WO2021163946A1 - 医用通气设备、控制方法与计算机可读存储介质 - Google Patents

医用通气设备、控制方法与计算机可读存储介质 Download PDF

Info

Publication number
WO2021163946A1
WO2021163946A1 PCT/CN2020/075940 CN2020075940W WO2021163946A1 WO 2021163946 A1 WO2021163946 A1 WO 2021163946A1 CN 2020075940 W CN2020075940 W CN 2020075940W WO 2021163946 A1 WO2021163946 A1 WO 2021163946A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
breathing circuit
frequency
medical ventilation
exhaust
Prior art date
Application number
PCT/CN2020/075940
Other languages
English (en)
French (fr)
Inventor
伍乐平
蔡琨
刘华旺
周小勇
肖杨
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2020/075940 priority Critical patent/WO2021163946A1/zh
Priority to CN202080096566.2A priority patent/CN115087478A/zh
Publication of WO2021163946A1 publication Critical patent/WO2021163946A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/12Preparation of respiratory gases or vapours by mixing different gases

Definitions

  • the present invention relates to medical equipment technology, in particular to a medical ventilation equipment, a control method and a computer-readable storage medium.
  • Medical ventilation equipment currently used to assist patients in breathing includes regular frequency ventilators and high-frequency ventilators.
  • Regular-frequency ventilators provide breathing rates of 4-150 breaths per minute
  • high-frequency ventilators provide breathing rates of 240-1800 breaths per minute. Minutes to provide more oxygen to the patient through the high-frequency ventilator.
  • gas such as carbon dioxide also needs to be discharged.
  • the gas discharge is automatically discharged into the air through the patient pipeline (such as the mask worn by the patient) during the expiration phase.
  • this automatic exhaust method will be affected by the resistance of the mask worn by the patient, resulting in the inability of the gas to be discharged in time, and the gradual accumulation of the gas.
  • the average pressure in the patient's pipeline is raised, causing the patient's lungs to over-inflate, threatening the patient's life.
  • the embodiment of the present invention provides a medical ventilation device, a control method, and a computer-readable storage medium to realize active exhaust.
  • an embodiment of the present invention provides a medical ventilation device, the medical ventilation device includes an air source interface, a breathing circuit, a high-frequency oscillation generating device, and a controller, and an exhaust device is provided on the breathing circuit;
  • the breathing circuit is respectively connected to the air source interface and the patient pipeline connected to the patient's breathing system, and the breathing circuit includes an inhalation branch;
  • the high-frequency oscillation generating device forms a high-frequency oscillation of the gas in the inhalation branch
  • the controller controls the exhaust device to discharge the gas exhaled by the patient through the patient pipeline at a high frequency when the medical ventilation device is in a high-frequency exhalation stage.
  • an embodiment of the present invention provides a method for controlling a medical ventilation device, including:
  • a high-frequency oscillation generating device Forming a high-frequency oscillation of the gas in the inhalation branch of the breathing circuit by a high-frequency oscillation generating device, the breathing circuit being respectively connected to the air source interface and the patient pipeline connected to the patient's respiratory system;
  • the exhaust device is controlled to discharge gas exhaled by the patient through the patient pipeline at a high frequency.
  • an embodiment of the present invention provides a computer-readable storage medium having executable instructions stored on the computer-readable storage medium, and configured to cause a processor to execute the executable instructions to implement the above-mentioned medical ventilation device Control Method.
  • the medical ventilation device includes an air source interface, a breathing circuit, a high-frequency oscillation generating device, and a controller.
  • the breathing circuit is respectively connected to the air source interface and the patient pipeline connected to the patient's breathing system, and the breathing circuit includes inhalation.
  • the branch and the breathing circuit are equipped with an exhaust device, a high-frequency oscillation generating device, which forms a high-frequency oscillation of the gas in the inhalation branch, and the controller controls the high-frequency of the exhaust device when the medical ventilation equipment is in the high-frequency exhalation phase.
  • Figure 1 is a schematic structural diagram of a medical ventilation device provided by an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the inhalation branch and the high-frequency oscillation generating device in the medical ventilation device provided by the embodiment of the present invention
  • FIG. 3 is another schematic diagram of the inhalation branch and the high-frequency oscillation generating device in the medical ventilation device provided by the embodiment of the present invention.
  • Figure 4 is a schematic diagram of the existing effect of exhausting air through a patient pipeline
  • FIG. 5 is a schematic diagram of the effect of exhausting the medical ventilation device provided by the embodiment of the present invention.
  • Figure 6 is a schematic structural diagram of another medical ventilation device provided by an embodiment of the present invention.
  • Figure 7 is a schematic structural diagram of yet another medical ventilation device provided by an embodiment of the present invention.
  • Figure 8 is a schematic diagram of a breathing circuit provided by an embodiment of the present invention.
  • Fig. 9 is a schematic diagram of insufficient amplitude oscillation in the prior art.
  • Figure 10 is a schematic diagram of a control waveform provided by an embodiment of the present invention.
  • FIG. 11 and 12 are schematic structural diagrams of yet another medical ventilation device provided by an embodiment of the present invention.
  • FIG. 13 is a flowchart of a method for controlling a medical ventilation device according to an embodiment of the present invention.
  • FIG. 14 is a flowchart of another method for controlling medical ventilation equipment according to an embodiment of the present invention.
  • 15 is a flowchart of another method for controlling medical ventilation equipment according to an embodiment of the present invention.
  • Fig. 16 is a flowchart of yet another method for controlling a medical ventilation device according to an embodiment of the present invention.
  • the terms "include”, “include” or any other variants thereof are intended to cover non-exclusive inclusion, so that the method or server including a series of elements not only includes the explicitly recorded Elements, but also include other elements that are not explicitly listed, or also include elements inherent to the implementation method or server.
  • the element defined by the sentence "includes a" does not exclude the existence of other related elements in the method or server that includes the element (such as steps in the method or units in the server).
  • the unit may be a part of a circuit, a part of a processor, a part of a program or software, etc.).
  • the medical ventilation equipment and the control method of the medical ventilation equipment provided by the embodiments of the present disclosure include a series of devices and steps, but the medical ventilation equipment and the control method of the medical ventilation equipment provided by the embodiments of the present disclosure are not limited to those described. Chi and steps. It should be noted that in the following description, "one embodiment” is referred to, which describes a subset of all possible embodiments, but it is understood that “one embodiment” may be the same subset or different sub-sets of all possible embodiments. Set, and can be combined with each other without conflict.
  • the ventilation frequency is greater than or equal to 4 times the normal frequency (referred to as normal frequency). For example, in China, the frequency is 240-1800 times per minute, which is called high frequency.
  • the U.S. Food and Drug Administration (FDA) defines high frequency as ventilation Frequency is greater than 150 times per minute;
  • High-frequency expiration stage and high-frequency inhalation stage are two stages of medical ventilation equipment.
  • the patient In the high-frequency expiration stage, the patient is in the process of high-frequency exhalation. During this process, the patient's exhaled air through the patient pipeline is During the high-frequency inhalation phase, the patient is in the process of high-frequency inhalation.
  • the medical ventilation equipment will produce high-frequency oscillation. Under the action of the high-frequency oscillation, gas, especially oxygen, is delivered to the patient’s lungs through the patient’s pipeline. Department;
  • Preset high pressure and preset low pressure it is the maximum pressure value and minimum pressure value corresponding to the breathing circuit, such as the maximum and minimum gas pressure in the patient pipeline connected to the breathing circuit, the gas pressure corresponding to the breathing circuit can follow the patient's breathing Change from preset high pressure to preset low pressure;
  • Target average pressure the average value of the preset high pressure and the preset low pressure.
  • FIG. 1 shows a schematic structural diagram of a medical ventilation device provided by an embodiment of the present invention, which may include: a gas source interface 10, a breathing circuit 20, a high-frequency oscillation generating device 30 and a controller 40, and a breathing circuit 20 An exhaust device 201 is provided on it.
  • the breathing circuit 20 is respectively connected to the air source interface 10 and the patient pipeline 50 connected to the patient's breathing system, and the breathing circuit 20 includes an inhalation branch.
  • the air source interface 10 is used as the input port of external air, and the external air can be input into the inspiratory branch of the breathing circuit 20 through the air source interface 10, and the air can be delivered to the breathing circuit 20 through the inspiratory branch of the breathing circuit 20 and the patient pipeline 50.
  • the patient at the end of the patient circuit for example, is delivered to the patient's lungs through the inspiratory branch and the patient circuit 50.
  • the patient pipeline 20 can be, but is not limited to, any one of a mask and a patient's breathing interface, and the gas is delivered to the patient through the mask and the patient's breathing interface.
  • the high-frequency oscillation generating device 30 forms a high-frequency oscillation of the gas in the inhalation branch to deliver the gas in the inhalation branch to the patient at the end of the patient pipeline under the action of the high-frequency oscillation, mainly in the high-frequency oscillation
  • the oxygen in the inspiratory branch is transported to the patient under the action of the.
  • the air source interface 10 may include an oxygen source interface and an air source interface to respectively input oxygen and air from the oxygen source interface and the air source interface to the inhalation branch.
  • the oscillation generating device 30 forms a high-frequency oscillation between oxygen and air, so that the oxygen can be delivered to the patient's pipeline under the action of the high-frequency oscillation, and reach the patient at the end of the patient's pipeline.
  • the high-frequency oscillation generating device 30 adjusts the oxygen flow rate and the air flow rate during the high-frequency inhalation phase to form high-frequency oscillations through flow rate adjustment, wherein the high-frequency oscillations
  • the generating device 30 can be, but is not limited to, a proportional solenoid valve, a blocking valve, an on-off valve and other valves capable of adjusting the flow rate, all of which can achieve the purpose of delivering oxygen to the patient.
  • the inspiratory branch includes an oxygen input branch 202 and an air input branch 203.
  • the frequency oscillation generating device 30 includes a first high frequency generating device 301 and a second high frequency generating device 302; the oxygen input branch 202 is provided with a first high frequency generating device 301, and the air input branch 203 is provided with a second high frequency Generating device 302.
  • the oxygen input branch 202 is connected to the oxygen source interface (O2), the oxygen input through the oxygen source interface enters the oxygen input branch 202, and the air input branch 203 is connected to the air source interface (Air) through the air source interface
  • the input air enters the air input branch 203.
  • the first high-frequency generating device 301 and the second high-frequency generating device 302 can inject the oxygen in the oxygen input branch and the air in the air input branch to form high-frequency oscillations when the medical ventilation device is in the high-frequency inhalation phase.
  • the input ratio of oxygen and air can be controlled according to the patient’s condition to meet the needs of the patient.
  • the input ratio of air is input.
  • the flow of oxygen and air can be adjusted during the input of oxygen and air, so that the first high-frequency generating device 301 and the second high-frequency generating device 302 can form high-frequency oscillations, for example, the first high-frequency generating device 301
  • the second high-frequency generating device 302 and the second high-frequency generating device 302 are respectively a valve capable of controlling the flow rate, and the oxygen flow and air flow are controlled by the valve to form a high-frequency oscillation.
  • the oxygen input branch 202 and the air input branch 203 in this embodiment merge into a branch, and are connected to the patient pipeline through the same branch, so as to provide freshness to the patient through this branch.
  • air and oxygen are connected to the patient pipeline through the same branch, so as to provide freshness to the patient through this branch.
  • the inhalation branch also includes an oxygen input branch 202 and an air input branch 203.
  • the oxygen input branch 202 is connected to the oxygen source interface, and the oxygen input through the oxygen source interface enters the oxygen input In the branch 202, the air input branch 203 is connected to an air source interface, and the air input through the air source interface enters the air input branch 203.
  • the oxygen input branch 202 is provided with a first one-way air intake device 204, and the air input branch 203 is provided with a second one-way air intake device 205;
  • the device 204 controls the flow of oxygen input into the oxygen input branch;
  • the second one-way air inlet device 205 controls the flow of air input into the air input branch, so that oxygen and air are input through the oxygen source interface and the air source interface.
  • the high frequency oscillation generating device 30 forms a high frequency oscillation between the oxygen input in the oxygen input branch and the air input in the air input branch.
  • the high-frequency oscillation generating device 30 can be arranged on the branch where the oxygen input branch 202 and the air input branch 203 merge, and the merged branch is connected to the patient pipeline, so that oxygen and air can pass through the high temperature at the same time.
  • the frequency oscillation generating device 30 forms a high frequency oscillation, and then under the action of the high frequency oscillation, the oxygen and air on the branch are delivered to the patient through the patient pipeline.
  • the high-frequency oscillation generating device 30 can be, but is not limited to, a valve capable of controlling the flow rate, such as a proportional solenoid valve and an on-off valve, so as to form a high-frequency oscillation by controlling the flow rate.
  • the controller 40 controls the exhaust device 201 to discharge the gas exhaled by the patient through the patient pipeline at high frequency when the medical ventilation equipment is in the high-frequency exhalation stage.
  • the high-frequency expiration stage is a working stage of the medical ventilation equipment.
  • the medical ventilation equipment includes two working stages: the high-frequency inhalation stage and the high-frequency exhalation stage.
  • the high-frequency inhalation stage the patient is provided with oxygen and fresh air.
  • oxygen and fresh air When the patient inhales oxygen and fresh air, the gas in the patient's body, especially carbon dioxide, is discharged. These gases are condensed in the breathing circuit.
  • the exhaust device is set on the breathing circuit. 201 high-frequency discharge, so that the gas in the breathing circuit can be discharged quickly and in time.
  • the controller 40 can also control the exhaust device 201 to stop exhausting, preventing the exhaust device 201 from reducing the pressure in the breathing circuit during the high-frequency inhalation stage, so as to ensure the During the high-frequency inhalation phase, oxygen and air can enter the patient's body.
  • the exhaust device 201 can actively exhaust the gas in the breathing circuit, and the exhaust device 201 is arranged on the breathing circuit, so that the exhaust device 201 will not be affected by the resistance of the patient pipeline during the exhaust process. , Can speed up the rapid and timely discharge of gas in the breathing circuit, prevent gas accumulation and the increase of the average pressure in the patient's pipeline, and ensure the safety of the patient's life.
  • the active exhaust of the exhaust device 201 in this embodiment will form an airway pressure waveform as shown in FIG. 5, and it can be seen from the airway pressure waveform shown in FIG.
  • the lowest pressure is close to the preset low pressure (such as equal to, less than or slightly greater than the preset low pressure at different stages of the exhaust process), so that the average pressure in the patient pipeline is close to the target average pressure of 15cmH2O, and the patient pipeline can be discharged in time.
  • the gas can also ensure the safety of patients' lives.
  • the medical ventilation equipment provided by the present embodiment with the exhaust device 201 actively exhausts air, eliminating the need for a closed diaphragm cavity and high-pressure air source driving. Therefore, this embodiment Compared with the above-mentioned two existing medical ventilating equipment, the medical ventilating equipment has the advantages of small size, low noise, quick response and low air source consumption.
  • FIG. 6 shows the structure of another medical ventilation device provided by an embodiment of the present invention.
  • a collection device 206 is also provided on the breathing circuit 20.
  • the pressure in the breathing circuit is collected, and the corresponding controller 40 controls the exhaust flow of the exhaust device 201 according to the pressure in the breathing circuit 20.
  • the pressure in the breathing circuit 20 is proportional to the exhaust flow rate of the exhaust device 201.
  • the exhaust flow rate of 201 increases the amount of gas discharged by the exhaust device 201 per unit time, so that the gas in the patient pipeline can be discharged in time; if the pressure in the breathing circuit 20 is lower, the gas accumulation in the patient pipeline is less At this time, the exhaust flow rate of the exhaust device 201 can be reduced, so that the gas discharged by the exhaust device 201 per unit time is reduced, so as to maintain the gas pressure in the patient pipeline close to the preset low pressure.
  • the manner of controlling the exhaust flow rate of the exhaust device 201 may be, but is not limited to, controlling at least one of the opening duration, the opening frequency, and the opening angle of the exhaust device 201. It can be understood that: the larger the opening angle, the larger the opening of the exhaust device 201, and the more gas is discharged from the opening of the exhaust device 201 per unit time; the opening duration means that the medical ventilation device is in high-frequency breathing. The time that the exhaust device 201 continues to be opened during the exhalation phase. The longer the opening duration, the more gas will be discharged.
  • the opening duration represents one time
  • the duration of opening or the sum of the durations of multiple openings, the duration of different times of opening can be the same or different;
  • the opening frequency represents the number of times the exhaust device 201 is opened during the high-frequency expiration phase of the medical ventilation equipment The greater the opening frequency of the same, the more times the exhaust device 201 is opened, and the more gas is discharged through the exhaust device 201 during the high-frequency exhalation phase.
  • At least one of the opening duration, opening frequency, and opening angle of the exhaust device 201 can be controlled at the same time.
  • the opening duration and the opening angle can be controlled at the same time to control the exhaust flow. The examples will not be explained one by one.
  • the controller 40 can control the exhaust flow of the exhaust device 201 according to the pressure change in the breathing circuit, so that the exhaust gas of the exhaust device 201 can change with the pressure change in the breathing circuit, so that it can be timely Exhausting the gas in the patient pipeline can maintain the gas pressure in the patient pipeline close to the preset low pressure, ensuring the life safety of the patient.
  • the pressure collected by the collection device 206 can be, but is not limited to, the pressure generated by the pressure generator 207 provided on the breathing circuit, as shown in FIG. 7, where the pressure generator 207 can be provided on the breathing circuit Close to the side of the patient’s pipeline, the breathing circuit is respectively connected to the gas source interface 10 and the patient pipeline 50 connected to the patient’s respiratory system. The gas flowing through the patient’s pipeline will pass through the pressure generator 207 so that the pressure generator 207 can flow. The pressure generated by the gas passing through the patient pipeline is generated by the collecting device 206 and the pressure generated by the pressure generator 207 is collected by the collecting device.
  • the gas flowing through the patient pipeline can be the gas delivered to the patient during the high-frequency inhalation phase of the medical ventilation device, and the gas exhaled by the patient during the high-frequency exhalation phase of the medical ventilation device.
  • the pressure generator 207 can generate pressure under the action of gas.
