WO2020036443A1 - 저마찰 수지 복합체 - Google Patents

저마찰 수지 복합체 Download PDF

Info

Publication number
WO2020036443A1
WO2020036443A1 PCT/KR2019/010385 KR2019010385W WO2020036443A1 WO 2020036443 A1 WO2020036443 A1 WO 2020036443A1 KR 2019010385 W KR2019010385 W KR 2019010385W WO 2020036443 A1 WO2020036443 A1 WO 2020036443A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
resin composite
compound
low friction
Prior art date
Application number
PCT/KR2019/010385
Other languages
English (en)
French (fr)
Inventor
안기호
박종성
김상우
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190099149A external-priority patent/KR102202060B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP19849172.2A priority Critical patent/EP3741808B1/en
Priority to US16/976,701 priority patent/US11905371B2/en
Priority to CN201980015536.1A priority patent/CN111819244B/zh
Priority to JP2020545652A priority patent/JP7039109B2/ja
Publication of WO2020036443A1 publication Critical patent/WO2020036443A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines

Definitions

  • the present invention relates to a resin composite having low friction properties and excellent heat resistance and a material for relative friction parts using the same.
  • Friction parts made from these plastic materials are self-lubricating, which greatly helps to reduce the losses due to friction.
  • high heat-resistant super-engineering such as PEEK (polyether ether ketone), PAI (polyamide imide), PI (polyimide), etc., which have high heat resistance and low friction characteristics as relative friction parts such as bearings, bushings, thrust washers, or oil seals.
  • Plastic is mainly used.
  • PEEK polyether ether ketone
  • PAI polyamide imide
  • PI polyimide
  • the present invention is to provide a low friction resin composite having high heat resistance and excellent processability and exhibiting improved low friction properties.
  • the present invention is to provide a material for counter friction parts manufactured using the low friction resin composite.
  • a binder comprising a phthalonitrile-based resin and a low friction resin composite including three or more fillers on the binder.
  • a low friction resin composite comprising a binder comprising a phthalonitrile-based resin and at least three fillers dispersed on the binder is provided.
  • a resin composite including a binder containing a phthalonitrile-based resin and three or more fillers dispersed on the binder may exhibit improved low friction properties while having excellent heat resistance and processability. It became.
  • the low friction resin composite makes it possible to provide a material for relative friction parts having excellent durability and low friction characteristics even in an ultrahigh pressure and high speed environment.
  • the low friction resin composite includes a phthalonitrile resin as a binder.
  • the binder including the phthalonitrile-based resin, the composition containing the phthalonitrile compound may be one that is cured by at least one curing agent selected from the group consisting of amine compound, hydroxy compound and imide compound have.
  • the phthalonitrile compound has two or more, or 2 to 20, or 2 to 16, or 2 to 12 phthalonitrile structures capable of forming a phthalonitrile resin through reaction with the curing agent. It may be a compound containing 2 to 8, or 2 to 4.
  • the phthalonitrile compound may be at least one compound selected from the group consisting of a compound represented by the average composition formula of Formula 1 and a compound represented by the average composition formula of Formula 5.
  • R 11 are each independently a substituent of Formula 2,
  • Each R 12 is independently hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, or an aryl group,
  • d, e and f are zero or a positive number
  • R 21 to R 25 are each independently hydrogen, an alkyl group, an alkoxy group, a hydroxy group, a cyano group, or a substituent of Formula 3 below, wherein at least one of R 21 to R 25 is a substituent of Formula 3 below;
  • R 31 to R 35 are each independently hydrogen, an alkyl group, an alkoxy group, a hydroxy group, or a cyano group, and at least two of R 31 to R 35 are cyano groups.
  • phthalonitrile compound is represented by a specific average composition formula means that the phthalonitrile compound is a single compound represented by the composition formula.
  • the phthalonitrile compound represented by a specific average composition formula means that the phthalonitrile compound is a mixture of two or more different compounds and is represented by the composition formula when the average of the composition represented by the mixture is taken. do.
  • the compound represented by the average compositional formula of Formula 1 is a polymer or oligomeric compound, for example, the weight average molecular weight (Mw) is 1000 to 50000 g / mol, or 2500 to 35000 g / mol, or 4000 to 20000 g / mol, or in the range of 6000 to 9000 g / mol.
  • Mw weight average molecular weight
  • Compound represented by the average composition formula of Formula 1 has a weight average molecular weight in the above range, it is possible to provide a polymerizable composition having a low processing temperature and / or a wide process window.
  • weight average molecular weight is a conversion value with respect to standard polystyrene measured using a gel permeation chromatograph (GPC), and the term molecular weight herein means weight average molecular weight unless otherwise specified.
  • molecular weight is measured using an Agilent PL-GPC 220 instrument equipped with a PLgel MIXED-B column (Polymer Laboratories) of 300 mm length. The measurement temperature was 160 ° C., 1,2,4-trichlorobenzene was used as the solvent and the flow rate was measured at a rate of 1 mL / min. Samples are prepared at a concentration of 10 mg / 10 mL and then supplied in an amount of 200 ⁇ L. The values of Mw and Mn are derived based on the calibration curve formed using the polystyrene standard. The molecular weight (g / mol) of the polystyrene standard uses 9 kinds of 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000.
  • the compound represented by the average composition formula of Formula 1 may be a compound represented by the following formula (4):
  • R 11 and R 12 are each as defined in Chemical Formula 1,
  • n and m are each a number selected in the range of 1 to 100 and satisfy 2 ⁇ n + m ⁇ 100.
  • n + m is 2 to 100, or 2 to 80, or 2 to 50.
  • the compound satisfying the range of n + m makes it possible to provide a polymerizable composition having excellent processability.
  • R 51 is a substituent of Formula 6,
  • Each R 52 is independently hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, or an aryl group,
  • a is a number in the range of 0.01 to 0.4
  • b is a number in the range of 0.5 to 4.
  • R 61 to R 65 are each independently hydrogen, an alkyl group, an alkoxy group, a hydroxy group, a cyano group, or a substituent of Formula 7, wherein at least one of R 61 to R 65 is a substituent of Formula 7;
  • R 71 to R 75 are each independently hydrogen, an alkyl group, an alkoxy group, a hydroxy group, or a cyano group, and at least two of R 71 to R 75 are cyano groups.
  • the compound represented by the average compositional formula of Formula 7 is a compound in the form of a polymer or oligomer, for example, the weight average molecular weight (Mw) of 700 to 7000 g / mol, or 700 to 6500 g / mol, or 700 to 5800 g / mol, or in the range of 700 to 5000 g / mol.
  • Mw weight average molecular weight
  • Compound represented by the average formula of Formula 7 has a weight average molecular weight in the above range, it is possible to provide a polymerizable composition having a low processing temperature and / or a wide process window.
  • the compound represented by the average composition formula of Formula 7 may be a compound represented by the following formula (8):
  • R 51 and R 52 are the same as defined in Chemical Formula 5,
  • n is a number in the range of 3 to 100.
  • N in Formula 8 is 5 or more, or 7 or more; And 95 or less, 90 or less, 85 or less, 80 or less, 75 or less, 70 or less, 65 or less, or 60 or less.
  • the phthalonitrile compound may be a compound represented by the following formula (P1).
  • R R P11 to P16 each independently represent a hydrogen, an alkoxy group of the alkyl group, C 1-5 of C 1-5, an aryl group, a group the formula P2, P3 or the formula a group of C 6-30 , At least two of R P11 to R P16 may be represented by the following Chemical Formula P2 group or Chemical Formula P3 group,
  • R R P21 to P25 are two or more of each independently represent a hydrogen, an alkoxy group, an aryl group, a cyano group, a C 6-30 alkyl group a, C 1-5 of C 1-5, the R R P21 to P25 is a cyano group to be,
  • R R P31 to P35 are each independently a hydrogen, an alkyl group, an alkoxy group, an aryl group, the P2 group of the formula C 6-30 of C 1-5, and one or more of the R R P31 to P35 of the C 1-5 is The above formula is P2 group.
  • an "alkyl group” may be straight or branched chain.
  • the alkyl group has 1 to 5 carbon atoms or 1 to 3 carbon atoms.
  • the alkyl group is methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, n- Pentyl, isopentyl, neopentyl, tert-pentyl and the like.
  • an "aryl group” may be a monocyclic aryl group or a polycyclic aryl group.
  • the aryl group has 6 to 30 carbon atoms.
  • the aryl group may be a phenyl group, a biphenyl group, terphenyl group, naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, perrylenyl group, chrysenyl group, fluorenyl group and the like.
  • direct bond means that no atoms are present in the group and groups on both sides are directly connected to each other.
  • the phthalonitrile compound may be a compound represented by the following formula P1 '.
  • a compound in which L P2 is -O- and L P3 is a direct bond or a methylene group may be used as the phthalonitrile compound.
  • examples of the phthalonitrile compounds include U.S. Patent 4,408,035, U.S. Patent 5,003,039, U.S. Patent 5,003,078, U.S. Patent 5,004,801, U.S. Patent 5,132,396, U.S. Patent 5,139,054 Compounds known in US Pat. No. 5,208,318, US Pat. No. 5,237,045, US Pat. No. 5,292,854, or US Pat. No. 5,350,828, and the like. Compounds can be included in the examples above.
  • the curing agent of the phthalonitrile compound is not particularly limited as long as it can react with the phthalonitrile compound to form a phthalonitrile resin.
  • one or more compounds selected from the group consisting of amine compounds, hydroxy compounds and imide compounds may be used as the curing agent.
  • the amine compound, the hydroxy compound and the imide compound mean a compound including at least one amino group, hydroxy group and imide group in the molecule, respectively.
  • the curing agent may be an imide compound represented by Formula 9 below:
  • M is a tetravalent radical derived from an aliphatic, alicyclic or aromatic compound
  • X 1 and X 2 are each independently a divalent radical derived from an alkylene group, an alkylidene group, or an aromatic compound,
  • n is a number of 1 or more.
  • the imide-based compound represented by Formula 9 exhibits excellent heat resistance by including an imide structure in a molecule, so that it is excessively contained in the polymerizable composition or adversely affects physical properties even when the polymerizable composition is processed or cured at a high temperature. Do not cause defects such as voids that may be caused.
  • M may be a tetravalent radical derived from an aliphatic, alicyclic or aromatic compound.
  • radicals formed by leaving four hydrogen atoms in a molecule may each have a structure in which a carbon atom of the carbonyl group of Formula 9 is connected.
  • alkane, alkenes, or alkynes which are linear or branched may be exemplified.
  • alkanes, alkenes, or alkynes having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms may be used.
  • the alkanes, alkenes, or alkynes may be optionally substituted by one or more substituents.
  • Examples of the alicyclic compound include hydrocarbon compounds having a non-aromatic ring structure having 3 to 20 carbon atoms, 3 to 16 carbon atoms, 3 to 12 carbon atoms, 3 to 8 carbon atoms, or 3 to 4 carbon atoms.
  • Such an alicyclic hydrocarbon compound may include at least one hetero atom, such as oxygen or nitrogen, as a ring constituent atom, and may be optionally substituted with one or more substituents if necessary.
  • aromatic compound benzene, the compound containing benzene, or derivatives thereof can be illustrated.
  • compound including the benzene a compound having a structure in which two or more benzene rings are condensed while sharing one or two carbon atoms, or connected by a directly linked structure or an appropriate linker.
  • L 1 to L 8 may be each independently a single bond, —O—, an alkylene group, or an alkylidene group, and Ar 1 and Ar 2 may each independently be an arylene group.
  • the aromatic compound may include, for example, 6 to 30, 6 to 28, 6 to 27, 6 to 25, 6 to 20 or 6 to 12 carbon atoms. It may be substituted by one or more substituents if necessary.
  • the number of carbon atoms of the aromatic compound is a number including the carbon atoms present in the linker when the compound contains the linker described above.
  • M may be a tetravalent radical derived from an alkane, alkene, or alkyne, or a tetravalent radical derived from a compound represented by one of the following Formulas 10 to 15:
  • R 101 to R 106 are each independently hydrogen, an alkyl group, an alkoxy group, or an aryl group;
  • R 111 to R 118 are each independently hydrogen, an alkyl group, an alkoxy group, or an aryl group;
  • R 120 to R 129 are each independently hydrogen, an alkyl group, an alkoxy group, or an aryl group,
  • a single bond means a case where an atom does not exist in the portion. Therefore, when X in Formula 12 is a single bond, it means a case where no atom is present in the moiety represented by X. In this case, the benzene rings on both sides of X may be directly connected to form a biphenyl structure.
  • L 5 - in L 1 to L 5 are each independently, having 1 to 12 carbon atoms, having 1 to 8 carbon atoms, or carbon atoms can be an 1 alkylene group or alkylidene of 1 to 4, wherein the alkylene group or alkylidene group is a substituted or unsubstituted It may be.
  • L 6 and L 8 may be -O-, L 7 has 1 to 12 carbon atoms, and 1 to 1 carbon atoms. Or an alkylene group or an alkylidene group having 1 to 4 carbon atoms, and the alkylene group or alkylidene group may be substituted or unsubstituted.
  • Ar 1 and Ar 2 may be a phenylene group, in which case L 6 and L 8 based on L 7 may be connected to the ortho, meta or para position of the phenylene, respectively.
  • R 131 to R 134 are each independently hydrogen, an alkyl group, or an alkoxy group, two of R 131 to R 134 may be connected to each other to form an alkylene group,
  • A is an alkylene group or alkenylene group, wherein the alkylene group or alkenylene group of A may contain one or more oxygen atoms as a hetero atom;
  • R 141 to R 144 are each independently hydrogen, an alkyl group, or an alkoxy group, and A is an alkylene group;
  • R 150 to R 159 are each independently hydrogen, an alkyl group, or an alkoxy group.
  • the tetravalent radical derived from the compound represented by the above formulas (10) to (15) is formed by directly leaving the substituents of the above formulas (10) to (15), or in the examples of the substituents, an alkyl group, an alkoxy group, an aryl group, an alkylene group or an alkenylene group
  • the belonging hydrogen atom may be separated and formed.
  • the tetravalent radical when the tetravalent radical is derived from a compound of Formula 10, at least one, at least two, at least three or four of R 101 to R 106 of Formula 10 form a radical or R 101 To a hydrogen atom of the alkyl group, alkoxy group, or aryl group present in R 106 may be released to form a radical.
  • Forming a radical in the above may mean that the site is connected to the carbon atom of the carbonyl group of formula 9 as described above.
  • R 120 to R 129 of Formula 12 each independently represent a hydrogen, an alkyl group, an alkoxy group or an aryl group, and at least one, at least two, and at least three Or more or four may form a radical linked to formula (9).
  • Each of which does not form a radical in the above may be hydrogen, an alkyl group or an alkoxy group, or may be hydrogen or an alkyl group.
  • any two of R 127 to R 129 and any two of R 122 to R 124 may form the radical, and the other substituents are each independently hydrogen, an alkyl group, an alkoxy group, or an aryl group, It may be a hydrogen, an alkyl group or an alkoxy group, or may be a hydrogen or an alkyl group.
  • the compound represented by Formula 10 may be benzene or 1,2,4,5-tetraalkylbenzene.
  • the compound represented by Formula 12 may be biphenyl or a compound represented by one of the following Formulas A to F:
  • the compound represented by Formula 13 may be a cycloalkane having 4 to 8 carbon atoms such as cyclohexane, a cycloalkene having 4 to 8 carbon atoms such as cyclohexene which may be substituted with one or more alkyl groups, or any one of the following Formulas G to I It may be a compound represented by the formula:
  • the compound represented by Chemical Formula 14 may be represented by Chemical Formula J or a compound in which at least one hydrogen of the compound represented by Chemical Formula J is substituted with an alkyl group:
  • X 1 and X 2 may each independently be a divalent radical derived from an aromatic compound.
  • X 1 and X 2 may each independently be a divalent radical derived from an aromatic compound having 6 to 40 carbon atoms. The divalent radical derived from the said aromatic compound is replaced by the content mentioned above.
  • X 1 and X 2 may each independently be a divalent radical derived from a compound represented by any one of Formulas 16 to 18:
  • R 161 to R 166 are each independently hydrogen, an alkyl group, an alkoxy group, an aryl group, a hydroxy group, or a carboxyl group;
  • R 170 to R 179 are each independently hydrogen, an alkyl group, an alkoxy group, an aryl group, a hydroxy group, or a carboxyl group,
  • R 180 to R 189 are each independently hydrogen, an alkyl group, an alkoxy group, an aryl group, a hydroxy group, or a carboxyl group.
  • the divalent radical derived from the compound represented by the above formulas (16) to (18) is formed by directly leaving the substituents of the above formulas (16) to (18), or in the examples of the substituents, an alkyl group, an alkoxy group, an aryl group, an alkylene group or an alkenylene group.
  • the hydrogen atom to which it belongs may leave and formed.
  • the substitution position of the amine group based on the site linked to N in X 1 of Formula 9 is represented by ortho ( ortho, meta or para position, and the substitution position of the amine group based on the site linked to N in X 2 of Formula 9 is also ortho, meta or para. (para) location.
  • R 177 of Formula 17 may form a radical connected to a nitrogen atom of Formula 9.
  • Other substituents other than the substituents forming the radicals may each independently be hydrogen, an alkyl group, an alkoxy group or an aryl group, a hydrogen, an alkyl group or an alkoxy group, or may be a hydrogen or an alkyl group.
  • the compound represented by Formula 16 is benzene which may be substituted with at least one hydroxy group or carboxyl group.
  • the compound represented by Formula 17 may be a biphenyl which may be substituted with at least one hydroxy group or a carboxyl group, a compound that may be substituted with at least one hydroxy group or a carboxyl group while being represented by any one of Formulas A to F, or the following Formula It is a compound which may be substituted with at least one hydroxy group or carboxyl group represented by K or M.
  • the compound represented by Chemical Formula 18 is a compound represented by the following Chemical Formula N, or at least one of hydrogen of the compound represented by the following Chemical Formula N is substituted with a hydroxyl group or a carboxyl group:
  • the alkyl group may be an alkyl group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms, unless otherwise specified.
