WO2020031974A1 - 作業機械の油圧駆動装置 - Google Patents

作業機械の油圧駆動装置 Download PDF

Info

Publication number
WO2020031974A1
WO2020031974A1 PCT/JP2019/030767 JP2019030767W WO2020031974A1 WO 2020031974 A1 WO2020031974 A1 WO 2020031974A1 JP 2019030767 W JP2019030767 W JP 2019030767W WO 2020031974 A1 WO2020031974 A1 WO 2020031974A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valves
hydraulic drive
controller
actuator
Prior art date
Application number
PCT/JP2019/030767
Other languages
English (en)
French (fr)
Inventor
佳史 瀧本
滝口 和夫
知則 飯尾
潤 岡村
宏政 高橋
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to US16/976,576 priority Critical patent/US10907323B1/en
Priority to CN201980016476.5A priority patent/CN111788398B/zh
Priority to EP19845986.9A priority patent/EP3744988B1/en
Publication of WO2020031974A1 publication Critical patent/WO2020031974A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2289Closed circuit
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/267Diagnosing or detecting failure of vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/005Fault detection or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • F15B20/008Valve failure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/087Control strategy, e.g. with block diagram
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B7/00Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
    • F15B7/003Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors with multiple outputs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B7/00Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
    • F15B7/005With rotary or crank input
    • F15B7/006Rotary pump input
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20561Type of pump reversible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/27Directional control by means of the pressure source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/3059Assemblies of multiple valves having multiple valves for multiple output members
    • F15B2211/30595Assemblies of multiple valves having multiple valves for multiple output members with additional valves between the groups of valves for multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/31523Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member
    • F15B2211/31547Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member having multiple pressure sources and multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40576Assemblies of multiple valves
    • F15B2211/40592Assemblies of multiple valves with multiple valves in parallel flow paths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/634Electronic controllers using input signals representing a state of a valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6346Electronic controllers using input signals representing a state of input means, e.g. joystick position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7142Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/785Compensation of the difference in flow rate in closed fluid circuits using differential actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/857Monitoring of fluid pressure systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/86Control during or prevention of abnormal conditions
    • F15B2211/863Control during or prevention of abnormal conditions the abnormal condition being a hydraulic or pneumatic failure
    • F15B2211/8636Circuit failure, e.g. valve or hose failure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/865Prevention of failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/875Control measures for coping with failures
    • F15B2211/8757Control measures for coping with failures using redundant components or assemblies