  • the pressure generator 207 can be arranged on the breathing circuit, especially on the side of the breathing circuit close to the patient’s pipeline, the pressure generated by the pressure generator 207 is close to the pressure in the patient’s pipeline. Pressure control of the exhaust device 201.
  • the above-mentioned breathing circuit 20 may also include an expiratory branch.
  • One end of the expiratory branch merges with the inhalation branch and is connected to the patient's pipeline, and the other end of the expiratory branch is in communication with the atmosphere.
  • the exhaust device 201 is arranged on the expiratory branch, and the gas in the patient's pipeline is exhausted to the atmosphere through the exhaust device 201.
  • the local exhaust device 201 is arranged outside the expiratory branch, and the acquisition device and the pressure generator 207 can be arranged at the junction of the expiratory branch and the inhalation branch, or of course, can also be arranged on the patient's pipeline.
  • the examples are not limited.
  • an optional structure of the exhaust device 201 in this embodiment is that the exhaust device 201 includes a switching element that can block the breathing circuit and a driving device that controls the high-frequency switching of the switching element.
  • the switch element that can block the breathing circuit is to block the breathing circuit from communicating with the atmosphere during the high-frequency inhalation phase of the medical ventilation device, so that the gas can be delivered to the patient through the breathing circuit.
  • the switching element connects the breathing circuit with the atmosphere, and the gas in the patient pipeline connected with the breathing circuit is discharged through the switching element.
  • the driving device controls the switching element to open during the high-frequency exhalation phase of the medical ventilation equipment, so that the breathing circuit is connected to the atmosphere; when the medical ventilation equipment is in the high-frequency inhalation phase, it controls the switching element to close to Block the communication between the breathing circuit and the atmosphere.
  • the driving device can be a motor that provides power support for the switching element.
  • the driving device can be a voice coil motor capable of linear and bidirectional movement.
  • the switching element is driven by the voice coil motor, because the voice coil motor is a motor that can move linearly and bidirectionally. Therefore, the voice coil motor can output the force in proportion to the current, and quickly control the opening and closing of the switching element. When the switching element is opened, it is connected to the atmosphere, and when it is closed, the connection with the atmosphere is blocked.
  • a certain negative pressure suction can be generated at the moment when the switch element is turned on, and the gas can be discharged more effectively without being affected by the air removal resistance, tidal volume and ventilation frequency, ensuring that the average pressure will not be caused by the above factors to cause the gas to be removed too slowly. Elevated.
  • the process of the controller 40 and the driving device controlling the switching element is as follows:
  • the controller 40 sends a driving signal to the driving device according to the pressure in the breathing circuit.
  • the driving device controls at least one of the opening and closing angle, the opening frequency, and the opening duration of the exhaust port of the switching element according to the driving signal, so as to control at least one of the opening and closing angle, the opening frequency, and the opening duration Realize active exhaust and control the exhaust flow.
  • the opening and closing angle indicates the opening and closing amount of the exhaust port. The larger the opening and closing amount, the larger the communication port between the breathing circuit and the atmosphere, and the larger the corresponding exhaust flow. The smaller the total amount, the smaller the communication port between the breathing circuit and the atmosphere, and the smaller the corresponding exhaust flow. Please refer to the above description for the opening frequency and opening duration, and will not be repeated here.
  • one form of the driving signal sent by the controller 40 may be a control waveform, so that the driving device controls the switching element through at least one waveform.
  • the manner in which the controller 40 generates the control waveform may be, but is not limited to, the controller 40 according to
  • the pressure in the breathing circuit generates a control waveform for controlling the exhaust device so that the control waveform is related to the pressure in the breathing circuit.
  • the specific control waveform can control the opening and closing angle, opening frequency and opening of the exhaust port of the switching element At least one of the durations is associated with the pressure in the breathing circuit, so that the switch element can discharge gas in time and maintain the average pressure in the patient circuit close to the preset low pressure.
  • the control waveform can be, but is not limited to, any one of a sine wave, a cosine wave, a square wave, a triangle wave, an exponential function waveform, and an Nth-order function waveform, and N is greater than or equal to 2.
  • the switching element can be any valve that can block the breathing circuit.
  • the switching element can include any one of a proportional exhaust valve, an on-off valve, and a solenoid valve.
  • the controller The control waveform generated by 40 may be different. This is because although the on-off valve and solenoid valve have two modes of opening and closing, the opening and closing angles of the on-off valve and the solenoid valve's exhaust port are fixed, so it is suitable for on-off valves.
  • the control waveform of the solenoid valve can be a waveform that controls its opening and closing but cannot change its opening and closing angle.
  • the corresponding control waveform of the corresponding on-off valve and solenoid valve can be a square wave.
  • the duty cycle of the control waveform is associated with the pressure in the breathing circuit, where the duty cycle is used to indicate the duration of the opening of the exhaust port of the switching element, so that the The gas in the pipeline can be discharged in time.
  • the opening and closing angle of the exhaust port of the proportional exhaust valve is controllable, so the corresponding control waveforms of the proportional exhaust valve are the above-mentioned sine wave, cosine wave, square wave, triangle wave, exponential function waveform and Any one of the N-order function waveforms, N is greater than or equal to 2.
  • the switching element in this embodiment adopts a proportional exhaust valve, and the corresponding control waveform of the proportional exhaust valve selects sine wave, cosine wave, exponential function waveform, and N-order function waveform, etc., with a certain smooth transition.
  • the opening and closing angle of the exhaust valve gradually increases to prevent excessive negative pressure suction when it is opened.
  • the control waveform corresponding to the switching element is preferably the waveform on the right side of the arrow in Figure 10.
  • the exhaust port can be gradually increased during the process of controlling the exhaust device 201 through the waveform on the right side of the arrow. The opening and closing angle.
  • the exhaust device 201 may further include a turbine negative pressure device, which provides negative pressure suction to the switch element, so that the gas in the patient pipeline is discharged through the switch element and the turbine negative pressure device in sequence.
  • a turbine negative pressure device which provides negative pressure suction to the switch element, so that the gas in the patient pipeline is discharged through the switch element and the turbine negative pressure device in sequence.
  • the turbine negative pressure device When the medical ventilation equipment is in the high-frequency exhalation phase, the turbine negative pressure device generates a negative pressure suction. Under the action of the negative pressure suction, the gas in the patient's pipeline is sucked out of the exhaust port of the switching element through the breathing circuit, and then The cavity of the turbine negative pressure device is discharged to the atmosphere.
  • the pressure generator 207 in this embodiment can also exhaust when the medical ventilation device is in the high-frequency exhalation phase and/or in the high-frequency inhalation phase. Part of the gas is discharged through the pressure generator 207, especially when the medical ventilation equipment is in the high-frequency inhalation phase, the pressure generator 207 is used to maintain the highest pressure in the patient’s pipeline close to the preset high pressure to prevent the highest pressure Too high creates a certain risk.
  • the discharge volume of the pressure generator is affected by the type of the pressure generator and the type of the patient pipeline.
  • the structure of different types of pressure generators is different.
  • the structure of the pressure generator will limit the exhaust of the pressure generator. Therefore, the exhaust volume of different types of pressure generators will be different, such as the different types of pressure generators.
  • the exhaust port diameter may be different.
  • the size of the exhaust port diameter is directly proportional to the exhaust volume. The larger the exhaust port diameter, the larger the exhaust volume, and the smaller the exhaust port diameter, the smaller the exhaust volume.
  • the structure of different types of patient pipelines is also different. During the process of delivering the same amount of gas to the patient pipelines of different structures, the pressure generated by the patient pipelines of different structures is high or low.
  • the diameter of different types of patient pipelines is different.
  • the size of the pipe diameter is proportional to the pressure, so that the same amount of gas is delivered to the patient pipelines with different pipe diameters, and the pressure produced will be different.
  • the pressure generator is used to discharge the gas in the patient’s pipeline during the high-frequency exhalation phase and/or the high-frequency inhalation phase of the medical ventilation device, which can reduce the patient’s pressure during the high-frequency inhalation phase.
  • the pressure in the pipeline makes the highest pressure in the patient pipeline close to the preset high pressure to prevent a certain risk due to excessively high maximum pressure. It can assist the exhaust device 201 to exhaust during the high-frequency exhalation phase to improve Exhaust efficiency.
  • the above mainly introduces the exhaust process of medical ventilation equipment, and the following describes the control process of medical ventilation equipment according to the average pressure.
  • the average pressure of the medical ventilation equipment is related to the target amplitude and breathing ratio (time ratio between the expiratory phase and the inhalation phase).
  • the average pressure is also affected by the maximum output capacity of the medical ventilation equipment. If the output capacity of the medical ventilation equipment exceeds its maximum output capacity due to excessive leakage at the end of the patient’s pipeline or the patient’s lung volume is too large, the medical ventilation equipment will work at the maximum output capacity so that the average pressure is equal to the target Pressure deviation, such as the average pressure is less than the target average pressure or the average pressure is greater than the target average pressure.
  • the medical ventilation device may further include: an output capability acquisition device to obtain the current output capability of the medical ventilation device; wherein the current output capability is used to characterize whether the medical ventilation device is working under the maximum load, for example, the output capability of the medical ventilation device According to the working current or working voltage of the medical ventilation equipment, if the working current or working voltage of the medical ventilation equipment reaches the maximum value, it means that the current output capacity of the medical ventilation equipment reaches the maximum output capacity. Therefore, the output capacity acquisition device may include: The electrical parameter collection unit, wherein the electrical parameter collection unit collects the current working current or working voltage of the medical ventilation device, where the working current or working voltage is used to indicate the current output capability of the medical ventilation device.
  • the working current or working voltage of the medical ventilation equipment can be expressed by the working current or working voltage of the high-frequency oscillation generating device. If the working current or working voltage of the high-frequency oscillation generating device is Reach the maximum value, indicating that the current output capacity of the medical ventilation device reaches the maximum output capacity during the high-frequency inhalation phase; when the medical ventilation device is in the high-frequency exhalation phase, the working current or working voltage of the medical ventilation device can be passed through the exhaust The working current or working voltage of the ventilation device indicates that if the working current or working voltage of the exhaust device reaches the maximum value, it indicates that the current output capacity of the medical ventilation equipment reaches the maximum output capacity during the high-frequency expiration phase.
  • the output capability device After the output capability device obtains the current output capability of the medical ventilator, it sends the current output capability of the medical ventilator to the controller 40, and the controller 40 determines whether the current output capability reaches the maximum output capability.
  • the collecting device 206 also obtains the average pressure corresponding to the breathing circuit when the current output capacity of the medical ventilation equipment is the maximum output capacity of the medical ventilation equipment. Send an indication signal to obtain the average pressure.
  • the manner in which the collecting device 206 obtains the average pressure corresponding to the breathing circuit includes but is not limited to: the collecting device 206 obtains the maximum pressure value and the minimum pressure value corresponding to the breathing circuit, and calculates the value according to the maximum pressure value and the minimum pressure value. Average pressure.
  • the collecting device 206 will obtain at least one maximum pressure value and at least one minimum pressure value during the working process of the medical ventilation equipment, and the collecting device 206 obtains a maximum target pressure value for calculating the average pressure according to the at least one maximum pressure value, such as Select a maximum pressure value from the maximum pressure values as the maximum target pressure value, or average/weighted average of multiple maximum pressure values to obtain the maximum target pressure value; the same collection device 206 can obtain one according to at least one minimum pressure value For calculating the minimum target pressure value of the average pressure, the collecting device 206 calculates the average value of the maximum target pressure value and the minimum target pressure value, and the average value is the average pressure corresponding to the breathing circuit.
  • a maximum target pressure value for calculating the average pressure according to the at least one maximum pressure value, such as Select a maximum pressure value from the maximum pressure values as the maximum target pressure value, or average/weighted average of multiple maximum pressure values to obtain the maximum target pressure value; the same collection device 206 can obtain one according to at least one minimum pressure value
  • the maximum pressure value and the minimum pressure value are the actual pressure values during the use of the medical ventilation equipment, and the above preset high pressure and preset low pressure are the expected pressure values set during or before the use of the medical ventilation equipment, and the actual pressure values are relatively expected
  • the pressure value has a certain deviation.
  • the controller 40 also reduces the target amplitude of the medical ventilation device when the average pressure does not reach the target average pressure, where the target amplitude is the preset high pressure corresponding to the breathing circuit during the high-frequency inhalation phase and corresponds to the breathing circuit during the high-frequency exhalation phase The preset low pressure difference.
  • the target amplitude of the device is adjusted to achieve the adjustment of the target average pressure, so that the average pressure is consistent with the target average pressure when the medical ventilation device is at the maximum output capacity, and the danger caused by the average pressure being greater than or less than the target average pressure is reduced.
  • the controller 40 adjusts the target amplitude of the medical ventilation device as follows when the current output capacity of the medical ventilation device is the maximum output capacity and the average pressure does not reach the target average pressure:
  • the average pressure does not reach the target.
  • the average pressure may be caused by the preset low pressure being too low and the preset high pressure being too high. Therefore, the controller 40 needs to first determine whether the preset low pressure or the preset high pressure causes the average pressure to fail to reach the target. Average pressure, and then adjust the preset low pressure or preset high pressure to achieve the adjustment of the target amplitude. Among them, if the pressure in the breathing circuit during the high-frequency exhalation phase makes the average pressure not reach the target average pressure, it means that too much gas in the patient pipeline causes the exhaust device 201 to actively exhaust and the pressure in the patient pipeline cannot be increased.
  • the controller 40 can increase the preset low pressure at this time; if the pressure in the breathing circuit during the high-frequency inhalation phase makes the average pressure not reach the target average pressure, it indicates that the delivery is to If the gas in the breathing circuit is insufficient or the preset high pressure is too high, the controller 40 can reduce the preset high pressure at this time.
  • the controller 40 may further continuously monitor whether the average pressure reaches the target average pressure. If the average pressure continues to fail to reach the target average pressure within a preset time after the target amplitude of the medical ventilation device is reduced, It indicates that the medical ventilation equipment may be faulty, so it is necessary to output prompt information for prompting.
  • the medical ventilation equipment further includes: a prompting device; the controller 40 is used to reduce the target amplitude of the medical ventilation equipment for a preset time If the internal average pressure continues to fail to reach the target average pressure, the prompting device is controlled to output prompt information, where the prompt information is used to indicate that the medical ventilation equipment has a fault, which requires manual investigation.
  • the controller 40 can control the breathing circuit with the target amplitude; or If the current output capacity of the medical ventilation device does not reach the maximum output capacity of the medical ventilation device, the controller 40 can also control the breathing circuit with the target amplitude, that is, if the current output capacity of the medical ventilation device does not reach the maximum output capacity, even The average pressure does not reach the target average pressure.
  • the controller 40 can also increase the output capacity of the medical ventilation device to make the average pressure reach the target average pressure. Therefore, in this case, the controller 40 can continue to control the breathing circuit with the target amplitude. Take control.
  • the target amplitude is controlled, so that the average pressure of the medical ventilation device is consistent with the target average pressure, and the risk of inconsistency between the average pressure and the target average pressure is reduced.
  • the medical ventilation device can also control each device in the breathing circuit, and the corresponding medical ventilation device also includes: a working parameter acquisition device, which acquires the working parameters of each device in the air source interface and the breathing circuit.
  • a working parameter acquisition device which acquires the working parameters of each device in the air source interface and the breathing circuit.
  • the working parameters of any device are used to indicate the current load of the device.
  • the working parameters of any device can be the working current or working voltage of the device to pass The working current or working voltage determines whether it is working under the maximum load.
  • the working parameters of any device can be the working current or working voltage of the device to pass The working current or working voltage determines whether it is working under the maximum load.
  • the acquisition device 206 also acquires the pressure in the breathing circuit during the formation of the high-frequency oscillation; the controller 40 also acquires the pressure amplitude corresponding to the breathing circuit according to the pressure in the breathing circuit, and the pressure amplitude is the maximum pressure value and the minimum pressure value in the breathing circuit
  • the pressure difference between the pressure values is the amplitude (actual amplitude) corresponding to the airway pressure waveform in the effect diagram shown in Figure 5 above. If the pressure amplitude corresponding to the breathing circuit does not reach the target amplitude, the controller 40 adjusts the working parameters of each device, where the target amplitude is the preset high pressure corresponding to the breathing circuit during the high-frequency inhalation phase and the breathing circuit during the high-frequency exhalation phase.
  • the difference of the corresponding preset low pressure ie the desired amplitude).
  • the controller 40 needs to adjust the working parameters of each device to make the pressure amplitude reach the target amplitude.