  • the alkyl group may be linear, branched, or cyclic and may be substituted by one or more substituents if necessary.
  • the alkoxy group may be an alkoxy group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms, unless otherwise specified.
  • the alkoxy group may be linear, branched, or cyclic and may be substituted by one or more substituents if necessary.
  • an aryl group may mean a monovalent moiety derived from the aforementioned aromatic compound, unless otherwise specified.
  • an alkylene group or an alkylidene group is an alkylene group or an alkylidene group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms, unless otherwise specified. Can mean.
  • the alkylene group or alkylidene group may be linear, branched, or cyclic.
  • the alkylene group or alkylidene group may be optionally substituted with one or more substituents.
  • substituent which may be optionally substituted with an aliphatic compound, an alicyclic compound, an aromatic compound, an alkyl group, an alkoxy group, an aryl group, an alkylene group, or an alkylidene group, halogen, glycine such as chlorine or fluorine Epoxy groups, such as a dill group, an epoxy alkyl group, a glycidoxy alkyl group, or an alicyclic epoxy group, an acryloyl group, a methacryloyl group, an isocyanate group, a thiol group, an alkyl group, an alkoxy group, an aryl group, etc. can be illustrated.
  • n means the number of imide repeat units, 2 to 200, 2 to 150, 2 to 100, 2 to 90, 2 to 80, 2 to 70, 2 to 60, 2 to 50, 2 It may be a number in the range from 40 to 2, 30 to 20, or 2 to 10.
  • n 2 or more in Formula 9, that is, when the compound of Formula 9 is a polyimide compound, it may be more advantageous in terms of heat resistance and strength. Therefore, in the case of the material for counter friction parts including phthalonitrile resin cured using a polyimide compound, it has higher heat resistance and can prevent deformation and fusion of phthalonitrile resin under high pressure and high pressure conditions, and higher strength This can result in low wear and high durability.
  • the curing agent may be a compound represented by Formula C1 or Formula C2.
  • L 1 to L 8 are each independently a direct bond, -O-, or a C 1-5 alkylene group
  • Ar 1 and Ar 2 are each independently a C 6-30 arylene group
  • R 90 to R 99 each independently is hydrogen, an alkoxy group, an aryl group, a hydroxy group of a C 6-30 alkyl group, C 1-5 of C 1-5, or a carboxyl group.
  • the compound represented by Chemical Formula 9 may be synthesized according to a known method for synthesizing an organic compound, and the specific manner thereof is not particularly limited.
  • the compound represented by the formula (9) can be formed by a dehydration condensation reaction of a dianhydride compound and a diamine compound.
  • Compound represented by the formula (9) has a high boiling point, does not volatilize or decompose at high temperatures, thereby maintaining a stable curability of the polymerizable composition, a void that may adversely affect physical properties during high temperature processing or curing process does not form a void.
  • the compound may have a decomposition temperature of 300 ° C. or higher, 350 ° C. or higher, 400 ° C. or higher, or 500 ° C. or higher.
  • the decomposition temperature may mean a temperature at which a decomposition rate of the compound represented by Formula 9 is maintained in a range of 10% or less, 5% or less, or 1% or less.
  • the upper limit of the decomposition temperature is not particularly limited, but may be, for example, about 1000 ° C. or less.
  • the compound represented by the formula (9) is a process window of the reactive or polymerizable composition itself, i.e., melting of the polymerizable composition or a prepolymer formed therefrom by selection of X 1 or X 2 which is M or a linker of the core. Since the difference between temperature and hardening temperature can be adjusted easily, it can act as a hardening
  • the low friction resin composite includes a filler dispersed on the binder as an additive.
  • the filler is dispersed on the binder to reduce the erosion on the opposite surface in the ultra high pressure and ultra high speed environment to enable the expression of wear resistance.
  • the filler may be graphite, polytetrafluoroethylene (PTFE), tungsten disulfide (WS 2 ), molybdenum disulfide (MoS 2 ), and pulverized At least three additives selected from the group consisting of milled carbon fibers (mCF) are preferably applied.
  • PTFE polytetrafluoroethylene
  • WS 2 tungsten disulfide
  • MoS 2 molybdenum disulfide
  • pulverized At least three additives selected from the group consisting of milled carbon fibers (mCF) are preferably applied.
  • the filler comprises graphite; Further comprising at least two additives selected from the group consisting of polytetrafluoroethylene, tungsten disulfide, molybdenum disulfide, and pulverized carbon fibers is advantageous for the expression of the above-mentioned properties.
  • the graphite may be preferably applied by enabling the expression of excellent low friction properties and proper wear resistance while having a relatively low density and cost among the above-described fillers.
  • the low friction resin composite includes a filler
  • Graphite, polytetrafluoroethylene, tungsten disulfide, molybdenum disulfide, and ground carbon fibers can be included.
  • the low friction resin composite may be formed of glass fiber, titanium oxide, antimony trisulfide, antimony trioxide, barium sulfate, calcium hydroxide, calcium carbonate, magnesium oxide, calcium fluoride, silica, alumina, iron oxide, or oxide in addition to the fillers exemplified above. It may further include one or more particles selected from the group consisting of chromium, zirconium oxide, boron nitride, carbon nanotubes, and graphene.
  • the said filler is a powdery additive which has the longest diameter of 0.01-100 micrometers which consists of the above-mentioned raw material.
  • the longest diameter means the diameter of the fine particles.
  • the longest diameter means the longest diameter at the center cut surface of the fine particles.
  • the particle size of the fine particles can be measured using a particle size analyzer (typically available through HORIBA, etc.) according to ASTM E 799-03 (Standard Practice for Determining Data Criteria and Processing for Liquid Drop Size Analysis).
  • the filler When the size of the fine particles constituting the powder is too small, the filler may be easily aggregated during the preparation of the low friction resin composite, thereby making it difficult to express uniform physical properties. In addition, when the size of the fine particles is too small, the number of inner layers of the particles that can be lubricated may be reduced, and thus may not serve as lubricants.
  • the filler may be included in an amount of 1 to 100 parts by weight based on 100 parts by weight of the binder including the phthalonitrile-based resin.
  • the filler is at least 1 part by weight, or at least 5 parts by weight, or at least 10 parts by weight, or at least 20 parts by weight, or at least 30 parts by weight, or at least 40 parts by weight; And 100 parts by weight or less, 90 parts by weight or less, 80 parts by weight or less, or 70 parts by weight or less, or 60 parts by weight or less, or 50 parts by weight or less.
  • the filler is 1 to 100 parts by weight, or 5 to 100 parts by weight, or 5 to 90 parts by weight, or 10 to 90 parts by weight, or 10 to 80 parts by weight, or 15 to 80 parts by weight, or 20 to 80 parts by weight, or 20 to 70 parts by weight, or 30 to 70 parts by weight, or 30 to 60 parts by weight, or 40 to 60 parts by weight.
  • the low friction resin composite When the content of the filler is too small, the low friction resin composite may not have a sufficiently low coefficient of friction and adequate wear resistance. In addition, when the content of the filler is too high, it may not impart sufficient strength to the low friction resin composite, and thus may be destroyed under high speed and high pressure conditions or by impact.
  • the low friction resin composite is based on 100 parts by weight of the binder including the phthalonitrile-based resin; 15 to 30 parts by weight of graphite; 10 to 40 parts by weight of two kinds of additives selected from the group consisting of polytetrafluoroethylene, tungsten disulfide, molybdenum disulfide, and pulverized carbon fibers.
  • the low friction resin composite is based on 100 parts by weight of the binder including the phthalonitrile-based resin; 20 to 25 parts by weight of graphite; 15 to 35 parts by weight of two kinds of additives selected from the group consisting of polytetrafluoroethylene, tungsten disulfide, molybdenum disulfide, and pulverized carbon fibers.
  • the low friction resin composite exhibits a low coefficient of friction under conditions of high pressure and high rotation speed with respect to the friction material, it can be confirmed that it can be applied as a material for relative friction parts of automobiles have.
  • the ASTM D3702 specification is intended to measure the coefficient of friction and wear rate of thrust washer specimens to ensure that they are suitable for use as self-lubricating materials.
  • the friction coefficient and wear rate were measured according to the ASTM D3702 standard using a friction coefficient measuring instrument as shown in FIG. 1.
  • the method of obtaining the coefficient of friction and the wear rate by the ASTM D3702 standard is as follows:
  • the low friction resin composite is fabricated into a test specimen having the size and thickness specified in ASTM D3702.
  • T is the torque applied to the specimen (Nm)
  • r is the radius of the specimen (mm)
  • W is the vertical force (kg).
  • the wear rate is measured by dividing the mass change before and after the experiment by the density, and then the wear volume obtained through this, and the reduced thickness per second based on the reduced thickness obtained by dividing the obtained volume change by the area of the ring (10 -10 m). / s)
  • the low friction resin composite measured friction coefficient for a thrust washer specimen having a contact area of 1.3 cm 2 based on the friction carbon steel under the condition that the PV value was 2.3 MPa ⁇ m / s according to ASTM D3702 standard. Thermal deformation may not occur. That is, the low friction resin composite according to the embodiment can withstand the speed and pressure in a lubricating environment with a PV value of 2.3 MPa ⁇ m / s.
  • the low friction resin composite is a thrust washer specimen having a contact area of 1.3 cm 2 based on the friction material carbon steel under the condition that the PV value is 2.3 MPa ⁇ m / s based on the ASTM D3702 standard.
  • the coefficient of friction in the non-lubricating (self-lubricating) conditions measured for may be 0.175 or less.
  • the friction coefficient under the non-lubricating (self-lubricating) condition may be 0.175 or less, or 0.170 or less, or 0.165 or less.
  • the friction coefficient is 0.050 to 0.175, or 0.055 to 0.175, or 0.055 to 0.170, or 0.060 to 0.170, or 0.060 to 0.165, or 0.065 to 0.165, or 0.070 to 0.165, or 0.075 to 0.165, or 0.080 to 0.165, or 0.085 to 0.165.
  • the low friction resin composite may have a lower coefficient of friction under lubricating conditions to which conventional lubricants are applied.
  • the type and application method of the lubricant are not particularly limited.
  • the low friction resin composite is a thrust washer specimen having a contact area of 1.3 cm 2 based on the frictional carbon steel under the condition that the PV value is 4.6 MPa ⁇ m / s based on the ASTM D3702 standard.
  • the coefficient of friction in the lubrication (lubricant: automotive lubricant) conditions measured for may be 0.060 or less.
  • the friction coefficient under the lubrication conditions may be 0.060 or less, or 0.057 or less, or 0.055 or less.
  • the friction coefficient may be 0.035 to 0.060, or 0.040 to 0.060, or 0.040 to 0.057, or 0.045 to 0.057, or 0.045 to 0.055.
  • the condition of PV value of 2.3 MPa ⁇ m / s can be realized by the pressure (P) of 1.63 MPa and the rotational speed (V) of 1.41 m / s, and the PV value of 4.6 MPa ⁇ m / s.
  • the condition of s can be realized by a pressure P of 1.63 MPa and a rotational speed V of 2.82 m / s.
  • the low friction resin composite may have a processing temperature in the range of 150 to 350 °C.
  • the processing temperature means a temperature at which the low friction resin composite exists in a processable state.
  • the processing temperature may be, for example, a melting temperature (Tm) or a glass transition temperature (Tg).
  • the process window of the low friction resin composite that is, the absolute value of the difference (Tc-Tp) between the processing temperature (Tp) and the curing temperature (Tc) of the phthalonitrile compound and the curing agent is 30 ° C or more, 50 ° C or more, or It may be at least 100 °C.
  • the curing temperature Tc may be higher than the processing temperature Tp. Such a range may be advantageous to secure appropriate processability in the process of producing a material for counter friction parts, for example, using the polymerizable composition.
  • the upper limit of the process window is not particularly limited.
  • the absolute value of the difference (Tc-Tp) between the processing temperature Tp and the curing temperature Tc may be 400 ° C or less or 300 ° C or less.
  • the low friction resin composite may be provided in a prepolymer state.
  • the prepolymer state is a state in which a reaction between the phthalonitrile compound constituting the binder and a curing agent occurs to some extent (for example, a state in which polymerization at the so-called A or B stage stage has occurred), but not attained a fully polymerized state. It can mean a state that can be processed by showing the proper fluidity without.
  • the prepolymer state has a melt viscosity of 10 Pa.s to 100,000 Pa.s, 10 Pa.s to 10,000 Pa.s, or 10 Pa.s to 5,000, measured at a temperature in the range of 150 to 250 ° C. It may mean a state within the range of Pa ⁇ s.
  • the processing temperature of the prepolymer may be in the range of 150 to 350 °C.
  • the processing temperature means a temperature at which the prepolymer exists in a processable state.
  • the low friction resin composite enables to provide a material for relative friction parts having durability and low friction characteristics even in an ultrahigh pressure and ultra high speed environment.
  • Examples of the material for counter friction parts include bearings, bushings, thrust washers, oil seals, piston rings, sliding, rollers, and the like.
  • the relative friction component material may be applied to automobiles, aircrafts, and other industrial materials.
  • the relative friction component material may be manufactured by heating the prepolymer of the low friction resin composite to form a desired shape and then curing it. Processing and curing methods for the production of the material for the frictional component may be performed according to a known method.
  • the low friction resin composite according to the present invention has excellent heat resistance and a low coefficient of friction, thereby making it possible to provide a material for relative friction parts having excellent durability and low friction characteristics.
  • FIG. 1 is an exploded perspective view of a friction coefficient measuring device for measuring a friction coefficient according to ASTM D3702 standard.
  • Compound (CA1) of Formula A14 was synthesized by dehydration of diamine and dianhydride.
  • 24 g of 4,4'-oxydianiline (4,4'-oxydianiline) and 40 g of N-methyl-pyrrolidone (NMP) were added to a three neck round bottom flask (RBF), followed by stirring at room temperature to dissolve. .
  • the water was cooled in a water bath, and 8.7 g of the compound of Formula A15 was slowly added in three portions and 40 g of NMP was added thereto.
  • 16 g of toluene was added to the reaction for azeotrope.
  • Dean-Stark device and reflux condenser were installed, and toluene was charged to Dean-Stark device.
  • the compound of formula A18 was synthesized by dehydration of diamine and dianhydride. 8.1 g of the compound of Formula A16 (m-phenylene diamine) and 50 g of NMP (N-methylpyrrolidone) were added to a three neck round bottom flask (RBF), and the mixture was stirred at room temperature to dissolve. The above was cooled by a water bath, and 26 g of the compound of Formula A17 was gradually divided into three portions and added with 60 g of NMP. When all the added compound was dissolved, 23 g of toluene was added to the reactant for the azeotrope reaction. Dean Stark unit and reflux condenser were installed, and toluene was charged to Dean Stark unit.
  • NMP N-methylpyrrolidone
  • n is about 3.
  • a binder was prepared by mixing 100 parts by weight of Compound (PN1) of Preparation Example 1 and about 0.18 mole of Compound (CA1) of Preparation Example 3 with respect to 1 mol of Compound (PN1).
  • a binder was prepared by mixing 100 parts by weight of Compound (PN1) of Preparation Example 1 and about 0.18 mole of Compound (CA1) of Preparation Example 3 with respect to 1 mol of Compound (PN1).
  • a binder was prepared by mixing 100 parts by weight of Compound (PN1) of Preparation Example 1 and about 0.18 mole of Compound (CA1) of Preparation Example 3 with respect to 1 mol of Compound (PN1).
  • a binder was prepared by mixing 100 parts by weight of Compound (PN1) of Preparation Example 1 and about 0.18 mole of Compound (CA1) of Preparation Example 3 with respect to 1 mol of Compound (PN1).
  • a binder was prepared by mixing 100 parts by weight of Compound (PN1) of Preparation Example 1 and about 0.18 mole of Compound (CA1) of Preparation Example 3 with respect to 1 mol of Compound (PN1).
  • a binder was prepared by mixing 100 parts by weight of Compound (PN1) of Preparation Example 1 and about 0.18 mole of Compound (CA1) of Preparation Example 3 with respect to 1 mol of Compound (PN1).
  • a binder was prepared by mixing 100 parts by weight of Compound (PN1) of Preparation Example 1 and about 0.18 mole of Compound (CA1) of Preparation Example 3 with respect to 1 mol of Compound (PN1).
  • a binder was prepared by mixing 100 parts by weight of Compound (PN1) of Preparation Example 1 and about 0.18 mole of Compound (CA1) of Preparation Example 3 with respect to 1 mol of Compound (PN1).
  • Vespel SP-21 a low friction grade product from DuPont, was obtained and used commercially.
  • the Vespel SP-21 is known to contain 15% by weight of graphite (17.6 parts by weight of graphite based on 100 parts by weight of PI resin) in the polyimide resin.
  • the PEEK 450FC30 is known to contain 30 parts by weight of a filler (a mixture of carbon fiber, graphite and PTFE) based on 100 parts by weight of PolyEtherEtherKetone resin.
  • a binder was prepared by mixing 100 parts by weight of Compound (PN1) of Preparation Example 1 and about 0.18 mole of Compound (CA1) of Preparation Example 3 with respect to 1 mol of Compound (PN1).
  • MoS 2 molybdenum disulfide
  • WS 2 tungsten disulfide
  • PTFE polytetrafluoroethylene
  • a binder was prepared by mixing 100 parts by weight of Compound (PN1) of Preparation Example 1 and about 0.18 mole of Compound (CA1) of Preparation Example 3 with respect to 1 mol of Compound (PN1).
  • pulverized carbon fiber manufactured by Zoltek, 100 ⁇ m in length
  • WS 2 tungsten disulfide
  • PTFE polytetra Fluoroethylene
  • the prepolymer was placed in a mold and melted, and then cured under conditions of 2 hours at 200 ° C., 2 hours at 250 ° C., 2 hours at 300 ° C., and 2 hours at 350 ° C., to provide a thrust washer specimen according to ASTM D3702.
  • the products of Comparative Examples 5 and 6 were cut to produce thrust washer specimens in accordance with ASTM D3702 standards.
  • S45C was prepared as a counterpart carbon steel.
  • S45C is a mechanical structural carbon steel which is a steel material containing 0.45% of carbon according to JIS G4053.
  • PV Value 1 2.3 MPam / s (Pressure (P): 1.63 MPa (16 bar, 220 N), Rotational speed (V): 1.41 m / s (1000 rpm))
  • PV Value 2 4.6 MPam / s (Pressure (P): 1.63 MPa (16 bar, 220 N), Rotational speed (V): 2.82 m / s (1000 rpm))

