WO2020031474A1 - 手技シミュレータ - Google Patents

手技シミュレータ Download PDF

Info

Publication number
WO2020031474A1
WO2020031474A1 PCT/JP2019/021830 JP2019021830W WO2020031474A1 WO 2020031474 A1 WO2020031474 A1 WO 2020031474A1 JP 2019021830 W JP2019021830 W JP 2019021830W WO 2020031474 A1 WO2020031474 A1 WO 2020031474A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
liquid
flow path
container
channel
Prior art date
Application number
PCT/JP2019/021830
Other languages
English (en)
French (fr)
Inventor
▲高▼橋誠
深水淳一
野澤大樹
小崎浩司
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to CN201980007428.XA priority Critical patent/CN111566714B/zh
Priority to ES19846288T priority patent/ES2945351T3/es
Priority to EP19846288.9A priority patent/EP3792900B1/en
Priority to JP2020536345A priority patent/JP7280268B2/ja
Priority to CA3103762A priority patent/CA3103762C/en
Priority to AU2019317840A priority patent/AU2019317840B2/en
Priority to EP23158109.1A priority patent/EP4207140A1/en
Publication of WO2020031474A1 publication Critical patent/WO2020031474A1/ja
Priority to US17/061,487 priority patent/US11417242B2/en
Priority to AU2021221800A priority patent/AU2021221800B2/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/285Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine for injections, endoscopy, bronchoscopy, sigmoidscopy, insertion of contraceptive devices or enemas
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • G09B23/303Anatomical models specially adapted to simulate circulation of bodily fluids

Definitions

  • B-TACE Blood occluded trans, arterial, chemo, embolization
  • the second end 30 communicating with the second branch channel 26 constitutes a second outlet 30a.
  • the second discharge port 30 a is connected to the vicinity of the bottom surface of the water tank 16 downstream of the second branch flow path 26.
  • the second discharge port 30a may be provided at a position lower than the liquid level of the liquid L stored in the water tank 16.
  • the liquid level of the liquid L in the water tank 16 is set at a position lower than the tissue model 20 (a flow path forming block 32 described later). Due to the siphon principle, a force acts on the downstream side of the second branch channel 26 so that the liquid L flows down to the water tank 16. As a result, the downstream side of the second branch flow path 26 is in a state where pressure is continuously applied toward the downstream side.
  • the flow path forming block 32 is installed horizontally on the support base 33.
  • the flow path forming block 32 is formed in a panel shape, and is formed in a square shape in a top view.
  • the flow path forming block 32 holds at least the first branch flow path 24 and the second branch flow path 26 in a plane.
  • the shape of the flow path forming block 32 is not limited to a square shape, and may be formed in a circular shape or another polygonal shape in plan view.
  • the flow path forming block 32 does not need to have a panel shape.
  • the first branch flow path 24m and the second branch flow path 26m of the tissue model 20m have a plurality of downstream connection ports 24ma and 26ma, respectively.
  • the first branch channel 24m has two downstream connection ports 24ma.
  • the second branch channel 26m has four downstream connection ports 26ma.
  • the first branch channel 24m and the second branch channel 26m each include a plurality of small-diameter channels 58 (58b to 58d). Have.
  • the tube 88 has a plurality of connection channels 88a connected to the channels S4 to S6, and one junction channel 88c connected to the plurality of connection channels 88a via the junction 88b.
  • the first branch channel 74 expressing a normal liver tissue has channels S1 to S3, S7, and S8.
  • the second branch channel 76 expressing the liver tissue in which the cancer cells proliferated has channels S4 to S6.
  • the first water tank 62 and the second water tank 64 store the liquid L, respectively, and have different liquid level heights. Specifically, the liquid level of the liquid L in the first water tank 62 is higher than the liquid level of the liquid L in the second water tank 64 and the tissue model 70 (the flow path forming block 72).
  • a first terminal 78 communicating with the first branch channel 74 and a second terminal 80 communicating with the second branch channel 76 have different pressure values. Therefore, a pressure difference occurs between the first branch flow path 74 and the second branch flow path 76. Specifically, a pressure (positive pressure) corresponding to the height difference between the water level of the liquid L in the first water tank 62 and the tissue model 70 (flow path forming block 72) is applied to the first branch flow path 74. A pressure (negative pressure) corresponding to a height difference between the tissue model 70 (the flow path forming block 72) and the second water tank 64 is applied to the second branch flow path 76. Therefore, between the first branch channel 74 and the second branch channel 76, the pressure applied to the first branch channel 74 is relatively high, and the pressure applied to the second branch channel 76 is relatively high. Low.
