WO2020034277A1 - 一种离散式测控在线执行方法 - Google Patents

一种离散式测控在线执行方法 Download PDF

Info

Publication number
WO2020034277A1
WO2020034277A1 PCT/CN2018/104343 CN2018104343W WO2020034277A1 WO 2020034277 A1 WO2020034277 A1 WO 2020034277A1 CN 2018104343 W CN2018104343 W CN 2018104343W WO 2020034277 A1 WO2020034277 A1 WO 2020034277A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
execution
measurement
medium
target shape
Prior art date
Application number
PCT/CN2018/104343
Other languages
English (en)
French (fr)
Inventor
张金
黄筱调
洪荣晶
张虎
吴伟伟
Original Assignee
南京工大数控科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京工大数控科技有限公司 filed Critical 南京工大数控科技有限公司
Priority to RU2020125770A priority Critical patent/RU2747717C1/ru
Publication of WO2020034277A1 publication Critical patent/WO2020034277A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing

Definitions

  • the invention relates to the field of testing and control in mechanical engineering, and in particular relates to a method for performing discrete measurement and control online.
  • the invention adopts a discrete method, and combines test technology and control technology to achieve medium stacking to obtain a target shape.
  • On-line detection technology is gradually developed to obtain the real-time measurement and control of the required variables.
  • On-line detection technology mainly collects some easy-to-measure variables and constructs a mathematical model with these easy-to-measure variables as inputs to estimate the main difficult-to-measure variables to provide support for process control, quality control, process management and decision making, etc.
  • a discrete system is a system in which all or key components of the system have discrete signal forms, and the state of the system makes a certain sudden change at discrete points in time.
  • the horizontal coordinate sequence is obtained through equal time intervals or equal coordinate intervals, and data is collected according to a certain sampling time method, so as to control the operation of the system.
  • the shorter the interval time the closer the actual system parameters are gradually.
  • the overall trigger signal and execution response of the system are getting faster and faster, and the response of driving evolution in the discrete event dynamic system is getting faster and faster.
  • a discrete measurement and control online execution method was invented to realize the overall control idea of side detection and side control, and achieve the scheme of achieving the target model.
  • the invention provides a discrete measurement and control online execution method. Based on the discrete method with equal coordinate intervals, a method of achieving a target shape by achieving a stack of media through a combination of test technology and control technology.
  • the steps of the technical solution are as follows:
  • the actual shape curve data obtained by the measurement module (1) is compared with the required target shape to obtain the coordinate parameter Z-direction coordinate difference value;
  • the execution module (2) outputs M media in a unit time, and uses the coordinate parameter Z-direction coordinate difference and the output amount of the medium to obtain the operating speed of the control execution module;
  • the module executes the module to output a corresponding amount of medium within a unit length; based on the filling characteristics of the medium, the topological size does not change after superposition, and the X and / or Y filling characteristics can be accumulated in the Z direction, based on the basic shape Realize the approximation to the target shape, and then stack to form the target shape medium;
  • the position distance between the measurement module and the execution unit and the boundary conditions of the target shape curve are considered to realize the generation of the target shape.
  • the measurement module (1) and the execution module (2) are placed in a coordinate system (3) and contain an actual shape curve (4) and a target shape curve (5).
  • the measurement module (1) and the execution module (2) are fixedly connected.
  • the execution module (2) outputs a medium (21), and the medium (21) has filling characteristics, and the topology size does not change after superposition, that is, the X-direction and / or Y-direction filling characteristics can be accumulated in the Z direction.
  • the method realizes the control of the medium output by obtaining the control parameters, and then achieves the requirement of ensuring that the target shape is consistent with the theoretically required shape.
  • a discrete measurement and control online execution method is characterized in that the method includes the following steps:
  • the measurement module and the execution module are fixedly connected together at a distance of P, and they can move along the X direction at a variable speed V.
  • the output medium of the execution module is M media per unit time.
  • the size parameters of the media are X m , Y m , and Z m .
  • the medium has filling characteristics, and its topological dimensions do not change after being superimposed, that is, X m , Y m , and Z m will not change:
  • the media are stacked one by one, from the first layer, the second layer, ..., the seventh layer, the eighth layer, ... until the required height is reached;
  • the medium can be divided into 2 parts or 3 parts, and so on. It can be continuously divided until the bottom layer is filled.
  • the execution module outputs M media per unit time and moves at different speeds. After the M media falls between the units, the overall layout of the M media in the X direction is different because of the different speeds;
  • the measurement module can measure the outer surface formed by the medium, including the coordinate values in the Z direction, and simultaneously record the coordinate values in the X and Y directions during the measurement.
  • the measurement module runs to the left boundary of the target shape curve or surface, it starts to obtain data: the left boundary start data is X 00 in the X direction, and the left boundary start data is Z 00 in the Z direction.
