WO2020037513A1 - 一种通气检测方法及装置、通气设备、存储介质 - Google Patents

一种通气检测方法及装置、通气设备、存储介质 Download PDF

Info

Publication number
WO2020037513A1
WO2020037513A1 PCT/CN2018/101599 CN2018101599W WO2020037513A1 WO 2020037513 A1 WO2020037513 A1 WO 2020037513A1 CN 2018101599 W CN2018101599 W CN 2018101599W WO 2020037513 A1 WO2020037513 A1 WO 2020037513A1
Authority
WO
WIPO (PCT)
Prior art keywords
ventilation
airway
inspiratory
time
flow rate
Prior art date
Application number
PCT/CN2018/101599
Other languages
English (en)
French (fr)
Inventor
徐军
刘京雷
于学忠
付阳阳
邹心茹
周小勇
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
中国医学科学院北京协和医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司, 中国医学科学院北京协和医院 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2018/101599 priority Critical patent/WO2020037513A1/zh
Priority to EP18931156.6A priority patent/EP3834870A4/en
Priority to CN201880094803.4A priority patent/CN112368042B/zh
Publication of WO2020037513A1 publication Critical patent/WO2020037513A1/zh
Priority to US17/169,523 priority patent/US20210154421A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/087Measuring breath flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2807Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes
    • G01M3/2815Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes using pressure measurements
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/40ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0051Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes with alarm devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • A61M2016/0036Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the breathing tube and used in both inspiratory and expiratory phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/15Detection of leaks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3334Measuring or controlling the flow rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/58Means for facilitating use, e.g. by people with impaired vision
    • A61M2205/581Means for facilitating use, e.g. by people with impaired vision by audible feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/58Means for facilitating use, e.g. by people with impaired vision
    • A61M2205/583Means for facilitating use, e.g. by people with impaired vision by visual feedback