Definitions

  • the present invention relates to a hydraulic drive device for a working machine.
  • a working machine such as a hydraulic shovel used in a mine or the like performs maintenance of hydraulic equipment at a certain operation time.
  • the hydraulic devices to be maintained include, for example, an actuator for a front working machine, an actuator for traveling, a hydraulic pump, an on-off valve, and the like. Since each of these hydraulic devices has a different frequency of use, some hydraulic devices require component replacement after a certain operating time, and some hydraulic devices perform component replacement arbitrarily according to the use situation. If maintenance is performed in accordance with the bias in the frequency of use of each hydraulic device, the number of maintenances increases and the operating rate of the work machine decreases. Therefore, it is desirable that the frequency of use of each hydraulic device be averaged.
  • Patent Literature 1 discloses "a plurality of hydraulic pumps and a plurality of hydraulic actuators, and a plurality of switching valves capable of connecting one hydraulic pump to one hydraulic actuator.
  • a driving device for a work machine comprising: a plurality of priority tables and an interval time from a change interval time storage unit.
  • the order change unit, the required flow rate, the required pump number value, and the priority table output by the connection order change unit are fetched, and the assignment of the plurality of hydraulic pumps to the plurality of hydraulic actuators is calculated based on the requested pump number value.
  • a used pump operation unit that outputs command signals to a plurality of regulators and a plurality of switching valves based on the result of the allocation.
  • an object of the present invention is to provide a hydraulic drive device for a working machine that can reduce the number of maintenance operations.
  • one embodiment of the present invention provides a hydraulic pump, an actuator driven by hydraulic oil from the hydraulic pump, and a first on-off valve for opening and closing a flow path between the hydraulic pump and the actuator.
  • a second on-off valve provided in parallel with the first on-off valve to open and close a flow path between the hydraulic pump and the actuator; a first position for communicating the first on-off valve with the actuator;
  • a first direction switching valve switchable to a second position for shutting off the first on-off valve and the actuator, a third position for shutting off the second on-off valve and the actuator, and the second on-off valve and the actuator
  • a second direction switching valve that can be switched to a fourth position for communicating with the first and second valves, a recording device that records the operating states of the first and second on-off valves and the second on-off valve over time, and the recording device.
  • a controller that controls a switching operation of the first directional control valve and the second directional control valve based on history information on operating states of the first and second directional control valves recorded in the first and second directional control valves.
  • the controller opens the first on-off valve, closes the second on-off valve, switches the first directional switching valve to the first position, and switches the second directional switching valve.
  • pressure oil from the hydraulic pump is supplied from the first on-off valve to the actuator via the first directional switching valve, and the history information of the first on-off valve is set to a predetermined value.
  • the first on-off valve When it is determined that the condition (1) is satisfied, the first on-off valve is closed, the second on-off valve is opened, the first directional switching valve is switched to the second position, and the second directional switching valve is moved to the fourth position.
  • the pressure oil from the serial hydraulic pump, and supplying to said actuator from said second on-off valve via the second directional control valve By switching to the position, The pressure oil from the serial hydraulic pump, and supplying to said actuator from said second on-off valve via the second directional control valve.
  • FIG. 2 is a hydraulic circuit diagram showing a main configuration of a hydraulic drive device provided in the hydraulic excavator.
  • FIG. 3 is a hydraulic circuit diagram showing a state in which each direction switching valve is switched in FIG. 2.
  • 5 is a flowchart illustrating a procedure for switching the direction switching valve according to the first embodiment.
  • FIG. 13 is a block diagram of control processing of a controller according to the second embodiment.
  • 9 is a flowchart illustrating a procedure for switching the direction switching valve according to the second embodiment.
  • FIG. 9 is a flowchart illustrating a procedure for switching the direction switching valve according to the third embodiment.
  • the figure which shows the replacement time of the on-off valve in 3rd Embodiment. 13 is a flowchart illustrating a procedure for switching the direction switching valve according to the fourth embodiment.
  • FIG. 2 is a hydraulic circuit diagram when the present invention is configured with an open circuit.
  • FIG. 1 is an external perspective view of a hydraulic shovel 1 to which the hydraulic drive device according to the first embodiment is applied.
  • the hydraulic excavator 1 illustrated in FIG. 1 includes a lower traveling structure 101 and an upper revolving structure 102.
  • the lower traveling body 101 includes a pair of left and right crawler belts, and traveling motors 10a and 10b as actuators for applying traveling power to the pair of left and right crawler belts.
  • the upper revolving unit 102 is rotatable with respect to the lower traveling unit 101 by a bearing mechanism (not shown) interposed between the lower revolving unit 101 and a revolving motor (not shown) as an actuator. .
  • the upper revolving structure 102 has a working device 103 mounted on a front portion of a main frame 105, a counterweight 108 mounted on a rear portion, and an operator cab 104 mounted on a left front portion.
  • a working device 103 mounted on a front portion of a main frame 105
  • a counterweight 108 mounted on a rear portion
  • an operator cab 104 mounted on a left front portion.
  • an engine 106 as a prime mover and a drive system (not shown) driven by a drive output from the engine 106 are accommodated.
  • the working device 103 is a front working machine for performing work such as excavation, and includes a boom 111, a boom cylinder 7a as an actuator for driving the boom 111, an arm 112, and an arm as an actuator for driving the arm 112.
  • the cylinder includes a cylinder 7b, a bucket 113, and a bucket cylinder 7c as an actuator for driving the bucket 113.
  • FIG. 2 is a hydraulic circuit diagram illustrating a main configuration of the hydraulic drive device according to the first embodiment of the present invention provided in the hydraulic excavator 1.
  • the hydraulic drive circuit for driving the hydraulic excavator 1 includes closed circuit pumps (hereinafter abbreviated as pumps) 1a and 1b, actuators 5a and 5b, pumps 1a and 1b, and actuators 5a and 5b.
  • the direction switching valves 30a, 30b, 30c, 30d provided between the actuators 5a, 5b and the on-off valves 25a, 25b, 25c, 25d. Are connected in a closed circuit.
  • the pumps 1a and 1b correspond to the “hydraulic pump” of the present invention
  • the actuators 5a and 5b correspond to the “actuator” of the present invention
  • the on-off valves 25a and 25c correspond to the "first on-off valve” of the present invention
  • the on-off valves 25b and 25d correspond to the "second on-off valve” of the present invention
  • the directional switching valves 30a and 30c correspond to the "first directional switching valve” of the present invention
  • the directional switching valves 30b and 30d This corresponds to the “second directional control valve” of the present invention.
  • the actuator 5a is a frequently used actuator, for example, the boom cylinder 7a, the arm cylinder 7b, or the bucket cylinder 7c.
  • the actuator 5b is an actuator whose use frequency is lower than that of the actuator 5a, for example, the traveling motors 10a and 10b.
  • the springs 30a2 and 30c2 are attached to one ends of the direction switching valves 30a and 30c, respectively, and the solenoids 30a1 and 30c1 are attached to the other ends, respectively.
  • the direction switching valves 30a and 30c are always held at the position A by the urging force of the springs 30a2 and 30c2, and the oil path between the on-off valve 25a and the actuator 5a and the oil between the on-off valve 25c and the actuator 5a Roads communicate with each other. At this time, the oil passage between the on-off valve 25a and the actuator 5b and the oil passage between the on-off valve 25c and the actuator 5b are shut off.
  • the direction switching valves 30a and 30c are switched from the position A (first position) to the position B (second position), as shown in FIG.
  • the oil passage between the on-off valve 25a and the actuator 5b and the oil passage between the on-off valve 25c and the actuator 5b communicate with each other, and the oil passage between the on-off valve 25a and the actuator 5a, the on-off valve 25c and the actuator 5a. Is shut off.
  • the supply destination of the pressure oil from the pumps 1a and 1b is selectively switched from the actuator 5a to the actuator 5b.
  • the directional control valves 30b and 30d have the same structure as the directional control valves 30a and 30c. However, when the directional control valves 30b and 30d are switched from the position C (third position) to the position D (fourth position), the direction from the pumps 1a and 1b is changed. The difference is that the supply destination of the pressure oil is selectively switched from the actuator 5b to the actuator 5a.
  • a supply / discharge path 50 is provided on the bottom side of 5b, and the circuit configuration is such that excess or deficiency of hydraulic oil in the circuit can be transferred from the supply / discharge path 50.
  • the displacement sensors 16a, 16b, 16c, 16d are provided in the on-off valves 25a to 25d, respectively, and are connected to the recording device 10 via electric wiring.
  • the displacement sensors 16a to 16d are for detecting the opening and closing operations of the on-off valves 25a to 25d.
  • other types of valve opening and closing detecting means may be used.
  • the displacements of the on-off valves 25a to 25d detected by the displacement sensors 16a to 16d are recorded in the recording device 10.
  • the controller 20 calculates the number of times of operation of the on-off valves 25a to 25d based on the recorded displacement amounts, and can give a command to the direction switching valves 30a to 30d.
  • the recording device 10 is configured as a large-capacity memory such as an HDD, for example.
  • the pressure sensors 15a, 15b, 15c, 15d, 15e, 15f, 15g, 15h, 15i, 15j, 15k, and 15l are provided for detecting pressures before and after the on-off valves 25a to 25d, and are provided via electric wiring. It is connected to the recording device 10. Each pressure data detected by the pressure sensors 15a to 15l is recorded in the recording device 10.
  • the controller 20 calculates the product of the passing flow rate and the differential pressure across the on-off valves 25a to 25d, which will be described in detail later, based on the recorded pressure data and the passing flow rate, and issues a command to the direction switching valves 30a to 30d. Can be given.
  • # 2a and 2b are operation lever devices, which are connected to the controller 20 via electric wiring.
  • the operation lever devices 2a and 2b include operation levers 2a1 and 2b1 for extending and contracting the actuators 5a and 5b, and are operated by, for example, an operator of a hydraulic shovel.
  • the operation lever devices 2a and 2b include a detection device (not shown) that electrically detects the tilt amount of the operation levers 2a1 and 2b1, that is, the lever operation amount.
  • the lever operation amount detected by the detection device is output to the controller 20 as a lever operation amount signal.
  • the controller 20 opens and closes the on-off valves 25a to 25d based on the input lever operation amount signal.
  • the controller 20 is configured by, for example, a microcomputer and includes a CPU, a ROM, a RAM, a communication I / F, and the like.
  • a signal corresponding to the lever operation amount is output from the operation lever device 2a to the controller 20.
  • the controller 20 gives a current command to the solenoids 25a1 and 25c1 of the on-off valves 25a and 25c. Give a valve.
  • the on-off valves 25a and 25c are opened, the pressure oil from the pumps 1a and 1b is sent to the actuator 5a via the direction switching valves 30a and 30c, and the actuator 5a can be operated.
  • a signal corresponding to the lever operation amount is output from the operation lever device 2b to the controller 20.
  • the controller 20 gives a current command to the solenoids 25b1 and 25d1 of the on-off valves 25b and 25d. Give a valve.
  • the on-off valves 25b and 25d are opened, the pressure oil from the pumps 1a and 1b is sent to the actuator 5b via the direction switching valves 30b and 30d, so that the actuator 5b can be operated.
  • the displacement sensors 16a to 16d provided in the on-off valves 25a to 25d detect the displacement amounts of the on-off valves 25a to 25d, and send a detection signal of the displacement amount to the recording device 10.
  • the recording device 10 records the displacement amount detection signal as a time history waveform, and counts and records the number of operations (the number of times of opening and closing) of the on-off valves 25a to 25d from the waveform.
  • the recording device 10 outputs the history of the number of times of operation of each of the on-off valves 25a to 25d to the controller 20, and the controller 20 receives the history of each number of times of operation, and calculates the average value of the number of times of operation of the on-off valves 25a to 25d.
  • the controller 20 controls the direction switching valve connected to the on-off valve whose number of times of operation exceeds the predetermined value S1, and the on-off valve with the least number of operations.
  • a switching command is issued to the directional control valve connected to.
  • FIG. 4 is a flowchart showing a procedure for switching the direction switching valves 30a to 30d in the first embodiment.
  • the controller 20 determines whether or not the on-off valves 25a to 25d are closed in step 40a. Specifically, the controller 20 determines whether the on-off valves 25a to 25d are closed based on the displacement amounts from the displacement sensors 16a to 16d. If the valves are not closed (step 40a / No), the directional control valves 30a to 30d are not switched, and the current process ends.
  • Step 40a When the valve is closed, that is, when the displacement amount is zero (Step 40a / Yes), the process proceeds to Step 40b, and the controller 20 sends the recording device 10 the number of times N1, N2, N3, N4 of operating the on-off valves 25a to 25d. After that, in step 40c, a threshold determination is performed to determine whether or not each operation count has reached a predetermined value S1, which is a threshold.
  • step 40d the controller 20 gives a command to the directional control valves 30a, 30c connected to the on-off valves 25a, 25c, and switches the directional control valves 30a, 30c from the position A to the position B. That is, the on-off valves 25a and 25c and the actuator 5b communicate with each other via the direction switching valves 30a and 30c.
  • a command is given from the controller 20 to the directional switching valves 30b and 30d in order to connect the on-off valves 25b and 25d and the actuator 5a.
  • 30b and 30d are switched from position C to position D.
  • FIG. 3 shows a state in which the direction switching valves 30a to 30d are switched. In this way, it is possible to use the on-off valves 25b and 25d that have a small number of operations.
  • the controller 20 determines the correspondence between the operation lever 2a1 and the on-off valves 25a to 25d so that the on-off valves 25b and 25d are opened in response to a signal from the operation lever 2a1. Switch electrically.
  • the processing of this flowchart is repeatedly executed at intervals of, for example, 0.1 seconds while the work machine is operating.