  • the corresponding target shape The curve coordinates are X '00 , Z' 00 ; run to X 00 + P / N, record it as X 01 , and measure again to obtain Z 01 , and the corresponding target shape curve coordinates are X '01 , Z' 01 ; in this order, Running to X 00 + P * i / N, the measurement will obtain X 0i and Z 0i data, and until the measurement point X 00 + P * (N-1) / N, the data X 0 (N-1) and Z 0 ( N-1) , so that a total of N coordinate points are obtained. ;
  • the execution module and measurement module continue to run until the execution module runs to the left boundary of X L. After running to the left boundary, the measurement module measures and obtains the data X 10 and Z 10 , and the corresponding target shape curve coordinates are X '10 , Z' 10 ; the execution module output medium, the operation speed of the measurement module and the execution module are changed to V 00 ;
  • V 00 P * M * Z m / (N * (Z '00 -Z 00));
  • the measurement module moves to X 10 + P / N, the measurement module measures the data X 11 and Z 11 , and the corresponding target shape curve coordinates are X '11 , Z' 11 ; the output medium of the execution module, the operation speed of the measurement module and the execution module change V 01 ;
  • V 01 P * M * Z m / (N * (Z '01 -Z 01 ));
  • V 0i P * M * Z m / (N * (Z ' 0i -Z 0i ));
  • V 0 (N-1) P * M * Z m / (N * (Z ' 0 (N-1) -Z 0 (N-1) ));
  • FIG. 1 is a schematic diagram of the overall structure of the discrete measurement and control online execution method of the present invention
  • FIG. 2 is a schematic diagram of an output medium of an execution module of the present invention.
  • 3a is one of the characteristic diagrams of the output medium of the execution module of the present invention.
  • 3b is one of the characteristic diagrams of the output medium of the execution module of the present invention.
  • FIG. 4 is a schematic diagram of a measurement value obtained by a measurement module in the present invention.
  • FIG. 5 is a schematic diagram of a target shape curve and an actual shape curve in the present invention.
  • FIG. 6 is an operation intention of a measurement module and an execution module in an implementation case of the present invention.
  • FIG. 7 is a schematic diagram of a measurement module entering a left boundary in an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an execution module entering a left boundary in an embodiment of the present invention.
  • FIG. 9 is an embodiment of the present invention, the measurement module is about to run out of the right boundary
  • FIG. 10 is an embodiment of the present invention, the execution module is about to run out of the right boundary;
  • a discrete measurement and control online execution method is characterized in that the method includes the following steps:
  • the actual shape curve data obtained by the measurement module (1) is compared with the required target shape to obtain the coordinate parameter Z-direction coordinate difference value;
  • the execution module (2) outputs M media in a unit time, and uses the control parameter and the output of the medium to obtain the operating speed of the control execution unit;
  • a corresponding amount of medium is output within a unit length; based on the filling characteristics of the medium, the topological size does not change after superposition, and the X-direction and / or Y-direction filling characteristics can be accumulated in the Z direction, based on the basic shape Approximation to the target shape, and then stacked to form the target shape medium;
  • the measurement module (1) and the execution module (2) are placed in a coordinate system (3) and contain an actual shape curve (4) and a target shape curve (5).
  • the measurement module (1) and the execution module (2) are fixedly connected.
  • the execution module (2) outputs a medium (21), and the medium (21) has filling characteristics, and the topology size does not change after superposition, that is, the X-direction and / or Y-direction filling characteristics can be accumulated in the Z direction.
  • the method realizes the control of the medium output by obtaining the control parameters, and then achieves the requirement of ensuring that the target shape is consistent with the theoretically required shape.
  • the invention provides a discrete measurement and control online execution method, which includes the following steps:
  • the measurement module and the execution module are fixedly connected with a distance of P, and they can move along the X direction at a variable speed V.
  • the execution module can output the media, and the output volume is M media per unit time.
  • the size parameters of the media are X m , Y m , and Z m respectively .
  • the medium has filling characteristics, and its topological dimensions do not change after superposition, that is, X m , Y m , and Z m will not change.
  • the media can be stacked one by one, from the first layer, the second layer, ..., the seventh layer, the eighth layer, ... until the required height is reached.
  • the medium can be divided into 2 parts or 3 parts, and so on, and it can be continuously divided until the bottom layer of the medium is filled.
  • the execution module outputs M media per unit time and moves at different speeds. After the M media falls between the units, the overall layout of the M media in the X direction is different because of the different speeds.
  • FIG. 5 a schematic diagram of a target shape curve of the medium and an actual shape curve of the medium is shown.
  • the execution module and measurement module continue to run until the execution module reaches the left boundary of X L. After running to the left boundary, the measurement module measures and obtains the data X 10 and Z 10 , and the corresponding target shape curve coordinates are X '10 , Z' 10 ; the execution module output medium, the operation speed of the measurement module and the execution module are changed to V 00 ;
  • V 00 P * M * Z m / (N * (Z '00 -Z 00))
  • the measurement module moves to X 10 + P / N, the measurement module measures the data X 11 and Z 11 , and the corresponding target shape curve coordinates are X '11 , Z' 11 ; the output medium of the execution module, the operation speed of the measurement module and the execution module change V 01 ;
  • V 01 P * M * Z m / (N * (Z '01 -Z 01 ))
  • V 0i P * M * Z m / (N * (Z ' 0i -Z 0i ))
  • V 0 (N-1) P * M * Z m / (N * (Z ' 0 (N-1) -Z 0 (N-1) ))

