • this embodiment provides a simple and reliable way to calculate the deviation of the side of the steel coil, thereby improving the efficiency of the shape defect detection.
  • this embodiment can avoid the situation where the actual width of the steel strip meets the requirements, but the steel coils are entirely shifted. If such an overall offset is used as a shape defect for shear correction, unnecessary losses will be caused. This embodiment can avoid such a loss.
  • the defect determination module is further configured to: if the deviation is less than or equal to the predetermined threshold, determine an absolute difference between a first value and a second value, wherein the reference plane Is set between the first side and the second side, the first value is a vertical distance from the first coordinate point to the reference plane, and the second value is the second coordinate point A vertical distance to the reference plane; if the absolute difference is greater than another predetermined threshold, determining that the position of the first coordinate point is a position where a shape defect exists.
  • the deviation is less than or equal to a predetermined threshold, it can be shown that the actual width of the steel strip meets the requirement of the target width, but by comparing the vertical distance from the first coordinate point to the reference plane and the vertical distance from the second coordinate point to the reference plane , Can further determine whether there is a shape defect caused by an error in the winding process and the like, which can further improve the accuracy of the shape defect detection.
  • the apparatus further includes: a position determination module, configured to: if the defect determination module determines that the steel coil has a shape defect, determine a position where the shape defect exists to the steel coil The distance of the head is used as the position information of the shape defect on the steel coil.
  • the distance from the position of the shape defect to the head of the steel coil can be further determined, thereby effectively assisting the subsequent processing to correct the shape defect, for example, to the tower Shaped or uneven parts are cut, etc.
  • an apparatus for detecting a shape defect on the side of a steel coil includes: at least one processor; a memory coupled with the at least one processor, which stores executable instructions; wherein When the executable instructions are executed by the at least one processor, the methods of the foregoing embodiments are implemented.
  • a system for detecting a shape defect on a side of a steel coil includes: a first three-dimensional scanner for scanning the first side of the steel coil to construct a first side A corresponding first three-dimensional model; a second three-dimensional scanner for three-dimensionally scanning the second side of the steel coil to construct a second three-dimensional model corresponding to the second side; a controller for The first three-dimensional model and the second three-dimensional model are described, and the methods of the foregoing embodiments are performed.
  • a computer-readable medium includes code for causing a computer to execute the methods of the above-mentioned various embodiments.
  • a computer program product is tangibly stored on a computer-readable medium and includes computer-executable instructions that, when executed, cause at least A processor executes the methods of the above embodiments.
  • FIG. 1 is a longitudinal sectional view schematically showing a steel coil having a shape defect.
  • FIG. 2 is a schematic flowchart of a method for detecting a shape defect on a side of a steel coil according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a three-dimensional coordinate system according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a system for detecting a shape defect on a side of a steel coil according to an embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of an apparatus for detecting a shape defect on a side of a steel coil according to an embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of an apparatus for detecting a shape defect on a side of a steel coil according to an embodiment of the present invention.
  • system 411 three-dimensional scanner
  • processor 620: memory
  • Rolling is the process of forming a slab in steel processing.
  • the billet is processed into a steel strip by a rolling unit, and the steel strip output from the last rolling mill is coiled into a coil by a coiler. Due to the very high running speed of the rolling mill, the moving speed of the output steel strip may reach 100 km / h. Therefore, during the coiling process, any small control error of the coiler will cause shape defects on both sides of the coil.
  • the small control errors in the rolling process may cause errors in the width of the steel strip itself, so the two sides of the steel strip thus formed may also have shape defects. Such shape defects usually include uneven edges of the steel coil, tower-shaped appearance, and the like.
  • FIG. 1 schematically illustrates a longitudinal cross-sectional view of a steel coil having a shape defect.
  • the side edges of the steel coil 100 are uneven, and a part of the coil layer is protruded outward, resulting in a layer defect.
  • FIG. 1 is provided as an example only. In actual processing, there may be other forms of shape defects.
  • part of the coil layer of a steel coil may have uneven defects such as protrusion, recess, and protrusion.
  • a steel coil is mainly photographed through a camera installed in a processing workshop, and then the captured image is sent to a monitoring person in a monitoring room, and the monitoring person recognizes whether a shape defect occurs through manual observation.
  • This method not only consumes a lot of time, but also requires the image captured by the camera to be high-definition, and the light in the processing workshop often cannot guarantee the various conditions (such as sufficient brightness) required for the camera to shoot.
  • the present disclosure provides a technical solution for detecting a shape defect on the side of a steel coil.
  • the first side and the second side of the steel coil can be three-dimensionally scanned to construct a first three-dimensional model corresponding to the first side and a second three-dimensional model corresponding to the second side.
  • Whether the steel coil has a shape defect can be determined based on the first three-dimensional model, the second three-dimensional model, and the target width of the steel strip forming the steel coil.
  • position information of the shape defect on the steel coil may be further determined.
  • the obtained position information of the shape defect can effectively assist in correcting the shape defect in the subsequent processing, such as cutting the shape defect part.
  • the resulting steel coil products meet the requirements for packaging and transportation, thereby improving the safety in the packaging and transportation process; and the quality of the steel coil products meets market demand and reduces production cost losses.
  • FIG. 2 is a schematic flowchart of a method for detecting a shape defect on a side of a steel coil according to an embodiment of the present invention.
  • a box indicated by a dotted line indicates an optional step.
  • step 210 the first side and the second side of the steel coil are three-dimensionally scanned to construct a first three-dimensional model corresponding to the first side and a second corresponding to the second side.
  • Three-dimensional model As shown in FIG. 2, in step 210, the first side and the second side of the steel coil are three-dimensionally scanned to construct a first three-dimensional model corresponding to the first side and a second corresponding to the second side. Three-dimensional model.
  • step 220 it is determined whether the steel coil has a shape defect based on the first three-dimensional model, the second three-dimensional model, and the target width of the steel strip forming the steel coil.
  • a steel coil may include two sides, which may be referred to herein as a first side and a second side, respectively.
  • the width of the rolled steel strip or coil under ideal conditions without shape defects is referred to as the "target width of the steel strip”.
  • the target width of the steel strip can be set in advance according to industry specifications, customer needs, etc. This target width may be received from the control system of the rolling mill.
  • step 210 three-dimensional laser scanning may be performed on the first side and the second side respectively to obtain a first point cloud corresponding to the first side and a second point corresponding to the second side. cloud.
  • two three-dimensional laser scanners may be provided at the two sides of the steel coil, respectively.
  • Two three-dimensional laser scanners can be used to perform three-dimensional scanning on two sides and capture images, thereby obtaining a first scan data set of a first side and a second scan data set of a second side. Since the scan data set obtained by the three-dimensional laser scanner often contains noise or noise, various noise reduction processing methods known in the art can be used to perform noise reduction processing on the first scan data set and the second scan data set, and A standard three-dimensional coordinate system is established to obtain a first point cloud corresponding to the first side and a second point cloud corresponding to the second side. It should be understood that any point can be used as the origin to establish a three-dimensional coordinate system. For example, the center point of the steel coil can be selected as the origin, and a point on one side of the steel coil can be selected as the origin. The invention does not limit this in any way.
  • the above-mentioned three-dimensional laser scanning can be implemented by using various light sources, for example, a light emitting diode (LED) or a laser generator. It should be understood that although the three-dimensional laser scanning technology is described herein, the embodiments of the present invention may also adopt other three-dimensional scanning technologies, which are not limited in the embodiments of the present invention.
  • LED light emitting diode
  • laser generator a laser generator
  • a first three-dimensional model and a second three-dimensional model may be constructed based on the thicknesses of the first point cloud, the second point cloud, and the steel strip.
  • the thickness of the steel strip can be obtained from the control system of the rolling mill.
  • the first three-dimensional model of the first side can be constructed using various three-dimensional construction techniques known in the art based on the first point cloud and the thickness of the steel strip. For example, after removing noise and abnormal points from the first point cloud, the first point cloud can be classified based on the thickness of the steel strip, for example, which data points are located in the first volume layer and which data points are located in the second volume layer. , And so on, so as to arrange the data points in the first point cloud to form a first three-dimensional model.
  • a second three-dimensional model of the second side can be constructed based on the thickness of the second point cloud and the steel strip, and the processing process is similar to the process of obtaining the first three-dimensional model.
  • the first three-dimensional model and the second three-dimensional model may be represented as three-dimensional curved surfaces, respectively.
  • the point clouds of the two sides are obtained by using a three-dimensional laser scanning technology, and then the two sides are separately modeled based on the point cloud and the thickness of the steel strip, thereby improving the accuracy of modeling the two sides.
  • Degree which is conducive to accurately determine the shape defect.
  • a second coordinate point on the second three-dimensional model is determined.
  • the first coordinate point and the second coordinate point are coincident when projected onto a reference plane, and the reference plane may be a plane perpendicular to the axis of the steel coil. If the reference plane passes through the center of the steel coil, the first coordinate point and the second coordinate point can be considered to be symmetrical. It can be seen that the first coordinate point and the second coordinate point are corresponding points on the two sides.
  • the deviation between the actual width of the steel strip at the location of the first coordinate point and the target width of the steel strip may be determined based on the target width of the steel strip, the first coordinate point, and the second coordinate point. Then, it can be judged whether the deviation is larger than a predetermined threshold. If the deviation is greater than a predetermined threshold, it may be determined that the position of the first coordinate point is a position where a shape defect exists.
  • the predetermined threshold can be set in advance according to actual needs and the experience of the staff.
  • the predetermined threshold can be set to 3 cm according to the requirements of the steel coil product.
  • the deviation is calculated based on the corresponding position points on the two-dimensional three-dimensional model and the target width of the steel strip, and the presence or absence of a shape defect is determined based on the deviation, which can improve the accuracy of the shape defect detection.
  • any coordinate point on the first three-dimensional model it can be determined whether there is a deviation at the corresponding position. For example, if conditions (such as hardware or software computing power, production process delay, etc.) allow, you can calculate whether there is a deviation for each coordinate point on the first 3D model, which can improve the accuracy of shape defect detection. To further improve the quality of steel coil products. However, in some cases, if the change between adjacent coordinate points is small, such as the change is less than a predetermined condition, the deviation can be calculated for one of the coordinate points, instead of calculating the deviation at its adjacent coordinate points. This can save computing resources and computing time.
  • conditions such as hardware or software computing power, production process delay, etc.
  • the coordinate point is called a target coordinate point. Because the data points collected may not be completely consistent when scanning the first side and the second side, there may or may not be target coordinate points in the second point cloud.
  • the point can be directly used as the second coordinate point. This method is simple and fast to implement, and can save the time of shape defect detection.
  • a coordinate point adjacent to the target coordinate point may be selected in the second point cloud.
  • the coordinate points adjacent to the target coordinate point may be referred to as adjacent coordinate points.
  • interpolation can be performed on adjacent coordinate points to obtain a second coordinate point.
  • two three-dimensional coordinate systems may be respectively constructed for the first side and the second side, which are referred to as a first three-dimensional coordinate system and a second three-dimensional coordinate system, respectively.
  • a first three-dimensional coordinate system and a second three-dimensional coordinate system respectively.
  • one of the two x-axis, y-axis, or z-axis of the two three-dimensional coordinate system constructed can be set in the axial direction of the coil, which is convenient for calculating the deviation of the side of the coil.
  • the z-axis of the two three-dimensional coordinate systems can be set in the axial direction of the steel coil.
  • the origin of the two three-dimensional coordinate systems can be set to the same point, and their x-axis and y-axis are coincident.
  • FIG. 3 schematically illustrates two three-dimensional coordinate systems.
  • the x- and y-axes of the two three-dimensional coordinate systems are coincident, while the z-axis points in opposite directions.