Definitions

  • Embodiments of the present invention relate to the technical field of medical devices, and in particular, to a ventilation detection method and device, a ventilation device, and a storage medium.
  • Ventilation devices such as ventilators, as medical devices that can replace and improve voluntary ventilation, have been widely used in the treatment of patients with respiratory insufficiency and respiratory failure caused by various reasons, which is vital to saving and prolonging patients' lives.
  • the ventilation setting of the ventilator directly affects the ventilation effect of the patient.
  • the ventilation setting of the ventilator meets the needs of the patient, it can play a good role in the recovery and treatment of the patient.
  • a human-machine confrontation event often occurs, that is, the patient's breathing Asynchronous with the ventilator, which affects the treatment effect.
  • the embodiments of the present invention hope to provide a ventilation detection method and device, ventilation equipment, and storage medium, which can identify human-machine confrontation or ventilation leakage according to specific changes in breathing parameters when mechanically ventilating a patient. And, the ventilation parameters are adjusted or prompted according to the identified events to meet the patient's ventilation needs, thereby improving the treatment effect.
  • An embodiment of the present invention provides a ventilation detection method, which is applied to a ventilation device, and the method includes:
  • monitoring breathing parameters including at least one of airway pressure and airway flow rate
  • the change in the breathing parameter is used to identify whether there is a human-machine confrontation or a ventilation leak.
  • the step of identifying whether there is a human-machine confrontation or a ventilation leak through the change of the breathing parameter includes:
  • the method further includes:
  • the type of the human-machine confrontation is identified according to a change trend of the breathing parameter.
  • the types of human-machine confrontation include one or more of improper inspiratory flow velocity setting, improper inspiratory pressure rise time setting, improper inspiratory time setting, and improper exhalation time setting.
  • the step of identifying an improper inspiratory flow rate setting according to a change trend of the breathing parameter specifically includes:
  • the step of identifying an improperly set inspiratory pressure rise time according to a change trend of the breathing parameter specifically includes:
  • the inspiratory pressure rise time of the ventilation device is set too long.
  • the step of identifying an improper inhalation time setting according to a change trend of the breathing parameter specifically includes:
  • the step of identifying an improperly set expiratory time according to a change trend of the breathing parameter specifically includes:
  • the step of identifying a ventilation leak according to a change trend of the breathing parameter specifically includes:
  • the method further includes:
  • output ventilation device adjustment information is output.
  • the method further includes:
  • An embodiment of the present invention provides a ventilation detection device, which is applied to ventilation equipment, and the device includes:
  • An acquisition module that monitors breathing parameters during mechanical ventilation of the patient by the ventilation device, the breathing parameters including at least one of airway pressure and airway flow rate;
  • the processing module recognizes whether a human-machine confrontation or a ventilation leak occurs through a change in the breathing parameter.
  • the processing module analyzes a change trend of the breathing parameter; and identifies whether there is a human-machine confrontation or a ventilation leak according to the change trend of the breathing parameter.
  • the processing module after identifying the existence of human-machine confrontation according to the change trend of the breathing parameter, identifies the type of human-machine confrontation according to the change trend of the breathing parameter.
  • the types of human-machine confrontation include one or more of improperly set inspiratory flow rate, improperly set inspiratory pressure rise time, improperly set inspiratory time, and improperly set expiratory time.
  • the step of the processing module identifying an improperly set inspiratory flow rate according to a change trend of the breathing parameter specifically includes:
  • the step of the processing module identifying an improperly set inspiratory pressure rise time according to a change trend of the breathing parameter specifically includes:
  • the inspiratory pressure rise time of the ventilation device is set too long.
  • the step of the processing module identifying an improper inhalation time setting according to a change trend of the breathing parameter specifically includes:
  • the step of the processing module identifying the improperly set expiratory time according to the change trend of the breathing parameter specifically includes:
  • the step of the processing module identifying a ventilation leak according to a change trend of the breathing parameter specifically includes:
  • the volume change is calculated according to the airway flow rate; if the airway flow rate cannot return to the baseline and the volume cannot return to the baseline at the end of expiration, it is judged that the ventilation device has a ventilation leak.
  • the processing module outputs ventilation device adjustment information according to the identified type of human-machine confrontation.
  • the processing module adjusts the ventilation parameter of the ventilation device after the step of identifying the type of the human-machine confrontation according to the change trend of the breathing parameter.
  • An embodiment of the present invention provides a ventilation device including the above-mentioned ventilation detection device, including an air source, an inhalation branch, an expiration branch, a display, and a controller;
  • the air source provides gas during the process of mechanical ventilation
  • the inhalation branch is connected to the air source, and an inhalation path is provided during the mechanical ventilation;
  • the expiratory branch provides an expiratory path during the mechanical ventilation
  • the ventilation detection device is connected to the inhalation branch, the exhalation branch, and the controller;
  • the ventilation detection device performs ventilation detection during the mechanical ventilation
  • the controller is also connected to the air source to control the process of mechanical ventilation
  • the display is connected to the controller, and displays a breathing waveform during the mechanical ventilation.
  • An embodiment of the present invention provides a computer-readable storage medium.
  • the computer-readable storage medium stores a ventilation detection program, and the ventilation detection program can be executed by a processor to implement the above-mentioned ventilation detection method.
  • the ventilation detection device monitors the breathing parameters, and the breathing parameters include at least one of airway pressure and airway flow rate; Changes in breathing parameters are used to identify the presence of human-machine confrontation or ventilation leaks. That is, the technical solution provided by the embodiment of the present invention can recognize human-machine confrontation or ventilation leakage according to specific changes in breathing parameters when mechanically ventilating a patient, and adjust ventilation parameters according to the identified events. Or tips to meet the patient's ventilation needs and thus improve the treatment effect.
  • FIG. 1 is a schematic flowchart of a ventilation detection method according to an embodiment of the present invention
  • FIG. 2 is a waveform diagram of airflow velocity versus time in an exemplary constant flow gas mode according to an embodiment of the present invention
  • FIG. 3 is a waveform diagram of airway pressure-time in an exemplary constant flow gas mode according to an embodiment of the present invention
  • FIG. 4 (a) is a first schematic waveform diagram of airway pressure-time in an exemplary pressure ventilation mode according to an embodiment of the present invention
  • FIG. 4 (b) is a second schematic waveform diagram of airway pressure-time in an exemplary pressure ventilation mode according to an embodiment of the present invention
  • FIG. 4 (c) is a schematic waveform diagram 3 of airway pressure-time in an exemplary pressure ventilation mode according to an embodiment of the present invention
  • FIG. 5 (a) is a waveform diagram of an exemplary airway pressure-time when an inhalation time is set too long according to an embodiment of the present invention
  • FIG. 5 (b) is a waveform diagram of an exemplary airway flow rate-time when an inhalation time is set too long according to an embodiment of the present invention
  • FIG. 6 (a) is a schematic waveform diagram of an exemplary airway pressure-time when an inspiratory time is set too short according to an embodiment of the present invention
  • FIG. 6 (b) is a schematic waveform diagram of an exemplary airway flow rate-time when an inhalation time is set too long according to an embodiment of the present invention
  • FIG. 7 (a) is an exemplary waveform diagram of airway flow rate-time during normal expiration according to an embodiment of the present invention.
  • FIG. 7 (b) is a waveform diagram of an exemplary short-term airway flow rate-time setting when the expiration time is set to be too short according to an embodiment of the present invention
  • FIG. 7 (c) is an exemplary volume-time waveform diagram when the expiration time is set too short according to an embodiment of the present invention.
  • FIG. 8 is a schematic volume-time waveform diagram of an exemplary ventilation leak according to an embodiment of the present invention.
  • FIG. 9 is an exemplary airway velocity-volume loop during ventilation leakage according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a ventilation detection device according to an embodiment of the present invention.
  • FIG. 11 is a first schematic structural diagram of a ventilation device according to an embodiment of the present invention.
  • FIG. 12 is a second schematic structural diagram of a ventilation device according to an embodiment of the present invention.
  • FIG. 1 is a first schematic flowchart of a ventilation detection method according to an embodiment of the present invention. As shown in Figure 1, it mainly includes the following steps:
  • the breathing parameters are monitored, and the breathing parameters include at least one of airway pressure and airway flow rate.
  • the ventilation detection device can monitor the breathing parameters in real time during the mechanical ventilation of the patient by the ventilation device.
  • the breathing parameter is at least one of airway pressure and airway flow rate.
  • the ventilation device is a medical device having a ventilation function, and may be a ventilator or an anesthesia machine.
  • the specific ventilation device is not limited in the embodiment of the present invention.
  • the ventilation detection device continuously monitors the breathing parameters, that is, from the beginning to the end of the mechanical ventilation, the ventilation device is always monitoring the breathing parameters.
  • the ventilation detection device detects the breathing parameter to change the breathing parameter. Situation to identify whether there is a man-machine confrontation or a ventilation leak, and perform the corresponding processing.
  • the ventilation detection device monitors the breathing parameter, it analyzes the change trend of the breathing parameter, and identifies whether there is a human-machine confrontation or ventilation leak according to the change trend of the breathing parameter.
  • the ventilation detection device after the ventilation detection device recognizes the existence of human-machine confrontation according to the change trend of the breathing parameter, it can also identify the type of human-machine confrontation according to the change trend of the breathing parameter.
  • the types of human-machine confrontation include one or more of improper inspiratory flow rate setting, improper inspiratory pressure rise time setting, improper inspiratory time setting, and improper exhalation time setting. Each.
  • the step of the ventilation detection device identifying the improperly set inspiratory flow rate according to the change trend of the breathing parameter specifically includes: In the constant flow mode, if the airway pressure occurs during the inspiratory phase during the inspiratory phase, If the pressure drops, it is judged that the inspiratory flow rate setting of the ventilation device is insufficient.
  • the ventilation device in the constant flow mode, is preset with the air supply section and the airway flow rate set values, and the air flow rate of the ventilation device is always maintained at the air flow rate set value in the air supply section of the inspiration phase.
  • the airway pressure in the inspiratory phase of the inspiratory phase monotonically rises, but if the airway velocity threshold in the inspiratory phase does not meet the actual needs of the patient, the patient will have a strong voluntary inhalation, which is manifested as the airway pressure in the inspiratory phase.
  • the inspiratory phase of the inspiratory phase decreased.
  • the specific air-supplying section and airway flow rate setting value are not limited in the present invention.
  • FIG. 2 is a waveform diagram of airflow velocity versus time in an exemplary constant flow gas mode according to an embodiment of the present invention.
  • the air-supply section of the inspiratory phase is from time t1 to time t2
  • the solid line between time t1 and time t2 indicates the flow velocity of the airway in the air-supply section of the inspiratory phase in the constant-flow mode.
  • the specific change is that the airway flow rate is maintained at a preset airway flow rate setting value Fm, and the dashed line represents the airway flow rate actually required by the patient.
  • FIG. 3 is a waveform diagram of airway pressure-time in an exemplary constant flow gas mode according to an embodiment of the present invention.
  • the air-supply section of the inspiratory phase is from time t1 to time t2
  • the dashed line from time t1 to time t2 represents the change in airway pressure in a constant flow mode under normal conditions, specifically a monotonic increase.
  • the solid line from time t1 to time t2 indicates that in the constant-flow mode, due to the insufficient airway flow velocity of the ventilation device, the airway pressure during the inhalation phase experienced a pressure drop in the air supply section, and the airway pressure-time waveform appeared specifically.
  • the shape change shows a non-monotonic rise, and the greater the patient's inhalation force, the more obvious the spoon shape change.
  • the step of the ventilation detection device identifying the improper setting of the inspiratory pressure rise time according to the change trend of the breathing parameter specifically includes: In the pressure ventilation mode, if the airway pressure is greater than Target value, and the airway pressure fluctuates, it is judged that the inspiratory pressure rise time of the ventilation device is too short; and / or in the pressure ventilation mode, if the airway pressure decreases during the inspiratory pressure rise phase, the ventilation device is judged The inspiratory pressure rise time is set too long.
  • the ventilation device in the pressure ventilation mode, is preset with an inspiratory pressure rising stage and a target value. Under normal circumstances, the ventilation device controls the airway pressure to rise rapidly to the target value during the inspiratory pressure rise phase, and then maintains the target value for a period of time, but if the inspiratory pressure rise phase is too short, the patient's inspiratory response capacity may be exceeded It is manifested that at the end of the inspiratory pressure rising phase, the airway pressure is greater than the target value and there are fluctuations, that is, at the end of the inspiratory pressure rising phase, the airway pressure first exceeds the target value momentarily, and then falls back to the target value.
  • the inspiratory pressure rise period is too long, it will not be able to meet the actual needs of the patient, which will cause the patient to actively inhale and perform extra work, which is manifested as a decrease in airway pressure during the inspiratory pressure rise phase.
  • FIG. 4 (a) is a first schematic waveform diagram of airway pressure-time in an exemplary pressure ventilation mode according to an embodiment of the present invention.
  • the inspiratory pressure rise period is from time t1 to time t2.
  • the airway pressure rapidly rises to the target value Pm from time t1 to time t2, and then maintains Pm. Among them, the airway The pressure-time waveforms are smoothly connected.
  • FIG. 4 (b) is a second schematic waveform diagram of airway pressure-time in an exemplary pressure ventilation mode according to an embodiment of the present invention.
  • the inspiratory pressure rise period is from time t1 to time t2, and the time from time t1 to t2 is short, and the airway pressure rises too fast, which is in contrast to the normal situation shown in Figure 4 (a).
  • the ratio shows that the airway pressure at the end of the inspiratory pressure rising stage is greater than the preset airway pressure threshold Pm, and the airway pressure fluctuates.
  • FIG. 4 (c) is a third schematic waveform diagram of airway pressure-time in an exemplary pressure ventilation mode according to an embodiment of the present invention.
  • the inspiratory pressure rise period is from time t1 to time t2, and the time from time t1 to time t2 is longer, and the airway pressure rises too slowly, which is in contrast to the normal situation shown in Figure 4 (a).