  • the adjustment process includes but is not limited to the following methods:
  • the controller 40 obtains the compensation parameters of the working parameters of each device according to the difference between the pressure amplitude corresponding to the breathing circuit and the target amplitude. Adjust the working parameters of each device.
  • the compensation parameters have a one-to-one relationship with the device, so as to adjust the working parameters of the device through the compensation parameters of any device, such as reducing or increasing the working parameters of the device through the compensation parameters of the device.
  • the working parameters of the device are not be adjusted.
  • the pressure amplitude corresponding to the breathing circuit is less than the target amplitude
  • increase the pressure amplitude corresponding to the breathing circuit is: if the pressure amplitude corresponding to the breathing circuit is less than the target amplitude, get compensation for increasing the high-frequency oscillation Parameter.
  • Increasing the high-frequency oscillation means increasing the oscillation amplitude of the gas in the patient’s pipeline to increase the pressure amplitude corresponding to the breathing circuit. If the pressure amplitude is less than the target amplitude because the low pressure is less than the preset low pressure, it can be increased for
  • the working parameters of the exhaust device are used to increase the exhaust flow.
  • increasing the working parameters of the exhaust device increases the exhaust flow per unit time of the exhaust device. If the pressure amplitude is less than the target amplitude, it is because the high pressure is less than the preset high pressure.
  • You can increase the operating parameters of the device used for air intake to increase the intake flow such as increasing the operating parameters of the high-frequency oscillation generating equipment; if the pressure amplitude corresponding to the breathing circuit is greater than the target amplitude, reduce the corresponding pressure amplitude of the breathing circuit
  • Pressure amplitude one of the ways to reduce the pressure amplitude corresponding to the breathing circuit is: if the pressure amplitude corresponding to the breathing circuit is greater than the target amplitude, the compensation parameters used to reduce the high-frequency oscillation are obtained, where reducing the high-frequency oscillation means reducing the patient The oscillation amplitude of the gas in the pipeline to reduce the pressure amplitude corresponding to the breathing circuit.
  • the working parameters of the device for exhausting can be reduced to reduce Exhaust flow, such as reducing the working parameters of the exhaust device to reduce the exhaust flow per unit time of the exhaust device.
  • the device used for air intake can be reduced In order to reduce the intake air flow, such as reducing the operating parameters of high-frequency oscillation generating equipment.
  • the controller 40 If the pressure amplitude corresponding to the breathing circuit reaches the target amplitude, the controller 40 maintains the working parameters of each device. If the pressure amplitude corresponding to the breathing circuit reaches the target amplitude, it means that the working parameters of each device in the breathing circuit can meet the preset low pressure and preset high pressure. If required, the controller 40 can continue to use the current operating parameters of each device to control each device.
  • the medical ventilation equipment in addition to the above-mentioned devices, the medical ventilation equipment also includes other devices, as shown in Figure 11 and As shown in FIG. 12, they respectively show the optional structure of still another medical ventilation device provided by the embodiment of the present invention:
  • the oxygen source interface is used to connect to the oxygen source, which is filtered by the filter 3 to prevent impurities from flowing into the downstream of the oxygen input branch and protect the devices located downstream of the oxygen input branch.
  • the pressure sensor 4 monitors the pressure of the oxygen source interface, and can alarm according to the set value when the pressure of the oxygen source interface is too high or too low.
  • the one-way valve 5 prevents the reverse flow of oxygen in the oxygen input branch, and the flow of oxygen can be controlled through the one-way valve 5.
  • the pressure regulating valve 6 is used to stabilize the pressure of oxygen input from the oxygen source interface to ensure accurate control of downstream flow and pressure.
  • the flow regulating valve 7 is used as the first high-frequency generating device 301 to regulate and control the flow of oxygen.
  • the filter 8 further purifies the input oxygen and protects the downstream flow sensor 9 to accurately measure the oxygen flow. In some cases, it can also play a role.
  • the air source interface is used to connect to the air source.
  • the air source passes through the filter 11 to prevent impurities from flowing into the downstream of the air input branch and protect the devices located downstream of the air input branch.
  • the pressure sensor 12 monitors the pressure of the air source interface, and the device can alarm according to the set value when the pressure is too high or too low.
  • the one-way valve 13 prevents reverse air flow in the air input branch, and the flow of air can be controlled through the one-way valve 13.
  • the pressure regulating valve 14 is used to stabilize the pressure of the air input from the air source interface to ensure accurate control of downstream flow and pressure.
  • the flow regulating valve 15 is used as the second high frequency generating device 302 to regulate and control the air flow.
  • the filter 16 further purifies the input air and protects the downstream flow sensor 17 to accurately measure the air flow. In some cases, it can also stabilize The role of flow rate.
  • the flow regulating valve 7 as the first high-frequency generating device 301 and the flow regulating valve 15 as the second high-frequency generating device 302 respectively control the flow rates of oxygen and air, thereby controlling the oxygen concentration in the mixed gas and forming high-frequency oscillations Allows oxygen and fresh air to be delivered to the patient pipeline.
  • the flow regulating valve 7 and the flow regulating valve 15 can be proportional solenoid valves, blocking valves, on-off valves and other servo valves that can adjust the flow rate, both of which can achieve the purpose of delivering gas to the patient pipeline.
  • the one-way valve 19 prevents the patient 23 from entering the oxygen input branch and the air input branch when the patient 23 is exhaling (that is, during the high-frequency exhalation phase).
  • the safety valve 20 is opened when the pressure in the breathing circuit reaches the maximum set value to allow the gas to be released to the atmosphere to achieve the purpose of releasing pressure and prevent danger due to excessive pressure; in addition, if the front end of the safety valve 20 does not provide enough inhaled gas , The safety valve 20 is switched to the atmosphere, and the patient can inhale gas from the atmosphere.
  • the humidifier 21 heats and humidifies the gas inhaled by the patient to ensure the temperature and humidity of the gas inhaled by the patient and the comfort of the patient.
  • the pressure generator 25 (corresponding to the aforementioned pressure generator 207) generates pressure so that part of the gas enters the patient's body, and the other part of the gas can be discharged through the pressure generator 25.
  • the patient's airway pressure is monitored by the proximal pressure sensor 24.
  • the flow regulating valve 7 as the first high-frequency generating device 301 and the flow regulating valve 15 as the second high-frequency generating device 302 control the flow rate to increase to generate high pressure, which is the ratio of the exhaust device 201
  • the exhaust valve 22 is in a flow-limiting state to prevent pressure drop.
  • the flow regulating valve 7 as the first high-frequency generating device 301 and the flow regulating valve 15 as the second high-frequency generating device 302 control the flow rate to drop rapidly, while the proportional exhaust valve 22 performs active exhaust Air control, release the pressure, and cyclically control in this way to achieve the effect of high-frequency oscillation.
  • the difference between the medical ventilation device shown in FIG. 12 is that the medical ventilation device shown in FIG. 12 omits the pressure regulating valve 6 and the pressure regulating valve 14, and adds a flow regulating valve 18.
  • the high-frequency oscillation is generated by the flow regulating valve 18, while the flow regulating valve 7 and the flow regulating valve 15 are only used for regulating the flow rate, and in the medical ventilation equipment that omits the pressure regulating valve 6 and the pressure regulating valve 14, it is necessary to transport Set the input ratio of oxygen and air before the gas to the oxygen source interface and the air source interface.
  • the embodiment of the present invention also provides a control method for medical ventilation equipment, wherein the medical ventilation equipment includes a gas source interface, a breathing circuit, a high-frequency oscillation generating device and a controller, the breathing circuit is provided with an exhaust device, and the breathing circuits are respectively connected to the gas
  • the medical ventilation equipment includes a gas source interface, a breathing circuit, a high-frequency oscillation generating device and a controller
  • the breathing circuit is provided with an exhaust device
  • the breathing circuits are respectively connected to the gas
  • the controller in the medical ventilation equipment executes the control method of the medical ventilation equipment.
  • the flow chart of the control method of the medical ventilation equipment is shown in Fig. 13, which may include the following steps:
  • 501 Form a high-frequency oscillation of the gas in the inhalation branch of the breathing circuit by a high-frequency oscillation generating device.
  • the ways in which the inhalation branch and the high-frequency oscillation generating device form high-frequency oscillations include but are not limited to the following methods:
  • the inhalation branch includes an oxygen input branch and an air input branch
  • the high-frequency oscillation generating device includes a first high-frequency generating device and a second high-frequency generating device.
  • the oxygen input branch is provided with a first high-frequency generating device
  • the air input branch is provided with a second high-frequency generating device.
  • the gas in the inhalation branch of the breathing circuit is formed into a high-frequency oscillation through the high-frequency oscillation generating device. It includes: through the first high-frequency generating device and the second high-frequency generating device, when the medical ventilation equipment is in the high-frequency inhalation stage, the oxygen in the oxygen input branch and the air in the air input branch form high-frequency oscillations.
  • the inhalation branch includes an oxygen input branch and an air input branch
  • the oxygen input branch is provided with a first one-way air intake device
  • the air input branch is provided with a second one-way air intake device.
  • the corresponding control method of medical ventilation equipment further includes: controlling the flow of oxygen input into the oxygen input branch through the first one-way air inlet device, and controlling the input into the air input branch through the second one-way air inlet device
  • the flow of air in the air flow is generated by the high-frequency oscillation generating device to form a high-frequency oscillation of the gas in the inhalation branch of the breathing circuit, including: inputting oxygen into the oxygen input branch through the high-frequency oscillation generating device and the air input branch
  • the exhaust device includes a switching element that can block the breathing circuit and a driving device that controls the high-frequency opening and closing of the switching element, and the switching element includes a proportional exhaust valve or an on-off valve or a solenoid valve.
  • the methods for controlling the exhaust device to expel the gas exhaled by the patient through the patient pipeline at high frequency include but are not limited to:
  • a driving signal is sent to the driving device; the opening angle, opening frequency and opening duration of the exhaust port of the switch element are controlled by the driving device according to the driving signal. At least one of them, in order to achieve the purpose of high-frequency exhaust gas.
  • the form of the driving signal can be a control waveform, which can generate a control waveform for controlling the exhaust device according to the pressure in the breathing circuit.
  • the control waveform is a sine wave, cosine wave, square wave, triangle wave, and exponential function waveform.
  • any one of the N-order function waveforms, N is greater than or equal to 2.
  • the control waveform is a square wave
  • the duty cycle of the control waveform is related to the pressure in the breathing circuit.
  • the exhaust device also includes a turbine negative pressure device
  • the corresponding high-frequency exhaust control of the exhaust device also includes: providing a negative pressure suction to the switch element through the turbine negative pressure device, so that the gas in the patient pipeline passes through the switch in sequence The components and the turbine negative pressure device are discharged.
  • the exhaust device is controlled to actively exhaust the gas in the breathing circuit, and the exhaust device is arranged on the breathing circuit, so that the exhaust device will not be affected by the resistance of the patient's pipeline during the exhaust process, which can speed up
  • the rapid and timely discharge of the gas in the breathing circuit prevents the accumulation of gas and the increase of the average pressure in the patient's pipeline to ensure the safety of the patient's life.
  • FIG. 14 shows a flowchart of another method for controlling a medical ventilation device according to an embodiment of the present invention. Based on the above-mentioned FIG. 13, the following steps may be further included:
  • 503 Collect the pressure in the breathing circuit through the acquisition device on the breathing circuit, where the pressure in the breathing circuit is the pressure generated by the pressure generator set on the breathing circuit, and the pressure generator is under the action of the gas flowing through the patient pipeline Create stress.
  • the pressure in the breathing circuit is directly proportional to the exhaust flow of the exhaust device.
  • the greater the pressure in the breathing circuit the more gas is accumulated in the patient's pipeline. At this time, it is necessary to increase the exhaust of the exhaust device.
  • the flow rate increases the amount of gas discharged by the exhaust device per unit time, so that the gas in the patient pipeline can be discharged in time; if the pressure in the breathing circuit is smaller, the gas accumulation in the patient pipeline is less, and the exhaust gas can be reduced at this time.
  • the exhaust flow rate of the gas device reduces the gas discharged per unit time by the exhaust device to maintain the gas pressure in the patient pipeline close to the preset low pressure.
  • the method of controlling the exhaust flow of the exhaust device may be, but is not limited to, controlling at least one of the opening duration, the opening frequency, and the opening angle of the exhaust device.
  • controlling at least one of the opening duration, the opening frequency, and the opening angle of the exhaust device may be, but is not limited to, controlling at least one of the opening duration, the opening frequency, and the opening angle of the exhaust device.
  • the controller can control the exhaust flow of the exhaust device according to the pressure change in the breathing circuit, so that the exhaust gas of the exhaust device can change with the pressure change in the breathing circuit, so that the patient tube can be discharged in time.
  • the gas in the pipeline can maintain the gas pressure in the patient pipeline close to the preset low pressure to ensure the safety of the patient's life.
  • the above-mentioned control method of the medical ventilator can also: when the medical ventilator is in the high-frequency inhalation phase, control the exhaust device to stop the exhaust, so as to prevent the pressure from being too low during the high-frequency inhalation phase.
  • the gas cannot be delivered to the patient in time.
  • the control method of the medical ventilation device may also: when the medical ventilation device is in the high-frequency exhalation phase and/or in the high-frequency inhalation phase, exhaust gas through a pressure generator.
  • the type of pressure generator and the type of patient pipeline affect the discharge volume of the pressure generator, and the pressure generator is used to discharge the patient tube when the medical ventilation device is in the high-frequency exhalation phase and/or in the high-frequency inhalation phase.
  • the gas in the circuit can reduce the pressure in the patient circuit during the high-frequency inhalation phase, so that the maximum pressure in the patient circuit is close to the preset high pressure, preventing a certain risk due to excessively high maximum pressure.
  • the exhaust device 201 can be assisted to exhaust, and the exhaust efficiency can be improved.
  • FIG. 15 shows a flow chart of another method for controlling a medical ventilation device provided by an embodiment of the present invention. Based on FIG. 13 or FIG. 14, control can also be performed according to the average pressure. The following steps are added on the basis:
  • the current working current or working voltage of the medical ventilator indicates the current output capability of the medical ventilator.
  • the target amplitude is the preset high pressure corresponding to the breathing circuit during the high-frequency inhalation phase and the preset low pressure corresponding to the breathing circuit during the high-frequency exhalation phase Difference.
  • ways to reduce the target amplitude of the medical ventilation device include but are not limited to the following ways:
  • the method for controlling medical ventilation equipment provided in this embodiment can also control the prompting device in the medical ventilation equipment to output prompt information.
  • the control method of the medical ventilation device provided in this embodiment can also control the breathing circuit with the target amplitude; or if the current output capacity of the medical ventilation device does not reach the maximum output capacity of the medical ventilation device, this The control method of the medical ventilation device provided by the embodiment can also control the breathing circuit with the target amplitude.
  • FIG. 16 shows a flowchart of another method for controlling medical ventilation equipment provided by an embodiment of the present invention.
  • control can also be performed according to the average pressure. The following steps are added on the basis:
  • the working parameter of any device is used to indicate the current load of the device.
  • the working parameter of any device can be the working current or work of the device.
  • the voltage is used to determine whether it is working under the maximum load through the working current or the working voltage.
  • the pressure amplitude is the pressure difference between the maximum pressure value and the minimum pressure value in the breathing circuit.
  • the airway pressure waveform corresponds to the effect diagram shown in Figure 5 above The amplitude (actual amplitude).
  • the manner of adjusting the working parameters of each device includes but is not limited to the following manners:
  • the compensation parameters of the working parameters of each device are obtained, and the compensation parameters of the working parameters of each device are used for each device
  • the operating parameters of the device are adjusted, and the compensation parameters have a one-to-one relationship with the device.
  • the operating parameters of the device can be adjusted through the compensation parameters of any device. For example, the compensation parameters of the device can reduce the operating parameters of the device or increase the Working parameters.
  • the process of obtaining the compensation parameters of the working parameters of each device is as follows:
  • the pressure amplitude corresponding to the breathing circuit is less than the target amplitude, increase the pressure amplitude corresponding to the breathing circuit.
  • One way is to obtain the compensation parameters used to increase the high frequency oscillation if the pressure amplitude corresponding to the breathing circuit is less than the target amplitude; If the pressure amplitude of the breathing circuit is greater than the target amplitude, reduce the pressure amplitude corresponding to the breathing circuit.
  • the compensation parameters used to reduce the high-frequency oscillation are obtained; please refer to the above device implementation for specific instructions For example, I will not go into details here.
  • control method of the medical ventilation device may further include: if the pressure amplitude corresponding to the breathing circuit reaches the target amplitude, maintaining the working parameters of each device.
  • this embodiment also provides a computer-readable storage medium with executable instructions stored on the computer-readable storage medium, and is configured to cause the processor to execute the executable instructions to implement the above-mentioned control method of the medical ventilation device.
  • the embodiments of the present invention may be provided as a method, a system, or a computer program product. Therefore, the embodiments of the present invention may adopt the form of a hardware embodiment, a software embodiment, or an embodiment combining software and hardware. Moreover, the embodiments of the present invention may adopt the form of a computer program product implemented on one or more computer-usable storage media (including disk storage, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including disk storage, optical storage, etc.
  • These computer program operations can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the operations stored in the computer-readable memory produce an article of manufacture including the operating device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Abstract

