WO2020036102A1 - 印刷装置及び印刷方法 - Google Patents

印刷装置及び印刷方法 Download PDF

Info

Publication number
WO2020036102A1
WO2020036102A1 PCT/JP2019/031023 JP2019031023W WO2020036102A1 WO 2020036102 A1 WO2020036102 A1 WO 2020036102A1 JP 2019031023 W JP2019031023 W JP 2019031023W WO 2020036102 A1 WO2020036102 A1 WO 2020036102A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
movement amount
correction value
value
printing
Prior art date
Application number
PCT/JP2019/031023
Other languages
English (en)
French (fr)
Inventor
陽一 市川
周平 花岡
Original Assignee
株式会社ミマキエンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018153677A external-priority patent/JP7094826B2/ja
Priority claimed from JP2018153676A external-priority patent/JP7103889B2/ja
Application filed by 株式会社ミマキエンジニアリング filed Critical 株式会社ミマキエンジニアリング
Priority to EP19849151.6A priority Critical patent/EP3838597A4/en
Priority to US17/264,852 priority patent/US11491778B2/en
Publication of WO2020036102A1 publication Critical patent/WO2020036102A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/36Blanking or long feeds; Feeding to a particular line, e.g. by rotation of platen or feed roller
    • B41J11/42Controlling printing material conveyance for accurate alignment of the printing material with the printhead; Print registering
    • B41J11/425Controlling printing material conveyance for accurate alignment of the printing material with the printhead; Print registering for a variable printing material feed amount
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/36Blanking or long feeds; Feeding to a particular line, e.g. by rotation of platen or feed roller
    • B41J11/42Controlling printing material conveyance for accurate alignment of the printing material with the printhead; Print registering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/47Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/007Conveyor belts or like feeding devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/60Editing figures and text; Combining figures or text