  • FIG. 5 is a diagram showing the relationship between the operating time of the vehicle body and the number of times the on-off valve is operated in the prior art.
  • control is not performed so as to average the frequency of use of the on-off valves 25a to 25d.
  • the operating frequency ratio of the actuators 5a and 5b is ⁇ : 1
  • FIG. 6 shows this state.
  • FIG. 6 shows the timing of replacing the on-off valve in the prior art.
  • the on-off valves 25a and 25c and the on-off valves 25b and 25d do not have the same lifetime. Therefore, the on-off valves 25a to 25d cannot be replaced at the same timing.
  • FIG. 7 shows the relationship between the operating time of the vehicle body and the number of times the on-off valve is operated in the first embodiment.
  • the first allowable deviation amount is set to ⁇ as shown in FIG.
  • FIG. 8 shows this state.
  • FIG. 8 shows the replacement timing of the on-off valves in the first embodiment.
  • the same timing as the on-off valves 25a to 25d is used. (The timing is considered to be the same), and the life will end.
  • the amount of wear during the operation of the on-off valves 25a to 25d is averaged, so that the remaining life of the on-off valves 25a to 25d does not vary.
  • all of the on-off valves 25a to 25d can be replaced at the same timing, and the number of maintenance operations and maintenance costs can be reduced.
  • m and n have the relationship of the following equation (1).
  • m ⁇ (2n ⁇ 1) ( ⁇ + 1) / ( ⁇ 1) (where n is an integer of 1 or more) (1)
  • the directional switching valves 30a to 30d are designed to have a service life of about 1/20 of that of the on-off valves 25a to 25d, so that the replacement timing can be made uniform.
  • the number of times of switching of the direction switching valves 30a to 30d is about 1/20 of the average value of the number of times of operation of the on-off valves 25a to 25d.
  • step 40c of FIG. 4 instead of performing the process of determining whether or not the number of operations of the on-off valves 25a to 25d has reached the predetermined value S1, the number of operations of the on-off valves 25a to 25d
  • the same operation and effect as in the first embodiment can be obtained by applying a process of determining whether or not the first specified time ⁇ 1 (see FIG. 7) has elapsed from the time when the average value of the number of actuations of up to 25d is reached. I can play.
  • step 40c in this modified example is as follows. That is, the recording device 10 records information on the time when any one of the operation times of the on-off valves 25a to 25d reaches the average value of the number of operations of the on-off valves 25a to 25d, and records the elapsed time from that time one by one. , To the controller 20. When the elapsed time reaches the first specified time ⁇ 1, the controller 20 connects the directional control valve connected to the open / close valve with the largest number of operations among the open / close valves 25a to 25d and the open / close valve with the least number of operations. A switching command is issued to the directional switching valves, and these directional switching valves are switched from the A position to the B position or from the C position to the D position.
  • the feature of the second embodiment resides in that the controller 20 gives a switching command to the direction switching valves 30a to 30d based on the accumulated value of the product of the flow rates of the on-off valves 25a to 25d and the pressure difference between the front and rear.
  • the controller 20 gives a switching command to the direction switching valves 30a to 30d based on the accumulated value of the product of the flow rates of the on-off valves 25a to 25d and the pressure difference between the front and rear.
  • FIG. 9 is a block diagram 41f of the control processing performed by the controller 20 in the second embodiment.
  • the controller 20 calculates the differential pressure ⁇ P across the on-off valves 25a to 25d (41f-41). 2) The square root of the differential pressure ⁇ P is determined (41f-3). Further, the controller 20 obtains the displacement amounts of the on-off valves 25a to 25d (41f-4) and obtains the opening areas (41f-5) of the on-off valves 25a to 25d.
  • the controller 20 determines the square root (41f-3) of the front-rear pressure difference ⁇ P, the opening area (41f-5) of the on-off valves 25a to 25d, and the flow coefficient (41f-6) from the open-close valves 25a to 25d.
  • the flow rate Q is determined (41f-7).
  • the controller 20 calculates Q ⁇ P, which is the product of the differential pressure ⁇ P (41f-2) and the flow rate Q (41f-7), for each of the on-off valves 25a to 25d (41f-8).
  • the controller 20 calculates a predetermined value S2 by adding a predetermined second allowable deviation amount ⁇ (see FIG. 13) to the average value of the accumulated values Sqp1 to Sqp4.
  • the controller 20 switches the direction connected to the on-off valve whose cumulative value Sqp1 to Sqp4 of the Q ⁇ P exceeds the predetermined value S2.
  • a switching command is issued to the valve and the directional control valve connected to the on-off valve having the smallest accumulated value of Q ⁇ P.
  • FIG. 10 is a flowchart showing a procedure for switching the direction switching valves 30a to 30d by the controller 20 in the second embodiment.
  • the controller 20 determines whether or not the on-off valves 25a to 25d are closed in step 41a. If the valve has not been closed, that is, if the displacement amount is not zero (step 41a / No), the direction switching valves 30a to 30d are not switched, and the process for that time is ended.
  • Step 41a When the valve is closed, that is, when the displacement amount is zero (Step 41a / Yes), the process proceeds to Step 41b, where the controller 20 acquires the cumulative values Sqp1 to Sqp4 of Q ⁇ P of the on-off valves 25a to 25d, and proceeds to Step 41c. Then, a threshold determination is performed to determine whether each of the accumulated values Sqp1 to Sqp4 is equal to or greater than a predetermined value S2.
  • step 41d in which the controller 20 gives a command to the direction switching valves 30a, 30c connected to the on-off valves 25a, 25c, respectively, and switches the direction switching valves 30a, 30c from the position A to the position B. That is, the on-off valves 25a and 25c and the actuator 5b communicate with each other via the direction switching valves 30a and 30c.
  • the controller 20 in order to connect the on-off valves 25b and 25d to the actuator 5a, the controller 20 simultaneously switches the directional control valves 30b and 30b to switch the directional control valves 30a and 30c. , 30d to switch the direction switching valves 30b, 30d from position C to position D.
  • the processing of this flowchart is repeatedly executed at intervals of, for example, 0.1 seconds while the work machine is operating.
  • FIG. 11 is a diagram showing the relationship between the operating time of the vehicle body and the cumulative value of Q ⁇ P of the on-off valve in the prior art.
  • the use frequency of the on-off valves 25a to 25d is not controlled to be averaged, for example, if the cumulative value ratio of Q ⁇ P of the on-off valves 25a to 25d connected to the actuators 5a and 5b is ⁇ : 1,
  • FIG. 12 shows this state.
  • FIG. 12 shows the replacement timing of the on-off valve in the prior art. As shown in FIG. 12, the on-off valves 25a and 25c and the on-off valves 25b and 25d do not coincide with each other at the end of their life. Therefore, the on-off valves 25a to 25d cannot be replaced at the same timing.
  • FIG. 13 shows the relationship between the operating time of the vehicle body and the cumulative value of Q ⁇ P of the on-off valve in the second embodiment.
  • the cumulative value of Q ⁇ P of the on-off valves 25a to 25d reaches the predetermined value S2
  • the direction switching valves 30a to 30d are switched, and as shown in FIG.
  • the predetermined value S2 the average value of the accumulated values of Q ⁇ P of the on-off valves 25a to 25d ⁇ ⁇ times.
  • FIG. 14 shows this state.
  • FIG. 14 shows the replacement time of the on-off valve in the second embodiment.
  • the risk of wear due to erosion is also averaged.
  • the life is reached at the same timing as the on-off valves 25a to 25d (timing that can be regarded as the same).
  • all of the on-off valves 25a to 25d can be replaced at the same timing, and the number of maintenance operations and maintenance costs can be reduced.
  • step 41c of FIG. 10 instead of performing a threshold determination as to whether or not the cumulative values Sqp1 to Sqp4 of the Q ⁇ P of the on-off valves 25a to 25d are each equal to or larger than a predetermined value S2, the accumulation of the Q ⁇ P of the on-off valves 25a to 25d is performed.
  • the second embodiment can be applied to a case where a process of performing a threshold determination of whether or not a second specified time ⁇ 2 (see FIG. 13) has elapsed from the time when the values Sqp1 to Sqp4 have reached the average value of the cumulative value of Q ⁇ P is applied.
  • step 41c in the second modification is as follows. That is, the recording device 10 records the information of the time when the cumulative value of Q ⁇ P of any of the on-off valves 25a to 25d reaches the average value of the cumulative value of Q ⁇ P. 20. When the elapsed time reaches the second specified time ⁇ 2, the controller 20 determines whether the directional control valve connected to the on-off valve having the largest accumulated value of Q ⁇ P among the on-off valves 25a to 25d and the smallest accumulated value of Q ⁇ P are present. A switching command is issued to the direction switching valves connected to the on-off valves, and these direction switching valves are switched from the position A to the position B or from the position C to the position D.
  • the feature of the third embodiment is that the controller 20 gives a switching command to the direction switching valves 30a to 30d based on the elapsed time from the time when the switching of the previous direction switching valves 30a to 30d occurred.
  • the controller 20 gives a switching command to the direction switching valves 30a to 30d based on the elapsed time from the time when the switching of the previous direction switching valves 30a to 30d occurred.
  • FIG. 15 is a flowchart showing a procedure for switching the direction switching valves 30a to 30d by the controller 20 in the third embodiment.
  • the controller 20 determines whether or not the on-off valves 25a to 25d are closed in step 42a. If the valve has not been closed, that is, if the displacement amount is not zero (step 42a / No), the direction switching valves 30a to 30d are not switched, and the current process ends. When the valve is closed, that is, when the displacement amount is zero (step 42a / Yes), the process proceeds to step 42b, where the controller 20 obtains the elapsed time T from the time when the switching occurs, and then proceeds to step 42c.
  • a threshold value determination is made as to whether or not the elapsed time T has reached a predetermined third specified time ST.
  • the third specified time ST in this case may be, for example, a value obtained by analyzing the operation of the vehicle body to be used, or a value determined by measuring the actual actuator operation time of the vehicle body and considering it. Good. If the elapsed time T has reached the third specified time ST (step 42c / Yes), the controller 20 proceeds to step 42d and switches the direction switching valves 30a to 30d.
  • the processing of this flowchart is repeatedly executed at intervals of, for example, 0.1 seconds while the work machine is operating.
  • FIG. 16 shows the relationship between the operating time of the vehicle body and the number of times the on-off valve is operated in the third embodiment.
  • the number of times of operation of the on-off valves 25a to 25d is averaged by switching the direction switching valves 30a to 30d every third specified time ST. More specifically, the number of actuations of the on-off valves 25a to 25d takes an average value every 2ST time which is twice the third specified time ST. Therefore, the number of times of operation of the on-off valves 25a to 25d can be averaged in the range of the average value ⁇ ( ⁇ -1) / (2 ( ⁇ + 1)) over the entire region of the graph.
  • FIG. 17 is a diagram showing the replacement timing of the on-off valve in the third embodiment.
  • the number of times of operation of the on-off valves 25a to 25d is averaged, so that the life of the on-off valves 25a to 25d is reached at the same timing (timing that can be considered the same) as the on-off valves 25a to 25d. .
  • the amount of wear during the operation of the on-off valves 25a to 25d is averaged, so that the remaining life of the on-off valves 25a to 25d does not vary.
  • the fourth embodiment is characterized in that both the first embodiment and the second embodiment are adopted and the switching control of the direction switching valve is performed. Since the switching control of the direction switching valve according to the first embodiment and the switching control of the direction switching valve according to the second embodiment may be contradictory, there is a concern that control hunting may occur. Therefore, in order to prevent control hunting, in the fourth embodiment, the controller 20 performs the following priority control.
  • Remaining life ratio S3 (Design life (times)-Number of operations (times)) / Design life (times) ... (2)
  • the controller 20 defines a remaining life rate S3 relating to the number of operations and a remaining life rate S4 relating to the accumulated value of Q ⁇ P, and based on the magnitude relation thereof, the number of operations (first condition) and the accumulated value of Q ⁇ P (second condition). ) Is determined based on which determination is given priority to the command. Details of the control by the controller 20 will be described below.
  • FIG. 18 is a flowchart showing a procedure for switching the direction switching valves 30a to 30d by the controller 20 in the fourth embodiment.
  • the controller 20 determines whether or not the on-off valves 25a to 25d are closed in step 43a. If the valve has not been closed, that is, if the displacement amount is not zero (step 43a / No), the direction switching valves 30a to 30d are not switched, and the current process ends. When the valve is closed, that is, when the displacement amount is zero (step 43a / Yes), the controller 20 calculates a remaining life rate S3 related to the number of times of operation and a remaining life rate S4 related to the accumulated value of Q ⁇ P in step 43e. The magnitude relationship between the remaining life rate S3 and the remaining life rate S4 is determined.
  • step 43e If the remaining life rate S3 relating to the number of operations is smaller (step 43e / Yes), the process proceeds to step 43f, and if the remaining life rate S4 related to the accumulated value of Q ⁇ P is smaller, the process proceeds to step 43b. Subsequent operations are the same as in the first embodiment and the second embodiment, respectively, and will not be described. The processing of this flowchart is repeatedly executed at intervals of, for example, 0.1 seconds while the work machine is operating.
  • the number of times of use of the on-off valves 25a to 25d is averaged in consideration of the state quantity history having the shorter remaining life, so that the control of both the first embodiment and the second embodiment is performed. Control hunting can be prevented.
  • FIG. 19 shows an example in which the present invention is applied to an open circuit.
  • the closed circuit pumps 1a and 1b of FIG. 2 are replaced with open circuit pumps 3a and 3b, and a tank 4 as a supply source and a discharge destination of hydraulic oil is provided. It is necessary to provide switching valves 26a and 26b for switching the supply destination of the pressure oil to the actuators 5a and 5b between the rod side and the bottom side.
  • the hydraulic circuit configuration includes two pumps 1a and 1b, four on-off valves 25a to 25d, and two actuators 5a and 5b.
  • Any hydraulic circuit configuration including at least one pump, two on-off valves, and one actuator is applicable. In that case, the remaining life is averaged between the two on-off valves.
  • the present invention can be applied to a hydraulic circuit configuration including three or more pumps, five or more on-off valves, and three or more actuators.