一种医用通气设备、控制方法与计算机可读存储介质,医用通气设备包括气源接口(10)、呼吸回路(20)、高频振荡产生设备(30)和控制器(40),呼吸回路(20)分别连接气源接口(10)和与患者呼吸系统连接的病人管路(50),呼吸回路(20)包括吸气支路且呼吸回路(20)上设置有排气装置(201),高频振荡产生设备(30)将吸气支路的气体形成高频振荡,控制器(40)在医用通气设备处于高频呼气阶段时,控制排气装置(201)高频排出患者通过病人管路(50)呼出的气体,使得在医用通气设备处于高频呼气阶段时能够通过排气装置(201)主动排气,降低排气过程中的阻力影响,提高排气效率,从而使得气体能够及时排出,保证患者生命安全。

Description

医用通气设备、控制方法与计算机可读存储介质 技术领域
本发明涉及医疗设备技术,尤其涉及一种医用通气设备、控制方法与计算机可读存储介质。
背景技术
目前用于辅助患者呼吸的医用通气设备包括常频呼吸机和高频呼吸机,常频呼吸机提供的呼吸频率为4-150次每分钟,高频呼吸机的呼吸频率为240-1800次每分钟,以通过高频呼吸机为患者提供更多的氧气。
在通过高频呼吸机为患者提供更多的氧气的过程中,还需要将气体如二氧化碳排出,目前气体排出是在呼气阶段通过病人管路(如患者佩戴的面罩)自动排出到空气中,但是这种自动排气方式会受到患者佩戴的面罩的阻力影响,导致气体不能及时排出,从而使得气体逐渐积累。伴随着气体的逐渐积累,病人管路中的平均压力被抬高,使患者肺部过度膨胀,威胁患者生命。
发明内容
本发明实施例提供一种医用通气设备、控制方法与计算机可读存储介质,以实现主动排气。
一方面,本发明实施例提供一种医用通气设备,所述医用通气设备包括气源接口、呼吸回路、高频振荡产生设备和控制器,所述呼吸回路上设置有排气装置;
所述呼吸回路分别连接气源接口和与患者呼吸系统连接的病人管路,所述呼吸回路包括吸气支路;
所述高频振荡产生设备,将所述吸气支路的气体形成高频振荡;
所述控制器,在所述医用通气设备处于高频呼气阶段时,控制所述排气装置高频排出患者通过所述病人管路呼出的气体。
另一方面,本发明实施例提供一种医用通气设备的控制方法,包括:
通过高频振荡产生设备将呼吸回路的吸气支路中的气体形成高频振荡,所述呼吸回路分别连接气源接口和与患者呼吸系统连接的病人管路;
在所述医用通气设备处于高频呼气阶段时,控制所述排气装置高频排出患者通过所述病人管路呼出的气体。
再一方面,本发明实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有可执行指令,配置为引起处理器执行所述可执行指令时,实现上述医用通气设备的控制方法。
在本发明实施例中,医用通气设备包括气源接口、呼吸回路、高频振荡产生设备和控制器,呼吸回路分别连接气源接口和与患者呼吸系统连接的病人管路,呼吸回路包括吸气支路且呼吸回路上设置有排气装置,高频振荡产生设备,将吸气支路的气体形成高频振荡,控制器在医用通气设备处于高频呼气阶段时,控制排气装置高频排出患者通过病人管路呼出的气体,使得在医用通气设备处于高频呼气阶段时能够通过排气装置主动排气,降低排气过程中的阻力影响,提高排气效率,从而使得气体能够及时排出,保证患者生命安全。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种医用通气设备的结构示意图;
图2是本发明实施例提供的医用通气设备中吸气支路和高频振荡产生设备的一种示意图;
图3是本发明实施例提供的医用通气设备中吸气支路和高频振荡产生设备的另一种示意图;
图4是现有通过病人管路排气的效果示意图;
图5是本发明实施例提供的医用通气设备排气的效果示意图;
图6是本发明实施例提供的另一种医用通气设备的结构示意图;
图7是本发明实施例提供的再一种医用通气设备的结构示意图;
图8是本发明实施例提供的呼吸回路的一种示意图;
图9是现有技术中振幅振荡不足的示意图;
图10是本发明实施例提供的控制波形的一种示意图;
图11和图12是本发明实施例提供的再一种医用通气设备的结构示意图;
图13是本发明实施例提供的一种医用通气设备的控制方法的流程图;
图14是本发明实施例提供的另一种医用通气设备的控制方法的流程图;
图15是本发明实施例提供的再一种医用通气设备的控制方法的流程图;
图16是本发明实施例提供的再一种医用通气设备的控制方法的流程图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。本发明不应被理解为局限于所提供的实施例,相反,本发明实施例所记载的内容使得本发明全面和完整,并将本发明实施例构思传达给本领域技术人员,因此本领域普通技术人员在没有做出创造性劳动前提下所获得的其他实施例,都属于本发明保护的范围。
需要说明的是,在本公开实施例中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的方法或者服务器不仅包括所明确记载的要素,而且还包括没有明确列出的其他要素,或者是还包括为实施方法或者服务器所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的方法或者服务器中还存在另外的相关要素(例如方法中的步骤或者服务器中的单元,例如的单元可以是部分电路、部分处理器、部分程序或软件等等)。
例如,本公开实施例提供的医用通气设备及医用通气设备的控制方法包含了一系列的装置和步骤,但是本公开实施例提供的医用通气设备及医用通气设备的控制方法不限于所记载的张志和步骤。需要说明,在以下的描述中,涉及到“一个实施例”,其描述了所有可能实施例的子集,但是可以理解,“一个实施例”可以是所有可能实施例的相同子集或不同子集,并且可以在不冲突的情况下相互结合。
对本发明进行进一步详细说明之前,对本发明实施例中涉及的名词和术语进行说明,本发明实施例中涉及的名词和术语适用于如下的解释:
高频:是通气频率大于或等于正常频率(简称常频)4倍以上,例如在中 国频率为240-1800次每分钟称为高频,美国食品与药品管理局(FDA)定义高频是通气频率大于150次每分钟;
高频呼气阶段和高频吸气阶段:是医用通气设备的两个阶段,在高频呼气阶段患者处于高频呼气过程中,在这一过程中患者通过病人管路呼出的气体被排出,在高频吸气阶段患者处于高频吸气过程中,在这一过程中医用通气设备会产生高频振荡,在高频振荡作用下气体尤其是氧气通过病人管路输送到患者的肺部;
预设高压和预设低压:是呼吸回路对应的最大压力值和最小压力值,如呼吸回路连接的病人管路中气体压力的最大值和最小值,呼吸回路对应的气体压力可以随患者的呼吸在预设高压至预设低压之间变化;
目标平均压力:预设高压和预设低压的平均值。
请参阅图1,其示出了本发明实施例提供的一种医用通气设备的结构示意图,可以包括:气源接口10、呼吸回路20、高频振荡产生设备30和控制器40,呼吸回路20上设置有排气装置201。
呼吸回路20分别连接气源接口10和与患者呼吸系统连接的病人管路50,呼吸回路20包括吸气支路。气源接口10作为外界气体的输入口,能够通过气源接口10将外界气体输入到呼吸回路20的吸气支路中,通过呼吸回路20的吸气支路以及病人管路50将气体输送到病人管路端的患者处,如通过吸气支路和病人管路50输送到患者的肺部。其中病人管路20可以是但不限于是面罩和病人呼吸接口中的任意一种,通过面罩和病人呼吸接口将气体输送给患者。
高频振荡产生设备30,将吸气支路的气体形成高频振荡,以在高频振荡的作用下将吸气支路中的气体输送到病人管路端的患者处,主要是在高频振荡的作用下将吸气支路中的氧气输送到患者处。
在本实施例中,气源接口10可以包括氧气源接口和空气源接口,以从氧气源接口和空气源接口分别输入氧气和空气至吸气支路,由设置在吸气支路上的高频振荡产生设备30将氧气和空气形成高频振荡,从而氧气在高频振荡作用下能够输送到病人管路中,到达位于病人管路端的患者处。例如高频振荡产生设备30形成高频振荡的一种方式是:高频振荡产生设备30在高频吸气阶段调节氧气流量和空气流量,以通过流量调节方式形成高频振荡,其中高频振荡 产生设备30的可以是但不限于是比例电磁阀、阻断阀、开关阀等能够调节流量大小的阀门,均能够实现向患者输送氧气的目的。
相对应的,吸气支路以及高频振荡产生设备的可选结构分别如图2和图3所示,在图2中吸气支路包括氧气输入支路202和空气输入支路203,高频振荡产生设备30包括第一高频产生装置301和第二高频产生装置302;氧气输入支路202上设置有第一高频产生装置301,空气输入支路203上设置有第二高频产生装置302。
其中,氧气输入支路202与氧气源接口(O2)连接,通过氧气源接口输入的氧气进入到氧气输入支路202中,空气输入支路203与空气源接口(Air)连接,通过空气源接口输入的空气进入到空气输入支路203中。第一高频产生装置301和第二高频产生装置302能够在医用通气设备处于高频吸气阶段时,将氧气输入支路中的氧气和空气输入支路中的空气形成高频振荡。
在输入氧气和空气的过程中可以根据患者的患病情况控制氧气和空气的输入比例,以满足患者所需,例如在氧气源接口输入氧气和空气源接口输入空气过程中,按照预设氧气和空气的输入比例进行输入。同时在输入氧气和空气的过程中还能够对氧气和空气的流量调节,从而使得第一高频产生装置301和第二高频产生装置302能够形成高频振荡,例如第一高频产生装置301和第二高频产生装置302分别是一个能够控制流量大小的阀门,通过阀门控制氧气流量和空气流量形成一高频振荡。为了能够向患者供气,本实施例中的氧气输入支路202和空气输入支路203汇合至一条支路上,通过同一条支路与病人管路相连,从而通过这条支路为患者提供新鲜的空气和氧气。
相对于图2所示由设置在氧气输入支路上的第一高频产生装置以及设置在空气输入支路上的第二高频产生装置形成高频振荡,本实施例的图3提供另一种形成高频振荡的方式,在图3中吸气支路同样包括氧气输入支路202和空气输入支路203,氧气输入支路202和氧气源接口连接,通过氧气源接口输入的氧气进入到氧气输入支路202中,空气输入支路203与空气源接口连接,通过空气源接口输入的空气进入到空气输入支路203中。
与图2所示不同之处在于:氧气输入支路202上设置有第一单向进气装置204,空气输入支路203上设置有第二单向进气装置205;第一单向进气装置 204控制输入到氧气输入支路中的氧气的流量;第二单向进气装置205控制输入到空气输入支路中的空气的流量,这样在通过氧气源接口和空气源接口输入氧气和空气的过程中无需预设氧气和空气的输入比例,而是通过第一单向进气装置204和第二单向进气装置205控制氧气和空气的输入比例以及控制氧气和空气的流量;然后由高频振荡产生设备30将氧气输入支路中输入的氧气和空气输入支路中输入的空气形成高频振荡。
在本实施例中,高频振荡产生设备30可以设置在氧气输入支路202和空气输入支路203汇合的支路上,汇合的支路与病人管路相连,这样氧气和空气才能够同时经过高频振荡产生设备30形成高频振荡,然后在高频振荡的作用下支路上的氧气和空气通过病人管路输送给患者。其中高频振荡产生设备30可以是但不限于是一个能够控制流量大小的阀门,如比例电磁阀和开关阀等,以通过流量大小的控制形成高频振荡。
控制器40,在医用通气设备处于高频呼气阶段时,控制排气装置201高频排出患者通过病人管路呼出的气体。
高频呼气阶段是医用通气设备的一个工作阶段,医用通气设备包括两个工作阶段:高频吸气阶段和高频呼气阶段,在高频吸气阶段为患者提供氧气和新鲜的空气,在患者吸入氧气和新鲜的空气的过程中患者体内的气体尤其是二氧化碳被排出,这些气体在呼吸回路中凝聚,在医用通气设备处于高频呼气阶段时由设置在呼吸回路上的排气装置201高频排出,从而能够快速及时排出呼吸回路中的气体。
在这里需要说明的一点是:医用通气设备处于高频呼气阶段时和医用通气设备处于高频吸气阶段时指的不是某一时刻,而是医用通气设备处于高频呼气阶段过程中和处于高频吸气阶段过程中,在高频吸气阶段过程中会持续为患者供气,在高频呼气阶段过程中会由排气装置201主动持续或不间断排气。在医用通气设备处于高频吸气阶段时,控制器40还能够控制排气装置201停止排气,防止在高频吸气阶段过程中通过排气装置201降低呼吸回路中的压力,以保证在高频吸气阶段过程中氧气和空气能够进入患者体内。
在本实施例中,排气装置201可以主动将呼吸回路中的气体排出,且排气装置201设置在呼吸回路上,使得排气装置201在排气过程中不会受到病人管 路的阻力影响,可以加快呼吸回路中气体的快速及时排出,防止气体积累以及病人管路中的平均压力的抬高,保证患者生命安全。
下面结合附图对通过病人管路被动排气和本实施例通过排气装置201主动排气的效果进行说明:
[根据细则91更正 12.05.2020] 
假设预设高压为30厘米水柱(cmH2O,下面采用cmH2O表示),预设低压为0,期望的目标平均压力为15cmH2O可以保证患者生命安全,病人管路中的气体压力可以随患者的呼吸在预设高压至预设低压之间变化,形成如图4所示的气道压力波形,但是在通过病人管路排气过程中病人管路中的最低压大于预设低压(如图4中气道压力波形的最小值大于预设低压),使得病人管路中的平均压力大于目标平均压力,如图4所示因为开放回路中气体不能及时排出,导致病人管路中的平均压力升高至22cmH2O,从而危及患者的生命。
本实施例中排气装置201主动排气会形成如图5所示的气道压力波形,从图5所示气道压力波形可知,通过排气装置201主动排气过程中病人管路中的最低压接近预设低压(如在排气过程中的不同阶段等于、小于或稍大于预设低压),使得病人管路中的平均压力接近目标平均压力15cmH2O,在能够及时排出病人管路中的气体的同时可以保证患者生命安全。
此外目前除通过开放管路排气的医用通气设备之外,还存在以振模方式排气的医用通气设备和以文丘里喷射方式排气的医用通气设备,其中以振膜方式排气的医用通气设备需要一个大体积的封闭振膜腔提供正负压力,封闭振膜腔提供正负压力过程中因封闭振膜腔的运动会产生很大的噪声,以文丘里喷射方式排气的医用通气设备依靠高压气源进行驱动,对气源消耗较大,而本实施例提供的以排气装置201主动排气的医用通气设备,省去了封闭振膜腔和高压气源驱动,因此本实施例的医用通气设备相对于上述两种现有医用通气设备来说,具有体积小、噪音低、响应快和气源消耗低的优点。
请参阅图6,其示出了本发明实施例提供的另一种医用通气设备的结构,在上述图1所示医用通气设备基础上,呼吸回路20上还设置有采集装置206,采集装置206采集呼吸回路中的压力,相对应的控制器40根据呼吸回路20中的压力,控制排气装置201的排气流量。
具体的,呼吸回路20中的压力与排气装置201的排气流量成正比关系, 呼吸回路20中的压力越大说明病人管路中的气体积累量越多,此时需要加大排气装置201的排气流量,使得排气装置201单位时间内排出的气体增多,从而能够及时排出病人管路中的气体;若呼吸回路20中的压力越小说明病人管路中的气体积累量越少,此时可以降低排气装置201的排气流量,使得排气装置201单位时间内排出的气体减小,以维持病人管路中的气体压力接近预设低压。
在本实施例中,控制排气装置201的排气流量的方式可以是但不限于是:控制排气装置201的开启持续时间、开启频率和开启角度中的至少一种。可以理解的是:开启角度越大说明排气装置201的开口越大,那么单位时间内从该排气装置201的开口排出的气体也越多;开启持续时间表示在医用通气设备处于高频呼气阶段过程中排气装置201持续被开启的时间,开启持续时间越长排出的气体也越多,若在高频呼气阶段过程中排气装置201被多次开启,则开启持续时间表征一次开启的持续时间或者多次被开启的持续时间之和,不同次数开启的持续时间可以相同也可以不同;开启频率表示在医用通气设备处于高频呼气阶段过程中排气装置201被开启的次数,同样的开启频率越大说明排气装置201被开启的次数越多,在高频呼气阶段过程中通过该排气装置201排出的气体也越多。
