WO2020034234A1 - 一种用于超级电容器的具有pn结结构的复合材料、超级电容器电极材料及其制备方法 - Google Patents

一种用于超级电容器的具有pn结结构的复合材料、超级电容器电极材料及其制备方法 Download PDF

Info

Publication number
WO2020034234A1
WO2020034234A1 PCT/CN2018/101309 CN2018101309W WO2020034234A1 WO 2020034234 A1 WO2020034234 A1 WO 2020034234A1 CN 2018101309 W CN2018101309 W CN 2018101309W WO 2020034234 A1 WO2020034234 A1 WO 2020034234A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
type
mno
supercapacitor
powder
Prior art date
Application number
PCT/CN2018/101309
Other languages
English (en)
French (fr)
Inventor
齐建全
汪晋宽
马振伟
张圆喜
张琴琴
李梦莹
孙晴雯
常娟雄
韩秀梅
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2020034234A1 publication Critical patent/WO2020034234A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention relates to a composite material having a pn junction structure for a supercapacitor, a supercapacitor electrode material and a preparation method thereof, and belongs to the technical field of material preparation.
  • Super capacitor refers to a new type of energy storage device between traditional capacitors and rechargeable batteries. It has both the characteristics of fast charging and discharging of capacitors and the energy storage characteristics of batteries. According to different energy storage mechanisms, supercapacitors can be divided into two categories: electric double layer capacitors and Faraday ⁇ capacitors. Among them, electric double-layer capacitors generate storage energy mainly by pure electrostatic charges, which are adsorbed on the electrode surface. Faraday's capacitors mainly use Faraday's capacitor active electrode materials (such as transition metal oxides) on and near the surface to generate reversible redox reactions to generate Faraday's capacitors, thereby achieving energy storage and conversion.
  • electric double-layer capacitors generate storage energy mainly by pure electrostatic charges, which are adsorbed on the electrode surface.
  • Faraday's capacitors mainly use Faraday's capacitor active electrode materials (such as transition metal oxides) on and near the surface to generate reversible redox reactions to generate Faraday's capacitors, thereby
  • Faraday's capacitors can be generated not only on the electrode surface, but also inside the entire electrode. Therefore, higher capacitance and energy density can be obtained than electric double layer capacitors. With the same electrode area, the Faraday's capacitance can be 10 to 100 times the capacitance of the electric double layer.
  • the material represented by MnO 2 especially, because of its low price and theoretically high specific capacitance, has become the star material of supercapacitors, and has been widely studied.
  • supercapacitors have a broad application background in intelligent start-stop control systems (lightweight hybrid systems) for automobiles, especially in plug-in hybrid vehicles.
  • Medium and miniature supercapacitors have been widely used in small machinery and equipment, such as computer memory systems, cameras, audio equipment and auxiliary facilities for intermittent electricity.
  • Large-sized cylindrical supercapacitors are mostly used in the automotive field and natural energy harvesting.
  • the present invention provides a composite material having a pn junction structure for a supercapacitor, a supercapacitor electrode material, and a preparation method thereof.
  • the main technical solutions adopted by the present invention include:
  • a composite material having a pn junction structure for a supercapacitor is a pn junction formed by a p-type semiconductive metal oxide and an n-type semiconductive metal oxide.
  • the n-type semiconducting metal oxide is Fe 3 O 4 , ZnFe 2 O 4 , CuFe 2 O 4 , CoFe 2 O 4 , NiFe 2 O 4 , MnFe 2 O 4 , (NiCuZn) Fe 2 O 4 (NiCuZn Ferrite), MgFe 2 O 4 , ZnO, TiO 2 , CaTiO 3 , BaTiO 3 , SrTiO 3 , (SrBa) TiO 3 (BST), Ba (TiZr) O 3 (BZT), SnO 2 , CaSnO 3 , BaSnO 3 , at least one of SrSnO 3 and BiFeO 3 .
  • the molar ratio of the metal atoms in the p-type semiconductive metal oxide to the n-type semiconductive metal oxide is 1-9: 9-1.
  • a method for preparing a supercapacitor electrode material includes the following steps:
  • the n-type semi-conductive metal oxide powder is treated in a reducing atmosphere or made semi-conductive by a method of donor doping;
  • n-type semiconducting metal oxide powder or the n-type semiconducting metal oxide powder obtained in step S1 is grown or combined with a p by a physical or chemical method on the surface or interface thereof.
  • the n-type semiconductive metal oxide includes Fe 3 O 4 , ZnFe 2 O 4 , CuFe 2 O 4 , CoFe 2 O 4 , NiFe 2 O 4 , MnFe 2 O 4 , (NiCuZn) Fe 2 O 4 (NiCuZn ferrite), MgFe 2 O 4 , ZnO, TiO 2 , CaTiO 3 , BaTiO 3 , SrTiO 3 , (SrBa) TiO 3 (BST), Ba At least one of (TiZr) O 3 (BZT), SnO 2 , CaSnO 3 , BaSnO 3 , SrSnO 3 , and BiFeO 3 .
  • step S1 some oxide powders do not need to be treated, and they are synthesized into semi-conductive metal oxide powders, and then proceed directly to the next step.
  • What needs to be treated in a reducing atmosphere is TiO 2 , CaTiO 3 , BaTiO 3 , SrTiO 3 , (SrBa) TiO 3 (BST), Ba (TiZr) O 3 (BZT), SnO 2 , CaSnO 3 , BaSnO 3 , SrSnO 3 , ZnO, etc.
  • the reducing atmosphere refers to hydrogen, CO and other atmospheres.
  • the method of donor doping refers to BaTiO 3 , SrTiO 3 , (SrBa) TiO 3 (BST), Ba (TiZr) O 3 (BZT), SnO.
  • the amounts of the n-type semi-conductive metal oxide and the p-type semi-conductive metal oxide are in accordance with the amount of the n-type semi-conductive metal oxide and the p-type semi-conductive metal oxide.
  • the molar ratio of the metal atoms in the metal oxide is performed from 1 to 9: 9 to 1.