  • the ratio is expressed as a decrease in airway pressure and a spoon-like change in the airway pressure-time waveform during the inspiratory pressure rising phase.
  • the step of the ventilation detecting device identifying an improper inhalation time according to a change trend of the breathing parameter specifically includes: if the airway pressure rises or the airway flow rate accelerates during the inspiratory-exhalation phase; If it decreases, it is judged that the inhalation time of the ventilation device is set too long; if there is a non-monotonic decrease in airway pressure and / or a non-monotonic increase in airway velocity during the exhalation phase, it is judged that the inhalation time of the ventilation device is set too short.
  • the ventilation detection device may be preset with a threshold value for the decrease rate of the airway flow velocity during the inspiratory-expiration phase.
  • the airflow velocity of the airway is greater than the falling speed threshold, and the ventilation detection device can judge that the inhalation time of the ventilation setting is set too long.
  • the specific falling speed threshold is not limited in the embodiment of the present invention.
  • the airway pressure and airflow velocity will gradually decrease.
  • the inhalation time is set too long, the patient has started to expiratory effort, and The ventilation device still did not release the gas, which showed that the airway pressure increased and the airway flow rate decreased rapidly during the inspiratory-exhaling phase.
  • the airway pressure shows a monotonic decrease and the airway flow rate shows a monotonic increase.
  • the inspiratory time is set too short, the ventilation device has begun to release gas, and the patient still has an inspiratory effort. , Manifested as a non-monotonic decrease in airway pressure and / or a non-monotonic increase in airway velocity during the exhalation phase.
  • FIG. 5 (a) is a waveform diagram of an exemplary airway pressure-time when an inhalation time is set too long according to an embodiment of the present invention.
  • the inspiratory phase is from time t1 to time t2.
  • the airway pressure rises, and the airway pressure-time The waveform appears overshoot at time t2.
  • FIG. 5 (b) is a waveform diagram of an exemplary airway flow rate-time when an inhalation time is set too long according to an embodiment of the present invention.
  • the period from time t1 to time t2 is the inspiratory to expiratory phase, and the airflow velocity will gradually decrease as shown by the dotted line in Figure 5 (b).
  • the airway velocity during the inspiratory to exhalation phase will decrease rapidly, that is, the airway velocity during the inspiratory to exhalation phase is greater than the falling velocity threshold, as shown by the solid line in FIG. 5 (b).
  • FIG. 6 (a) is a schematic waveform diagram of an exemplary airway pressure-time when an inspiratory time is set to be too short according to an embodiment of the present invention.
  • the inhalation phase is from time t1 to time t2
  • the exhalation phase is from time t2 to time t3.
  • the setting time from time t1 to time t2 is too short, it is expressed from time t2 to time t3 , Non-monotonic decrease in airway pressure.
  • Fig. 6 (b) is a waveform diagram of an exemplary airway flow rate-time when the inspiratory time is set too short according to an embodiment of the present invention.
  • the inspiratory phase is from t1 to t2
  • the exhalation phase is from t2 to t3.
  • the airway flow rate from t2 to t3 will show a monotonous decrease.
  • the airway velocity from time t2 to time t3 shows a non-monotonic increase, as shown by the solid line in FIG. 6 (b).
  • the step of identifying the improper expiratory time setting by the ventilation detection device according to the change trend of the breathing parameter specifically includes: calculating the volume change according to the airway flow rate; if the airway flow rate cannot be returned at the end of expiration When you reach the baseline but the volume can be returned to the baseline, the expiration time of the ventilation device is determined to be too short.
  • the ventilation detection device detects the airway flow velocity in real time, so the volume change can be calculated according to the change of the airway flow velocity with time.
  • FIG. 7 (a) is an exemplary waveform diagram of airflow velocity-time during normal exhalation according to an embodiment of the present invention. As shown in FIG. 7 (a), the exhalation phase is from time t1 to time t2, and at time t2, that is, the airway flow rate at the end of expiration returns to the baseline.
  • FIG. 7 (b) is a waveform diagram of an exemplary short-term airway flow rate-time when the exhalation time is set to be short according to an embodiment of the present invention.
  • the exhalation phase is from time t1 to time t2.
  • time t1 to time t2 When the time from time t1 to time t2 is short, at time t2, that is, the airway flow rate at the end of expiration cannot return to the baseline.
  • FIG. 7 (c) is a waveform diagram of an exemplary short expiration volume-time setting when the exhalation time is set to be too short according to an embodiment of the present invention.
  • the exhalation phase is from time t1 to time t2.
  • the airway flow rate at time t2 cannot return to the baseline but the volume can return to the baseline.
  • the specific steps of the ventilation detection device to identify the ventilation leak according to the change trend of the breathing parameter include: calculating the volume change according to the airway flow rate; if the airway flow rate cannot return to the baseline at the end of expiration and If the volume cannot return to the baseline, it is judged that the ventilation device has a ventilation leak.
  • FIG. 8 is a schematic diagram of an exemplary volume-time waveform during ventilation leakage according to an embodiment of the present invention. As shown in Figure 8, the exhalation phase is from time t1 to time t2. When there is a ventilation leak, at time t2, that is, the volume at the end of expiration cannot return to the baseline.
  • FIG. 9 is an exemplary airway flow rate-volume loop during ventilation leakage according to an embodiment of the present invention. As shown in FIG. 9, for the type of man-machine confrontation is ventilation leakage, the change relationship between volume and airway flow rate during the entire mechanical ventilation process can be represented by this ring.
  • the ventilation detection device after the ventilation detection device recognizes the type of human-machine confrontation according to the change trend of the breathing parameter, it can also output the ventilation device adjustment information according to the identified type of human-machine confrontation. .
  • the ventilation device adjustment information of the ventilation device may be prompt information for related prompts, or control information for related control of ventilation settings.
  • Specific ventilation device ventilation setting adjustment information is not limited in the embodiment of the present invention.
  • the output ventilation device adjustment information is output as: target The indicator light flashes, so after the target indicator light flashes, the operator who uses the ventilation device to mechanically ventilate the patient can know the type of human-machine confrontation and deal with it accordingly.
  • the ventilation adjustment of the ventilation device is output
  • the information is: according to the preset time adjustment range to extend the inspiratory pressure rise time, the ventilation device can adjust the inspiratory pressure rise time according to the adjustment information.
  • the ventilation detection device recognizes the type of human-machine confrontation according to the change trend of the breathing parameter, it can also directly adjust the ventilation of the ventilation device according to the identified type of human-machine confrontation. parameter.
  • the ventilation detection device after the ventilation detection device recognizes that the type of human-machine confrontation is that the inspiratory pressure rise time is set too short or the inspiratory pressure rise time is set too long, it automatically adjusts according to the preset time adjustment range.
  • Inspiratory pressure rise time that is, the ventilation detection device can automatically adjust the amplitude according to a preset time to shorten the inspiratory pressure rise time, or extend the inspiratory pressure rise time.
  • the ventilation detection device since the ventilation leak is not automatically adjusted by the ventilation detection device or the ventilation device, if the ventilation detection device recognizes that the type of human-machine confrontation is ventilation leakage, the ventilation detection device
  • the output ventilation device adjustment information of the ventilation device can only be a prompt message, and cannot be adjusted.
  • the ventilation device recognizes that the type of man-machine confrontation is ventilation leakage, and the ventilation device adjustment information of the ventilation device output by the ventilation detection device is an alarm sound.
  • different types of human-machine confrontation have different ventilation device adjustment information of the ventilation device.
  • the ventilation detection device recognizes the type of human-machine confrontation, it outputs corresponding ventilation device adjustment information of the ventilation device.
  • An embodiment of the present invention provides a ventilation detection method.
  • respiratory parameters are monitored.
  • the respiratory parameters include at least one of airway pressure and airway flow rate; and changes in the breathing parameters are provided. Identify the presence of human-machine confrontation or ventilation leaks. That is, the technical solution provided by the embodiment of the present invention can recognize human-machine confrontation or ventilation leakage according to specific changes in breathing parameters when mechanically ventilating a patient, and adjust ventilation parameters according to the identified events. Or tips to meet the patient's ventilation needs and thus improve the treatment effect.
  • FIG. 10 is a schematic structural diagram of a ventilation detection device provided by an embodiment of the present invention. As shown in FIG. 10, the ventilation detection device includes:
  • An acquisition module 1001 monitors respiratory parameters during mechanical ventilation of a patient by the ventilation device, and the respiratory parameters include at least one of airway pressure and airway flow rate;
  • the processing module 1002 identifies whether there is a human-machine confrontation or a ventilation leak through the change of the breathing parameter.
  • the processing module 1002 analyzes a change trend of the breathing parameter; and identifies whether there is a human-machine confrontation or a ventilation leak according to the change trend of the breathing parameter.
  • the processing module 1002 identifies the type of the human-machine confrontation according to the change trend of the breathing parameter after identifying the existence of the human-machine confrontation according to the change trend of the breathing parameter.
  • the types of human-machine confrontation include one or more of improperly set inspiratory flow rate, improperly set inspiratory pressure rise time, improperly set inspiratory time, and improperly set expiratory time.
  • the step of the processing module 1002 identifying an improperly set inspiratory flow rate according to a change trend of the breathing parameter specifically includes:
  • the step of identifying, by the processing module 1002 according to the change trend of the breathing parameter, the inspiratory pressure and the improperly set rise time of the force includes:
  • the inspiratory pressure rise time of the ventilation device is set too long.
  • the step of the processing module 1002 identifying an improper inhalation time setting according to a change trend of the breathing parameter specifically includes:
  • the step of the processing module 1002 identifying improperly set expiratory time according to the change trend of the breathing parameter specifically includes:
  • the step of the processing module 1002 identifying a ventilation leak according to a change trend of the breathing parameter specifically includes:
  • the volume change is calculated according to the airway flow rate; if the airway flow rate cannot return to the baseline and the volume cannot return to the baseline at the end of expiration, it is judged that the ventilation device has a ventilation leak.
  • the processing module 1002 outputs the ventilation device ventilation setting adjustment information according to the identified type of the human-machine confrontation.
  • the processing module 1002 adjusts the ventilation parameters of the ventilation device after the step of identifying the type of the human-machine confrontation according to the change trend of the breathing parameter.
  • An embodiment of the present invention provides a ventilation detection device that monitors breathing parameters during mechanical ventilation of a patient by a ventilation device, and the breathing parameters include at least one of airway pressure and airway flow rate; Changes in breathing parameters identify the presence of human-machine confrontation or ventilation leaks. That is, the ventilation detection device provided by the embodiment of the present invention can recognize human-machine confrontation or ventilation leakage according to specific changes in breathing parameters when mechanically ventilating a patient, and performs ventilation parameter detection based on the identified events. Adjust or prompt to meet the patient's ventilation needs, thereby improving the effectiveness of the treatment.
  • FIG. 11 is a first schematic structural diagram of a ventilation device provided by an embodiment of the present invention.
  • the ventilation device includes the above-mentioned ventilation detection device 1101, and further includes: an air source 1102, an inhalation branch 1103, an exhalation branch 1104, a display 1105, and a controller 1106;
  • the air source 1102 provides gas during the process of mechanical ventilation
  • the inhalation branch 1103 is connected to the air source 1102 and provides an inhalation path during the mechanical ventilation process
  • the expiratory branch 1104 provides an expiratory path during the mechanical ventilation
  • the ventilation detection device 1101 is connected to the inhalation branch 1103, the exhalation branch 1104, and the controller 1106;
  • the ventilation detection device 1101 performs ventilation detection during the mechanical ventilation
  • the controller 1106 is also connected to the air source 1102 to control the process of mechanical ventilation;
  • the display 1105 is connected to the controller 1106, and displays a breathing waveform during the mechanical ventilation.
  • FIG. 12 is a second schematic structural diagram of a ventilation device according to an embodiment of the present invention. As shown in FIG. 12, a patient can be connected to a ventilation device through a patient circuit to achieve mechanical ventilation, wherein the ventilation device includes the above-mentioned ventilation detection device.
  • An embodiment of the present invention provides a computer-readable storage medium.
  • the computer-readable storage medium stores a ventilation detection program, and the ventilation detection program can be executed by a processor to implement the foregoing ventilation detection method.
  • the computer-readable storage medium may be a volatile memory (such as Random-Access Memory (RAM); or a non-volatile memory (such as Read-only memory).
  • RAM Random-Access Memory
  • ROM Read-only memory
  • HDD Hard Disk Drive
  • SSD Solid-State Drive
  • the embodiments of the present invention may be provided as a method, a system, or a computer program product. Therefore, the present invention may take the form of a hardware embodiment, a software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product implemented on one or more computer-usable storage media (including, but not limited to, magnetic disk memory, optical memory, etc.) containing computer-usable program code.
  • a computer-usable storage media including, but not limited to, magnetic disk memory, optical memory, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable signal processing device to work in a particular manner such that the instructions stored in the computer-readable memory produce a manufactured article including an instruction device, the instructions
  • the device implements the functions specified in one or more flowcharts and / or one or more blocks of the block diagram.
  • These computer program instructions may also be loaded on a computer or other programmable signal processing device, so that a series of operation steps are performed on the computer or other programmable device to produce a computer-implemented process, and thus the computer or other programmable device executes the
  • the instructions provide steps for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.
  • the ventilation detection device monitors the breathing parameters, and the breathing parameters include at least one of airway pressure and airway flow rate;
  • the change identifies the presence of human-machine confrontation or ventilation leaks. That is, the technical solution provided by the embodiment of the present invention can recognize human-machine confrontation or ventilation leakage according to specific changes in breathing parameters when mechanically ventilating a patient, and adjust ventilation parameters according to the identified events. Or tips to meet the patient's ventilation needs and thus improve the treatment effect.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pulmonology (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Emergency Medicine (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Urology & Nephrology (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Signal Processing (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种通气检测方法,应用于通气设备,所述方法包括:在通气设备对病人进行机械通气的过程中,对呼吸参数进行监测,呼吸参数至少包括气道压力、气道流速中的一个(S101);通过呼吸参数的变化识别是否存在人机对抗或通气泄漏(S102)。