Abstract

メンテナンス回数を低減できる作業機械の油圧駆動装置を提供する。 コントローラ(20)は、第1開閉弁(25a)を開け、第2開閉弁(25b)を閉じ、第1方向切換弁(30a)を第1位置(A)に切換え、第2方向切換弁(30b)を第3位置(C)に切換えることで、油圧ポンプ(1a)からの圧油を、第1開閉弁から第1方向切換弁を介してアクチュエータ(5a)に供給し、第1開閉弁の履歴情報が所定の条件を満たすと判断した場合に、第1開閉弁を閉じ、第2開閉弁を開け、第1方向切換弁を第2位置(B)に切換え、第2方向切換弁を第4位置(D)に切換えることで、油圧ポンプからの圧油を、第2開閉弁から第2方向切換弁を介してアクチュエータに供給する。例えば、コントローラは、第1開閉弁の作動回数が第1所定値に到達した場合に、所定の条件を満たすと判定する。

Description

作業機械の油圧駆動装置
 本発明は、作業機械の油圧駆動装置に関する。
 鉱山等で使用される油圧ショベル等の作業機械は、ある一定の稼動時間毎に油圧機器のメンテナンスを行うのが一般的である。メンテナンスの対象となる油圧機器には、例えば、フロント作業機用のアクチュエータ、走行用のアクチュエータ、油圧ポンプ、開閉弁等がある。これらの各油圧機器は使用頻度が異なるため、一定の稼動時間後に部品交換が必要な油圧機器もあれば、使用状況に応じて任意に部品交換を行う油圧機器もある。各油圧機器の使用頻度の偏りに合わせてメンテナンスを行うとメンテナンス回数が増え、作業機械の稼動率が低下するため、各油圧機器の使用頻度は平均化されることが望ましい。
 各油圧機器の使用頻度を平均化する技術として、例えば特許文献1には「複数の油圧ポンプと複数の油圧アクチュエータと、1つの油圧ポンプを1つの油圧アクチュエータに接続可能とする複数の切換弁とを備えた作業機械の駆動装置であって、複数の優先テーブルと、変更間隔時間記憶部からの間隔時間とを取り込み、計時して間隔時間に到達したときに、出力する優先テーブルを変更する接続順番変更部と、要求流量と要求ポンプ個数値と、接続順番変更部が出力する優先テーブルとを取り込み、要求ポンプ個数値を基に、複数の油圧ポンプの複数の油圧アクチュエータへの割当てを算出し、割当ての結果を基に、複数のレギュレータ及び複数の切換弁に対する指令信号を出力する使用ポンプ演算部とを備えた」構成が記載されている(要約参照)。
特開2017-53383号公報
 しかしながら、特許文献1に開示された従来技術では、油圧ポンプの使用頻度は平均化されるが、それ以外の油圧機器、例えば、油圧ポンプに接続されている開閉弁の使用頻度にはバラツキがある。メンテナンス回数をさらに減らすためには、油圧ポンプ以外の油圧機器についても使用頻度を平均化することが重要である。そこで、本発明はメンテナンス回数を低減できる作業機械の油圧駆動装置を提供することを課題とする。
 上記課題を解決するため、本発明の一態様は、油圧ポンプと、前記油圧ポンプからの圧油により駆動するアクチュエータと、前記油圧ポンプと前記アクチュエータとの間の流路を開閉する第1開閉弁と、前記第1開閉弁と並列に設けられ、前記油圧ポンプと前記アクチュエータとの間の流路を開閉する第2開閉弁と、前記第1開閉弁と前記アクチュエータとを連通させる第1位置および前記第1開閉弁と前記アクチュエータとを遮断する第2位置に切換え可能な第1方向切換弁と、前記第2開閉弁と前記アクチュエータとを遮断する第3位置および前記第2開閉弁と前記アクチュエータとを連通させる第4位置に切換え可能な第2方向切換弁と、前記第1開閉弁および前記第2開閉弁の動作状態を経時的に記録する記録装置と、前記記録装置に記録された前記第1開閉弁および前記第2開閉弁の動作状態に関する履歴情報に基づいて、前記第1方向切換弁および前記第2方向切換弁の切換え動作の制御を行うコントローラと、を備えた作業機械の油圧駆動装置において、前記コントローラは、前記第1開閉弁を開け、前記第2開閉弁を閉じ、前記第1方向切換弁を前記第1位置に切換え、前記第2方向切換弁を前記第3位置に切換えることで、前記油圧ポンプからの圧油を、前記第1開閉弁から前記第1方向切換弁を介して前記アクチュエータに供給し、前記第1開閉弁の前記履歴情報が所定の条件を満たすと判断した場合に、前記第1開閉弁を閉じ、前記第2開閉弁を開け、前記第1方向切換弁を前記第2位置に切換え、前記第2方向切換弁を前記第4位置に切換えることで、前記油圧ポンプからの圧油を、前記第2開閉弁から前記第2方向切換弁を介して前記アクチュエータに供給することを特徴とする。
 本発明によれば、作業機械の油圧駆動装置のメンテナンス回数を低減できる。なお、上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
油圧ショベルの外観斜視図。 油圧ショベルに備えられる油圧駆動装置の主要構成を示す油圧回路図。 図2において各方向切換弁が切換えられた状態を示す油圧回路図。 第1実施形態における方向切換弁の切換え手順を示すフローチャート。 従来技術における車体の稼動時間と開閉弁の作動回数の関係を示す図。 従来技術における開閉弁の交換時期を示す図。 第1実施形態における車体の稼動時間と開閉弁の作動回数の関係を示す図。 第1実施形態における開閉弁の交換時期を示す図。 第2実施形態におけるコントローラの制御処理のブロック線図。 第2実施形態における方向切換弁の切換え手順を示すフローチャート。 従来技術における車体の稼動時間と開閉弁のQΔPの累積値の関係を示す図。 従来技術における開閉弁の交換時期を示す図。 第2実施形態における車体の稼動時間と開閉弁のQΔPの累積値の関係を示す図。 第2実施形態における開閉弁の交換時期を示す図。 第3実施形態における方向切換弁の切換え手順を示すフローチャート。 第3実施形態における車体の稼動時間と開閉弁の作動回数の関係を示す図。 第3実施形態における開閉弁の交換時期を示す図。 第4実施形態における方向切換弁の切換え手順を示すフローチャート。 本発明を開回路で構成した場合の油圧回路図。
 以下、本発明の各実施形態について図面を参照して説明する。なお、各図において同一要素については同一の符号を記し、重複する説明は省略する。
「第1実施形態」
 以下、本発明の第1実施形態に係る油圧駆動装置を作業機械の代表例である油圧ショベルに適用した例について説明する。
(油圧ショベルの外観)
 図1は第1実施形態に係る油圧駆動装置が適用される油圧ショベル1の外観斜視図である。図1に示す油圧ショベル1は、下部走行体101と、上部旋回体102とを備えている。下部走行体101は、左右一対の履帯と、左右一対の履帯に走行動力を与えるアクチュエータとしての走行モータ10a、10bとを備えている。上部旋回体102は、下部走行体101との間に介在するベアリング機構(図示せず)と、アクチュエータとしての旋回モータ(図示せず)とにより下部走行体101に対して旋回可能とされている。上部旋回体102は、メインフレーム105の前部に作業装置103、後部にカウンタウェイト108、左前部に運転室104が搭載されている。カウンタウェイト108の前側には、原動機であるエンジン106と、エンジン106からの駆動出力により駆動する駆動システム(図示せず)とが収容されている。
 作業装置103は、掘削などの作業を行うためのフロント作業機であって、ブーム111と、ブーム111を駆動させるアクチュエータとしてのブームシリンダ7aと、アーム112と、アーム112を駆動させるアクチュエータとしてのアームシリンダ7bと、バケット113と、バケット113を駆動させるアクチュエータとしてのバケットシリンダ7cとを備えている。
(油圧駆動装置の構成)
 図2は油圧ショベル1に備えられる本発明の第1実施形態に係る油圧駆動装置の主要構成を示す油圧回路図である。なお、図2においてエンジン等の構成は省略している。図2に示すように、油圧ショベル1を駆動するための油圧駆動回路は、閉回路ポンプ(以下、ポンプと略記)1a、1bと、アクチュエータ5a、5bと、ポンプ1a、1bとアクチュエータ5a、5bとの間に設けられた開閉弁25a、25b、25c、25dと、アクチュエータ5a、5bと開閉弁25a、25b、25c、25dとの間に設けられた方向切換弁30a、30b、30c、30dとが閉回路接続されて構成されている。
 ここで、ポンプ1a、1bは本発明の「油圧ポンプ」に相当し、アクチュエータ5a、5bは本発明の「アクチュエータ」に相当し、開閉弁25a、25cは本発明の「第1開閉弁」に相当し、開閉弁25b,25dは本発明の「第2開閉弁」に相当し、方向切換弁30a、30cは本発明の「第1方向切換弁」に相当し、方向切換弁30b、30dは本発明の「第2方向切換弁」に相当する。
 なお、アクチュエータ5aは使用頻度が高いアクチュエータであり、例えばブームシリンダ7a、アームシリンダ7b、またはバケットシリンダ7cである。これに対して、アクチュエータ5bは使用頻度がアクチュエータ5aに比べて低いアクチュエータであり、例えば走行モータ10a、10bである。
 開閉弁25a~25dの一端には、それぞれバネ25a2、25b2、25c2、25d2が取り付けられており、他端には、それぞれソレノイド25a1、25b1、25c1、25d1が取り付けられている。開閉弁25a~25dは、バネ25a2~25d2の付勢力により常時、閉位置に保持されており、ポンプ1a、1bとアクチュエータ5a、5bとの間の油路を遮断している。そして、コントローラ20からの電気信号によりソレノイド25a1~25d1が励磁されると、開閉弁25a~25dが開位置に切換わり、ポンプ1a、1bとアクチュエータ5a、5bとの間の油路が連通する。
 方向切換弁30a、30cの一端には、それぞれバネ30a2、30c2が取り付けられており、他端にはそれぞれソレノイド30a1、30c1が取り付けられている。方向切換弁30a、30cは、バネ30a2、30c2の付勢力により常時、位置Aに保持されており、開閉弁25aとアクチュエータ5aとの間の油路、開閉弁25cとアクチュエータ5aとの間の油路がそれぞれ連通している。その際、開閉弁25aとアクチュエータ5bとの間の油路、開閉弁25cとアクチュエータ5bとの間の油路は遮断されている。そして、コントローラ20からの電気信号によりソレノイド30a1、30c1が励磁されると、方向切換弁30a、30cが位置A(第1位置)から位置B(第2位置)に切換わり、図3のように開閉弁25aとアクチュエータ5bとの間の油路、開閉弁25cとアクチュエータ5bとの間の油路がそれぞれ連通し、開閉弁25aとアクチュエータ5aとの間の油路、開閉弁25cとアクチュエータ5aとの間の油路が遮断される。このように、方向切換弁30a、30cが位置Aから位置Bに切換わると、ポンプ1a、1bからの圧油の供給先がアクチュエータ5aからアクチュエータ5bに選択的に切換わる。
 なお、方向切換弁30b、30dは、方向切換弁30a、30cと構造は同じであるが、位置C(第3位置)から位置D(第4位置)に切換わると、ポンプ1a、1bからの圧油の供給先がアクチュエータ5bからアクチュエータ5aに選択的に切換わる点が異なる。
 なお、アクチュエータ5a、5bとして油圧シリンダを用いる場合には、ロッド側とボトム側で供給できる圧油の体積が異なるので、その体積差(ロッド侵入分の体積差)を補うために、アクチュエータ5a、5bのボトム側に供給・排出路50を設け、回路内の作動油の過不足分をこの供給・排出路50から授受できるような回路構成となっている。
 変位センサ16a、16b、16c、16dはそれぞれ開閉弁25a~25dに設けられており、電気配線を介して記録装置10に接続されている。変位センサ16a~16dは開閉弁25a~25dの開閉動作を検出するためのものであるが、変位センサ16a~16dの代わりに、他の種類の弁開閉検出手段などでもよい。変位センサ16a~16dにより検出した開閉弁25a~25dの各変位量は、記録装置10に記録される。コントローラ20は、記録された各変位量に基づいて開閉弁25a~25dの作動回数等を演算し、方向切換弁30a~30dに対し指令を与えることができる。なお、記録装置10は、例えば、HDD等の大記憶容量のメモリとして構成される。