Definitions

  • the present invention relates to a printing device and a printing method.
  • an ink jet printer which is a printing device that performs printing by an ink jet method, has been widely used.
  • a serial type configuration in which an ink jet head performs a main scanning operation (scan operation) is widely used (for example, see Patent Document 1).
  • the area facing the inkjet head is sequentially changed in the medium to be printed by causing the inkjet head to perform the sub-scanning operation between the main scanning operations.
  • the inkjet head is moved relative to the medium by transporting the medium by a transport amount (feed amount) determined according to the number of passes set as a printing condition.
  • the sub-scanning movement amount for example, medium conveyance amount
  • medium conveyance amount a distance for moving the inkjet head relative to the medium during the sub-scanning operation.
  • the sub-scanning movement amount is appropriately set, not simply set according to the number of passes.
  • correction parameters are prepared in advance for each sub-scanning movement amount corresponding to each pass number that can be set. It is possible to do.
  • the number of types of passes that can be set becomes extremely large. More specifically, for example, when a function such as MAPS (Mimaki Advanced Pass System) mounted on an ink jet printer manufactured by Mimaki Engineering is used, various numbers of passes including non-integers are set. . In such a case, if the correction parameters are prepared in advance for each sub-scanning movement amount corresponding to each settable number of passes, the necessary correction parameters may become extremely large.
  • an object of the present invention is to provide a printing apparatus and a printing method that can solve the above-described problems.
  • a correction parameter for a predetermined printing condition is prepared as a standard parameter and another printing parameter is prepared.
  • a correction parameter for a predetermined printing condition is prepared as a standard parameter and another printing parameter is prepared.
  • differences in printing conditions for example, differences in the number of passes.
  • the inventor of the present application has earnestly studied and has made a correction value (input correction value) input by a user's instruction or the like (for example, manual input) as at least a part of the parameter used for correcting the sub-scanning movement amount. I thought about using. Further, as such an input correction value, a value indicating the distance for changing the sub-scanning movement amount in the printing condition at the time of input is used as it is, and if the printing condition is subsequently changed, the value is input first. It is considered that the input correction value is adjusted according to a change in printing conditions. With this configuration, for example, when the print result is actually confirmed and the correction parameter is set, the input correction value can be easily and appropriately input.
  • the input correction value can be appropriately adjusted according to the changed printing conditions.
  • this makes it possible to more appropriately correct the sub-scanning movement amount in, for example, a printing apparatus that causes the inkjet head to perform the main scanning operation and the sub-scanning operation.
  • the present invention is a printing apparatus that performs printing on a medium, and an inkjet head that ejects ink to the medium, and a printing apparatus that performs printing on the medium in a main scanning direction set in advance.
  • a main scanning drive unit that causes the inkjet head to perform a main scanning operation that ejects ink while moving relatively, and a sub-scanning operation that moves relatively to the medium in a sub-scanning direction orthogonal to the main scanning direction.
  • a sub-scanning drive unit that causes the ink-jet head to perform, and a movement amount setting that sets a sub-scanning movement amount that is a distance that moves the ink-jet head in the sub-scanning direction relative to the medium in the sub-scanning operation.
  • an input unit for inputting an input correction value input to the movement amount setting unit as a correction value used for correcting the sub-scanning movement amount to the movement amount setting unit
  • the movement amount setting unit sets the sub-scanning movement amount based on a basic movement amount, which is a basic movement amount set according to printing conditions, and the input correction value input by the input unit.
  • the input unit inputs, as the input correction value, a value indicating a distance that increases or decreases the sub-scanning movement amount under printing conditions set at the time of inputting the input correction value, and the input correction value is
  • the moving amount setting unit sets the sub-scanning moving amount based on the basic moving amount and the newly input input correction value, and the input correction value is newly input.
  • the movement amount setting unit adjusts the input correction value in accordance with the changed printing condition, and is set according to the changed printing condition. In accordance with the basic movement amount and the printing conditions after the change, It was based on the the input correction value adjustment has been in, and sets the sub-scanning shift amount.
  • an input correction value can be input easily and appropriately. Further, for example, even when the printing conditions are changed thereafter, the input correction value can be appropriately adjusted according to the changed printing conditions. In addition, this makes it possible to more appropriately correct the sub-scanning movement amount in, for example, a printing apparatus that causes the inkjet head to perform the main scanning operation and the sub-scanning operation.
  • the input unit inputs a user feed correction value, which is a value specified by the user, as the input correction value.
  • the user feed correction value is input by a user's manual input via, for example, an interface using a computer screen.
  • the correction amount of the sub-scanning movement amount can be appropriately adjusted based on the determination of the user who has confirmed the print result.
  • the correction of the sub-scanning movement amount may be performed by further using a parameter other than the user feed correction value.
  • the movement amount setting unit for example, further using a system feed correction value which is a correction value set in accordance with printing conditions based on parameters set in advance in the printing apparatus, the basic movement amount, The sub-scanning movement amount is set based on the user feed correction value and the system feed correction value. With this configuration, for example, the sub-scanning movement amount can be corrected more appropriately.
  • the input unit may use, as the value specified by the user, for example, an offset value that is a value that directly indicates a distance that changes the sub-scanning movement amount under the printing conditions set when the input correction value is input. Is received from the user.
  • indicating the distance for changing the sub-scanning movement amount as it is means, for example, indicating a distance as seen by the user as a distance requiring correction in the sub-scanning movement amount.
  • the distance that needs to be corrected in the sub-scanning movement amount is, for example, the magnitude of the deviation of the sub-scanning movement amount recognized in the print result.
  • the inkjet head has, for example, a nozzle row in which a plurality of nozzles are arranged at different positions in the sub-scanning direction.
  • the number of passes indicating the average number of main scanning operations performed for each position in the print range on the medium in the movement amount setting unit.
  • a value obtained by dividing the nozzle length, which is the width of the nozzle row of the inkjet head in the sub-scanning direction, by the number of passes may be used as the basic movement amount.
  • the basic movement amount can be appropriately set.
  • a composite head for example, a staggered head or the like
  • a composite head including a plurality of inkjet heads that eject the same color ink
  • the nozzle row of the inkjet head is, for example, a nozzle row in the composite head.
  • the nozzle row in the composite head is, for example, a nozzle row configured by combining nozzles of a plurality of inkjet heads included in the composite head.
  • a plurality of types of values including a non-integer value can be set as the number of paths.
  • the non-integer value for example, it is conceivable to set a value in at least a step width of 0.25 or less.
  • the number of paths can be set variously, values that can be taken as the basic movement amount also become various.
  • the sub-scanning movement amount can be set appropriately even when there are many possible values as the basic movement amount.
  • the step width of the number of passes is preferably 0.1 or less, more preferably 0.01 or less. In this case, for example, it is conceivable that an arbitrary number of paths can be set with a numerical value in which the number of digits after the decimal point becomes a predetermined number of digits.
  • the printing apparatus that can continuously execute printing operations corresponding to a plurality of print jobs for which different printing conditions are set.
  • the fact that the printing operation corresponding to a plurality of print jobs can be continuously performed means that, for example, by automatically sequentially processing a plurality of print jobs supplied to a printing apparatus, This is to automatically and sequentially perform printing operations corresponding to print jobs.
  • the set printing conditions may be different for each print job, the printing conditions may change as the print job changes.
  • the moving amount setting unit In, it is conceivable to adjust the input correction value in accordance with the printing conditions set in the next print job.
  • the moving amount setting unit further includes, for example, a basic moving amount set according to a printing condition corresponding to the next print job, and an input correction value adjusted according to the printing condition.
  • the sub-scanning movement amount is set.
  • the user when performing a printing operation based on a print job in which printing conditions are set, for example, by observing the progress of the printing, the user can adjust the input correction value during the printing operation. It can be changed. More specifically, in this case, for example, it is conceivable that a new input correction value is input from the input unit during printing of a printed material corresponding to one print job.
  • the moving amount setting unit sets a new sub-scanning moving amount based on, for example, the basic moving amount and the newly input correction value. Then, from the middle of printing the printed matter corresponding to one print job, the sub-scanning driving unit causes the inkjet head to perform the sub-scanning operation according to the new sub-scanning movement amount. With this configuration, for example, the sub-scanning movement amount can be corrected more flexibly and appropriately.
  • the inventor of the present application has actually performed various experiments and the like, for example, when the maximum value of the value that can be taken as the sub-scanning movement amount becomes large, such as when using a large-sized inkjet head, It has been found that an error may increase in the result of correction of the sub-scanning movement amount by simply making it proportional to the sub-scanning movement amount. More specifically, in this case, for example, the correction amount required under the printing condition where the number of passes is set to 1 is used as a standard parameter, and the correction amount required under the printing condition where the number of passes is set to 2 is set to the standard value.
  • the inventor of the present application has considered that the correction parameter is varied depending on the magnitude of the basic movement amount corresponding to the sub-scanning movement amount before the correction. More specifically, when the basic movement amount is within a predetermined first range, the first correction coefficient is used as a correction parameter, and the second movement amount is smaller than the first range. It is considered that the second correction coefficient is used as a correction parameter when the value is within the range of. With this configuration, for example, even when the maximum value that can be taken as the scanning movement amount becomes large, the sub-scanning movement amount can be more appropriately corrected with higher accuracy. Also, in this case, since only a limited number of correction coefficients need be prepared, the sub-scanning movement amount can be appropriately corrected using only a small number of correction parameters.
  • the present invention is a printing apparatus that performs printing on a medium, and an inkjet head that ejects ink to the medium, and a printing apparatus that performs printing on the medium in a main scanning direction set in advance.
  • a main scanning drive unit that causes the inkjet head to perform a main scanning operation that ejects ink while moving relatively, and a sub-scanning operation that moves relatively to the medium in a sub-scanning direction orthogonal to the main scanning direction.
  • a sub-scanning drive unit that causes the ink-jet head to perform, and a movement amount setting that sets a sub-scanning movement amount that is a distance that moves the ink-jet head in the sub-scanning direction relative to the medium in the sub-scanning operation.
  • a correction coefficient storage unit that stores a correction coefficient that is a coefficient used for calculating a calculated correction value calculated as a correction value used for correcting the sub-scanning movement amount.
  • the moving amount setting unit sets the sub-scanning moving amount based on a basic moving amount that is a basic moving amount set according to a printing condition, and the calculated correction value; Are the first correction coefficient used when the basic movement amount is within the first range, and the second range where the basic movement amount is smaller than the first range.
  • the movement amount setting unit is configured to store the basic movement amount and the first correction amount when the basic movement amount is within the first range. Calculating the calculated correction value based on the correction coefficient, and when the basic movement amount is within the second range, the movement amount setting unit calculates the basic movement amount and the second correction coefficient And the calculated correction value is calculated based on
  • the sub-scanning movement amount can be appropriately corrected with high accuracy.
  • the first and second correction coefficients for example, it is conceivable to use a coefficient indicating a linear function that associates the basic movement amount with the calculated correction value. In this case, it is conceivable to use, for example, a coefficient different from the first correction coefficient as the second correction coefficient.
  • the inkjet head has, for example, a nozzle row in which a plurality of nozzles are arranged at different positions in the sub-scanning direction.
  • the first range for example, it is conceivable to use a range including a case where the nozzle length, which is the width of the nozzle row of the inkjet head in the sub-scanning direction, and the basic movement amount are equal.
  • the second range for example, it is conceivable to use a range including all basic movement amounts that are equal to or less than a predetermined movement amount smaller than the nozzle length.
  • the second correction coefficient for example, a coefficient indicating that the calculated correction value is calculated in proportion to the basic movement amount may be used.
  • That the calculated correction value is calculated in proportion to the basic movement amount means that, for example, a linear function that associates the basic movement amount with the calculated correction value is a function indicating a straight line passing through the origin.
  • a linear function that associates the basic movement amount with the calculated correction value is a function indicating a straight line passing through the origin.
  • the first range and the second range can be appropriately divided.
  • the calculation correction value can be appropriately calculated for the basic movement amount included in the second range.
  • the inkjet head for example, it is conceivable to use a composite head (for example, a staggered head or the like) composed of a plurality of inkjet heads that eject ink of the same color.
  • the nozzle row of the inkjet head is, for example, a nozzle row in the composite head.
  • the nozzle row in the composite head is, for example, a nozzle row configured by combining nozzles of a plurality of inkjet heads included in the composite head.
  • the first range for example, it is conceivable to use a range including all basic movement amounts larger than a predetermined movement amount.
  • the first correction coefficient for example, the calculated correction value corresponding to the basic movement amount is linearly set between the basic movement amount equal to half the nozzle length and the basic movement amount equal to the nozzle length. It is conceivable to use a coefficient indicating a change.
  • the fact that the calculated correction value corresponding to the basic movement amount changes linearly means that, for example, the relationship between the basic movement amount and the calculated correction value becomes a linear function.
  • the calculation correction value can be appropriately calculated for the basic movement amount included in the first range.
  • the slope in the linear relationship indicated by the first correction coefficient may be different from the slope in the proportional relation indicated by the second correction coefficient.
  • the linear function corresponding to the first range for example, a function corresponding to a straight line that does not pass through the origin may be used.
  • the distance between dots corresponding to the resolution in the sub-scanning direction set according to the printing conditions is defined as the distance between sub-scanning dots.
  • a correction value calculated based on the correction coefficient is calculated as a first value
  • a value obtained when a correction value is calculated according to a proportional relationship indicated by a second correction coefficient is defined as a second value
  • a first value is obtained. It is conceivable that the difference between the second value and the second value is larger than the distance between the sub-scanning dots.
  • the sub-scanning movement amount is corrected using only one type of correction coefficient, for example, when the basic movement amount is equal to the nozzle length, or when the basic movement amount is half the nozzle length
  • an error exceeding the distance between the sub-scanning dots occurs in the sub-scanning movement amount after the correction in the above. If such an error occurs, banding or the like may not be properly prevented even if the sub-scanning movement amount is corrected.
  • the first correction coefficient and the second correction coefficient are used as described above, the occurrence of such an error can be appropriately prevented.
  • the sub-scanning movement amount can be more appropriately corrected with higher accuracy.
  • the distance between the sub-scanning dots with respect to the ideal correction value at any of the sub-scanning movement amounts is obtained. It can be considered that there is a situation where a larger difference occurs. More specifically, in this case, for example, a correction value for correctly setting the sub-scanning movement amount corresponding to each basic movement amount is defined as an ideal correction value, and the base movement amount is determined using only one proportional coefficient.
  • the correction value when the calculated correction value is set proportionally is defined as the simple proportional correction value, one proportional adjustment is made so that the ideal correction value and the simple proportional correction value are equal for any of the basic movement amounts.
  • the coefficient When the coefficient is set, the difference between the ideal correction value and the simple proportional correction value corresponding to any of the other basic movement amounts becomes larger than the distance between the sub-scanning dots. In such a case, the use of the first correction coefficient and the second correction coefficient can appropriately prevent such an error. In addition, for example, the sub-scanning movement amount can be more appropriately corrected with higher accuracy.
  • the printing condition for example, it is conceivable that at least the number of passes indicating the average number of main scanning operations performed for each position in the printing range on the medium is set.
  • the basic movement amount for example, a value obtained by dividing the nozzle length of the inkjet head by the number of passes may be used. With this configuration, for example, the basic movement amount can be appropriately set.
  • a plurality of types of values including a non-integer value can be set as the number of paths.
  • the non-integer value for example, it is conceivable to set a value in at least a step width of 0.25 or less.
  • the number of paths can be set variously, values that can be taken as the basic movement amount also become various.
  • the sub-scanning movement amount can be set appropriately even when there are many possible values as the basic movement amount.
  • the step width of the number of passes is preferably 0.1 or less, more preferably 0.01 or less. In this case, for example, it is conceivable that an arbitrary number of paths can be set with a numerical value in which the number of digits after the decimal point becomes a predetermined number of digits.
  • the sub-scanning movement amount can be more appropriately corrected.
  • FIG. 1 is a diagram illustrating a printing apparatus 10 according to an embodiment of the present invention.
  • FIG. 1A illustrates an example of a configuration of a main part of the printing apparatus 10.
  • FIG. 1B shows an example of the configuration of the inkjet head 102.
  • FIG. 4 is a diagram for explaining an operation of setting a feed amount.
  • FIG. 2A shows an example of a parameter for receiving a setting from a user in the input unit 24.
  • FIG. 2B is a diagram illustrating an operation of setting a feed amount based on a parameter specified by a user.
  • FIG. 4 is a diagram for explaining adjustment of an offset value in more detail.
  • 3A to 3D show an example of an operation for setting or changing various parameters.
  • FIG. 4 is a diagram for explaining adjustment of an offset value in more detail.
  • FIG. 4A to 4C show an example of an operation for setting or changing various parameters.
  • FIG. 9 is a diagram for explaining in more detail how to correct the feed amount.
  • FIG. 5A is a table illustrating an example of a relationship between an odd path and an offset value set according to printing conditions.
  • FIG. 5B is a graph illustrating an example of the relationship between the reciprocal of the odd path and the user feed correction value.
  • FIG. 7 is a diagram for explaining a method of calculating a calculation correction value.
  • FIG. 6A shows an example of the relationship between a specific basic feed amount associated with a correction coefficient and a correction value (system feed correction value).
  • FIG. 6B is a graph showing the relationship between the basic feed amount and the correction value.
  • FIG. 7 is a diagram for explaining a method of calculating a calculation correction value.
  • FIG. 7 is a diagram illustrating an example of an operation of calculating a calculation correction value.
  • FIG. 8A shows an example of how to calculate the calculated correction value when the number of corresponding passes is in the range of 1 to 2.
  • FIG. 8B shows an example of how to calculate the calculated correction value when the number of corresponding paths is two or more.
  • FIG. 1 is a diagram illustrating a printing apparatus 10 according to an embodiment of the present invention.
  • FIG. 1A illustrates an example of a configuration of a main part of the printing apparatus 10. Note that, except for the points described below, the printing apparatus 10 may have the same or similar features as a known inkjet printer. For example, the printing apparatus 10 may further have the same or similar configuration as a known inkjet printer, in addition to the configuration described below.
  • the printing apparatus 10 is an inkjet printer that performs printing on a medium 50 to be printed by an inkjet method.
  • the printing apparatus 10 includes a head unit 12, a platen 14, a guide rail 16, a main scanning drive unit 18, a sub-scanning drive unit 20, a storage unit 22, an input unit 24, and a control unit 30.
  • the head section 12 is a section for discharging ink to the medium 50.
  • the head unit 12 includes a carriage 100 and a plurality of inkjet heads 102.
  • the carriage 100 is a holding member that holds the plurality of inkjet heads 102.
  • the carriage 100 aligns the positions in the sub-scanning direction (X direction in the drawing) preset in the printing apparatus 10 so that the main scanning direction (the X-direction in the drawing) is perpendicular to the sub-scanning direction.
  • the plurality of inkjet heads 102 are held so as to be arranged in the direction (Y direction in the figure).
  • Each of the plurality of inkjet heads 102 is an inkjet head that ejects ink of each color used for printing to the medium 50, and ejects ink of different colors from each other. More specifically, in this example, the head unit 12 ejects inks of yellow (Y), magenta (M), cyan (C), and black (K), respectively. And a plurality of ink jet heads 102. Further, in the present example, each inkjet head 102 has a nozzle row in which a plurality of nozzles are arranged at different positions in the sub-scanning direction, and ejects ink of each color from each nozzle.
  • the platen 14 is a trapezoidal member that supports the medium 50 at a position facing the head unit 12.
  • the guide rail 16 is a rail-shaped member extending in the main scanning direction, and guides the movement of the head unit 12 in the main scanning direction.
  • the main scanning drive unit 18 is a driving unit that causes the head unit 12 to perform a main scanning operation (scan operation).
  • the main scanning operation is, for example, an operation of ejecting ink while moving in the main scanning direction.
  • causing the head unit 12 to perform the main scanning operation means, for example, causing the inkjet head 102 of the head unit 12 to perform the main scanning operation.
  • the printing apparatus 10 executes a serial printing operation.
  • the head section 12 moves in the main scanning direction along the guide rail 16.
  • the movement of the head unit 12 in the main scanning direction refers to a relative movement with respect to the medium 50. Therefore, in a modified example of the printing apparatus 10, the position of the head unit 12 may be fixed, and the medium 50 may be moved by moving the platen 14, for example.
  • the sub-scanning drive unit 20 is a driving unit that causes the head unit 12 to perform a sub-scanning operation.
  • the sub-scanning operation is, for example, an operation of moving relatively to the medium 50 in the sub-scanning direction.
  • causing the head unit 12 to perform the sub-scanning operation means, for example, causing the inkjet head 102 in the head unit 12 to perform the sub-scanning operation.
  • the sub-scanning drive unit 20 performs the sub-scanning operation on the head unit 12 by transporting the medium 50 in a transport direction parallel to the sub-scanning direction using, for example, a belt member (not shown). Let it do.
  • the sub-scanning drive unit 20 conveys the medium 50 by a feed amount set by the control unit 30 according to the number of printing passes or the like between each main scanning operation.
  • the feed amount during the sub-scanning operation is an example of the sub-scanning movement amount.
  • the sub-scanning movement amount is a distance that the inkjet head 102 moves in the sub-scanning direction relative to the medium 50 in the sub-scanning operation.
  • the conveyance of the medium 50 is not limited to the belt member, and may be performed using, for example, a roller.
  • the sub-scanning operation may be performed by fixing the position of the medium 50 and moving the head unit 12 side.
  • the storage unit 22 is a storage unit for storing parameters for specifying a printing operation.
  • the storage unit 22 is an example of a correction coefficient storage unit, and stores at least a correction coefficient that is a parameter used for correcting the feed amount.
  • the correction coefficient is a coefficient used when calculating a calculated correction value that is a correction value (feed correction value) used for correcting the feed amount.
  • the correction of the feed amount is a correction performed to set the feed amount.
  • the correction coefficient and the like will be described later in more detail.
  • the input unit 24 is an input unit for inputting a parameter for specifying a printing operation.
  • the input unit 24 receives at least a parameter used for correcting the feed amount from a user (user) and inputs the parameter to the control unit 30.
  • the parameters used for correcting the feed amount will be described in more detail later.
  • the control unit 30 is, for example, a CPU of the printing apparatus 10 and controls the operation of each unit of the printing apparatus 10 according to a preset program. More specifically, the printing apparatus 10 causes each nozzle of the head unit 12 to eject ink according to an image to be printed, for example, when controlling the main scanning operation by the head unit 12. Further, in the present example, the control unit 30 is also an example of a movement amount setting unit, and sets a feed amount during the sub-scanning operation according to a printing condition. In this case, the control unit 30 corrects the feed amount based on the parameters stored in the storage unit 22 and the parameters input from the input unit 24. The operation of setting the feed amount in the control unit 30 will be described in more detail later.
  • the printing apparatus 10 of this example may have the same or similar features as a known inkjet printer, except for the points described above and below.
  • the printing apparatus 10 further include a fixing unit or the like for fixing the ink on the medium 50 according to the type of the ink to be used. More specifically, in the case where an ink that is fixed to the medium 50 by evaporating the solvent (evaporation-drying type ink) is used as the ink, a heater or the like that heats the medium or the ink may be used as the fixing unit.
  • the heater is disposed, for example, in the platen 14 at a position facing the head unit 12 with the medium 50 interposed therebetween.
  • an evaporative drying type ink for example, various known aqueous inks, solvent inks (solvent inks), and the like may be used.
  • an ultraviolet curable ink UV ink
  • the ultraviolet irradiation means is disposed at a position adjacent to the plurality of inkjet heads 102 (a position adjacent in the main scanning direction) in the head unit 12.
  • the inkjet head 102 for each color has a nozzle row in which a plurality of nozzles are arranged at different positions in the sub-scanning direction.
  • a composite head for example, a staggered head or the like
  • FIG. 1B shows an example of the configuration of the inkjet head 102 when a staggered head is used as the inkjet head 102.
  • the inkjet head 102 for each color is composed of a plurality of unit heads 202 that eject ink of the same color.
  • Each of the plurality of unit heads 202 is an inkjet head constituting a staggered head, and has, for example, a nozzle row in which nozzles are arranged in the sub-scanning direction as shown in the drawing.
  • the plurality of unit heads 202 are arranged at different positions in the sub-scanning direction such that the nozzle rows of each of the unit heads 202 are combined to form a nozzle row of the inkjet head 102.
  • the nozzle row of the inkjet head 102 is configured by combining the nozzle rows of each of the plurality of unit heads 202, for example, as shown in the right part of FIG. 1B.
  • the virtual nozzle row can be considered as a nozzle row of the inkjet head 102.
  • the unit head 202 for example, an inkjet head having a length of about 4 inches in the sub-scanning direction is used.
  • the length (width in the sub-scanning direction) of the nozzle row of the inkjet head 102 including the two unit heads 202 is 220 mm (220,000 ⁇ m).
  • FIG. 2 is a diagram for explaining the operation of setting the feed amount.
  • FIG. 2A shows an example of a parameter for receiving a setting from a user in the input unit 24.
  • FIG. 2B is a diagram illustrating an operation of setting a feed amount based on a parameter specified by a user.
  • the input unit 24 receives at least the input of the input path value, the MAPS speed value, and the offset (offset value) from the user.
  • the input path value and the MAPS speed value are parameters for specifying printing conditions.
  • the input path value is a numerical value that is the basis for setting the number of paths, and an integer value of 1 or more is specified by the user.
  • the number of passes is a number indicating the average number of main scanning operations performed on each position of the print range on the medium.
  • the number of paths is set in consideration of a MAPS speed value indicating a degree to which MAPS (Mimaki Advanced Pass System) is applied in addition to the input path value.
  • the input pass value can be considered to correspond to, for example, a value obtained by removing the influence of the MAPS process from the number of passes set at the time of printing.
  • the input path value can be considered to be, for example, a value corresponding to the number of paths set when the MAPS processing is invalidated (OFF).
  • the MAPS speed value is a value indicating the degree to which the MAPS processing is applied as described above.
  • the MAPS process is, for example, a process that makes banding less noticeable by adjusting the density (ejection density) of ink ejected from each nozzle by applying a mask.
  • a gradation type mask is used instead of a checkerboard-shaped mask or the like to adjust the ejection density.
  • the boundary portions of the paths are overlapped to make the path boundaries less noticeable. Therefore, when performing the MAPS process, the feed amount changes according to the MAPS moving speed. Accordingly, the number of paths to be set changes.
  • a non-integer value (semi-pass) is set as the number of passes by, for example, adjusting an integer value specified as an input path value according to the MAPS speed value. You will get. Therefore, the configuration for performing the MAPS process can be considered as an example of a configuration in which a plurality of types of values including a non-integer value can be set. In this case, in order to flexibly perform MAPS processing or the like with high accuracy, it is preferable that a non-integer value serving as the number of passes can be set to a value of at least a step size of 0.25 or less.
  • the step width of the number of passes is preferably 0.1 or less, more preferably 0.01 or less.
  • the number of passes is calculated according to the input pass value and the MAPS speed value, so that an arbitrary value can be set in increments of 0.01.
  • the input pass value and the MAPS speed value can also be considered as parameters for designating the number of passes as printing conditions.
  • the MAPS speed value can also be considered as, for example, a parameter indicating the degree to which dots formed on the medium are dispersed.
  • the MAPS speed value for example, a numerical value in the range of 0 to 100% may be used. In this case, a state where the MAPS speed value is set to 100% indicates a state where a mask corresponding to the input path value is applied. Therefore, when the MAPS speed value is 100%, the number of passes is equal to the number of input passes. Further, when the MAPS speed value is smaller than 100%, the number of passes becomes larger than the input pass value according to the MAPS speed value. More specifically, for example, if the input path value is 2 and the MAPS speed value is 100%, a mask equivalent to 2 passes is applied in the MAPS processing.
  • the input path value is 2 and the MAPS speed value is 50%, a mask equivalent to 4 passes will be applied in the MAPS processing. Also, in this case, as the setting of the MAPS speed value becomes smaller, the width of the overlap at the boundary of the path becomes larger (the overlap of the path increases). growing.
  • the printing conditions such as the input pass value and the MAPS speed do not always need to be specified by the user, but may be conditions specified in a print job indicating an image to be printed. In this case, it is also conceivable to use the printing conditions specified in the print job as initial values and accept changes by the user.
  • the offset value is a parameter used for correcting the feed amount.
  • the offset value is an example of an input correction value input by the input unit 24, and is also an example of a user feed correction value that is a value specified by the user as the input correction value.
  • the offset value is input by a user's manual input via an interface using a computer screen or the like as necessary.
  • a value that directly indicates a distance for changing the feed amount under the printing conditions set when the offset value is input is used.
  • To indicate the distance for changing the feed amount as it is means, for example, to indicate a distance as seen by the user as a distance that needs to be corrected in the feed amount.
  • the distance that needs to be corrected in the feed amount is, for example, the magnitude of the shift of the feed amount recognized in the print result (feed shift amount, feed correction amount).
  • the offset value can be considered to be, for example, a value indicating a distance for increasing or decreasing the feed amount under the printing conditions set when the offset value is input.