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 저마찰 수지 복합체에 관한 것이다. 상기 저마찰 수지 복합체는 우수한 내열성과 낮은 마찰 계수를 가져, 우수한 내구도와 저마찰 특성을 갖는 상대마찰 부품용 소재의 제공을 가능하게 한다.

Description

저마찰 수지 복합체
관련 출원과의 상호 인용
본 출원은 2018년 8월 17일자 한국 특허 출원 제10-2018-0096135호 및 2019년 8월 13일자 한국 특허 출원 제10-2019-0099149호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 저마찰 특성을 가지면서, 내열성이 우수한 수지 복합체 및 이를 사용한 상대마찰 부품용 소재에 관한 것이다.
최근 자동차 산업에서는 에너지 효율을 높이기 위하여 경량화와 더불어, 파워 트레인, 드라이브 트레인 등의 에너지 전달부에서의 마찰을 저감시키기 위한 많은 노력이 이루어지고 있다. 이는, 자동차에서 사용되는 연료 중 15%만이 바퀴에 전달되고, 이 중 10%는 구동부 마찰로 인해 손실되기 때문이다.
이에 따라, 구동부 마찰을 저감시키기 위하여, 금속 제품 이외에 플라스틱 재료가 사용되고 있다. 이러한 플라스틱 재료로 제조된 마찰 부품은 자체 윤활성이 있기 때문에 마찰로 인한 손실을 감소시키는 데 큰 도움이 된다. 그러나, 높은 회전과 압력이 발생되는 환경에서는 마찰로 인한 발열로 인하여 플라스틱 재료로 제조된 마찰 부품이 변형되거나 또는 융착되는 문제가 발생한다.
이로 인하여, 베어링, 부싱, 스러스트 와셔, 또는 오일씰 등의 상대 마찰부 부품으로 내열성이 높고 저마찰 특성을 나타내는 PEEK(polyether ether ketone), PAI(polyamide imide), PI(polyimide) 등의 고내열 슈퍼엔지니어링 플라스틱이 주로 사용된다. 하지만, PEEK는 상대적으로 내열성이 낮아 초고압 및 초고속 환경에 노출되는 부품으로 여전히 부적절하고, PAI 및 PI는 낮은 가공성 및 생산성, 또한 높은 가격으로 인하여 부품으로의 적용이 제한적이다.
본 발명은 높은 내열성 및 우수한 가공성을 가지면서 향상된 저마찰 특성을 나타내는 저마찰 수지 복합체를 제공하기 위한 것이다.
그리고, 본 발명은 상기 저마찰 수지 복합체를 사용하여 제조된 상대마찰 부품용 소재를 제공하기 위한 것이다.
본 발명에 따르면, 프탈로니트릴계 수지를 포함한 바인더 및 상기 바인더 상에 3 종 이상의 필러를 포함하는 저마찰 수지 복합체가 제공된다.
그리고, 본 발명에 따르면, 상기 저마찰 수지 복합체를 사용하여 제조된 상대마찰 부품용 소재가 제공된다.
이하, 발명의 구현 예들에 따른 저마찰 수지 복합체 및 이를 사용하여 제조된 상대마찰 부품용 소재에 대해 상세히 설명하기로 한다.
그에 앞서, 본 명세서에서 명시적인 언급이 없는 한, 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다.
본 명세서에서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다.
본 명세서에서 사용되는 '포함'의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.
I. 저마찰 수지 복합체
발명의 일 구현 예에 따르면,
프탈로니트릴계 수지를 포함한 바인더 및 상기 바인더 상에 분산된 3 종 이상의 필러를 포함하는 저마찰 수지 복합체가 제공된다.
본 발명자들의 계속적인 연구 결과, 프탈로니트릴계 수지를 포함한 바인더 및 상기 바인더 상에 분산된 3 종 이상의 필러를 포함하는 수지 복합체는 우수한 내열성 및 가공성을 가지면서도 향상된 저마찰 특성을 나타낼 수 있음이 확인되었다.
상기 저마찰 수지 복합체는 초고압 및 초고속 환경에서도 우수한 내구도와 저마찰 특성을 갖는 상대마찰 부품용 소재의 제공을 가능케 한다.
(1) 바인더
상기 저마찰 수지 복합체에는 바인더로서 프탈로니트릴계 수지가 포함된다.
구체적으로, 상기 프탈로니트릴계 수지를 포함한 바인더는, 프탈로니트릴 화합물을 함유한 조성물이 아민계 화합물, 히드록시계 화합물 및 이미드계 화합물로 이루어진 군에서 선택된 1종 이상의 경화제에 의해 경화된 것일 수 있다.
상기 프탈로니트릴 화합물은 상기 경화제와의 반응을 통해 프탈로니트릴 수지를 형성할 수 있는 프탈로니트릴 구조를 2 개 이상, 혹은 2 내지 20 개, 혹은 2 내지 16 개, 혹은 2 내지 12 개, 혹은 2 내지 8 개, 혹은 2 내지 4 개를 포함하는 화합물일 수 있다.
바람직하게는, 상기 프탈로니트릴 화합물은 하기 화학식 1의 평균 조성식으로 표시되는 화합물 및 하기 화학식 5의 평균 조성식으로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상의 화합물일 수 있다.
[화학식 1]
Figure PCTKR2019010385-appb-I000001
상기 화학식 1에서,
R11은 각각 독립적으로 하기 화학식 2의 치환기이고,
R12는 각각 독립적으로 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기, 또는 아릴기이고,
a, b 및 c는 양의 수이고,
d, e 및 f는 0 또는 양의 수이고,
a+b+c+d+e+f는 1이다;
[화학식 2]
Figure PCTKR2019010385-appb-I000002
상기 화학식 2에서,
X는 상기 화학식 1에서 규소 원자에 연결되는 그룹으로서, 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이고, 상기 X1은 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고,
R21 내지 R25는 각각 독립적으로 수소, 알킬기, 알콕시기, 히드록시기, 시아노기, 또는 하기 화학식 3의 치환기로서, 상기 R21 내지 R25 중 적어도 하나는 하기 화학식 3의 치환기이다;
[화학식 3]
Figure PCTKR2019010385-appb-I000003
상기 화학식 3에서,
Y는 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이고, 상기 X1은 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고,
R31 내지 R35는 각각 독립적으로 수소, 알킬기, 알콕시기, 히드록시기, 또는 시아노기로서, 상기 R31 내지 R35 중 둘 이상은 시아노기이다.
본 명세서에서 프탈로니트릴 화합물이 특정 평균 조성식으로 표시된다는 것은, 상기 프탈로니트릴 화합물이 상기 조성식으로 표시되는 단일한 화합물인 것을 의미한다.
또한, 본 명세서에서 상기 프탈로니트릴 화합물이 특정 평균 조성식으로 표시된다는 것은, 상기 프탈로니트릴 화합물이 2 개 이상의 서로 다른 화합물의 혼합물이면서 상기 혼합물이 나타내는 조성의 평균을 취하면 상기 조성식으로 나타나는 것을 의미한다.
상기 화학식 1의 평균 조성식으로 표시되는 화합물은 고분자 또는 올리고머 형태의 화합물로서, 예를 들면, 그 중량평균분자량(Mw)이 1000 내지 50000 g/mol, 혹은 2500 내지 35000 g/mol, 혹은 4000 내지 20000 g/mol, 혹은 6000 내지 9000 g/mol의 범위 내에 있을 수 있다.
상기 화학식 1의 평균 조성식으로 표시되는 화합물은 상기 범위의 중량평균분자량을 가짐으로써, 낮은 가공온도 및/또는 넓은 프로세스 윈도우를 가지는 중합성 조성물의 제공을 가능하게 한다.
본 명세서에서 용어 중량평균분자량은, GPC(gel permeation chromatograph)를 사용하여 측정한 표준 폴리스티렌에 대한 환산 수치이고, 본 명세서에서 용어 분자량은 특별히 달리 규정하지 않는 한 중량평균분자량을 의미한다.
예를 들어, 분자량은 길이 300 mm의 PLgel MIXED-B 칼럼(Polymer Laboratories)이 장착된 Agilent PL-GPC 220 기기를 이용하여 측정한다. 측정 온도는 160 ℃이며, 1,2,4-트리클로로벤젠을 용매로서 사용하였으며 유속은 1mL/min의 속도로 측정한다. 샘플은 10mg/10mL의 농도로 조제한 다음, 200 μL의 양으로 공급한다. 폴리스티렌 표준을 이용하여 형성된 검정 곡선을 참고로 Mw 및 Mn 의 값을 유도한다. 폴리스티렌 표준의 분자량(g/mol)은 2,000/ 10,000/ 30,000/ 70,000/ 200,000/ 700,000/ 2,000,000/ 4,000,000/ 10,000,000의 9 종을 사용한다.
바람직하게는, 상기 화학식 1의 평균 조성식으로 표시되는 화합물은, 하기 화학식 4로 표시되는 화합물일 수 있다:
[화학식 4]
Figure PCTKR2019010385-appb-I000004
상기 화학식 4에서,
R11 및 R12는 각각 상기 화학식 1에서 정의된 바와 같고,
n 및 m은 각각 1 내지 100의 범위 내의 선택되고 2 ≤ n+m ≤ 100을 충족하는 수이다.
바람직하게는, 상기 화학식 4에서 n+m은 2 내지 100, 혹은 2 내지 80, 혹은 2 내지 50 이다. 상기 n+m의 범위를 충족하는 화합물은 가공성이 우수한 중합성 조성물의 제공을 가능하게 한다.
[화학식 5]
Figure PCTKR2019010385-appb-I000005
상기 화학식 5에서,
R51은 하기 화학식 6의 치환기이고,
R52는 각각 독립적으로 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기, 또는 아릴기이고,
a는 0.01 내지 0.4의 범위 내의 수이고,
b는 0.5 내지 4의 범위 내의 수이다;
[화학식 6]
Figure PCTKR2019010385-appb-I000006
상기 화학식 6에서,
X'은 상기 화학식 5에서 규소 원자에 연결되는 그룹으로서, 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이고, 상기 X1은 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고,
R61 내지 R65는 각각 독립적으로 수소, 알킬기, 알콕시기, 히드록시기, 시아노기, 또는 하기 화학식 7의 치환기로서, 상기 R61 내지 R65 중 적어도 하나는 하기 화학식 7의 치환기이다;
[화학식 7]
Figure PCTKR2019010385-appb-I000007
상기 화학식 7에서,
Y'은 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이고, 상기 X1은 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고,
R71 내지 R75는 각각 독립적으로 수소, 알킬기, 알콕시기, 히드록시기, 또는 시아노기로서, 상기 R71 내지 R75 중 둘 이상은 시아노기이다.
상기 화학식 7의 평균 조성식으로 표시되는 화합물은 고분자 또는 올리고머 형태의 화합물로서, 예를 들면, 그 중량평균분자량(Mw)이 700 내지 7000 g/mol, 혹은 700 내지 6500 g/mol, 혹은 700 내지 5800 g/mol, 혹은 700 내지 5000 g/mol의 범위 내에 있을 수 있다.
상기 화학식 7의 평균 조성식으로 표시되는 화합물은 상기 범위의 중량평균분자량을 가짐으로써, 낮은 가공온도 및/또는 넓은 프로세스 윈도우를 가지는 중합성 조성물의 제공을 가능하게 한다.
바람직하게는, 상기 화학식 7의 평균 조성식으로 표시되는 화합물은, 하기 화학식 8로 표시되는 화합물일 수 있다:
[화학식 8]
Figure PCTKR2019010385-appb-I000008
상기 화학식 8에서,
R51 및 R52는 각각 상기 화학식 5에서 정의된 바와 같고,
n은 3 내지 100의 범위 내의 수이다.
상기 화학식 8에서 n은 5 이상, 혹은 7 이상; 그리고 95 이하, 혹은 90 이하, 혹은 85 이하, 혹은 80 이하, 혹은 75 이하, 70 이하, 혹은 65 이하, 혹은 60 이하일 수 있다.
바람직하게는, 상기 프탈로니트릴 화합물은 하기 화학식 P1으로 표시되는 화합물일 수 있다.
[화학식 P1]
Figure PCTKR2019010385-appb-I000009
상기 화학식 P1에서, RP11 내지 RP16은 각각 독립적으로 수소, C1-5의 알킬기, C1-5의 알콕시기, C6-30의 아릴기, 하기 화학식 P2 그룹, 또는 하기 화학식 P3 그룹으로서, RP11 내지 RP16 중 둘 이상은 하기 화학식 P2 그룹 또는 하기 화학식 P3 그룹이고,
[화학식 P2]
Figure PCTKR2019010385-appb-I000010
상기 화학식 P2에서,
LP2는 직접 결합, C1-5의 알킬렌기, -O-, -S-, -C(=O)-, -S(=O)-, 또는 -S(=O)2- 이고,
RP21 내지 RP25는 각각 독립적으로 수소, C1-5의 알킬기, C1-5의 알콕시기, C6-30의 아릴기, 시아노기로서, 상기 RP21 내지 RP25 중 둘 이상은 시아노기이다,
[화학식 P3]
Figure PCTKR2019010385-appb-I000011
상기 화학식 P3에서,
LP3는 직접 결합, C1-5의 알킬렌기, -O-, -S-, -C(=O)-, -S(=O)-, -S(=O)2-, -C(CH3)2-, -C(CF3)2-, 또는 -C(=O)NH- 이고,
RP31 내지 RP35는 각각 독립적으로 수소, C1-5의 알킬기, C1-5의 알콕시기, C6-30의 아릴기, 상기 화학식 P2 그룹으로서, 상기 RP31 내지 RP35 중 하나 이상은 상기 화학식 P2 그룹이다.
본 명세서에서 "알킬기"는 직쇄 또는 분지쇄일 수 있다. 바람직하게는, 상기 알킬기는 1 내지 5의 탄소수 혹은 1 내지 3의 탄소수를 가진다. 구체적으로, 상기 알킬기는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, n-펜틸, 이소펜틸, 네오펜틸, 및 tert-펜틸 등일 수 있다.
본 명세서에서 "아릴기"는 단환식 아릴기 또는 다환식 아릴기일 수 있다. 바람직하게는, 상기 아릴기는 6 내지 30의 탄소수를 가진다. 구체적으로, 상기 아릴기는 페닐기, 바이페닐기, 터페닐기, 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 및 플루오레닐기 등일 수 있다.
본 명세서에서 "직접 결합"은 해당 그룹에 원자가 존재하지 않고 그 양측의 그룹들이 서로 직접 연결되어 있는 것을 의미한다.
발명의 구현 예에 따르면, 상기 프탈로니트릴 화합물은 하기 화학식 P1'로 표시되는 화합물일 수 있다.
[화학식 P1']
Figure PCTKR2019010385-appb-I000012
상기 화학식 P1'에서,
LP2 및 LP3는 각각 독립적으로 직접 결합, C1-5의 알킬렌기, -O-, -S-, -C(=O)-, -S(=O)-, -S(=O)2-, -C(CH3)2-, -C(CF3)2-, 또는 -C(=O)NH- 이다.
비제한적인 예로, 상기 화학식 P1'에서 LP2가 각각 -O- 이고, LP3가 직접 결합 또는 메틸렌기인 화합물이 상기 프탈로니트릴 화합물로 사용될 수 있다.
상술한 프탈로니트릴 화합물 이외에, 상기 프탈로니트릴 화합물의 예로는 미국 특허 제4,408,035호, 미국 특허 제5,003,039호, 미국 특허 제5,003,078호, 미국 특허 제5,004,801호, 미국 특허 제5,132,396호, 미국 특허 제5,139,054호, 미국 특허 제5,208,318호, 미국 특허 제5,237,045호, 미국 특허 제5,292,854호, 또는 미국 특허 제5,350,828호 등에 공지되어 있는 화합물이 예시될 수 있으며, 상기 문헌들에 의한 것 외에도 업계에서 공지되어 있는 다양한 화합물이 상기 예시에 포함될 수 있다.
한편, 상기 프탈로니트릴 화합물의 경화제는 상기 프탈로니트릴 화합물과 반응하여 프탈로니트릴 수지를 형성할 수 있는 것이라면 그 종류가 특별히 제한되지 않는다.