Description

一种通气检测方法及装置、通气设备、存储介质 技术领域
本发明实施例涉及医疗器械技术领域,尤其涉及一种通气检测方法及装置、通气设备、存储介质。
背景技术
呼吸机等通气设备作为可以替代和改善自主通气的医疗设备,已普遍应用于各种原因所致的呼吸功能不全、呼吸衰竭等病人的救治中,对于挽救和延长病人的生命至关重要。
在呼吸机实现机械通气的过程中,呼吸机的通气设置直接影响到病人的通气效果。当呼吸机的通气设置满足病人的需求时,可以对病人的恢复和救治起到良好的作用,然而,当呼吸机的通气设置不满足病人需求时,往往会产生人机对抗事件,即病人呼吸与呼吸机不同步,从而影响治疗效果。
发明内容
为解决上述技术问题,本发明实施例期望提供一种通气检测方法及装置、通气设备、存储介质,能够在对病人进行机械通气时,根据呼吸参数具体的变化情况识别出人机对抗或通气泄漏,并且,根据识别出的事件进行通气参数的调整或提示,以满足病人的通气需求,从而提高治疗效果。
本发明实施例的技术方案可以如下实现:
本发明实施例提供了一种通气检测方法,应用于通气设备,所述方法包括:
在所述通气设备对病人进行机械通气的过程中,对呼吸参数进行监测,所述呼吸参数至少包括气道压力、气道流速中的一个;
通过所述呼吸参数的变化识别是否存在人机对抗或通气泄漏。
在上述方案中,所述通过所述呼吸参数的变化识别是否存在人机对抗或通气泄漏的步骤包括:
对所述呼吸参数的变化趋势进行分析;
根据所述呼吸参数的变化趋势识别是否存在人机对抗或通气泄漏。
在上述方案中,在根据所述呼吸参数的变化趋势识别存在人机对抗之后,所述方法还包括:
根据所述呼吸参数的变化趋势识别所述人机对抗的类型。
在上述方案中,所述人机对抗的类型包括吸气流速设置不当、吸气压力上升时间设置不当、吸气时间设置不当,以及呼气时间设置不当中的一个或多个。
在上述方案中,根据所述呼吸参数的变化趋势识别吸气流速设置不当的步骤具体包括:
在恒流通气模式下,如果在吸气阶段所述气道压力在送气段出现压力下降,则判断所述通气设备的吸气流速设置不足。
在上述方案中,根据所述呼吸参数的变化趋势识别吸气压力上升时间设置不当的步骤具体包括:
在压力通气模式下,如果在吸气压力上升阶段末所述气道压力大于目标值,且所述气道压力出现起伏变化,则判断所述通气设备的吸气压力上升时间设置过短;和/或
在压力通气模式下,如果在吸气压力上升阶段所述气道压力出现压力下降,则判断所述通气设备的吸气压力上升时间设置过长。
在上述方案中,根据所述呼吸参数的变化趋势识别吸气时间设置不当的步骤具体包括:
如果在吸气转呼气阶段所述气道压力出现上升或所述气道流速出现加速下降,则判断所述通气设备的吸气时间设置过长;
如果在呼气阶段所述气道压力出现非单调下降和/或所述气道流速呈非单调上升特征,则判断所述通气设备的吸气时间设置过短。
在上述方案中,根据所述呼吸参数的变化趋势识别呼气时间设置不当的步骤具体包括:
根据气道流速计算容积变化;
如果在呼气末阶段所述气道流速不能回到基线但所述容积可以回到基线,则判断所述通气设备的呼气时间设置过短。
在上述方案中,根据所述呼吸参数的变化趋势识别通气泄漏的步骤具体包括:
根据气道流速计算容积变化;
如果在呼气末阶段所述气道流速不能回到基线且所述容积不能回到基线,则判断所述通气设备出现通气泄漏。
在上述方案中,在根据所述呼吸参数的变化趋势识别所述人机对抗的类型的步骤之后,所述方法还包括:
根据识别到的人机对抗的类型,输出通气设备通气设置调整信息。
在上述方案中,在根据所述呼吸参数的变化趋势识别所述人机对抗的类型的步骤之后,所述方法还包括:
根据识别到的人机对抗的类型,调整所述通气设备的通气参数。
本发明实施例提供了一种通气检测装置,应用于通气设备,所述装置包括:
采集模块,在所述通气设备对病人进行机械通气的过程中,对呼吸参数进行监测,所述呼吸参数至少包括气道压力、气道流速中的一个;
处理模块,通过所述呼吸参数的变化识别是否出现人机对抗或通气泄漏。
在上述装置中,所述处理模块,对所述呼吸参数的变化趋势进行分析;根据所述呼吸参数的变化趋势识别是否存在人机对抗或通气泄漏。
在上述装置中,所述处理模块,在根据所述呼吸参数的变化趋势识别存在人机对抗之后,根据所述呼吸参数的变化趋势识别所述人机对抗的类型。
在上述装置中,所述人机对抗的类型包括吸气流速设置不当、吸气压力上升时间设置不当、吸气时间设置不当,以及呼气时间设置不当中的一个或多个。
在上述装置中,所述处理模块根据所述呼吸参数的变化趋势识别吸气流速设置不当的步骤具体包括:
在恒流通气模式下,如果在吸气阶段所述气道压力在送气段出现压力下降,则判断所述通气设备的吸气流速设置不足。
在上述装置中,所述处理模块根据所述呼吸参数的变化趋势识别吸气压力上升时间设置不当的步骤具体包括:
在压力通气模式下,如果在吸气压力上升阶段末所述气道压力大于目标值,且所述气道压力出现起伏变化,则判断所述通气设备的吸气压力上升时间设置过短;和/或
在压力通气模式下,如果在吸气压力上升阶段所述气道压力出现压力下降,则判断所述通气设备的吸气压力上升时间设置过长。
在上述装置中,所述处理模块根据所述呼吸参数的变化趋势识别吸气时间设置不当的步骤具体包括:
如果在吸气转呼气阶段所述气道压力出现上升或所述气道流速出现加速下降,则判断所述通气设备的吸气时间设置过长;
如果在呼气阶段所述气道压力出现非单调下降和/或所述气道流速呈非单调上升特征,则判断所述通气设备的吸气时间设置过短。
在上述装置中,所述处理模块根据所述呼吸参数的变化趋势识别呼气时间设置不当的步骤具体包括:
根据气道流速计算容积变化;
如果在呼气末阶段所述气道流速不能回到基线且所述容积可以回到基线,则判断所述通气设备的呼气时间设置过短。
在上述装置中,所述处理模块根据所述呼吸参数的变化趋势识别通气泄漏的步骤具体包括:
根据气道流速计算容积变化;如果在呼气末阶段所述气道流速不能回到基线且所述容积不能回到基线,则判断所述通气设备出现通气泄漏。
在上述装置中,所述处理模块在根据所述呼吸参数的变化趋势识别所述人机对抗的类型的步骤之后,根据识别到的人机对抗的类型,输出通气设备通气设置调整信息。
在上述装置中,所述处理模块在根据所述呼吸参数的变化趋势识别所述人机对抗的类型的步骤之后,根据识别到的人机对抗的类型,调整所述通气设备的通气参数。
本发明实施例提供了一种包含上述通气检测装置的通气设备,包括气源、吸气支路、呼气支路、显示器和控制器;
所述气源,在机械通气的过程中提供气体;
所述吸气支路与所述气源连接,在所述机械通气的过程中提供吸气路径;
所述呼气支路,在所述机械通气的过程中提供呼气路径;
所述通气检测装置与所述吸气支路、所述呼气支路和所述控制器连接;
所述通气检测装置,在所述机械通气的过程中进行通气检测;
所述控制器还与所述气源连接,控制所述机械通气的过程;
所述显示器与所述控制器连接,在所述机械通气的过程中显示呼吸波形。
本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有通气检测程序,所述通气检测程序可以被处理器执行,以实现 上述通气检测方法。
由此可见,在本发明实施例的技术方案中,通气检测装置在通气设备对病人进行机械通气的过程中,对呼吸参数进行监测,呼吸参数至少包括气道压力、气道流速中的一个;通过呼吸参数的变化识别是否存在人机对抗或通气泄漏。也就是说,本发明实施例提供的技术方案,能够在对病人进行机械通气时,根据呼吸参数具体的变化情况识别出人机对抗或通气泄露,并且,根据识别出的事件进行通气参数的调整或提示,以满足病人的通气需求,从而提高治疗效果。
附图说明
图1为本发明实施例提供的一种通气检测方法的流程示意图;
图2为本发明实施例提供的一种示例性的恒流通气模式下气道流速-时间的波形示意图;
图3为本发明实施例提供的一种示例性的恒流通气模式下气道压力-时间的波形示意图;
图4(a)为本发明实施例提供的一种示例性的压力通气模式下气道压力-时间的波形示意图一;
图4(b)为本发明实施例提供的一种示例性的压力通气模式下气道压力-时间的波形示意图二;
图4(c)为本发明实施例提供的一种示例性的压力通气模式下气道压力-时间的波形示意图三;
图5(a)为本发明实施例提供的一种示例性的吸气时间设置过长时气道压力-时间的波形示意图;
图5(b)为本发明实施例提供的一种示例性的吸气时间设置过长时气道流速-时间的波形示意图;
图6(a)为本发明实施例提供的一种示例性的吸气时间设置过短时气 道压力-时间的波形示意图;
图6(b)为本发明实施例提供的一种示例性的吸气时间设置过长时气道流速-时间的波形示意图;
图7(a)为本发明实施例提供的一种示例性的正常呼气时气道流速-时间的波形示意图;
图7(b)为本发明实施例提供的一种示例性的呼气时间设置过短时气道流速-时间的波形示意图;
图7(c)为本发明实施例提供的一种示例性的呼气时间设置过短时的容积-时间的波形示意图;
图8为本发明实施例提供的一种示例性的通气泄露时容积-时间的波形示意图;
图9为本发明实施例提供的一种示例性的通气泄漏时气道流速-容积环;
图10为本发明实施例提供的一种通气检测装置的结构示意图;
图11为本发明实施例提供的一种通气设备的结构示意图一;
图12为本发明实施例提供的一种通气设备的结构示意图二。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
实施例一