  • the method of inputting the parameter used for correcting the feed amount is different from that of the present example, for example, it is conceivable to input a value converted into a preset standard printing condition. Also, when considered as a computer system, inputting parameters in this way may facilitate subsequent processing. However, when correcting the feed amount, it is possible to input a parameter corresponding to an extremely small distance based on the user's feeling. In such a case, if conversion or the like in accordance with standard printing conditions is required, it is considered that unintended changes are likely to be made due to calculation errors or the like. Further, the correction of the feed amount may be performed, for example, during the printing operation.
  • the offset amount of the feed amount as seen by the user under arbitrary printing conditions can be set as the offset value. Can be quickly and appropriately adjusted. In addition, thereby, for example, a correction operation that is easy and has few errors can be appropriately realized.
  • the control unit 30 first sets the number of passes and the basic movement amount based on the input pass value and the MAPS speed value, as shown in FIG.
  • the number of paths is the number of paths (irregular paths) obtained by adjusting the input path value according to the MAPS speed value.
  • the basic movement amount is a basic movement amount used when setting the feed amount in the sub-scanning operation, and is set according to the printing conditions. Further, in this example, the basic movement amount is a value corresponding to the feed amount before the correction is performed.
  • a value obtained by dividing the nozzle length of the inkjet head by the number of passes is set as the basic movement amount. Further, as described above, in this example, the number of passes is calculated according to the input pass value and the MAPS speed value, so that an arbitrary value can be set in increments of 0.01. . Therefore, the value that can be taken as the basic movement amount can be set to various values within the range of the nozzle length or less.
  • the control unit 30 sets the feed amount by correcting the basic movement amount calculated in this way based on the offset value.
  • a correction value used for correcting the feed amount a system feed correction value is further used in addition to the offset value set by the user.
  • the system feed correction value is a correction value set in the printing apparatus 10 based on parameters set in advance according to printing conditions.
  • the operation of setting the feed amount in this example can be considered as, for example, an operation of setting the feed amount based on the basic movement amount, the offset value, and the system feed correction value.
  • the system feed correction value it is possible to easily and appropriately perform the standard correction corresponding to, for example, the device characteristics of the printing apparatus 10 (errors occurring between the apparatuses).
  • the offset value specified by the user it is possible to further perform, for example, fine adjustments required at the time of actual printing according to printing conditions, characteristics of the medium to be used, and the like. become. Therefore, according to this example, for example, the feed amount can be appropriately corrected with high accuracy.
  • the offset value a value that directly indicates the distance for changing the feed amount under the printing conditions set when the offset value is input is used.
  • printing conditions may be changed after the offset value is input. More specifically, in the printing apparatus 10, for example, a print job in which printing conditions are set may be used as a print job indicating a printed material to be printed by the printing apparatus 10. In this case, it is possible that the printing conditions are changed for each print job. Further, in this case, it is conceivable that a value to be set as the offset value changes due to a change in printing conditions.
  • the amount of correction applied when setting the feed amount is generally considered to be substantially proportional to the feed amount. Therefore, when the feed amount changes due to a change in the printing condition, the distance for changing the feed amount at the time of correction also changes. In contrast, in this example, the user automatically adjusts the offset value, which is set as it is under arbitrary printing conditions, in accordance with the feed amount that changes according to changes in printing conditions. Do.
  • FIGS. 3 and 4 are diagrams illustrating the adjustment of the offset value in more detail.
  • 3 (a) to 3 (d) and 4 (a) to 4 (c) show an example of an operation for setting or changing various parameters.
  • FIG. 3A is a diagram illustrating an example of a state in which an input path value and a MAPS speed value are set without specifying an offset value. The input path value is 1, and the MAPS speed value is 100%. An example of the case is shown.
  • This state can be considered, for example, as a state in which the feed amount is set without using the user feed correction value specified by the user.
  • FIG. 3 (b) shows a state in which the offset value has been changed to 1.000 mm from the state shown in FIG. 3 (a).
  • the control unit 30 performs, for example, a feed correction value update process for updating a value stored as the offset value.
  • the newly designated offset value is used.
  • FIG. 3C shows a state in which the input path value is changed to 2 from the state shown in FIG.
  • the basic movement amount calculated based on the input path value also changes. Therefore, in this case, it is necessary to change the offset value according to the change of the input path value.
  • the control unit 30 performs a feed correction value update process based on the changed input path value. More specifically, in this case, a new basic movement amount is calculated based on the new input path value, and the offset value is changed so as to be proportional to the basic movement amount. As a result, in the case shown in FIG. 3C, the offset value is changed to 0.500 mm by the feed correction value update processing.
  • FIG. 3D shows a state in which the MAPS speed value is changed to 80% from the state shown in FIG. 3C.
  • the basic movement amount calculated based on the MAPS speed value also changes. Therefore, in this case, it is necessary to change the offset value in accordance with the change in the MAPS speed value.
  • the control unit 30 performs a feed correction value update process based on the changed MAPS speed value. More specifically, in this case, a new basic movement amount is calculated based on the new MAPS speed value, and the offset value is changed so as to be proportional to the basic movement amount.
  • the offset value is changed to 0.400 mm by the feed correction value update processing.
  • FIG. 4A shows a state in which the offset value has been changed to 0.250 mm from the state shown in FIG. 3D. In this case, the offset value is changed to a value newly specified by the user by the feed correction value update processing.
  • FIG. 4 (b) shows a state where the input path value is changed to 1 from the state shown in FIG. 4 (a). Also in this case, the control unit 30 calculates a new basic movement amount based on the new input path value and changes the offset value. As a result, in the case shown in FIG. 4B, the offset value is changed to 0.500 mm by the feed correction value update processing.
  • FIG. 4C shows a state in which the MAPS speed value is changed to 100% from the state shown in FIG. 4B. Also in this case, the control unit 30 calculates a new basic movement amount based on the new MAPS speed value and changes the offset value. As a result, in the case shown in FIG. 4C, the offset value is changed to 0.625 mm by the feed correction value update processing.
  • the operations shown in FIGS. 3B and 4A can be considered as examples of operations in which an offset value is newly set.
  • the control unit 30 sets the feed amount based on the basic movement amount and the new offset value.
  • the control unit 30 adjusts the offset value according to the changed printing condition, adjusts the basic movement amount set according to the changed printing condition, and adjusts the offset value according to the changed printing condition.
  • the feed amount is set based on the offset value calculated.
  • the offset value can be easily and appropriately input. Further, for example, even when the printing conditions are changed thereafter, the offset value can be appropriately adjusted according to the changed printing conditions. In addition, for example, the feed amount can be appropriately corrected. Also, in this case, by adjusting the offset value according to the printing conditions, the feed amount can be appropriately corrected even when there are many possible values for the basic movement amount according to various printing conditions. it can. Therefore, according to the present example, the setting of the feed amount can be appropriately performed with high accuracy.
  • the printing apparatus 10 may continuously perform printing operations corresponding to a plurality of print jobs for which different printing conditions are set.
  • to continuously execute the printing operation corresponding to a plurality of print jobs means, for example, that a plurality of print jobs supplied to the printing apparatus 10 are automatically and sequentially processed so that each print job is automatically processed. Are automatically and sequentially performed.
  • the printing conditions that are set may be different for each print job, so that the printing conditions may change as the print job changes.
  • the printing operation corresponding to each print job can be performed more appropriately. More specifically, in this case, for example, after a print corresponding to one print job of a plurality of print jobs is printed, before starting an operation of printing a print corresponding to the next print job, control may be performed. In the section 30, the offset value is adjusted according to the printing conditions set in the next print job. Further, in this case, the control unit 30 further performs, based on the basic movement amount set according to the printing condition corresponding to the next print job and the offset value adjusted according to the printing condition, Set the feed amount. According to this configuration, in a case where printing operations corresponding to a plurality of print jobs are continuously performed, the feed amount corresponding to each print job can be appropriately set.
  • the offset value may be changed during the printing operation corresponding to one print job, for example, by observing the progress of the printing operation by the user.
  • the correction amount can be quickly adjusted.
  • by using the value as seen as the offset amount it is possible to more appropriately execute the correction operation with less errors. More specifically, in this case, for example, a new offset value is input from the input unit 24 to the control unit 30 during printing of a printed material corresponding to one print job due to a change in the offset value by the user. become.
  • control unit 30 sets a new feed amount based on the basic movement amount and the newly input offset value while printing the printed matter corresponding to one print job.
  • the sub-scanning drive unit 20 causes the inkjet head 102 to perform the sub-scanning operation in accordance with the new feed amount while printing the printed matter corresponding to one print job.
  • the sub-scanning movement amount can be corrected more flexibly and appropriately.
  • FIG. 5 is a diagram for explaining in more detail how to correct the feed amount.
  • FIG. 5A is a table showing an example of the relationship between the odd number of passes, which is the number of passes set according to the printing conditions, and the offset value. When adjusting the value, the offset value after the adjustment is shown in association with the number of passes.
  • the user feed correction value is a value corresponding to the adjusted offset value.
  • the offset value after adjustment is proportional to the reciprocal of the odd path.
  • the basic user feed correction value is a value corresponding to an offset value when the input path value and the MAPS speed value are set to predetermined standard values. More specifically, in the table shown in FIG. 5A, the offset value converted when the input path value is set to 1 and the MAPS speed value is set to 100% is shown as a basic user feed correction value. I have.
  • FIG. 5B is a graph showing an example of the relationship between the 1 / pass value, which is the reciprocal of the odd path, and the user feed correction value. 4 shows an example of a relationship with a user feed correction value. As can be seen from the graph, in this example, the user feed correction value is changed in proportion to the 1 / pass value. Further, as can be understood from the above description, in this example, the basic movement amount is proportional to the 1 / pass value. Therefore, the user feed correction value can be considered to change, for example, in proportion to the basic movement amount.
  • the case where the basic user feed correction value is 50 ⁇ m is indicated by a straight line indicated by reference symbol A.
  • the operation of setting a new user correction value can be considered as, for example, an operation of changing the slope of a straight line indicating the relationship between the 1 / pass value and the user feed correction value.
  • the value of 1 / pass value changes due to a change in the number of passes (uneven passes).
  • the position of the point corresponding to the printing condition is indicated by the 1 / pass value as indicated by the left-right arrow in the figure. Change to a smaller or larger position. Accordingly, the corresponding user feed correction value also changes.
  • the user feed correction value is adjusted so as to follow the printing conditions. Therefore, according to this example, for example, in a system in which the required correction amount changes in a proportional relationship depending on the magnitude of the feed amount, appropriate correction can be performed for each value of the feed amount.
  • the input path value input on the screen shown in FIG. The value is mappspd
  • the value of the offset value is feedofs
  • the input path value and the MAPS speed value used at the time of the previous calculation of the offset value are sv_pass and sv_mapsspd
  • a new offset value feedofs ⁇ (sv_pass / (Sv_mapsspd / 100)) / (pass / (mapsspd / 100)).
  • the correction value is held as a value under a specific printing condition, for example, if the correction value when the number of passes is 1 is held, the correction Even if the user recognizes the deviation of the feed amount when printing is performed with a certain value (for example, 200 ⁇ m), in order to correct the deviation amount, the difference in the feed amount due to the difference in the number of passes is considered. Then, it is necessary to input a value different from the recognized shift amount. For example, when the correction value is simply proportional to the feed amount, it is necessary to input a value converted to 50 ⁇ m, which is 4 of the above value (200 ⁇ m). In such a case, since the calculation for the conversion is required, the trouble of the user is increased.
  • the feed amount is set by further using the system feed correction value in addition to the user feed correction value input as the offset value.
  • the total correction value obtained by adding the user feed correction value and the system feed correction value is changed in proportion to the 1 / pass value. More specifically, as for the total correction value reflecting the offset value set by the user with respect to a specific printing condition, it is assumed that the total correction amount is 300 ⁇ m when the input pass value is 2. However, when only the input path value is changed to 1 without changing the MAPS speed value, the total correction value may be adjusted to 600 ⁇ m. With this configuration, for example, the feed amount can be appropriately corrected using the system feed correction value.
  • the offset value is used as the user feed correction value, so that the adjustment of the correction amount of the sub-scanning movement amount can be appropriately adjusted based on the determination of the user who has confirmed the print result. Can be done.
  • the feed amount in the sub-scanning operation is measured using, for example, a linear scale or the like and is automatically corrected as appropriate, the feed amount may be appropriately corrected.
  • banding may occur due to the influence of a minute error or the like, even when a correct feed amount can be realized by a measurement result of a linear scale or the like.
  • the offset value may be input by a system that automatically detects a necessary correction amount for the feed amount without being limited to manual input by the user. More specifically, in this case, for example, it is conceivable to detect a necessary correction amount by taking an image of a print result with a camera or the like and confirming whether or not banding is present by image processing or the like.
  • the control unit 30 sets a basic feed amount corresponding to the feed amount before correction based on printing conditions.
  • the basic feed amount is an example of a basic movement amount that is a basic movement amount set according to printing conditions.
  • the control unit 30 uses, for example, a condition specified in a print job indicating an image to be printed, as the printing condition. Further, as the printing condition, a condition specified by the user may be used. In this example, an input path value and a MAPS speed value are used as printing conditions used for setting the basic feed amount.
  • control unit 30 sets the number of passes and the basic feed amount based on the input pass value and the MAPS speed value specified as printing conditions.
  • the number of paths refers to the odd-numbered paths described above.
  • control unit 30 further sets the basic feed amount based on the number of passes and the nozzle length of the inkjet head. More specifically, in this example, a value obtained by dividing the nozzle length of the inkjet head by the number of passes is set as the basic feed amount. Further, as described above, in this example, the number of passes is calculated according to the input pass value and the MAPS speed value, so that an arbitrary value can be set in increments of 0.01. . Therefore, the value that can be taken as the basic movement amount can be set to various values within the range of the nozzle length or less.
  • the control unit 30 sets the feed amount actually used during the sub-scanning operation by correcting the basic feed amount calculated in this way.
  • the operation of correcting the basic feed amount can be considered as the operation of correcting the feed amount.
  • the control unit 30 calculates a calculated correction value based on the correction coefficient stored in the storage unit 22, and performs correction on the basic feed amount using the calculated correction value.
  • a feed amount obtained by correcting the basic feed amount is calculated by adding the calculated correction value to the basic feed amount.
  • the control unit 30 calculates the calculated correction value based on the correction coefficient stored in the storage unit 22.
  • the storage unit 22 stores, for example, a correction coefficient set at the time of shipment or adjustment of the printing apparatus 10. Therefore, it can be considered that the calculated correction value is calculated so as to indicate the correction amount set in the printing apparatus 10 in advance.
  • the calculated correction value can be considered as an example of a system feed correction value set in the printing apparatus 10 in advance.
  • the system feed correction value is, for example, a correction value prepared in advance by a manufacturer of the printing apparatus 10 or a service provider related to the printing apparatus 10. More specifically, in this example, as the correction coefficient, for example, a coefficient that associates a basic feed amount with a correction value to be set for the basic feed amount is used.
  • FIG. 6A shows an example of a relationship between a specific basic feed amount associated with a correction coefficient and a correction value (system feed correction value).
  • the specific basic feed amount associated with the correction coefficient is, for example, a basic feed amount corresponding to a boundary of a range of the basic feed amount described later.
  • FIG. 6B is a graph showing the relationship between the basic feed amount and the correction value shown in FIG. 6A, in which points corresponding to the respective basic feed amounts shown in FIG. 6A are plotted. Indicates a state where each point is connected by a straight line (line segment).
  • the basic feed amount when the number of passes is 0, 1, or 2 is used.
  • the number of passes when the number of passes is 0, it indicates a virtual condition to be used as the origin used when calculating the calculation correction value.
  • the correction value corresponding to each basic feed amount a value to be set as a system feed correction value is used. It is conceivable that the correction value is obtained by actual measurement performed by printing a test chart at the time of shipping or adjustment of the printing apparatus 10, for example. Further, 0 is set as the correction value when the number of passes is 0.
  • the relationship between the basic feed amount and the correction value is linear within a range where the error does not exceed a certain allowable amount. It is thought to change. Further, as will be described in more detail later, the inventor of the present application has set the basic feed amount in two ranges, that is, the case where the number of passes is within the range of 1 to 2 and the other cases in the case of a normal inkjet printer. If considered separately, it has been found that the linear relationship as described above is appropriately established in each range. In this case, the basic feed amounts other than the basic feed amounts shown in FIG. 6A correspond to the respective basic feed amounts based on the relationship indicated by the straight line shown in FIG. 6B. A correction value can be obtained. In this case, the correction value obtained in this way can be used as the calculated correction value described above.
  • FIG. 7 is a diagram for explaining the straight lines in the graph of FIG. 6B in more detail, and shows a graph obtained by extending each straight line shown in FIG. 6B. More specifically, in the graph of FIG. 7, a straight line corresponding to the basic feed amount when the number of passes is 1 to 2 in FIG. , And are extended using broken lines. In addition, a straight line corresponding to the basic feed amount when the number of passes is out of the range of 1 to 2 is indicated by a reference numeral B, and is extended using a dashed line.
  • the range of the basic feed amount corresponding to the case where the number of passes is in the range of 1 to 2 is an example of the first range.
  • the basic feed amount when the number of passes is 1 is equal to the nozzle length of the inkjet head. Therefore, the first range can be considered as a range including a case where the nozzle length and the basic feed amount are equal, for example.
  • that the number of passes is in the range of 1 to 2 means that the number of passes is in the range of 1 or more and less than 2, for example.
  • the case where the number of paths is equal to 2 may be included in the first range.
  • the range of the basic feed amount corresponding to the basic feed amount when the number of passes is out of the range of 1 to 2 is an example of the second range.
  • the second range is a range in which the basic feed amount is smaller than the first range.
  • the range in which the basic feed amount is smaller than the first range means that the basic feed amount included in the range is smaller than the basic feed amount included in the first range.
  • the basic feed amount when the number of passes is 2 is an example of a predetermined moving amount smaller than the nozzle length.
  • the second range can be considered to be, for example, a range including all the basic feed amounts equal to or less than the predetermined moving amount.
  • the first range can be considered as a range including all basic feed amounts larger than a predetermined moving amount, for example.
  • the predetermined movement amount is a movement amount equal to half of the nozzle length. Therefore, in this example, the range including all the basic feed amounts corresponding to the case where the number of passes is two or more is an example of the second range.
  • a range including all basic feed amounts less than the basic feed amount when the number of passes is 2 is considered as the second range, not including the case where the number of passes is equal to 2. You may.
  • the storage unit 22 stores a coefficient indicating a straight line in the graph as the correction coefficient.
  • the coefficient indicating the straight line is, for example, a parameter indicating the slope and intercept of the straight line.
  • a parameter for directly calculating the inclination or the intercept may be stored instead of storing the parameter directly indicating the inclination or the intercept.
  • a specific printing condition may be associated with a correction value and stored as a correction coefficient, for example, as each value shown in FIG. 6A. In this case, it is conceivable that at least one of the number of passes and the basic feed amount is used as a printing condition.
  • the storage unit 22 stores, as correction coefficients, parameters indicating the slope and intercept of each of the two straight lines denoted by reference signs A and B in the figure.
  • the parameter corresponding to the straight line denoted by the symbol A is an example of a first correction coefficient.
  • the first correction coefficient is a correction coefficient used when the basic feed amount is within the first range.
  • the parameter corresponding to the straight line denoted by reference symbol B is an example of a second correction coefficient.
  • the second correction coefficient is a correction coefficient used when the basic feed amount is within the second range.
  • the calculation correction value is calculated using the straight line indicated by these correction coefficients. Therefore, the correction coefficient can be considered to be, for example, a coefficient indicating a linear function that associates the basic feed amount with the calculated correction value. Also, as is clear from the figures and the like, in the present example, the straight line denoted by the reference symbol A and the straight line denoted by the reference symbol B have different slopes and intercepts. Therefore, the correction coefficient corresponding to the straight line denoted by the reference sign B and the correction coefficient corresponding to the straight line denoted by the reference sign A are different from each other.
  • the linear function is a function corresponding to a straight line that does not pass through the origin, as shown in the figure.
  • a coefficient indicating that the calculated correction value is calculated in proportion to the basic feed amount is used as the correction coefficient indicating the straight line denoted by the symbol B.
  • the fact that the calculated correction value is calculated in proportion to the basic feed amount means that, for example, a linear function that associates the basic feed amount with the calculated correction value is a function indicating a straight line passing through the origin.
  • the slope of the straight line denoted by reference sign B is different from the slope of the straight line denoted by reference sign A.
  • FIG. 8 shows an example of an operation for calculating a calculation correction value.
  • FIG. 8A shows an example of how to calculate the calculated correction value when the number of corresponding passes is in the range of 1 to 2.
  • FIG. 8B shows an example of how to calculate the calculated correction value when the number of corresponding paths is two or more.
  • the calculated correction value is calculated using the relationship indicated by a straight line that associates the basic feed amount with the calculated correction value.
  • the relationship represented by a straight line is the relationship between x and y shown above.
  • a relationship corresponding to a different straight line is used between the case of the basic feed amount where the corresponding number of passes is 1 to 2 and the case of the corresponding number of passes being 2 or more.
  • the control unit 30 performs the operation according to the relationship indicated by the straight line denoted by the symbol A as shown in FIG. , A calculation correction value corresponding to the basic feed amount is calculated.
  • the straight line denoted by reference numeral A is the straight line denoted by reference numeral A described above with reference to FIG. More specifically, for example, when the number of passes is 1.25 as an example of the number of passes in the range of 1 to 2, the corresponding basic feed amount is 192500 ⁇ m. Then, in this case, when this value is substituted for x in the relationship indicating the straight line denoted by the symbol A, the value of y becomes 380 ⁇ m. Therefore, 380 ⁇ m is calculated as the calculated correction value in this case.
  • the control unit 30 responds to the basic feed amount according to the relationship indicated by the straight line with the symbol B as shown in FIG.
  • a calculation correction value is calculated.
  • the straight line denoted by reference numeral B is the straight line denoted by reference numeral B described above with reference to FIG.
  • the corresponding basic feed amount is 73333 ⁇ m.
  • a correction value appropriately calculated for a basic feed amount whose corresponding number of passes is within the range of 1 to 2 based on the correction coefficient corresponding to the straight line denoted by the symbol A Can be calculated. Further, it is possible to appropriately calculate the calculated correction value for the basic feed amount whose corresponding number of passes is 2 or more, based on the correction coefficient corresponding to the straight line denoted by the reference symbol B. In addition, with these, for example, a calculation correction value corresponding to an arbitrary basic feed amount can be appropriately calculated. Therefore, according to the present example, for example, even when there are many possible values for the basic feed amount, the correction can be appropriately performed with high accuracy, and the feed amount can be set appropriately. Also, in this case, as is clear from the above description and the like, only a limited number of correction coefficients need to be prepared, so that the feed amount is appropriately corrected using only a small number of correction parameters. be able to.
  • the printing apparatus 10 of this example is a system that can take an arbitrary feed amount by setting various values as MAPS speed values. Further, in this case, a system is provided in which a correction value corresponding to a change in the basic feed amount is calculated, and a correction value corresponding to an arbitrary feed amount is automatically proportionally calculated and applied. Therefore, according to this example, even when the basic feed amount changes variously including the value corresponding to the non-integer number of passes, the correction value can be appropriately and automatically adjusted.
  • such a configuration can be considered to be, for example, a configuration in which the correction value of the feed amount is changed in accordance with printing conditions.
  • the possible values of the basic feed amount are divided into a plurality of ranges, and different correction coefficients are used for each range.
  • the error may exceed an allowable range. More specifically, when only a correction coefficient indicating one type of straight line is used, a correction value proportional to the basic feed amount may be used.
  • a method of correction can be considered to be, for example, a configuration in which a correction value is calculated using only one proportional coefficient.
  • the distance between the sub-scanning dots is the distance between the dots corresponding to the resolution in the sub-scanning direction set according to the printing conditions.
  • a correction value for correctly setting the feed amount corresponding to each basic feed amount is defined as an ideal correction value, and the correction value is calculated in proportion to the basic feed amount using only one proportionality coefficient. If the correction value when the value is set is defined as a simple proportional correction value, if one proportional coefficient is set to be equal to the ideal correction value and the simple proportional correction value for any of the basic feed amounts, For any one of the basic feed amounts, the difference between the ideal correction value and the simple proportional correction value corresponding to the basic feed amount can be considered to be larger than the distance between the sub-scanning dots.
  • the correction value is calculated in accordance with the proportional relationship indicated by the corresponding correction coefficient as a second value
  • the difference between the first value and the second value becomes larger than the distance between sub-scanning dots.
  • the feed amount can be more appropriately corrected with higher accuracy. Therefore, according to this example, for example, even in a system in which the proportional coefficient of the feed correction value changes depending on the magnitude of the feed amount, the feed amount can be appropriately corrected for each range of the feed amount.
  • a system in which the proportional coefficient of the feed correction value changes depending on the magnitude of the feed amount is, for example, a case where the correction value is calculated based on a simple proportional relationship. Is a system in which a difference occurs in the proportionality coefficient.
  • such a system can be considered as a system in which appropriate correction cannot be performed for all feed amounts with only one proportional coefficient.
  • the configuration of this example can be particularly suitably used when, for example, the above-described error occurs by using only the correction coefficient indicating one type of straight line.
  • the range of the number of passes corresponding to the possible value of the basic feed amount is divided into two ranges: a range in which the number of corresponding passes is 1 to 2, and a range other than the range. ing.
  • the possible value of the basic feed amount is divided into more ranges, and a different correction coefficient is used for each range. Can be considered preferable.
  • dividing the possible values of the basic feed amount into two ranges as in this example usually enables appropriate correction with high accuracy. It is possible to do.
  • the basic feed amount By dividing the values that can be taken into two ranges, correction with high accuracy can be appropriately performed. Further, when the nozzle length is about 300 mm or less (for example, about 100 to 300 mm) and the printing resolution in the sub-scanning direction is about 600 dpi or less (for example, about 300 to 600 dpi), the basic feed amount can be obtained. By dividing the values into two ranges, it is possible to perform correction with high accuracy more appropriately.
  • the storage unit 22 stores, for example, parameters indicating a slope and an intercept of a straight line as the correction coefficient.
  • a parameter for example, it is conceivable to directly store the values of the slope and the intercept.
  • the values of the slope and the intercept stored in the storage unit 22 may be considered as, for example, a proportional coefficient or the like for automatically calculating a feed correction value corresponding to each basic feed amount between specific basic feed amounts.
  • the term “between specific basic feed amounts” means, for example, a range of a basic feed amount in which the number of corresponding passes is 1 to 2, or a range of a basic feed amount in which the number of corresponding passes is 2 or more.
  • correction coefficients instead of directly storing the values of the slope and intercept of the straight line, other numerical values capable of calculating these values may be stored as the correction coefficients. More specifically, in this case, for example, a specific basic feed amount and a correction value corresponding to the basic feed amount, such as a basic feed amount and a correction value (system feed correction value) shown in FIG. May be stored as a correction coefficient.
  • the correction coefficient can be considered to be, for example, a unique feed correction value serving as a reference when calculating a proportional coefficient individually for a specific basic feed amount.
  • the system feed correction value preset in the printing apparatus 10 is used as the correction value used for setting the feed amount.
  • the calculated correction value calculated in this example can be considered as a system feed correction value.
  • a user feed correction value which is a correction value set by a user designation may be further used in addition to the system feed correction value.
  • an offset value or the like for adjusting the feed amount may be used as the offset value.
  • the offset value for example, it is conceivable that the user who has checked the result of the printing actually performed in the printing apparatus 10 designates to reduce the deviation of the feed amount.
  • the printing apparatus 10 may manage the user feed correction value specified by the user in association with the printing condition. Then, when the printing conditions are changed thereafter, it is conceivable to adjust the offset value in accordance with the change in the basic feed amount caused by the change in the printing conditions. In this case, for example, it is conceivable to adjust the offset value so as to be proportional to the basic feed amount. With this configuration, the user feed correction value can be appropriately changed by following a change in printing conditions.
  • the offset value by proportional calculation using, for example, the slope of a straight line used in calculating the calculated correction value as a proportional coefficient in accordance with a range including the basic feed amount.
  • the user feed correction value can be appropriately changed in accordance with a change in the system feed correction value.
  • the offset value specified as the user feed correction value is generally considered to be smaller than the calculated correction value used as the system feed correction value. Therefore, the offset value can be appropriately adjusted with high accuracy without using a different proportional coefficient for each range of the basic feed amount. Therefore, the offset value may be adjusted by a simple proportional calculation using only one proportional coefficient for the entire range of the basic feed amount.
  • the simple proportional calculation means for example, performing adjustment using a relationship corresponding to a straight line passing through the origin.