  • the origin of the two three-dimensional coordinate systems may be located at the center point of the steel coil, or may not be at the center point of the steel coil.
  • FIG. 3 shows a case where the origin is located at the center point of the steel coil.
  • the direction of the x-axis in FIG. 3 can be understood as the longitudinal direction of the steel coil.
  • Deviation
  • the z 'value is directly obtained by scanning. If the second coordinate point is obtained through interpolation, then z 'is a value obtained through interpolation.
  • this embodiment provides a simple and reliable way to calculate the deviation between the actual width of the steel coil and the target width, thereby improving the efficiency of the shape defect detection.
  • the x-axis, y-axis, and origin of the two three-dimensional coordinate systems are set to coincide.
  • the x-axis, y-axis, and origin of the two three-dimensional coordinate systems may not be coincident.
  • the xy planes of two three-dimensional coordinate systems are parallel, and the origin is offset in the z-axis direction.
  • the offset of the origin of the two three-dimensional coordinate systems on the z-axis (for convenience of description, it is referred to as "z-axis offset" herein) is taken into account.
  • the deviation may be equal to
  • the deviation is less than a predetermined threshold, it can be said that the actual width of the steel coil is equal to or close to the target width, then it can be considered that there is no shape defect caused by the error of the strip width.
  • the small control errors of the coiler may also cause shape defects in the coil, such as shape defects such as the wrong layer shown in FIG. 1.
  • Embodiments of the present invention also provide a way to detect such a shape defect.
  • an absolute difference between the first value and the second value may be determined, where the reference plane may be set between the first side and the second side.
  • the first value is the vertical distance from the first coordinate point to the reference plane
  • the second value is the vertical distance from the second coordinate point to the reference plane. If the absolute difference is greater than another predetermined threshold, it is determined that the position where the first coordinate point is located is a position where a shape defect exists.
  • the another predetermined threshold may be set according to actual requirements, personnel experience, and a specific position of the reference plane.
  • the deviation is less than or equal to a predetermined threshold, it can be shown that the actual width of the steel strip meets the requirement of the target width, but by comparing the vertical distance from the first coordinate point to the reference plane and the vertical distance from the second coordinate point to the reference plane , Can further determine whether there is a shape defect caused by an error in the winding process and the like, which can further improve the accuracy of the shape defect detection.
  • the absolute difference is compared with another predetermined threshold to determine whether a shape defect exists at the first coordinate point. For example, if the absolute difference is greater than the another predetermined threshold, it may be determined that a shape defect exists at the first coordinate point. If the absolute difference is not greater than the another predetermined threshold, it may be determined that there is no shape defect at the first coordinate point.
  • the coordinate origin is the center point where the steel coil is set. However, in other embodiments, the coordinate origin is not necessarily set at the center point of the steel coil. If the origin is not set at the center point of the steel coil, the setting of the other predetermined threshold value may also take the z-axis offset into account.
  • step 230 may be performed after step 220.
  • position information of the shape defect on the steel coil may be determined. Specifically, the distance from the position where the shape defect exists to the head of the steel coil can be determined as the above-mentioned position information.
  • the distance from the position of the shape defect to the head of the steel coil can be further determined, thereby effectively assisting the subsequent processing to correct the shape defect, for example, for Tower-shaped or uneven parts are cut, etc.
  • a number of appropriate calculation methods can be used to determine the distance from the location of the shape defect to the head of the coil.
  • the polar coordinate system can be used to calculate the distance from the position where the shape defect exists to the head of the steel coil. This method is simple and efficient, and can improve the detection efficiency of the shape defect.
  • step 220 it is determined that the position of the first coordinate point is a position with a shape defect, and then calculating the distance from the position with the shape defect to the head is also calculating the distance from the first coordinate point to the head.
  • the side cross-sectional shape of the coil is round or nearly circular, the side cross-section of the coil can be regarded as being located in a polar coordinate system, and the polar coordinate system is used to calculate the first coordinate point to the head of the coil Distance.
  • the first side of the steel coil is projected in polar coordinate system.
  • the first coordinate point is projected as the first projection point in the polar coordinate system
  • the head of the steel coil is projected on the head projection point in the polar coordinate system.
  • a coordinate point (x1, y1, z1) adjacent to the first coordinate point is selected from the first three-dimensional model, and a coordinate point in which the adjacent coordinate point is projected in a polar coordinate system is referred to as a second projection point.
  • the second projection point may have an equal or approximately equal polar diameter to the first projection point.
  • An angle ⁇ between the second projection point and the first projection point may be calculated. This angle can be calculated according to a well-known mathematical manner, and will not be repeated here.
  • the lengths of the arcs between adjacent points are accumulated in turn until the head projection points are expressed. Then the obtained accumulated arc length can be considered as the distance from the position of the shape defect to the head of the steel coil.
  • the above-mentioned position information may also be output.
  • the position information may be output to a control system for controlling a subsequent processing process, such as a control system for controlling a cutting process, so as to correct a shape defect.
  • FIG. 4 is a schematic diagram of a system for detecting a shape defect on a side of a steel coil according to an embodiment of the present invention.
  • the system 410 for detecting a shape defect on the side of the steel coil may include a three-dimensional scanner 411 and a three-dimensional scanner 412, and a controller 413.
  • the three-dimensional scanners 411 and 412 may communicate electronically with the controller 413, for example, they may communicate through various wired or wireless communication technologies.
  • the three-dimensional scanners 411 and 412 may be three-dimensional laser scanners, or any other suitable scanners in the art.
  • the controller 413 may be implemented by various applicable electronic hardware, such as a general-purpose processor, a special-purpose processor, a digital signal processor, an application-specific integrated circuit, a programmable gate array, and the like.
  • the steel coil 420 may have two sides 421 and 422.
  • the side surface 421 may correspond to the first side surface
  • the side surface 422 may correspond to the second side surface.
  • the side surface 422 may correspond to the first side surface
  • the side surface 421 may correspond to the second side surface.
  • the three-dimensional scanners 411 and 412 may be respectively disposed on two sides of the steel coil 420.
  • the three-dimensional scanner 411 may be disposed at a side surface 421 of the steel coil 420
  • the three-dimensional scanner 412 may be disposed at a side surface 422 of the steel coil 420.
  • the controller 413 may also be in electronic communication with a control system for controlling the rolling process.
  • the controller 413 may communicate with a control system for controlling the rolling process through a wired or wireless communication technology to obtain information necessary for implementing the embodiments of the present invention, such as the thickness of the steel strip, and the target width of the steel strip. Wait.
  • the three-dimensional scanner 411 can scan the side surface 421 of the steel coil, and can send the scanned data to the controller 413.
  • the three-dimensional scanner 412 can scan the side 222 of the steel coil, and can send the scanned data to the controller 413.
  • the controller 413 may process the scanning data received from the three-dimensional scanner 411 (for example, perform noise reduction processing), so as to obtain a first point cloud corresponding to the side surface 421.
  • the controller 413 may process (for example, perform noise reduction processing) the scan data received from the three-dimensional scanner 412 to obtain a second point cloud corresponding to the side surface 422.
  • the controller 413 may construct a first three-dimensional model corresponding to the side surface 421 based on the thickness of the first point cloud and the steel plate forming the steel coil 420; Corresponding second three-dimensional model.
  • the controller 413 may determine whether the steel coil has a shape defect based on the first three-dimensional model, the second three-dimensional model, and the target width of the steel coil 420.
  • the controller 413 may determine position information of the shape defect on the steel coil.
  • the position information can be output.
  • the controller 413 may also be in electronic communication with a control system for controlling a subsequent processing process, such as a cutting process.
  • the controller 413 may output the given position information to the control system, so that the control system corrects the shape defect of the steel coil based on the position information.
  • controller 413 For other specific operations of the controller 413, reference may be made to the specific process described in FIG. 2, and details are not described herein again.
  • FIG. 5 is a schematic block diagram of an apparatus for detecting a shape defect on a side of a steel coil according to an embodiment of the present invention.
  • the apparatus 500 shown in FIG. 5 may be implemented by software, hardware (for example, a central processing unit, an integrated circuit, a digital signal processor, or the like) or a combination of software and hardware.
  • boxes indicated by dotted lines indicate optional modules.
  • the apparatus 500 may include a building module 510 and a defect determination module 520.
  • the construction module 510 performs three-dimensional scanning on the first side and the second side of the steel coil to construct a first three-dimensional model corresponding to the first side and a second three-dimensional model corresponding to the second side.
  • the defect determination module 520 determines whether the steel coil has a shape defect based on the first three-dimensional model, the second three-dimensional model, and the target width of the steel strip forming the steel coil.
  • the defect determination module 520 when determining whether a steel coil has a shape defect, is specifically configured to: for a first coordinate point on the first three-dimensional model, determine a second coordinate point on the second three-dimensional model, where , The second coordinate point and the first coordinate point are coincident when projected onto the reference plane, the reference plane is perpendicular to the axis of the steel coil, and the first coordinate point is any coordinate point on the first three-dimensional model; The target width, the first coordinate point and the second coordinate point determine the deviation between the actual width of the steel strip at the location of the first coordinate point and the target width of the steel strip; if the deviation is greater than a predetermined threshold, determine the location of the first coordinate point The position is a position where the shape defect exists.
  • the defect determination module 520 when determining the second coordinate point on the second three-dimensional model, is specifically configured to determine whether a target coordinate point exists in a point cloud obtained by performing three-dimensional scanning on the second side, Among them, the target coordinate point and the first coordinate point are coincident when projected to the reference plane; if the target coordinate point exists in the point cloud, the target coordinate point is used as the second coordinate point; if the target coordinate does not exist in the point cloud Point, in this point cloud, an adjacent coordinate point adjacent to the target coordinate point is selected, and the adjacent coordinate points are interpolated to determine a second coordinate point.
  • the x-axis and y-axis of the first three-dimensional coordinate system where the first three-dimensional model is located and the second three-dimensional coordinate system where the second three-dimensional model is located are coincident, and the plane formed by the x-axis and the y-axis is a plane
  • the defect determination module 520 may determine an absolute difference between the first value and the second value, wherein the reference plane is set on the first side and the second Between sides, the first value is the vertical distance from the first coordinate point to the reference plane, and the second value is the vertical distance from the second coordinate point to the reference plane. If the absolute difference is greater than another predetermined threshold, the defect determination module 520 may determine that the position of the first coordinate point is a position where a shape defect exists.
  • the apparatus 200 may further include a position determination module 530. If the defect determination module 520 determines that the steel coil has a shape defect, the position determination module 530 may determine position information of the shape defect on the steel coil. When determining the position information of the shape defect on the steel coil, the position determination module 530 is specifically configured to determine the distance from the position where the shape defect exists to the head of the steel coil, as the position information of the shape defect on the steel coil.
  • each module of the apparatus 500 For other specific operations of each module of the apparatus 500, reference may be made to a specific process of the method described above in conjunction with FIG. 2. For brevity of description, we will not repeat them here.
  • FIG. 6 is a schematic block diagram of an apparatus for detecting a shape defect on a side of a steel coil according to an embodiment of the present invention.
  • the apparatus 600 may include at least one processor 610 and a memory 620.
  • the memory 620 may be coupled to at least one processor 610, which stores executable instructions.
  • executable instructions When executable instructions are executed by at least one processor 610, the specific process of the method described in conjunction with FIG. 2 may be implemented. For brevity of description, we will not repeat them here.
  • An embodiment of the present invention also provides a computer-readable medium.
  • the computer-readable medium may include a computer that causes the computer to perform the specific processes described in connection with FIG. 2.
  • An embodiment of the present invention also provides a computer program product.
  • the computer program product may be tangibly stored on a computer-readable medium and includes computer-executable instructions that, when executed, cause at least one processor to perform a specific process described in conjunction with FIG. 2.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