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种离散式测控在线执行方法,包括以下步骤:在一个有边界条件的目标形状中,通过在线测量模块(1)获得的实际形状曲线数据,与要求的目标形状进行比较得出控制参数Z向坐标差值;执行模块(2)在单位时间内输出M个介质,利用该控制参数与介质的输出量,进而获得控制执行单位的运行速度;不同速度下,在单位长度内执行输出相应数量的介质;基于介质的填充特性,叠加后其拓扑尺寸不变,Z向可累加而X向和/或Y向具有填充特性,因此在基础形状的基础上实现与目标形状的逼近,进而堆叠形成目标形状介质。采用该控制方法,考虑了测量模块(1)与执行模块(2)的位置距离和目标形状曲线的边界条件,实现物品介质的生成,该控制方法可以应用于涂装、三维打印、土壤返填等领域。

Description

一种离散式测控在线执行方法 技术领域
本发明涉及的是机械工程中测试与控制领域,具体涉及一种离散式测控在线执行方法,该发明采用离散式方法,通过将测试技术与控制技术结合,实现介质堆叠从而获得目标形状。
背景技术
近年来,随着科学技术的发展,大型在线分析处理能力越来越强大。当前,生产过程中通常采用定时离线分析的方法,即每几小时或设定的时间采样一次,送实验室进行人工分析,然后根据分析值来指导生产。由于时间滞后大,因此远远不能满足在线控制的要求。在线检测技术正是为了获得所需变量的实时测量和控制问题而逐渐发展起来的。在线检测技术,主要通过采集某些容易测量的变量,构造一个以这些易测变量为输入的数学模型来估计难测的主要变量,从而为过程控制、质量控制、过程管理与决策等提供支持,也为进一步实现质量控制和过程优化奠定基础。在线连续检测技术已是现代流程工业和过程控制领域关键技术之一,在激烈的市场竞争中,为了保证产品的质量和经济效益,先进的控制方法和优化后的控制方法纷纷被应用于工业过程中。随着技术的进步,制造业系统中应用在线测量技术,获得实际参数,通过改变执行模块的运行速度、时间、输出速度等,达到控制制造目标物的要求。
离散系统是系统的全部或关键组成部分的变量具有离散信号形式,系统的状态在时间的离散点作出一定突变的系统。通常是通过等时间间隔、或者等坐标间隔,获得横坐标序列,按一定的采样时刻方法进行数据收集,进而控制系统的运行。实际系统中,间隔时间越短,逐步逼近实际系统参数。随着计算机大规模运算技术的进一步发展,系统总体触发信号以及执行响应越来越快,离散事件动态系统中驱动演化的响应也越来越快。基于该种快速响应系统的功能,发明一种离散式测控在线执行方法,实现边检测、边控制的总体控制思路,达到实现目标模型的方案。
发明内容
本发明提供一种离散式测控在线执行方法,基于等坐标间隔的离散方法,通过测试技术与控制技术结合,实现介质堆叠从而获得目标形状的一种方法。所述技术方案的步骤为如下:
一种离散式测控在线执行方法,其特征在于所述方法包括以下步骤:
在一个有边界条件的目标形状中,通过测量模块(1)获得的实际形状曲线数据,与要求的目标形状进行比较得出控制参数Z向坐标差值;
通过执行模块(2)在单位时间内输出M个介质,利用控制参数Z向坐标差值与介质的输出量,进而获得控制执行模块的运行速度;
不同速度下,在单位长度内执行模块输出相应数量的介质;基于介质的填充特性,叠加后其拓扑尺寸不变,Z向可累加X向和/或Y向填充特性,在基础形状的基础上实现与目标形状的逼近,进而堆叠形成目标形状介质;
采用该控制方案,考虑了测量模块与执行单位的位置距离和目标形状曲线的边界条件,实现目标形状的生成。
所述测量模块(1)和执行模块(2),置于坐标系(3)中,并含有实际形状曲线(4)和目标形状曲线(5)。
所述测量模块(1)和执行模块(2)之间固定连接。
所述执行模块(2)输出介质(21),该介质(21)具有填充特性,叠加后其拓扑尺寸不变,即Z向可累加X向和/或Y向填充特性。
所述方法通过获得控制参数,实现对介质输出的控制,进而达到保证目标形状与理论要求形状一致的要求。
还包括如下步骤:在执行过程中,依据已有的边界条件,进行分别控制:在左边界处,测量模块(1)开始测量数据;待执行模块进入左边界后,根据已检测的数据,控制执行模块(2)运行;移动出右边界时,测量模块(1)停止,而执行模块(2)仍旧根据已经检测的数据,控制执行模块(2)运行;待执行模块(2)移动出右边界后,停止运行。一种离散式测控在线执行方法,其特征在于所述方法包括以下步骤:
(1)在一个平面笛卡尔坐标系XOZ中,测量模块与执行模块固连在一起,距离为P,二者可以以可变速度V沿着X向运动。