예를 들어, 상기 경화제로 아민계 화합물, 히드록시계 화합물 및 이미드계 화합물로 이루어진 군으로부터 선택된 1종 이상의 화합물이 사용될 수 있다. 상기 아민계 화합물, 히드록시계 화합물 및 이미드계 화합물은 각각 분자 내 적어도 하나 이상의 아미노기, 히드록시기 및 이미드기를 포함하는 화합물을 의미한다.
바람직하게는, 상기 경화제는 하기 화학식 9로 표시되는 이미드계 화합물일 수 있다:
[화학식 9]
Figure PCTKR2019010385-appb-I000013
상기 화학식 9에서,
M은 지방족, 지환족 또는 방향족 화합물 유래의 4가 라디칼이고,
X1 및 X2는 각각 독립적으로, 알킬렌기, 알킬리덴기, 또는 방향족 화합물 유래의 2가 라디칼이고,
n은 1 이상의 수이다.
상기 화학식 9로 표시되는 이미드계 화합물은 분자 내에 이미드 구조를 포함함으로써, 우수한 내열성을 나타내어 상기 중합성 조성물 내 과량 포함되거나, 혹은 중합성 조성물이 높은 온도에서 가공 또는 경화되는 경우에도 물성에 악영향을 미칠 수 있는 보이드(void) 등의 결함을 유발하지 않도록 한다.
상기 화학식 9에서, M은 지방족, 지환족 또는 방향족 화합물 유래의 4가 라디칼일 수 있다. 상기 지방족, 지환족 또는 방향족 화합물에서 분자 내 4 개의 수소 원자가 이탈되어 형성된 라디칼이 각각 상기 화학식 9의 카보닐기의 탄소 원자와 연결되는 구조를 가질 수 있다.
구체적으로, 상기 지방족 화합물로는, 직쇄형 또는 분지쇄형인 알칸, 알켄, 또는 알킨이 예시될 수 있다. 상기 지방족 화합물로는, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8, 또는 탄소수 2 내지 4의 알칸, 알켄, 또는 알킨이 사용될 수 있다. 상기 알칸, 알켄, 또는 알킨은 임의로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
상기 지환족 화합물로는, 탄소수 3 내지 20, 탄소수 3 내지 16, 탄소수 3 내지 12, 탄소수 3 내지 8, 또는 탄소수 3 내지 4의 비방향족 고리 구조를 포함하는 탄화수소 화합물이 예시될 수 있다. 이러한 지환족 탄화수소 화합물은 고리 구성 원자로서, 산소 또는 질소와 같은 헤테로 원자를 적어도 하나 포함할 수도 있으며, 필요한 경우에 임의로 하나 이상의 치환기로 치환되어 있을 수 있다.
상기 방향족 화합물로는, 벤젠, 또는 벤젠을 포함하는 화합물, 또는 이들의 유도체가 예시될 수 있다. 상기 벤젠을 포함하는 화합물로는, 2 개 이상의 벤젠 고리가 하나 또는 2 개의 탄소 원자를 공유하면서 축합되어 있거나, 직접 연결된 구조 또는 적절한 링커(linker)에 의해 연결되어 있는 구조의 화합물을 의미한다.
상기 2개의 벤젠 고리를 연결하는 것에 적용되는 링커로는, 알킬렌기, 알킬리덴기, -O-, -S-, -C(=O)-, -S(=O)-, -S(=O)2-, -C(=O)-O-L1-O-C(=O)-, -L2-C(=O)-O-L3-, -L4-O-C(=O)-L5-, 또는 -L6-Ar1-L7-Ar2-L8- 등이 예시될 수 있다.
상기에서 L1 내지 L8은 각각 독립적으로, 단일 결합, -O-, 알킬렌기, 또는 알킬리덴기이고, Ar1 및 Ar2는 각각 독립적으로 아릴렌기일 수 있다.
상기 방향족 화합물은, 예를 들어, 6개 내지 30개, 6개 내지 28개, 6개 내지 27개, 6개 내지 25개, 6개 내지 20개 또는 6개 내지 12개의 탄소 원자를 포함할 수 있고, 필요한 경우에 하나 이상의 치환기에 의해 치환되어 있을 수 있다. 상기 방향족 화합물의 탄소 원자의 수는, 그 화합물이 전술한 링커를 포함하는 경우에, 그 링커에 존재하는 탄소 원자도 포함한 수이다.
구체적으로, 상기 화학식 9에서 M은 알칸, 알켄, 또는 알킨 유래의 4가 라디칼이거나, 또는 하기 화학식 10 내지 15 중 어느 하나로 표시되는 화합물 유래의 4가 라디칼일 수 있다:
[화학식 10]
Figure PCTKR2019010385-appb-I000014
상기 화학식 10에서, R101 내지 R106은 각각 독립적으로, 수소, 알킬기, 알콕시기, 또는 아릴기이다;
[화학식 11]
Figure PCTKR2019010385-appb-I000015
상기 화학식 11에서, R111 내지 R118은 각각 독립적으로, 수소, 알킬기, 알콕시기, 또는 아릴기이다;
[화학식 12]
Figure PCTKR2019010385-appb-I000016
상기 화학식 12에서,
R120 내지 R129는 각각 독립적으로, 수소, 알킬기, 알콕시기, 또는 아릴기이고,
X는 단일 결합, 알킬렌기, 알킬리덴기, -O-, -S-, -C(=O)-, -S(=O)-, -S(=O)2-, -C(=O)-O-L1-O-C(=O)-, -L2-C(=O)-O-L3-, -L4-O-C(=O)-L5-, 또는 -L6-Ar1-L7-Ar2-L8-이며, 여기에서 L1 내지 L8는 각각 독립적으로, 단일 결합, -O-, 알킬렌기, 또는 알킬리덴기이고, Ar1 및 Ar2는 각각 독립적으로 아릴렌기이다.
이때, 본 명세서에서 단일 결합은 그 부분에 원자가 존재하지 않은 경우를 의미한다. 따라서, 상기 화학식 12에서 X가 단일 결합인 경우, X로 표시되는 부분에 원자가 존재하지 않은 경우를 의미하고, 이 경우, X의 양측의 벤젠 고리는 직접 연결되어 비페닐 구조를 형성할 수 있다.
상기 화학식 12에서, 상기 X 중에서 -C(=O)-O-L1-O-C(=O)-, -L2-C(=O)-O-L3-, 또는 -L4-O-C(=O)-L5-에서 L1 내지 L5는 각각 독립적으로, 탄소수 1 내지 12, 탄소수 1 내지 8, 또는 탄소수 1 내지 4의 알킬렌기 또는 알킬리덴기일 수 있고, 상기 알킬렌기 또는 알킬리덴기는 치환 또는 비치환되어 있을 수 있다.
또한, 화학식 12의 X 중에서 - L6-Ar1-L7-Ar2-L8-에서, 상기에서 L6 및 L8은 -O-일 수 있고, L7은 탄소수 1 내지 12, 탄소수 1 내지 8, 또는 탄소수 1 내지 4의 알킬렌기 또는 알킬리덴기일 수 있으며, 상기 알킬렌기 또는 알킬리덴기는 치환 또는 비치환되어 있을 수 있다. 상기에서 Ar1 및 Ar2는 페닐렌기일 수 있고, 이러한 경우에 L7을 기준으로 상기 L6 및 L8은 각각 상기 페닐렌의 오소, 메타 또는 파라 위치에 연결되어 있을 수 있다.
[화학식 13]
Figure PCTKR2019010385-appb-I000017
상기 화학식 13에서,
R131 내지 R134는 각각 독립적으로, 수소, 알킬기, 또는 알콕시기이되, R131 내지 R134 중 2개는 서로 연결되어 알킬렌기를 형성할 수 있고,
A는 알킬렌기 또는 알케닐렌기이되, A의 알킬렌기 또는 알케닐렌기는 헤테로 원자로서 하나 이상의 산소 원자를 포함할 수 있다;
[화학식 14]
Figure PCTKR2019010385-appb-I000018
상기 화학식 14에서, R141 내지 R144는 각각 독립적으로, 수소, 알킬기, 또는 알콕시기이고, A는 알킬렌기이다;
[화학식 15]
Figure PCTKR2019010385-appb-I000019
상기 화학식 15에서, R150 내지 R159는 각각 독립적으로, 수소, 알킬기, 또는 알콕시기이다.
상기 화학식 10 내지 15로 표시되는 화합물 유래의 4가 라디칼은, 상기 화학식 10 내지 15의 치환기가 직접 이탈되어 형성되거나, 혹은 상기 치환기의 예들 중 알킬기, 알콕시기, 아릴기, 알킬렌기 또는 알케닐렌기에 속하는 수소 원자가 이탈되어 형성될 수도 있다.
예를 들어, 상기 4가 라디칼이 화학식 10의 화합물로부터 유래하는 경우, 화학식 10의 R101 내지 R106 중 1개 이상, 2개 이상, 3개 이상 또는 4개가 라디칼을 형성하거나, 혹은 상기 R101 내지 R106에 존재하는 알킬기, 알콕시기, 또는 아릴기의 수소 원자가 이탈되어 라디칼이 형성될 수 있다. 상기에서 라디칼을 형성한다는 것은, 상기 기술한 바와 같이 그 부위가 화학식 9의 카보닐기의 탄소 원자에 연결되는 것을 의미할 수 있다.
또한, 상기 4가 라디칼이 화학식 12의 화합물로부터 유래하는 경우, 화학식 12의 R120 내지 R129은 각각 독립적으로, 수소, 알킬기, 알콕시기 또는 아릴기이되, 1개 이상, 2개 이상, 3개 이상 또는 4개는 화학식 9에 연결되는 라디칼을 형성할 수 있다. 상기에서 라디칼을 형성하지 않는 각각은 수소, 알킬기 또는 알콕시기이거나, 수소 또는 알킬기일 수 있다. 하나의 예시에서 화학식 12에서는 R127 내지 R129 중 어느 2개와 R122 내지 R124 중 어느 2개가 상기 라디칼을 형성할 수 있고, 다른 치환기는 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이거나, 수소, 알킬기 또는 알콕시기이거나, 또는 수소 또는 알킬기일 수 있다.
비제한적인 예로, 상기 화학식 10으로 표시되는 화합물은 벤젠 또는 1,2,4,5-테트라알킬벤젠일 수 있다.
비제한적인 예로, 상기 화학식 12로 표시되는 화합물은 비페닐이나, 또는 하기 화학식 A 내지 F 중 어느 하나의 화학식으로 표시되는 화합물일 수 있다:
[화학식 A]
Figure PCTKR2019010385-appb-I000020
[화학식 B]
Figure PCTKR2019010385-appb-I000021
[화학식 C]
Figure PCTKR2019010385-appb-I000022
[화학식 D]
Figure PCTKR2019010385-appb-I000023
[화학식 E]
Figure PCTKR2019010385-appb-I000024
[화학식 F]
Figure PCTKR2019010385-appb-I000025
상기 화학식 13으로 표시되는 화합물은 사이클로헥산과 같은 탄소수 4 내지 8의 사이클로알칸, 하나 이상의 알킬기로 치환되어 있을 수 있는 사이클로헥센과 같은 탄소수 4 내지 8의 사이클로알켄, 또는 하기 화학식 G 내지 I 중 어느 하나의 화학식으로 표시되는 화합물일 수 있다:
[화학식 G]
Figure PCTKR2019010385-appb-I000026
[화학식 H]
Figure PCTKR2019010385-appb-I000027
[화학식 I]
Figure PCTKR2019010385-appb-I000028
상기 화학식 14로 표시되는 화합물은 하기 화학식 J로 표시되거나, 또는 하기 화학식 J로 표시되는 화합물의 수소 중 적어도 하나가 알킬기로 치환되어 있는 화합물일 수 있다:
[화학식 J]
Figure PCTKR2019010385-appb-I000029
상기 화학식 9에서, X1 및 X2는 각각 독립적으로, 방향족 화합물 유래의 2가 라디칼일 수 있다. 예를 들어, X1 및 X2는 각각 독립적으로, 탄소수 6 내지 40의 방향족 화합물 유래의 2가 라디칼일 수 있다. 상기 방향족 화합물 유래의 2가 라디칼에 대해서는 앞서 설명한 내용으로 갈음한다.
구체적으로, 상기 화학식 9에서 X1 및 X2는 각각 독립적으로, 하기 화학식 16 내지 18 중 어느 하나로 표시되는 화합물 유래의 2가 라디칼일 수 있다:
[화학식 16]
Figure PCTKR2019010385-appb-I000030
상기 화학식 16에서, R161 내지 R166은 각각 독립적으로, 수소, 알킬기, 알콕시기, 아릴기, 히드록시기, 또는 카르복실기이다;
[화학식 17]
Figure PCTKR2019010385-appb-I000031
상기 화학식 17에서,
R170 내지 R179는 각각 독립적으로, 수소, 알킬기, 알콕시기, 아릴기, 히드록시기, 또는 카르복실기이고,
X'는 단일 결합, 알킬렌기, 알킬리덴기, -O-, -S-, -C(=O)-, -NRa-, -S(=O)-, -S(=O)2-, -L9-Ar3-L10- 또는 -L11-Ar4-L12-Ar5-L13-이며, 여기에서 Ra는 수소, 알킬기, 알콕시기, 또는 아릴기이고, L9 내지 L13은 각각 독립적으로, 단일 결합, -O-, 알킬렌기, 또는 알킬리덴기이고, Ar3 내지 Ar5는 각각 독립적으로 아릴렌기이다;
[화학식 18]
Figure PCTKR2019010385-appb-I000032
상기 화학식 18에서, R180 내지 R189는 각각 독립적으로, 수소, 알킬기, 알콕시기, 아릴기, 히드록시기, 또는 카르복실기이다.
상기 화학식 16 내지 18로 표시되는 화합물 유래의 2가 라디칼은, 상기 화학식 16 내지 18의 치환기가 직접 이탈되어 형성되거나, 혹은 상기 치환기의 예들 중 알킬기, 알콕시기, 아릴기, 알킬렌기 또는 알케닐렌기에 속하는 수소 원자가 이탈되어 형성될 수도 있다.
예를 들어, 상기 2가 라디칼이 상기 화학식 16으로 표시되는 화합물로부터 유래하고, 그 예로 페닐렌인 경우, 화학식 9의 X1에서 N에 연결되는 부위를 기준으로 한 아민기의 치환 위치는 오소(ortho), 메타(meta) 또는 파라(para) 위치일 수 있고, 화학식 9의 X2에서 N에 연결되는 부위를 기준으로 한 아민기의 치환 위치는 역시 오소(ortho), 메타(meta) 또는 파라(para) 위치일 수 있다.
또한, 상기 2가 라디칼이 상기 화학식 17로 표시되는 화합물로부터 유래하는 경우, 화학식 17의 R177 내지 R179 중 어느 하나와 화학식 17의 R172 내지 R174 중 어느 하나가 화학식 9의 질소 원자에 연결되는 라디칼을 형성할 수 있다. 상기 라디칼을 형성하는 치환기를 제외한 다른 치환기는 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이거나, 수소, 알킬기 또는 알콕시기이거나, 또는 수소 또는 알킬기일 수 있다.
비제한적인 예로, 상기 화학식 16로 표시되는 화합물은 적어도 하나의 히드록시기 또는 카복실기로 치환되어 있을 수 있는 벤젠이다.
상기 화학식 17로 표시되는 화합물은 적어도 하나의 히드록시기 또는 카복실기로 치환되어 있을 수 있는 비페닐, 상기 화학식 A 내지 F 중 어느 하나로 표시되면서 적어도 하나의 히드록시기 또는 카복실기로 치환되어 있을 수 있는 화합물, 또는 하기 화학식 K 또는 M으로 표시되면서 적어도 하나의 히드록시기 또는 카복실기로 치환되어 있을 수 있는 화합물이다.
[화학식 K]
Figure PCTKR2019010385-appb-I000033
[화학식 L]
Figure PCTKR2019010385-appb-I000034
[화학식 M]
Figure PCTKR2019010385-appb-I000035
상기 화학식 18로 표시되는 화합물은 하기 화학식 N으로 표시되거나, 또는 하기 화학식 N으로 표시되는 화합물의 수소 중 적어도 하나가 히드록시기 또는 카복실기로 치환되어 있는 화합물이다:
[화학식 N]
Figure PCTKR2019010385-appb-I000036
본 명세서에서, 알킬기는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8, 또는 탄소수 1 내지 4의 알킬기일 수 있다. 상기 알킬기는 직쇄형, 분지쇄형, 또는 고리형일 수 있으며, 필요한 경우에 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 명세서에서, 알콕시기는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8, 또는 탄소수 1 내지 4의 알콕시기일 수 있다. 상기 알콕시기는 직쇄형, 분지쇄형, 또는 고리형일 수 있으며, 필요한 경우에 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 명세서에서, 아릴기는, 특별히 달리 규정하지 않는 한, 전술한 방향족 화합물로부터 유래된 1가 잔기를 의미할 수 있다.
본 명세서에서, 알킬렌기 또는 알킬리덴기는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8, 또는 탄소수 1 내지 4의 알킬렌기 또는 알킬리덴기를 의미할 수 있다. 상기 알킬렌기 또는 알킬리덴기는 직쇄형, 분지쇄형, 또는 고리형일 수 있다. 또한, 상기 알킬렌기 또는 알킬리덴기는 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.