用于检测钢卷侧面的形状缺陷的方法和装置。方法包括:对钢卷(420)的第一侧面(421)和第二侧面(422)分别进行三维扫描,以构建与第一侧面(421)相对应的第一三维模型以及与第二侧面(422)对应的第二三维模型;基于第一三维模型、第二三维模型和形成钢卷(420)的钢带的目标宽度,确定钢卷(420)是否存在形状缺陷。

Description

用于检测钢卷侧面的形状缺陷的方法、装置、系统和计算机可读介质 技术领域
本发明涉及金属加工领域,具体地,涉及用于检测钢卷侧面的形状缺陷的方法、装置、系统、计算机可读介质和计算机程序产品。
背景技术
在钢铁加工过程中,一般通过轧制来将钢坯成型为带状的钢带,由于形成的钢带将会很长,因此在轧制过程结束时钢带会被卷取为钢卷。在卷取时,钢带的张力可能会因复杂的操作条件而波动,因此卷取机必须不断地进行调整,来保持钢卷平整且紧实。
然而,由于轧制过程中有时可能会存在控制误差,这样造成钢带本身的宽度可能出现偏差,那么在钢卷侧面就可能产生形状缺陷。此外,由于轧制过程以非常高的速度运行,导致产生的钢带的运动速度也非常高。所以,卷取机任何微小的控制误差也可能使得钢卷的两侧产生形状缺陷。这些形状缺陷通常包括钢卷的边缘不齐,出现塔形等等。形状缺陷不仅会造成钢卷的后续包装运输问题,而且甚至无法满足市场需求,影响钢卷的销售。
发明内容
考虑到现有技术的上述问题,本发明的实施例提供了用于检测钢卷侧面的形状缺陷的方法、装置、系统、计算机可读介质和计算机程序产品,能够提高形状缺陷检测的准确度和效率。
一方面,根据本发明实施例的一种用于检测钢卷侧面的形状缺陷的方法,包括:对钢卷的第一侧面和第二侧面分别进行三维扫描,以构建与所述第一侧面相对应的第一三维模型以及与所述第二侧面对应的第二三维模型;基于所述第一三维模型、所述第二三维模型和形成所述钢卷的钢带的目标宽度,确定所述钢卷是否存在形状缺陷。
可见,通过对钢卷的两个侧面进行三维建模,基于所构建的三维模型来确定钢卷是否存在形状缺陷,而无需监控人员通过人工观察来识别形状缺陷,不仅能够减少人力成本,而且能够极大地提高形状缺陷检测的准确度和效率。
在另一实施例中,所述基于所述第一三维模型、所述第二三维模型和形成所述钢卷的钢带的目标宽度,确定所述钢卷是否存在形状缺陷,包括:对于所述第一三维模型上的第一坐标点,确定所述第二三维模型上的第二坐标点,其中,所述第二坐标点和第一坐标点在投射到参考平面时是重合的,所述参考平面垂直于所述钢卷的轴向,所述第一坐标点是所述第一三维模型上的任一坐标点;基于所述钢带的目标宽度、所述第一坐标点和所述第二坐标点,确定所述第一坐标点所在位置处所述钢带的实际宽度与所述钢带的目标宽度之间的偏差;如果所述偏差大于预定阈值,则确定所述第一坐标点所在位置为存在所述形状缺陷的位置。
可见,在该实施例中,通过基于两个侧面的三维模型上的对应位置的点以及钢带的目标宽度来计算偏差,基于偏差来判断是否存在形状缺陷,能够简单高效地判断形状缺陷,并且能够提高形状缺陷检测的准确度。
在另一实施例中,所述确定所述第二三维模型上的第二坐标点,包括:确定通过对所述第二侧面进行三维扫描所获得的点云中是否存在目标坐标点,其中,所述目标坐标点和所述第一坐标点在投射到所述参考平面时是重合的;如果所述点云中存在所述目标坐标点,将所述目标坐标点用作所述第二坐标点;如果所述点云中不存在所述目标坐标点,则在所述点云中选取与所述目标坐标点相邻的相邻坐标点,并且对所述相邻坐标点进行插值,以确定所述第二坐标点。
可见,在该实施例中,提供了关于选取与第一坐标点对应的坐标点的不同方式,在实现上简单快速,有利于提高形状缺陷检测效率。
在另一实施例中,所述第一三维模型所在的第一三维坐标系与所述第二三维模型所在的第二三维坐标系二者的x轴和y轴分别是重合的,所述x轴和所述y轴形成的平面为所述参考平面,所述第一坐标点由(x,y,z)表示,所述第二坐标点由(x,y,z’)表示,;所述基于所述钢带的目标宽度、所述第一坐标点和所述第二坐标点,确定所述第一坐标点所在位置处所述钢带的实 际宽度与所述钢带的目标宽度之间的偏差包括:基于以下等式来确定所述偏差:所述偏差=|z+z’-所述钢带的目标宽度|。
可见,该实施例提供了简单而可靠的计算钢卷侧面的偏差的方式,从而能够提高形状缺陷检测的效率。此外,该实施例能够避免检出钢带实际宽度满足要求、但是钢卷发生整体偏移的情况。如果将这种整体偏移作为形状缺陷进行剪切修正,会造成不必要的损失。而该实施例能够避免这样的损失。
在另一实施例中,所述方法还包括:如果所述偏差小于或等于所述预定阈值,则确定第一值和第二值之间的绝对差值,其中,所述参考平面被设置在所述第一侧面与所述第二侧面之间,所述第一值为所述第一坐标点到所述参考平面的垂直距离,所述第二值为所述第二坐标点到所述参考平面的垂直距离;如果所述绝对差值大于另一预定阈值,则确定所述第一坐标点所在位置为存在形状缺陷的位置。
在该实施例中,虽然偏差小于或等于预定阈值可以表明钢带的实际宽度满足目标宽度的要求,但是通过比较第一坐标点到参考平面的垂直距离与第二坐标点到参考平面的垂直距离,可以进一步判断是否存在由于卷取过程等的误差造成的形状缺陷,这样能够进一步提高形状缺陷检测准确度。
在另一实施例中,所述方法还包括:如果确定所述钢卷存在形状缺陷,则确定存在所述形状缺陷的位置到所述钢卷的头部的距离,作为所述形状缺陷在所述钢卷上的位置信息。
可见,在该实施例中,在钢卷存在形状缺陷的情况下,可以进一步确定形状缺陷位置到钢卷头部的距离,从而能够有效地辅助后续加工过程对形状缺陷的修正,比如,对塔形或不齐的部分进行剪切等。
另一方面,根据本发明实施例的一种用于检测钢卷侧面的形状缺陷的装置,包括:一个构建模块,用于对钢卷的第一侧面和第二侧面分别进行三维扫描,以构建与所述第一侧面相对应的第一三维模型以及与所述第二侧面对应的第二三维模型;一个缺陷确定模块,用于基于所述第一三维模型、所述第二三维模型和形成所述钢卷的钢带的目标宽度,确定所述钢卷是否存在形状缺陷。
可见,通过对钢卷的两个侧面进行三维建模,基于所构建的三维模型 来确定钢卷是否存在形状缺陷,而无需监控人员通过人工观察来识别形状缺陷,不仅能够减少人力成本,而且能够极大地提高形状缺陷检测的准确度和效率。
在另一实施例中,所述缺陷确定模块在确定所述钢卷是否存在形状缺陷时,具体用于:对于所述第一三维模型上的第一坐标点,确定所述第二三维模型上的第二坐标点,其中,所述第二坐标点和第一坐标点在投射到参考平面时是重合的,所述参考平面垂直于所述钢卷的轴向,所述第一坐标点是所述第一三维模型上的任一坐标点;基于所述钢带的目标宽度、所述第一坐标点和所述第二坐标点,确定所述第一坐标点所在位置处所述钢带的实际宽度与所述钢带的目标宽度之间的偏差;如果所述偏差大于预定阈值,则确定所述第一坐标点所在位置为存在所述形状缺陷的位置。
可见,在该实施例中,通过基于两个侧面的三维模型上的对应位置的点以及钢带的目标宽度来计算偏差,基于偏差来判断是否存在形状缺陷,能够简单高效地判断形状缺陷,并且能够提高形状缺陷检测的准确度。
在另一实施例中,所述缺陷确定模块在确定所述第二三维模型上的第二坐标点时,具体用于:确定通过对所述第二侧面进行三维扫描所获得的点云中是否存在目标坐标点,其中,所述目标坐标点和所述第一坐标点在投射到所述参考平面时是重合的;如果所述点云中存在所述目标坐标点,将所述目标坐标点用作所述第二坐标点;如果所述点云中不存在所述目标坐标点,则在所述点云中选取与所述目标坐标点相邻的相邻坐标点,并且对所述相邻坐标点进行插值,以确定所述第二坐标点。
可见,在该实施例中,提供了关于选取与第一坐标点对应的坐标点的不同方式,在实现上简单快速,有利于提高形状缺陷检测效率。
在另一实施例中,所述第一三维模型所在的第一三维坐标系与所述第二三维模型所在的第二三维坐标系二者的x轴和y轴是重合的,所述x轴和所述y轴形成的平面为所述参考平面,所述缺陷确定模块在确定所述第一坐标点所在位置处所述钢带的实际宽度与所述钢带的目标宽度之间的偏差时,具体用于:基于以下等式来确定所述偏差:所述偏差=|z+z’-所述钢带的目标宽度|。
可见,该实施例提供了简单而可靠的计算钢卷侧面的偏差的方式,从 而能够提高形状缺陷检测的效率。此外,该实施例能够避免检出钢带实际宽度满足要求、但是钢卷发生整体偏移的情况。如果将这种整体偏移作为形状缺陷进行剪切修正,会造成不必要的损失。而该实施例能够避免这样的损失。