  • the physical or chemical method includes: evaporation, hydrothermal method, chemical liquid phase precipitation, sol-gel method, and the like.
  • Vapor deposition refers to the use of high temperature, laser, plasma and other means to evaporate the target material, and then agglomerate at a specific location. This method can be used to obtain heterojunctions (such as pn junctions), metal electrodes, and so on.
  • the hydrothermal method refers to the use of an aqueous solution as the reaction medium.
  • the system is heated by heating the reactants containing the liquid phase (such as water, organic solvents, etc.) so that the temperature in the system exceeds the boiling point of the contained liquid phase.
  • the reactants containing the liquid phase such as water, organic solvents, etc.
  • a certain pressure is generated inside, and a series of chemical reactions are performed in the liquid phase to produce the required product.
  • the chemical liquid phase precipitation method is to mix different soluble metal salts in a solution state, then add a precipitant to the solution, and react to form a precipitate under a certain temperature and other conditions.
  • the precipitate can be the desired product or its prepolymer. If it is a precursor, it needs to be further heat-treated to obtain the required substance. Because the method is simple and easy to implement, especially if the product is directly precipitated without heat treatment. Therefore, the following preferred examples are mainly based on this method.
  • a semi-conductive metal oxide powder such as BaTiO 3 , Ba 0.9 Sr 0.1 TiO 3, etc.
  • the n-type semiconducting metal oxide is added to a soluble metal salt solution capable of forming a p-type semiconducting metal oxide at a certain temperature, such as 60 to 80 ° C, and then a precipitant is added, and the precipitate is obtained after stirring.
  • Ultra-high dielectric constant composite with pn junction such as BaTiO 3 , Ba 0.9 Sr 0.1 TiO 3, etc.
  • the molar ratio of metal atoms between the n-type semiconductive metal oxide and the p-type semiconductive metal oxide is preferably from 1 to 3: 3 to 1.
  • the sol-gel method refers to a method in which an organic or inorganic compound is cured through a solution, a sol, or a gel, and then subjected to a high-temperature heat treatment to form an oxide or other compound solid.
  • the pressing conditions are 1 MPa to 100 MPa.
  • the composite method includes pressing molding, coating, or film-forming lamination.
  • the invention can form a pn junction between the p-type oxide particles and the n-type oxide particles.
  • These oxide particles having the pn junction can increase the resistance value of the material of the super capacitor, and at the same time, the pn junction can quickly compensate the inserted charge in the charge / discharge process. , Thereby greatly increasing the working voltage and increasing the energy storage density. Therefore, the problem of a large decrease in resistance caused by the introduction of carbon-related materials or metal powder is avoided, and the working voltage is increased while the specific capacitance is increased, so that the working voltage can be close to the decomposition voltage of the electrolyte without being limited by the energy storage material. This makes the energy storage density increase significantly.
  • the method of the invention has the advantages of simple preparation, low cost and easy mass industrial production. Capacitors made from it have higher specific capacitance.
  • the electrode material of the supercapacitor prepared by the invention quickly compensates the inserted charge in the charging / discharging process through the pn junction, increases the resistance of the energy storage material, thereby greatly increasing the working voltage, so that the working voltage can be approached without being restricted by the energy storage material.
  • the decomposition voltage of the electrolyte increases the energy storage density.
  • Existing ordinary supercapacitors have a working voltage of ⁇ 3V. Because a large amount of carbon powder or metal powder, or even graphene is added, the resistance of the material is reduced too much, so that it cannot work at higher voltages. Otherwise, the current is too large and the device is caused. damage.
  • Example 1 is an XRD pattern of the composite material prepared in Example 1;
  • Example 2 is an electron micrograph of the composite material prepared in Example 1;
  • FIG. 3 shows the cyclic voltammetry characteristics of the composite material and the comparative example MnO 2 prepared in various examples
  • Example 4 is an XRD pattern of the composite material prepared in Example 2.
  • Example 6 is an XRD pattern of the composite material prepared in Example 3.
  • FIG. 7 is an electron micrograph of the composite material prepared in Example 3.
  • Composites with pn junctions were obtained by in-situ synthesis. Weigh 1.6g of NaOH into a beaker, add 200ml of deionized water to dissolve it, transfer the semi-conductive BaTiO 3 powder to the prepared NaOH solution, stir vigorously and heat to 60 ° C as the base solution. Weigh 3.38gMn (SO 4) ⁇ H 2 O, into a small beaker, add 50mlH 2 O and 5ml 30% of H 2 O 2 dissolved to form a titrant. The titration solution was added dropwise to the base solution, maintained at 60 ° C and vigorously stirred. After completion of the titration, a dark brown precipitate was obtained.
  • the obtained composite powder was subjected to X-ray diffraction (XRD).
  • XRD X-ray diffraction
  • the diffraction pattern is shown in the figure.
  • Figure 1 it can be seen from the map that the powder has two phases of ⁇ -MnO 2 and BaTiO 3 .