  • the flow pressure generated by the pump 13 is higher than the pressure applied to the first terminal 78 and the second terminal 80. That is, the pressure per unit cross-sectional area applied to the upstream side of the branch portion 82a is larger than the pressure per unit cross-sectional area at the first end 78. Further, the pressure per unit cross-sectional area applied to the upstream side of the branch portion 82a is larger than the pressure per unit cross-sectional area at the second end 80.
  • the catheter 46 is inserted from the catheter insertion port 14 into the flow channel 60 in which the flow is applied to the liquid L by the pump 13, and the end of the catheter 46 is placed upstream of the branch portion 82a.
  • the therapeutic agent colored water
  • both the first branch channel 74 side and the second branch channel 76 side are provided. It flows.
  • the procedure simulator 10B includes a discharge channel (tube 96) having an inlet 96a disposed at a position higher than the first terminal 78, and the discharge channel changes the liquid from the first water tank 62 to the second water tank 64. Discharge L.
  • the first branch flow path 74 passes through the first end 78 through the first end 78.
  • the liquid L flows into the first water tank 62.
  • the tube 96 has a sufficient lumen, the liquid L exceeding a predetermined amount is discharged to the second water tank 64 through the discharge channel (tube 96). Therefore, the simulation can be continuously performed.
  • the liquid L can be replenished to the first water tank 62 when the balloon 50 is expanded.
  • the flow from the first branch flow path 74 to the second branch flow path 76 can be generated for a longer time, and training for a long time can be performed.
  • the balloon 50 can be expanded not only upstream of the branch portion 82a but also downstream thereof. You can try it in various locations. For example, in FIG. 7, when the balloon 50 is disposed at a position P1 slightly upstream with respect to the connection flow path 85a and colored water is administered at a high pressure without expansion (for example, 1 mL of colored water is applied for several seconds). Or the same injection pressure as in the case of injecting a contrast agent and performing angiography), the colored water flows through the entire flow paths S5 to S8 downstream of the branch portion 82b, and at the downstream of the position P1. Part of the flow also flows to the flow paths S1 to S4 via the connection flow path 85a.
  • a high pressure without expansion for example, 1 mL of colored water is applied for several seconds.
  • the colored water flows through the entire flow paths S5 to S8 downstream of the branch portion 82b, and at the downstream of the position P1. Part of the flow also flows to the flow paths S1 to S4 via the connection flow path 85a.
  • the balloon 50 When the balloon 50 is arranged at the position P2 and expanded, if the colored water is injected with a strong pressure, it flows to S5 to S8, but if the colored water is injected with a weak pressure, only the flow paths S5 and S6 are provided. That is, it can be shown that the phenomenon of flowing more selectively occurs. This is because the connection flow path 85b is located immediately downstream of the position P2. Since the user can easily visually recognize the presence of the collateral circulation, the user can learn the training for selecting the position where the balloon 50 is to be inflated and learn the appropriate infusion pressure. Thereby, the user can learn, for example, a technique for reducing the amount of the anticancer drug reaching the normal tissue of the patient.
  • the second branch flow The pressure on the side of the low-pressure outlet (second end 80) communicating with the passage 76 is 64 mmHg or less, and the pressure on the side of the high-pressure outlet (first end 78) communicating with the first branch flow path 74 is It is preferable that each pressure is lower than 130 mmHg and higher than the pressure on the side of the discharge port (second end 80) communicating with the second branch flow path 76.
  • the tissue model 120 has a plurality of branch channels.
  • a branch portion 122 is formed at a portion closest to the start end 112a side into which the liquid L flows. From this branch part 122, two first branch flow paths 122a and 122b are branched and extend.
  • the first branch passages 122a and 122b branch at an angle symmetrical left and right with respect to the straight line portion 112b on the upstream side of the branch portion 122, and have the same length from the branch portion 122 to the next branch.
  • the two first branch passages 122a and 122b extend so as to form an isosceles triangle or an equilateral triangle having the branch part 122 and the second branch parts 124 and 130 as vertices.