Abstract

主走査動作及び副走査動作をインクジェットヘッドに行わせる印刷装置において、副走査移動量の補正をより適切に行う。 媒体50に対して印刷を行う印刷装置10であって、インクジェットヘッド102、主走査駆動部18、副走査駆動部20、及び制御部30を備え、制御部30は、印刷の条件に応じて設定される基本の移動量である基本移動量と、入力補正値の入力時に設定されている印刷の条件において副走査移動量を増加又は減少させる距離を示す値とに基づき、副走査移動量を設定する。または、記憶部22をさらに備え、記憶部22は、基本移動量が第1の範囲の内にある場合に用いる第1の補正係数と、基本移動量が第1の範囲よりも小さな第2の範囲の内にある場合に用いる第2の補正係数とを記憶し、制御部30は、基本移動量と算出補正値とに基づき、副走査移動量を設定する。

Description

印刷装置及び印刷方法
 本発明は、印刷装置及び印刷方法に関する。
 従来、インクジェット方式で印刷を行う印刷装置であるインクジェットプリンタが広く用いられている。また、インクジェットプリンタの構成として、インクジェットヘッドに主走査動作(スキャン動作)を行わせるシリアル型の構成が広く用いられている(例えば、特許文献1参照。)。
特開2018-111211号公報
 シリアル方式で印刷を行う場合、主走査動作の合間にインクジェットヘッドに副走査動作を行わせることで、印刷の対象物である媒体(メディア)においてインクジェットヘッドと対向する領域を順次変更する。副走査動作では、例えば、印刷の条件として設定されるパス数に応じて決まる搬送量(フィード量)だけ媒体を搬送することで、媒体に対して相対的にインクジェットヘッドを移動させる。
 また、副走査動作においては、様々な理由により、副走査動作時に媒体に対して相対的にインクジェットヘッドを移動させる距離である副走査移動量(例えば、媒体の搬送量)に誤差が生じる場合がある。そして、このような誤差が生じると、印刷結果において、意図しない縞状の模様(バンディング)が発生して、印刷の品質が低下する場合がある。そのため、副走査移動量については、単にパス数に応じて設定するのではなく、適宜補正を行うことが好ましい。
 この点に関し、例えばインクジェットプリンタにおいて設定可能なパス数の種類が数種類程度の限られたものであれば、設定可能なそれぞれのパス数に対応する副走査移動量毎に補正用のパラメータを予め用意することが考えられる。しかし、近年、インクジェットプリンタに求められる性能の高度化や多様化により、設定可能なパス数の種類が極めて多くなる場合がある。より具体的には、例えば、ミマキエンジニアリング社製のインクジェットプリンタに搭載されているMAPS(Mimaki Advanced Pass System)のような機能を用いる場合、非整数を含む多様なパス数が設定されることになる。そして、このような場合、設定可能なそれぞれのパス数に対応する副走査移動量毎に補正用のパラメータを予め用意しようとすると、必要な補正用のパラメータが極めて膨大になるおそれがある。
 そのため、従来、主走査動作及び副走査動作をインクジェットヘッドに行わせる印刷装置において、副走査移動量の補正をより適切に行うことが望まれていた。そこで、本発明は、上記の課題を解決できる印刷装置及び印刷方法を提供することを目的とする。
 より少ない数の補正用のパラメータのみを用いて副走査移動量の補正をしようとする場合、例えば、所定の印刷の条件に対する補正用のパラメータを標準のパラメータとして用意しておき、他の印刷の条件を用いる場合には、印刷の条件の違い(例えば、パス数の違い等)に応じて、補正用のパラメータの調整を行うこと等が考えられる。しかし、実際に印刷を行う場合、より高い品質の印刷を行うためには、印刷結果を実際に確認して補正用のパラメータを設定することが好ましい場合もある。そして、このような場合、補正用のパラメータの調整を行う構成を活かしつつ、新たな補正用のパラメータを設定可能にすることが好ましい。
 これに対し、本願の発明者は、鋭意研究により、副走査移動量の補正に用いるパラメータの少なくとも一部として、ユーザの指示等(例えば、手入力)により入力される補正値(入力補正値)を用いることを考えた。また、このような入力補正値として、入力時の印刷条件において副走査移動量を変化させる距離をそのまま示す値を用い、かつ、その後に印刷の条件が変更された場合には、先に入力された入力補正値を印刷の条件の変化に応じて調整することを考えた。このように構成すれば、例えば、印刷結果を実際に確認して補正用のパラメータを設定する場合等に、容易かつ適切に入力補正値を入力することができる。また、例えば、その後に印刷の条件が変更された場合にも、変更後の印刷の条件に合わせて、入力補正値の調整を適切に行うことができる。また、これにより、例えば、主走査動作及び副走査動作をインクジェットヘッドに行わせる印刷装置において、副走査移動量の補正をより適切に行うことが可能になる。
 また、本願の発明者は、更なる鋭意研究により、このような効果を得るために必要な特徴を見出し、本発明に至った。上記の課題を解決するために、本発明は、媒体に対して印刷を行う印刷装置であって、前記媒体へインクを吐出するインクジェットヘッドと、予め設定された主走査方向へ前記媒体に対して相対的に移動しつつインクを吐出する主走査動作を前記インクジェットヘッドに行わせる主走査駆動部と、前記主走査方向と直交する副走査方向へ前記媒体に対して相対的に移動する副走査動作を前記インクジェットヘッドに行わせる副走査駆動部と、前記副走査動作において前記媒体に対して相対的に前記副走査方向へ前記インクジェットヘッドを移動させる距離である副走査移動量を設定する移動量設定部と、前記副走査移動量の補正に用いる補正値として前記移動量設定部に入力される入力補正値を前記移動量設定部に入力する入力部とを備え、前記移動量設定部は、印刷の条件に応じて設定される基本の移動量である基本移動量と、前記入力部により入力される前記入力補正値とに基づき、前記副走査移動量を設定し、前記入力部は、前記入力補正値として、前記入力補正値の入力時に設定されている印刷の条件において前記副走査移動量を増加又は減少させる距離を示す値を入力し、前記入力補正値が新たに入力された場合、前記移動量設定部は、前記基本移動量と、新たに入力された前記入力補正値とに基づき、前記副走査移動量を設定し、前記入力補正値が新たに入力された後、印刷の条件が変更された場合、前記移動量設定部は、変更後の印刷の条件に合わせて、前記入力補正値を調整し、変更後の印刷の条件に応じて設定される前記基本移動量と、変更後の印刷の条件に合わせて調整がされた前記入力補正値とに基づき、前記副走査移動量を設定することを特徴とする。
 このように構成すれば、例えば、容易かつ適切に入力補正値を入力することができる。また、例えば、その後に印刷の条件が変更された場合にも、変更後の印刷の条件に合わせて、入力補正値の調整を適切に行うことができる。また、これにより、例えば、主走査動作及び副走査動作をインクジェットヘッドに行わせる印刷装置において、副走査移動量の補正をより適切に行うことが可能になる。
 また、この構成において、入力部は、入力補正値として、ユーザにより指定される値であるユーザフィード補正値を入力する。この場合、ユーザフィード補正値は、例えば、コンピュータの画面を用いたインターフェース等を介して、ユーザの手入力により入力される。このように構成すれば、例えば、印刷結果を確認したユーザの判断に基づき、副走査移動量の補正量の調整を適切に行うことができる。
 また、副走査移動量の補正については、ユーザフィード補正値以外のパラメータを更に用いて行ってもよい。この場合、移動量設定部において、例えば、印刷装置において予め設定されているパラメータに基づいて印刷の条件に応じて設定される補正値であるシステムフィード補正値を更に利用して、基本移動量、ユーザフィード補正値、及びシステムフィード補正値に基づき、副走査移動量を設定する。このように構成すれば、例えば、副走査移動量の補正をより適切に行うことができる。
 また、この構成において、入力部は、ユーザにより指定される値として、例えば、入力補正値の入力時に設定されている印刷の条件において副走査移動量を変化させる距離をそのまま示す値であるオフセット値の入力をユーザから受け付ける。この場合、副走査移動量を変化させる距離をそのまま示すとは、例えば、副走査移動量において補正が必要な距離としてユーザが見たままの距離を示すことである。また、副走査移動量において補正が必要な距離とは、例えば、印刷結果において認識される副走査移動量のずれの大きさのことである。
 また、この構成において、インクジェットヘッドは、例えば、副走査方向における位置を互いにずらして複数のノズルが並ぶノズル列を有する。また、印刷の条件としては、少なくとも、媒体における印刷範囲の各位置に対して行う主走査動作の平均回数を示すパス数を移動量設定部に設定することが考えられる。そして、この場合、基本移動量としては、例えば、インクジェットヘッドのノズル列の副走査方向における幅であるノズル長をパス数で除した値を用いることが考えられる。このように構成すれば、例えば、基本移動量を適切に設定することができる。また、この構成において、インクジェットヘッドとしては、例えば、同じ色のインクを吐出する複数のインクジェットヘッドにより構成される複合ヘッド(例えば、スタガヘッド等)を用いることも考えられる。この場合、インクジェットヘッドのノズル列とは、例えば、複合ヘッドにおけるノズル列のことである。また、複合ヘッドにおけるノズル列とは、例えば、複合ヘッドを構成する複数のインクジェットヘッドのそれぞれが有するノズルを合わせることで構成されるノズル列のことである。
 また、この構成において、パス数としては、例えば、非整数の値を含む複数種類の値を設定可能にすることが考えられる。また、この場合、非整数の値として、例えば、少なくとも、0.25以下の刻み幅での値を設定可能にすること等が考えられる。このような場合、様々なパス数が設定可能になることで、基本移動量として取り得る値も多様になる。これに対し、上記のように入力補正値を用いる場合、基本移動量として取り得る値が多い場合にも、副走査移動量を適切に設定することができる。また、パス数の刻み幅については、好ましくは0.1以下、更に好ましくは0.01以下である。また、この場合、例えば、小数点以下が所定の桁数になる数値で、任意のパス数を設定可能にすることが考えられる。
 また、この構成においては、例えば、互いに異なる印刷の条件が設定されている複数の印刷ジョブに対応する印刷の動作を連続して実行可能な印刷装置を用いることが考えられる。この場合、複数の印刷ジョブに対応する印刷の動作を連続して実行可能であるとは、例えば、印刷装置に対して供給される複数の印刷ジョブを自動的に順次処理することで、それぞれの印刷ジョブに対応する印刷の動作を自動的に順次行うことである。また、この場合、設定される印刷の条件が印刷ジョブ毎に異なり得るため、印刷ジョブが変わることに伴って印刷条件が変わる場合もある。そのため、この場合、例えば、複数の印刷ジョブのうちの一つの印刷ジョブに対応する印刷物が印刷された後、次の印刷ジョブに対応する印刷物を印刷する動作を開始する前に、移動量設定部において、次の印刷ジョブにおいて設定されている印刷の条件に合わせて入力補正値を調整することが考えられる。また、この場合、移動量設定部は、例えば、更に、次の印刷ジョブに対応する印刷の条件に応じて設定される基本移動量と、その印刷の条件に合わせて調整がされた入力補正値とに基づき、副走査移動量を設定する。このように構成すれば、例えば、複数の印刷ジョブに対応する印刷の動作をより高い精度で適切に行うことができる。
 また、印刷装置において、印刷条件が設定されている印刷ジョブに基づいて印刷の動作を実行する場合において、例えばユーザが印刷の途中経過を観察することで、印刷の動作の途中で入力補正値を変更すること等も考えられる。より具体的に、この場合、例えば、一つの印刷ジョブに対応する印刷物を印刷している途中に入力部から新たな入力補正値が入力されることが考えられる。この場合、移動量設定部は、例えば、基本移動量と、新たに入力された入力補正値とに基づき、新たな副走査移動量を設定する。そして、一つの印刷ジョブに対応する印刷物を印刷している途中から、副走査駆動部は、新たな副走査移動量に従って、副走査動作をインクジェットヘッドに行わせる。このように構成すれば、例えば、副走査移動量の補正をより柔軟かつ適切に行うことができる。
 また、本発明の構成として、上記と同様の特徴を有する印刷方法等を用いることも考えられる。この場合も、例えば、上記と同様の効果を得ることができる。
 その他、所定の印刷の条件において副走査移動量を変化させる量を標準のパラメータとして用意しておき、副走査移動量に比例するように補正用のパラメータの調整を行うこと等が考えられる。
 しかし、本願の発明者は、実際に様々な実験等を行うことで、例えばサイズの大きなインクジェットヘッドを用いる場合のように、副走査移動量として取り得る値の最大値が大きくなる場合等において、単純に副走査移動量に比例させるのみでは、副走査移動量の補正の結果において誤差が大きくなる場合があることを見出した。より具体的に、この場合、例えば、パス数を1にした印刷の条件で必要となる補正量を標準のパラメータとして用いる場合と、パス数2にした印刷の条件で必要となる補正量を標準のパラメータとして用いる場合とを比較した結果において、調整後のパラメータの値に印刷の解像度に対応するドット間距離(副走査方向におけるドット間距離)を超える誤差が生じる場合がある。そして、このような誤差が生じると、副走査移動量の補正を行ったとしても、バンディング等を適切に防止できなくなるおそれがある。
 これに対し、本願の発明者は、補正前の副走査移動量に相当する基本移動量の大きさによって補正用のパラメータを異ならせることを考えた。また、より具体的に、基本移動量が所定の第1の範囲の内にある場合には補正用のパラメータとして第1の補正係数を用い、基本移動量が第1の範囲よりも小さな第2の範囲内にある場合には補正用のパラメータとして第2の補正係数を用いることを考えた。このように構成すれば、例えば、走査移動量として取り得る値の最大値が大きくなる場合等おいても、より高い精度でより適切に副走査移動量の補正を行うことができる。また、この場合も、限られた数の補正係数のみを用意すればよいため、少ない数の補正用のパラメータのみを用いて、副走査移動量の補正を適切に行うことができる。
 また、本願の発明者は、更なる鋭意研究により、このような効果を得るために必要な特徴を見出し、本発明に至った。上記の課題を解決するために、本発明は、媒体に対して印刷を行う印刷装置であって、前記媒体へインクを吐出するインクジェットヘッドと、予め設定された主走査方向へ前記媒体に対して相対的に移動しつつインクを吐出する主走査動作を前記インクジェットヘッドに行わせる主走査駆動部と、前記主走査方向と直交する副走査方向へ前記媒体に対して相対的に移動する副走査動作を前記インクジェットヘッドに行わせる副走査駆動部と、前記副走査動作において前記媒体に対して相対的に前記副走査方向へ前記インクジェットヘッドを移動させる距離である副走査移動量を設定する移動量設定部と、前記副走査移動量の補正に用いる補正値として算出される算出補正値の算出に用いる係数である補正係数を記憶する補正係数記憶部とを備え、前記移動量設定部は、印刷の条件に応じて設定される基本の移動量である基本移動量と、前記算出補正値とに基づき、前記副走査移動量を設定し、前記補正係数記憶部は、前記補正係数として、少なくとも、前記基本移動量が第1の範囲の内にある場合に用いる第1の前記補正係数と、前記基本移動量が前記第1の範囲よりも小さな第2の範囲の内にある場合に用いる第2の前記補正係数とを記憶し、前記基本移動量が前記第1の範囲の内にある場合、前記移動量設定部は、当該基本移動量と、前記第1の補正係数とに基づき、前記算出補正値を算出し、前記基本移動量が前記第2の範囲の内にある場合、前記移動量設定部は、当該基本移動量と、前記第2の補正係数とに基づき、前記算出補正値を算出することを特徴とする。
 このように構成すれば、例えば、高い精度で適切に副走査移動量の補正を行うことができる。また、この場合、例えば、限られた数の補正係数のみを用意すればよいため、少ない数の補正用のパラメータのみを用いて、副走査移動量の補正を適切に行うことができる。また、この構成において、第1及び第2の補正係数としては、例えば、基本移動量と算出補正値とを対応付ける一次関数を示す係数を用いることが考えられる。また、この場合、第2の補正係数としては、例えば、第1の補正係数とは異なる係数を用いることが考えられる。
 また、この構成において、インクジェットヘッドは、例えば、副走査方向における位置を互いにずらして複数のノズルが並ぶノズル列を有する。そして、この場合、第1の範囲としては、例えば、インクジェットヘッドのノズル列の副走査方向における幅であるノズル長と基本移動量とが等しくなる場合を含む範囲を用いることが考えられる。また、第2の範囲としては、例えば、ノズル長よりも小さな所定の移動量以下又は未満の全ての基本移動量を含む範囲を用いることが考えられる。また、この場合、第2の補正係数としては、例えば、基本移動量に比例して算出補正値が算出されることを示す係数を用いることが考えられる。基本移動量に比例して算出補正値が算出されるとは、例えば、基本移動量と算出補正値とを対応付ける一次関数が原点を通る直線を示す関数になることである。このように構成すれば、例えば、第1の範囲と第2の範囲とを適切に分けることができる。また、例えば、第2の範囲に含まれる基本移動量に対し、算出補正値を適切に算出することができる。
 ここで、この構成において、インクジェットヘッドとしては、例えば、同じ色のインクを吐出する複数のインクジェットヘッドにより構成される複合ヘッド(例えば、スタガヘッド等)を用いることも考えられる。この場合、インクジェットヘッドのノズル列とは、例えば、複合ヘッドにおけるノズル列のことである。また、複合ヘッドにおけるノズル列とは、例えば、複合ヘッドを構成する複数のインクジェットヘッドのそれぞれが有するノズルを合わせることで構成されるノズル列のことである。
 また、この構成において、上記の所定の移動量としては、例えば、ノズル長の半分と等しい移動量を用いることが考えられる。また、この場合、第1の範囲としては、例えば、所定の移動量よりも大きな全ての基本移動量を含む範囲を用いることが考えられる。また、この場合、第1の補正係数としては、例えば、基本移動量に対応する算出補正値が、ノズル長の半分に等しい基本移動量と、ノズル長に等しい基本移動量との間で線形に変化することを示す係数を用いることが考えられる。基本移動量に対応する算出補正値が線形に変化するとは、例えば、基本移動量と算出補正値とを対応付ける関係が一次関数になることである。このように構成すれば、例えば、第1の範囲に含まれる基本移動量に対し、算出補正値を適切に算出することができる。また、この構成において、第1の補正係数により示される線形の関係における傾きは、第2の補正係数により示される比例関係における傾きと異なっていてよい。また、この場合、第1の範囲に対応する上記の一次関数としては、例えば、原点を通らない直線に対応する関数を用いることが考えられる。
 また、この構成において、印刷の条件に応じて設定される副走査方向における解像度に対応するドット間距離を副走査ドット間距離と定義し、基本移動量がノズル長と等しくなる場合について、第1の補正係数に基づいて算出した算出補正値を第1の値とし、第2の補正係数により示される比例関係に従って補正値を算出した場合の値を第2の値とした場合、第1の値と第2の値との差について、副走査ドット間距離よりも大きくなることが考えられる。このような場合、例えば1種類の補正係数のみを用いて副走査移動量の補正を行うと、例えば、基本移動量がノズル長と等しくなる場合、又は基本移動量がノズル長の半分になる場合等における補正後の副走査移動量に、副走査ドット間距離を超える誤差が生じることが考えられる。そして、このような誤差が生じると、副走査移動量の補正を行ったとしても、バンディング等を適切に防止できなくなるおそれがある。これに対し、上記のように第1の補正係数及び第2の補正係数を用いる場合、このような誤差の発生を適切に防ぐことができる。また、これにより、例えば、より高い精度でより適切に副走査移動量の補正を行うことができる。