 圧力センサ15a、15b、15c、15d、15e、15f、15g、15h、15i、15j、15k、15lは開閉弁25a~25dの前後の圧力を検出するために設けられており、電気配線を介して記録装置10に接続されている。圧力センサ15a~15lにより検出した各圧力データは、記録装置10に記録される。コントローラ20は、記録された各圧力データと通過流量とに基づいて、詳しくは後述する開閉弁25a~25dに対する通過流量と前後差圧の積を演算し、方向切換弁30a~30dに対し指令を与えることができる。
 2a、2bは操作レバー装置で、電気配線を介してコントローラ20に接続されている。操作レバー装置2a、2bは、アクチュエータ5a、5bを伸長、縮小するための操作レバー2a1、2b1を含んで構成され、例えば、油圧ショベルのオペレータによって操作される。
 操作レバー装置2a、2bは、操作レバー2a1、2b1の傾倒量、すなわち、レバー操作量を電気的に検知する検出装置(図示せず)を備えている。検出装置が検出したレバー操作量は、レバー操作量信号としてコントローラ20へ出力される。コントローラ20は入力されたレバー操作量信号に基づいて、開閉弁25a~25dを開閉する。なお、コントローラ20は、例えばマイクロコンピュータにより構成され、CPU、ROM、RAM、通信I/F等を備えている。
(油圧駆動装置の動作)
 次に、油圧駆動装置の動作について説明する。なお、以下の説明は、ポンプ1a、1bからの圧油を合流させてアクチュエータ5a、5bに送り、アクチュエータ5a、5bをそれぞれ操作する場合を想定している。
 オペレータにより操作レバー2a1が傾倒されると、操作レバー装置2aからレバー操作量に応じた信号がコントローラ20へ出力される。その出力信号を受け、コントローラ20は、開閉弁25a、25cのソレノイド25a1、25c1に電流指令を与え、ソレノイド25a1、25c1の推力がバネ25a2、25c2の力を上回ることで開閉弁25a、25cが開弁する。開閉弁25a、25cが開弁すると、ポンプ1a、1bからの圧油は、方向切換弁30a、30cを介し、アクチュエータ5aに送られ、アクチュエータ5aを操作することができる。
 一方、オペレータにより操作レバー2b1が傾倒されると、操作レバー装置2bからレバー操作量に応じた信号がコントローラ20へ出力される。その出力信号を受け、コントローラ20は、開閉弁25b、25dのソレノイド25b1、25d1に電流指令を与え、ソレノイド25b1、25d1の推力がバネ25b2、25d2の力を上回ることで開閉弁25b、25dが開弁する。開閉弁25b、25dが開弁すると、ポンプ1a、1bからの圧油は、方向切換弁30b、30dを介し、アクチュエータ5bに送られ、アクチュエータ5bを操作することができる。
 この時、開閉弁25a~25dに設けられている変位センサ16a~16dは、開閉弁25a~25dの変位量を検出し、変位量の検出信号を記録装置10に送る。記録装置10では、変位量の検出信号を時刻歴波形として記録し、その波形から開閉弁25a~25dの作動回数(開閉した回数)をカウントし、記録する。
(コントローラによる制御処理)
 記録装置10は、開閉弁25a~25dの各作動回数の履歴をコントローラ20に出力し、コントローラ20は各作動回数の履歴を受け、開閉弁25a~25dの作動回数の平均値と、詳しくは後述する所定値S1(所定値S1=開閉弁25a~25dの作動回数の平均値+第1許容乖離量α)とを計算する。コントローラ20は、開閉弁25a~25dの何れかの作動回数が所定値S1を超えると、作動回数が所定値S1を超えた開閉弁に接続された方向切換弁と、最も作動回数の少ない開閉弁に接続された方向切換弁に対し切換え指令を出す。
 この時のコントローラ20における処理を、図4を用いて説明する。図4は第1実施形態において方向切換弁30a~30dの切換え手順を示すフローチャートである。まず、コントローラ20は、開閉弁25a~25dが閉弁しているかどうかをステップ40aにて判定する。具体的には、コントローラ20は、変位センサ16a~16dからの変位量に基づいて、開閉弁25a~25dが閉弁しているかを判定する。閉弁していない場合(ステップ40a/No)、方向切換弁30a~30dの切換えは行わないので、その回の処理は終了する。閉弁している場合、すなわち変位量がゼロの場合(ステップ40a/Yes)、ステップ40bに進んで、コントローラ20は、記録装置10から開閉弁25a~25dの作動回数N1、N2、N3、N4を取得し、その後、ステップ40cにおいて各作動回数が閾値である所定値S1に到達しているか否かの閾値判定を行う。
 ここで、仮に開閉弁25a、25cの作動回数N1、N3が所定値S1に到達したとする。その際は、ステップ40dに進んで、コントローラ20は開閉弁25a、25cに接続された方向切換弁30a、30cに指令を与え、方向切換弁30a、30cを位置Aから位置Bに切換える。すなわち、開閉弁25a、25cとアクチュエータ5bが方向切換弁30a、30cを介して連通する。また、同時に最も作動回数の少ない開閉弁を開閉弁25b、25dとすると、開閉弁25b、25dとアクチュエータ5aとを連通させるため、コントローラ20から方向切換弁30b、30dに指令を与え、方向切換弁30b、30dを位置Cから位置Dに切換える。方向切換弁30a~30dが切換えられた状態が図3である。こうして、作動回数の少ない開閉弁25b、25dの使用が可能となる。上記のような切換えが生じた場合、操作レバー2a1からの信号に応じて、開閉弁25b、25dを開弁するように、操作レバー2a1と開閉弁25a~25dとの対応関係をコントローラ20にて電気的に切換える。なお、本フローチャートの処理は、作業機械の稼動中に、例えば0.1秒間隔で繰り返し実行される。
 次に、車体の稼動時間と開閉弁の作動回数との関係について、従来技術と本実施形態とで比較して説明する。図5は従来技術における車体の稼動時間と開閉弁の作動回数の関係を示す図である。従来技術では、開閉弁25a~25dの使用頻度を平均化するよう制御していないため、例えばアクチュエータ5aと5bの稼動回数比をγ:1とすると、アクチュエータ5aに接続された開閉弁25a、25cの方が、アクチュエータ5bに接続されている開閉弁25b、25dに対して、作動回数がγ倍(γn/1n=γ倍)多くなる。そのため、開閉弁25a、25cと開閉弁25b、25dとでは交換時期が異なる。この様子を示したものが図6である。図6は従来技術における開閉弁の交換時期を示しており、図6に示すように、開閉弁25a、25cと開閉弁25b、25dとでは寿命を迎えるタイミングが一致しない。そのため、開閉弁25a~25dを同じタイミングで交換することはできない。
 図7は第1実施形態における車体の稼動時間と開閉弁の作動回数の関係を示したものである。第1実施形態では、開閉弁25a~25dの作動回数が所定値S1に到達すると、方向切換弁30a~30dを切換える構成であるため、図7に示すように、第1許容乖離量をαに設定すると、開閉弁25a~25dの各作動回数を、開閉弁25a~25dの作動回数の平均値±αの範囲に平均化することができる。すなわち、所定値S1=開閉弁25a~25dの作動回数の平均値±α回となる。
 そのため、開閉弁25a、25cと開閉弁25b、25dとでは交換時期が概ね一致する。この様子を示したものが図8である。図8は第1実施形態における開閉弁の交換時期を示しており、図8に示すように、開閉弁25a~25dの各作動回数が平均化されるため、開閉弁25a~25dと同一のタイミング(同一とみなせるタイミング)で寿命を迎えることとなる。別言すれば、開閉弁25a~25dの作動時の摩耗量が平均化されるため、開閉弁25a~25dの余寿命のバラツキがなくなる。その結果、開閉弁25a~25dを全て同一のタイミングで交換でき、メンテナンス回数とメンテナンスコストを低減できる。
 ここで、開閉弁25a~25dの作動回数の平均値、方向切換弁30a~30dの切換え回数をそれぞれm、nとすると、m、nは下記の式(1)の関係にある。
 m=α(2n-1)(γ+1)/(γ-1) (ただし、nは1以上の整数)・・・(1)
 例えば、アクチュエータの稼動回数比γ=100の場合であって、第1許容乖離量α=10に設定し、m=10000回の時点でのnを計算すると、その時点での方向切換弁30a~30dの切換え回数nは490回(小数点以下を切り捨て)となる。したがって、方向切換弁30a~30dは開閉弁25a~25dに対し、約1/20の寿命として設計することで、交換のタイミングを揃えることができる。あるいは、メンテナンスの観点では、方向切換弁30a~30dの切換え回数は開閉弁25a~25dの作動回数の平均値の約1/20であるため、開閉弁25a~25dに対して行われるメンテナンス20回の内、1回は方向切換弁30a~30dもメンテナンスを行うというメンテナンススケジュールを組むことができる。
 これにより、方向切換弁30a~30dのみをメンテナンスする必要性がなくなり、メンテナンス回数の低減が図れる。なお、開閉弁25a~25dと方向切換弁30a~30dとの寿命比及びメンテナンスタイミング比は上述の式(1)より、適当な第1許容乖離量αを与えることで決定することができる。
(変形例1)
 図4のステップ40cにおいて、開閉弁25a~25dの作動回数がそれぞれ所定値S1に到達しているか否かの閾値判定を行う処理の代わりに、開閉弁25a~25dの作動回数が、開閉弁25a~25dの作動回数の平均値に到達した時刻から第1規定時間τ1(図7参照)を経過したか否か閾値判定を行う処理を適用しても、第1実施形態と同様の作用効果を奏し得る。ここで、第1規定時間τ1はτ1=2α/(γ-1)と表現することができる。
 この変形例におけるステップ40cの処理は次の通りとなる。すなわち、記録装置10は、開閉弁25a~25dの何れかの作動回数が開閉弁25a~25dの作動回数の平均値に到達した時の時刻の情報を記録し、その時刻からの経過時間を逐一、コントローラ20に出力する。コントローラ20は、前述の経過時間が第1規定時間τ1に到達すると、開閉弁25a~25dのうち最も作動回数の多い開閉弁に接続された方向切換弁と、最も作動回数の少ない開閉弁に接続された方向切換弁に対して切換え指令を出し、これら方向切換弁をA位置からB位置あるいはC位置からD位置に切換える。
「第2実施形態」
 第2実施形態の特徴は、コントローラ20が開閉弁25a~25dの通過流量と前後差圧の積の累積値に基づき、方向切換弁30a~30dに切換え指令を与えることにある。以下、コントローラ20による処理の詳細について説明する。
 図9は第2実施形態においてコントローラ20が行う制御処理のブロック線図41fである。図9に示すように、コントローラ20は、記録装置10からの呼び出しにより記録装置10が出力した履歴を受けると(41f-1)、開閉弁25a~25dの前後差圧ΔPを算出し(41f-2)、前後差圧ΔPの平方根を求める(41f-3)。また、コントローラ20は、開閉弁25a~25dの変位量を取得して(41f-4)、開閉弁25a~25dの開口面積(41f-5)を求める。
 次いで、コントローラ20は、前後差圧ΔPの平方根(41f-3)と、開閉弁25a~25dの開口面積(41f-5)と、流量係数(41f-6)とから、開閉弁25a~25dの通過流量Qを求める(41f-7)。次いで、コントローラ20は、開閉弁25a~25dに対して、それぞれ前後差圧ΔP(41f-2)と通過流量Q(41f-7)との積であるQΔPを求め(41f-8)、各QΔPの値に1サイクル前のQΔPの累積値Sqp1~Sqp4(41f-9)を加算して(41f-10)、新たな開閉弁25a~25dのQΔPの累積値Sqp1~4を求める(41f-11)。その後、コントローラ20は、累積値Sqp1~Sqp4の平均値に所定の第2許容乖離量β(図13参照)を加え、所定値S2を算出する。
 コントローラ20は、開閉弁25a~25dの何れかのQΔPの累積値Sqp1~Sqp4が所定値S2を超えると、QΔPの累積値Sqp1~Sqp4が所定値S2を超えた開閉弁に接続された方向切換弁と、最もQΔPの累積値の少ない開閉弁に接続された方向切換弁に対し切換え指令を出す。