  • a second branch portion 124 is provided at an end of the first branch channel 122a. From the second branch portion 124, the second branch channels 124a and 124b further branch and extend. Further, a second branch portion 130 is provided at an end of the first branch channel 122b. From the second branch portion 130, the second branch channels 130a and 130b are branched and extend.
  • 3Third branches 126, 128, 132, and 134 are provided at the ends of the second branch channels 124a, 124b, 130a, and 130b, respectively. From these third branch portions 126, 128, 132, and 134, third branch flow paths 126a, 126b, 128a, 128b, 132a, 132b, 134a, and 134b branch and extend, respectively. In other words, each of the branch portions 122 to 134 branches into two branch flow paths, and through the three-stage branch section, eight third branch flow paths 126a, 126b, 128a, 128b, 132a, and 132b. , 134a and 134b.
  • each branch channel is formed to have the same length so that the same condition (flow resistance) can be generated, and the straight portion 112b is formed. They are formed on the same plane so as to be symmetrical left and right with respect to the long axis direction.
  • the connection angle of the branch portions 122 to 134 can be set to, for example, 60 °. Note that the number of branches of the branching units 122 to 134 is not limited to two, and may be a plurality of arbitrary numbers.
  • connection channels 122c to 134c are provided downstream of the branch portions 122 to 134 to connect the branched channels.
  • two to three connection flow paths 122c to 134c are provided for each of the branch portions 122 to 134.
  • These connection flow paths 122c to 134c imitate the collateral circulation of the tissue.
  • the diameter (inner diameter) of each of the branch channels 122a to 134b is designed to be 70 to 90% of the diameter before the branch every time the branch is performed.
  • the diameter after branching is set to be about 80% (78 to 82%) of the diameter before branching in order to approach human vascular tissue.
  • Connection ports 141 to 148 are provided at the ends of the eight third branch channels 126a, 126b, 128a, 128b, 132a, 132b, 134a, and 134b of the tissue model 120, respectively.
  • pipes 151 to 158 are connected to the connection ports 141 to 148, respectively.
  • the connection ports 141 to 148 are fitted inside the pipes 151 to 158.
  • the pipes 151 to 158 are all connected to the first water tank 116.
  • the inner diameter of each of the pipes 151 to 158 can be, for example, about 2.1 mm.
  • the pipes 151 to 158 may be joined on the way to form a collective pipe.
  • three-way cocks 172a to 172c are provided in at least two of the plurality of pipes 151 to 158 toward the first water tank 116.
  • One end portions of the tumor simulation pipes 174a to 174c are detachably connected to the three-way cock 172.
  • three-way cocks 172a, 172b, 172c are attached to three pipes 152, 153, 154, respectively.
  • Ports 150 are attached to the pipes 151 and 155 to 158 to which the three-way cock 172 is not attached.
  • the three-way cock 172 may be provided in all the pipes 151 to 158. In the pipes 151 to 158, the three-way cock 172 may be provided at any position.
  • the port 150 is provided with a valve into which a tip nozzle of a syringe can be inserted in order to enable removal of air bubbles in the pipes 151, 155 to 158 during the setup operation of the procedure simulator 10C.
  • the valve at the port 150 is opened when the tip nozzle of the syringe is inserted, so that air bubbles in the pipes 151, 155 to 158 can be sucked out by the syringe.
  • the port 150 closes when the tip nozzle of the syringe is withdrawn.
  • the three-way cock 172c of the pipe 154 can selectively connect the terminal of the first water tank 116 or the tumor simulation pipe 174c to the connection port 144.
  • the connection port 144 and the tumor simulation pipe 174c are communicated by the three-way cock 172c, the liquid L flows out of the filter 159 at the end of the tumor simulation pipe 174c, and does not flow into the first water tank 116.
  • the three-way cocks 172a and 172b provided on the pipes 152 and 153 are similarly selected from the connection ports 142 and 143 and the tumor simulation pipes 174a and 174c, or the connection ports 142 and 143 and the first water tank 116. Communication.
  • the three-way cock 172 can switch the flow path where the simulated tumor (the filter 159) is located.
  • the other ends of the tumor simulation pipes 174a to 174c have a terminal end 174.
  • the terminal end 174 can be regarded as a pressure difference member by being set at a position lower than the liquid level L1 of the first water tank 116.
  • the liquid L flows more easily than other pipes by the drop between the tissue model 120 and the terminal end 174 of the tumor simulation pipes 174a to 174c in order to represent a simulation tumor.