(2)执行模块输出介质,单位时间内输出量为M个介质,该种介质的尺寸参数分别是X m,Y m,Z m
(3)定义该种介质的基本特点,该介质具有填充特性,叠加后其拓扑尺寸不变,即X m,Y m,Z m均不会发生改变:
介质逐个叠加,从第1层、第2层、……、第7层、第8层、……,直到达到所要求的高度;
或者介质下方如果没有介质,则在X方向自动切断,填充到下部。切断后其Z m保持不变,该介质可以分割为2部分,也可以分割为3部分,以此类推,可以不断分割,直到把最底层介质填充完成;
执行模块单位时间内输出M个介质,在不同速度下运动,单位之间内M个介质落下后,因为速度的不同,M个介质在X向的总体布置不同;
(4)测量模块可测量介质形成的外表面,包括Z向坐标值,同时记录所测量时X、Y向的坐标值。
(5)所述一种离散式测控在线执行方法过程的执行:
1)确定目标形状曲线,建立坐标系,确定目标形状曲线的左边界X L及右边界X R;执行模块与测量模块位于左边界X L外侧;
2)执行模块与测量模块按照速度V 0向左边界X L运行;
(6)测量模块运行到目标形状曲线或者曲面的左边界时,开始测量获得数据:左边界起始数据X方向坐标为X 00、左边界起始数据Z方向坐标为Z 00,对应的目标形状曲线坐标为X' 00,Z' 00;运行到X 00+P/N,记做X 01,再次测量获得Z 01,对应的目标形状曲线坐标为X' 01,Z' 01;以此顺序,运行到X 00+P*i/N,则测量获得X 0i、Z 0i数据,直到测量点X 00+P*(N-1)/N,获得数据X 0(N-1)、Z 0(N-1),这样共获得N个坐标点。;
(7)执行模块与测量模块继续运行,直到执行模块运行到X L左边界。运行到左边界后,测量模块测量获得数据X 10、Z 10,对应的目标形状曲线坐标为X' 10,Z' 10;执行模块输出介质,测量模块和执行模块运行速度改变为V 00
V 00=P*M*Z m/(N*(Z' 00-Z 00));
测量模块移动到X 10+P/N,测量模块测量获得数据X 11、Z 11,对应的目标形状曲线坐标为X' 11,Z' 11;执行模块输出介质,测量模块和执行模块运行速度改变为V 01
V 01=P*M*Z m/(N*(Z' 01-Z 01));
以此类推,测量模块移动到X 10+P*i/N,则测量获得X 1i、Z 1i数据,测量模块和执 行模块运行速度改变为V 0i
V 0i=P*M*Z m/(N*(Z' 0i-Z 0i));
直到测量点X 10+P*(N-1)/N,获得数据X 1(N-1)、Z 1(N-1),这样又共获得N个点,生成形状曲线控制参数;执行模块输出介质,测量模块和执行模块运行速度改变为V 0(N-1)
V 0(N-1)=P*M*Z m/(N*(Z' 0(N-1)-Z 0(N-1)));
(8)重复上述步骤,直到测量模块走到X R右边界,测试测量模块停止测量数据,执行模块继续执行堆叠工作;
(9)继续运行,当执行模块走到X R右边界位置时,停止输出介质;
(10)运行过程完成。
本发明的有益效果是:
通过在线测量基础数据,应用相对应的计算方案,获得控制方法,实现对介质输出的控制,进而达到保证目标形状与理论要求形状一致的要求,该种方法是对理论介质模型的一种有益尝试,该控制方法可以应用于涂装、3维打印、土壤返填等领域。
附图说明
图1是本发明的离散式测控在线执行方法的总体结构示意图;
图2是本发明执行模块输出介质的示意图;
图3a是本发明执行模块输出介质的特性示意图之一;
图3b是本发明执行模块输出介质的特性示意图之一;
图4本发明中测量模块获得的测量值意图;
图5是本发明中目标形状曲线和实际形状曲线意图;
图6是本发明的一种实施案例中,测量模块和执行模块启动运行意图;
图7是本发明的一种实施案例中,测量模块进入左边界意图;
图8是本发明的一种实施案例中,执行模块进入左边界意图;
图9是本发明的一种实施案例中,测量模块即将运行出右边界意图;
图10是本发明的一种实施案例中,执行模块即将运行出右边界意图;
具体实施方式
下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
如图1至图10,一种离散式测控在线执行方法,其特征在于所述方法包括以下步骤:
在一个有边界条件的目标形状中,通过测量模块(1)获得的实际形状曲线数据,与要求的目标形状进行比较得出控制参数Z向坐标差值;
通过执行模块(2)在单位时间内输出M个介质,利用该控制参数与介质的输出量,进而获得控制执行单位的运行速度;