  • the obtained composite powder was scanned by an electron microscope, and the obtained SEM is shown in FIG. 2. It can be seen from the figure that the flake-shaped ⁇ -MnO 2 has been completely fragmented, and is closely combined with BaTiO 3 powder particles to form fine particle aggregates to form a pn junction structure. The next large particles are individual large particles BaTiO 3 .
  • the obtained composite powder was mixed with acetylene black and polytetrafluoroethylene glue at a mass ratio of 75%, 20%, and 5%, and then coated on a 10 ⁇ 10mm foamed Ni square sheet, and the pressure was further tightened by applying 2MPa to make Super capacitor electrode material. After immersing the supercapacitor electrode material in an electrolyte of 1mol / L sodium sulfate for 12 hours, the cyclic voltammetry characteristics were tested, as shown in FIG. 3. The test results of high performance MnO 2 are also shown in Figure 3 for comparison.
  • the specific capacitance of MnO 2 is 120F / g, while the composite material with pn junction structure reaches 560F / g. It is shown that the MnO 2 and BaTiO 3 composite material having the pn junction structure prepared by the present invention can effectively improve its specific capacitance.
  • a composite material with a pn junction is obtained by in-situ synthesis.
  • the titration solution was added dropwise to the base solution, maintained at 80 ° C and vigorously stirred. After completion of the titration, a dark brown precipitate was obtained.
  • the obtained composite powder was subjected to X-ray diffraction (XRD).
  • XRD X-ray diffraction
  • the diffraction pattern is shown in the figure.
  • Figure 4 it can be seen from the map that the powder has two phases of ⁇ -MnO 2 and BST.
  • the obtained composite powder was scanned by an electron microscope, and the obtained SEM is shown in FIG. 5. It can be seen from the figure that the flake-shaped ⁇ -MnO 2 has been completely fragmented and tightly combined with the BST powder particles to form fine particle aggregates to form a pn junction structure.
  • the obtained composite powder was mixed with acetylene black and polytetrafluoroethylene glue at a mass ratio of 75%, 20%, and 5%, and then coated on a 10 ⁇ 10mm foamed Ni square sheet, and was further tightly combined by applying a pressure of 2 MPa to make it.
  • the supercapacitor electrode material was tested for cyclic voltammetry after immersion in an electrolyte of 1mol / L sodium sulfate for 12 hours, as shown in FIG. 3.
  • the test results of high performance MnO 2 are also shown in Figure 3 for comparison.
  • the specific capacitance of MnO 2 is 120F / g, while the supercapacitor electrode material made of MnO 2 and BST composite material with pn junction structure reaches 390F / g. It shows that the composite material of MnO 2 and BST with pn junction structure prepared by the present invention can effectively improve its specific capacitance.
  • a composite material with a pn junction is obtained by in-situ synthesis.
  • the titration solution was added dropwise to the base solution, maintained at 60 ° C and vigorously stirred. After completion of the titration, a dark brown precipitate was obtained.
  • the obtained composite powder was subjected to X-ray diffraction (XRD).
  • XRD X-ray diffraction
  • the diffraction pattern is shown in the figure.
  • Fig. 6 it can be seen from the map that the powder has two phases of ⁇ -MnO 2 and ZnO.
  • the obtained composite powder was scanned by an electron microscope, and the obtained SEM is shown in FIG. 7. It can be seen from the figure that the flake-shaped ⁇ -MnO 2 has been completely fragmented, and is closely combined with ZnO powder particles to form fine particle aggregates to form a pn junction structure.
  • the obtained composite powder was mixed with acetylene black and polytetrafluoroethylene glue at a mass ratio of 75%, 20%, and 5%, and then coated on a 10 ⁇ 10mm foamed Ni square sheet, and was further tightly combined by applying a pressure of 2 MPa to make it.
  • Supercapacitor electrode material After immersion in 1mol / L sodium sulfate electrolyte for 12 hours, the cyclic voltammetry characteristics were tested.
  • the specific capacitance of MnO 2 was 120F / g, while the MnO 2 and ZnO composite materials with pn junction structure
  • the ultracapacitor electrode material reaches 370F / g. It shows that the composite material of MnO 2 and ZnO with pn junction structure prepared by the present invention can effectively improve its specific capacitance.
  • the obtained dark brown precipitate was mixed with acetylene black and polytetrafluoroethylene glue in accordance with The mass ratio of 75%, 20% and 5% is mixed and coated on a 10 ⁇ 10mm foamed Ni square sheet, and a pressure of 2 MPa is applied to further tightly combine it to make a super capacitor electrode material in a 1 mol / L sodium sulfate electrolyte
  • the cyclic voltammetric characteristics of the test after 12 hours of immersion are shown in Figure 4, with a specific capacitance of 120F / g.
  • the solution of the present invention is to form a pn junction with n-type semiconductor oxide through MnO 2. The rapid movement of electrons in the pn junction can quickly compensate the charge carried by the inserted ions. In this way, the resistance value of the active material rises without decreasing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明涉及一种用于超级电容器的具有pn结结构的复合材料、超级电容器电极材料及其制备方法,其方法是将p型半导化氧化物粉体与n型半导化氧化物粉体通过物理或化学的办法,使p型氧化物颗粒与n型氧化物颗粒之间形成pn结,这些具有pn结的氧化物颗粒可以提高超级电容器材料电阻值的同时通过pn结快速补偿冲/放电过程的插入电荷,因此避免了碳相关材料或金属粉引入而引起的电阻值大幅度下降的问题,从而大幅度提高工作电压,增加储能密度。本发明方法所获得的复合材料与原始p型氧化物(如MnO 2)相比,除了提高工作电压之外,还可以提高比电容。