在另一实施例中,所述缺陷确定模块还用于:如果所述偏差小于或等于所述预定阈值,则确定第一值和第二值之间的绝对差值,其中,所述参考平面被设置在所述第一侧面与所述第二侧面之间,所述第一值为所述第一坐标点到所述参考平面的垂直距离,所述第二值为所述第二坐标点到所述参考平面的垂直距离;如果所述绝对差值大于另一预定阈值,则确定所述第一坐标点所在位置为存在形状缺陷的位置。
在该实施例中,虽然偏差小于或等于预定阈值可以表明钢带的实际宽度满足目标宽度的要求,但是通过比较第一坐标点到参考平面的垂直距离与第二坐标点到参考平面的垂直距离,可以进一步判断是否存在由于卷取过程等的误差造成的形状缺陷,这样能够进一步提高形状缺陷检测准确度。
在另一实施例中,所述装置还包括:一个位置确定模块,用于:如果所述缺陷确定模块确定所述钢卷存在形状缺陷,则确定存在所述形状缺陷的位置到所述钢卷的头部的距离,作为所述形状缺陷在所述钢卷上的位置信息。
可见,在该实施例中,在钢卷存在形状缺陷的情况下,可以进一步确定形状缺陷位置到钢卷头部的距离,从而能够有效地辅助后续加工过程对形状缺陷的修正,比如,对塔形或不齐的部分进行剪切等。
另一方面,根据本发明实施例的一种用于检测钢卷侧面的形状缺陷的装置,包括:至少一个处理器;与所述至少一个处理器耦合的存储器,其存储有可执行指令;其中,所述可执行指令在被所述至少一个处理器执行时,使得实现上述各个实施例的方法。
可见,通过对钢卷的两个侧面进行三维建模,基于所构建的三维模型来确定钢卷是否存在形状缺陷,而无需监控人员通过人工观察来识别形状缺陷,不仅能够减少人力成本,而且能够极大地提高形状缺陷检测的准确度和效率。
另一方面,根据本发明实施例的一种用于检测钢卷侧面的形状缺陷的 系统,包括:第一三维扫描仪,用于对钢卷的第一侧面进行扫描,以构建与第一侧面相对应的第一三维模型;第二三维扫描仪,用于对所述钢卷的第二侧面进行三维扫描,以构建与第二侧面相对应的第二三维模型;控制器,用于基于所述第一三维模型和所述第二三维模型,执行上述各个实施例的方法。
可见,通过对钢卷的两个侧面进行三维建模,基于所构建的三维模型来确定钢卷是否存在形状缺陷,而无需监控人员通过人工观察来识别形状缺陷,不仅能够减少人力成本,而且能够极大地提高形状缺陷检测的准确度和效率。
另一方面,根据本发明实施例的一种计算机可读介质,其包括用于使计算机执行上述各个实施例的方法的代码。
可见,通过对钢卷的两个侧面进行三维建模,基于所构建的三维模型来确定钢卷是否存在形状缺陷,而无需监控人员通过人工观察来识别形状缺陷,不仅能够减少人力成本,而且能够极大地提高形状缺陷检测的准确度和效率。
另一方面,根据本发明实施例的一种计算机程序产品,所述计算机程序产品被有形地存储在计算机可读介质上并且包括计算机可执行指令,所述计算机可执行指令在被执行时使至少一个处理器执行上述各个实施例的方法。
可见,在该实施例中,通过对钢卷的两个侧面进行三维建模,基于所构建的三维模型来确定钢卷是否存在形状缺陷,而无需监控人员通过人工观察来识别形状缺陷,不仅能够减少人力成本,而且能够极大地提高形状缺陷检测的准确度和效率。
附图说明
下文将以明确易懂的方式,通过对优选实施例的说明并结合附图来对本发明上述特性、技术特征、优点及其实现方式予以进一步说明,其中:
图1是示意性地示出具有形状缺陷的钢卷的纵向截面图。
图2是根据本发明实施例的用于检测钢卷侧面的形状缺陷的方法的示意性流程图。
图3是根据本发明实施例的三维坐标系的示意图。
图4是根据本发明实施例的用于检测钢卷侧面的形状缺陷的系统的示意图。
图5是根据本发明实施例的用于检测钢卷侧面的形状缺陷的装置的示意框图。
图6是根据本发明实施例的用于检测钢卷侧面的形状缺陷的装置的示意框图。
附图标记列表:
100:钢卷
210:对钢卷的第一侧面和第二侧面分别进行三维扫描
220:确定钢卷是否存在形状缺陷
230:确定形状缺陷在钢卷上的位置信息
410:系统                     411:三维扫描仪
412:三维扫描仪               413:控制器
420:钢卷                     421:第一侧面
422:第二侧面                 500:装置
510:构建模块                 520:缺陷确定模块
530:位置确定模块             600:装置
610:处理器                   620:存储器
具体实施方式
轧制是钢铁加工中对钢坯进行成型的过程。在该过程中,由轧机组将钢坯加工成钢带,从最后一架轧机输出的钢带由卷取机卷取成钢卷。由于轧机的运行速度非常高,导致输出的钢带的移动速度可能达到100km/h。因此在卷取过程中,卷取机的任何微小控制误差就会使得钢卷两侧产生形状缺陷。此外,轧制过程的微小控制误差可能造成钢带本身的宽度出现误差,那么这样形成的钢带两侧也可能产生形状缺陷。这样的形状缺陷通常包括钢卷边缘不齐、出现塔形等。
为了便于理解,图1示意性地示出了具有形状缺陷的钢卷的纵向截面 图。如图1所示,钢卷100侧面边缘不齐,部分卷层向外凸出,产生错层缺陷。
应当明白的是,图1仅是作为例子来提供的。在实际加工过程中,可能还存在其它形式的形状缺陷。比如,钢卷的部分卷层可能具有凸出、凹进、凸出等这种参差不齐的缺陷。
钢卷的这些形状缺陷不仅造成后续包装运输问题,而且会影响钢卷质量,难以满足市场需求,导致低价销售甚至无法销售。
因此,需要有效的手段来检测钢卷侧面的形状缺陷,以便辅助在后续的加工过程中修正这样的缺陷。
目前,为了对形状缺陷进行检测,主要通过安装在加工车间的摄像头对钢卷进行拍摄,然后将所拍摄的图像发送给监控室的监控人员,由监控人员通过人工观察来识别是否产生形状缺陷。这种方式不仅耗费不少时间,而且需要摄像头所拍摄的图像是高清晰度的,而加工车间的光线往往无法保证摄像头进行拍摄所需要的各种条件(比如,足够的亮度)。
其次,随着生产工艺的发展,市场对于形状缺陷的要求也越来越严格,比如要求钢卷两侧的偏差不能超过3cm。那么,即使所拍摄的图像是清晰的,监控人员也可能难以通过图像辨别出如此小的偏差。
对此,本公开内容提供了一种用于检测钢卷侧面的形状缺陷的技术方案。概括而言,可以对钢卷的第一侧面和第二侧面分别进行三维扫描,以构建与第一侧面相对应的第一三维模型以及与第二侧面对应的第二三维模型。可以基于第一三维模型、第二三维模型和形成钢卷的钢带的目标宽度,确定钢卷是否存在形状缺陷。
可见,在该技术方案中,通过对钢卷的两个侧面进行三维建模,基于所构建的三维模型来确定钢卷是否存在形状缺陷,而无需监控人员通过人工观察来识别形状缺陷,不仅能够减少人力成本,而且能够极大地提高形状缺陷检测的准确度和效率。
可选地,如果确定钢卷存在形状缺陷,则可以进一步确定形状缺陷在钢卷上的位置信息。所得到的形状缺陷的位置信息能够有效地辅助在后续加工过程中修正形状缺陷,例如对形状缺陷部分进行剪切。由此,使得最终得到的钢卷产品满足包装和运输要求,从而提高包装和运输过程中的安 全性;而且使得钢卷产品的质量满足市场需求,减少生产成本损失。
下面将参照附图来详细描述本发明的各个实施例。
图2是根据本发明实施例的用于检测钢卷侧面的形状缺陷的方法的示意性流程图。在图2中,虚线表示的框指示可选的步骤。
如图2所示,在步骤210中,对钢卷的第一侧面和第二侧面分别进行三维扫描,以构建与第一侧面相对应的第一三维模型以及与第二侧面相对应的第二三维模型。
在步骤220中,基于第一三维模型、第二三维模型和形成钢卷的钢带的目标宽度,确定钢卷是否存在形状缺陷。
如所理解的,钢卷可以包括两个侧面,在本文中分别可以被称为第一侧面和第二侧面。
如前所述,在钢坯被轧制成钢带的过程中,可能出现不同位置钢带宽窄不一的情形;而在钢带被卷取成钢卷时也可能存在没有卷齐的情形,所有这些情形都可能造成钢卷侧面的形状缺陷。而这里将没有形状缺陷的理想情况下轧制的钢带或钢卷的宽度称为“钢带的目标宽度”。钢带的目标宽度可以是根据行业规范、客户需求等来预先设定的。该目标宽度可以是从轧机的控制系统接收的。
在该技术方案中,通过对钢卷的两个侧面进行三维建模,基于所构建的三维模型来确定钢卷是否存在形状缺陷,并且在确定存在形状缺陷的情况下,进一步确定形状缺陷的位置信息,而无需监控人员通过人工观察来识别形状缺陷,不仅能够减少人力成本,而且能够极大地提高形状缺陷检测的准确度和效率。
在一个实施例中,在步骤210中,可以对第一侧面和第二侧面分别进行三维激光扫描,以获取与第一侧面相对应的第一点云以及与第二侧面相对应的第二点云。