본 명세서에서, 지방족 화합물, 지환족 화합물, 방향족 화합물, 알킬기, 알콕시기, 아릴기, 알킬렌기, 또는 알킬리덴기 등에 임의적으로 치환되어 있을 수 있는 치환기로는, 염소 또는 불소 등의 할로겐, 글리시딜기, 에폭시알킬기, 글리시독시알킬기 또는 지환식 에폭시기 등의 에폭시기, 아크릴로일기, 메타크릴로일기, 이소시아네이트기, 티올기, 알킬기, 알콕시기, 또는 아릴기 등이 예시될 수 있다.
상기 화학식 9에서, n은 이미드 반복 단위의 개수를 의미하며, 2 내지 200, 2 내지 150, 2 내지 100, 2 내지 90, 2 내지 80, 2 내지 70, 2 내지 60, 2 내지 50, 2 내지 40, 2 내지 30, 내지 20, 또는 2 내지 10 범위 내의 수일 수 있다.
상기 화학식 9에서 n이 2 이상인 경우, 즉 상기 화학식 9의 화합물이 폴리이미드계 화합물인 경우에 내열성과 강도 측면에서 더욱 유리할 수 있다. 따라서, 폴리이미드계 화합물을 사용하여 경화된 프탈로니트릴 수지 포함 상대마찰 부품용 소재의 경우, 보다 높은 내열성을 가져 고속 고압 조건에서 프탈로니트릴 수지의 변형 및 융착이 방지될 수 있고, 보다 높은 강도로 인해 낮은 마모와 높은 내구성을 나타낼 수 있다.
비제한적인 예로, 상기 경화제는 하기 화학식 C1 또는 하기 화학식 C2로 표시되는 화합물일 수 있다.
[화학식 C1]
Figure PCTKR2019010385-appb-I000037
[화학식 C2]
Figure PCTKR2019010385-appb-I000038
상기 화학식 C1 및 C2에서,
X 및 X'는 각각 독립적으로 직접 결합, C1-5의 알킬렌기, -O-, -S-, -C(=O)-, -S(=O)-, -S(=O)2-, -C(=O)-O-L1-O-C(=O)-, -L2-C(=O)-O-L3-, -L4-O-C(=O)-L5-, 또는 -L6-Ar1-L7-Ar2-L8-이며; 여기에서 상기 L1 내지 L8는 각각 독립적으로 직접 결합, -O-, 또는 C1-5의 알킬렌기이고; 상기 Ar1 및 Ar2는 각각 독립적으로 C6-30의 아릴렌기이고,
R90 내지 R99는 각각 독립적으로 수소, C1-5의 알킬기, C1-5의 알콕시기, C6-30의 아릴기, 히드록시기, 또는 카르복실기이다.
상기 화학식 9로 표시되는 화합물은 공지의 유기 화합물의 합성법에 따라 합성할 수 있으며, 그 구체적인 방식은 특별히 제한되지 않는다. 예를 들어, 화학식 9로 표시되는 화합물은, 디안하이드라이드(dianhydride) 화합물과 디아민 화합물의 탈수 축합 반응 등에 의해 형성할 수 있다.
상기 화학식 9로 표시되는 화합물은, 높은 비점을 가져서, 고온에서 휘발 내지는 분해되지 않으며, 이에 따라 중합성 조성물의 경화성이 안정적으로 유지되면서, 고온의 가공 내지는 경화 과정에서 물성에 악영향을 줄 수 있는 보이드(void)를 형성하지 않는다. 이에 따라 상기 화합물은, 분해 온도가 300 ℃ 이상, 350 ℃ 이상, 400 ℃ 이상 또는 500 ℃ 이상일 수 있다. 상기 분해 온도는, 상기 화학식 9로 표시되는 화합물의 분해율이 10 % 이하, 혹은 5 % 이하, 혹은 1 % 이하의 범위로 유지되는 온도를 의미할 수 있다. 상기 분해 온도의 상한은 특별히 제한되지 않으나, 예를 들어 약 1000 ℃ 이하일 수 있다.
상기 화학식 9로 표시되는 화합물은, 코어의 M이나 링커인 X1 또는 X2의 선택에 의하여 반응성 내지는 중합성 조성물 자체의 프로세스 윈도우(process window), 즉 상기 중합성 조성물 또는 그로부터 형성되는 프리폴리머의 용융 온도와 경화 온도의 차이를 용이하게 조절할 수 있어서, 용도에 따라 다양한 물성의 경화제로서 작용할 수 있다.
(2) 필러
상기 저마찰 수지 복합체에는 첨가물로서 상기 바인더 상에 분산된 필러가 포함된다.
상기 필러는 상기 바인더 상에 분산되어 초고압 및 초고속 환경에서 대향 면에 대한 침식을 저감시켜 내마모 특성의 발현을 가능하게 한다.
바람직하게는, 상기 저마찰 수지 복합체에는 3 종 이상의 필러를 적용함으로써 적절한 내마모 특성과 낮은 마찰 계수의 확보가 가능하다.
상술한 특성의 발현을 위하여, 상기 필러로는 흑연(graphite), 폴리테트라플루오로에틸렌(polytetrafluoroethylene, PTFE), 이황화텅스텐(tungsten disulfide, WS2), 이황화몰리브덴(molybdenum disulfide, MoS2), 및 분쇄 탄소 섬유(milled carbon fiber, mCF)로 이루어진 군에서 선택된 3 종 이상의 첨가물이 적용되는 것이 바람직하다.
보다 바람직하게는, 상기 필러로 흑연을 포함하고; 폴리테트라플루오로에틸렌, 이황화텅스텐, 이황화몰리브덴, 및 분쇄 탄소 섬유로 이루어진 군에서 선택된 2 종 이상의 첨가물을 더 포함하는 것이 상술한 특성의 발현에 유리하다.
상기 흑연은 상기 예시된 필러들 중 밀도와 원가가 상대적으로 낮으면서도 우수한 저마찰 특성과 적절한 내마모 특성의 발현을 가능하게 하여 바람직하게 적용될 수 있다.
비제한적인 예로, 상기 저마찰 수지 복합체에는 필러로
흑연, 폴리테트라플루오로에틸렌, 및 이황화텅스텐; 혹은
흑연, 폴리테트라플루오로에틸렌, 및 이황화몰리브덴; 혹은
흑연, 폴리테트라플루오로에틸렌, 및 분쇄 탄소 섬유; 혹은
흑연, 이황화텅스텐, 및 이황화몰리브덴; 혹은
흑연, 이황화텅스텐, 및 분쇄 탄소 섬유; 혹은
흑연, 이황화몰리브덴, 및 분쇄 탄소 섬유; 혹은
흑연, 폴리테트라플루오로에틸렌, 이황화텅스텐, 및 이황화몰리브덴; 혹은
흑연, 폴리테트라플루오로에틸렌, 이황화텅스텐, 및 분쇄 탄소 섬유; 혹은
흑연, 폴리테트라플루오로에틸렌, 이황화몰리브덴, 및 분쇄 탄소 섬유; 혹은
흑연, 이황화텅스텐, 이황화몰리브덴, 및 분쇄 탄소 섬유; 혹은
흑연, 폴리테트라플루오로에틸렌, 이황화텅스텐, 이황화몰리브덴, 및 분쇄 탄소 섬유가 포함될 수 있다.
필요에 따라, 상기 저마찰 수지 복합체는 상기 예시된 필러 이외에, 유리섬유, 산화티타늄, 삼황화안티몬, 삼산화안티몬, 황산바륨, 수산화칼슘, 탄산칼슘, 산화마그네슘, 불화칼슘, 실리카, 알루미나, 산화철, 산화크롬, 산화지르코늄, 보론나이트라이드, 탄소나노튜브, 및 그래핀으로 이루어진 군으로부터 선택된 1종 이상의 입자를 더 포함할 수 있다.
상기 필러는 상술한 소재로 이루어진 0.01 내지 100 ㎛의 최장 직경을 가지는 파우더상의 첨가물인 것이 바람직하다. 여기서, 상기 파우더를 이루는 미세 입자가 구형인 경우, 상기 최장 직경은 상기 미세 입자의 지름을 의미한다. 상기 파우더를 이루는 미세 입자가 구형이 아닌 경우, 상기 최장 직경은 상기 미세 입자의 중심 절단면에서 가장 긴 지름을 의미한다.
상기 미세 입자의 입경은 ASTM E 799-03 (Standard Practice for Determining Data Criteria and Processing for Liquid Drop Size Analysis)에 의거한 입도 분석기(대표적으로 HORIBA 사 등을 통해 입수 가능)를 이용하여 측정될 수 있다.
상기 파우더를 이루는 미세 입자의 크기가 너무 작을 경우 상기 저마찰 수지 복합체의 제조시 필러가 쉽게 응집되어 균일한 물성의 발현이 어려울 수 있다. 그리고, 상기 미세 입자의 크기가 너무 작을 경우 윤활할 수 있는 입자의 내부 레이어(layer) 수가 줄어들어 윤활제로써의 역할을 다 하지 못할 수 있다.
상기 파우더를 이루는 미세 입자의 크기가 너무 클 경우에도 상기 저마찰 수지 복합체의 제조시 필러의 균일한 분산이 어려워 목표로 하는 저마찰 특성의 발현이 어려울 수 있다.
상기 필러는 상기 프탈로니트릴계 수지를 포함한 바인더 100 중량부에 대하여 1 내지 100 중량부로 포함될 수 있다.
구체적으로, 100 중량부의 상기 바인더에 대하여, 상기 필러는 1 중량부 이상, 혹은 5 중량부 이상, 혹은 10 중량부 이상, 혹은 20 중량부 이상, 혹은 30 중량부 이상, 혹은 40 중량부 이상; 그리고 100 중량부 이하, 혹은 90 중량부 이하, 혹은 80 중량부 이하, 혹은 70 중량부 이하, 혹은 60 중량부 이하, 혹은 50 중량부 이하로 포함될 수 있다.
바람직하게는, 100 중량부의 상기 바인더에 대하여, 상기 필러는 1 내지 100 중량부, 혹은 5 내지 100 중량부, 혹은 5 내지 90 중량부, 혹은 10 내지 90 중량부, 혹은 10 내지 80 중량부, 혹은 15 내지 80 중량부, 혹은 20 내지 80 중량부, 혹은 20 내지 70 중량부, 혹은 30 내지 70 중량부, 혹은 30 내지 60 중량부, 혹은 40 내지 60 중량부로 포함될 수 있다.
상기 필러의 함량이 너무 적을 경우 상기 저마찰 수지 복합체가 충분히 낮은 마찰 계수와 적절한 내마모성을 가질 수 없다. 그리고, 상기 필러의 함량이 너무 높을 경우 상기 저마찰 수지 복합체에 충분한 강도를 부여할 수 없고, 그로 인해 고속 및 고압 조건 하에서 또는 충격에 의해서 파괴될 수 있다.
일 예로, 상기 저마찰 수지 복합체는 상기 프탈로니트릴계 수지를 포함한 바인더 100 중량부에 대하여; 흑연 15 내지 30 중량부; 폴리테트라플루오로에틸렌, 이황화텅스텐, 이황화몰리브덴, 및 분쇄 탄소 섬유로 이루어진 군에서 선택된 2 종의 첨가물 10 내지 40 중량부를 포함할 수 있다.
다른 일 예로, 상기 저마찰 수지 복합체는 상기 프탈로니트릴계 수지를 포함한 바인더 100 중량부에 대하여; 흑연 20 내지 25 중량부; 폴리테트라플루오로에틸렌, 이황화텅스텐, 이황화몰리브덴, 및 분쇄 탄소 섬유로 이루어진 군에서 선택된 2 종의 첨가물 15 내지 35 중량부를 포함할 수 있다.
(3) 저마찰 수지 복합체의 물성
상기 저마찰 수지 복합체가 저마찰 특성을 나타내는지 확인하기 위하여, ASTM D3702 (Standard Test Method for Wear Rate and Coefficient of Friction of Materials in Self-Lubricated Rubbing Contact Using a Thrust Washer Testing Machine)에 의거하여 마찰 계수를 측정해볼 수 있다.
특히, 후술하는 실시예에서 확인할 수 있듯이, 상기 저마찰 수지 복합체는 피마찰재에 대하여 높은 압력 및 높은 회전 속도 조건 하에서도 낮은 마찰계수를 나타내어, 자동차의 상대마찰 부품용 소재로 적용이 가능함을 확인할 수 있다.
ASTM D3702 규격은 자기윤활 재료로 사용하기에 적절한 지 확인하기 위하여 스러스트 와셔(thrust washer) 시편에 대한 마찰계수 및 마모율을 측정하기 위한 것이다.
본 발명에서는 도 1과 같은 마찰계수 측정기를 이용하여 ASTM D3702 규격에 따른 마찰계수 및 마모율을 측정하였다.
구체적으로, ASTM D3702 규격에 의해 마찰계수 및 마모율을 구하는 방법은 하기와 같다:
1) 상기 저마찰 수지 복합체를 ASTM D3702에 규정된 크기 및 두께를 갖는 시편(test specimen)으로 제작한다.
2) 마찰 계수 측정기의 상부 시편 홀더(rotary specimen holder)에 시편을 설치한다.
3) 마찰 계수 측정기의 하부 시편 홀더(stationary specimen holder)에 피마찰재를 설치한다(도 1의 경우 피마찰재로 steel washer가 설치되어 있다).
4) 마찰 계수 측정기에 특정 압력(P) 및 회전속도(V)를 설정하여, 원하는 PV Value(압력과 속도를 곱한 값) 조건 하에서의 마찰계수(
Figure PCTKR2019010385-appb-I000039
)을 하기 식 1에 의해 구할 수 있다.
[식 1]
Figure PCTKR2019010385-appb-I000040
상기 식 1에서,
T는 시편에 걸린 Torque(N·m)이고, r은 시편의 반경(mm)이며, W는 수직하는 힘(kg)을 의미한다.
또한, 마모율은 실험 전/후의 질량 변화를 측정하여 밀도로 나누어 준 다음, 이를 통해 마모된 부피를 구하고, 구해진 부피 변화를 링의 넓이로 나누어서 얻은 감소한 두께를 토대로 구해진 초당 감소한 두께(10-10 m/s)로 구할 수 있다.
상기 저마찰 수지 복합체는 ASTM D3702 규격에 의거하여 PV Value가 2.3 MPa·m/s인 조건 하에서 피마찰재 탄소강을 기준으로 1.3 cm2의 접촉 면적을 갖는 스러스트 와셔(thrust washer) 시편에 대해 마찰 계수 측정시 열변형이 발생하지 않을 수 있다. 즉, 일 구현예에 따른 저마찰 수지 복합체는 PV Value가 2.3 MPa·m/s인 무윤활 환경에서의 속도 및 압력을 견딜 수 있다.
구체적으로, 상기 저마찰 수지 복합체는, ASTM D3702 규격에 의거하여, PV Value가 2.3 MPa·m/s인 조건 하에서 피마찰재 탄소강을 기준으로 1.3 cm2의 접촉 면적을 갖는 스러스트 와셔(thrust washer) 시편에 대해 측정한 무윤활(자기 윤활) 조건에서의 마찰 계수가 0.175 이하일 수 있다.
구체적으로, 상기 무윤활(자기 윤활) 조건에서의 마찰 계수는 0.175 이하, 혹은 0.170 이하, 혹은 0.165 이하일 수 있다. 바람직하게는, 상기 마찰 계수는 0.050 내지 0.175, 혹은 0.055 내지 0.175, 혹은 0.055 내지 0.170, 혹은 0.060 내지 0.170, 혹은 0.060 내지 0.165, 혹은 0.065 내지 0.165, 혹은 0.070 내지 0.165, 혹은 0.075 내지 0.165, 혹은 0.080 내지 0.165, 혹은 0.085 내지 0.165일 수 있다.
상기 저마찰 수지 복합체는 통상적인 윤활제를 적용한 윤활 조건에서 더욱 낮은 마찰 계수를 가질 수 있다. 여기서, 상기 윤활제의 종류나 적용 방법은 특별히 제한되지 않는다.
구체적으로, 상기 저마찰 수지 복합체는, ASTM D3702 규격에 의거하여, PV Value가 4.6 MPa·m/s인 조건 하에서 피마찰재 탄소강을 기준으로 1.3 cm2의 접촉 면적을 갖는 스러스트 와셔(thrust washer) 시편에 대해 측정한 윤활(윤활제: 자동차용 윤활유) 조건에서의 마찰 계수가 0.060 이하일 수 있다.
구체적으로, 상기 윤활 조건에서의 마찰 계수는 0.060 이하, 혹은 0.057 이하, 혹은 0.055 이하일 수 있다. 바람직하게는, 상기 마찰 계수는 0.035 내지 0.060, 혹은 0.040 내지 0.060, 혹은 0.040 내지 0.057, 혹은 0.045 내지 0.057, 혹은 0.045 내지 0.055일 수 있다.
상기 마찰 계수의 측정시 PV Value가 2.3 MPa·m/s인 조건은 1.63 MPa의 압력(P) 및 1.41 m/s의 회전속도(V)에 의해 구현 가능하고, PV Value가 4.6 MPa·m/s인 조건은 1.63 MPa의 압력(P) 및 2.82 m/s의 회전속도(V)에 의해 구현 가능하다.
한편, 상기 저마찰 수지 복합체는 가공 온도가 150 내지 350℃의 범위 내일 수 있다.
가공 온도라 함은 상기 저마찰 수지 복합체가 가공 가능한 상태로 존재하는 온도를 의미한다. 상기 가공 온도는, 예를 들어, 용융 온도(Tm) 또는 유리전이온도(Tg)일 수 있다.
상기 저마찰 수지 복합체의 프로세스 원도우, 즉 상기 가공 온도(Tp)와 상기 프탈로니트릴 화합물과 상기 경화제의 경화 온도(Tc)의 차이(Tc - Tp)의 절대값은 30 ℃ 이상, 50 ℃ 이상 또는 100 ℃ 이상일 수 있다. 상기 경화 온도(Tc)가 상기 가공 온도(Tp)에 비하여 높을 수 있다. 이러한 범위는 중합성 조성물을 사용하여, 예를 들어 후술하는 상대마찰 부품용 소재를 제조하는 과정에서 적절한 가공성을 확보하는 것에 유리할 수 있다. 상기에서 프로세스 윈도우의 상한은 특별히 제한되는 것은 아니나, 예를 들어, 상기 가공 온도(Tp)와 경화 온도(Tc)의 차이(Tc - Tp)의 절대값이 400 ℃ 이하 또는 300 ℃ 이하일 수 있다.
한편, 상기 저마찰 수지 복합체는 프리폴리머(prepolymer) 상태로 제공될 수 있다.