 この時のコントローラ20における処理を、図10を用いて説明する。図10は第2実施形態においてコントローラ20による方向切換弁30a~30dの切換え手順を示すフローチャートである。まず、コントローラ20は開閉弁25a~25dが閉弁しているかどうかをステップ41aにて判定する。閉弁していない場合、すなわち変位量がゼロでない場合(ステップ41a/No)、方向切換弁30a~30dの切換えは行わないので、その回の処理は終了する。閉弁している場合、すなわち変位量がゼロの場合(ステップ41a/Yes)、ステップ41bに進んで、コントローラ20は開閉弁25a~25dのQΔPの累積値Sqp1~Sqp4を取得し、ステップ41cにて累積値Sqp1~Sqp4の各値が所定値S2以上であるか否かの閾値判定を行う。
 ここで、仮に開閉弁25a、25cのQΔPの累積値Sqp1、Sqp3が所定値S2以上になったとする。その際は、ステップ41dに進み、コントローラ20は開閉弁25a、25cにそれぞれ接続されている方向切換弁30a、30cに指令を与え、方向切換弁30a、30cを位置Aから位置Bに切換える。すなわち、開閉弁25a、25cとアクチュエータ5bは方向切換弁30a、30cを介して連通する。
 また、最もQΔPの累積値の小さい開閉弁を25b、25dとすると、開閉弁25b、25dとアクチュエータ5aとを連通させるため、方向切換弁30a、30cの切換えと同時に、コントローラ20から方向切換弁30b、30dに指令を与え、方向切換弁30b、30dを位置Cから位置Dに切換える。なお、本フローチャートの処理は、作業機械の稼動中に、例えば0.1秒間隔で繰り返し実行される。
 次に、車体の稼動時間と開閉弁の作動回数との関係について、従来技術と第2実施形態とを比較して説明する。図11は従来技術における車体の稼動時間と開閉弁のQΔPの累積値の関係を示す図である。従来技術では、開閉弁25a~25dの使用頻度を平均化するよう制御していないため、例えばアクチュエータ5a、5bに接続される開閉弁25a~25dのQΔPの累積値比をδ:1とすると、アクチュエータ5aに接続された開閉弁25a、25cの方が、アクチュエータ5bに接続されている開閉弁25b、25dに対して、QΔPの累積値がδ倍(δn/1n=δ倍)多くなる。そのため、開閉弁25a、25cと開閉弁25b、25dとでは交換時期が異なる。この様子を示したものが図12である。図12は従来技術における開閉弁の交換時期を示しており、図12に示すように、開閉弁25a、25cと開閉弁25b、25dとでは寿命を迎えるタイミングが一致しない。そのため、開閉弁25a~25dを同じタイミングで交換することはできない。
 図13は第2実施形態における車体の稼動時間と開閉弁のQΔPの累積値の関係を示したものである。第2実施形態では、開閉弁25a~25dのQΔPの累積値が所定値S2に到達すると、方向切換弁30a~30dを切換える構成であるため、図13に示すように、第2許容乖離量をβに設定すると、開閉弁25a~25dのQΔPの累積値が、開閉弁25a~25dのQΔPの平均値±βの範囲になるように、開閉弁25a~25dの各作動回数が平均化される。すなわち、所定値S2=開閉弁25a~25dのQΔPの累積値の平均値±β回となる。
 そのため、開閉弁25a、25cと開閉弁25b、25dとでは交換時期が概ね一致する。この様子を示したものが図14である。図14は第2実施形態における開閉弁の交換時期を示しており、図14に示すように、開閉弁25a~25dのQΔPの累積値が平均化されるため、エロージョンによる摩耗のリスクも平均化され、開閉弁25a~25dと同一のタイミング(同一とみなせるタイミング)で寿命を迎えることとなる。その結果、第1実施形態と同様に、開閉弁25a~25dを全て同一のタイミングで交換でき、メンテナンス回数とメンテナンスコストを低減できる。
(変形例2)
 図10のステップ41cにおいて、開閉弁25a~25dのQΔPの累積値Sqp1~Sqp4がそれぞれ所定値S2以上であるか否かの閾値判定を行う処理の代わりに、開閉弁25a~25dのQΔPの累積値Sqp1~Sqp4が、QΔPの累積値の平均値に到達した時刻から第2規定時間τ2(図13参照)を経過したか否かの閾値判定を行う処理を適用しても、第2実施形態と同様の作用効果を奏し得る。ここで、第2規定時間τ2はτ2=2β/(δ-1)と表現することができる。
 この変形例2におけるステップ41cの処理は次の通りとなる。すなわち、記録装置10は、開閉弁25a~25dの何れかのQΔPの累積値がQΔPの累積値の平均値に到達した時の時刻の情報を記録し、その時刻からの経過時間を逐一、コントローラ20に出力する。コントローラ20は、前述の経過時間が第2規定時間τ2に到達すると、開閉弁25a~25dのうち最もQΔPの累積値の大きい開閉弁に接続された方向切換弁と、最もQΔPの累積値の小さい開閉弁に接続された方向切換弁に対し切換え指令を出し、これら方向切換弁をA位置からB位置あるいはC位置からD位置に切換える。
「第3実施形態」
 第3実施形態の特徴は、コントローラ20が前回の方向切換弁30a~30dの切換えが生じた時刻からの経過時間に基づき、方向切換弁30a~30dに切換え指令を与えることにある。以下、コントローラ20による処理の詳細について説明する。
 図15は第3実施形態においてコントローラ20による方向切換弁30a~30dの切換え手順を示すフローチャートである。まず、コントローラ20は、開閉弁25a~25dが閉弁しているかどうかをステップ42aにて判定する。閉弁していない場合、すなわち、変位量がゼロでない場合(ステップ42a/No)、方向切換弁30a~30dの切換えは行わないので、その回の処理は終了する。閉弁している場合、すなわち変位量がゼロの場合(ステップ42a/Yes)、ステップ42bに進んで、コントローラ20は、切換えが生じた時刻からの経過時間Tを取得し、次いで、ステップ42cにて経過時間Tが予め定められた第3規定時間STに達しているか否かの閾値判定を行う。この場合の第3規定時間STについては、例えば、使用される車体の動作を解析して求めた値や、実際の車体のアクチュエータ稼動時間を計測し、それを考慮した上で定めた値としてもよい。そして、経過時間Tが第3規定時間STに達していた場合(ステップ42c/Yes)、コントローラ20は、ステップ42dに進んで、方向切換弁30a~30dを切換える。なお、本フローチャートの処理は、作業機械の稼動中に、例えば0.1秒間隔で繰り返し実行される。
 次に、車体の稼動時間と開閉弁の作動回数との関係について、従来技術と第3実施形態とで比較して説明する。なお、従来技術については図5の通りであるため、ここでの説明は省略する。図16は第3実施形態における車体の稼動時間と開閉弁の作動回数の関係を示したものである。図16に示すように、第3実施形態では、方向切換弁30a~30dが第3規定時間ST毎に切換ることで、開閉弁25a~25dの作動回数が平均化される。より詳細には、第3規定時間STの2倍である2ST時間毎に、開閉弁25a~25dの作動回数が平均値を取る。よって、グラフ全域では、平均値±(γ-1)/(2(γ+1))の範囲で開閉弁25a~25dの作動回数を平均化することができる。
 図17は第3実施形態における開閉弁の交換時期を示す図である。図17に示すように、第3実施形態では、開閉弁25a~25dの作動回数が平均化されるため、開閉弁25a~25dと同一のタイミング(同一とみなせるタイミング)で寿命を迎えることとなる。別言すれば、開閉弁25a~25dの作動時の摩耗量が平均化されるため、開閉弁25a~25dの余寿命のバラツキがなくなる。その結果、第1、第2実施形態と同様に、開閉弁25a~25dを全て同一のタイミングで交換でき、メンテナンス回数とメンテナンスコストを低減できる。また、第3実施形態では、経過時間Tにより方向切換弁30a~30dの切換えを行う構成であるため、図2、3に示す変位センサ16a~16d、圧力センサ15a~15lを必要としない点で有利である。
「第4実施形態」
 第4実施形態は、第1実施形態と第2実施形態の両方を取り入れて、方向切換弁の切換え制御を行う構成とした点に特徴がある。第1実施形態による方向切換弁の切換え制御と第2実施形態による方向切換弁の切換え制御とが相反する場合が起こり得るため、制御ハンチングが起きる懸念がある。そこで、制御ハンチングを防止するために、第4実施形態では、コントローラ20が以下に述べる優先制御を行っている。
 この優先制御を実行するに際して、まず、下記の式(2)、(3)に示す作動回数及びQΔPの累積値から推定される余寿命の無次元数を考える。
 作動回数に関する余寿命率S3=
  (設計寿命(回)-作動回数(回))/設計寿命(回)・・・(2)
 QΔPの累積値に関する余寿命率S4=
  (QΔP累積値の設計仕様値-QΔP累積値)/QΔP累積値の設計仕様値・・・(3)
 コントローラ20は、それぞれ作動回数に関する余寿命率S3、QΔPの累積値に関する余寿命率S4を定義し、それらの大小関係より、作動回数(第1の条件)とQΔPの累積値(第2の条件)のどちらの判定に基づいた指令を優先するかを判断する。コントローラ20による制御の詳細について以下説明する。
 図18は第4実施形態においてコントローラ20による方向切換弁30a~30dの切換え手順を示すフローチャートである。まず、コントローラ20は、開閉弁25a~25dが閉弁しているかどうかをステップ43aにて判定する。閉弁していない場合、すなわち変位量がゼロでない場合(ステップ43a/No)、方向切換弁30a~30dの切換えは行わないので、その回の処理は終了する。閉弁している場合、すなわち変位量がゼロの場合(ステップ43a/Yes)、コントローラ20は、ステップ43eにおいて、作動回数に関する余寿命率S3とQΔPの累積値に関する余寿命率S4を算出し、余寿命率S3と余寿命率S4の大小関係を判定する。
 作動回数に関する余寿命率S3の方が小さい場合(ステップ43e/Yes)、ステップ43fに進み、QΔPの累積値に関する余寿命率S4の方が小さい場合、ステップ43bに進む。これ以降の動作はそれぞれ第1実施形態及び、第2実施形態と同様であるため省略する。なお、本フローチャートの処理は、作業機械の稼動中に、例えば0.1秒間隔で繰り返し実行される。
 第4実施形態によれば、余寿命の少ない方の状態量履歴を考慮して開閉弁25a~25dの使用回数が平均化されるので、第1実施形態と第2実施形態との両方の制御を組み合わせる場合であっても、制御ハンチングを防止できる。
 なお、上記した各実施形態は、本発明を閉回路の油圧駆動回路に適用した例であるが、本発明は、開回路の油圧駆動回路に適用することもできる。図19は本発明を開回路に適用した例である。図19に示すように、本発明を開回路に適用した場合、図2の閉回路ポンプ1a、1bを開回路ポンプ3a、3bに置き換え、作動油の供給元及び排出先としてのタンク4と、アクチュエータ5a、5bへの圧油の供給先をロッド側かボトム側かに切換えるための切換え弁26a、26bとを設ける必要がある。
 また、上記した各実施形態は、図2にあるように2つのポンプ1a、1bと4つの開閉弁25a~25dと2つのアクチュエータ5a、5bとを備えた油圧回路構成としたが、本発明は、少なくとも1つのポンプと2つの開閉弁と1つのアクチュエータを備えた油圧回路構成であれば適用できる。その場合、2つの開閉弁の間で余寿命の平均化を行うこととなる。勿論、本発明は、3つ以上のポンプと5つ以上の開閉弁と3つ以上のアクチュエータとを備えた油圧回路構成にも適用できることは言うまでもない。
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 1 油圧ショベル(作業機械)
 1a、1b 閉回路ポンプ(油圧ポンプ)
 5a、5b アクチュエータ
 10 記録装置
 15a~15l 圧力センサ
 16a~16d 変位センサ
 20 コントローラ
 25a、25c 開閉弁(第1開閉弁)
 25b、25d 開閉弁(第2開閉弁)
 30a、30c 方向切換弁(第1方向切換弁)
 30b、30d 方向切換弁(第2方向切換弁)