不同速度下,在单位长度内执行输出相应数量的介质;基于介质的填充特性,叠加后其拓扑尺寸不变,Z向可累加X向和/或Y向填充特性,在基础形状的基础上实现与目标形状的逼近,进而堆叠形成目标形状介质;
采用该控制方案,考虑了测量模块与执行单位的位置距离和目标形状曲线的边界条件,实现物品介质的生成。
所述测量模块(1)和执行模块(2),置于坐标系(3)中,并含有实际形状曲线(4)和目标形状曲线(5)。
所述测量模块(1)和执行模块(2)之间固定连接。
所述执行模块(2)输出介质(21),该介质(21)具有填充特性,叠加后其拓扑尺寸不变,即Z向可累加X向和/或Y向填充特性。
所述方法通过获得控制参数,实现对介质输出的控制,进而达到保证目标形状与理论要求形状一致的要求。
还包括如下步骤:在执行过程中,依据已有的边界条件,进行分别控制:在左边界处,测量模块(1)开始测量数据;待执行模块进入左边界后,根据已检测的数据,控制执行模块(2)运行;移动出右边界时,测量模块(1)停止,而执行模块(2)仍旧根据已经检测的数据,控制执行模块(2)运行;待执行模块(2)移动出右边界后,停止运行。
本发明提供一种离散式测控在线执行方法,包括步骤为:
(1)如图1,在一个平面笛卡尔坐标系XOZ中,测量模块与执行模块固连在一起,距离为P,二者可以以可变速度V沿着X向运动。
(2)如图2,执行模块可以输出介质,单位时间内输出量为M个介质,该种介质的尺寸参数分别是X m,Y m,Z m
(3)如图3,定义了该种介质的基本特点,介质具有填充特性,叠加后其拓扑尺寸不变,即X m,Y m,Z m均不会发生改变。
如图3a中,介质可以逐个叠加,从第1层、第2层、……、第7层、第8层、……,直到达到所要求的高度。
如图3b中,介质下方如果没有介质,则在X0方向中,自动切断,填充到下部。切断后其Z m保持不变。该介质可以分割为2部分,也可以分割为3部分,以此类推,可以不断分割,直到把最底层介质填充完成。
执行模块单位时间内输出M个介质,在不同速度下运动,单位之间内M个介质落下后,因为速度的不同,M个介质在X向的总体布置不同。
(4)如图4,测量模块以及测量介质形成的外表面与Z向坐标值,同时记录所测量时X、Y向的坐标值。
(5)如图5,表示介质目标形状曲线和介质实际形状曲线示意图。
(6)如图6,一种离散式测控在线执行方法过程开始执行。
1)确定目标形状曲线,建立坐标系,确定目标形状曲线的左边界X L及右边界X R。执行模块与测量模块位于左边界X L外侧。
2)执行模块与测量模块按照速度V 0向左边界X L运行。
(7)如图7,测量模块运行到目标形状曲线或者曲面的左边界时,开始测量获得数据:X 00、Z 00,对应的目标形状曲线坐标为X' 00,Z' 00;运行到X 00+P/N,记做X 01,再次测量获得Z 01,对应的目标形状曲线坐标为X' 01,Z' 01;以此顺序,运行到X 00+P*i/N,则测量获得X 0i、Z 0i数据,直到测量点X 00+P*(N-1)/N,获得数据X 0(N-1)、Z 0(N-1),这样共获得N个坐标点。
(8)如图8,执行模块与测量模块继续运行,直到执行模块运行到X L左边界。运行到左边界后,测量模块测量获得数据X 10、Z 10,对应的目标形状曲线坐标为X' 10,Z' 10;执行模块输出介质,测量模块和执行模块运行速度改变为V 00
V 00=P*M*Z m/(N*(Z' 00-Z 00))
测量模块移动到X 10+P/N,测量模块测量获得数据X 11、Z 11,对应的目标形状曲线坐标为X' 11,Z' 11;执行模块输出介质,测量模块和执行模块运行速度改变为V 01
V 01=P*M*Z m/(N*(Z' 01-Z 01))
以此类推,测量模块移动到X 10+P*i/N,则测量获得X 1i、Z 1i数据,测量模块和执行模块运行速度改变为V 0i
V 0i=P*M*Z m/(N*(Z' 0i-Z 0i))
直到测量点X 10+P*(N-1)/N,获得数据X 1(N-1)、Z 1(N-1),这样又共获得N个点,生成形状曲线控制参数。执行模块输出介质,测量模块和执行模块运行速度改变为V 0(N-1)
V 0(N-1)=P*M*Z m/(N*(Z' 0(N-1)-Z 0(N-1)))
(9)重复上述步骤,直到测量模块走到X R右边界。如图9,测试测量模块停止测量数据,执行模块继续执行堆叠工作。
(10)继续运行,当执行模块走到X R右边界位置时,如图10,停止输出介质。
(11)运行过程完成。