例如,可以在钢卷的两个侧面处分别设置两个三维激光扫描仪。利用两个三维激光扫描仪可以分别对两个侧面进行三维扫描并且拍摄图像,由此得到第一侧面的第一扫描数据集合和第二侧面的第二扫描数据集合。由 于三维激光扫描仪得到的扫描数据集合常常包含杂点或噪声,所以可以利用本领域已知的各种降噪处理方法,对第一扫描数据集合和第二扫描数据集合进行降噪处理,并且建立标准三维坐标系,从而得到与第一侧面相对应的第一点云以及与第二侧面相对应的第二点云。应理解的是,可以将任何点作为原点来建立三维坐标系,比如,可以选取钢卷的中心点作为原点,可以选取钢卷一侧的某个点作为原点。本发明对此并不作任何限定。
上述三维激光扫描可以采用各种光源来实现,例如,发光二极管(Light Emitting Diode,LED)或激光发生器等等。应当理解的是,虽然此处描述了采用三维激光扫描技术,但是本发明的实施例还可以采用其它三维扫描技术,本发明实施例对此不做限定。
随后,可以基于第一点云、第二点云和钢带的厚度,来构建第一三维模型和第二三维模型。
例如,可以从轧机的控制系统获取钢带的厚度。可以利用本领域已知的各种三维构建技术,基于第一点云和钢带的厚度来构建第一侧面的第一三维模型。例如,可以在对第一点云去除噪声、异常点等之后,结合钢带的厚度对第一点云进行分类,比如,哪些数据点是位于第一卷层,哪些数据点位于第二卷层,以此类推,从而将第一点云中的数据点进行排布,形成第一三维模型。此外,可以基于第二点云和钢带的厚度来构建第二侧面的第二三维模型,处理过程与得到第一三维模型的过程类似。例如,第一三维模型和第二三维模型可以分别表示为三维曲面。
在该实施例中,通过利用三维激光扫描技术来获取两个侧面的点云,然后基于点云以及钢带的厚度来对两个侧面分别建模,从而能够提高对两个侧面建模的准确度,由此有利于准确地判断形状缺陷。
在另一实施例中,在步骤220中,针对第一三维模型上的任一坐标点(在本文中可以称为第一坐标点),确定第二三维模型上的第二坐标点。第一坐标点和第二坐标点在投射到参考平面上时是重合的,参考平面可以是与钢卷的轴向垂直的平面。如果参考平面通过钢卷的中心,可以认为第一坐标点和第二坐标点是对称的。可见,第一坐标点和第二坐标点就是两个侧面上对应位置的点。
随后,可以基于钢带的目标宽度、第一坐标点和第二坐标点,来确定 第一坐标点所在位置处钢带的实际宽度与钢带的目标宽度之间的偏差。然后,可以判断该偏差是否大于预定阈值。如果该偏差大于预定阈值,则可以确定第一坐标点所在位置为存在形状缺陷的位置。
例如,预定阈值可以根据实际需求、工作人员的经验来预先设定。比如可以根据钢卷产品的要求来将预定阈值设定为3cm。
在该实施例中,通过基于两个侧面的三维模型上的对应位置的点以及钢带的目标宽度来计算偏差,基于偏差来判断是否存在形状缺陷,能够提高形状缺陷检测的准确度。
可以理解的是,可以针对第一三维模型上的任一坐标点来确定相应的位置处是否存在偏差。比如,在条件(比如,硬件或软件计算能力、生产过程延时等等)允许的情况下,可以针对第一三维模型上的各个坐标点来计算是否存在偏差,这样能够提高形状缺陷检测精准度,进一步提高钢卷产品质量。然而,在一些情况下,如果相邻坐标点之间变化较小,比如该变化小于某个预定条件,则可以针对其中一个坐标点来计算偏差,而不再计算其相邻坐标点处的偏差,这样能够节省计算资源和计算时间。
在另一实施例中,关于确定第二坐标点,可能存在不同的方式。为了便于描述,如果某个坐标点和第一坐标点在投射到上述参考平面时是重合的,则将该坐标点称为目标坐标点。由于在对第一侧面和第二侧面进行扫描时,采集的数据点未必是完全一致的,因此在第二点云中可能存在目标坐标点,也可能不存在目标坐标点。
如果在第二点云中存在目标坐标点,那么可以直接将该点作为上述第二坐标点。这种方式在实现上简单快速,能够节省形状缺陷检测时间。
而如果在第二点云中不存在目标坐标点,则可以在第二点云中选取与目标坐标点相邻的坐标点。为了便于描述,可以将与目标坐标点相邻的坐标点称为相邻坐标点。在这种情况下,可以对相邻坐标点进行插值,得到第二坐标点。
可见,针对不同的情况来确定两个侧面上对应位置的坐标点,能够有效地计算偏差,从而判断是否存在形状缺陷。
在本发明实施例中,可以针对第一侧面和第二侧面分别构建两个三维坐标系,分别称为第一三维坐标系和第二三维坐标系。例如,可以将构建 的两个三维坐标系的x轴、y轴或z轴之一设置在钢卷的轴向方向上,这样便于计算钢卷侧面的偏差。在一个实施例中,可以将两个三维坐标系的z轴设置在钢卷的轴向方向上。为了便于计算,可以将两个三维坐标系的原点设置为同一点,并且它们的x轴和y轴是重合的。那么,上述两个坐标系的x轴和y轴形成的平面可以为上述参考平面。可以将第一坐标点表示为(x,y,z),将第二坐标点表示为(x,y,z’)。为了便于理解,图3示意性地示出了两个三维坐标系。在图3中,两个三维坐标系的x轴和y轴是重合的,而z轴指向相反方向。可以理解的是,两个三维坐标系的原点可以位于钢卷的中心点处,也可以不在钢卷的中心点处。图3示出了原点位于钢卷的中心点处的情况。作为一个例子,图3中的x轴的方向可以理解为钢卷的纵向。
那么,钢卷实际宽度与目标宽度之间的偏差可以基于如下等式来计算:
偏差=|z+z’-钢带的目标宽度|。
可以理解的是,如果第二坐标点是从第二点云中选取的,则z’值是扫描所直接得到的。而如果第二坐标点是经过插值处理得到的,那么z’是经过插值计算得到的值。
可见,该实施例提供了简单而可靠的计算钢卷实际宽度与目标宽度之间的偏差的方式,从而能够提高形状缺陷检测的效率。
可以理解的是,为了计算的简单,在上述过程中将两个三维坐标系的x轴、y轴以及原点设置为重合的。但是本领域技术人员可以理解的是,两个三维坐标系的x轴、y轴以及原点也可以不是重合的。比如,两个三维坐标系的xy平面是平行的,原点在z轴方向上具有偏移。这样在计算偏差时,可以将两个三维坐标系的原点在z轴上的偏移(为了便于描述,在本文中称为“z轴偏移”)考虑进来。例如,偏差可以等于|z+z’+z轴偏移-钢带的目标宽度|。
从上述可以看出,基于偏差来判断形状缺陷,能够避免检出钢带实际宽度满足要求、但是钢卷发生整体偏移的情况。如果将这种整体偏移作为形状缺陷进行剪切修正,会造成不必要的损失。而该实施例能够避免这样的损失。
在一个实施例中,如果偏差小于预定阈值,则可以说明钢卷的实际宽 度等于或接近于目标宽度,那么可以认为不存在由于钢带宽度误差造成的形状缺陷。然而,如上所述,卷取机的微小控制误差也可能造成钢卷产生形状缺陷,比如图1所示出的错层之类形状缺陷。本发明实施例也提供了检测这种形状缺陷的方式。
具体而言,如果上述偏差小于或等于预定阈值,则可以确定第一值和第二值之间的绝对差值,其中,上述参考平面可以被设置在第一侧面与第二侧面之间。第一值为第一坐标点到参考平面的垂直距离,第二值为第二坐标点到参考平面的垂直距离。如果该绝对差值大于另一预定阈值,则确定第一坐标点所在位置为存在形状缺陷的位置。
可以明白的是,该另一预定阈值可以根据实际需求、人员经验,并且结合参考平面的具体位置来设定。
在该实施例中,虽然偏差小于或等于预定阈值可以表明钢带的实际宽度满足目标宽度的要求,但是通过比较第一坐标点到参考平面的垂直距离与第二坐标点到参考平面的垂直距离,可以进一步判断是否存在由于卷取过程等的误差造成的形状缺陷,这样能够进一步提高形状缺陷检测准确度。
例如,仍然利用图3所示的示例坐标系进行描述。这样,可以利用z和z’来表示第一值和第二值。那么,相应地可以确定z与z’的绝对差值。将该绝对差值与所述的另一预定阈值进行比较,来判断第一坐标点处是否存在形状缺陷。比如,如果该绝对差值大于该另一预定阈值,则可以确定第一坐标点处存在形状缺陷。如果绝对差值不大于该另一预定阈值,则可以确定第一坐标点处不存在形状缺陷。可以理解的是,在图3中的示例坐标系中,坐标原点是设置钢卷的中心点。然而,在其它实施例中,坐标原点未必设置在钢卷的中心点处。如果原点没有设置在钢卷的中心点处,则该另一预定阈值的设定还可以将z轴的偏移量考虑进来。
可以理解的是,上述利用z和z’来表示第一值和第二值仅是一种具体的实现方式,本领域技术人员可以基于常用的数学运算方法,基于不同的坐标系来计算第一值和第二值。本发明实施例对此不作限定。
在另一实施例中,在步骤220之后还可以执行步骤230。在步骤230中,如果确定钢卷存在形状缺陷,则可以确定形状缺陷在钢卷上的位置信息。具体地,可以确定存在形状缺陷的位置到钢卷的头部的距离作为上述位置 信息。
可见,在该实施例中,在确定钢卷存在形状缺陷的情况下,可以进一步确定形状缺陷位置到钢卷头部的距离,从而能够有效地辅助后续加工过程对形状缺陷的修正,比如,对塔形或不齐的部分进行剪切等。