Description

一种用于超级电容器的具有pn结结构的复合材料、超级电容器电极材料及其制备方法 技术领域
本发明涉及一种用于超级电容器的具有pn结结构的复合材料、超级电容器电极材料及其制备方法,属于材料制备技术领域。
背景技术
超级电容器是指介于传统电容器和充电电池之间的一种新型储能装置,它既具有电容器快速充放电的特性,同时又具有电池的储能特性。根据不同的储能机理,可将超级电容器分为双电层电容器和法拉第赝电容器两大类。其中,双电层电容器主要是通过纯静电电荷,在电极表面进行吸附,来产生存储能量。法拉第赝电容器,主要是通过法拉第赝电容活性电极材料(如过渡金属氧化物)表面及表面附近,发生可逆的氧化还原反应产生法拉第赝电容,从而实现对能量的存储与转换。一般情况下,法拉第赝电容不仅只在电极表面,而且可在整个电极内部产生,因而可获得比双电层电容更高的电容量和能量密度。在相同电极面积的情况下,法拉第赝电容可以是双电层电容量的10~100倍。其中尤其以MnO 2为代表的材料,由于其价格低廉,理论上具有很高的比电容,成为超级电容器的明星材料,而获得广泛研究。
目前,超级电容器在汽车的智能启停控制系统(轻型混合动力系统)中具有广阔的应用背景,尤其在插电式混合动力汽车上的表现更为突出。中微型超级电容器已经在小型机械设备上得到广泛应用,例如电脑内存系统、照相机、音频设备和间歇性用电的辅助设施。而大尺寸的柱状超级电容器则多被用于汽车领域和自然能源采集上。
然而,超级电容器成本较高、能量密度与锂电池相比要低得多,这使它在很多领域备受冷落,在实际应用上却总被电池取代。如果超级电 容器在技术上一旦取得突破,将可对新能源产业的发展,产生极大的推动力。
为了提高超级电容器的储能密度,大部分研究集中在提高比电容方面。由于通过提高电子传输速度,也就是降低内电阻对于提高氧化物法拉第超级电容器材料的比电容是相当有效的,所以很多研究工作的研究思路是往氧化物中掺入C粉、金属银粉甚至石墨烯等高导电性物质。尽管这样,可以提高比电容,但是其内电阻的大幅度下降,会导致工作电压也大幅度下降。而电容器的存储能量的多少与工作电压的平方成正比,如
Figure PCTCN2018101309-appb-000001
这样降低内电阻反而不利于超级电容器的储能密度的提高。
发明内容
(一)要解决的技术问题
为了解决现有技术的上述问题,本发明提供一种用于超级电容器的具有pn结结构的复合材料、超级电容器电极材料及其制备方法。
(二)技术方案
为了达到上述目的,本发明采用的主要技术方案包括:
一种用于超级电容器的具有pn结结构的复合材料,所述pn结结构为p型半导化金属氧化物与n型半导化金属氧化物形成的pn结。
进一步地,所述p型半导化金属氧化物为MnO 2、RuO 2、Mn 3O 4、MnO、CaMnO 3、SrMnO 3、LaMnO 3、La 1-xSr xMnO 3、(其中,x=0~0.7,)NiO、CoO、FeO、CuO、Cu 2O、YBa 2Cu 3O 7-δ和Bi 2Sr 2Ca 2Cu 3O 10-δ中的至少一种;
所述n型半导化金属氧化物为Fe 3O 4、ZnFe 2O 4、CuFe 2O 4、CoFe 2O 4、NiFe 2O 4、MnFe 2O 4、(NiCuZn)Fe 2O 4(NiCuZn铁氧体)、MgFe 2O 4、ZnO、TiO 2、CaTiO 3、BaTiO 3、SrTiO 3、(SrBa)TiO 3(BST)、Ba(TiZr)O 3(BZT)、SnO 2、CaSnO 3、BaSnO 3、SrSnO 3和BiFeO 3中的至少一种。
进一步地,所述p型半导化金属氧化物与所述n型半导化金属氧化物中金属原子的摩尔比为1~9:9~1。
一种超级电容器电极材料的制备方法,其包括如下步骤:
S1、将能够n型半导化的金属氧化物粉体在还原气氛中处理或通过施主掺杂的方法使其半导化;
S2、将n型半导化金属氧化物粉体或步骤S1中获得的所述n型半导化金属氧化物粉体,在其表面或界面处通过物理或化学的方法生长或结合一种p型半导化金属氧化物形成pn结的粉体;
S3、将S2中所获得的具有pn结的粉体通过胶合、压制形成超级电容器电极材料。
如上所述的制备方法,优选地,在步骤S1中,所述n型半导化的金属氧化物包括Fe 3O 4、ZnFe 2O 4、CuFe 2O 4、CoFe 2O 4、NiFe 2O 4、MnFe 2O 4、(NiCuZn)Fe 2O 4(NiCuZn铁氧体)、MgFe 2O 4、ZnO、TiO 2、CaTiO 3、BaTiO 3、SrTiO 3、(SrBa)TiO 3(BST)、Ba(TiZr)O 3(BZT)、SnO 2、CaSnO 3、BaSnO 3、SrSnO 3、BiFeO 3中的至少一种。
在步骤S1中某些氧化物粉体无需处理,合成出来就是半导化金属氧化物粉体,则直接进入下一步。如Fe 3O 4、ZnFe 2O 4、CuFe 2O 4、CoFe 2O 4、NiFe 2O 4、MnFe 2O 4、(NiCuZn)Fe 2O 4(NiCuZn铁氧体)、MgFe 2O 4等。
而需要在还原气氛中处理的为TiO 2、CaTiO 3、BaTiO 3、SrTiO 3、(SrBa)TiO 3(BST)、Ba(TiZr)O 3(BZT)、SnO 2、CaSnO 3、BaSnO 3、SrSnO 3、ZnO等,还原气氛是指在氢气、CO等氛围中,施主掺杂的方法是指BaTiO 3、SrTiO 3、(SrBa)TiO 3(BST)、Ba(TiZr)O 3(BZT)、SnO 2等,掺入高价离子如Sb 5+、Nb 5+、和Bi 3+及稀土离子(后两类不用于SnO 2),通过800~1350℃高温处理,使其半导化。