在使用医用通气设备过程中,可同时控制排气装置201的开启持续时间、开启频率和开启角度中的至少一种,如同时控制开启持续时间和开启角度来控制排气流量,对此本实施例不再一一说明。
在本实施例中,控制器40能够根据呼吸回路中压力的变化控制排气装置201的排气流量,使得排气装置201的排气能够随呼吸回路中压力的变化而变化,从而既能够及时排出病人管路中的气体又能够维持病人管路中的气体压力接近预设低压,保证患者生命安全。
在本实施例中,采集装置206采集到的压力可以是但不限于是:呼吸回路上设置的压力发生器207产生的压力,如图7所示,其中压力发生器207可以设置在呼吸回路上接近病人管路的一侧,呼吸回路分别连接气源接口10和与患者呼吸系统连接的病人管路50,流经病人管路的气体会经过压力发生器207,使得压力发生器207能够在流经病人管路的气体的作用下产生压力,由 采集装置206采集装置采集压力发生器207产生的压力。其中流经病人管路的气体可以是医用通气设备处于高频吸气阶段过程中向患者输送的气体,以及医用通气设备处于高频呼气阶段过程中患者呼出的气体,在医用通气设备处于高频吸气阶段过程中和处于高频呼气阶段过程中,压力发生器207可以在气体作用下产生压力。
因为压力发生器207可以设置在呼吸回路上,尤其是呼吸回路上接近病人管路的一侧,使得压力发生器207生成的压力与病人管路中的压力相接近,实现根据病人管路中的压力对排气装置201的控制。
在这里需要说明的一点是:上述呼吸回路20还可以包括呼气支路,呼气支路的一端与吸气支路汇合后与病人管路相连,呼气支路的另一端与大气相通,如图8所示,其中排气装置201设置在呼气支路上,通过排气装置201将病人管路中的气体排向大气。处排气装置201设置在呼气支路上之外,采集装置和压力发生器207可以设置在呼气支路与吸气支路的汇合点,当然也可以设置在病人管路上,对此本实施例不加以限定。
针对上述医用通气设备,本实施例中排气装置201的一种可选结构是:排气装置201包括可阻断呼吸回路的开关元件和控制开关元件高频开合的驱动装置。其中可阻断呼吸回路的开关元件是为了在医用通气设备处于高频吸气阶段过程中阻断呼吸回路与大气连通,这样才能够通过呼吸回路将气体输送到患者体内,而在医用通气设备处于高频呼气阶段过程中开关元件使呼吸回路与大气连通,与呼吸回路连接的病人管路中的气体通过开关元件排出。
对于驱动装置来说,其在医用通气设备处于高频呼气阶段过程中控制开关元件开启,以使呼吸回路与大气连通;在医用通气设备处于高频吸气阶段过程中控制开关元件闭合,以阻断呼吸回路与大气之间连通。
其中驱动装置可以是一个为开关元件提供电力支持的电机,例如驱动装置可以是一个能够直线双向运动的音圈电机,通过音圈电机驱动开关元件,由于音圈电机是一个能够直线双向运动的电机,所以音圈电机可以按电流比例输出作用力,快速控制开启和闭合开关元件,开关元件开启时连通大气,闭合时阻断与大气的连通。并且在开关元件开启的瞬间还能产生一定的负压吸引,能够更有效的排出气体不受气路排除阻力、潮气量和通气频率的影响,确保平均压 力不会因上述因素导致气体排除过慢而升高。
在本实施例中,控制器40和驱动装置控制开关元件的过程如下:
控制器40在医用通气设备处于高频呼气阶段时,根据呼吸回路中的压力,向驱动装置发送驱动信号。驱动装置,根据驱动信号控制开关元件的排气口的开合角度、开启频率和开启持续时间中的至少一种,以通过对开合角度、开启频率和开启持续时间中的至少一种的控制实现主动排气和对排气流量的控制,开合角度指示排气口的开合量,开合量越大说明呼吸回路与大气的连通口越大,相对应的排气流量越大,开合量越小说明呼吸回路与大气的连通口越小,相对应的排气流量越小,开启频率和开启持续时间的说明请参见上述说明,此处不再赘述。
其中,控制器40发送的驱动信号的一种形式可以是控制波形,以使得驱动装置通过至少一种波形控制开关元件,控制器40生成控制波形的方式可以是但不限于是:控制器40根据呼吸回路中的压力,生成用于控制排气装置的控制波形,使得控制波形与呼吸回路中的压力相关联,具体的控制波形能够控制开关元件的排气口的开合角度、开启频率和开启持续时间中的至少一种与呼吸回路中的压力相关联,以使得开关元件能够及时排出气体且维持病人管路中的平均压力与预设低压相接近。控制波形可以是但不限于是:正弦波、余弦波、方波、三角波、指数函数波形和N次函数波形中的任意一种,N大于等于2。
在本实施例中,开关元件可以是任意一种可阻断呼吸回路的阀门,例如开关元件可以包括比例排气阀、开关阀和电磁阀中的任意一种,对于不同的开关元件,控制器40生成的控制波形可能有所不同,这是因为开关阀和电磁阀虽然具有开启和闭合两种模式,但是开关阀和电磁阀的排气口的开合角度是固定的,所以适用于开关阀和电磁阀的控制波形可以是控制其开启和闭合但不能改变其开合角度的波形,相对应的开关阀和电磁阀对应的控制波形可以是方波,在控制波形采用方波的情况下,控制波形的占空比与呼吸回路中的压力相关联,其中占空比用于指示开关元件的排气口被开启的持续时间,以通过与呼吸回路中的压力相关联的占空比使得病人管路中的气体能够被及时排出。而对于比例排气阀来说,比例排气阀的排气口的开合角度可控,因此比例排气阀对应的控制波形为上述正弦波、余弦波、方波、三角波、指数函数波形和N次函 数波形中的任意一种,N大于等于2。
在这里需要说明的一点是:在医用通气设备处于高频呼气阶段过程中,若瞬时快速开启排气装置201且排气装置的排气口过大,会产生一个过大的负压吸引,使得病人管路中的低压负向过冲,进而导致病人管路的气道压力波形的振幅振荡不足,如图9所示。在图9中排气装置201快速开启一个过大的排气口,使得病人管路中的气体被快速吸引导致病人管路出现低压负向过冲(图9中的标记A),进而导致出现图9标记B指向的振幅振荡不足。
为解决这一问题,本实施例中的开关元件采用比例排气阀,相对应的比例排气阀对应的控制波形选择正弦波、余弦波、指数函数波形和N次函数波形中等具有一定平滑过渡的波形,以控制比例排气阀的排气口的开合角度逐渐变大,防止在顺势开启时产生过大的负压吸引。如图10所示,开关元件对应的控制波形优选图10中箭头右侧的波形,相对于箭头左侧的波形,通过箭头右侧的波形控制排气装置201过程中可以逐渐增大排气口的开合角度。
在本实施例中,上述排气装置201还可以包括涡轮负压装置,涡轮负压装置向开关元件提供负压吸引,以使病人管路中的气体依次经过开关元件和涡轮负压装置排出。在医用通气设备处于高频呼气阶段过程中,涡轮负压装置产生一个负压吸引,在负压吸引作用下病人管路中的气体通过呼吸回路被吸引出开关元件的排气口,然后再经过涡轮负压装置的腔体排向大气。
除了能够通过上述排气装置201排气之外,本实施例中的压力发生器207,还能够在医用通气设备处于高频呼气阶段时和/或处于高频吸气阶段时排气,以通过压力发生器207排出部分气体,尤其是在医用通气设备处于高频吸气阶段过程中通过压力发生器207排气来维持病人管路中的最高压与预设高压相接近,防止因最高压过高产生一定的风险。
其中压力发生器的排气量受压力发生器的类型和病人管路的类型影响。不同类型的压力发生器的结构有所不同,压力发生器的结构会限制压力发生器的排气,因此不同类型的压力发生器的排气量会有所不同,例如不同类型的压力发生器的排气口径可能不同,排气口径的大小与排气量成正比关系,排气口径越大排气量越大,排气口径越小排气量也越小。同理不同类型的病人管路的结构也有所不同,等量的气体输送到不同结构的病人管路过程中,不同结构的病 人管路产生的压力有高有低,一般情况下压力越高向外的排气量也越多,反之排气量越少,因此病人管路的类型对应的压力也会影响压力发生器的排气量,例如不同类型的病人管路的管径有所不同,管径的大小与压力大小成正比关系,这样等量的气体输送到管径的大小不同的病人管路中,产生的压力大小会有所不同。
在本实施例中,通过压力发生器在医用通气设备处于高频呼气阶段和/或处于高频吸气阶段过程中排出病人管路中的气体,能够在高频吸气阶段过程中降低病人管路中的压力,使病人管路中的最高压与预设高压相接近,防止因最高压过高产生一定的风险,在高频呼气阶段过程中可辅助排气装置201排气,提高排气效率。
上述主要介绍医用通气设备的排气过程,下面介绍医用通气设备根据平均压力的控制过程,其中医用通气设备的平均压力与目标振幅和呼吸比(呼气阶段和吸气阶段的时间比)有关,同时平均压力也受到医用通气设备的最大输出能力的影响。若因为病人管路端出现过大泄漏或者患者的肺容积过大导致医用通气设备的输出能力会超过其最大输出能力,此时医用通气设备会以最大输出能力工作,从而使得平均压力与目标平均压力出现偏差,如平均压力小于目标平均压力或平均压力大于目标平均压力,若平均压力大于目标平均压力会导致患者的肺部过分膨胀而产生伤害,平均压会小于目标平均压力会导致患者的氧合不够,因此根据平均压力进行控制是非常必要的,其控制过程如下:
在本实施例中医用通气设备还可以包括:输出能力获取装置,获取医用通气设备的当前输出能力;其中当前输出能力用于表征医用通气设备是否工作在最大负荷下,例如医用通气设备的输出能力通过医用通气设备的工作电流或工作电压表示,若医用通气设备的工作电流或工作电压达到最大值,则说明医用通气设备的当前输出能力达到最大输出能力,由此,输出能力获取装置可以包括:电参数采集单元,其中电参数采集单元,采集医用通气设备当前的工作电流或工作电压,其中工作电流或工作电压用于表明医用通气设备的当前输出能力。
其中在医用通气设备处于高频吸气阶段过程中,医用通气设备的工作电流或工作电压可通过高频振荡产生设备的工作电流或工作电压表示,若高频振荡 产生设备的工作电流或工作电压达到最大值,说明医用通气设备在高频吸气阶段过程中其当前输出能力达到最大输出能力;在医用通气设备处于高频呼气阶段过程中,医用通气设备的工作电流或工作电压可通过排气装置的工作电流或工作电压表示,若排气装置的工作电流或工作电压达到最大值,说明医用通气设备在高频呼气阶段过程中其当前输出能力达到最大输出能力。
在输出能力装置获取到医用通气设备的当前输出能力后,将医用通气设备的当前输出能力发送给控制器40,由控制器40判断当前输出能力是否达到最大输出能力。
采集装置206,还在医用通气设备的当前输出能力为医用通气设备的最大输出能力时,获取呼吸回路对应的平均压力,如控制器40在判断出当前输出能力达到最大输出能力,向采集装置206发送获取平均压力的指示信号。
在本实施例中,采集装置206获取呼吸回路对应的平均压力的方式包括但不限于:采集装置206获取呼吸回路对应的最大压力值和最小压力值,根据最大压力值和最小压力值,计算得到平均压力。其中采集装置206在医用通气设备工作过程中会获取到至少一个最大压力值和至少一个最小压力值,采集装置206根据至少一个最大压力值,得到一个用于计算平均压力的最大目标压力值,如从最大压力值中选取一个最大压力值作为最大目标压力值、或者对多个最大压力值进行平均/加权平均等得到最大目标压力值;同样的采集装置206可以根据至少一个最小压力值,得到一个用于计算平均压力的最小目标压力值,采集装置206计算最大目标压力值和最小目标压力值的平均值,该平均值则是呼吸回路对应的平均压力。
其中最大压力值和最小压力值是医用通气设备使用过程中的实际压力值,而上述预设高压和预设低压是医用通气设备使用过程中或使用之前设置的期望压力值,实际压力值相对期望压力值有一定偏差。
控制器40,还在平均压力没有达到目标平均压力时,降低医用通气设备的目标振幅,其中目标振幅为高频吸气阶段时呼吸回路对应的预设高压与高频呼气阶段时呼吸回路对应的预设低压之差。
若医用通气设备的当前输出能力为最大输出能力但平均压力没有达到目标平均压力,说明医用通气设备的在最大输出能力下也没能保证平均压力与目 标平均压力一致,此时则需要对医用通气设备的目标振幅进行调整实现对目标平均压力的调整,以使得在医用通气设备处于最大输出能力过程中平均压力与目标平均压力一致,降低因平均压力大于或小于目标平均压力带来的危险。其中控制器40在医用通气设备的当前输出能力为最大输出能力且平均压力没有达到目标平均压力过程中,对医用通气设备的目标振幅的调整如下:
若高频呼气阶段时呼吸回路中的压力使平均压力没有达到目标平均压力,提高预设低压;若高频吸气阶段时呼吸回路中的压力使平均压力没有达到目标平均压力,降低预设高压。
可以理解的是:平均压力没有达到目标平均压力可能是预设低压过低以及预设高压过高导致,因此控制器40需要首先判断出是因为预设低压还是预设高压导致平均压力没有达到目标平均压力,然后再进行对预设低压或预设高压进行调整以实现对目标振幅的调整。其中若高频呼气阶段过程中的呼吸回路中的压力使平均压力没有达到目标平均压力,说明病人管路中的气体过多导致排气装置201主动排气也无法使病人管路中的压力降到预设低压或者说明预设低压过低,此时控制器40可以提高预设低压;若高频吸气阶段过程中的呼吸回路中的压力使平均压力没有达到目标平均压力,说明输送到呼吸回路中的气体不足或者说明预设高压过高,此时控制器40可以降低预设高压。
在控制器40降低目标振幅之后,控制器40还可以进一步对平均压力是否达到目标平均压力进行持续监控,若降低医用通气设备的目标振幅后的预设时间内平均压力持续没有达到目标平均压力,说明医用通气设备可能存在故障,因此需要输出提示信息进行提示,相对应本实施例中的医用通气设备还包括:提示装置;控制器40用于若降低医用通气设备的目标振幅后的预设时间内平均压力持续没有达到目标平均压力,控制提示装置输出提示信息,其中提示信息用于指示医用通气设备存在故障,需要人工排查。
若医用通气设备的当前输出能力为最大输出能力但平均压力达到目标平均压力,说明医用通气设备可以维持在预设低压和预设高压,控制器40则可以以目标振幅对呼吸回路进行控制;或者若医用通气设备的当前输出能力没有达到医用通气设备的最大输出能力,控制器40也可以以目标振幅对呼吸回路进行控制,也就是说若医用通气设备的当前输出能力没有达到最大输出能力, 即便平均压力没有达到目标平均压力,控制器40也可以通过增大医用通气设备的输出能力的方式使得平均压力达到目标平均压力,因此在这种情况下,控制器40可以以目标振幅继续对呼吸回路进行控制。
通过上述根据平均压力和医用通气设备的当前输出能力,实现对目标振幅的控制,使得医用通气设备的平均压力与目标平均压力相一致,降低发生因平均压力与目标平均压力不一致导致的危险。
在本实施例,医用通气设备还可以对呼吸回路中的各个装置进行控制,相对应的医用通气设备还包括:工作参数获取装置,获取设置与气源接口和呼吸回路中的各个装置的工作参数,例如获取排气装置、压力发生器等的工作参数,任一装置的工作参数用于指示该装置当前的负荷,如任一装置的工作参数可以为该装置的工作电流或工作电压,以通过工作电流或工作电压确定是否工作在最大负荷下,具体说明请参见上述输出能力获取装置对应的说明,此处不再详述。
采集装置206,还在形成高频振荡过程中获取呼吸回路中的压力;控制器40,还根据呼吸回路中的压力得到呼吸回路对应的压力振幅,压力振幅是呼吸回路中的最大压力值和最小压力值之间的压力差,如上述图5所示效果示意图中气道压力波形对应的振幅(实际振幅)。若呼吸回路对应的压力振幅没有达到目标振幅,控制器40对各个装置的工作参数进行调整,其中目标振幅为高频吸气阶段时呼吸回路对应的预设高压与高频呼气阶段时呼吸回路对应的预设低压之差(即期望振幅)。
若呼吸回路对应的压力振幅没有达到目标振幅,说明呼吸回路对应的最大压力值和最小压力值中的至少一个压力值没有达到预设压力,如最大压力值没有达到预设高压和/或最小压力值没有达到预设低压,控制器40需要调整各个装置的工作参数以使压力振幅达到目标振幅,其调整过程包括但不限于如下方式:
若呼吸回路对应的压力振幅没有达到目标振幅,控制器40根据呼吸回路对应的压力振幅与目标振幅的差值,得到各个装置的工作参数的补偿参数,其中各个装置的工作参数的补偿参数用于对各个装置的工作参数进行调整,补偿参数与装置具有一对一关系,以通过任一装置的补偿参数调整该装置的工作参 数,如通过该装置的补偿参数降低该装置的工作参数或增大该装置的工作参数。
例如若呼吸回路对应的压力振幅小于目标振幅,提高呼吸回路对应的压力振幅,一种提高压力振幅的方式是:若呼吸回路对应的压力振幅小于目标振幅,得到用于增大高频振荡的补偿参数,其中增大高频振荡表示增大病人管路中气体的振荡幅度,以提高呼吸回路对应的压力振幅,若压力振幅小于目标振幅是因为低压小于预设低压,则可以增大用于进行排气的装置的工作参数以增大排气流量,如增大排气装置的工作参数使得排气装置在单位时间内的排气流量增加,若压力振幅小于目标振幅是因为高压小于预设高压,则可以增大用于进气的装置的工作参数以增大进气流量,如增大高频振荡产生设备的工作参数;若呼吸回路对应的压力振幅大于目标振幅,减小呼吸回路对应的压力振幅,其中一种减小呼吸回路对应的压力振幅的方式是:若呼吸回路对应的压力振幅大于目标振幅得到用于减小高频振荡的补偿参数,其中减小高频振荡表示减小病人管路中气体的振荡幅度,以减小呼吸回路对应的压力振幅,同样的若压力振幅大于目标振幅是因为低压小于预设低压,则可以降低用于进行排气的装置的工作参数以减小排气流量,如降低排气装置的工作参数使得排气装置在单位时间内的排气流量减小,若压力振幅大于目标振幅是因为高压大于预设高压,则可以降低用于进气的装置的工作参数以减小进气流量,如降低高频振荡产生设备的工作参数。
若呼吸回路对应的压力振幅达到目标振幅,控制器40维持各个装置的工作参数,若呼吸回路对应的压力振幅达到目标振幅,说明呼吸回路中各个装置的工作参数能够满足预设低压和预设高压的需求,则控制器40可以继续使用当前各个装置的工作参数对各个装置进行控制。
在这里需要说明的一点是:上述仅是对医用通气设备中的一些装置的说明,对于医用通气设备来说,除上述提及的各个装置之外医用通气设备还包括其他装置,如图11和图12所示,其分别示出了本发明实施例提供的再一种医用通气设备的可选结构:
如图11所示,氧气源接口用于接入氧气气源,氧气气源经过过滤器3过滤以防止杂质流入氧气输入支路的下游,保护位于氧气输入支路的下游的器 件。压力传感器4监测氧气源接口的压力,在氧气源接口的压力过高或过低时可以根据设定值进行报警。单向阀5防止氧气输入支路出现氧气反向流动的情况,且通过单向阀5还能控制氧气的流量。调压阀6用于稳定氧气源接口输入的氧气的压力,保证下游流量和压力的准确控制。流量调节阀7作为第一高频产生装置301用于调节和控制氧气的流量,过滤器8进一步净化输入的氧气,保护下游的流量传感器9对于氧气流量的准确测量,有些情况下也能起到稳定流速的作用。空气源接口用于接入空气气源,空气气源经过过滤器11防止杂质流入空气输入支路的下游,保护位于空气输入支路的下游的器件。压力传感器12监测空气源接口的压力,在压力过高或过低时设备可以根据设定值进行报警。单向阀13防止空气输入支路出现空气反向流动的情况,且通过单向阀13还能控制空气的流量。调压阀14用于稳定空气源接口输入的空气的压力,保证下游流量和压力的准确控制。流量调节阀15作为第二高频产生装置302用于调节和控制空气的流量,过滤器16进一步净化输入的空气,保护下游流量传感器17对于空气流量的准确测量,有些情况下也能起到稳定流速的作用。作为第一高频产生装置301的流量调节阀7和作为第二高频产生装置302的流量调节阀15分别控制氧气和空气的流量大小,进而达到控制混合气体中的氧气浓度且形成高频振荡使得氧气和新鲜空气能够输送到病人管路中。其中流量调节阀7和流量调节阀15可以是比例电磁阀、阻断阀、开关阀等可以调节流量大小的伺服阀,均可以达到给病人管路输送气体的目的。单向阀19防止患者23在呼气时(即高频呼气阶段过程中),呼出气体进入氧气输入支路和空气输入支路。安全阀20在呼吸回路中的压力达到最大设定值时打开使气体通向大气,达到卸放压力的目的,防止因压力过高出现危险;另外如果安全阀20前端没有提供足够的吸入气体时,安全阀20切换向大气,患者可以从大气中吸入气体。湿化器21对患者吸入气体进行加温加湿,保证患者吸入的气体的温湿度和患者的舒适度。压力发生器25(对应上述压力发生器207)产生压力使得一部分气体进入患者体内,另一部分气体能够通过压力发生器25排出,患者的气道压力大小由近端压力传感器24来监测。在高频吸气阶段过程中,作为第一高频产生装置301的流量调节阀7和作为第二高频产生装置302的流量调节阀15控制流量增加以产生高压,作为排气装置201的比例排气阀22 处于限流状态,防止压力下降。在高频呼气阶段过程中,作为第一高频产生装置301的流量调节阀7和作为第二高频产生装置302的流量调节阀15控制流量快速下降,同时比例排气阀22进行主动排气控制,释放压力,如此循环控制,达到高频振荡效果。
相对于图11所示的医用通气设备,图12所示医用通气设备的不同之处在于:图12所示医用通气设备省去调压阀6和调压阀14,增加一个流量调节阀18,以节省成本。通过流量调节阀18来生成高频振荡,而流量调节阀7和流量调节阀15仅用于调流流量,并且在省去调压阀6和调压阀14的医用通气设备中,需要在输送气体到氧气源接口和空气源接口之前设置氧气和空气的输入比例。
本发明实施例还提供一种医用通气设备的控制方法,其中医用通气设备包括气源接口、呼吸回路、高频振荡产生设备和控制器,呼吸回路上设置有排气装置,呼吸回路分别连接气源接口和与患者呼吸系统连接的病人管路,具体说明请参见上述设备实施例,此处不再阐述。
其中医用通气设备中的控制器执行医用通气设备的控制方法,医用通气设备的控制方法的流程图如图13所示,可以包括以下步骤:
501:通过高频振荡产生设备将呼吸回路的吸气支路中的气体形成高频振荡。其中吸气支路以及高频振荡产生设备形成高频振荡的方式包括但不限于如下方式:
一种方式:吸气支路包括氧气输入支路和空气输入支路,高频振荡产生设备包括第一高频产生装置和第二高频产生装置。氧气输入支路上设置有第一高频产生装置,空气输入支路上设置有第二高频产生装置,相对应的通过高频振荡产生设备将呼吸回路的吸气支路中的气体形成高频振荡包括:通过第一高频产生装置和第二高频产生装置,在医用通气设备处于高频吸气阶段时,将氧气输入支路中的氧气和空气输入支路中的空气形成高频振荡。
另一种方式:吸气支路包括氧气输入支路和空气输入支路,氧气输入支路上设置有第一单向进气装置,空气输入支路上设置有第二单向进气装置。相对应的医用通气设备的控制方法还包括:通过第一单向进气装置控制输入到氧气 输入支路中的氧气的流量,以及通过第二单向进气装置,控制输入到空气输入支路中的空气的流量,则通过高频振荡产生设备将呼吸回路的吸气支路中的气体形成高频振荡包括:通过高频振荡产生设备将氧气输入支路中输入的氧气和空气输入支路中输入的空气形成高频振荡。
对于高频振荡产生设备形成高频振荡以及吸气支路的说明请参见上述设备实施例中的相关说明,此处不再详述。
502:在医用通气设备处于高频呼气阶段时,控制排气装置高频排出患者通过病人管路呼出的气体。
在本实施例中,排气装置包括可阻断呼吸回路的开关元件和控制开关元件高频开合的驱动装置,开关元件包括比例排气阀或开关阀或电磁阀。其中控制排气装置高频排出患者通过病人管路呼出的气体的方式包括但不限于:
在医用通气设备处于高频呼气阶段时,根据呼吸回路中的压力,向驱动装置发送驱动信号;通过驱动装置根据驱动信号控制开关元件的排气口的打开角度、开启频率和开启持续时间中的至少一种,以实现高频排出气体的目的。其中驱动信号的形式可以是控制波形,该控制波形可根据呼吸回路中的压力,生成用于控制排气装置的控制波形,例如控制波形为正弦波、余弦波、方波、三角波、指数函数波形和N次函数波形中的任意一种,N大于等于2。在控制波形为方波时,控制波形的占空比与呼吸回路中的压力相关联。
此外,排气装置还包括涡轮负压装置,相对应的控制排气装置高频排气还包括:通过涡轮负压装置向开关元件提供负压吸引,以使病人管路中的气体依次经过开关元件和涡轮负压装置排出。
上述对排气装置的高频排气以及排气装置的结构的介绍请参阅上述设备实施例,此处不再赘述。
在本实施例中,控制排气装置主动将呼吸回路中的气体排出,且排气装置设置在呼吸回路上,使得排气装置在排气过程中不会受到病人管路的阻力影响,可以加快呼吸回路中气体的快速及时排出,防止气体积累以及病人管路中的平均压力的抬高,保证患者生命安全。
请参阅图14,其示出了本发明实施例提供的另一种医用通气设备的控制方法的流程图,在上述图13基础上还可以包括以下步骤:
503:通过呼吸回路上的采集装置采集呼吸回路中的压力,其中呼吸回路中的压力为设置在呼吸回路上的压力发生器产生的压力,压力发生器在流经病人管路的气体的作用下产生压力。
504:根据呼吸回路中的压力,控制排气装置的排气流量。具体的,呼吸回路中的压力与排气装置的排气流量成正比关系,呼吸回路中的压力越大说明病人管路中的气体积累量越多,此时需要加大排气装置的排气流量,使得排气装置单位时间内排出的气体增多,从而能够及时排出病人管路中的气体;若呼吸回路中的压力越小说明病人管路中的气体积累量越少,此时可以降低排气装置的排气流量,使得排气装置单位时间内排出的气体减小,以维持病人管路中的气体压力接近预设低压。
在本实施例中,控制排气装置的排气流量的方式可以是但不限于是:控制排气装置的开启持续时间、开启频率和开启角度中的至少一种,具体请参见上述说明。
在本实施例中,控制器能够根据呼吸回路中压力的变化控制排气装置的排气流量,使得排气装置的排气能够随呼吸回路中压力的变化而变化,从而既能够及时排出病人管路中的气体又能够维持病人管路中的气体压力接近预设低压,保证患者生命安全。
在本实施例中,上述医用通气设备的控制方法还可以:在医用通气设备处于高频吸气阶段时,控制排气装置停止排气,以防止在高频吸气阶段过程中压力过低导致气体无法及时输送给患者。此外医用通气设备的控制方法还可以:在医用通气设备处于高频呼气阶段时和/或处于高频吸气阶段时,通过压力发生器排气。其中,压力发生器的类型和病人管路的类型影响压力发生器的排气量,通过压力发生器在医用通气设备处于高频呼气阶段和/或处于高频吸气阶段过程中排出病人管路中的气体,能够在高频吸气阶段过程中降低病人管路中的压力,使病人管路中的最高压与预设高压相接近,防止因最高压过高产生一定的风险,在高频呼气阶段过程中可辅助排气装置201排气,提高排气效率。
请参见图15,其示出了本发明实施例提供的再一种医用通气设备的控制方法的流程图,在图13或图14基础上还可以根据平均压力进行控制,图15是在图13基础上增加以下步骤:
505:获取医用通气设备的当前输出能力。其中,医用通气设备当前的工作电流或工作电压表明医用通气设备的当前输出能力。
506:在医用通气设备的当前输出能力为医用通气设备的最大输出能力时,获取呼吸回路对应的平均压力。
507:在平均压力没有达到目标平均压力时,降低医用通气设备的目标振幅,目标振幅为高频吸气阶段时呼吸回路对应的预设高压与高频呼气阶段时呼吸回路对应的预设低压之差。其中,在平均压力没有达到目标平均压力时,降低医用通气设备的目标振幅的方式包括但不限于如下方式:
若高频呼气阶段时呼吸回路中的压力使平均压力没有达到目标平均压力,提高预设低压;若高频吸气阶段时呼吸回路中的压力使平均压力没有达到目标平均压力,降低预设高压,具体如何调整请参见上述设备实施例中的相关说明。
若降低目标振幅后的预设时间内平均压力持续没有达到目标平均压力,本实施例提供的医用通气设备的控制方法还可以控制医用通气设备中的提示装置输出提示信息。
若平均压力达到目标平均压力,本实施例提供的医用通气设备的控制方法还可以以目标振幅对呼吸回路进行控制;或者若医用通气设备的当前输出能力没有达到医用通气设备的最大输出能力,本实施例提供的医用通气设备的控制方法还可以以目标振幅对呼吸回路进行控制。
请参见图16,其示出了本发明实施例提供的再一种医用通气设备的控制方法的流程图,在图13至图15基础上还可以根据平均压力进行控制,图16是在图15基础上增加以下步骤:
508:获取设置于气源接口和呼吸回路中的各个装置的工作参数,任一装置的工作参数用于指示该装置当前的负荷,如任一装置的工作参数可以为该装置的工作电流或工作电压,以通过工作电流或工作电压确定是否工作在最大负荷下,具体说明请参见上述输出能力获取装置对应的说明,此处不再详述。
509:在形成高频振荡过程中获取呼吸回路中的压力。
510:根据呼吸回路中的压力得到呼吸回路对应的压力振幅,压力振幅是呼吸回路中的最大压力值和最小压力值之间的压力差,如上述图5所示效果示意图中气道压力波形对应的振幅(实际振幅)。
511:若呼吸回路对应的压力振幅没有达到目标振幅,对各个装置的工作参数进行调整,目标振幅为高频吸气阶段时呼吸回路对应的预设高压与高频呼气阶段时呼吸回路对应的预设低压之差。在本实施例中对各个装置的工作参数进行调整的方式包括但不限于如下方式:
若呼吸回路对应的压力振幅没有达到目标振幅,根据呼吸回路对应的压力振幅与目标振幅的差值,得到各个装置的工作参数的补偿参数,其中各个装置的工作参数的补偿参数用于对各个装置的工作参数进行调整,补偿参数与装置具有一对一关系,以通过任一装置的补偿参数调整该装置的工作参数,如通过该装置的补偿参数降低该装置的工作参数或增大该装置的工作参数。
在本实施例中,得到各个装置的工作参数的补偿参数的过程如下:
若呼吸回路对应的压力振幅小于目标振幅,提高呼吸回路对应的压力振幅,一种方式是若呼吸回路对应的压力振幅小于目标振幅,得到用于增大高频振荡的补偿参数;若呼吸回路对应的压力振幅大于目标振幅,减小呼吸回路对应的压力振幅,一种方式是若呼吸回路对应的压力振幅大于目标振幅,得到用于减小高频振荡的补偿参数;具体说明请参见上述设备实施例,此处不再详述。
针对上述医用通气设备的控制方法,本实施例提供的医用通气设备的控制方法还可以包括:若呼吸回路对应的压力振幅达到目标振幅,维持各个装置的工作参数。
此外,本实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有可执行指令,配置为引起处理器执行可执行指令时,实现上述医用通气设备的控制方法。
本领域内的技术人员应明白,本发明实施例可提供为方法、系统、或计算机程序产品。因此,本发明实施例可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明实施例是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序操作实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和 /或方框的结合。可提供这些计算机程序操作到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的操作产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序操作也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的操作产生包括操作装置的制造品,该操作装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序操作也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的操作提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (45)