 また、上記のような誤差が生じる状況については、例えば、一つの比例係数のみを用いて補正値の算出を行うといずれかの副走査移動量において理想の補正値に対して副走査ドット間距離よりも大きな差が生じる状況等と考えることもできる。より具体的に、この場合、例えば、それぞれの基本移動量に対応する副走査移動量を正しく設定するための補正値を理想補正値と定義し、一つの比例係数のみを用いて基本移動量に比例させて算出補正値を設定した場合の補正値を単純比例補正値と定義した場合において、いずれかの基本移動量に対して理想補正値と単純比例補正値とが等しくなるように一つの比例係数を設定すると、他のいずれかの基本移動量に対して、その基本移動量に対応する理想補正値と単純比例補正値との差が副走査ドット間距離よりも大きくなる。このような場合も、第1の補正係数及び第2の補正係数を用いることで、このような誤差の発生を適切に防ぐことができる。また、これにより、例えば、より高い精度でより適切に副走査移動量の補正を行うことができる。
 また、この構成において、印刷の条件としては、例えば、少なくとも、媒体における印刷範囲の各位置に対して行う主走査動作の平均回数を示すパス数が設定されることが考えられる。また、この場合、基本移動量としては、例えば、インクジェットヘッドのノズル長をパス数で除した値を用いることが考えられる。このように構成すれば、例えば、基本移動量を適切に設定することができる。
 また、この構成において、パス数としては、例えば、非整数の値を含む複数種類の値を設定可能にすることが考えられる。また、この場合、非整数の値として、例えば、少なくとも、0.25以下の刻み幅での値を設定可能にすること等が考えられる。このような場合、様々なパス数が設定可能になることで、基本移動量として取り得る値も多様になる。これに対し、上記のように入力補正値を用いる場合、基本移動量として取り得る値が多い場合にも、副走査移動量を適切に設定することができる。また、パス数の刻み幅については、好ましくは0.1以下、更に好ましくは0.01以下である。また、この場合、例えば、小数点以下が所定の桁数になる数値で、任意のパス数を設定可能にすることが考えられる。
 また、本発明の構成として、上記と同様の特徴を有する印刷方法等を用いることも考えられる。この場合も、例えば、上記と同様の効果を得ることができる。
 本発明によれば、例えば、主走査動作及び副走査動作をインクジェットヘッドに行わせる印刷装置において、副走査移動量の補正をより適切に行うことができる。
本発明の一実施形態に係る印刷装置10について説明をする図である。図1(a)は、印刷装置10の要部の構成の一例を示す。図1(b)は、インクジェットヘッド102の構成の一例を示す。 フィード量を設定する動作について説明をする図である。図2(a)は、入力部24においてユーザからの設定を受け付けるパラメータの例を示す。図2(b)は、ユーザにより指定されるパラメータに基づいてフィード量を設定する動作について説明をする図である。 オフセット値の調整について更に詳しく説明をする図である。図3(a)~(d)は、様々なパラメータを設定又は変更する動作の一例を示す。 オフセット値の調整について更に詳しく説明をする図である。図4(a)~(c)は、様々なパラメータを設定又は変更する動作の一例を示す。 フィード量の補正の仕方について更に詳しく説明をする図である。図5(a)は、印刷の条件に応じて設定される半端パスとオフセット値との関係の一例を示す表である。図5(b)は、半端パスの逆数とユーザフィード補正値との関係の一例を示すグラフである。 算出補正値の算出の仕方について説明をする図である。図6(a)は、補正係数において対応付けられる特定の基本フィード量と補正値(システムフィード補正値)との関係の一例を示す。図6(b)は、基本フィード量と補正値との関係を示すグラフである。 算出補正値の算出の仕方について説明をする図である。 算出補正値を算出する動作の一例を示す図である。図8(a)は、対応するパス数が1~2の範囲内にある場合について、算出補正値の算出の仕方の一例を示す。図8(b)は、対応するパス数が2以上の場合について、算出補正値の算出の仕方の一例を示す。
 以下、本発明に係る実施形態を、図面を参照しながら説明する。図1は、本発明の一実施形態に係る印刷装置10について説明をする図である。図1(a)は、印刷装置10の要部の構成の一例を示す。尚、以下において説明をする点を除き、印刷装置10は、公知のインクジェットプリンタと同一又は同様の特徴を有してよい。例えば、印刷装置10は、以下において説明をする構成に加え、公知のインクジェットプリンタと同一又は同様の構成を更に有してよい。
 印刷装置10は、印刷対象の媒体(メディア)50に対してインクジェット方式で印刷を行うインクジェットプリンタである。また、本例において、印刷装置10は、ヘッド部12、プラテン14、ガイドレール16、主走査駆動部18、副走査駆動部20、記憶部22、入力部24、及び制御部30を備える。
 ヘッド部12は、媒体50へインクを吐出する部分である。また、本例において、ヘッド部12は、キャリッジ100及び複数のインクジェットヘッド102を有する。キャリッジ100は、複数のインクジェットヘッド102を保持する保持部材である。本例において、キャリッジ100は、例えば図中に示すように、印刷装置10において予め設定された副走査方向(図中のX方向)における位置を揃えて、副走査方向と直交する主走査方向(図中のY方向)へ並ぶように、複数のインクジェットヘッド102を保持する。
 また、複数のインクジェットヘッド102のそれぞれは、印刷に使用する各色のインクを媒体50へ吐出するインクジェットヘッドであり、互いに異なる色のインクを吐出する。また、より具体的に、本例において、ヘッド部12は、イエロー(Y)色、マゼンタ(M)色、シアン(C)色、及びブラック(K)色のそれぞれの色のインクをそれぞれが吐出する複数のインクジェットヘッド102を有する。また、本例において、それぞれのインクジェットヘッド102は、副走査方向における位置を互いにずらして複数のノズルが並ぶノズル列を有しており、各ノズルから各色のインクを吐出する。
 プラテン14は、ヘッド部12と対向する位置において媒体50を支持する台状部材である。また、ガイドレール16は、主走査方向へ延伸するレール状部材であり、主走査方向へのヘッド部12の移動をガイドする。
 主走査駆動部18は、ヘッド部12に主走査動作(スキャン動作)を行わせる駆動部である。この場合、主走査動作とは、例えば、主走査方向へ移動しつつインクを吐出する動作のことである。また、ヘッド部12に主走査動作を行わせるとは、例えば、ヘッド部12におけるインクジェットヘッド102に主走査動作を行わせることである。また、本例においては、ヘッド部12に主走査動作を行わせることにより、印刷装置10は、シリアル方式での印刷の動作を実行する。また、本例の主走査動作時において、ヘッド部12は、ガイドレール16に沿って、主走査方向へ移動する。また、主走査動作に関し、主走査方向へのヘッド部12の移動とは、媒体50に対する相対的な移動のことである。そのため、印刷装置10の変形例においては、ヘッド部12の位置を固定して、例えばプラテン14を移動させることで、媒体50の側を移動させてもよい。
 副走査駆動部20は、ヘッド部12に副走査動作を行わせる駆動部である。この場合、副走査動作とは、例えば、副走査方向へ媒体50に対して相対的に移動する動作のことである。また、ヘッド部12に副走査動作を行わせるとは、例えば、ヘッド部12におけるインクジェットヘッド102に副走査動作を行わせることである。また、本例において、副走査駆動部20は、例えば図示を省略したベルト部材等を用いて、副走査方向と平行な搬送方向へ媒体50を搬送することで、ヘッド部12に副走査動作を行わせる。また、この場合において、副走査駆動部20は、各回の主走査動作の合間に、印刷のパス数等に応じて制御部30により設定されるフィード量だけ、媒体50を搬送する。この場合、副走査動作時のフィード量は、副走査移動量の一例である。また、副走査移動量とは、副走査動作において媒体50に対して相対的に副走査方向へインクジェットヘッド102を移動させる距離のことである。また、媒体50の搬送は、ベルト部材に限らず、例えばローラ等を用いて行ってもよい。また、印刷装置10の変形例においては、媒体50の位置を固定して、ヘッド部12の側を移動させることで、副走査動作を行ってもよい。
 記憶部22は、印刷の動作を指定するパラメータを記憶するための記憶手段である。本例において、記憶部22は、補正係数記憶部の一例であり、少なくとも、フィード量の補正に用いるパラメータである補正係数を記憶する。この場合、補正係数とは、フィード量の補正に用いる補正値(フィード補正値)である算出補正値の算出時に用いる係数のことである。また、フィード量の補正とは、フィード量を設定するために行う補正のことである。補正係数等については、後に更に詳しく説明をする。また、入力部24は、印刷の動作を指定するパラメータを入力するための入力手段である。また、本例において、入力部24は、少なくとも、フィード量の補正に用いるパラメータをユーザ(使用者)から受け付け、制御部30へ入力する。フィード量の補正に用いるパラメータについては、後に更に詳しく説明をする。
 制御部30は、例えば印刷装置10のCPUであり、予め設定されたプログラムに従って、印刷装置10の各部の動作を制御する。より具体的に、印刷装置10は、例えば、ヘッド部12による主走査動作の制御時に、印刷すべき画像に応じて、ヘッド部12におけるそれぞれのノズルにインクを吐出させる。また、本例において、制御部30は、移動量設定部の一例でもあり、印刷の条件に応じて、副走査動作時のフィード量を設定する。また、この場合において、制御部30は、記憶部22に記憶されているパラメータや入力部24から入力されるパラメータに基づき、フィード量の補正を行う。制御部30においてフィード量を設定する動作についても、後に、更に詳しく説明をする。
 ここで、上記においても説明をしたように、本例の印刷装置10は、上記及び以下において説明をする点を除き、公知のインクジェットプリンタと同一又は同様の特徴を有してよい。例えば、ヘッド部12におけるそれぞれのインクジェットヘッド102から吐出するインクとしては、公知の様々な種類のインクを用いることが考えられる。また、この場合、印刷装置10は、使用するインクの種類に応じて、媒体50にインクを定着させるための定着手段等を更に備えることが好ましい。より具体的に、インクとして、溶媒を蒸発させることで媒体50に定着するインク(蒸発乾燥型のインク)を用いる場合、定着手段として、媒体又はインクを加熱するヒータ等を用いることが考えられる。この場合、ヒータは、例えば、プラテン14内において、媒体50を挟んでヘッド部12と対向する位置等に配設される。また、このような蒸発乾燥型のインクとしては、例えば、公知の各種の水性インクや、溶剤インク(ソルベントインク)等を用いることが考えられる。また、インクとしては、例えば、紫外線の照射により硬化する紫外線硬化型インク(UVインク)等を用いてもよい。この場合、定着手段としては、例えばUVLED等の紫外線照射手段を用いることが考えられる。また、この場合、紫外線照射手段については、ヘッド部12において、複数のインクジェットヘッド102と隣接する位置(主走査方向において隣接する位置)に配設することが考えられる。
 また、上記においても説明をしたように、本例において、各色用のインクジェットヘッド102は、副走査方向における位置を互いにずらして複数のノズルが並ぶノズル列を有する。そして、この場合、各色用のインクジェットヘッド102としては、例えば図1(b)に示すように、同じ色のインクを吐出する複数のインクジェットヘッドにより構成される複合ヘッド(例えば、スタガヘッド等)を用いてもよい。図1(b)は、インクジェットヘッド102としてスタガヘッドを用いる場合について、インクジェットヘッド102の構成の一例を示す。
 図中に示す場合において、各色用のインクジェットヘッド102は、同じ色のインクを吐出する複数の単位ヘッド202により構成される。複数の単位ヘッド202のそれぞれは、スタガヘッドを構成するインクジェットヘッドであり、例えば図中に示すように、副走査方向へノズルが並ぶノズル列を有する。そして、これらの複数の単位ヘッド202は、それぞれが有するノズル列が合わさることでインクジェットヘッド102のノズル列が構成されるように、副走査方向における位置をずらして配設される。この場合、複数の単位ヘッド202のそれぞれが有するノズル列が合わさることでインクジェットヘッド102のノズル列が構成されるとは、例えば、図1(b)の右側部分に示すように、それぞれの単位ヘッド202における各ノズルの副走査方向における位置に着目した場合に一つの仮想的なノズル列が構成されることである。また、この場合、この仮想的なノズル列について、インクジェットヘッド102のノズル列と考えることができる。また、本例において、単位ヘッド202としては、例えば、副走査方向における長さが4インチ程度のインクジェットヘッドを用いる。また、その結果、2個の単位ヘッド202により構成されるインクジェットヘッド102のノズル列の長さ(副走査方向における幅)は、220mm(220000μm)になっている。
 続いて、フィード量の補正に用いるパラメータや、制御部30においてフィード量を設定する動作等について、更に詳しく説明をする。図2は、フィード量を設定する動作について説明をする図である。図2(a)は、入力部24においてユーザからの設定を受け付けるパラメータの例を示す。図2(b)は、ユーザにより指定されるパラメータに基づいてフィード量を設定する動作について説明をする図である。
 本例において、入力部24は、ユーザから、少なくとも、入力パス値、MAPS速度値、及びオフセット(オフセット値)の入力を受け付ける。これらのうち、入力パス値及びMAPS速度値は、印刷の条件を指定するパラメータである。また、本例において、入力パス値は、パス数の設定の基本となる数値であり、ユーザにより、1以上の整数値が指定される。この場合、パス数とは、媒体における印刷範囲の各位置に対して行う主走査動作の平均回数を示す数のことである。また、本例において、パス数は、入力パス値に加え、MAPS(Mimaki Advanced Pass System)処理を適用する程度を示すMAPS速度値を考慮して設定される。そのため、入力パス値については、例えば、印刷時に設定されるパス数からMAPS処理の影響分を除いた値に相当すると考えることもできる。また、入力パス値については、例えば、MAPS処理を無効(OFF)にした場合に設定されるパス数に相当する値等と考えることもできる。
 また、MAPS速度値とは、上記のように、MAPS処理を適用する程度を示す値である。MAPS処理とは、例えば、各ノズルから吐出するインクの濃度(吐出濃度)をマスクの適用により調整することでバンディングを目立ちにくくする処理のことである。MAPS処理においては、例えば、市松模様状のマスク等ではなく、グラデーション型のマスクを用いることで、吐出濃度の調整を行う。また、この場合、マスクに従って吐出濃度を下げる分に合わせてフィード量を小さくすることで、パスの境界部分に重なりを持たせて、パスの境界を目立ちにくくする。そのため、MAPS処理を行う場合、MAPS移動速度に応じて、フィード量が変化することになる。また、これに伴い、設定されるパス数が変化することになる。
 そのため、MAPS処理を行う場合、パス数としては、例えば、入力パス値として指定される整数値に対してMAPS速度値に応じた調整を行うことで、非整数の値(半端パス)も設定し得ることになる。従って、MAPS処理を行う構成については、例えば、非整数の値を含む複数種類の値が設定可能な構成の一例と考えることができる。また、この場合、高い精度で柔軟にMAPS処理等を行うためには、パス数となる非整数の値について、少なくとも、0.25以下の刻み幅での値を設定可能にすることが好ましい。また、パス数の刻み幅は、好ましくは0.1以下、更に好ましくは0.01以下である。更に、この場合、例えば、小数点以下が所定の桁数になる数値で、任意のパス数を設定可能にすることがより好ましい。また、本例において、パス数は、入力パス値及びMAPS速度値に応じて算出されることで、0.01刻みで任意の値を設定可能になっている。また、この場合、入力パス値及びMAPS速度値について、印刷条件としてパス数を指定するためのパラメータ等と考えることもできる。
 尚、MAPS速度値については、例えば、媒体上に形成されるドットを分散させる程度を示すパラメータ等と考えることもできる。また、MAPS速度値としては、例えば、0~100%の範囲の数値を用いることが考えられる。この場合、MAPS速度値を100%にした状態は、入力パス値に相当するマスクがかかる状態を示している。そのため、MAPS速度値が100%である場合、パス数は、入力パス数と等しくなる。また、MAPS速度値が100%より小さい場合、パス数は、MAPS速度値に応じて、入力パス値よりも大きくなる。より具体的に、例えば入力パス値が2であり、MAPS速度値が100%であれば、MAPS処理において、2パス相当のマスクがかかることになる。また、入力パス値が2であり、MAPS速度値が50%であれば、MAPS処理において、4パス相当のマスクがかかることになる。また、この場合、MAPS速度値の設定が小さな値になる程、パスの境界部分で重なる幅が大きくなる(パスの重なりが増える)ため、パスの境界が見えにくくなり、バンディングを抑制する効果が大きくなる。また、入力パス値やMAPS速度等の印刷の条件については、必ずしもユーザに指定させるのではなく、印刷すべき画像を示す印刷ジョブにおいて指定されている条件を用いてもよい。また、この場合、印刷ジョブにおいて指定されている印刷の条件を初期値として用い、ユーザによる変更を受け付けること等も考えられる。
 また、図2に示したパラメータのうち、オフセット値は、フィード量の補正に用いるパラメータである。また、この場合、オフセット値は、入力部24により入力される入力補正値の一例であり、かつ、入力補正値としてユーザにより指定される値であるユーザフィード補正値の一例でもある。本例において、オフセット値は、必要に応じて、コンピュータの画面を用いたインターフェース等を介して、ユーザの手入力により入力される。また、オフセット値としては、オフセット値の入力時に設定されている印刷の条件においてフィード量を変化させる距離をそのまま示す値を用いる。フィード量を変化させる距離をそのまま示すとは、例えば、フィード量において補正が必要な距離としてユーザが見たままの距離を示すことである。また、フィード量において補正が必要な距離とは、例えば、印刷結果において認識されるフィード量のずれの大きさ(フィードずれ量、フィード補正量)のことである。また、オフセット値については、例えば、オフセット値の入力時に設定されている印刷の条件においてフィード量を増加又は減少させる距離を示す値等と考えることもできる。
 尚、フィード量の補正に用いるパラメータの入力の仕方について、本例とは異なる方法で行う場合、例えば、予め設定された標準の印刷条件に換算した値を入力すること等も考えられる。また、コンピュータのシステムとして考えた場合には、このようにしてパラメータを入力する方が、その後の処理が容易になるとも考えられる。しかし、フィード量の補正を行う場合には、ユーザの感覚に基づき、極めて微小な距離に対応するパラメータを入力することも考えられる。そして、このような場合、標準の印刷条件に合わせた換算等が必要になると、計算ミス等で意図しない変更が行われやすくなるとも考えられる。また、フィード量の補正は、例えば、印刷の動作の途中で行うこと等も考えられる。そして、このような場合、標準の印刷条件に合わせた換算等が必要になると、パラメータを入力するまでに要する時間が長くなり、その分だけ、補正が遅れることになる。これに対し、本例によれば、任意の印刷条件においてユーザが見たままのフィード量のずれ量をオフセット値として設定できるため、印刷結果を確認したユーザの判断に基づき、フィード量の補正量の調整を迅速かつ適切に行うことができる。また、これにより、例えば、容易で誤りが少ない補正の動作を適切に実現できる。
 続いて、本例においてフィード量を設定する動作について、更に詳しく説明をする。フィード量を設定する動作においては、制御部30において、先ず、図2(b)に示すように、入力パス値及びMAPS速度値に基づき、パス数及び基本移動量の設定を行う。この場合、パス数とは、上記においても説明をしたように、MAPS速度値に応じて入力パス値を調整することで得られるパス数(半端パス)のことである。また、本例において、基本移動量とは、副走査動作でのフィード量の設定時に用いられる基本の移動量であり、印刷の条件に応じて設定される。また、本例において、基本移動量は、補正を行う前のフィード量に相当する値である。また、より具体的に、基本移動量としては、インクジェットヘッドのノズル長をパス数で除した値が設定される。また、上記においても説明をしたように、本例において、パス数は、入力パス値及びMAPS速度値に応じて算出されることで、0.01刻みで任意の値を設定可能になっている。そのため、基本移動量として取り得る値も、ノズル長以下の範囲で、様々な値を設定可能になる。