如上所述的制备方法,优选地,在步骤S2中,所述p型半导化金属氧化物包括MnO 2、RuO 2、Mn 3O 4、MnO、CaMnO 3、SrMnO 3、LaMnO 3、La 1-xSr xMnO 3(其中,x=0~0.7)、NiO、CoO、FeO、CuO、Cu 2O、YBa 2Cu 3O 7 -δ、Bi 2Sr 2Ca 2Cu 3O 10-δ中的至少一种。
优选地,在步骤S2中,所述n型半导化的金属氧化物与所述p型半 导化金属氧化物的用量为按照n型半导化的金属氧化物与p型半导化的金属氧化物中的金属原子的摩尔比为1~9:9~1进行。
如上所述的制备方法,优选地,在步骤S2中,所述物理或化学方法包括:蒸镀、水热法、化学液相沉淀、溶胶凝胶法等。
蒸镀是指采用高温、激光、等离子等手段使靶材蒸发,然后再在特定位置凝聚,利用这种方法可以获得异质结(如pn结)、金属电极等。
水热法是指主要以水溶液作为反应介质,在密闭的反应容器内,通过对含有液相(如水、有机溶剂等)的反应物加热,使系统内温度超过所含液相的沸点而使系统内产生一定的压强,使物质在液相中进行一系列化学反应的方法产生制备出所需要的产物。
化学液相沉淀法是在在溶液状态下将不同的可溶性金属盐混合,然后在溶液中加入沉淀剂,在一定的温度等条件下反应形成沉淀,该沉淀可以是所需要的产物或其前聚体,如果是前聚体则需要对其做进一步的热处理,从而得到所需物质。由于本方法简单易行,尤其是如果不需要热处理直接沉淀出产物的情况。所以后面的优选例以该方法为主。
具体地,其包括如下步骤:将能够n型半导化的金属氧化物粉体(如BaTiO 3、Ba 0.9Sr 0.1TiO 3等)在还原气氛中热处理使其半导化;将半导化的n型半导化的金属氧化物加入能够生成沉淀为p型半导化的金属氧化物的可溶性金属盐溶液中,在一定温度如60~80℃,再加入沉淀剂,搅拌后获得沉淀即为具有pn结的超高介电常数复合材料。
进一步地,n型半导化的金属氧化物与p型半导化的金属氧化物中二者的金属原子摩尔比优选为1~3:3~1。
溶胶凝胶法是指有机或无机化合物经过溶液、溶胶、凝胶而固化,在经过高温热处理而制成氧化物或其他化合物固体的方法。
如上所述的制备方法,优选地,在步骤S3中,所述压制的条件为1MPa~100MPa。
一种超级电容器电极材料,其用如上所述的方法制备的复合材料通过胶合、压制与电解质和电极(如泡沫Ni)复合而获得。
进一步地,所述复合的方式有压制成型、涂覆或成膜叠层等方式。
(三)有益效果
本发明的有益效果是:
本发明可以通过p型氧化物颗粒与n型氧化物颗粒之间形成pn结,这些具有pn结的氧化物颗粒可以提高超级电容器材料电阻值,同时通过pn结快速补偿冲/放电过程的插入电荷,从而大幅度提高工作电压,增加储能密度。因此避免了碳相关材料或金属粉大量引入,而引起的电阻值大幅度下降的问题,在提高比电容的同时提高工作电压,使工作电压可以不受储能材料的限制而接近电解质的分解电压,使得储能密度大幅度增加。
本发明方法制备简单,价格低廉,易于大批量工业化生产。用其制备的电容器具有较高的比电容。
本发明制备的超级电容器电极材料,是通过pn结快速补偿冲/放电过程的插入电荷,增加储能材料的电阻,从而大幅度提高工作电压,使工作电压可以不受储能材料的限制而接近电解质的分解电压,增加储能密度。现有普通的超级电容器工作电压~3V,因为加入大量碳粉或金属粉,甚至石墨烯,而使材料电阻降低太多,从而不能在较高的电压下工作,否则,电流太大而导致器件损坏。
附图说明
图1为实施例1中制备的复合材料的XRD图;
图2为实施例1中制备的复合材料的电镜扫描图;
图3为各个实施例中制备的复合材料和对比例MnO 2的循环伏安特性;
图4为实施例2中制备的复合材料的XRD图;
图5为实施例2中制备的复合材料的电镜扫描图;
图6为实施例3中制备的复合材料的XRD图;
图7为实施例3中制备的复合材料的电镜扫描图。
具体实施方式
为了更好的解释本发明,以便于理解,下面结合附图,通过具体实施方式,对本发明作详细描述。
实施例1
本实施例中MnO 2的合成按照化学反应方程式:
MnSO 4+H 2O 2+2NaOH=MnO 2+2H 2O+Na 2SO 4
来完成。
首先将4.66gBaTiO 3粉体在H 2气中900℃热处理8h。
采用原位合成的方法获得带有pn结的复合材料。称取1.6g NaOH放入烧杯中,加入200ml去离子水溶解,将已半导化处理的BaTiO 3粉体转移到配好的NaOH溶液中,剧烈搅拌并加热至60℃做为基液。称取3.38gMn(SO 4)·H 2O,放入小烧杯中,加入50mlH 2O和5ml 30%的H 2O 2使其溶解,形成滴定液。将滴定液逐滴加入到基液中,保持60℃并剧烈搅拌,完成滴定后获得黑褐色沉淀,过滤烘干后,将所获得复合粉体进行X射线衍射(XRD),其衍射图谱如图1所示,从图谱中可看出粉体具有δ-MnO 2和BaTiO 3两个物相。所获得复合粉体进行电镜扫描,所获得SEM如图2所示。从图中可看出片状δ-MnO 2已经完全碎片化,与BaTiO 3粉末颗粒紧密结合在一起形成细小颗粒聚集体形成pn结结构。旁边大块状颗粒为个别大颗粒BaTiO 3
将所获得复合粉体与乙炔黑、聚四氟乙烯胶水按照质量比75%、20%和5%混合后涂覆在10×10mm泡沫Ni方片上,施加2MPa压力使其进一步紧密结合从而制成超级电容器电极材料。将该超级电容器电极材料在1mol/L的硫酸钠的电解液中浸泡12h后,测试循环伏安特性,如图3所示。图3中同时给出了高性能MnO 2的测试结果以做对比。MnO 2的比电容为120F/g,而具有pn结结构的复合材料则达到560F/g。说明本发明制备的具有pn结结构的MnO 2与BaTiO 3复合材料可以有效提高其比电 容。
实施例2