Claims (10)

  1.  油圧ポンプと、
     前記油圧ポンプからの圧油により駆動するアクチュエータと、
     前記油圧ポンプと前記アクチュエータとの間の流路を開閉する第1開閉弁と、
     前記第1開閉弁と並列に設けられ、前記油圧ポンプと前記アクチュエータとの間の流路を開閉する第2開閉弁と、
     前記第1開閉弁と前記アクチュエータとを連通させる第1位置および前記第1開閉弁と前記アクチュエータとを遮断する第2位置に切換え可能な第1方向切換弁と、
     前記第2開閉弁と前記アクチュエータとを遮断する第3位置および前記第2開閉弁と前記アクチュエータとを連通させる第4位置に切換え可能な第2方向切換弁と、
     前記第1開閉弁および前記第2開閉弁の動作状態を経時的に記録する記録装置と、
     前記記録装置に記録された前記第1開閉弁および前記第2開閉弁の動作状態に関する履歴情報に基づいて、前記第1方向切換弁および前記第2方向切換弁の切換え動作の制御を行うコントローラと、を備えた作業機械の油圧駆動装置において、
     前記コントローラは、
     前記第1開閉弁を開け、前記第2開閉弁を閉じ、前記第1方向切換弁を前記第1位置に切換え、前記第2方向切換弁を前記第3位置に切換えることで、前記油圧ポンプからの圧油を、前記第1開閉弁から前記第1方向切換弁を介して前記アクチュエータに供給し、
     前記第1開閉弁の前記履歴情報が所定の条件を満たすと判断した場合に、前記第1開閉弁を閉じ、前記第2開閉弁を開け、前記第1方向切換弁を前記第2位置に切換え、前記第2方向切換弁を前記第4位置に切換えることで、前記油圧ポンプからの圧油を、前記第2開閉弁から前記第2方向切換弁を介して前記アクチュエータに供給することを特徴とする作業機械の油圧駆動装置。
  2.  請求項1に記載の作業機械の油圧駆動装置において、
     前記コントローラは、前記第1開閉弁が閉じている場合に、前記第1開閉弁の前記履歴情報が前記所定の条件を満たすか否かを判定することを特徴とする作業機械の油圧駆動装置。
  3.  請求項1に記載の作業機械の油圧駆動装置において、
     前記記録装置は、前記第1開閉弁および前記第2開閉弁の各作動回数を前記履歴情報として記録し、
     前記コントローラは、前記第1開閉弁の作動回数が第1所定値に到達した場合に、前記所定の条件を満たすと判定することを特徴とする作業機械の油圧駆動装置。
  4.  請求項3に記載の作業機械の油圧駆動装置において、
     前記第1所定値は、前記第1開閉弁の作動回数と前記第2開閉弁の作動回数の平均値に第1許容乖離量を加えた値であることを特徴とする作業機械の油圧駆動装置。
  5.  請求項1に記載の作業機械の油圧駆動装置において、
     前記記録装置は、前記第1開閉弁および前記第2開閉弁の各作動回数を前記履歴情報として記録し、
     前記コントローラは、前記第1開閉弁の作動回数が前記第1開閉弁の作動回数と前記第2開閉弁の作動回数の平均値に到達した時点から第1規定時間を経過した場合に、前記所定の条件を満たすと判定することを特徴とする作業機械の油圧駆動装置。
  6.  請求項1に記載の作業機械の油圧駆動装置において、
     前記第1開閉弁および前記第2開閉弁の変位量を検出する複数の変位センサと、前記第1開閉弁および前記第2開閉弁の前後の圧力を検出する複数の圧力センサと、を備え、
     前記記録装置は、前記複数の変位センサからの検出信号に基づき前記第1開閉弁および前記第2開閉弁の変位量を前記履歴情報として記録すると共に、前記複数の圧力センサからの検出信号に基づいて前記第1開閉弁および前記第2開閉弁の前後の圧力を前記履歴情報として記録し、
     前記コントローラは、前記記録装置に記録された前記第1開閉弁および前記第2開閉弁の前後の圧力に基づいて前記第1開閉弁および前記第2開閉弁の各前後差圧を算出し、前記記録装置に記録された前記第1開閉弁および前記第2開閉弁の変位量に基づいて前記第1開閉弁と前記第2開閉弁の各開口面積を算出し、算出された前記各前後差圧と前記各開口面積とに基づいて前記第1開閉弁および前記第2開閉弁の各通過流量を算出し、前記第1開閉弁および前記第2開閉弁のそれぞれに対して、算出された前記前後差圧と前記通過流量との積の累積値を算出し、
     前記コントローラは、前記第1開閉弁の前記累積値が第2所定値以上となった場合に、前記所定の条件を満たすと判定することを特徴とする作業機械の油圧駆動装置。
  7.  請求項6に記載の作業機械の油圧駆動装置において、
     前記第2所定値は、前記第1開閉弁の前記累積値と前記第2開閉弁の前記累積値の平均値に第2許容乖離量を加えた値であることを特徴とする作業機械の油圧駆動装置。
  8.  請求項6に記載の作業機械の油圧駆動装置において、
     前記コントローラは、前記第1開閉弁の前記累積値が前記第1開閉弁の前記累積値および前記第2開閉弁の前記累積値の平均値に到達した時点から第2規定時間を経過した場合に、前記所定の条件を満たすと判定することを特徴とする作業機械の油圧駆動装置。
  9.  請求項1に記載の作業機械の油圧駆動装置において、
     前記記録装置は、前記第1開閉弁および前記第2開閉弁の切換え後の経過時間を前記履歴情報として記録し、
     前記コントローラは、前記第1開閉弁の前記経過時間が第3規定時間を経過した場合に、前記所定の条件を満たすと判定することを特徴とする作業機械の油圧駆動装置。
  10.  請求項1に記載の作業機械の油圧駆動装置において、
     前記所定の条件として、第1の条件と第2の条件が設定されており、
     前記コントローラは、前記第1開閉弁の前記履歴情報が、前記第1の条件と前記第2の条件のうち選択された一方の条件を満たすか否かを判定することを特徴とする作業機械の油圧駆動装置。
PCT/JP2019/030767 2018-08-10 2019-08-05 作業機械の油圧駆動装置 WO2020031974A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/976,576 US10907323B1 (en) 2018-08-10 2019-08-05 Hydraulic drive device for working machine
CN201980016476.5A CN111788398B (zh) 2018-08-10 2019-08-05 作业机械的液压驱动装置
EP19845986.9A EP3744988B1 (en) 2018-08-10 2019-08-05 Hydraulic drive device for work machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018151069A JP6902508B2 (ja) 2018-08-10 2018-08-10 作業機械の油圧駆動装置
JP2018-151069 2018-08-10