 また、制御部30は、このようにして算出された基本移動量をオフセット値に基づいて補正することで、フィード量の設定を行う。また、本例においては、フィード量の補正に用いる補正値として、ユーザにより設定されるオフセット値に加え、システムフィード補正値を更に用いる。この場合、システムフィード補正値とは、印刷装置10において予め設定されているパラメータに基づいて印刷の条件に応じて設定される補正値のことである。
 そのため、本例においてフィード量を設定する動作については、例えば、基本移動量、オフセット値、及びシステムフィード補正値に基づいてフィード量を設定する動作等と考えることができる。この場合、システムフィード補正値を用いた補正を行うことで、例えば、印刷装置10の装置特性(機体間で生じる誤差)等に対応する標準の補正を容易かつ適切に行うことができる。また、ユーザにより指定されるオフセット値を更に用いて補正を行うことで、例えば、印刷の条件や使用する媒体の特性等に応じて実際の印刷時に必要となる細かい調整等を更に行うことが可能になる。そのため、本例によれば、例えば、フィード量の補正を高い精度で適切に行うことができる。
 続いて、本例におけるオフセット値の使い方等について、更に詳しく説明をする。上記においても説明をしたように、本例において、オフセット値としては、オフセット値の入力時に設定されている印刷の条件においてフィード量を変化させる距離をそのまま示す値を用いる。しかし、印刷装置10においては、オフセット値を入力した後に、印刷条件が変更される場合もある。より具体的に、印刷装置10においては、例えば、印刷装置10に印刷を行わせる印刷物を示す印刷ジョブとして、印刷の条件が設定されている印刷ジョブを用いること等も考えられる。そして、この場合、印刷ジョブ毎に印刷の条件が変更されること等が考えられる。また、この場合、印刷の条件が変わることで、オフセット値として設定すべき値が変化することが考えられる。より具体的に、フィード量の設定時に適用する補正の量は、通常、ほぼ、フィード量に比例すると考えられる。そのため、印刷の条件の変更によりフィード量が変化した場合、補正時にフィード量を変化させる距離も変化することになる。これに対し、本例においては、ユーザが任意の印刷の条件において見たままの値を設定したオフセット値について、印刷の条件の変化に応じて変化するフィード量に合わせて、自動的に調整を行う。
 図3及び図4は、オフセット値の調整について更に詳しく説明をする図である。図3(a)~(d)及び図4(a)~(c)は、様々なパラメータを設定又は変更する動作の一例を示す。また、図3(a)は、オフセット値を指定せずに入力パス値及びMAPS速度値を設定した状態の一例を示す図であり、入力パス値を1とし、MAPS速度値を100%とした場合の例を示す。この状態については、例えば、ユーザにより指定されるユーザフィード補正値を用いずにフィード量を設定する状態等と考えることもできる。
 また、図3(b)は、図3(a)に示した状態から、オフセット値を1.000mmに変更した状態を示す。この場合、ユーザによるオフセット値の指定に応じて、制御部30は、例えば、オフセット値として記憶している値を更新する処理であるフィード補正値更新処理を行う。また、これにより、以降の処理において、新たに指定されたオフセット値を使用する。
 また、図3(c)は、図3(b)に示した状態から、入力パス値を2に変更した状態を示す。この場合、入力パス値の変更に伴い、入力パス値に基づいて算出される基本移動量等も変化することになる。そのため、この場合、入力パス値の変更に合わせて、オフセット値も変更する必要がある。これに対し、本例において、入力パス値が変更された場合、制御部30は、変更後の入力パス値に基づき、フィード補正値更新処理を行う。また、より具体的に、この場合、新たな入力パス値に基づいて新たな基本移動量を算出して、基本移動量に対して比例するように、オフセット値を変化させる。その結果、図3(c)に示した場合、フィード補正値更新処理により、オフセット値は、0.500mmに変更される。
 また、図3(d)は、図3(c)に示した状態から、MAPS速度値を80%に変更した状態を示す。この場合、MAPS速度値の変更に伴い、MAPS速度値に基づいて算出される基本移動量等も変化することになる。そのため、この場合、MAPS速度値の変更に合わせて、オフセット値も変更する必要がある。これに対し、本例において、MAPS速度値が変更された場合、制御部30は、変更後のMAPS速度値に基づき、フィード補正値更新処理を行う。また、より具体的に、この場合、新たなMAPS速度値に基づいて新たな基本移動量を算出して、基本移動量に対して比例するように、オフセット値を変化させる。その結果、図3(d)に示した場合、フィード補正値更新処理により、オフセット値は、0.400mmに変更される。
 また、印刷の条件が変更された場合において、単にオフセット値を比例計算により調整するのみでは、調整が不十分になる場合もある。そのため、このような場合には、新たな印刷条件に合わせて、新たなオフセット値をユーザにより入力すること等も考えられる。図4(a)は、図3(d)に示した状態から、オフセット値を0.250mmに変更した状態を示す。この場合、フィード補正値更新処理により、オフセット値は、ユーザにより新たに指定された値に変更される。
 また、図4(b)は、図4(a)に示した状態から、入力パス値を1に変更した状態を示す。この場合も、制御部30は、新たな入力パス値に基づいて新たな基本移動量を算出して、オフセット値を変化させる。その結果、図4(b)に示した場合、フィード補正値更新処理により、オフセット値は、0.500mmに変更される。また、図4(c)は、図4(b)に示した状態から、MAPS速度値を100%に変更した状態を示す。この場合も、制御部30は、新たなMAPS速度値に基づいて新たな基本移動量を算出して、オフセット値を変化させる。その結果、図4(c)に示した場合、フィード補正値更新処理により、オフセット値は、0.625mmに変更される。
 ここで、上記において説明をした各動作のうち、例えば図3(b)や図4(a)に示す動作については、オフセット値が新たに設定される動作の例と考えることができる。この場合、制御部30は、基本移動量と、新たなオフセット値とに基づき、フィード量を設定する。また、例えば図3(c)、(d)や、図4(b)、(c)に示す動作については、例えば、オフセット値が新たに入力された後、更に印刷の条件が変更された場合の動作の例と考えることができる。この場合、制御部30は、変更後の印刷の条件に合わせてオフセット値を調整し、変更後の印刷の条件に応じて設定される基本移動量と、変更後の印刷の条件に合わせて調整がされたオフセット値とに基づき、フィード量を設定する。このように構成すれば、例えば、容易かつ適切にオフセット値を入力することができる。また、例えば、その後に印刷の条件が変更された場合にも、変更後の印刷の条件に合わせて、オフセット値の調整を適切に行うことができる。また、これにより、例えば、フィード量の補正を適切に行うことができる。また、この場合、印刷の条件に合わせてオフセット値を調整することにより、様々な印刷の条件に応じて基本移動量として取り得る値が多い場合にも、フィード量の補正を適切に行うことができる。そのため、本例によれば、フィード量の設定を高い精度で適切に行うことができる。
 また、上記においても説明をしたように、本例においては、例えば、印刷の条件が設定されている印刷ジョブに基づき、印刷の動作を行うことが考えられる。そして、この場合、印刷装置10において、例えば、互いに異なる印刷の条件が設定されている複数の印刷ジョブに対応する印刷の動作を連続して実行すること等も考えられる。この場合、複数の印刷ジョブに対応する印刷の動作を連続して実行するとは、例えば、印刷装置10に対して供給される複数の印刷ジョブを自動的に順次処理することで、それぞれの印刷ジョブに対応する印刷の動作を自動的に順次行うことである。このような場合、設定される印刷の条件が印刷ジョブ毎に異なり得るため、印刷ジョブが変わることに伴って印刷条件が変わる場合もある。
 これに対し、本例においては、例えば、印刷の条件の変更に合わせて自動的にオフセット値を調整することで、それぞれの印刷ジョブに対応する印刷の動作をより適切に行うことができる。より具体的に、この場合、例えば、複数の印刷ジョブのうちの一つの印刷ジョブに対応する印刷物が印刷された後、次の印刷ジョブに対応する印刷物を印刷する動作を開始する前に、制御部30において、次の印刷ジョブにおいて設定されている印刷の条件に合わせてオフセット値を調整する。また、この場合、制御部30は、更に、次の印刷ジョブに対応する印刷の条件に応じて設定される基本移動量と、その印刷の条件に合わせて調整がされたオフセット値とに基づき、フィード量を設定する。このように構成すれば、複数の印刷ジョブに対応する印刷の動作を連続して実行する場合において、それぞれの印刷ジョブに対応するフィード量を適切に設定することができる。
 また、オフセット値の変更については、例えば、ユーザが印刷の途中経過を観察することで、一つの印刷ジョブに対応する印刷の動作の途中で行うこと等も考えられる。このように構成すれば、例えば、フィード量の補正量の調整が必要であることをユーザが認識した時点で、速やかに補正量を調整することができる。また、この場合において、見たままの値をオフセット量として用いることで、誤りの少ない補正の動作をより適切に実行することができる。より具体的に、この場合、例えば、ユーザによるオフセット値の変更により、一つの印刷ジョブに対応する印刷物を印刷している途中に入力部24から制御部30へ新たなオフセット値が入力されることになる。そして、この場合、制御部30は、一つの印刷ジョブに対応する印刷物を印刷している途中において、基本移動量と、新たに入力されたオフセット値とに基づき、新たなフィード量を設定する。そして、副走査駆動部20は、一つの印刷ジョブに対応する印刷物を印刷している途中から、新たなフィード量に従って、副走査動作をインクジェットヘッド102に行わせる。このように構成すれば、例えば、副走査移動量の補正をより柔軟かつ適切に行うことができる。
 続いて、フィード量の補正の仕方の具体例について、更に詳しく説明をする。図5は、フィード量の補正の仕方について更に詳しく説明をする図である。図5(a)は、印刷の条件に応じて設定されるパス数である半端パスとオフセット値との関係の一例を示す表であり、上記において説明をするように印刷の条件に応じてオフセット値を調整する場合に関し、調整後のオフセット値をパス数と対応付けて示す。
 また、図5(a)に示した表において、ユーザフィード補正値とは、調整後のオフセット値に対応する値である。また、図中に示すように、調整後のオフセット値は、半端パスの逆数に比例する。また、基本ユーザフィード補正値とは、入力パス値及びMAPS速度値を所定の標準値に設定した場合のオフセット値に対応する値である。また、より具体的に、図5(a)に示した表においては、入力パス値を1とし、MAPS速度値を100%にした場合に換算したオフセット値を、基本ユーザフィード補正値として示している。
 図5(b)は、半端パスの逆数である1/パス値とユーザフィード補正値との関係の一例を示すグラフであり、基本ユーザフィード補正値が50μmになる場合について、1/パス値とユーザフィード補正値との関係の一例を示す。グラフからわかるように、本例においては、ユーザフィード補正値について、1/パス値に比例するように変化させる。また、上記の説明から理解できるように、本例において、基本移動量は、1/パス値に比例している。そのため、ユーザフィード補正値については、例えば、基本移動量に比例するように変化させると考えることもできる。
 また、図5(b)のグラフにおいては、基本ユーザフィード補正値が50μmになる場合について、符号Aを付して示した直線により示している。そして、この場合、例えば、オフセット値として新たな値を入力して、ユーザフィード補正値を直接増加又は減少させると、図中に上下方向の矢印で示すように、1/パス値とユーザフィード補正値との関係を示す直線は、例えば、符号B又はCを付して示す直線に変化する。そのため、新たなユーザ補正値を設定する動作について、例えば、1/パス値とユーザフィード補正値との関係を示す直線の傾きを変化させる動作等と考えることもできる。
 また、入力パス値又はMAPS速度値の変更により印刷条件が変化した場合、パス数(半端パス)が変化することで、1/パス値の値が変化する。そして、この場合、1/パス値とユーザフィード補正値との関係を示す直線において、印刷の条件に対応する点の位置は、図中に左右方向の矢印で示すように、1/パス値がより小さい位置又は大きい位置へ変化する。また、これに伴い、対応するユーザフィード補正値も変化する。また、その結果、ユーザフィード補正値は、印刷の条件に追従するように、調整されることになる。そのため、本例によれば、例えば、フィード量の大小によって必要な補正量が比例関係で変化する系において、フィード量の値毎に適切な補正を行うことができる。
 また、より具体的に、印刷の条件に応じてユーザフィード補正値を調整(設定)する方法については、例えば、図2(a)に示す画面で入力される入力パス値をpassとし、MAPS速度値をmapsspdとし、オフセット値の値をfeedofsとし、更に、オフセット値の算出を前回行った時点で用いた入力パス値及びMAPS速度値をsv_pass、sv_mapsspdとして、新たなオフセット値=feedofs×(sv_pass/(sv_mapsspd/100))/(pass/(mapsspd/100))として算出することができる。このように構成すれば、例えば、ユーザフィード補正値として用いるオフセット値の調整を適切に行うことができる。
 続いて、上記において説明をした各構成に関する補足説明等を行う。上記においても説明をしたように、本例においては、ユーザフィード補正値として、ユーザが任意の印刷の条件において見たままの値を設定したオフセット値を用いる。これに対し、ユーザにより補正値を設定するということのみを考えた場合、例えば上記において説明をした基本ユーザフィード補正値のように、特定の印刷の条件に合わせた補正の量をユーザに指定させること等も考えられる。この場合も、フィード量の変化に応じて比例するように補正値を自動的に調整すれば、フィード量の調整を行うことができる。しかし、この場合、印刷結果においてユーザが認識したフィード量のずれ量について、特定の印刷の条件に合わせた換算を行った上で、ユーザが入力することが必要になる。より具体的に、この場合、補正値がある特定の印刷条件時の値として保持される構成になるため、例えばパス数が1の場合の補正値が保持されているとすると、実際に4パスでの印刷を行った場合のフィード量のずれ量をある値(例えば、200μm)とユーザが認識したとしても、そのずれ量を補正するためには、パス数の違いによるフィード量の違いを考慮して、認識したずれ量とは異なる値を入力することが必要になる。例えば、補正値がフィード量に単純に比例する場合、入力する補正値としては、上記の値(200μm)の1/4の50μmに換算した値を入力することが必要になる。そして、このような場合、換算のための計算が必要になることで、ユーザの手間が増大することになる。また、換算時に誤りが生じ、正しい補正を行えなくなるおそれもある。更には、印刷の動作の途中で補正値を変更しようとする場合等に、迅速な変更を行うことが難しくなること等も考えられる。これに対し、本例においては、上記のように、ユーザが見たままの値を設定したオフセット値を補正値として用いることで、これらの問題の発生を適切に防ぐことができる。
 また、上記においても説明をしたように、本例においては、オフセット値として入力されるユーザフィード補正値以外に、システムフィード補正値を更に用いて、フィード量の設定を行う。そして、この場合、ユーザフィード補正値とシステムフィード補正値とを合わせた合計の補正値について、1/パス値に比例するように変化させることが考えられる。より具体的に、特定の印刷の条件に対してユーザが設定するオフセット値を反映させた合計の補正値について、入力パス値が2の場合に合計の補正量が300μmになっている場合を想定し、MAPS速度値を変更せずに入力パス値のみを1に変更した場合、合計の補正値については、600μmに調整することが考えられる。このように構成すれば、例えば、システムフィード補正値を更に用いたフィード量の補正を適切に行うことができる。
 また、上記においても説明をしたように、本例においては、ユーザフィード補正値としてオフセット値を用いることにより、印刷結果を確認したユーザの判断に基づき、副走査移動量の補正量の調整を適切に行うことができる。これに対し、例えば副走査動作でのフィード量について、例えばリニアスケール等を用いて測定を行い、適宜自動的に補正を行えば、フィード量を適切に補正できるようにも思われる。しかし、実際の印刷の環境では、リニアスケール等の測定結果で正しいフィード量が実現できている場合でも、微小な誤差等の影響により、バンディングが発生する場合がある。そのため、高い精度でより適切に印刷を行う場合には、本例のように、印刷結果をユーザにより実際に確認して、フィード量を補正することがより好ましい。また、印刷に求められる条件によっては、必ずしもユーザの手入力に限らず、フィード量に対する必要な補正量を自動的に検知するシステムにより、オフセット値を入力してもよい。より具体的に、この場合、例えば、印刷結果の画像をカメラ等で撮像し、画像処理等でバンディングの有無を確認すること等により、必要な補正量を検知すること等が考えられる。
 続いて、フィード量の補正に用いる補正係数や、制御部30においてフィード量を設定する動作等について、更に詳しく説明をする。本例において、制御部30は、印刷の条件に基づき、補正前のフィード量に相当する基本フィード量を設定する。この場合、基本フィード量は、印刷の条件に応じて設定される基本の移動量である基本移動量の一例である。また、この場合、制御部30は、印刷の条件として、例えば、印刷すべき画像を示す印刷ジョブにおいて指定されている条件を用いる。また、印刷の条件としては、ユーザにより指定される条件を用いてもよい。また、本例において、基本フィード量の設定に用いる印刷の条件としては、入力パス値及びMAPS速度値を用いる。
 本例において、制御部30は、印刷の条件として指定される入力パス値及びMAPS速度値に基づき、パス数及び基本フィード量の設定を行う。この場合、パス数とは、上記において説明をした半端パスのことである。また、制御部30は、更に、パス数と、インクジェットヘッドのノズル長とに基づき、基本フィード量を設定する。より具体的に、本例において、基本フィード量としては、インクジェットヘッドのノズル長をパス数で除した値が設定される。また、上記においても説明をしたように、本例において、パス数は、入力パス値及びMAPS速度値に応じて算出されることで、0.01刻みで任意の値を設定可能になっている。そのため、基本移動量として取り得る値も、ノズル長以下の範囲で、様々な値を設定可能になる。
 また、制御部30は、このようにして算出された基本フィード量に対して補正を行うことで、副走査動作時に実際に用いるフィード量の設定を行う。この場合、基本フィード量に対して補正を行う動作について、フィード量の補正の動作と考えることができる。また、この場合、制御部30は、記憶部22に記憶されている補正係数に基づいて算出補正値を算出し、算出補正値を用いて、基本フィード量に対する補正を行う。また、この場合、例えば、算出補正値を基本フィード量に加算することにより、基本フィード量を補正したフィード量を算出する。
 続いて、算出補正値の算出の仕方等について、更に詳しく説明をする。図6及び図7は、算出補正値の算出の仕方について説明をする図である。上記においても説明をしたように、本例において、制御部30は、記憶部22に記憶されている補正係数に基づき、算出補正値を算出する。また、この場合、記憶部22は、例えば、印刷装置10の出荷時や調整時等に設定された補正係数を記憶している。そのため、算出補正値については、印刷装置10において予め設定されている補正量を示すように算出されると考えることができる。また、この場合、算出補正値について、印刷装置10において予め設定されているシステムフィード補正値の一例と考えることができる。システムフィード補正値とは、例えば、印刷装置10の製造者や印刷装置10に関するサービスの提供者により予め用意される補正値等のことである。また、より具体的に、本例において、補正係数としては、例えば、基本フィード量と、その基本フィード量に対して設定すべき補正値とを対応付ける係数を用いる。