本实施例中MnO 2的合成按照化学反应方程式:
MnSO 4+H 2O 2+2NaOH=MnO 2+2H 2O+Na 2SO 4
来完成。
具体操作如下:
(1)首先将0.0226gY 2O 3(氧化钇)和4.46g Ba 0.9Sr 0.1TiO 3(BST)粉体用玛瑙研钵均匀混合研磨1h,然后在1Mpa下压块,在空气中1280℃烧结1h,使其半导化。冷却后的瓷体粉碎,过300目筛。粉体呈现浅蓝色。
(2)采用原位合成的方法获得带有pn结的复合材料。称取1.6g NaOH放入烧杯中,加入200ml去离子水溶解;将步骤(1)已半导化处理的BST粉体转移到配好的NaOH溶液中,剧烈搅拌并加热至80℃做为基液。称取3.38gMnSO 4·H 2O,放入小烧杯中,加入50mlH 2O和5ml 30%的H 2O 2使其溶解,形成滴定液。将滴定液逐滴加入到基液中,保持80℃并剧烈搅拌,完成滴定后获得黑褐色沉淀,过滤烘干后,将所获得复合粉体进行X射线衍射(XRD),其衍射图谱如图4所示,从图谱中可看出粉体具有δ-MnO 2和BST两个物相。所获得复合粉体进行电镜扫描,所获得SEM如图5所示。从图中可看出片状δ-MnO 2已经完全碎片化,与BST粉末颗粒紧密结合在一起形成细小颗粒聚集体形成pn结结构。
将所获得复合粉体与乙炔黑、聚四氟乙烯胶水按照质量比75%、20%和5%混合后涂覆在10×10mm泡沫Ni方片上,施加2MPa压力使其进一步紧密结合从而制成超级电容器电极材料,其在1mol/L的硫酸钠的电解液中浸泡12h后测试循环伏安特性,如图3所示。图3中同时给出了高性能MnO 2的测试结果以做对比。MnO 2的比电容为120F/g,而具有pn结结构的MnO 2与BST复合材料制备的超级电容器电极材料则达到390F/g。说明本发明制备的具有pn结结构的MnO 2与BST的复合材料可以 有效提高了其比电容。
实施例3
采用化学液相沉淀制备超高介电常数的复合材料,其中MnO 2的合成按照化学反应方程式:
MnSO 4+H 2O 2+2NaOH=MnO 2+2H 2O+Na 2SO 4
来完成。
具体操作如下:
(1)首先将1.628gZnO在氢气中800℃热处理1h,使其半导化。
(2)采用原位合成的方法获得带有pn结的复合材料。称取1.6g NaOH放入烧杯中,加入500ml去离子水溶解;将步骤(1)已半导化处理的ZnO粉体转移到配好的NaOH溶液中,剧烈搅拌并加热至60℃做为基液。称取3.38gMnSO 4·H 2O,放入小烧杯中,加入50mlH 2O和5ml 30%的H 2O 2使其溶解,形成滴定液。将滴定液逐滴加入到基液中,保持60℃并剧烈搅拌,完成滴定后获得黑褐色沉淀,过滤烘干后,将所获得复合粉体进行X射线衍射(XRD),其衍射图谱如图6所示,从图谱中可看出粉体具有δ-MnO 2和ZnO两个物相。所获得复合粉体进行电镜扫描,所获得SEM如图7所示。从图中可看出片状δ-MnO 2已经完全碎片化,与ZnO粉末颗粒紧密结合在一起形成细小颗粒聚集体形成pn结结构。
将所获得复合粉体与乙炔黑、聚四氟乙烯胶水按照质量比75%、20%和5%混合后涂覆在10×10mm泡沫Ni方片上,施加2MPa压力使其进一步紧密结合从而制成超级电容器电极材料,其在1mol/L的硫酸钠的电解液中浸泡12h后,测试循环伏安特性,MnO 2的比电容为120F/g,而具有pn结结构的MnO 2与ZnO复合材料的超级电容器电极材料则达到370F/g。说明本发明制备的具有pn结结构的MnO 2与ZnO的复合材料可以有效提高了其比电容。
对比例
本对比例中,MnO 2的合成按照化学反应方程式:
MnSO 4+H 2O 2+2NaOH=MnO 2+2H 2O+Na 2SO 4
来完成。
具体操作如下:
称取1.6g NaOH放入烧杯中,加入200ml去离子水溶解;剧烈搅拌并加热至60℃做为基液。称取3.38gMnSO 4·H 2O,放入小烧杯中,加入50mlH 2O和5ml 30%的H 2O 2使其溶解,形成滴定液。将滴定液逐滴加入到基液中,保持60℃并剧烈搅拌,完成滴定后获得黑褐色沉淀即MnO 2,过滤烘干后,将所获得黑褐色沉淀与乙炔黑、聚四氟乙烯胶水按照质量比75%、20%和5%混合后涂覆在10×10mm泡沫Ni方片上,施加2MPa压力使其进一步紧密结合从而制成超级电容器电极材料,在1mol/L的硫酸钠的电解液中浸泡12h后测试循环伏安特性如图4所示,比电容为120F/g。
目前,超级电容器材料的研究大都集中在对MnO 2改性上,其基本思想就是加入高导电率的金属粉、石墨烯等以改善离子插入时的电子补偿速度。这样做的确可以提高MnO 2的比电容,但是使活性材料的电阻大幅度下降,在实际工作时施加在电解液上的电压提高,而施加在活性物质上的电压降低,大大不利于超级电容器工作电压的提高。本发明的解决方案,是通过MnO 2与n型半导体氧化物形成pn结,pn结中的电子的快速移动可以迅速补偿插入离子所携带的电荷,这样,活性物质的电阻值不降反升,从而使工作中电压降大部分施加在制备的活性介质中,带来的明显好处有二,一,由于电压降在活性介质是增大而使离子在活性介质中插入速度增大,效率提高。二,施加在电解液上的电压降下降,从而拓宽了整个体系的窗口电压的提高,从而提高工作电压和储能密度。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明做其它形式的限制,任何本领域技术人员可以利用上述公开的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内 容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (10)