本发明实施例提供了一种通气检测方法,应用于通气设备。图1为本发明实施例提供的一种通气检测方法的流程示意图一。如图1所示,主要包括以下步骤:
S101、在通气设备对病人进行机械通气的过程中,对呼吸参数进行监测,呼吸参数至少包括气道压力、气道流速中的一个。
在本发明的实施例中,通气检测装置可以在通气设备对病人进行机械通气的过程中,实时监测呼吸参数。
需要说明的是,在本发明的实施例中,呼吸参数至少为气道压力、气道流速中的一个。
需要说明的是,在本发明的实施例中,通气设备为具备通气功能的医疗设备,可以为呼吸机或麻醉机。具体的通气设备本发明实施例不作限定。
需要说明的是,在本发明的实施例中,通气检测装置监测呼吸参数是一直持续进行的,也就是说,在机械通气的开始到结束,通气设备始终在监测呼吸参数。
可以理解的是,在使用通气设备对病人进行机械通气的过程中,呼吸参数随着时间产生一定的变化,因此,在本发明的实施例中,通气检测装置检测呼吸参数,以呼吸参数的变化情况,来识别出是否存在人机对抗或通气泄露,从而进行相应的处理。
S102、通过呼吸参数的变化识别是否存在人机对抗或通气泄漏。
在本发明的实施例中,通气检测装置对呼吸参数进行监测之后,对呼吸参数的变化趋势进行分析,并根据呼吸参数的变化趋势识别是否存在人机对抗或通气泄露。
需要说明的是,在本发明的实施例中,通气检测装置在根据呼吸参数的变化趋势识别存在人机对抗之后,还可以根据呼吸参数的变化趋势识别人机对抗的类型。
需要说明的是,在本发明的实施例中,人机对抗的类型包括吸气流速设置不当、吸气压力上升时间设置不当、吸气时间设置不当,以及呼气时间设置不当中的一个或多个。
具体的,在本发明的实施例中,通气检测装置根据呼吸参数的变化趋势识别吸气流速设置不当的步骤具体包括:在恒流通气模式下,如果在吸气阶段气道压力在送气阶段出现压力下降,则判断通气设备的吸气流速设 置不足。
需要说明的是,在恒流通气模式下,通气设备预设有送气段和气道流速设定值,在吸气阶段的送气段内通气设备的气道流速一直保持在气道流速设定值,正常情况时吸气阶段的送气段内气道压力是单调上升的,但是,如果送气段内气道流速阈值不满足病人的实际需求,病人将产生强烈的自主吸气,表现为气道压力在吸气阶段的送气段出现下降。具体的送气段和气道流速设定值本发明不作限定。
图2为本发明实施例提供的一种示例性的恒流通气模式下气道流速-时间的波形示意图。如图2所示,吸气阶段的送气段为从t1时刻到t2时刻,t1时刻到t2时刻之间的实线表示的为恒流通气模式下,在吸气阶段的送气段内气道流速的变化,具体为气道流速保持为预设的气道流速设定值Fm,而虚线表示的为病人实际需要的气道流速。
图3为本发明实施例提供的一种示例性的恒流通气模式下气道压力-时间的波形示意图。如图3所示,吸气阶段的送气段为从t1时刻到t2时刻,t1时刻到t2时刻的虚线表示的为恒流通气模式下,正常情况时气道压力的变化,具体为单调上升,t1时刻到t2时刻的实线表示的为恒流通气模式下,由于通气设备的气道流速不足,在吸气阶段气道压力在送气段出现压力下降,气道压力-时间波形具体出现了勺状变化,呈现非单调上升,而且,病人吸气用力越大,勺状变化也越明显。
具体的,在本发明的实施例中,通气检测装置根据呼吸参数的变化趋势识别吸气压力上升时间设置不当的步骤具体包括:在压力通气模式下,如果在吸气压力上升阶段气道压力大于目标值,且气道压力出现起伏变化,则判断通气设备的吸气压力上升时间过短;和/或在压力通气模式下,如果吸气压力上升阶段气道压力出现压力下降,则判断通气设备的吸气压力上升时间设置过长。
需要说明的是,在压力通气模式下,通气设备预设有吸气压力上升阶 段和目标值。在正常情况时,通气设备在吸气压力上升阶段控制气道压力迅速上升到目标值,之后一段时间保持该目标值,但是,如果吸气压力上升阶段过短,可能超过病人的吸气反应能力,表现为在吸气压力上升阶段末,气道压力大于目标值,且出现起伏变化,即在吸气压力上升阶段末气道压力先瞬间超过目标值,之后再回落到目标值。如果吸气压力上升阶段过长,将无法满足病人的实际需求,而引起病人主动吸气,额外做功,表现为在吸气压力上升阶段气道压力出现压力下降。
图4(a)为本发明实施例提供的一种示例性的压力通气模式下气道压力-时间的波形示意图一。如图4(a)所示,吸气压力上升阶段为从t1时刻到t2时刻,正常情况下,t1时刻到t2时刻内气道压力迅速上升到目标值Pm,之后保持Pm,其中,气道压力-时间波形是平滑相接的。
图4(b)为本发明实施例提供的一种示例性的压力通气模式下气道压力-时间的波形示意图二。如图4(b)所示,吸气压力上升阶段为从t1时刻到t2时刻,t1时刻到t2时刻时间较短,气道压力上升过快,与图4(a)所示的正常情况相比,表现为吸气压力上升阶段末气道压力大于预设气道压力阈值Pm,且气道压力出现起伏变化。
图4(c)为本发明实施例提供的一种示例性的压力通气模式下气道压力-时间的波形示意图三。如图4(c)所示,吸气压力上升阶段为从t1时刻到t2时刻,t1时刻到t2时刻时间较长,气道压力上升过慢,与图4(a)所示的正常情况相比,表现为在吸气压力上升阶段气道压力出现压力下降,气道压力-时间波形出现勺状变化。
具体的,在本发明的实施例中,通气检测装置根据呼吸参数的变化趋势识别吸气时间设置不当的步骤具体包括:如果在吸气转呼气阶段气道压力出现上升或气道流速出现加速下降,则判断通气设备的吸气时间设置过长;如果在呼气阶段气道压力出现非单调下降和/或气道流速呈非单调上升特征,则判断通气设备的吸气时间设置过短。
需要说明的是,在本发明的实施例中,通气检测装置中可以预设有吸气转呼气阶段时气道流速的下降速度阈值,如果在实际机械通气过程中,吸气转呼气阶段的气道流速大于下降速度阈值,通气检测装置即可判断通气设置的吸气时间设置过长。具体的下降速度阈值本发明实施例不作限定。
需要说明的是,在正常情况下,通气设备在吸气转呼气阶段,气道压力和气道流速将开始逐渐下降,但是,如果吸气时间设置过长,病人已经开始有呼气努力,而通气设备依然没有将气体释放,表现为在吸气转呼气阶段气道压力出现上升,气道流速出现加速下降。在正常情况下,通气设备在呼气阶段,气道压力呈单调下降特征,气道流速呈单调上升特征,如果吸气时间设置过短,通气设备已经开始进行释放气体,病人仍然有吸气努力,表现为在呼气阶段气道压力出现非单调下降和/或气道流速呈非单调上升特征。
图5(a)为本发明实施例提供的一种示例性的吸气时间设置过长时气道压力-时间的波形示意图。如图5(a)所示,吸气阶段为从t1时刻到t2时刻,当t1时刻到t2时刻时间设置过长,在吸气转呼气阶段,气道压力出现上升,气道压力-时间波形在t2时刻出现过冲。
图5(b)为本发明实施例提供的一种示例性的吸气时间设置过长时气道流速-时间的波形示意图。正常情况下,t1时刻到t2时刻的后期即吸气转呼气阶段,气道流速如图5(b)虚线所示的趋势将逐渐降低,然而,当出现吸气时间设置过长的情况,吸气转呼气阶段气道流速将加速下降,即吸气转呼气阶段气道流速大于下降速度阈值,如图5(b)实线所示。
图6(a)为本发明实施例提供的一种示例性的吸气时间设置过短时气道压力-时间的波形示意图。如图6(a)所示,吸气阶段为从t1时刻到t2时刻,呼气阶段为从t2时刻到t3时刻,当t1时刻到t2时刻设置时间过短,表现为从t2时刻到t3时刻,气道压力出现非单调下降特征。
图6(b)为本发明实施例提供的一种示例性的吸气时间设置过短时气 道流速-时间的波形示意图。如图6(b)虚线所示,吸气阶段为从t1时刻到t2时刻,呼气阶段为从t2时刻到t3时刻,正常情况下,t2时刻到t3时刻的气道流速将呈单调下降特征,然而,当出现吸气时间设置过短时,t2时刻到t3时刻的气道流速呈非单调上升特征,如图6(b)实线所示。
具体的,在本发明的实施例中,通气检测装置根据呼吸参数的变化趋势识别呼气时间设置不当的步骤具体包括:根据气道流速计算容积变化;如果在呼气末阶段气道流速不能回到基线但容积可以回到基线,则判断通气设备的呼气时间设置过短。
需要说明的是,在本发明的实施例中,通气检测装置实时对气道流速进行检测,因此,根据气道流速随着时间的变化,即可计算出容积变化。
需要说明的是,在正常情况下,通气设备切换为呼气阶段时,通气设备的进气端关闭,呼气端打开,原则上病人吸入多少气体,均能从呼气端呼出。但是,当呼气时间设置过短时,将导致病人无法完全排出气体,产生内源性呼气末正压通气,进一步影响吸气触发,表现为呼气末阶段气道流速不能回到基线,之后将开始下一呼吸周期,但是,容积在呼气末阶段可以回到基线。
图7(a)为本发明实施例提供的一种示例性的正常呼气时气道流速-时间的波形示意图。如图7(a)所示,呼气阶段为从t1时刻到t2时刻,在t2时刻,即呼气末阶段气道流速回到基线。
图7(b)为本发明实施例提供的一种示例性的呼气时间设置过短时气道流速-时间的波形示意图。如图7(b)所示,呼气阶段为从t1时刻到t2时刻,当t1时刻到t2时刻时间较短时,在t2时刻,即呼气末阶段气道流速不能回到基线。
图7(c)为本发明实施例提供的一种示例性的呼气时间设置过短时容积-时间的波形示意图。如图7(c)所示,呼气阶段为从t1时刻到t2时刻,在呼气末阶段,即t2时刻气道流速不能回到基线但容积可以回到基线。
具体的,在本发明的实施例中,通气检测设备根据呼吸参数的变化趋势识别通气泄漏的具体步骤包括:根据气道流速计算容积变化;如果在呼气末阶段气道流速不能回到基线且容积不能回到基线,则判断通气设备出现通气泄漏。