  1. 一种医用通气设备,所述医用通气设备包括气源接口、呼吸回路、高频振荡产生设备和控制器,所述呼吸回路上设置有排气装置;
    所述呼吸回路分别连接气源接口和与患者呼吸系统连接的病人管路,所述呼吸回路包括吸气支路;
    所述高频振荡产生设备,将所述吸气支路的气体形成高频振荡;
    所述控制器,在所述医用通气设备处于高频呼气阶段时,控制所述排气装置高频排出患者通过所述病人管路呼出的气体。
  2. 根据权利要求1所述的医用通气设备,其中,所述呼吸回路上还设置有采集装置,所述采集装置采集所述呼吸回路中的压力;
    所述控制器,根据所述呼吸回路中的压力,控制所述排气装置的排气流量。
  3. 根据权利要求2所述的医用通气设备,其中,所述呼吸回路上还设置有压力发生器,所述压力发生器,在流经所述病人管路的气体的作用下产生压力;所述采集装置采集所述呼吸回路中的压力包括:所述采集装置采集所述压力发生器产生的压力。
  4. 根据权利要求1所述的医用通气设备,其中,所述控制器,还在所述医用通气设备处于高频吸气阶段时,控制所述排气装置停止排气。
  5. 根据权利要求1至4中任意一项所述的医用通气设备,其中,所述排气装置包括可阻断所述呼吸回路的开关元件和控制所述开关元件高频开合的驱动装置。
  6. 根据权利要求5所述的医用通气设备,其中,所述开关元件包括比例排气阀或开关阀或电磁阀。
  7. 根据权利要求5或6所述的医用通气设备,其中,所述控制器,在所述医用通气设备处于高频呼气阶段时,根据所述呼吸回路中的压力,向所述驱动装置发送驱动信号;
    所述驱动装置,根据所述驱动信号控制所述开关元件的排气口的打开角度、开启频率和开启持续时间中的至少一种。
  8. 根据权利要求7所述的医用通气设备,其中,所述控制器,根据所述呼吸回路中的压力,生成用于控制所述排气装置的控制波形,所述控制波形为 所述驱动信号。
  9. 根据权利要求8所述的医用通气设备,其中,所述控制波形为正弦波、余弦波、方波、三角波、指数函数波形和N次函数波形中的任意一种,N大于等于2。
  10. 根据权利要求8所述的医用通气设备,其中,所述控制波形的占空比与所述呼吸回路中的压力相关联。
  11. 根据权利要求5至10中任意一项所述的医用通气设备,其中,所述排气装置还包括涡轮负压装置,所述涡轮负压装置向所述开关元件提供负压吸引,以使病人管路中的气体依次经过所述开关元件和所述涡轮负压装置排出。
  12. 根据权利要求3至11中任意一项所述的医用通气设备,其中,所述压力发生器,还在所述医用通气设备处于高频呼气阶段时和/或处于高频吸气阶段时排气。
  13. 根据权利要求1至12中任意一项所述的医用通气设备,其中,所述吸气支路包括氧气输入支路和空气输入支路,所述高频振荡产生设备包括第一高频产生装置和第二高频产生装置;所述氧气输入支路上设置有所述第一高频产生装置,所述空气输入支路上设置有所述第二高频产生装置;
    所述第一高频产生装置和所述第二高频产生装置,在所述医用通气设备处于高频吸气阶段时,将所述氧气输入支路中的氧气和所述空气输入支路中的空气形成所述高频振荡。
  14. 根据权利要求1至12中任意一项所述的医用通气设备,其中,所述吸气支路包括氧气输入支路和空气输入支路,所述氧气输入支路上设置有第一单向进气装置,所述空气输入支路上设置有第二单向进气装置;
    所述第一单向进气装置,控制输入到所述氧气输入支路中的氧气的流量;
    所述第二单向进气装置,控制输入到所述空气输入支路中的空气的流量;
    所述高频振荡产生设备,将所述氧气输入支路中输入的氧气和所述空气输入支路中输入的空气形成高频振荡。
  15. 根据权利要求1至14中任意一项所述的医用通气设备,其中,所述医用通气设备还包括:
    输出能力获取装置,获取所述医用通气设备的当前输出能力;
    采集装置,还在所述医用通气设备的当前输出能力为所述医用通气设备的最大输出能力时,获取所述呼吸回路对应的平均压力;
    所述控制器,还在所述平均压力没有达到目标平均压力时,降低所述医用通气设备的目标振幅,所述目标振幅为高频吸气阶段时所述呼吸回路对应的预设高压与高频呼气阶段时所述呼吸回路对应的预设低压之差。
  16. 根据权利要求15所述的医用通气设备,其中,所述控制器,用于若高频呼气阶段时所述呼吸回路中的压力使所述平均压力没有达到目标平均压力,提高所述预设低压;以及用于若高频吸气阶段时所述呼吸回路中的压力使所述平均压力没有达到目标平均压力,降低所述预设高压。
  17. 根据权利要求15或16所述的医用通气设备,其中,所述医用通气设备还包括:提示装置;
    所述控制器,还用于若降低所述医用通气设备的目标振幅后的预设时间内所述平均压力持续没有达到所述目标平均压力,控制所述提示装置输出提示信息。
  18. 根据权利要求15至17中任意一项所述的医用通气设备,其中,所述控制器,还用于若所述平均压力达到所述目标平均压力,以所述目标振幅对所述呼吸回路进行控制;
    或者
    所述控制器,还用于若所述医用通气设备的当前输出能力没有达到所述医用通气设备的最大输出能力,以所述目标振幅对所述呼吸回路进行控制。
  19. 根据权利要求15至18中任意一项所述的医用通气设备,其中,所述输出能力获取装置包括电参数采集单元,所述电参数采集单元,采集所述医用通气设备当前的工作电流或工作电压,所述工作电流或工作电压用于表明所述医用通气设备的当前输出能力。
  20. 根据权利要求1至19中任意一项所述的医用通气设备,其中,所述医用通气设备还包括:
    工作参数获取装置,医用通气设备获取设置于所述气源接口和所述呼吸回路中的各个装置的工作参数;
    采集装置,还在形成所述高频振荡过程中获取所述呼吸回路中的压力;
    所述控制器,还根据所述呼吸回路中的压力得到所述呼吸回路对应的压力振幅,若所述呼吸回路对应的压力振幅没有达到目标振幅,对所述各个装置的工作参数进行调整,所述目标振幅为高频吸气阶段时所述呼吸回路对应的预设高压与高频呼气阶段时所述呼吸回路对应的预设低压之差。
  21. 根据权利要求20所述的医用通气设备,其中,所述控制器,用于若所述呼吸回路对应的压力振幅没有达到所述目标振幅,根据所述呼吸回路对应的压力振幅与所述目标振幅的差值,得到所述各个装置的工作参数的补偿参数,所述各个装置的工作参数的补偿参数用于对所述各个装置的工作参数进行调整。
  22. 根据权利要求20或21所述的医用通气设备,其中,所述控制器,用于若所述呼吸回路对应的压力振幅小于所述目标振幅,提高所述呼吸回路对应的压力振幅;以及用于若所述呼吸回路对应的压力振幅大于所述目标振幅,减小所述呼吸回路对应的压力振幅。
  23. 一种医用通气设备的控制方法,所述医用通气设备包括气源接口、呼吸回路、高频振荡产生设备和控制器,所述呼吸回路上设置有排气装置,所述呼吸回路分别连接气源接口和与患者呼吸系统连接的病人管路,其中所述控制器执行所述控制方法,所述控制方法包括:
    通过所述高频振荡产生设备,将所述呼吸回路的吸气支路中的气体形成高频振荡;
    在所述医用通气设备处于高频呼气阶段时,控制所述排气装置高频排出患者通过所述病人管路呼出的气体。
  24. 根据权利要求23所述的控制方法,其中,所述方法还包括:
    通过呼吸回路上的采集装置采集所述呼吸回路中的压力;
    根据所述呼吸回路中的压力,控制所述排气装置的排气流量。
  25. 根据权利要求24所述的控制方法,其中,所述呼吸回路中的压力为设置在所述呼吸回路上的压力发生器产生的压力,所述压力发生器在流经所述病人管路的气体的作用下产生压力。
  26. 根据权利要求23所述的控制方法,其中,所述方法还包括:
    在所述医用通气设备处于高频吸气阶段时,控制所述排气装置停止排气。
  27. 根据权利要求23至26中任意一项所述的控制方法,其中,所述排气装置包括可阻断所述呼吸回路的开关元件和控制所述开关元件高频开合的驱动装置。
  28. 根据权利要求27所述的控制方法,其中,所述开关元件包括比例排气阀或开关阀或电磁阀。
  29. 根据权利要求27或28所述的控制方法,其中,所述在所述医用通气设备处于高频呼气阶段时,控制所述排气装置高频排出患者通过所述病人管路呼出的气体包括:
    在所述医用通气设备处于高频呼气阶段时,根据所述呼吸回路中的压力,向所述驱动装置发送驱动信号;
    通过所述驱动装置根据所述驱动信号控制所述开关元件的排气口的打开角度、开启频率和开启持续时间中的至少一种。
  30. 根据权利要求29所述的控制方法,其中,所述在所述医用通气设备处于高频呼气阶段时,根据所述呼吸回路中的压力,向所述驱动装置发送驱动信号包括:
    根据所述呼吸回路中的压力,生成用于控制所述排气装置的控制波形;
    向所述驱动装置发送作为所述驱动信号的控制波形。
  31. 根据权利要求30所述的控制方法,其中,所述控制波形为正弦波、余弦波、方波、三角波、指数函数波形和N次函数波形中的任意一种,N大于等于2。
  32. 根据权利要求31所述的控制方法,其中,所述控制波形的占空比与所述呼吸回路中的压力相关联。
  33. 根据权利要求27至32中任意一项所述的控制方法,其中,所述排气装置还包括涡轮负压装置,所述在所述医用通气设备处于高频呼气阶段时,控制所述排气装置高频排出患者通过所述病人管路呼出的气体还包括:
    通过所述涡轮负压装置向所述开关元件提供负压吸引,以使病人管路中的气体依次经过所述开关元件和所述涡轮负压装置排出。
  34. 根据权利要求25至33中任意一项所述的控制方法,其中,所述方法还包括:
    在所述医用通气设备处于高频呼气阶段时和/或处于高频吸气阶段时,通过所述压力发生器排气。
  35. 根据权利要求23至34中任意一项所述的控制方法,其中,所述吸气支路包括氧气输入支路和空气输入支路,所述高频振荡产生设备包括第一高频产生装置和第二高频产生装置;所述氧气输入支路上设置有所述第一高频产生装置,所述空气输入支路上设置有所述第二高频产生装置;
    所述通过高频振荡产生设备将呼吸回路的吸气支路中的气体形成高频振荡包括:通过所述第一高频产生装置和所述第二高频产生装置,在所述医用通气设备处于高频吸气阶段时,将所述氧气输入支路中的氧气和所述空气输入支路中的空气形成所述高频振荡。
  36. 根据权利要求23至34中任意一项所述的控制方法,其中,所述吸气支路包括氧气输入支路和空气输入支路,所述氧气输入支路上设置有第一单向进气装置,所述空气输入支路上设置有第二单向进气装置;
    所述方法还包括:
    通过所述第一单向进气装置控制输入到所述氧气输入支路中的氧气的流量,以及通过所述第二单向进气装置,控制输入到所述空气输入支路中的空气的流量;
    所述通过高频振荡产生设备将呼吸回路的吸气支路中的气体形成高频振荡包括:通过所述高频振荡产生设备将所述氧气输入支路中输入的氧气和所述空气输入支路中输入的空气形成高频振荡。
  37. 根据权利要求23至36中任意一项所述的控制方法,其中,所述方法还包括:
    获取所述医用通气设备的当前输出能力;
    在所述医用通气设备的当前输出能力为所述医用通气设备的最大输出能力时,获取所述呼吸回路对应的平均压力;
    在所述平均压力没有达到目标平均压力时,降低所述医用通气设备的目标振幅,所述目标振幅为高频吸气阶段时所述呼吸回路对应的预设高压与高频呼气阶段时所述呼吸回路对应的预设低压之差。
  38. 根据权利要求37所述的控制方法,其中,所述在所述平均压力没有 达到目标平均压力时,降低所述医用通气设备的目标振幅包括:
    若高频呼气阶段时所述呼吸回路中的压力使所述平均压力没有达到目标平均压力,提高所述预设低压;
    若高频吸气阶段时所述呼吸回路中的压力使所述平均压力没有达到目标平均压力,降低所述预设高压。
  39. 根据权利要求37或38所述的控制方法,其中,所述方法还包括:
    若降低所述控制方法的目标振幅后的预设时间内所述平均压力持续没有达到所述目标平均压力,控制所述医用通气设备中的提示装置输出提示信息。
  40. 根据权利要求37至39中任意一项所述的控制方法,其中,所述方法还包括:若所述平均压力达到所述目标平均压力,以所述目标振幅对所述呼吸回路进行控制;
    或者
    所述方法还包括:若所述医用通气设备的当前输出能力没有达到所述医用通气设备的最大输出能力,以所述目标振幅对所述呼吸回路进行控制。
  41. 根据权利要求37至40中任意一项所述的控制方法,其中,所述医用通气设备当前的工作电流或工作电压表明所述医用通气设备的当前输出能力。
  42. 根据权利要求23至41中任意一项所述的控制方法,其中,所述方法还包括:
    获取设置于所述气源接口和所述呼吸回路中的各个装置的工作参数;
    在形成所述高频振荡过程中获取所述呼吸回路中的压力;
    根据所述呼吸回路中的压力得到所述呼吸回路对应的压力振幅;
    若所述呼吸回路对应的压力振幅没有达到目标振幅,对所述各个装置的工作参数进行调整,所述目标振幅为高频吸气阶段时所述呼吸回路对应的预设高压与高频呼气阶段时所述呼吸回路对应的预设低压之差。
  43. 根据权利要求42所述的控制方法,其中,所述若所述呼吸回路对应的压力振幅没有达到目标振幅,对所述各个装置的工作参数进行调整包括:
    若所述呼吸回路对应的压力振幅没有达到所述目标振幅,根据所述呼吸回路对应的压力振幅与所述目标振幅的差值,得到所述各个装置的工作参数的补偿参数,所述各个装置的工作参数的补偿参数用于对所述各个装置的工作参数 进行调整。
  44. 根据权利要求42或43所述的控制方法,其中,所述根据所述呼吸回路对应的压力振幅与所述目标振幅的差值,得到所述各个装置的工作参数的补偿参数包括:
    若所述呼吸回路对应的压力振幅小于所述目标振幅,提高所述呼吸回路对应的压力振幅;
    若所述呼吸回路对应的压力振幅大于所述目标振幅,减小所述呼吸回路对应的压力振幅。
  45. 一种计算机可读存储介质,所述计算机可读存储介质上存储有可执行指令,配置为引起处理器执行所述可执行指令时,实现如权利要求23至44中任意一项所述的医用通气设备的控制方法。
PCT/CN2020/075940 2020-02-20 2020-02-20 医用通气设备、控制方法与计算机可读存储介质 WO2021163946A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/075940 WO2021163946A1 (zh) 2020-02-20 2020-02-20 医用通气设备、控制方法与计算机可读存储介质
CN202080096566.2A CN115087478A (zh) 2020-02-20 2020-02-20 医用通气设备、控制方法与计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/075940 WO2021163946A1 (zh) 2020-02-20 2020-02-20 医用通气设备、控制方法与计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2021163946A1 true WO2021163946A1 (zh) 2021-08-26