关于确定存在形状缺陷的位置到钢卷的头部的距离可以采用多种适当的计算方式。例如,在本发明实施例中,可以采用极坐标系来计算存在形状缺陷的位置到钢卷的头部的距离,该方式简单高效,能够提高形状缺陷检测效率。
假设在步骤220中,确定第一坐标点所在位置为存在形状缺陷的位置,那么计算存在形状缺陷的位置到头部的距离也就是计算第一坐标点到头部的距离。具体而言,由于钢卷的侧面截面形状为圆形或者接近圆形,因此可以将钢卷的侧面截面看作位于极坐标系下,利用极坐标系来计算第一坐标点到钢卷的头部的距离。
将钢卷的第一侧面投射极坐标系下。为了便于描述,假设第一坐标点被投射为极坐标系下的第一投射点,钢卷的头部被投射在极坐标下的头部投射点。
计算与第一坐标点(x,y,z)到标准平面中心的距离,作为极坐标系的极径R。从第一三维模型中选择与第一坐标点相邻的坐标点(x1,y1,z1),可以将该相邻坐标点投射在极坐标系下的坐标点称为第二投射点。第二投射点可以与第一投射点具有相等或近似相等的极径。可以计算第二投射点与第一投射点之间的角度θ。可以根据公知的数学方式来计算该角度,此处不再赘述。由此,可以确定第一投射点与第二投射点之间的圆弧长度=R*θ。依次将各相邻点之间的圆弧长度累加,直到表示头部投射点之间为止,那么得到的累加圆弧长度可以认为是形状缺陷位置到钢卷头部的距离。
可以理解的是,在步骤230之后,还可以输出上述位置信息。例如,可以将位置信息输出给用于控制后续加工过程的控制系统,比如用于控制剪切处理的控制系统,从而对形状缺陷进行修正。
应当理解的是,本发明实施例的技术方案可以在钢卷的卷取过程中实时地实现,可以在热轧制过程结束时实现,或者可以根据实际需求在任何其它适用的时间处实现。
图4是根据本发明实施例的用于检测钢卷侧面的形状缺陷的系统的示意图。
如图4所示,用于检测钢卷侧面的形状缺陷的系统410可以包括三维扫描仪411和三维扫描仪412、以及控制器413。三维扫描仪411和412可以与控制器413进行电子通信,例如,它们可以通过各种有线或无线通信技术进行通信。
例如,三维扫描仪411和412可以是三维激光扫描仪,也可以是本领域中任何其它适用的扫描仪。控制器413可以由各种适用的电子硬件来实现,比如通用处理器、专用处理器、数字信号处理器、专用集成电路、可编程门阵列等等。
为了便于理解,在图4中也示出了钢卷420。钢卷420可以具有两个侧面421和422。例如,侧面421可以对应于上述第一侧面,侧面422可以对应于上述第二侧面。或者,侧面422可以对应于上述第一侧面,侧面421可以对应于上述第二侧面。
为了实现本发明实施例的技术方案,三维扫描仪411和412可以分别设置在钢卷420的两侧。例如,在图4示出的例子中,三维扫描仪411可以设置在钢卷420的侧面421处,而三维扫描仪412可以设置在钢卷420的侧面422处。
控制器413还可以与用于控制轧制过程的控制系统进行电子通信。例如,控制器413可以通过有线或无线通信技术与用于控制轧制过程的控制系统进行通信,以获取用于实现本发明实施例所必需的信息,例如钢带的厚度、钢带的目标宽度等。
在图4所示的例子中,三维扫描仪411可以对钢卷的侧面421进行扫描,并且可以将扫描得到的数据发送给控制器413。三维扫描仪412可以对钢卷的侧面222进行扫描,并且可以将扫描得到的数据发送给控制器413。
控制器413可以对从三维扫描仪411接收的扫描数据进行处理(比如,进行降噪处理),从而得到与侧面421相对应的第一点云。控制器413可以对从三维扫描仪412接收的扫描数据进行处理(例如,进行降噪处理),从而得到与侧面422相对应的第二点云。
控制器413可以基于第一点云和形成钢卷420的钢板的厚度来构建与侧面421相对应的第一三维模型;控制器413可以基于第二点云和钢板的厚度来构建与侧面422相对应的第二三维模型。
控制器413可以基于第一三维模型、第二三维模型和钢卷420的目标宽度,来确定是否钢卷是否存在形状缺陷。
可选地,控制器413可以确定形状缺陷在钢卷上的位置信息。此外,还可以将该位置信息输出。例如,控制器413还可以与用于控制后续加工过程(比如,剪切处理)的控制系统进行电子通信。控制器413可以将给位置信息输出给该控制系统,以便该控制系统基于该位置信息对钢卷的形状缺陷进行修正。
控制器413的其它具体操作可以参照图2所描述的具体过程,此处不再赘述。
可见,在该技术方案中,通过对钢卷的两个侧面进行三维建模,基于所构建的三维模型来确定钢卷是否存在形状缺陷,而无需监控人员通过人工观察来识别形状缺陷,不仅能够减少人力成本,而且能够极大地提高形状缺陷检测的准确度和检测效率。
图5是根据本发明实施例的用于检测钢卷侧面的形状缺陷的装置的示意框图。例如,图5所示的装置500可以利用软件、硬件(例如,中央处理单元、集成电路或数字信号处理器等)或软硬件结合的方式来实现。在图5中,虚线表示的框指示可选的模块。
如图5所示,装置500可以包括一个构建模块510和一个缺陷确定模块520。
构建模块510对钢卷的第一侧面和第二侧面分别进行三维扫描,以构建与第一侧面相对应的第一三维模型以及与第二侧面对应的第二三维模型。缺陷确定模块520基于第一三维模型、第二三维模型和形成钢卷的钢带的目标宽度,确定钢卷是否存在形状缺陷。
在该技术方案中,通过对钢卷的两个侧面进行三维建模,基于所构建的三维模型来确定钢卷是否存在形状缺陷,而无需监控人员通过人工观察来识别形状缺陷,不仅能够减少人力成本,而且能够极大地提高形状缺陷 检测的准确度和效率。
在另一实施例中,缺陷确定模块520在确定钢卷是否存在形状缺陷时,具体用于:对于第一三维模型上的第一坐标点,确定第二三维模型上的第二坐标点,其中,第二坐标点和第一坐标点在投射到参考平面时是重合的,参考平面垂直于钢卷的轴向,第一坐标点是第一三维模型上的任一坐标点;基于钢带的目标宽度、第一坐标点和第二坐标点,确定第一坐标点所在位置处钢带的实际宽度与钢带的目标宽度之间的偏差;如果偏差大于预定阈值,则确定第一坐标点所在位置为存在所述形状缺陷的位置。
在另一实施例中,缺陷确定模块520在确定第二三维模型上的第二坐标点时,具体用于:确定通过对第二侧面进行三维扫描所获得的点云中是否存在目标坐标点,其中,目标坐标点和第一坐标点在投射到参考平面时是重合的;如果该点云中存在目标坐标点,将目标坐标点用作第二坐标点;如果该点云中不存在目标坐标点,则在该点云中选取与目标坐标点相邻的相邻坐标点,并且对相邻坐标点进行插值,以确定第二坐标点。
在另一实施例中,第一三维模型所在的第一三维坐标系与第二三维模型所在的第二三维坐标系二者的x轴和y轴是重合的,x轴和y轴形成的平面为参考平面,缺陷确定模块520在第一坐标点所在位置处钢带的实际宽度与钢带的目标宽度之间的偏差时,具体用于:基于以下等式来确定偏差:偏差=|z+z’-钢带的目标宽度|。
在另一实施例中,如果偏差小于或等于上述预定阈值,则缺陷确定模块520可以确定第一值和第二值之间的绝对差值,其中,参考平面被设置在第一侧面与第二侧面之间,第一值为第一坐标点到参考平面的垂直距离,第二值为第二坐标点到所述参考平面的垂直距离。如果绝对差值大于另一预定阈值,则缺陷确定模块520可以确定第一坐标点所在位置为存在形状缺陷的位置。
在另一实施例中,装置200还可以包括位置确定模块530。如果缺陷确定模块520确定钢卷存在形状缺陷,则位置确定模块530可以确定形状缺陷在钢卷上的位置信息。位置确定模块530在确定形状缺陷在钢卷上的位置信息时,具体用于:确定存在形状缺陷的位置到钢卷的头部的距离,作为形状缺陷在钢卷上的位置信息。
装置500的各个模块的其它具体操作可以参照以上结合图2描述的方法的具体过程。为了描述的简洁,此处不再赘述。
图6是根据本发明实施例的用于检测钢卷侧面的形状缺陷的装置的示意框图。
如图6所示,装置600可以包括至少一个处理器610和存储器620。存储器620可以与至少一个处理器610耦合,其存储有可执行指令。可执行指令在被至少一个处理器610执行时,可以实现结合图2描述的方法的具体过程。为了描述的简洁,此处不再赘述。
本发明实施例还提供一种计算机可读介质。该计算机可读介质可以包括使得计算机执行结合图2所描述的具体过程。
本发明实施例还提供一种计算机程序产品。计算机程序产品可以被有形地存储在计算机可读介质上并且包括计算机可执行指令,计算机可执行指令在被执行时使至少一个处理器执行结合图2所描述的具体过程。
上文通过附图和优选实施例对本发明进行了详细展示和说明,然而本发明不限于这些已揭示的实施例,本领域技术人员从中推导出来的其它方案也在本发明的保护范围之内。