Claims (7)

  1. 一种离散式测控在线执行方法,其特征在于所述方法包括以下步骤:
    在一个有边界条件的目标形状中,通过测量模块(1)获得的实际形状曲线数据,与要求的目标形状进行比较得出控制参数Z向坐标差值;
    通过执行模块(2)在单位时间内输出M个介质,利用该控制参数Z向坐标差值与介质的输出量,进而获得控制执行单位的运行速度;
    不同速度下,在单位长度内执行输出相应数量的介质;基于介质的填充特性,叠加后其拓扑尺寸不变,Z向可累加X向和/或Y向填充特性,在基础形状的基础上实现与目标形状的逼近,进而堆叠形成目标形状介质;
    采用该控制方案,考虑了测量模块与执行单位的位置距离和目标形状曲线的边界条件,实现目标形状的生成。
  2. 根据权利要求1所述的一种离散式测控在线执行方法,其特征在于所述测量模块(1)和执行模块(2),置于坐标系(3)中,并含有实际形状曲线(4)和目标形状曲线(5)。
  3. 根据权利要求1所述的一种离散式测控在线执行方法,其特征在于所述测量模块(1)和执行模块(2)之间固定连接,距离为P。
  4. 根据权利要求1所述的一种离散式测控在线执行方法,其特征在于所述执行模块(2)输出介质(21),该介质(21)具有填充特性,叠加后其拓扑尺寸不变,即Z向可累加X向和/或Y向填充特性。
  5. 根据权利要求1所述的一种离散式测控在线执行方法,其特征在于所述方法通过获得控制参数,实现对介质输出的控制,进而达到保证目标形状与理论要求形状一致的要求。
  6. 根据权利要求1所述的一种离散式测控在线执行方法,其特征在于还包括如下步骤:在执行过程中,依据已有的边界条件,进行分别控制:在左边界处,测量模块(1)开始测量数据;待执行模块进入左边界后,根据已检测的数据,控制执行模块(2)运行;移动出右边界时,测量模块(1)停止,而执行模块(2)仍旧根据已经检测的数据,控制执行模块(2)运行;待执行模块(2)移动出右边界后,停止运行。
  7. 一种离散式测控在线执行方法,其特征在于所述方法包括以下步骤:
    (1)在一个平面笛卡尔坐标系XOZ中,测量模块与执行模块固连在一起,距离为P,二者可以以可变速度V沿着X向运动。
    (2)执行模块输出介质,单位时间内输出量为M个介质,该种介质的尺寸参数分别 是X m,Y m,Z m
    (3)定义该种介质的基本特点,介质具有填充特性,叠加后其拓扑尺寸不变,即X m,Y m,Z m均不会发生改变:
    介质逐个叠加,从第1层、第2层、……、第7层、第8层、……,直到达到所要求的高度;
    或者介质下方如果没有介质,则在X方向,自动切断,填充到下部。切断后其Z m保持不变,该介质可以分割为2部分,也可以分割为3部分,以此类推,可以不断分割,直到把最底层介质填充完成;
    执行模块单位时间内输出M个介质,在不同速度下运动,单位之间内M个介质落下后,因为速度的不同,M个介质在X向的总体布置不同;
    (4)测量模块可测量介质形成的外表面,包括Z向坐标值,同时记录所测量时X、Y向的坐标值。
    (5)所述一种离散式测控在线执行方法过程的执行:
    1)确定目标形状曲线,建立坐标系,确定目标形状曲线的左边界X L及右边界X R;执行模块与测量模块位于左边界X L外侧;
    2)执行模块与测量模块按照速度V 0向左边界X L运行;
    (6)测量模块运行到目标形状曲线或者曲面的左边界时,开始测量获得数据:X 00、Z 00,对应的目标形状曲线坐标为X' 00,Z' 00;运行到X 00+P/N,记做X 01,再次测量获得Z 01,对应的目标形状曲线坐标为X' 01,Z' 01;以此顺序,运行到X 00+P*i/N,则测量获得X 0i、Z 0i数据,直到测量点X 00+P*(N-1)/N,获得数据X 0(N-1)、Z 0(N-1),这样共获得N个坐标点;
    (7)执行模块与测量模块继续运行,直到执行模块运行到X L左边界。运行到左边界后,测量模块测量获得数据X 10、Z 10,对应的目标形状曲线坐标为X′ 10,Z′ 10;执行模块输出介质,测量模块和执行模块运行速度改变为V 00
    V 00=P*M*Z m/(N*(Z' 00-Z′ 00));
    测量模块移动到X 10+P/N,测量模块测量获得数据X 11、Z 11,对应的目标形状曲线坐标为X′ 11,Z′ 11;执行模块输出介质,测量模块和执行模块运行速度改变为V 01
    V 01=P*M*Z m/(N*(Z′ 01-Z 01));
    以此类推,测量模块移动到X 10+P*i/N,则测量获得X 1i、Z 1i数据,测量模块和执行模块运行速度改变为V 0i
    V 0i=P*M*Z m/(N*(Z′ 0i-Z 0i));
    直到测量点X 10+P*(N-1)/N,获得数据X 1(N-1)、Z 1(N-1),这样又共获得N个点,生成形状曲线控制参数;执行模块输出介质,测量模块和执行模块运行速度改变为V 0(N-1)
    V 0(N-1)=P*M*Z m/(N*(Z′ 0(N-1)-Z 0(N-1)));
    (8)重复上述步骤,直到测量模块走到X R右边界,测试测量模块停止测量数据,执行模块继续执行堆叠工作;
    (9)继续运行,当执行模块走到X R右边界位置时,停止输出介质;
    (10)运行过程完成。
PCT/CN2018/104343 2018-08-14 2018-09-06 一种离散式测控在线执行方法 WO2020034277A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020125770A RU2747717C1 (ru) 2018-08-14 2018-09-06 Метод оперативного измерения и контроля с применением диспергирующей технологии