 図6(a)は、補正係数において対応付けられる特定の基本フィード量と補正値(システムフィード補正値)との関係の一例を示す。この場合、補正係数において対応付けられる特定の基本フィード量とは、例えば、後に説明をする基本フィード量の範囲の境界に対応する基本フィード量のことである。図6(b)は、図6(a)に示した基本フィード量と補正値との関係を示すグラフであり、図6(a)に示した各基本フィード量に対応する点をプロットした上で、各点の間を直線(線分)でつないだ状態を示す。
 本例において、特定の基本フィード量としては、パス数が0、1、及び2の場合の基本フィード量を用いる。この場合、パス数が0の場合は、算出補正値の算出時に用いる原点として用いるための仮想的な条件を示している。また、それぞれの基本フィード量に対応する補正値としては、システムフィード補正値として設定されるべき値を用いる。この補正値については、例えば印刷装置10の出荷時や調整時等に、テストチャートを印刷して行う実測等により得ることが考えられる。また、パス数が0の場合の補正値としては、0を設定する。
 ここで、様々な基本フィード量について、その基本フィード量の補正に用いるべき補正値を考えた場合、誤差が一定の許容量を超えない範囲において、基本フィード量と補正値との関係は、線形に変化すると考えられる。また、後に更に詳しく説明をするように、本願の発明者は、通常のインクジェットプリンタの場合において、パス数が1~2の範囲内にある場合とその他の場合の二つの範囲に基本フィード量を分けて考えれば、それぞれの範囲で、上記のような線形の関係が適切に成り立つことを見出した。そして、この場合、図6(a)に示した基本フィード量以外の基本フィード量に対しては、図6(b)に示した直線が示す関係に基づいて、それぞれの基本フィード量に対応する補正値を求めることができる。また、この場合、このようにして求めた補正値を、上記において説明をした算出補正値として用いることができる。
 図7は、図6(b)のグラフ中の直線について更に詳しく説明をする図であり、図6(b)に示したそれぞれの直線を延長させたグラフを示す。また、より具体的に、図7のグラフでは、図6(b)においてパス数が1~2にある場合の基本フィード量に対応している直線について、符号Aを付して示した上で、破線を用いて延長している。また、パス数が1~2の範囲以外の場合の基本フィード量に対応している直線について、符号Bを付して示した上で、一点鎖線を用いて延長している。
 また、本例において、パス数が1~2の範囲内にある場合に対応する基本フィード量の範囲は、第1の範囲の一例である。また、この範囲内の基本フィード量のうち、パス数が1の場合の基本フィード量は、インクジェットヘッドにおけるノズル長と等しくなる。そのため、第1の範囲については、例えば、ノズル長と基本フィード量とが等しくなる場合を含む範囲等と考えることができる。また、本例において、パス数が1~2の範囲内にあるとは、例えば、パス数が1以上2未満の範囲内にあることである。範囲の設定の仕方の変形例においては、パス数が2に等しい場合について、第1の範囲に含めてもよい。
 また、パス数が1~2の範囲以外の場合の基本フィード量に対応する基本フィード量の範囲は、第2の範囲の一例である。この場合、第2の範囲とは、基本フィード量が第1の範囲よりも小さな範囲のことである。また、基本フィード量が第1の範囲よりも小さな範囲とは、その範囲に含まれる基本フィード量が第1の範囲に含まれる基本フィード量よりも小さいことである。
 また、本例において、パス数が2の場合の基本フィード量は、ノズル長よりも小さな所定の移動量の一例である。この場合、第2の範囲について、例えば、このような所定の移動量以下又は未満の全ての基本フィード量を含む範囲等と考えることができる。また、上記の第1の範囲については、例えば、所定の移動量よりも大きな全ての基本フィード量を含む範囲等と考えることもできる。また、本例において、この所定の移動量は、ノズル長の半分と等しい移動量になっている。そのため、本例においては、パス数が2以上の場合に対応する基本フィード量を全て含む範囲が、第2の範囲の一例になっている。範囲の設定の仕方の変形例においては、パス数が2に等しい場合を含めずに、パス数が2の場合の基本フィード量未満の基本フィード量を全て含む範囲を、第2の範囲と考えてもよい。
 また、本例において、記憶部22では、補正係数としては、グラフ中の直線を示す係数を記憶する。この場合、直線を示す係数とは、例えば、直線の傾き及び切片を示すパラメータのことである。また、補正係数としては、傾きや切片を直接示すパラメータを記憶するのではなく、傾きや切片を算出するためのパラメータを記憶してもよい。より具体的に、この場合、例えば図6(a)に示す各値のように、特定の印刷の条件と、補正値とを対応付けて、補正係数として記憶してもよい。また、この場合、印刷の条件としては、パス数又は基本フィード量の少なくともいずれかを用いることが考えられる。
 また、より具体的に、本例において、記憶部22は、補正係数として、図中で符号A、Bを付した二つの直線について、それぞれの直線の傾き及び切片を示すパラメータを記憶する。この場合、符号Aを付した直線に対応するパラメータは、第1の補正係数の一例である。第1の補正係数とは、基本フィード量が第1の範囲の内にある場合に用いる補正係数のことである。また、符号Bを付した直線に対応するパラメータは、第2の補正係数の一例である。第2の補正係数とは、基本フィード量が第2の範囲の内にある場合に用いる補正係数のことである。
 また、上記においても説明をしたように、本例においては、これらの補正係数により示される直線を用いて、算出補正値を算出する。そのため、補正係数については、例えば、基本フィード量と算出補正値とを対応付ける一次関数を示す係数と考えることもできる。また、図等から明らかなように、本例において、符号Aを付した直線と、符号Bを付した直線とは、傾き及び切片が異なっている。そのため、符号Bを付した直線に対応する補正係数と、符号Aを付した直線に対応する補正係数とは、互いに異なる係数になっている。
 また、更に具体的に、本例において、符号Aを付した直線を示す補正係数としては、1~2のパス数に対応する基本フィード量の範囲内で基本フィード量に対応する算出補正値が線形に変化することを示す係数を用いる。この場合、基本フィード量に対応する算出補正値が線形に変化するとは、基本フィード量と算出補正値とを対応付ける関係が一次関数になることである。また、更に具体的に、本例において、この一次関数は、図中に示すように、原点を通らない直線に対応する関数になっている。
 また、符号Aを付した直線について、図6(a)に示した値を用いて傾き及び切片を求めると、傾きは0.002182になり、切片は-40になる。そのため、基本フィード量をx(μm)、算出補正値(システムフィード補正値)をy(μm)とした場合、xとyとの関係は、y=0.002182x-40で示される関係になる。
 また、本例において、符号Bを付した直線を示す補正係数としては、基本フィード量に比例して算出補正値が算出されることを示す係数を用いる。基本フィード量に比例して算出補正値が算出されるとは、例えば、基本フィード量と算出補正値とを対応付ける一次関数が原点を通る直線を示す関数になることである。また、この場合、上記においても説明をしたように、符号Bを付した直線の傾きは、符号Aを付した直線の傾きと異なることになる。
 また、符号Bを付した直線について、図6(a)に示した値を用いて傾き及び切片を求めると、傾きは0.001818になり、切片は0になる。そのため、基本フィード量x(μm)と、算出補正値(システムフィード補正値)y(μm)との関係は、y=0.001818xで示される関係になる。
 続いて、算出補正値を算出する動作について、更に詳しく説明をする。図8は、算出補正値を算出する動作の一例を示す。図8(a)は、対応するパス数が1~2の範囲内にある場合について、算出補正値の算出の仕方の一例を示す。図8(b)は、対応するパス数が2以上の場合について、算出補正値の算出の仕方の一例を示す。
 上記においても説明をしたように、本例においては、基本フィード量と算出補正値とを対応付ける直線で示される関係を利用して、算出補正値を算出する。この場合、直線で示される関係とは、上記において示したxとyとの関係のことである。また、この場合、対応するパス数が1~2になる基本フィード量の場合と、対応するパス数が2以上の場合とで、異なる直線に対応する関係を用いる。
 より具体的に、対応するパス数が1~2の範囲内にある基本フィード量の場合、制御部30は、図8(a)に示すように、符号Aを付した直線で示される関係に従って、基本フィード量に対応する算出補正値を算出する。この場合、符号Aを付した直線とは、図7を用いて上記において説明をした、符号Aを付した直線のことである。また、より具体的に、例えば、1~2の範囲のパス数の例として、パス数が1.25の場合を考えると、対応する基本フィード量は、192500μmになる。そして、この場合、符号Aを付した直線を示す関係において、xにこの値を代入すると、yの値は、380μmになる。そのため、この場合の算出補正値としては、380μmが算出されることになる。
 また、対応するパス数が2以上になる基本フィード量の場合、制御部30は、図8(b)に示すように、符号Bを付した直線で示される関係に従って、基本フィード量に対応する算出補正値を算出する。この場合、符号Bを付した直線とは、図7を用いて上記において説明をした、符号Bを付した直線のことである。また、より具体的に、例えば、2以上のパス数の例として、パス数が3の場合を考えると、対応する基本フィード量は、73333μmになる。そして、この場合、符号Bを付した直線を示す関係において、xにこの値を代入すると、yの値は、133μmになる。そのため、この場合の算出補正値としては、133μmが算出されることになる。
 このように、本例によれば、例えば、対応するパス数が1~2の範囲内にある基本フィード量に対し、符号Aを付した直線に対応する補正係数に基づき、適切に算出補正値を算出することができる。また、対応するパス数が2以上の基本フィード量に対し、符号Bを付した直線に対応する補正係数に基づき、適切に算出補正値を算出することができる。また、これらにより、例えば、任意の基本フィード量に対し、対応する算出補正値を適切に算出することができる。そのため、本例によれば、例えば、基本フィード量として取り得る値が多い場合にも、高い精度で適切に補正を行い、フィード量を適切に設定することができる。また、この場合、上記の説明等から明らかなように、限られた数の補正係数のみを用意すればよいため、少ない数の補正用のパラメータのみを用いて、フィード量の補正を適切に行うことができる。
 続いて、上記において説明をした各構成に関する補足説明等を行う。上記においても説明をしたように、本例の印刷装置10は、MAPS速度値として様々な値が設定されることで、任意のフィード量を取り得るシステムになっている。また、この場合において、基本フィード量の変化に応じた算出補正値を算出することで、任意のフィード量に対応する補正値を自動的に比例計算して適用するシステムになっている。そのため、本例によれば、非整数のパス数に対応する値等も含めて基本フィード量が様々に変化する場合にも、補正値を適切に自動調整することができる。また、このような構成については、例えば、印刷の条件に追従させてフィード量の補正値を変化させる構成等と考えることもできる。
 また、上記において説明をしたように、本例においては、フィード量の設定時に行う補正について、基本フィード量の取り得る値を複数の範囲に分けて、範囲毎に異なる補正係数を用いている。この点に関し、より簡易に補正を行うことを考えた場合、例えば1種類の直線を示す補正係数のみを用いて補正を行う方が好ましいともいえる。
 しかし、例えばインクジェットヘッドの大型化等により、ノズル長が大きくなった場合等には、1種類の直線を示す補正係数のみで補正を行うと、誤差が許容範囲を超える場合がある。より具体的に、1種類の直線を示す補正係数のみを用いる場合、基本フィード量に比例させた補正値を用いることが考えられる。また、このような補正の仕方については、例えば、一つの比例係数のみを用いて補正値の算出を行う構成等と考えることができる。そして、このようにして補正を行う場合、ノズル長が大きくなると、いずれかのフィード量において、理想の補正値に対して副走査ドット間距離よりも大きな差が生じることが考えられる。この場合、副走査ドット間距離とは、印刷の条件に応じて設定される副走査方向における解像度に対応するドット間距離のことである。また、この場合、例えば、それぞれの基本フィード量に対応するフィード量を正しく設定するための補正値を理想補正値と定義し、一つの比例係数のみを用いて基本フィード量に比例させて算出補正値を設定した場合の補正値を単純比例補正値と定義すれば、いずれかの基本フィード量に対して理想補正値と単純比例補正値と等しくなるように一つの比例係数を設定すると、他のいずれかの基本フィード量に対して、その基本フィード量に対応する理想補正値と単純比例補正値との差が副走査ドット間距離よりも大きくなると考えることもできる。そして、このような誤差が生じた場合、誤差が大きくなるフィード量を用いる場合において、フィード量の補正を行ったとしても、白スジ又は黒スジ等のバンディングが発生するおそれがある。また、その結果、高い品質での印刷を行うことが難しくなると考えられる。
 また、このような誤差が発生する条件については、例えば、図7等において符号A、Bを付した直線のような複数の直線を考え、それぞれの直線を延長した場合に、いずれかの基本フィード量の位置において、直線Aで示される算出補正値と、直線Bで示される算出補正値との間に、副走査ドット間距離を超える誤差が生じる場合等と考えることもできる。また、このような条件については、例えば、基本フィード量がノズル長と等しくなる場合に対して、直線Aに対応する補正係数に基づいて算出した算出補正値を第1の値とし、直線Bに対応する補正係数により示される比例関係に従って補正値を算出した場合の値を第2の値として、第1の値と第2の値との差が副走査ドット間距離よりも大きくなる場合等と考えることもできる。そして、このような場合、例えば1種類の補正係数のみを用いて副走査移動量の補正を行うと、例えば、基本フィード量がノズル長と等しくなる場合、又は基本フィード量がノズル長の半分になる場合等における補正後のフィード量に、副走査ドット間距離を超える誤差が生じることが考えられる。
 これに対し、本例においては、基本フィード量の取り得る値を複数の範囲に分けて、範囲毎に異なる補正係数を用いることで、このような誤差の発生を適切に防ぐことができる。また、これにより、例えば、より高い精度でより適切にフィード量の補正を行うことができる。そのため、本例によれば、例えば、フィード量の大小によってフィード補正値の比例係数が変化する系においても、フィード量の範囲毎に、フィード量の補正を適切に行うことができる。この場合、フィード量の大小によってフィード補正値の比例係数が変化する系とは、例えば、単純な比例関係により補正値の算出をしようとする場合において、フィード量が大きい場合と小さい場合でフィード補正の比例係数に差異が生じる系のことである。また、このような系については、一つの比例係数のみでは全てのフィード量に対して適切な補正を行えない系と考えることもできる。また、本例の構成については、例えば、1種類の直線を示す補正係数のみを用いると上記のような誤差が発生する場合に特に好適に用いることができると考えることもできる。
 また、上記において説明をしたように、本例においては、基本フィード量の取り得る値に対し、対応するパス数が1~2になる範囲と、それ以外の範囲との、二つの範囲に分けている。この点に関し、例えばインクジェットヘッドが更に大型化した場合や、副走査ドット間距離が更に小さくなった場合、基本フィード量の取り得る値を更に多くの範囲に分け、範囲毎に異なる補正係数を用いることが好ましいと考えることもできる。しかし、現在において一般的に使用されているインクジェットプリンタの構成を考えた場合、基本フィード量の取り得る値を本例のように二つの範囲に分けることで、通常、高い精度での補正を適切に行うことが可能である。より具体的に、例えば、ノズル長が500mm以下程度(例えば、100~500mm程度)であり、副走査方向における印刷の解像度が1200dpi以下程度(例えば、300~1200dpi程度)である場合、基本フィード量の取り得る値を二つの範囲に分けることで、高い精度での補正を適切に行うことができる。また、ノズル長が300mm以下程度(例えば、100~300mm程度)であり、副走査方向における印刷の解像度が600dpi以下程度(例えば、300~600dpi程度)である場合には、基本フィード量の取り得る値を二つの範囲に分けることで、高い精度での補正をより適切に行うことができる。
 また、上記においても説明をしたように、本例において、記憶部22は、補正係数として、例えば、直線の傾き及び切片を示すパラメータを記憶する。そして、このようなパラメータとしては、例えば、傾き及び切片の値を直接記憶することが考えられる。この場合、記憶部22において記憶する傾き及び切片の値については、例えば、特定の基本フィード量間の個々の基本フィード量に対応するフィード補正値を自動比例計算するための比例係数等と考えることもできる。特定の基本フィード量間とは、例えば、対応するパス数が1~2になる基本フィード量の範囲や、対応するパス数が2以上になる基本フィード量の範囲のことである。
 また、補正係数としては、直線の傾き及び切片の値を直接記憶するのではなく、これらの値を算出可能な他の数値を記憶してもよい。より具体的に、この場合、例えば、図6(a)に示した基本フィード量と補正値(システムフィード補正値)のように、特定の基本フィード量と、その基本フィード量に対応する補正値とを補正係数として記憶してもよい。この場合、補正係数について、例えば、特定の基本フィード量に対して個々に比例係数を算出する場合の基準となる固有のフィード補正値等と考えることができる。また、この場合、算出補正値の算出時には、基本フィード量が含まれる範囲に対応する直線を示すパラメータを算出する比例係数算出処理を行い、その結果を利用して、フィード量の補正を行う。また、このような比例係数算出処理を行うシステムについては、例えば、特定の基本フィード量間の個々の基本フィード量に対応するフィード補正値を自動比例計算するための比例係数について、その算出の基準となる固有のフィード補正値から自動算出するシステム等と考えることができる。
 また、上記においては、フィード量の設定時に用いる補正値に関し、主に、印刷装置10において予め設定されているシステムフィード補正値を用いる場合について、説明をした。また、この場合、上記においても説明したように、本例において算出する算出補正値について、システムフィード補正値と考えることができる。また、フィード量の設定時に用いる補正値としては、システムフィード補正値以外に、例えば、ユーザの指定により設定される補正値であるユーザフィード補正値を更に用いることも考えられる。この場合、ユーザフィード補正値としては、例えば、フィード量を調整するためのオフセット値等を用いることが考えられる。また、このオフセット値については、例えば、印刷装置10において実際に行った印刷の結果を確認したユーザにより、フィード量のずれを減らすように指定することが考えられる。また、この場合、印刷装置10においては、ユーザにより指定されたユーザフィード補正値について、印刷条件と対応付けて管理することが考えられる。そして、その後に印刷の条件が変更された場合には、印刷の条件の変更により生じる基本フィード量の変化に合わせて、オフセット値も調整することが考えられる。この場合、例えば、基本フィード量に比例するようにオフセット値を調整することが考えられる。このように構成すれば、ユーザフィード補正値についても、印刷の条件の変化に追従させて適切に変化させることができる。
 また、この場合、オフセット値について、例えば、基本フィード量が含まれる範囲に合わせて、算出補正値の算出時に用いる直線の傾きを比例係数として用いて比例計算により調整することが考えられる。このように構成すれば、例えば、システムフィード補正値の変化に合わせて、ユーザフィード補正値を適切に変化させることができる。また、ユーザフィード補正値として指定するオフセット値は、通常、システムフィード補正値として用いられる算出補正値と比べて小さな値になると考えられる。そのため、オフセット値については、基本フィード量の範囲毎に異なる比例係数を用いなくても、高い精度で適切に調整することが可能である。そのため、オフセット値については、基本フィード量の全ての範囲に対し、一つの比例係数のみを用いて単純な比例計算で調整を行ってもよい。この場合、単純な比例計算とは、例えば、原点を通る直線に対応する関係を利用して調整を行うことである。
 本発明は、例えば印刷装置に好適に利用できる。