Claims (16)

  1. 一种用于检测钢卷侧面的形状缺陷的方法,其特征在于,包括:
    对钢卷(420)的第一侧面(421)和第二侧面(422)分别进行三维扫描,以构建与所述第一侧面(421)相对应的第一三维模型以及与所述第二侧面(422)对应的第二三维模型;
    基于所述第一三维模型、所述第二三维模型和形成所述钢卷(420)的钢带的目标宽度,确定所述钢卷是否存在形状缺陷。
  2. 根据权利要求1所述的方法,其特征在于,所述基于所述第一三维模型、所述第二三维模型和形成所述钢卷(420)的钢带的目标宽度,确定所述钢卷(420)是否存在形状缺陷,包括:
    对于所述第一三维模型上的第一坐标点,确定所述第二三维模型上的第二坐标点,其中,所述第一坐标点是所述第一三维模型上的任一坐标点,所述第二坐标点和所述第一坐标点在投射到参考平面时是重合的,所述参考平面垂直于所述钢卷(420)的轴向;
    基于所述钢带的目标宽度、所述第一坐标点和所述第二坐标点,确定所述第一坐标点所在位置处所述钢带的实际宽度与所述钢带的目标宽度之间的偏差;
    如果所述偏差大于预定阈值,则确定所述第一坐标点所在位置为存在形状缺陷的位置。
  3. 根据权利要求2所述的方法,其特征在于,所述确定所述第二三维模型上的第二坐标点,包括:
    确定通过对所述第二侧面(422)进行三维扫描所获得的点云中是否存在目标坐标点,其中,所述目标坐标点和所述第一坐标点在投射到所述参考平面时是重合的;
    如果所述点云中存在所述目标坐标点,将所述目标坐标点用作所述第二坐标点;
    如果所述点云中不存在所述目标坐标点,则在所述点云中选取与所述 目标坐标点相邻的相邻坐标点,并且对所述相邻坐标点进行插值,以确定所述第二坐标点。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一三维模型所在的第一三维坐标系与所述第二三维模型所在的第二三维坐标系二者的x轴和y轴分别是重合的,所述x轴和所述y轴形成的平面为所述参考平面,所述第一坐标点由(x,y,z)表示,所述第二坐标点由(x,y,z’)表示;
    所述基于所述钢卷(420)的目标宽度、所述第一坐标点和所述第二坐标点,确定所述第一坐标点所在位置处所述钢带的实际宽度与所述钢带的目标宽度之间的偏差包括:
    基于以下等式来确定所述偏差:所述偏差=|z+z’-所述钢带的目标宽度|。
  5. 根据权利要求2所述的方法,其特征在于,还包括:
    如果所述偏差小于或等于所述预定阈值,则确定第一值和第二值之间的绝对差值,其中,所述参考平面被设置在所述第一侧面(421)与所述第二侧面(422)之间,所述第一值为所述第一坐标点到所述参考平面的垂直距离,所述第二值为所述第二坐标点到所述参考平面的垂直距离;
    如果所述绝对差值大于另一预定阈值,则确定所述第一坐标点所在位置为存在形状缺陷的位置。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    如果确定所述钢卷(420)存在形状缺陷,则确定存在所述形状缺陷的位置到所述钢卷(420)的头部的距离,作为所述形状缺陷在所述钢卷(420)上的位置信息。
  7. 一种用于检测钢卷侧面的形状缺陷的装置,其特征在于,包括:
    一个构建模块(510),用于对钢卷(420)的第一侧面(421)和第二侧面(422)分别进行三维扫描,以构建与所述第一侧面(421)相对应的第一三维模型以及与所述第二侧面(322)对应的第二三维模型;
    一个缺陷确定模块(520),用于基于所述第一三维模型、所述第二三维模型和形成所述钢卷(420)的钢带的目标宽度,确定所述钢卷(420)是否存在形状缺陷。
  8. 根据权利要7所述的装置,其特征在于,所述缺陷确定模块(520)在确定所述钢卷(420)是否存在形状缺陷时,具体用于:
    对于所述第一三维模型上的第一坐标点,确定所述第二三维模型上的第二坐标点,其中,所述第一坐标点是所述第一三维模型上的任一坐标点,所述第二坐标点和第一坐标点在投射到参考平面时是重合的,所述参考平面垂直于所述钢卷(420)的轴向;
    基于所述钢带的目标宽度、所述第一坐标点和所述第二坐标点,确定所述第一坐标点所在位置处所述钢带的实际宽度与所述钢带的目标宽度之间的偏差;
    如果所述偏差大于预定阈值,则确定所述第一坐标点所在位置为存在所述形状缺陷的位置。
  9. 根据权利要求8所述的装置,其特征在于,所述缺陷确定模块(520)在确定所述第二三维模型上的第二坐标点时,具体用于:
    确定通过对所述第二侧面(422)进行三维扫描所获得的点云中是否存在目标坐标点,其中,所述目标坐标点和所述第一坐标点在投射到所述参考平面时是重合的;
    如果所述点云中存在所述目标坐标点,将所述目标坐标点用作所述第二坐标点;
    如果所述点云中不存在所述目标坐标点,则在所述点云中选取与所述目标坐标点相邻的相邻坐标点,并且对所述相邻坐标点进行插值,以确定所述第二坐标点。
  10. 根据权利要求8或9所述的装置,其特征在于,所述第一三维模型所在的第一三维坐标系与所述第二三维模型所在的第二三维坐标系二者的x轴和y轴是重合的,所述x轴和所述y轴形成的平面为所述参考平面,
    其中,所述缺陷确定模块(520)在确定所述第一坐标点所在位置处所述钢带的实际宽度与所述钢带的目标宽度之间的偏差时,具体用于:
    基于以下等式来确定所述偏差:所述偏差=|z+z’-所述钢带的目标宽度|。
  11. 根据权利要求8所述的装置,其特征在于,所述缺陷确定模块(520)还用于:
    如果所述偏差小于或等于所述预定阈值,则确定第一值和第二值之间的绝对差值,其中,所述参考平面被设置在所述第一侧面(421)与所述第二侧面(422)之间,所述第一值为所述第一坐标点到所述参考平面的垂直距离,所述第二值为所述第二坐标点到所述参考平面的垂直距离;
    如果所述绝对差值大于另一预定阈值,则确定所述第一坐标点所在位置为存在形状缺陷的位置。
  12. 根据权利要求7所述的装置,其特征在于,所述装置还包括:
    一个位置确定模块(530),用于:如果所述缺陷确定模块(520)确定所述钢卷(420)存在形状缺陷,则确定存在所述形状缺陷的位置到所述钢卷(420)的头部的距离,作为所述形状缺陷在所述钢卷(420)上的位置信息。
  13. 一种用于检测钢卷侧面的形状缺陷的装置,包括:
    至少一个处理器(610);
    与所述至少一个处理器耦合的存储器(620),其存储有可执行指令;
    其中,所述可执行指令在被所述至少一个处理器(610)执行时,使得实现根据权利要求1至6中任一项所述的方法。
  14. 一种用于检测钢卷侧面的形状缺陷的系统,包括:
    第一三维扫描仪(411),用于对钢卷(420)的第一侧面(421)进行扫描,以构建与第一侧面(421)相对应的第一三维模型;
    第二三维扫描仪(412),用于对所述钢卷(420)的第二侧面(422) 进行三维扫描,以构建与第二侧面(422)相对应的第二三维模型;
    控制器(413),用于基于所述第一三维模型和所述第二三维模型,执行根据权利要求1至5中任一项所述的方法。
  15. 一种计算机可读介质,其包括用于使计算机执行根据权利要求1-5中任一项所述的方法的代码。
  16. 一种计算机程序产品,所述计算机程序产品被有形地存储在计算机可读介质上并且包括计算机可执行指令,所述计算机可执行指令在被执行时使至少一个处理器执行根据权利要求1至6中任一项所述的方法。
PCT/CN2018/102279 2018-08-24 2018-08-24 用于检测钢卷侧面的形状缺陷的方法、装置、系统和计算机可读介质 WO2020037659A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/102279 WO2020037659A1 (zh) 2018-08-24 2018-08-24 用于检测钢卷侧面的形状缺陷的方法、装置、系统和计算机可读介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/102279 WO2020037659A1 (zh) 2018-08-24 2018-08-24 用于检测钢卷侧面的形状缺陷的方法、装置、系统和计算机可读介质