需要说明的是,当通气设备管道出现泄漏或气管插管气囊漏气时,存在通气泄露,导致呼出气体量少于吸入气体量,表现为呼气末阶段气道流速和容积均不能回到基线。呼气末阶段气道流速不能回到基线与7(b)所示类似。
图8为本发明实施例提供的一种示例性的通气泄露时容积-时间的波形示意图。如图8所示,呼气阶段为从t1时刻到t2时刻,当存在通气泄露时,在t2时刻,即呼气末阶段容积不能回到基线。
图9为本发明实施例提供的一种示例性的通气泄漏时气道流速-容积环。如图9所示,对于人机对抗类型为通气泄露,容积与气道流速在整个机械通气过程中的变化关系可以以该环形表示。
需要说明的是,在本发明的实施例中,通气检测装置在根据呼吸参数的变化趋势识别人机对抗的类型之后,还可以根据识别到的人机对抗的类型,输出通气设备通气设置调整信息。
需要说明的是,在本发明的实施例中,通气设备通气设置调整信息可以为提示信息,用于进行相关提示,也可以为控制信息,用于进行对通气设置进行相关控制。具体的通气设备通气设置调整信息本发明实施例不作限定。
示例性的,在本发明的实施例中,如果通气检测装置识别出人机对抗的类型为吸气流速设置不当,通气设备的吸气流速设置不足,则输出通气设备通气设置调整信息为:目标指示灯闪烁,因此,在目标指示灯闪烁之后,采用通气设备对病人进行机械通气的操作人员即可获知该人机对抗的类型,并进行相应处理。
示例性的,在本发明的实施例中,如果通气检测装置识别出人机对抗的类型为吸气压力上升时间设置不当,通气设备的吸气压力上升时间设置过短,则输出通气设备通气调整信息为:按照预设时间调整幅度延长吸气压力上升时间,通气设备即可根据该调整信息,对吸气压力上升时间进行调整。
需要说明的是,在本发明的实施例中,通气检测装置在根据呼吸参数的变化趋势识别人机对抗的类型之后,还可以直接自主根据识别到的人机对抗的类型,调整通气设备的通气参数。
示例性的,在本发明的实施例中,通气检测装置识别出人机对抗的类型为吸气压力上升时间设置过短或吸气压力上升时间设置过长之后,自动按照预设时间调整幅度调整吸气压力上升时间,即通气检测装置即可自动按照预设时间调整幅度缩短吸气压力上升时间,或者延长吸气压力上升时间。
需要说明的是,在本发明的实施例中,由于通气漏气是通气检测装置或通气设备无法自动进行调整的,因此,如果通气检测装置识别到人机对抗类型为通气漏气,通气检测装置输出的通气设备通气设置调整信息仅可以为提示信息,,而不能进行任何调整。
示例性的,在本发明的实施例中,通气设备识别出人机对抗的类型为为通气漏气,通气检测装置输出的通气设备通气设置调整信息为发出报警提示音。
需要说明的是,在本发明的实施例中,不同的人机对抗的类型,存在不同的通气设备通气设置调整信息。当通气检测装置识别出人机对抗的类型之后,即输出对应的通气设备通气设置调整信息。
本发明实施例提供了一种通气检测方法,在通气设备对病人进行机械通气的过程中,对呼吸参数进行监测,呼吸参数至少包括气道压力、气道流速中的一个;通过呼吸参数的变化识别是否存在人机对抗或通气泄漏。 也就是说,本发明实施例提供的技术方案,能够在对病人进行机械通气时,根据呼吸参数具体的变化情况识别出人机对抗或通气泄露,并且,根据识别出的事件进行通气参数的调整或提示,以满足病人的通气需求,从而提高治疗效果。
实施例二
本发明实施例提供了一种通气检测装置,图10为本发明实施例提供的一种通气检测装置的结构示意图。如图10所示,所述通气检测装置包括:
采集模块1001,在所述通气设备对病人进行机械通气的过程中,对呼吸参数进行监测,所述呼吸参数至少包括气道压力、气道流速中的一个;
处理模块1002,通过所述呼吸参数的变化识别是否存在人机对抗或通气泄漏。
可选的,所述处理模块1002,对所述呼吸参数的变化趋势进行分析;根据所述呼吸参数的变化趋势识别是否存在人机对抗或通气泄漏。
可选的,所述处理模块1002,在根据所述呼吸参数的变化趋势识别存在人机对抗之后,根据所述呼吸参数的变化趋势识别所述人机对抗的类型。
可选的,所述人机对抗的类型包括吸气流速设置不当、吸气压力上升时间设置不当、吸气时间设置不当,以及呼气时间设置不当中的一个或多个。
可选的,所述处理模块1002根据所述呼吸参数的变化趋势识别吸气流速设置不当的步骤具体包括:
在恒流通气模式下,如果在吸气阶段所述气道压力在送气段出现压力下降,则判断所述通气设备的吸气流速设置不足。
可选的,所述处理模块1002根据所述呼吸参数的变化趋势识别吸气压 力上升时间设置不当的步骤具体包括:
在压力通气模式下,如果在吸气压力上升阶段末所述气道压力大于目标值,且所述气道压力出现起伏变化,则判断所述通气设备的吸气压力上升时间设置过短;和/或
在压力通气模式下,如果在吸气压力上升阶段所述气道压力出现压力下降,则判断所述通气设备的吸气压力上升时间设置过长。
可选的,所述处理模块1002根据所述呼吸参数的变化趋势识别吸气时间设置不当的步骤具体包括:
如果在吸气转呼气阶段所述气道压力出现上升或所述气道流速出现加速下降,则判断所述通气设备的吸气时间设置过长;
如果在呼气阶段所述气道压力出现非单调下降和/或所述气道流速呈非单调上升特征,则判断所述通气设备的吸气时间设置过短。
可选的,所述处理模块1002根据所述呼吸参数的变化趋势识别呼气时间设置不当的步骤具体包括:
根据气道流速计算容积变化;
如果在呼气末阶段所述气道流速不能回到基线且所述容积可以回到基线,则判断所述通气设备的呼气时间设置过短。
可选的,所述处理模块1002根据所述呼吸参数的变化趋势识别通气泄漏的步骤具体包括:
根据气道流速计算容积变化;如果在呼气末阶段所述气道流速不能回到基线且所述容积不能回到基线,则判断所述通气设备出现通气泄漏。
可选的,所述处理模块1002在根据所述呼吸参数的变化趋势识别所述人机对抗的类型的步骤之后,根据识别到的人机对抗的类型,输出通气设备通气设置调整信息。
可选的,所述处理模块1002在根据所述呼吸参数的变化趋势识别所述人机对抗的类型的步骤之后,根据识别到的人机对抗的类型,调整所述通 气设备的通气参数。
本发明实施例提供了一种通气检测装置,该通气检测装置在通气设备对病人进行机械通气的过程中,对呼吸参数进行监测,呼吸参数至少包括气道压力、气道流速中的一个;通过呼吸参数的变化识别是否存在人机对抗或通气泄漏。也就是说,本发明实施例提供的通气检测装置,能够在对病人进行机械通气时,根据呼吸参数具体的变化情况识别出人机对抗或通气泄露,并且,根据识别出的事件进行通气参数的调整或提示,以满足病人的通气需求,从而提高治疗效果。
本发明实施例还提供了一种通气设备,图11为本发明实施例提供的一种通气设备的结构示意图一。如图11所示,所述通气设备包括上述通气检测装置1101,还包括:气源1102、吸气支路1103、呼气支路1104、显示器1105和控制器1106;
所述气源1102,在机械通气的过程中提供气体;
所述吸气支路1103与所述气源1102连接,在所述机械通气的过程中提供吸气路径;
所述呼气支路1104,在所述机械通气的过程中提供呼气路径;
所述通气检测装置1101与所述吸气支路1103、所述呼气支路1104和所述控制器1106连接;
所述通气检测装置1101,在所述机械通气的过程中进行通气检测;
所述控制器1106还与所述气源1102连接,控制所述机械通气的过程;
所述显示器1105与所述控制器1106连接,在所述机械通气的过程中显示呼吸波形。
图12为本发明实施例提供的一种通气设备的结构示意图二。如图12所示,病人可以通过病人管路与通气设备连接,从而实现机械通气,其中,通气设备包括上述通气检测装置。
本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有通气检测程序,所述通气检测程序可以被处理器执行,以实现上述通气检测方法。计算机可读存储介质可以是是易失性存储器(volatile memory),例如随机存取存储器(Random-Access Memory,RAM);或者非易失性存储器(non-volatile memory),例如只读存储器(Read-Only Memory,ROM),快闪存储器(flash memory),硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);也可以是包括上述存储器之一或任意组合的各自设备,如移动电话、计算机、平板设备、个人数字助理等。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程信号处理设备的处理器以产生一个机器,使得通过计算机或其他可编程信号处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程信号处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程信号处理设备上, 使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
工业实用性
在本发明实施例的技术方案中,通气检测装置在通气设备对病人进行机械通气的过程中,对呼吸参数进行监测,呼吸参数至少包括气道压力、气道流速中的一个;通过呼吸参数的变化识别是否存在人机对抗或通气泄漏。也就是说,本发明实施例提供的技术方案,能够在对病人进行机械通气时,根据呼吸参数具体的变化情况识别出人机对抗或通气泄露,并且,根据识别出的事件进行通气参数的调整或提示,以满足病人的通气需求,从而提高治疗效果。