프리폴리머 상태라고 함은, 상기 바인더를 구성하는 프탈로니트릴 화합물과 경화제의 반응이 어느 정도의 일어난 상태(예를 들어, 소위 A 또는 B 스테이지 단계의 중합이 일어난 상태)이지만, 완전히 중합된 상태에는 이르지 않고 적절한 유동성을 나타내어 가공이 가능한 상태를 의미할 수 있다.
비제한적인 예로, 상기 프리폴리머 상태는 150 내지 250 ℃의 범위 내의 온도에서 측정된 용융 점도가 10 Pa·s 내지 100,000 Pa·s, 10 Pa·s 내지 10,000 Pa·s, 또는 10 Pa·s 내지 5,000 Pa·s의 범위 내에 있는 상태를 의미할 수 있다.
예를 들어, 상기 프리폴리머의 가공 온도가 150 내지 350 ℃의 범위 내일 수 있다. 이때, 가공 온도라 함은 상기 프리폴리머가 가공 가능한 상태로 존재하는 온도를 의미한다.
II. 상대마찰 부품용 소재
발명의 다른 일 구현 예에 따르면, 상기 저마찰 수지 복합체를 사용하여 제조된 상대마찰 부품용 소재가 제공된다.
상술한 바와 같이, 상기 저마찰 수지 복합체는 초고압 및 초고속 환경에서도 내구도와 저마찰 특성을 갖는 상대마찰 부품용 소재의 제공을 가능케 한다.
상기 상대마찰 부품용 소재로는 베어링, 부싱, 스러스트 와셔, 오일씰, 피스톤링, 슬라이딩(sliding), 롤러 등을 예로 들 수 있다. 상기 상대마찰 부품용 소재는 자동차, 항공기, 기타 산업재 등에 적용될 수 있다.
상기 상대마찰 부품용 소재는 상기 저마찰 수지 복합체의 프리폴리머를 가열하여 목적하는 형상으로 성형한 후 이를 경화시켜 제조될 수 있다. 상기 상대마찰 부품용 소재의 제조를 위한 가공 및 경화 방법 등은 공지된 방식에 따라 수행될 수 있다.
본 발명에 따른 저마찰 수지 복합체는 우수한 내열성과 낮은 마찰 계수를 가져, 우수한 내구도와 저마찰 특성을 갖는 상대마찰 부품용 소재의 제공을 가능하게 한다.
도 1은 ASTM D3702 규격에 따른 마찰계수를 측정하기 위한 마찰계수 측정기의 분해 사시도를 나타낸 것이다.
도 2 내지 도 4는 각각 제조예 1 내지 3에 따른 화합물에 대한 1H-NMR 데이터를 나타낸 것이다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예들을 제시한다. 그러나 하기의 실시예들은 발명을 예시하기 위한 것일 뿐, 본 발명을 이들만으로 한정하는 것은 아니다.
1 H-NMR(Nuclear Magnetic Resonance) 분석
하기에서 제조한 화합물에 대한 NMR 분석은 Agilent사의 500 MHz NMR 장비를 사용하여 제조사의 매뉴얼대로 수행하였다. NMR 측정을 위한 샘플은 화합물을 DMSO(dimethyl sulfoxide)-d6에 용해시켜 제조하였다.
제조예 1. 프탈로니트릴 화합물(PN1)의 합성
하기 화학식 A1의 화합물(PN1)은 다음의 방법으로 합성되었다.
하기 화학식 A2의 화합물 32.7 g 및 120 g의 DMF(Dimethyl Formamide)를 3넥 RBF(3 neck round bottom flask)에 투입하고, 상온에서 교반하여 용해시켰다. 이어서 하기 화학식 A3의 화합물 51.9 g을 추가하고, DMF 50 g을 추가한 후에 교반하여 용해시켰다. 이어서 탄산칼륨 62.2 g 및 DMF 50 g을 함께 투입하고, 교반하면서 온도를 85℃까지 승온시켰다. 상기 상태에서 약 5 시간 정도 반응시킨 후에 상온까지 냉각시켰다. 냉각된 반응 용액을 0.2N 농도의 염산 수용액에 부어 중화 침전시키고, 필터링 후에 물로 세척하였다. 그 후, 필터링된 반응물을 100℃의 진공 오븐에서 1일 건조하고, 물과 잔류 용매를 제거한 후에 하기 화학식 A1의 화합물(PN1)을 약 80 중량%의 수율로 수득하였다. 수득한 화학식 A1의 화합물(PN1)에 대한 1H-NMR 분석 결과를 도 2에 나타내었다.
[화학식 A1]
Figure PCTKR2019010385-appb-I000041
[화학식 A2]
Figure PCTKR2019010385-appb-I000042
[화학식 A3]
Figure PCTKR2019010385-appb-I000043
제조예 2. 경화제 화합물(CA1)의 합성
하기 화학식 A14의 화합물(CA1)은 디아민과 디안하이드라이드의 탈수축합에 의해 합성하였다. 4,4'-옥시디아닐린(4,4'-oxydianiline) 24 g 및 NMP(N-methyl-pyrrolidone) 40 g을 3넥 RBF(3 neck round bottom flask)에 투입하고, 상온에서 교반하여 용해시켰다. 워터 배스(water bath)로 상기를 냉각시키고, 하기 화학식 A15의 화합물 8.7 g을 서서히 3번에 나누어 40 g의 NMP와 함께 투입하였다. 투입된 화합물이 모두 용해되면, azeotrope를 위해 반응물에 툴루엔 16 g을 투입하였다. Dean-Stark 장치와 리플럭스 콘덴서를 설치하고, Dean-Stark 장치에 톨루엔을 투입하여 채웠다. 탈수 축합 촉매로 피리딘 4.2 mL를 투입하고, 온도를 170℃까지 승온시키고, 3 시간 동안 교반하였다. 이미드 고리가 형성되면서 발생되는 물을 Dean Stark 장치로 제거해 주면서 2 시간 동안 추가 교반하고, 잔류 톨루엔과 피리딘을 제거하였다. 반응 생성물을 상온까지 냉각하고, 메탄올에 침전시켜서 회수하였다. 회수된 침전물을 메탄올로 추출하여 잔류 반응물을 제거하고, 진공 오븐에서 건조하여 화학식 A14의 화합물(CA1)을 약 85 중량%의 수율로 수득하였다. 수득한 화학식 A14의 화합물(CA1)에 대한 1H-NMR 분석 결과를 도 3에 나타내었다.
[화학식 A14]
Figure PCTKR2019010385-appb-I000044
[화학식 A15]
Figure PCTKR2019010385-appb-I000045
제조예 3. 경화제 화합물(CA2)의 합성
하기 화학식 A18의 화합물(CA2)은 디아민과 디안하이드라이드의 탈수축합에 의해 합성하였다. 하기 화학식 A16의 화합물(m-phenylene diamine) 8.1 g과 NMP(N-methylpyrrolidone) 50 g을 RBF(3 neck Round Bottom flask)에 투입하고, 상온에서 교반하여 용해시켰다. 워터 배스(water bath)로 상기를 냉각하고, 하기 화학식 A17의 화합물 26 g을 서서히 3번에 나누어 60 g의 NMP와 함께 투입하였다. 투입된 화합물이 모두 용해되면, azeotrope 반응을 위해 반응물에 톨루엔 23 g을 투입하였다. Dean Stark 장치와 리플럭스 콘덴서를 설치하고, Dean Stark 장치에 톨루엔을 투입하여 채웠다. 탈수 축합 촉매로 피리딘 5.2 mL을 투입하고, 온도를 170℃까지 승온시키고, 3 시간 동안 교반하였다. 이미드 고리가 형성되면서 발생되는 물을 Dean Stark 장치로 제거하면서, 2 시간 동안 추가 교반하고, 잔류 톨루엔과 피리딘을 제거하였다. 반응 생성물을 상온까지 냉각하고, 메탄올에 침전시켜서 회수하였다. 회수된 침전물을 메탄올로 soxhlet 추출하여 잔류 반응물을 제거하고, 진공 오븐에서 건조하여 화학식 A18의 화합물(CA2)을 약 93 중량%의 수율로 수득하였다. 수득한 화학식 A18의 화합물(CA2)에 대한 1H-NMR 분석 결과를 도 4에 나타내었다.
[화학식 A16]
Figure PCTKR2019010385-appb-I000046
[화학식 A17]
Figure PCTKR2019010385-appb-I000047
[화학식 A18]
Figure PCTKR2019010385-appb-I000048
상기 화학식 A18에서, n은 약 3이다.
실시예 1
제조예 1의 화합물(PN1) 100 중량부와 상기 화합물(PN1)의 1몰 대비 약 0.18 몰의 제조예 3의 화합물(CA1)을 혼합하여 바인더를 준비하였다.
상기 바인더 100 중량부에 대하여, 21.4 중량부의 흑연(제조사: Samchun chemicals, 입경 100 ㎛ 이하의 파우더), 14.2 중량부의 이황화텅스텐(WS2, 제조사: Zerofriction, 입경 800 nm), 및 7.14 중량부의 폴리테트라플루오로에틸렌(PTFE, 제조사: DuPont, 입경 4 ㎛)을 첨가한 후 잘 혼합하여 수지 복합체를 제조하였다.
실시예 2
제조예 1의 화합물(PN1) 100 중량부와 상기 화합물(PN1)의 1몰 대비 약 0.18 몰의 제조예 3의 화합물(CA1)을 혼합하여 바인더를 준비하였다.
상기 바인더 100 중량부에 대하여, 21.4 중량부의 흑연(제조사: Samchun chemicals, 입경 100 ㎛ 이하의 파우더), 7.1 중량부의 이황화몰리브덴(MoS2, 제조사: Sigma-Aldrich, 입경 2 ㎛), 및 14.2 중량부의 분쇄 탄소 섬유(mCF, 제조사: Zoltek, 길이 100 ㎛)을 첨가한 후 잘 혼합하여 수지 복합체를 제조하였다.
실시예 3
제조예 1의 화합물(PN1) 100 중량부와 상기 화합물(PN1)의 1몰 대비 약 0.18 몰의 제조예 3의 화합물(CA1)을 혼합하여 바인더를 준비하였다.
상기 바인더 100 중량부에 대하여, 23.1 중량부의 흑연(제조사: Samchun chemicals, 입경 100 ㎛ 이하의 파우더), 15.4 중량부의 이황화텅스텐(WS2, 제조사: Zerofriction, 입경 800 nm), 및 15.4 중량부의 폴리테트라플루오로에틸렌(PTFE, 제조사: DuPont, 입경 4 ㎛)을 첨가한 후 잘 혼합하여 수지 복합체를 제조하였다.
비교예 1
제조예 1의 화합물(PN1) 100 중량부와 상기 화합물(PN1)의 1몰 대비 약 0.18 몰의 제조예 3의 화합물(CA1)을 혼합하여 바인더를 준비하였다.
상기 바인더 100 중량부에 대하여, 17.6 중량부의 흑연(제조사: Samchun chemicals, 입경 100 ㎛ 이하의 파우더)을 첨가한 후 잘 혼합하여 수지 복합체를 제조하였다.
비교예 2
제조예 1의 화합물(PN1) 100 중량부와 상기 화합물(PN1)의 1몰 대비 약 0.18 몰의 제조예 3의 화합물(CA1)을 혼합하여 바인더를 준비하였다.
상기 바인더 100 중량부에 대하여, 20.0 중량부의 흑연(제조사: Samchun chemicals, 입경 100 ㎛ 이하의 파우더) 및 13.3 중량부의 폴리테트라플루오로에틸렌(PTFE, 제조사: DuPont, 입경 4 ㎛)을 첨가한 후 잘 혼합하여 수지 복합체를 제조하였다.
비교예 3
제조예 1의 화합물(PN1) 100 중량부와 상기 화합물(PN1)의 1몰 대비 약 0.18 몰의 제조예 3의 화합물(CA1)을 혼합하여 바인더를 준비하였다.
상기 바인더 100 중량부에 대하여, 20.0 중량부의 흑연(제조사: Samchun chemicals, 입경 100 ㎛ 이하의 파우더) 및 13.3 중량부의 이황화텅스텐(WS2, 제조사: Zerofriction, 입경 800 nm)을 첨가한 후 잘 혼합하여 수지 복합체를 제조하였다.
비교예 4
제조예 1의 화합물(PN1) 100 중량부와 상기 화합물(PN1)의 1몰 대비 약 0.18 몰의 제조예 3의 화합물(CA1)을 혼합하여 바인더를 준비하였다.
상기 바인더 100 중량부에 대하여, 18.8 중량부의 흑연(제조사: Samchun chemicals, 입경 100 ㎛ 이하의 파우더) 및 6.3 중량부의 이황화몰리브덴(MoS2, 제조사: Sigma-Aldrich, 입경 2 ㎛)을 첨가한 후 잘 혼합하여 수지 복합체를 제조하였다.
비교예 5
제조예 1의 화합물(PN1) 100 중량부와 상기 화합물(PN1)의 1몰 대비 약 0.18 몰의 제조예 3의 화합물(CA1)을 혼합하여 바인더를 준비하였다.
상기 바인더 100 중량부에 대하여, 20.0 중량부의 흑연(제조사: Samchun chemicals, 입경 100 ㎛ 이하의 파우더) 및 13.3 중량부의 분쇄 탄소 섬유(mCF, 제조사: Zoltek, 길이 100 ㎛)을 첨가한 후 잘 혼합하여 수지 복합체를 제조하였다.
비교예 6
DuPont 사의 저마찰 Grade 제품인 Vespel SP-21을 상업적으로 입수하여 사용하였다. 상기 Vespel SP-21은 폴리이미드 수지에 흑연 15 중량%(PI 수지 100 중량부 기준 흑연 17.6 중량부)를 함유하고 있는 것으로 알려져 있다.
비교예 7
Victrex 사의 저마찰 Grade 제품인 PEEK 450FC30을 상업적으로 입수하여 사용하였다. 상기 PEEK 450FC30은 PolyEtherEtherKetone 수지 100 중량부에 대하여 30 중량부의 필러(탄소섬유, 흑연 및 PTFE의 혼합물)를 함유한 것으로 알려져 있다.
참고예 1
제조예 1의 화합물(PN1) 100 중량부와 상기 화합물(PN1)의 1몰 대비 약 0.18 몰의 제조예 3의 화합물(CA1)을 혼합하여 바인더를 준비하였다.
상기 바인더 100 중량부에 대하여, 21.4 중량부의 이황화몰리브덴(MoS2, 제조사: Sigma-Aldrich, 입경 2 ㎛), 14.2 중량부의 이황화텅스텐(WS2, 제조사: Zerofriction, 입경 800 nm), 및 7.14 중량부의 폴리테트라플루오로에틸렌(PTFE, 제조사: DuPont, 입경 4 ㎛)을 첨가한 후 잘 혼합하여 수지 복합체를 제조하였다.
참고예 2
제조예 1의 화합물(PN1) 100 중량부와 상기 화합물(PN1)의 1몰 대비 약 0.18 몰의 제조예 3의 화합물(CA1)을 혼합하여 바인더를 준비하였다.
상기 바인더 100 중량부에 대하여, 21.4 중량부의 분쇄 탄소 섬유(mCF, 제조사: Zoltek, 길이 100 ㎛), 14.2 중량부의 이황화텅스텐(WS2, 제조사: Zerofriction, 입경 800 nm), 및 7.14 중량부의 폴리테트라플루오로에틸렌(PTFE, 제조사: DuPont, 입경 4 ㎛)을 첨가한 후 잘 혼합하여 수지 복합체를 제조하였다.
시험예
상기 실시예 및 비교예에서 제조한 각각의 수지 복합체를 240 ℃에서 용융시켜 5 분 동안 교반하여 프리폴리머를 제조하였다.
상기 프리폴리머를 몰드에 넣고 용융시킨 후 200 ℃에서 2 시간, 250 ℃에서 2 시간, 300 ℃에서 2 시간, 및 350 ℃에서 2 시간의 조건으로 경화하여 ASTM D3702 규격에 따른 스러스트 와셔(thrust washer) 시편을 제조하였다. 상기 비교예 5 및 6의 제품은 절삭 가공하여 ASTM D3702 규격에 따른 스러스터 와셔 시편으로 제조하였다.
상대재 탄소강으로는 S45C를 준비하였다. S45C는 JIS G4053 규격에 의해 0.45%의 탄소가 함유된 강(steel) 재료인 기계구조용 탄소강재이다.
마찰계수 측정기(TE 92, Phoenix 사 제조)를 이용하여 ASTM D3702 규격에 따라 상기 시편들에 대한 마찰 계수 및 마모율을 측정하였다. 그 결과를 하기 표 1 및 표 2에 나타내었다.
- PV Value 1: 2.3 MPa·m/s (압력(P): 1.63 MPa(16 bar, 220 N), 회전속도(V): 1.41 m/s(1000 rpm))
- PV Value 2: 4.6 MPa·m/s (압력(P): 1.63 MPa(16 bar, 220 N), 회전속도(V): 2.82 m/s(1000 rpm))
- Time: 1200 s
- Unlubricated conditions
- Lubricated conditions (자동차용 윤활유, 판매사: HYUNDAI MOBIS, 제품명: ATF SP-III)
Figure PCTKR2019010385-appb-T000001
Figure PCTKR2019010385-appb-T000002
상기 표 1을 참조하면, 실시예 1 내지 3에 따른 시편은 비교예 1 내지 5의 시편에 비하여 낮은 마찰 계수 또는 낮은 마모율을 나타낸 것으로 확인된다.
특히, 실시예 1, 3 및 비교예 3을 통해 확인되는 바와 같이, 필러로 흑연 및 이황화텅스텐을 적용한 경우에는 폴리테트라플루오로에틸렌을 함께 적용할 때 마찰 특성이 현저히 개선되었다.
그리고, 실시예 2 및 비교예 4를 통해 확인되는 바와 같이, 필러로 흑연 및 이황화몰리브덴을 적용한 경우에는 분쇄 탄소 섬유를 함께 적용할 때 마찰 특성이 현저히 개선되었다.