Publications (1)

Publication Number Publication Date
WO2020037659A1 true WO2020037659A1 (zh) 2020-02-27

Family

ID=69591885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102279 WO2020037659A1 (zh) 2018-08-24 2018-08-24 用于检测钢卷侧面的形状缺陷的方法、装置、系统和计算机可读介质

Country Status (1)

Country Link
WO (1) WO2020037659A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113284115A (zh) * 2021-05-28 2021-08-20 中冶赛迪重庆信息技术有限公司 一种钢卷塔形识别方法、系统、介质和终端

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735527A (ja) * 1993-07-20 1995-02-07 Mitsubishi Heavy Ind Ltd 搬送対象物の位置、形状認識装置
JPH07103736A (ja) * 1993-10-01 1995-04-18 Sumitomo Metal Ind Ltd コイル巻き形状の測定方法
BE1007787A6 (fr) * 1993-12-06 1995-10-24 Centre Rech Metallurgique Procede et dispositif pour mesurer le profil du flanc d'une bobine de bande.
JPH0914933A (ja) * 1995-06-30 1997-01-17 Nkk Corp コイル巻取形状測定方法及びその測定装置並びにコイル巻取形状監視装置
JP2000131048A (ja) * 1998-10-22 2000-05-12 Kawasaki Steel Corp コイル巻姿測定方法および装置
DE102009010355A1 (de) * 2009-02-25 2010-09-02 Solving 3D Gmbh Profilerfassungseinrichtung
JP6106953B2 (ja) * 2012-05-29 2017-04-05 Jfeスチール株式会社 コイル形状測定装置及びコイル形状測定方法
CN107063116A (zh) * 2017-03-07 2017-08-18 宁波钢铁有限公司 一种测量热轧钢卷卷形的装置
US20170276650A1 (en) * 2009-07-31 2017-09-28 Jason Miller Apparatus for determining gauge profile for flat rolled material with laser-based lap counter
CN208026216U (zh) * 2018-02-27 2018-10-30 首钢京唐钢铁联合有限责任公司 一种钢卷塔形检测装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735527A (ja) * 1993-07-20 1995-02-07 Mitsubishi Heavy Ind Ltd 搬送対象物の位置、形状認識装置
JPH07103736A (ja) * 1993-10-01 1995-04-18 Sumitomo Metal Ind Ltd コイル巻き形状の測定方法
BE1007787A6 (fr) * 1993-12-06 1995-10-24 Centre Rech Metallurgique Procede et dispositif pour mesurer le profil du flanc d'une bobine de bande.
JPH0914933A (ja) * 1995-06-30 1997-01-17 Nkk Corp コイル巻取形状測定方法及びその測定装置並びにコイル巻取形状監視装置
JP2000131048A (ja) * 1998-10-22 2000-05-12 Kawasaki Steel Corp コイル巻姿測定方法および装置
DE102009010355A1 (de) * 2009-02-25 2010-09-02 Solving 3D Gmbh Profilerfassungseinrichtung
US20170276650A1 (en) * 2009-07-31 2017-09-28 Jason Miller Apparatus for determining gauge profile for flat rolled material with laser-based lap counter
JP6106953B2 (ja) * 2012-05-29 2017-04-05 Jfeスチール株式会社 コイル形状測定装置及びコイル形状測定方法
CN107063116A (zh) * 2017-03-07 2017-08-18 宁波钢铁有限公司 一种测量热轧钢卷卷形的装置
CN208026216U (zh) * 2018-02-27 2018-10-30 首钢京唐钢铁联合有限责任公司 一种钢卷塔形检测装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113284115A (zh) * 2021-05-28 2021-08-20 中冶赛迪重庆信息技术有限公司 一种钢卷塔形识别方法、系统、介质和终端

Similar Documents

Publication Publication Date Title
US20200320296A1 (en) Target detection method and apparatus
US11120545B2 (en) Method for measuring hole provided in workpiece
CN109916381B (zh) 基于图像处理的顶管自动导向系统及方法
US20160225158A1 (en) Information presentation device, stereo camera system, and information presentation method
US20180165834A1 (en) Parallax operation system, information processing apparatus, information processing method, and recording medium
US11829116B2 (en) Intelligent identification and warning method for uncertain object of production line in digital twin environment (DTE)
JP2004132870A (ja) ステレオカメラの調整装置およびステレオカメラの調整方法
CN101530864A (zh) 形状计测系统
CN110130987B (zh) 一种基于图像分析的隧道收敛变形监测方法
JP2001343223A (ja) 帯状体の品質測定方法、キャンバ抑制方法、帯状体の品質測定装置、圧延装置及びトリム装置
WO2020037659A1 (zh) 用于检测钢卷侧面的形状缺陷的方法、装置、系统和计算机可读介质
JP2016161576A (ja) 光学フィルムの検査システム及び検査方法、並びに光学フィルムの品質管理装置及び品質管理方法
CN113771036B (zh) 一种切割方法、装置及切割设备
KR20130117967A (ko) 벤딩 설비의 실시간 곡률 보정 시스템 및 그 방법
CN116452595B (zh) 一种基于图像处理的控制方法及设备
CN110160455B (zh) 间隙面差检测系统
CN110322508B (zh) 一种基于计算机视觉的辅助定位方法
US20220044380A1 (en) Color tone correction system and color tone correction method
EP4131167A1 (en) Binocular image matching method, device, and storage medium
CN113658269B (zh) 面向大尺寸工件测量的高精度多相机联合标定方法及系统
CN114549406A (zh) 热轧线的管理方法、装置及系统、计算设备和存储介质
JP4018950B2 (ja) ステレオカメラの位置ずれ検査装置および位置ずれ検査方法
CN108020557B (zh) 一种基于激光扫描的车体喷涂质量自适应检测方法
CN115569994A (zh) 板坯镰刀弯自动检测系统及方法
KR102648104B1 (ko) 차량 단차 측정 방법, 장치 및 컴퓨터 프로그램

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18931009

Country of ref document: EP

Kind code of ref document: A1