  1. 一种用于超级电容器的具有pn结结构的复合材料,其特征在于,所述pn结结构为p型半导化金属氧化物与n型半导化金属氧化物形成的pn结。
  2. 如权利要求1所述的复合材料,其特征在于,所述p型半导化金属氧化物为MnO 2、RuO 2、Mn 3O 4、MnO、CaMnO 3、SrMnO 3、LaMnO 3、La 1-xSr xMnO 3、NiO、CoO、FeO、CuO、Cu 2O、YBa 2Cu 3O 7-δ和Bi 2Sr 2Ca 2Cu 3O 10-δ中的至少一种;
    所述n型半导化金属氧化物为Fe 3O 4、ZnFe 2O 4、CuFe 2O 4、CoFe 2O 4、NiFe 2O 4、MnFe 2O 4、NiCuZn铁氧体、MgFe 2O 4、ZnO、TiO 2、CaTiO 3、BaTiO 3、SrTiO 3、BST、BZT、SnO 2、CaSnO 3、BaSnO 3、SrSnO 3和BiFeO 3中的至少一种。
  3. 如权利要求1所述的复合材料,其特征在于,所述p型半导化金属氧化物与所述n型半导化金属氧化物中金属原子的摩尔比为1~9:9~1。
  4. 一种超级电容器电极材料的制备方法,其特征在于,其包括如下步骤:
    S1、将能够n型半导化的金属氧化物粉体在还原气氛中处理或通过施主掺杂的方法使其半导化;
    S2、将步骤S1中获得的所述n型半导化金属氧化物粉体或n型半导化金属氧化物粉体,在其表面或界面处通过物理或化学的方法生长或结合一种p型半导化金属氧化物形成pn结的粉体;
    S3、将S2中所获得的具有pn结的粉体通过胶合、压制形成超级电容器电极材料。
  5. 如权利要求4所述的制备方法,其特征在于,在步骤S1中,所述n型半导化的金属氧化物包括Fe 3O 4、ZnFe 2O 4、CuFe 2O 4、CoFe 2O 4、NiFe 2O 4、MnFe 2O 4、NiCuZn铁氧体、MgFe 2O 4、ZnO、TiO 2、CaTiO 3、BaTiO 3、SrTiO 3、BST、BZT、SnO 2、CaSnO 3、BaSnO 3、SrSnO 3、BiFeO 3 中的至少一种;
    所述p型半导化金属氧化物包括MnO 2、RuO 2、Mn 3O 4、MnO、CaMnO 3、SrMnO 3、LaMnO 3、La 1-xSr xMnO 3、NiO、CoO、FeO、CuO、Cu 2O、YBa 2Cu 3O 7 -δ、Bi 2Sr 2Ca 2Cu 3O 10-δ中的至少一种。
  6. 如权利要求4所述的制备方法,其特征在于,在步骤S2中,所述n型半导化的金属氧化物与所述p型半导化金属氧化物的用量为按照n型半导化的金属氧化物与p型半导化的金属氧化物中的金属原子的摩尔比为1~9:9~1进行。
  7. 如权利要求4所述的制备方法,其特征在于,在步骤S2中,所述物理或化学方法包括:蒸镀、水热法、化学液相沉淀或溶胶凝胶法。
  8. 如权利要求4所述的制备方法,其特征在于,所述压制的条件为1MPa~100MPa。
  9. 一种超级电容器电极材料,其特征在于,其用如权利要求1或2所述的复合材料通过胶合、压制与电解质和电极复合而获得。
  10. 如权利要求9所述的超级电容器电极材料,其特征在于,所述复合的方式有压制成型、涂覆或成膜叠层方式。
PCT/CN2018/101309 2018-08-14 2018-08-20 一种用于超级电容器的具有pn结结构的复合材料、超级电容器电极材料及其制备方法 WO2020034234A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810923104.8A CN108962626B (zh) 2018-08-14 2018-08-14 一种用于超级电容器的具有pn结结构的复合材料
CN201810923104.8 2018-08-14