Claims (15)

  1. 프탈로니트릴계 수지를 포함한 바인더 및
    상기 바인더 상에 분산된 3 종 이상의 필러
    를 포함하는, 저마찰 수지 복합체.
  2. 제 1 항에 있어서,
    상기 필러는 흑연, 폴리테트라플루오로에틸렌, 이황화텅스텐, 이황화몰리브덴, 및 분쇄 탄소 섬유로 이루어진 군에서 선택된 3 종 이상의 첨가물인, 저마찰 수지 복합체.
  3. 제 2 항에 있어서,
    상기 필러는 흑연을 포함하고,
    상기 필러는 폴리테트라플루오로에틸렌, 이황화텅스텐, 이황화몰리브덴, 및 분쇄 탄소 섬유로 이루어진 군에서 선택된 2 종 이상의 첨가물을 더 포함하는, 저마찰 수지 복합체.
  4. 제 1 항에 있어서,
    상기 필러는 0.01 내지 100 ㎛의 최장 직경을 가지는 파우더상의 첨가물인, 저마찰 수지 복합체.
  5. 제 1 항에 있어서,
    상기 프탈로니트릴계 수지를 포함한 바인더 100 중량부 및
    상기 필러 1 내지 100 중량부
    를 포함하는, 저마찰 수지 복합체.
  6. 제 3 항에 있어서,
    상기 프탈로니트릴계 수지를 포함한 바인더 100 중량부에 대하여;
    흑연 15 내지 30 중량부;
    폴리테트라플루오로에틸렌, 이황화텅스텐, 이황화몰리브덴, 및 분쇄 탄소 섬유로 이루어진 군에서 선택된 2 종의 첨가물 10 내지 40 중량부
    를 포함하는, 저마찰 수지 복합체.
  7. 제 1 항에 있어서,
    상기 프탈로니트릴계 수지를 포함한 바인더는, 프탈로니트릴 화합물을 함유한 조성물이 아민계 화합물, 히드록시계 화합물 및 이미드계 화합물로 이루어진 군에서 선택된 1종 이상의 경화제에 의해 경화된 것인, 저마찰 수지 복합체.
  8. 제 7 항에 있어서,
    상기 프탈로니트릴 화합물은 하기 화학식 P1으로 표시되는 화합물인, 저마찰 수지 복합체:
    [화학식 P1]
    Figure PCTKR2019010385-appb-I000049
    상기 화학식 P1에서, RP11 내지 RP16은 각각 독립적으로 수소, C1-5의 알킬기, C1-5의 알콕시기, C6-30의 아릴기, 하기 화학식 P2 그룹, 또는 하기 화학식 P3 그룹으로서, RP11 내지 RP16 중 둘 이상은 하기 화학식 P2 그룹 또는 하기 화학식 P3 그룹이고,
    [화학식 P2]
    Figure PCTKR2019010385-appb-I000050
    상기 화학식 P2에서,
    LP2는 직접 결합, C1-5의 알킬렌기, -O-, -S-, -C(=O)-, -S(=O)-, 또는 -S(=O)2- 이고,
    RP21 내지 RP25는 각각 독립적으로 수소, C1-5의 알킬기, C1-5의 알콕시기, C6-30의 아릴기, 시아노기로서, 상기 RP21 내지 RP25 중 둘 이상은 시아노기이다,
    [화학식 P3]
    Figure PCTKR2019010385-appb-I000051
    상기 화학식 P3에서,
    LP3는 직접 결합, C1-5의 알킬렌기, -O-, -S-, -C(=O)-, -S(=O)-, -S(=O)2-, -C(CH3)2-, -C(CF3)2-, 또는 -C(=O)NH- 이고,
    RP31 내지 RP35는 각각 독립적으로 수소, C1-5의 알킬기, C1-5의 알콕시기, C6-30의 아릴기, 상기 화학식 P2 그룹으로서, 상기 RP31 내지 RP35 중 하나 이상은 상기 화학식 P2 그룹이다.
  9. 제 6 항에 있어서,
    상기 경화제는 하기 화학식 9로 표시되는 이미드계 화합물인, 저마찰 수지 복합체:
    [화학식 9]
    Figure PCTKR2019010385-appb-I000052
    상기 화학식 9에서,
    M은 지방족, 지환족 또는 방향족 화합물 유래의 4가 라디칼이고,
    X1 및 X2는 각각 독립적으로, 알킬렌기, 알킬리덴기, 또는 방향족 화합물 유래의 2가 라디칼이고,
    n은 1 이상의 수이다.
  10. 제 9 항에 있어서,
    상기 화학식 9에서 M은 알칸, 알켄, 또는 알킨 유래의 4가 라디칼이거나, 또는 하기 화학식 10 내지 15 중 어느 하나로 표시되는 화합물 유래의 4가 라디칼인, 저마찰 수지 복합체:
    [화학식 10]
    Figure PCTKR2019010385-appb-I000053
    상기 화학식 10에서, R101 내지 R106은 각각 독립적으로, 수소, 알킬기, 알콕시기, 또는 아릴기이다;
    [화학식 11]
    Figure PCTKR2019010385-appb-I000054
    상기 화학식 11에서, R111 내지 R118은 각각 독립적으로, 수소, 알킬기, 알콕시기, 또는 아릴기이다;
    [화학식 12]
    Figure PCTKR2019010385-appb-I000055
    상기 화학식 12에서,
    R120 내지 R129는 각각 독립적으로, 수소, 알킬기, 알콕시기, 또는 아릴기이고,
    X는 단일 결합, 알킬렌기, 알킬리덴기, -O-, -S-, -C(=O)-, -S(=O)-, -S(=O)2-, -C(=O)-O-L1-O-C(=O)-, -L2-C(=O)-O-L3-, -L4-O-C(=O)-L5-, 또는 -L6-Ar1-L7-Ar2-L8-이며, 여기에서 L1 내지 L8는 각각 독립적으로, 단일 결합, -O-, 알킬렌기, 또는 알킬리덴기이고, Ar1 및 Ar2는 각각 독립적으로 아릴렌기이다;
    [화학식 13]
    Figure PCTKR2019010385-appb-I000056
    상기 화학식 13에서,
    R131 내지 R134는 각각 독립적으로, 수소, 알킬기, 또는 알콕시기이되, R131 내지 R134 중 2개는 서로 연결되어 알킬렌기를 형성할 수 있고,
    A는 알킬렌기 또는 알케닐렌기이되, A의 알킬렌기 또는 알케닐렌기는 헤테로 원자로서 하나 이상의 산소 원자를 포함할 수 있다;
    [화학식 14]
    Figure PCTKR2019010385-appb-I000057
    상기 화학식 14에서,
    R141 내지 R144는 각각 독립적으로, 수소, 알킬기, 또는 알콕시기이고,
    A는 알킬렌기이다;
    [화학식 15]
    Figure PCTKR2019010385-appb-I000058
    상기 화학식 15에서,
    R150 내지 R159는 각각 독립적으로, 수소, 알킬기, 또는 알콕시기이다.
  11. 제 9 항에 있어서,
    상기 화학식 9에서 n은 2 내지 200 범위 내의 수인, 저마찰 수지 복합체.
  12. 제 1 항에 있어서,
    ASTM D3702 규격에 의거하여, PV Value가 2.3 MPa·m/s인 조건 하에서 피마찰재 탄소강을 기준으로 1.3 cm2의 접촉 면적을 갖는 스러스트 와셔(thrust washer) 시편에 대해 측정한 무윤활(자기 윤활) 조건에서의 마찰 계수가 0.175 이하인, 저마찰 수지 복합체.
  13. 제 1 항에 있어서,
    ASTM D3702 규격에 의거하여, PV Value가 4.6 MPa·m/s인 조건 하에서 피마찰재 탄소강을 기준으로 1.3 cm2의 접촉 면적을 갖는 스러스트 와셔(thrust washer) 시편에 대해 측정한 윤활(윤활제: 자동차용 윤활유) 조건에서의 마찰 계수가 0.060 이하인, 저마찰 수지 복합체.
  14. 제 1 항의 저마찰 수지 복합체를 사용하여 제조된 상대마찰 부품용 소재.
  15. 제 14 항에 있어서,
    상기 상대마찰 부품용 소재는 베어링, 부싱, 스러스트 와셔, 오일씰, 피스톤링, 슬라이딩(sliding), 또는 롤러인, 상대마찰 부품용 소재.
PCT/KR2019/010385 2018-08-17 2019-08-14 저마찰 수지 복합체 WO2020036443A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19849172.2A EP3741808B1 (en) 2018-08-17 2019-08-14 Low-friction resin composite
US16/976,701 US11905371B2 (en) 2018-08-17 2019-08-14 Low friction resin composites
CN201980015536.1A CN111819244B (zh) 2018-08-17 2019-08-14 低摩擦树脂复合体
JP2020545652A JP7039109B2 (ja) 2018-08-17 2019-08-14 低摩擦樹脂複合体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180096135 2018-08-17
KR10-2018-0096135 2018-08-17
KR1020190099149A KR102202060B1 (ko) 2018-08-17 2019-08-13 저마찰 수지 복합체
KR10-2019-0099149 2019-08-13