 

Claims (20)

  1.  媒体に対して印刷を行う印刷装置であって、
     前記媒体へインクを吐出するインクジェットヘッドと、
     予め設定された主走査方向へ前記媒体に対して相対的に移動しつつインクを吐出する主走査動作を前記インクジェットヘッドに行わせる主走査駆動部と、
     前記主走査方向と直交する副走査方向へ前記媒体に対して相対的に移動する副走査動作を前記インクジェットヘッドに行わせる副走査駆動部と、
     前記副走査動作において前記媒体に対して相対的に前記副走査方向へ前記インクジェットヘッドを移動させる距離である副走査移動量を設定する移動量設定部と、
     前記副走査移動量の補正に用いる補正値として前記移動量設定部に入力される入力補正値を前記移動量設定部に入力する入力部と
    を備え、
     前記移動量設定部は、印刷の条件に応じて設定される基本の移動量である基本移動量と、前記入力部により入力される前記入力補正値とに基づき、前記副走査移動量を設定し、
     前記入力部は、前記入力補正値として、前記入力補正値の入力時に設定されている印刷の条件において前記副走査移動量を増加又は減少させる距離を示す値を入力し、
     前記入力補正値が新たに入力された場合、前記移動量設定部は、前記基本移動量と、新たに入力された前記入力補正値とに基づき、前記副走査移動量を設定し、
     前記入力補正値が新たに入力された後、印刷の条件が変更された場合、前記移動量設定部は、変更後の印刷の条件に合わせて、前記入力補正値を調整し、変更後の印刷の条件に応じて設定される前記基本移動量と、変更後の印刷の条件に合わせて調整がされた前記入力補正値とに基づき、前記副走査移動量を設定することを特徴とする印刷装置。
  2.  前記入力部は、前記入力補正値として、ユーザにより指定される値であるユーザフィード補正値を入力することを特徴とする請求項1に記載の印刷装置。
  3.  前記移動量設定部は、前記印刷装置において予め設定されているパラメータに基づいて印刷の条件に応じて設定される補正値であるシステムフィード補正値を更に利用し、前記基本移動量、前記ユーザフィード補正値、及び前記システムフィード補正値に基づき、前記副走査移動量を設定することを特徴とする請求項2に記載の印刷装置。
  4.  前記入力部は、前記ユーザにより指定される値として、前記入力補正値の入力時に設定されている印刷の条件において前記副走査移動量を変化させる距離をそのまま示す値であるオフセット値の入力をユーザから受け付けることを特徴とする請求項2又は3に記載の印刷装置。
  5.  前記インクジェットヘッドは、前記副走査方向における位置を互いにずらして複数のノズルが並ぶノズル列を有し、
     前記移動量設定部には、印刷の条件として、少なくとも、前記媒体における印刷範囲の各位置に対して行う主走査動作の平均回数を示すパス数が設定され、
     前記基本移動量は、前記インクジェットヘッドの前記ノズル列の前記副走査方向における幅であるノズル長を前記パス数で除した値を示すことを特徴とする請求項1に記載の印刷装置。
  6.  前記パス数として、非整数の値を含む複数種類の値を設定可能であることを特徴とする請求項5に記載の印刷装置。
  7.  前記非整数の値として、少なくとも、0.25以下の刻み幅での値を設定可能であることを特徴とする請求項6に記載の印刷装置。
  8.  前記印刷装置は、互いに異なる印刷の条件が設定されている複数の印刷ジョブに対応する印刷の動作を連続して実行可能であり、
     前記複数の印刷ジョブのうちの一つの前記印刷ジョブに対応する印刷物が印刷された後、次の前記印刷ジョブに対応する印刷物を印刷する動作を開始する前に、前記移動量設定部は、前記次の印刷ジョブにおいて設定されている印刷の条件に合わせて前記入力補正値を調整し、前記次の印刷ジョブに対応する印刷の条件に応じて設定される前記基本移動量と、当該印刷の条件に合わせて調整がされた前記入力補正値とに基づき、前記副走査移動量を設定することを特徴とする請求項1に記載の印刷装置。
  9.  前記印刷装置は、印刷条件が設定されている印刷ジョブに基づき、印刷の動作を実行し、
     一つの前記印刷ジョブに対応する印刷物を印刷している途中に前記入力部から新たな前記入力補正値が入力された場合、前記移動量設定部は、前記基本移動量と、新たに入力された前記入力補正値とに基づき、新たな前記副走査移動量を設定し、
     前記一つの印刷ジョブに対応する印刷物を印刷している途中から、前記副走査駆動部は、前記新たな副走査移動量に従って、前記副走査動作を前記インクジェットヘッドに行わせることを特徴とする請求項1に記載の印刷装置。
  10.  媒体に対して印刷を行う印刷方法であって、
     前記媒体へインクを吐出するインクジェットヘッドに、
     予め設定された主走査方向へ前記媒体に対して相対的に移動しつつインクを吐出する主走査動作と、
     前記主走査方向と直交する副走査方向へ前記媒体に対して相対的に移動する副走査動作と
    を行わせ、
     前記副走査動作において前記媒体に対して相対的に前記副走査方向へ前記インクジェットヘッドを移動させる距離である副走査移動量を設定する副走査移動量の設定時において、前記副走査移動量の補正に用いる補正値である入力補正値を入力し、印刷の条件に応じて設定される基本の移動量である基本移動量と、前記入力補正値とに基づき、前記副走査移動量を設定し、
     前記入力補正値として、前記入力補正値の入力時に設定されている印刷の条件において前記副走査移動量を増加又は減少させる距離を示す値を入力し、
     前記入力補正値が新たに入力された場合、前記基本移動量と、新たに入力された前記入力補正値とに基づき、前記副走査移動量を設定し、
     前記入力補正値が新たに入力された後、印刷の条件が変更された場合、変更後の印刷の条件に合わせて、前記入力補正値を調整し、変更後の印刷の条件に応じて設定される前記基本移動量と、変更後の印刷の条件に合わせて調整がされた前記入力補正値とに基づき、前記副走査移動量を設定することを特徴とする印刷方法。
  11.  媒体に対して印刷を行う印刷装置であって、
     前記媒体へインクを吐出するインクジェットヘッドと、
     予め設定された主走査方向へ前記媒体に対して相対的に移動しつつインクを吐出する主走査動作を前記インクジェットヘッドに行わせる主走査駆動部と、
     前記主走査方向と直交する副走査方向へ前記媒体に対して相対的に移動する副走査動作を前記インクジェットヘッドに行わせる副走査駆動部と、
     前記副走査動作において前記媒体に対して相対的に前記副走査方向へ前記インクジェットヘッドを移動させる距離である副走査移動量を設定する移動量設定部と、
     前記副走査移動量の補正に用いる補正値として算出される算出補正値の算出に用いる係数である補正係数を記憶する補正係数記憶部と
    を備え、
     前記移動量設定部は、印刷の条件に応じて設定される基本の移動量である基本移動量と、前記算出補正値とに基づき、前記副走査移動量を設定し、
     前記補正係数記憶部は、前記補正係数として、少なくとも、
     前記基本移動量が第1の範囲の内にある場合に用いる第1の前記補正係数と、
     前記基本移動量が前記第1の範囲よりも小さな第2の範囲の内にある場合に用いる第2の前記補正係数と
    を記憶し、
     前記基本移動量が前記第1の範囲の内にある場合、前記移動量設定部は、当該基本移動量と、前記第1の補正係数とに基づき、前記算出補正値を算出し、
     前記基本移動量が前記第2の範囲の内にある場合、前記移動量設定部は、当該基本移動量と、前記第2の補正係数とに基づき、前記算出補正値を算出することを特徴とする印刷装置。
  12.  前記インクジェットヘッドは、前記副走査方向における位置を互いにずらして複数のノズルが並ぶノズル列を有し、
     前記第1の範囲は、前記インクジェットヘッドの前記ノズル列の前記副走査方向における幅であるノズル長と前記基本移動量とが等しくなる場合を含む範囲であり、
     前記第2の範囲は、前記ノズル長よりも小さな所定の移動量以下又は未満の全ての前記基本移動量を含む範囲であり、
     前記第2の補正係数は、前記基本移動量に比例して前記算出補正値が算出されることを示す係数であることを特徴とする請求項11に記載の印刷装置。
  13.  前記所定の移動量は、前記ノズル長の半分と等しい移動量であり、
     前記第1の範囲は、前記所定の移動量よりも大きな全ての前記基本移動量を含む範囲であり、
     前記第1の補正係数は、前記基本移動量に対応する前記算出補正値が、前記ノズル長の半分に等しい前記基本移動量と、前記ノズル長に等しい前記基本移動量との間で線形に変化することを示す係数であることを特徴とする請求項12に記載の印刷装置。
  14.  前記第1の補正係数により示される線形の関係における傾きは、前記第2の補正係数により示される比例関係における傾きと異なることを特徴とする請求項13に記載の印刷装置。
  15.  印刷の条件に応じて設定される前記副走査方向における解像度に対応するドット間距離を副走査ドット間距離と定義し、前記基本移動量が前記ノズル長と等しくなる場合について、前記第1の補正係数に基づいて算出した前記算出補正値を第1の値とし、前記第2の補正係数により示される比例関係に従って補正値を算出した場合の値を第2の値とした場合、前記第1の値と前記第2の値との差が、前記副走査ドット間距離よりも大きくなることを特徴とする請求項12から14のいずれかに記載の印刷装置。
  16.  印刷の条件に応じて設定される前記副走査方向における解像度に対応するドット間距離を副走査ドット間距離と定義し、それぞれの前記基本移動量に対応する前記副走査移動量を正しく設定するための補正値を理想補正値と定義し、一つの比例係数のみを用いて前記基本移動量に比例させて前記算出補正値を設定した場合の補正値を単純比例補正値と定義した場合、
     いずれかの前記基本移動量に対して前記理想補正値と前記単純比例補正値とが等しくなるように前記一つの比例係数を設定すると、他のいずれかの前記基本移動量に対して、当該基本移動量に対応する前記理想補正値と前記単純比例補正値との差が、前記副走査ドット間距離よりも大きくなることを特徴とする請求項1に記載の印刷装置。
  17.  前記移動量設定部には、印刷の条件として、少なくとも、前記媒体における印刷範囲の各位置に対して行う主走査動作の平均回数を示すパス数が設定され、
     前記基本移動量は、前記インクジェットヘッドの前記ノズル列の前記副走査方向における幅であるノズル長を前記パス数で除した値を示すことを特徴とする請求項1に記載の印刷装置。
  18.  前記パス数として、非整数の値を含む複数種類の値を設定可能であることを特徴とする請求項7に記載の印刷装置。
  19.  前記非整数の値として、少なくとも、0.25以下の刻み幅での値を設定可能であることを特徴とする請求項18に記載の印刷装置。
  20.  媒体に対して印刷を行う印刷方法であって、
     前記媒体へインクを吐出するインクジェットヘッドに、
     予め設定された主走査方向へ前記媒体に対して相対的に移動しつつインクを吐出する主走査動作と、
     前記主走査方向と直交する副走査方向へ前記媒体に対して相対的に移動する副走査動作と
    を行わせ、
     前記副走査動作において前記媒体に対して相対的に前記副走査方向へ前記インクジェットヘッドを移動させる距離である副走査移動量を設定する副走査移動量の設定時において、前記副走査移動量の補正に用いる補正値として算出される算出補正値の算出に用いる係数である補正係数を用いて、印刷の条件に応じて設定される基本の移動量である基本移動量と、前記算出補正値とに基づき、前記副走査移動量を設定し、
     前記補正係数として、少なくとも、
     前記基本移動量が第1の範囲の内にある場合に用いる第1の前記補正係数と、
     前記基本移動量が前記第1の範囲よりも小さな第2の範囲の内にある場合に用いる第2の前記補正係数と
    を用い、
     前記基本移動量が前記第1の範囲の内にある場合、当該基本移動量と、前記第1の補正係数とに基づき、前記算出補正値を算出し、
     前記基本移動量が前記第2の範囲の内にある場合、当該基本移動量と、前記第2の補正係数とに基づき、前記算出補正値を算出することを特徴とする印刷方法。

     
PCT/JP2019/031023 2018-08-17 2019-08-07 印刷装置及び印刷方法 WO2020036102A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19849151.6A EP3838597A4 (en) 2018-08-17 2019-08-07 PRINTING DEVICE AND PRINTING METHOD
US17/264,852 US11491778B2 (en) 2018-08-17 2019-08-07 Printing device and printing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018153677A JP7094826B2 (ja) 2018-08-17 2018-08-17 印刷装置及び印刷方法
JP2018-153677 2018-08-17
JP2018153676A JP7103889B2 (ja) 2018-08-17 2018-08-17 印刷装置及び印刷方法
JP2018-153676 2018-08-17

Publications (1)

Publication Number Publication Date
WO2020036102A1 true WO2020036102A1 (ja) 2020-02-20

Family

ID=69525535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031023 WO2020036102A1 (ja) 2018-08-17 2019-08-07 印刷装置及び印刷方法

Country Status (3)

Country Link
US (1) US11491778B2 (ja)
EP (1) EP3838597A4 (ja)
WO (1) WO2020036102A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114103459A (zh) * 2021-11-25 2022-03-01 北京博示电子科技有限责任公司 一种喷墨控制方法、装置、设备及存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004130795A (ja) * 2002-09-20 2004-04-30 Fuji Photo Film Co Ltd プリンタ及びその送り制御方法
JP2004188801A (ja) * 2002-12-11 2004-07-08 Seiko Epson Corp 被記録材搬送量制御装置、インクジェット式記録装置、液体噴射装置
US20040165023A1 (en) * 2003-02-15 2004-08-26 Samsung Electronics Co., Ltd. Method of compensating sheet feeding errors in ink-jet printer
JP2005349638A (ja) * 2004-06-09 2005-12-22 Seiko Epson Corp 印刷装置、コンピュータプログラム、印刷システム、及び、印刷方法
US20080174625A1 (en) * 2007-01-18 2008-07-24 Samsung Electronics Co., Ltd. Inkjet printer, image forming method and image quality compensation method thereof
JP2011000829A (ja) * 2009-06-19 2011-01-06 Canon Inc 画像形成装置、画像形成方法、及びプログラム
JP2013230690A (ja) * 2013-06-28 2013-11-14 Canon Inc 記録装置
JP2014217958A (ja) * 2013-05-01 2014-11-20 株式会社セイコーアイ・インフォテック 記録装置
JP2015030149A (ja) * 2013-07-31 2015-02-16 ブラザー工業株式会社 印刷装置、および、コンピュータプログラム
JP2018111211A (ja) 2017-01-06 2018-07-19 株式会社ミマキエンジニアリング 印刷装置、印刷方法及び装飾物の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7124359B2 (en) * 1996-01-11 2006-10-17 Canon Kabushiki Kaisha Image edit device adapted to rapidly lay-out photographs into templates with means for preview and correction by user
US5988790A (en) * 1996-04-11 1999-11-23 Mitsubishi Denki Kabushiki Kaisha Multiple element printer and method of adjusting thereof
US6328400B1 (en) * 1997-04-02 2001-12-11 Seiko Epson Corporation Printer system, method of generating image, and recording medium for realizing the method
CN1326694C (zh) * 2001-09-28 2007-07-18 兄弟工业株式会社 喷嘴头、喷嘴头固定器和液滴喷射图案形成装置
US6960037B2 (en) * 2002-09-20 2005-11-01 Fuji Photo Film Co., Ltd. Printer and feeding control method
JP5791410B2 (ja) * 2010-08-20 2015-10-07 株式会社セイコーアイ・インフォテック 記録装置
CN107053873B (zh) * 2013-10-30 2019-01-29 精工爱普生株式会社 行式打印机以及行式打印机的打印头移动方法
JP6486084B2 (ja) * 2014-11-28 2019-03-20 キヤノン株式会社 画像処理方法、画像処理装置、及びプログラム
JP2016221927A (ja) * 2015-06-03 2016-12-28 株式会社リコー 画像形成装置、画像処理方法、及び制御プログラム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004130795A (ja) * 2002-09-20 2004-04-30 Fuji Photo Film Co Ltd プリンタ及びその送り制御方法
JP2004188801A (ja) * 2002-12-11 2004-07-08 Seiko Epson Corp 被記録材搬送量制御装置、インクジェット式記録装置、液体噴射装置
US20040165023A1 (en) * 2003-02-15 2004-08-26 Samsung Electronics Co., Ltd. Method of compensating sheet feeding errors in ink-jet printer
JP2005349638A (ja) * 2004-06-09 2005-12-22 Seiko Epson Corp 印刷装置、コンピュータプログラム、印刷システム、及び、印刷方法
US20080174625A1 (en) * 2007-01-18 2008-07-24 Samsung Electronics Co., Ltd. Inkjet printer, image forming method and image quality compensation method thereof
JP2011000829A (ja) * 2009-06-19 2011-01-06 Canon Inc 画像形成装置、画像形成方法、及びプログラム
JP2014217958A (ja) * 2013-05-01 2014-11-20 株式会社セイコーアイ・インフォテック 記録装置
JP2013230690A (ja) * 2013-06-28 2013-11-14 Canon Inc 記録装置
JP2015030149A (ja) * 2013-07-31 2015-02-16 ブラザー工業株式会社 印刷装置、および、コンピュータプログラム
JP2018111211A (ja) 2017-01-06 2018-07-19 株式会社ミマキエンジニアリング 印刷装置、印刷方法及び装飾物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3838597A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114103459A (zh) * 2021-11-25 2022-03-01 北京博示电子科技有限责任公司 一种喷墨控制方法、装置、设备及存储介质
CN114103459B (zh) * 2021-11-25 2022-06-14 北京博示电子科技有限责任公司 一种喷墨控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
EP3838597A4 (en) 2022-04-27
US20210291511A1 (en) 2021-09-23
US11491778B2 (en) 2022-11-08
EP3838597A1 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
JP4992788B2 (ja) 補正値算出方法、及び、液体吐出方法
JP5125666B2 (ja) 液体吐出装置
JP2009274232A (ja) 補正値算出方法、及び、液体吐出方法
US8439464B2 (en) Inkjet printing apparatus and inkjet printing method
US11267265B2 (en) Control device, non-transitory computer-readable medium, control method
US20180326721A1 (en) Printer and control method of a printer
US8272707B2 (en) Printing device, control method for a printing device, a program, and a recording medium
US20210291512A1 (en) Liquid ejecting device and liquid ejecting method
WO2020036102A1 (ja) 印刷装置及び印刷方法
JP2011051111A (ja) 印刷装置
JP7103889B2 (ja) 印刷装置及び印刷方法
JP2017149113A (ja) 印刷装置及び印刷方法
JP7094826B2 (ja) 印刷装置及び印刷方法
JP2006346938A (ja) 印刷装置、コンピュータプログラム、印刷システム、及び、印刷方法
US20110216115A1 (en) Printing method and printing apparatus
JP5969236B2 (ja) インク吐出量制御装置
JP2022548278A (ja) 印刷装置の較正
JP2007001269A (ja) 印刷システム、プログラム及び印刷装置
WO2023248973A1 (ja) 印刷方法、印刷装置、及びプログラム
JP7451038B2 (ja) 印刷システム及び印刷方法
JP2009274234A (ja) 補正値算出方法、及び、液体吐出方法
JP2009278370A (ja) 補正値算出方法、及び、液体噴射方法
JP2010269470A (ja) 補正値設定方法、及び、流体噴射装置の製造方法
JP2010253699A (ja) 補正値取得方法、及び、流体噴射装置の製造方法
JP2010253700A (ja) 補正値取得方法、及び、流体噴射装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19849151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019849151

Country of ref document: EP

Effective date: 20210317