Publications (1)

Publication Number Publication Date
WO2020034234A1 true WO2020034234A1 (zh) 2020-02-20

Family

ID=64469790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101309 WO2020034234A1 (zh) 2018-08-14 2018-08-20 一种用于超级电容器的具有pn结结构的复合材料、超级电容器电极材料及其制备方法

Country Status (2)

Country Link
CN (1) CN108962626B (zh)
WO (1) WO2020034234A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109003821B (zh) * 2018-08-14 2021-03-26 东北大学 一种超高介电常数复合材料、其制备方法及应用
CN110233046A (zh) * 2019-05-22 2019-09-13 东北大学秦皇岛分校 一种大容量电容器介质的电子浆料及制备方法和应用
CN110931263B (zh) * 2019-11-21 2021-08-03 杭州电子科技大学 一种超级电容器电极结构及增强方法
CN111847526B (zh) * 2020-07-29 2021-04-23 十堰浩达新能源科技有限公司 一种高容量超级电容器
CN111883372B (zh) * 2020-08-10 2021-10-29 嘉兴嘉卫检测科技有限公司 一种用于超级电容器的Zn掺杂MnFe2O4@C复合材料及其制备方法
CN115246983B (zh) * 2022-07-25 2024-04-02 华南理工大学 一种复合介电材料及其制备方法和其在电容中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104517739A (zh) * 2013-09-29 2015-04-15 中国科学院上海硅酸盐研究所 氧化钛基超级电容器电极材料及其制备方法
CN107537501A (zh) * 2017-08-28 2018-01-05 武汉理工大学 一种分级结构ZnO/CuO复合材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1263155C (zh) * 2003-08-27 2006-07-05 浙江大学 一种用于半导体器件的铟锡氧化物pn结
CN101312079B (zh) * 2008-06-25 2012-04-25 武汉理工大学 具有不同排列方式的异质结构介电薄膜及其制备方法
CN103871750B (zh) * 2014-03-20 2017-01-11 华中科技大学 锐钛矿TiO2纳米树状阵列及其在太阳能电池制备中的应用
CN105664941A (zh) * 2014-11-18 2016-06-15 天津城建大学 具同质p-n结结构纳米复合光催化剂制备方法
CN105321721B (zh) * 2015-12-02 2018-02-09 常州大学 一种染料敏化太阳能电池光阳极材料的制备方法
CN105948735B (zh) * 2016-04-28 2018-08-07 山东大学 一种SrTiO3异质包覆BaTiO3超精细纳米粉体的合成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104517739A (zh) * 2013-09-29 2015-04-15 中国科学院上海硅酸盐研究所 氧化钛基超级电容器电极材料及其制备方法
CN107537501A (zh) * 2017-08-28 2018-01-05 武汉理工大学 一种分级结构ZnO/CuO复合材料及其制备方法

Also Published As

Publication number Publication date
CN108962626B (zh) 2021-03-26
CN108962626A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
WO2020034234A1 (zh) 一种用于超级电容器的具有pn结结构的复合材料、超级电容器电极材料及其制备方法
Bhujun et al. Study of mixed ternary transition metal ferrites as potential electrodes for supercapacitor applications
Nabi et al. Role of cerium-doping in CoFe2O4 electrodes for high performance supercapacitors
Zhang et al. Nanocrystalline NiO as an electrode material for electrochemical capacitor
CN109003821B (zh) 一种超高介电常数复合材料、其制备方法及应用
Wei et al. Nanosized zinc oxides-based materials for electrochemical energy storage and conversion: Batteries and supercapacitors
Kumar et al. Facile hydrothermal synthesis of ternary CeO2–SnO2/rGO nanocomposite for supercapacitor application
Yuan et al. Cu-doped NiO for aqueous asymmetric electrochemical capacitors
Xia et al. Microwave synthesis and electrochemical characterization of mesoporous carbon@ Bi2O3 composites
Chen et al. Crystallization of Fe 3+ in an alkaline aqueous pseudocapacitor system
Singh et al. Solvothermal synthesis dependent structural, morphological and electrochemical behaviour of mesoporous nanorods of Sm2NiMnO6
Huang et al. Effects of the strong oxidant treatment of precursor on the electrochemical properties of LiNi0. 8Mn0. 1Co0. 1O2 for lithium-ion batteries
CN108565127B (zh) 一种可提高超级电容器比容量的电极材料、制备方法及应用
Singh et al. Mesoporous spheres of Dy 2 NiMnO 6 synthesized via hydrothermal route for structural, morphological, and electrochemical investigation
Lei et al. Preparing enhanced electrochemical performances Fe2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials by thermal decomposition of iron citrate
CN105938905A (zh) 一种富氮掺杂改性多孔碳材料的制备方法
CN108711517B (zh) 一种γ-Fe2O3纳米材料及其制备方法和应用
Hu et al. Syntheses, characterization, magnetic, and electrochemical properties of perovskite‐type NdFeO3 and NdCoO3 nanofibers
Ghosh et al. Oxygen vacancy-controlled dielectric relaxation and field-driven polarization of bismuth–manganese bimetallic oxide nanoparticles: Implications for capacitors
Xu et al. ZnO@ SnO2 Micron Flower as an Anode Material to Enhance the Cycling Performance of Zinc–Nickel Secondary Batteries
Mohamed Riyas et al. Hydrothermal synthesis of La2O3–ZnO nanocomposites as electrode material for asymmetric supercapacitor applications
Tamizh Selvi et al. Structural, electrical and magnetic properties of Mn 3 O 4/MgO nanocomposite
Wang et al. Two dimensional oxygen-deficient bismuth oxy-iodide nanosheets with enhanced supercapacitor performances
Ding et al. Tubular nanocarbon/SnS nanosheets/amorphous carbon composites with enhanced sodium ion storage performance
CN108682562B (zh) 一种C掺杂的γ–Fe2O3纳米复合材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930280

Country of ref document: EP

Kind code of ref document: A1