Claims (24)

  1. 一种通气检测方法,应用于通气设备,其特征在于,所述方法包括:
    在所述通气设备对病人进行机械通气的过程中,对呼吸参数进行监测,所述呼吸参数至少包括气道压力、气道流速中的一个;
    通过所述呼吸参数的变化识别是否存在人机对抗或通气泄漏。
  2. 如权利要求1所述的方法,其特征在于,所述通过所述呼吸参数的变化识别是否存在人机对抗或通气泄漏的步骤包括:
    对所述呼吸参数的变化趋势进行分析;
    根据所述呼吸参数的变化趋势识别是否存在人机对抗或通气泄漏。
  3. 如权利要求2所述的方法,其特征在于,在根据所述呼吸参数的变化趋势识别存在人机对抗之后,所述方法还包括:
    根据所述呼吸参数的变化趋势识别所述人机对抗的类型。
  4. 如权利要求3所述的方法,其特征在于,所述人机对抗的类型包括吸气流速设置不当、吸气压力上升时间设置不当、吸气时间设置不当,以及呼气时间设置不当中的一个或多个。
  5. 如权利要求4所述的方法,其特征在于,根据所述呼吸参数的变化趋势识别吸气流速设置不当的步骤具体包括:
    在恒流通气模式下,如果在吸气阶段所述气道压力在送气段出现压力下降,则判断所述通气设备的吸气流速设置不足。
  6. 如权利要求4所述的方法,其特征在于,根据所述呼吸参数的变化趋势识别吸气压力上升时间设置不当的步骤具体包括:
    在压力通气模式下,如果在吸气压力上升阶段末所述气道压力大于目标值,且所述气道压力出现起伏变化,则判断所述通气设备的吸气压力上升时间设置过短;和/或
    在压力通气模式下,如果在吸气压力上升阶段所述气道压力出现压力 下降,则判断所述通气设备的吸气压力上升时间设置过长。
  7. 如权利要求4所述的方法,其特征在于,根据所述呼吸参数的变化趋势识别吸气时间设置不当的步骤具体包括:
    如果在吸气转呼气阶段所述气道压力出现上升或所述气道流速出现加速下降,则判断所述通气设备的吸气时间设置过长;
    如果在呼气阶段所述气道压力出现非单调下降和/或所述气道流速呈非单调上升特征,则判断所述通气设备的吸气时间设置过短。
  8. 如权利要求4所述的方法,其特征在于,根据所述呼吸参数的变化趋势识别呼气时间设置不当的步骤具体包括:
    根据气道流速计算容积变化;
    如果在呼气末阶段所述气道流速不能回到基线但所述容积可以回到基线,则判断所述通气设备的呼气时间设置过短。
  9. 如权利要求3所述的方法,其特征在于,根据所述呼吸参数的变化趋势识别通气泄漏的步骤具体包括:
    根据气道流速计算容积变化;
    如果在呼气末阶段所述气道流速不能回到基线且所述容积不能回到基线,则判断所述通气设备出现通气泄漏。
  10. 如权利要求3所述的方法,其特征在于,在根据所述呼吸参数的变化趋势识别所述人机对抗的类型的步骤之后,所述方法还包括:
    根据识别到的人机对抗的类型,输出通气设备通气设置调整信息。
  11. 如权利要求3所述的方法,其特征在于,在根据所述呼吸参数的变化趋势识别所述人机对抗的类型的步骤之后,所述方法还包括:
    根据识别到的人机对抗的类型,调整所述通气设备的通气参数。
  12. 一种通气检测装置,应用于通气设备,其特征在于,所述通气检测装置包括:
    采集模块,在所述通气设备对病人进行机械通气的过程中,对呼吸参 数进行监测,所述呼吸参数至少包括气道压力、气道流速中的一个;
    处理模块,通过所述呼吸参数的变化识别是否存在人机对抗或通气泄漏。
  13. 如权利要求12所述的装置,其特征在于,
    所述处理模块,对所述呼吸参数的变化趋势进行分析;根据所述呼吸参数的变化趋势识别是否存在人机对抗或通气泄漏。
  14. 如权利要求13所述的装置,其特征在于,
    所述处理模块,在根据所述呼吸参数的变化趋势识别存在人机对抗之后,根据所述呼吸参数的变化趋势识别所述人机对抗的类型。
  15. 如权利要求14所述的装置,其特征在于,所述人机对抗的类型包括吸气流速设置不当、吸气压力上升时间设置不当、吸气时间设置不当,以及呼气时间设置不当中的一个或多个。
  16. 根据权利要求15所述的装置,其特征在于,所述处理模块根据所述呼吸参数的变化趋势识别吸气流速设置不当的步骤具体包括:
    在恒流通气模式下,如果在吸气阶段所述气道压力在送气段出现压力下降,则判断所述通气设备的吸气流速设置不足。
  17. 如权利要求15所述的装置,其特征在于,所述处理模块根据所述呼吸参数的变化趋势识别吸气压力上升时间设置不当的步骤具体包括:
    在压力通气模式下,如果在吸气压力上升阶段末所述气道压力大于目标值,且所述气道压力出现起伏变化,则判断所述通气设备的吸气压力上升时间设置过短;和/或
    在压力通气模式下,如果在吸气压力上升阶段所述气道压力出现压力下降,则判断所述通气设备的吸气压力上升时间设置过长。
  18. 如权利要求15所述的装置,其特征在于,所述处理模块根据所述呼吸参数的变化趋势识别吸气时间设置不当的步骤具体包括:
    如果在吸气转呼气阶段所述气道压力出现上升或所述气道流速出现加 速下降,则判断所述通气设备的吸气时间设置过长;
    如果在呼气阶段所述气道压力出现非单调下降和/或所述气道流速呈非单调上升特征,则判断所述通气设备的吸气时间设置过短。
  19. 如权利要求15所述的装置,其特征在于,所述处理模块根据所述呼吸参数的变化趋势识别呼气时间设置不当的步骤具体包括:
    根据气道流速计算容积变化;
    如果在呼气末阶段所述气道流速不能回到基线且所述容积可以回到基线,则判断所述通气设备的呼气时间设置过短。
  20. 如权利要求14所述的装置,其特征在于,所述处理模块根据所述呼吸参数的变化趋势识别通气泄漏的步骤具体包括:
    根据气道流速计算容积变化;如果在呼气末阶段所述气道流速不能回到基线且所述容积不能回到基线,则判断所述通气设备出现通气泄漏。
  21. 如权利要求14所述的装置,其特征在于,所述处理模块在根据所述呼吸参数的变化趋势识别所述人机对抗的类型的步骤之后,根据识别到的人机对抗的类型,输出通气设备通气设置调整信息。
  22. 如权利要求14所述的装置,其特征在于,所述处理模块在根据所述呼吸参数的变化趋势识别所述人机对抗的类型的步骤之后,根据识别到的人机对抗的类型,调整所述通气设备的通气参数。
  23. 一种包含权利要求12-22任一项所述通气检测装置的通气设备,其特征在于,包括气源、吸气支路、呼气支路、显示器和控制器;
    所述气源,在机械通气的过程中提供气体;
    所述吸气支路与所述气源连接,在所述机械通气的过程中提供吸气路径;
    所述呼气支路,在所述机械通气的过程中提供呼气路径;
    所述通气检测装置与所述吸气支路、所述呼气支路和所述控制器连接;
    所述通气检测装置,在所述机械通气的过程中进行通气检测;
    所述控制器还与所述气源连接,控制所述机械通气的过程;
    所述显示器与所述控制器连接,在所述机械通气的过程中显示呼吸波形。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有通气检测程序,所述通气检测程序可以被处理器执行,以实现权利要求1-11任一项所述的通气检测方法。
PCT/CN2018/101599 2018-08-21 2018-08-21 一种通气检测方法及装置、通气设备、存储介质 WO2020037513A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2018/101599 WO2020037513A1 (zh) 2018-08-21 2018-08-21 一种通气检测方法及装置、通气设备、存储介质
EP18931156.6A EP3834870A4 (en) 2018-08-21 2018-08-21 VENTILATION DETECTION METHOD AND DEVICE, VENTILATION DEVICE AND STORAGE MEDIUM
CN201880094803.4A CN112368042B (zh) 2018-08-21 2018-08-21 一种通气检测方法及装置、通气设备、存储介质
US17/169,523 US20210154421A1 (en) 2018-08-21 2021-02-07 Ventilation detection method and device, ventilation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/101599 WO2020037513A1 (zh) 2018-08-21 2018-08-21 一种通气检测方法及装置、通气设备、存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/169,523 Continuation US20210154421A1 (en) 2018-08-21 2021-02-07 Ventilation detection method and device, ventilation apparatus