Publications (1)

Publication Number Publication Date
WO2020031974A1 true WO2020031974A1 (ja) 2020-02-13

Family

ID=69414812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030767 WO2020031974A1 (ja) 2018-08-10 2019-08-05 作業機械の油圧駆動装置

Country Status (5)

Country Link
US (1) US10907323B1 (ja)
EP (1) EP3744988B1 (ja)
JP (1) JP6902508B2 (ja)
CN (1) CN111788398B (ja)
WO (1) WO2020031974A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7096178B2 (ja) * 2019-02-08 2022-07-05 日立建機株式会社 建設機械
US11299866B2 (en) * 2019-09-24 2022-04-12 Deere & Company Dozer blade attachment control system and apparatus for a compact track loader

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127129A (ja) * 2006-11-17 2008-06-05 Kobelco Cranes Co Ltd 建設機械用メンテナンス情報管理装置及び建設機械用メンテナンス情報管理方法
EP2982868A1 (en) * 2014-08-06 2016-02-10 Padoan S.r.l. Apparatus and method for controlling hydraulic systems
JP2017053383A (ja) 2015-09-07 2017-03-16 日立建機株式会社 作業機械の駆動装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761953A (en) * 1984-04-18 1988-08-09 Dynamic Hydraulic Systems, Inc. Hydraulic elevator mechanism
CN1190569C (zh) * 2000-03-31 2005-02-23 日立建机株式会社 机械的数据收集和管理系统
US7079982B2 (en) * 2001-05-08 2006-07-18 Hitachi Construction Machinery Co., Ltd. Working machine, trouble diagnosis system of working machine, and maintenance system of working machine
JP2005171940A (ja) * 2003-12-15 2005-06-30 Hitachi Constr Mach Co Ltd 建設機械のエンジンメンテナンス時期予測装置及び予測方法
CN103827404B (zh) * 2011-10-04 2016-08-17 日立建机株式会社 具备废气净化装置的工程机械用液压驱动系统
KR101953418B1 (ko) * 2011-10-20 2019-02-28 가부시키가이샤 히다치 겡키 티에라 전동식 유압 작업 기계의 유압 구동 장치
US9068578B2 (en) * 2011-10-21 2015-06-30 Caterpillar Inc. Hydraulic system having flow combining capabilities
JP2013245787A (ja) * 2012-05-28 2013-12-09 Hitachi Constr Mach Co Ltd 作業機械の駆動装置
JP6134614B2 (ja) * 2013-09-02 2017-05-24 日立建機株式会社 作業機械の駆動装置
CN105986592B (zh) * 2015-02-11 2021-07-13 住友建机株式会社 挖土机及挖土机的管理装置
CN106246622A (zh) * 2016-08-22 2016-12-21 王恩峰 变频液压变加载系统
JP6710150B2 (ja) * 2016-11-24 2020-06-17 日立建機株式会社 建設機械

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127129A (ja) * 2006-11-17 2008-06-05 Kobelco Cranes Co Ltd 建設機械用メンテナンス情報管理装置及び建設機械用メンテナンス情報管理方法
EP2982868A1 (en) * 2014-08-06 2016-02-10 Padoan S.r.l. Apparatus and method for controlling hydraulic systems
JP2017053383A (ja) 2015-09-07 2017-03-16 日立建機株式会社 作業機械の駆動装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3744988A4

Also Published As

Publication number Publication date
JP2020026826A (ja) 2020-02-20
EP3744988A1 (en) 2020-12-02
EP3744988A4 (en) 2021-11-10
US20210047803A1 (en) 2021-02-18
US10907323B1 (en) 2021-02-02
JP6902508B2 (ja) 2021-07-14
CN111788398A (zh) 2020-10-16
EP3744988B1 (en) 2023-01-18
CN111788398B (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
KR101693129B1 (ko) 작업 기계
JP6021231B2 (ja) 建設機械の油圧駆動装置
KR101595038B1 (ko) 유압제어장치 및 유압제어방법
KR101305267B1 (ko) 작업 기계 및 작업 기계의 제어 방법
EP2733362A1 (en) Hydraulic actuator damping control system for construction machinery
WO1993018308A1 (en) Hydraulically driving system
KR20180004703A (ko) 건설 기계의 유압 제어 장치
JP6934454B2 (ja) 建設機械
US11920325B2 (en) Construction machine
WO2020031974A1 (ja) 作業機械の油圧駆動装置
KR20180033266A (ko) 작업 기계
JPH11303809A (ja) 油圧駆動機械のポンプ制御装置
KR20200048050A (ko) 건설기계의 주행 제어 시스템 및 건설기계의 주행 제어 방법
JP6712578B2 (ja) 油圧駆動装置
WO2020054507A1 (ja) 建設機械
JP6474702B2 (ja) 作業機械の駆動装置
JP4973047B2 (ja) 作業機械の油圧制御回路
WO2016194417A1 (ja) 作業機械
JP6667994B2 (ja) ショベル
JP2022024770A (ja) 建設機械
JP2007032788A (ja) 走行式作業機械の流体圧制御装置及び走行式作業機械の流体圧制御方法
JP7357575B2 (ja) 制御装置、及びそれを備える液圧システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19845986

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019845986

Country of ref document: EP

Effective date: 20200827

NENP Non-entry into the national phase

Ref country code: DE