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810920872.8A CN108919688B (zh) 2018-08-14 2018-08-14 一种离散式测控在线执行方法
CN201810920872.8 2018-08-14

Publications (1)

Publication Number Publication Date
WO2020034277A1 true WO2020034277A1 (zh) 2020-02-20

Family

ID=64405531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104343 WO2020034277A1 (zh) 2018-08-14 2018-09-06 一种离散式测控在线执行方法

Country Status (3)

Country Link
CN (1) CN108919688B (zh)
RU (1) RU2747717C1 (zh)
WO (1) WO2020034277A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102929210A (zh) * 2012-11-22 2013-02-13 南京航空航天大学 基于特征的数控加工过程控制和优化系统及方法
KR101593330B1 (ko) * 2014-10-21 2016-02-11 경북대학교 산학협력단 볼바와 진직도 데이터를 이용한 다축 정밀 제어 기계의 직각도 측정 방법
CN105676779A (zh) * 2016-03-03 2016-06-15 盐城工学院 一种自由曲面加工局部干涉区域边界确定的追踪方法
CN106990756A (zh) * 2017-03-29 2017-07-28 大连理工大学 一种数控机床几何精度在线监测方法
CN107065770A (zh) * 2017-05-02 2017-08-18 浙江大学 基于刀轴离散化可行域的高速加工刀轴光顺方法
DE102017130997A1 (de) * 2016-12-23 2018-06-28 Engel Austria Gmbh Verfahren zum Simulieren eines Formgebungsprozesses