Publications (1)

Publication Number Publication Date
WO2020037513A1 true WO2020037513A1 (zh) 2020-02-27

Family

ID=69592362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101599 WO2020037513A1 (zh) 2018-08-21 2018-08-21 一种通气检测方法及装置、通气设备、存储介质

Country Status (4)

Country Link
US (1) US20210154421A1 (zh)
EP (1) EP3834870A4 (zh)
CN (1) CN112368042B (zh)
WO (1) WO2020037513A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022133942A1 (zh) * 2020-12-24 2022-06-30 深圳迈瑞生物医疗电子股份有限公司 医疗通气设备及通气监测方法
WO2022133947A1 (zh) * 2020-12-24 2022-06-30 深圳迈瑞生物医疗电子股份有限公司 一种通气设备及其显示方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023019551A1 (zh) * 2021-08-20 2023-02-23 深圳迈瑞生物医疗电子股份有限公司 一种通气设备及压力上升时间的调节方法
CN113941061B (zh) * 2021-10-13 2023-12-29 中国科学院深圳先进技术研究院 一种人机不同步识别方法、系统、终端以及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103180002A (zh) * 2010-07-30 2013-06-26 雷斯梅德有限公司 泄漏检测方法和设备
CN103330979A (zh) * 2013-05-30 2013-10-02 中山大学 一种呼吸机控制方法及应用控制方法的呼吸机
CN103977492A (zh) * 2014-05-29 2014-08-13 北京航空航天大学 一种基于压力波形估算容量控制通气漏气量的方法
WO2017029629A1 (en) * 2015-08-18 2017-02-23 Gilbert Jacobus Kuypers Improvements to electrically operable resuscitators

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101484202B (zh) * 2006-05-12 2013-12-04 Yrt有限公司 产生反映患者在供氧支持下呼吸工作的信号的方法和装置
BRPI1006001A8 (pt) * 2009-02-25 2017-09-19 Koninklijke Philips Electronics Nv Metodo para detectar a dissincronia entre um paciente e um sistema de suporte de pressão e equipamento para detectar a dissincronia entre um paciente e um sistema de suporte de pressão
US8573207B2 (en) * 2010-09-28 2013-11-05 Guillermo Gutierrez Method and system to detect respiratory asynchrony
US9027552B2 (en) * 2012-07-31 2015-05-12 Covidien Lp Ventilator-initiated prompt or setting regarding detection of asynchrony during ventilation
CN103169476B (zh) * 2013-03-14 2015-03-25 中山大学 一种用于呼吸波形图像识别与预警的装置
US9675771B2 (en) * 2013-10-18 2017-06-13 Covidien Lp Methods and systems for leak estimation
US20160325061A1 (en) * 2014-01-09 2016-11-10 Koninklijke Philips N.V. Patient ventilator asynchrony detection
JP6960913B2 (ja) * 2015-10-19 2021-11-05 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 呼吸力学パラメータ推定のための異常検出装置及び方法
EP3416543A1 (en) * 2016-02-18 2018-12-26 Koninklijke Philips N.V. Enhancement of respiratory parameter estimation and asynchrony detection algorithms via the use of central venous pressure manometry
IT201600103298A1 (it) * 2016-10-14 2018-04-14 Univ Degli Studi Di Trieste Apparato e metodo per il controllo dei parametri di una macchina di assistenza alla respirazione

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103180002A (zh) * 2010-07-30 2013-06-26 雷斯梅德有限公司 泄漏检测方法和设备
CN103330979A (zh) * 2013-05-30 2013-10-02 中山大学 一种呼吸机控制方法及应用控制方法的呼吸机
CN103977492A (zh) * 2014-05-29 2014-08-13 北京航空航天大学 一种基于压力波形估算容量控制通气漏气量的方法
WO2017029629A1 (en) * 2015-08-18 2017-02-23 Gilbert Jacobus Kuypers Improvements to electrically operable resuscitators

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3834870A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022133942A1 (zh) * 2020-12-24 2022-06-30 深圳迈瑞生物医疗电子股份有限公司 医疗通气设备及通气监测方法
WO2022133947A1 (zh) * 2020-12-24 2022-06-30 深圳迈瑞生物医疗电子股份有限公司 一种通气设备及其显示方法

Also Published As

Publication number Publication date
US20210154421A1 (en) 2021-05-27
EP3834870A1 (en) 2021-06-16
CN112368042A (zh) 2021-02-12
EP3834870A4 (en) 2021-08-25
CN112368042B (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
WO2020037513A1 (zh) 一种通气检测方法及装置、通气设备、存储介质
US11497869B2 (en) Methods and systems for adaptive base flow
JP4158958B2 (ja) 補助換気における供給圧力の制御方法及び装置
US20130000644A1 (en) Systems and methods for providing ventilation based on patient need
CA3046571C (en) Methods and systems for drive pressure spontaneous ventilation
US20140000606A1 (en) Methods and systems for mimicking fluctuations in delivered flow and/or pressure during ventilation
CN103893865B (zh) 一种呼吸机涡轮容量控制通气的方法
US11052206B2 (en) Control of pressure for breathing comfort
JP6302892B2 (ja) 呼吸治療デバイスに対する開始圧力
WO2012051439A1 (en) Systems and methods for controlling an amount of oxygen in blood of a ventilator patient
WO2020037519A1 (zh) 通气触发检测方法、装置、通气设备及存储介质
SE534658C2 (sv) Metod och system för att kontrollera leverans av ett första backup-andetag
CN111588379B (zh) 一种呼吸识别方法及装置、通气设备、存储介质
WO2020093331A1 (zh) 一种呼吸识别方法及装置、通气设备、存储介质
CN108066863A (zh) 一种高可靠性麻醉呼吸机通气方法
CN106267493B (zh) 医用呼吸机及其连续测算呼吸道阻力和顺应性的方法
CN112999478A (zh) 自适应潮气量计算方法、装置及呼吸机
WO2021163946A1 (zh) 医用通气设备、控制方法与计算机可读存储介质
JP2016517726A (ja) マウスピースベンチレーションを具備する救命救急人工呼吸器
JP2016501063A5 (zh)
CN112999479A (zh) 呼吸机吸气触发方法及应用
KR20160098918A (ko) 인공호흡기의 블로워 제어 장치 및 그 제어 방법
US20210213217A1 (en) Airway anomaly recognition method, ventilation device, and storage medium
CN105879176A (zh) 通过容量和压力双重调节控制麻醉机潮气量的方法
US20240165351A1 (en) Systems and methods for measuring patient lung pressure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018931156

Country of ref document: EP

Effective date: 20210308