  • a filter 159 is provided at the terminal end 174 of each of the tumor simulation pipes 174a to 174c. The filter 159 will be described later.
  • the filter 159 has a built-in filter inside a cylindrical transparent resin housing.
  • the filter is a porous member having fine pores having a pore diameter of about several ⁇ m.
  • a membrane member made of polyethersulfone (PES), polyurethane or the like, a polyethylene sintered body, or the like can be used.
  • PES polyethersulfone
  • the filter 159 can capture the embolic agent.
  • the filter 159 is gradually plugged, and the flow of the fluid changes, and a backflow or stagnation of the liquid L occurs.
  • the tissue model 120 can reproduce the embolism of the blood vessel leading to the tumor cell, and allow the user to recognize the therapeutic effect of the embolization agent injection.
  • the type and arrangement of the filter 159 and the filter area may be appropriately adjusted, and the diameter (size) of the embolus included in the embolus material may be changed.
  • the closing time can be controlled, and the simulation of the procedure can be performed under various conditions.
  • a simulated embolus colored in blue or the like and a white filter are used, the appearance of accumulation of the simulated blue embolus in the white filter can be easily visually recognized.
  • the tumor simulation pipes 174a to 174c and the filter 159 can be removed from the channel and discarded.
  • the first water tank 116 includes discharge ports 161 to 168 which are outlets of the liquid L discharged from the tissue model 120, and a drain tube 170 for returning the liquid L stored in the first water tank 116 to the second water tank 110. I have.
  • the discharge ports 161 to 168 are provided corresponding to the connection ports 141 to 148 at the end of the tissue model 120, respectively.
  • the discharge ports 161 to 168 are connected to connection ports 141 to 148 via pipes 151 to 158, respectively.
  • the discharge ports 161 to 168 are open on the side wall of the first water tank 116. These discharge ports 161 to 168 are open at a position lower than the drain tube 170 so as to be lower than the liquid level L1 of the liquid L stored in the first water tank 116.
  • the drain tube 170 is provided at substantially the same height as the tissue model 120. The drain tube 170 extends from the first water tank 116 toward the second water tank 110, and is configured to return the liquid L collected in the first water tank 116 to the second water tank 110. When the position of the liquid level L1 of the first water tank 116 reaches the height of the drain tube 170, the liquid L recirculates to the second water tank 110.
  • the position of the liquid level L1 of the first water tank 116 depends on the height of the drain tube 170. Will be the same.
  • a support member 117 is arranged below the first water tank 116. The support member 117 is set such that the height of the drain tube 170 is substantially the same as or slightly higher than the height of the tissue model 120. Since the height of the liquid level L1 is the same as the height of the tissue model 120, the tissue model 120 is always filled with the liquid L, and the liquid L is allowed to flow slowly so that the pressure gradient in the tissue can be reproduced. Can be.
  • the drain tube 170 is preferably formed to have an inner diameter that does not overflow with respect to the flow rate of the liquid L flowing through the discharge ports 161 to 168. Therefore, it is preferable that the inner diameter of the drain tube 170 be set so that the cross-sectional area A of the drain tube 170 is, for example, 60% or more of the total cross-sectional area B of the eight pipes 151 to 158. .
  • the inner diameter of each of the pipes 151 to 158 is 2.1 mm
  • the total B of the flow path cross-sectional areas is 33.94 mm 2 .
  • the inner diameter of the drain tube 170 may be set to 10 mm or more, for example, about 10 to 12 mm.
  • the discharge ports 161 to 168 are connected to the first water tank 116 below the liquid level L1.
  • the liquid L imitating blood can be circulated without increasing the internal pressure of the flow channel 160 (see FIG. 1) of the tissue model 120 and without flowing back. Therefore, the discharge pressure of the liquid L from the pump 113 can be reduced.
  • the flow of the liquid L in the flow channel 160 is made gentle, and the phenomenon of the generation of the pressure difference and the backflow due to the pressure difference can be reproduced under the gentle flow.
  • a tube 101 as shown in FIG. 6 is provided in a case where training for operating the balloon 50 (see FIG. 14) is performed in a portion of the flow channel 160 other than the flow channel (the straight portion 112b) before branching.
  • the liquid level in the first water tank 116 can be kept constant. Thereby, the liquid level in the first water tank 116 is maintained constant, so that a pressure difference with respect to the branch flow path imitating normal liver tissue can be stably generated for a long time.