Family

ID=77390342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075940 WO2021163946A1 (zh) 2020-02-20 2020-02-20 医用通气设备、控制方法与计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN115087478A (zh)
WO (1) WO2021163946A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113730754A (zh) * 2021-09-14 2021-12-03 厦门医学院附属第二医院 一种硬质支气管镜气压控制喷射通气辅助装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN88102278A (zh) * 1988-04-18 1988-10-19 江西医学院第一附属医院 排除气管内二氧化碳的呼气装置
US5555880A (en) * 1994-01-31 1996-09-17 Southwest Research Institute High frequency oscillatory ventilator and respiratory measurement system
CN101534886A (zh) * 2006-03-15 2009-09-16 卡地纳健康207有限公司 用于高频振荡通气机的闭环控制系统
CN108273168A (zh) * 2018-04-04 2018-07-13 福建医科大学附属第医院 气管内手术用高频通气导气装置及其工作方法
CN110464949A (zh) * 2019-08-29 2019-11-19 宁波戴维医疗器械股份有限公司 一种高频呼吸机系统
CN110464951A (zh) * 2019-08-29 2019-11-19 宁波戴维医疗器械股份有限公司 一种高频呼吸机系统及通气控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN88102278A (zh) * 1988-04-18 1988-10-19 江西医学院第一附属医院 排除气管内二氧化碳的呼气装置
US5555880A (en) * 1994-01-31 1996-09-17 Southwest Research Institute High frequency oscillatory ventilator and respiratory measurement system
CN101534886A (zh) * 2006-03-15 2009-09-16 卡地纳健康207有限公司 用于高频振荡通气机的闭环控制系统
CN108273168A (zh) * 2018-04-04 2018-07-13 福建医科大学附属第医院 气管内手术用高频通气导气装置及其工作方法
CN110464949A (zh) * 2019-08-29 2019-11-19 宁波戴维医疗器械股份有限公司 一种高频呼吸机系统
CN110464951A (zh) * 2019-08-29 2019-11-19 宁波戴维医疗器械股份有限公司 一种高频呼吸机系统及通气控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113730754A (zh) * 2021-09-14 2021-12-03 厦门医学院附属第二医院 一种硬质支气管镜气压控制喷射通气辅助装置
CN113730754B (zh) * 2021-09-14 2023-08-22 厦门医学院附属第二医院 一种硬质支气管镜气压控制喷射通气辅助装置

Also Published As

Publication number Publication date
CN115087478A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
RU2585137C2 (ru) Аппарат искусственной вентиляции легких с интегрированной воздуходувкой
CN103893865B (zh) 一种呼吸机涡轮容量控制通气的方法
JP5735577B2 (ja) 共有システムおよび方法
JP6431033B2 (ja) デュアル圧力センサ患者用換気装置
EP2976124B1 (en) Portable ventilator secretion management system
CN110464951B (zh) 一种高频呼吸机系统及通气控制方法
CN111821552A (zh) 一种用于医院和家庭环境的多功能呼吸治疗系统及方法
RU2550661C2 (ru) Система и способ контроля утечки из контура, доставляющего субъекту находящийся под давлением поток пригодного для дыхания газа
WO2021163946A1 (zh) 医用通气设备、控制方法与计算机可读存储介质
JP5415597B2 (ja) 人工呼吸器を運転する方法
CN110464950A (zh) 一种高频呼吸机系统及通气控制方法
JP2005245825A (ja) 呼吸用気体供給装置
CN110464945B (zh) 一种高频呼吸机的系统、通气控制方法及装置
CN112704789B (zh) 一种高频震荡呼吸气流产生方法及呼吸支持设备
CN110464946B (zh) 一种高频呼吸机系统及控制方法
CN110464949B (zh) 一种高频呼吸机系统
WO2021179215A1 (zh) 一种呼吸通气系统及方法
EP4228727A1 (en) Cpap kit to support breathing
WO2021232268A1 (zh) 医用通气设备、控制方法及存储介质
CN110464948B (zh) 一种高频振荡模块的控制方法、装置及高频呼吸机
CN104874070B (zh) 变压无创正压通气方法及应用该方法的医用呼吸机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920654

Country of ref document: EP

Kind code of ref document: A1