Publications (1)

Publication Number Publication Date
WO2020036443A1 true WO2020036443A1 (ko) 2020-02-20

Family

ID=69525701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010385 WO2020036443A1 (ko) 2018-08-17 2019-08-14 저마찰 수지 복합체

Country Status (1)

Country Link
WO (1) WO2020036443A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111662547A (zh) * 2020-06-09 2020-09-15 陕西科技大学 一种二硫化钼量子点/石墨烯/聚合物基超耐磨自润滑复合材料及其制备方法和应用
CN114016295A (zh) * 2021-11-11 2022-02-08 中国科学院兰州化学物理研究所 一种具有梯度润滑结构的纤维织物复合材料及其制备方法和应用

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4408035A (en) 1981-08-24 1983-10-04 The United States Of America As Represented By The Secretary Of The Navy Phthalonitrile resin from diphthalonitrile monomer and amine
US5003039A (en) 1988-11-18 1991-03-26 The United States Of America As Represented By The Secretary Of The Navy Amino phenyl containing curing agent for high performance phthalonitrile resin
US5003078A (en) 1989-05-16 1991-03-26 The United States Of America As Represented By The Secretary Of The Navy Synthesis of phthalonitrile resins containing ether and imide linkages
US5004801A (en) 1988-11-21 1991-04-02 The United States Of America As Represented By The Secretary Of The Navy Polymer of dithioether-linked phthalonitrile
US5132396A (en) 1990-04-30 1992-07-21 The United States Of America As Represented By The Secretary Of The Navy Phthalonitrile monomers containing imide and/or phenoxy linkages, and polymers thereof
US5139054A (en) 1991-06-28 1992-08-18 Leggett & Platt, Incorporated Spring interior forming and assembling apparatus
US5208318A (en) 1991-03-15 1993-05-04 Keller Teddy M Phosphazene-containing amine as curing agent for phthalonitrile-base polymer
US5237045A (en) 1992-01-09 1993-08-17 The United States Of America As Represented By The Secretary Of The Navy Curing phthalonitrile resins with acid and amine
US5292854A (en) 1989-05-16 1994-03-08 The United States Of America As Represented By The Secretary Of The Navy Synthesis of phthalonitrile resins containing ether and imide linkages with aromatic diamine curing agent
JP2008530309A (ja) * 2005-02-11 2008-08-07 レイセオン・カンパニー 改良されたフタロニトリル複合材料
CN101712795A (zh) * 2009-11-27 2010-05-26 四川飞亚新材料有限公司 聚芳醚腈复合材料、聚芳醚腈棒材及其制备方法
KR20160115543A (ko) * 2015-03-27 2016-10-06 주식회사 엘지화학 중합성 조성물
WO2017095174A1 (ko) * 2015-12-04 2017-06-08 주식회사 엘지화학 중합성 조성물
KR20180062396A (ko) * 2016-11-30 2018-06-08 주식회사 엘지화학 경화성 조성물

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4408035A (en) 1981-08-24 1983-10-04 The United States Of America As Represented By The Secretary Of The Navy Phthalonitrile resin from diphthalonitrile monomer and amine
US5003039A (en) 1988-11-18 1991-03-26 The United States Of America As Represented By The Secretary Of The Navy Amino phenyl containing curing agent for high performance phthalonitrile resin
US5350828A (en) 1988-11-21 1994-09-27 The United States Of America As Represented By The Secretary Of The Navy Synthesis and polymerization of dithioether-linked phthalonitrile monomers
US5004801A (en) 1988-11-21 1991-04-02 The United States Of America As Represented By The Secretary Of The Navy Polymer of dithioether-linked phthalonitrile
US5292854A (en) 1989-05-16 1994-03-08 The United States Of America As Represented By The Secretary Of The Navy Synthesis of phthalonitrile resins containing ether and imide linkages with aromatic diamine curing agent
US5003078A (en) 1989-05-16 1991-03-26 The United States Of America As Represented By The Secretary Of The Navy Synthesis of phthalonitrile resins containing ether and imide linkages
US5132396A (en) 1990-04-30 1992-07-21 The United States Of America As Represented By The Secretary Of The Navy Phthalonitrile monomers containing imide and/or phenoxy linkages, and polymers thereof
US5208318A (en) 1991-03-15 1993-05-04 Keller Teddy M Phosphazene-containing amine as curing agent for phthalonitrile-base polymer
US5139054A (en) 1991-06-28 1992-08-18 Leggett & Platt, Incorporated Spring interior forming and assembling apparatus
US5237045A (en) 1992-01-09 1993-08-17 The United States Of America As Represented By The Secretary Of The Navy Curing phthalonitrile resins with acid and amine
JP2008530309A (ja) * 2005-02-11 2008-08-07 レイセオン・カンパニー 改良されたフタロニトリル複合材料
CN101712795A (zh) * 2009-11-27 2010-05-26 四川飞亚新材料有限公司 聚芳醚腈复合材料、聚芳醚腈棒材及其制备方法
KR20160115543A (ko) * 2015-03-27 2016-10-06 주식회사 엘지화학 중합성 조성물
WO2017095174A1 (ko) * 2015-12-04 2017-06-08 주식회사 엘지화학 중합성 조성물
KR20180062396A (ko) * 2016-11-30 2018-06-08 주식회사 엘지화학 경화성 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3741808A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111662547A (zh) * 2020-06-09 2020-09-15 陕西科技大学 一种二硫化钼量子点/石墨烯/聚合物基超耐磨自润滑复合材料及其制备方法和应用
CN114016295A (zh) * 2021-11-11 2022-02-08 中国科学院兰州化学物理研究所 一种具有梯度润滑结构的纤维织物复合材料及其制备方法和应用
CN114016295B (zh) * 2021-11-11 2022-08-02 中国科学院兰州化学物理研究所 一种具有梯度润滑结构的纤维织物复合材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
WO2017111300A1 (ko) 신규 구조의 디아민 모노머를 적용한 폴리아믹산 용액 및 이를 포함하는 폴리이미드 필름
WO2016032299A1 (ko) 단량체 염을 이용한 폴리이미드 제조방법
WO2018038436A1 (ko) 디아민 화합물 및 이의 제조방법
WO2017095174A1 (ko) 중합성 조성물
WO2017047917A1 (ko) 변성 폴리이미드 및 이를 포함하는 경화성 수지 조성물
WO2020036443A1 (ko) 저마찰 수지 복합체
WO2018030552A1 (ko) 중합성 조성물
WO2014104557A1 (ko) 낮은 열팽창 계수를 갖는 신규한 폴리아미드이미드
WO2019235712A1 (ko) 실록산 화합물 및 이를 포함하는 폴리이미드 전구체 조성물
WO2020149574A1 (ko) 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
WO2017191914A2 (ko) 아미노실란계 화합물의 신규 제조방법
WO2021054771A1 (ko) 말단이 불포화기로 캡핑된 인 함유 수지, 이의 제조방법 및 상기 말단이 불포화기로 캡핑된 인 함유 수지를 포함하는 수지 조성물
WO2020060262A1 (ko) 프탈로니트릴 올리고머를 포함하는 경화성 수지 조성물 및 이의 프리폴리머
WO2020159086A1 (ko) 폴리아미드 수지 필름 및 이를 이용한 수지 적층체
WO2020105933A1 (ko) 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
WO2022045737A1 (ko) 포지티브형 감광성 수지 조성물
WO2021034041A1 (ko) 유기 보레이트계 촉매, 이를 이용한 이소부텐 올리고머의 제조방법 및 이로부터 제조된 이소부텐 올리고머
WO2020153771A1 (ko) 디아민 화합물, 및 이를 이용한 폴리이미드 전구체 및 폴리이미드 필름
WO2020184972A1 (ko) 폴리이미드 공중합체, 폴리이미드 공중합체의 제조방법, 이를 이용한 감광성 수지 조성물, 감광성 수지 필름 및 광학 장치
WO2022045825A1 (ko) 중수소화 방향족 화합물의 제조 방법 및 중수소화 반응 조성물
WO2020130552A1 (ko) 디아민 화합물, 이를 이용한 폴리이미드 전구체 및 폴리이미드 필름
WO2020218879A1 (ko) 실리콘계 점착성 보호 필름 및 이를 포함하는 광학 부재
WO2020159035A1 (ko) 폴리이미드 필름, 이를 이용한 플렉서블 기판 및 플렉서블 기판을 포함하는 플렉서블 디스플레이
WO2020153659A1 (ko) 액정 배향제 조성물, 이를 이용한 액정 배향막 및 액정표시소자
WO2020138644A1 (ko) 폴리아믹산 조성물, 및 이를 이용한 투명 폴리이미드 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19849172

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020545652

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019849172

Country of ref document: EP

Effective date: 20200818

NENP Non-entry into the national phase

Ref country code: DE