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011014114B3 (de) * 2011-03-15 2012-05-10 Ovd Kinegram Ag Mehrschichtkörper und Verfahren zur Herstellung eines Mehrschichtkörpers
CN102814512B (zh) * 2012-08-24 2014-07-16 沈阳黎明航空发动机(集团)有限责任公司 一种针对发动机压气机盘类零件辐板型面的在线测量方法
CN103279140B (zh) * 2013-05-29 2016-02-10 成都飞机工业(集团)有限责任公司 异面部件接头交点孔精加工的位姿调整系统的调整方法
US10471698B2 (en) * 2014-04-30 2019-11-12 Hewlett-Packard Development Company, L.P. Computational model and three-dimensional (3D) printing methods
EP3414521B1 (en) * 2016-02-11 2019-11-27 Hexagon Metrology, Inc Integrated measuring and additive manufacturing system and method
CN106446435B (zh) * 2016-10-09 2019-04-05 北京建工环境修复股份有限公司 一种污染土壤修复范围及边界的优化方法
CN107103382A (zh) * 2017-03-22 2017-08-29 桂林电子科技大学 一种基于累加弦长二次参数样条曲线的预测方法及系统
CN108332688B (zh) * 2018-01-31 2020-04-17 闽台龙玛直线科技股份有限公司 一种滚珠直线导轨副滚道直线度在线测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102929210A (zh) * 2012-11-22 2013-02-13 南京航空航天大学 基于特征的数控加工过程控制和优化系统及方法
KR101593330B1 (ko) * 2014-10-21 2016-02-11 경북대학교 산학협력단 볼바와 진직도 데이터를 이용한 다축 정밀 제어 기계의 직각도 측정 방법
CN105676779A (zh) * 2016-03-03 2016-06-15 盐城工学院 一种自由曲面加工局部干涉区域边界确定的追踪方法
DE102017130997A1 (de) * 2016-12-23 2018-06-28 Engel Austria Gmbh Verfahren zum Simulieren eines Formgebungsprozesses
CN106990756A (zh) * 2017-03-29 2017-07-28 大连理工大学 一种数控机床几何精度在线监测方法
CN107065770A (zh) * 2017-05-02 2017-08-18 浙江大学 基于刀轴离散化可行域的高速加工刀轴光顺方法

Also Published As

Publication number Publication date
RU2747717C1 (ru) 2021-05-13
CN108919688A (zh) 2018-11-30
CN108919688B (zh) 2020-09-22

Similar Documents

Publication Publication Date Title
CN102929210B (zh) 基于特征的数控加工过程控制和优化系统及方法
Huang et al. A PNN self-learning tool breakage detection system in end milling operations
CN105814506B (zh) 摩擦辨识方法以及摩擦辨识装置
CN103176409B (zh) 一种快速准确实现混凝土泵车臂架运动轨迹的方法
CN103345198B (zh) 基于特征的数控加工监测触发检测的方法
CN102785129A (zh) 复杂零件的曲面加工精度的在线检测方法
CN105191116B (zh) 电动机驱动装置
CN104950806B (zh) 一种基于gmdh数据挖掘算法的机床进给系统前馈控制方法
CN105678043A (zh) 一种考虑刚度时变的大切除率铣削颤振监测方法
CN105880449B (zh) 模锻压机运行状态的在线预测方法及系统
CN111975453B (zh) 一种数值仿真驱动的加工过程刀具状态监测方法
CN103017771A (zh) 一种静止传感器平台的多目标联合分配与跟踪方法
Kirchen et al. Data-driven model development for quality prediction in forming technology
JP2000353515A (ja) 電池用シート電極の製造方法
CN103336482B (zh) 一种基于速度相关的数控机床结构的模态参数获取方法
Leco et al. A two-step machining and active learning approach for right-first-time robotic countersinking through in-process error compensation and prediction of depth of cuts
Königs et al. A scalable, hybrid learning approach to process-parallel estimation of cutting forces in milling applications
CN106354016A (zh) 一种金属管夯实高度的控制方法
US11579000B2 (en) Measurement operation parameter adjustment apparatus, machine learning device, and system
CN106813570A (zh) 基于线结构光扫描的长圆柱形物体三维识别与定位方法
WO2020034277A1 (zh) 一种离散式测控在线执行方法
CN104460514A (zh) 机床体积误差的信息融合预测方法
CN106289842B (zh) 一种数控机床热模态参数辨识方法
CN109447235B (zh) 基于神经网络的进给系统模型训练和预测方法及其系统
CN104535103A (zh) 一种自动生成测试点的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930410

Country of ref document: EP

Kind code of ref document: A1