  • the pump 113 is provided in the second water tank 110.
  • the pump 113 is connected to the end 112a of the tissue model 120 via a tube 118.
  • the pump 113 draws out the liquid L in the second water tank 110 and supplies the liquid L to the channel 160 of the tissue model 120.
  • the flow pressure by the pump 113 is a pressure corresponding to the position of the liquid level L1 in the first water tank 116 and the flow resistance of the liquid L.
  • the tube 118 is provided with a catheter insertion port 114 for allowing the catheter 46 (see FIG. 2) to intervene in the flow path 160 of the tissue model 120.
  • the catheter insertion port 114 simulates an insertion port for inserting the catheter 46 into a blood vessel.
  • the catheter insertion port 114 is provided with a valve (not shown) so that the catheter 46 can be inserted, but the liquid L does not leak into the flow channel 160.
  • the catheter 46 for use in the procedure simulator 10C is inserted into the channel 160 of the tissue model 120 via the catheter insertion port 114 (see FIG. 11).
  • the three-way cock 172 provided in the pipe 154 allows the pipe 154 of the connection port 144 to communicate with the tumor simulation pipe 174c, and at the same time, stops the flow to the first water tank 116 side.
  • the three-way cock 172c provided in the pipe 154 allows the pipe 154 of the connection port 144 to communicate with the tumor simulation pipe 174c, and at the same time, stops the flow to the first water tank 116 side.
  • Other connection ports 141 to 143 and 145 to 148 communicate with the first water tank 116.
  • connection port 144 as a blood vessel connecting to the simulated tumor part
  • connection port 141 to 143 and 145 to 148 as blood vessels connecting to normal tissue.
  • the flow path toward the connection port 144 corresponds to the first branch flow path
  • the flow path toward the other connection ports 141 to 143 and 145 to 148 corresponds to the second branch flow path.
  • the user expands the balloon 50 at a portion upstream of the third branch portion 128 to close the second branch channel 124b. Then, colored water or a colored embolic agent imitating a therapeutic agent is administered from the terminal opening 47 of the catheter 46.
  • the colored water or the colored embolic agent does not receive the pressure by the pump 113 due to the occlusion by the balloon 50. For this reason, the colored water or the colored embolic agent is applied only to the pressure at the time of injection, and flows toward the downstream side, that is, toward the multiple ends of the tumor simulation pipe 174c.
  • the liquid L is preferentially discharged from the three-way cock 172c through the tumor simulation pipe 174c corresponding to the simulation tumor in the third branch channel 128b.
  • the liquid L flows from the connection port 143 to the first water tank 116 side. Does not leak to Further, at this time, the connection port 143 is in a state of being in communication with the first water tank 116 by the three-way cock 172b and not in communication with the tumor simulation pipe 174b.
  • the liquid L is discharged from the third branch channel 128b, and the liquid L flows backward from the third branch channel 128a and flows into the third branch channel 128b. Therefore, a phenomenon occurs in which the colored water administered from the catheter 46 rides on the flow of the liquid L and flows selectively to the third branch channel 128b. That is, the same change in the flow of the liquid L as in the procedure simulators 10A and 10B can be reproduced.
  • the filter 159 When a colored embolic agent is used as a therapeutic agent, the filter 159 is clogged with the colored embolic agent, so that the flow of the liquid L gradually slows down, and eventually stops flowing. The user can visually confirm the therapeutic effect of the embolic agent. Since the embolic agent is captured by the filter 159, it does not flow into the second water tank 110. Therefore, the subsequent simulation of the procedure using another branch flow path can be continued without any trouble.
  • the used embolic agent can be removed and discarded together with the filter 159 and the tumor simulating pipes 174a to 174c, so that clearing is simple and suitable.
  • training can be performed using the tumor simulation pipe 174c as a target site. After the training, the tumor simulation pipe 174c and the filter 159c can be removed from the three-way cock 172c and discarded.
  • the communication state of the three-way cock 172 is switched to another third branch channel 128b so as to switch the position of the simulated tumor.
  • the three-way cock 172 c provided in the pipe 154 of the connection port 144
  • the flow to the tumor simulation pipe 174 c is cut off and the flow is communicated with the first water tank 116.
  • the three-way cock 172b provided in the pipe 153 of the connection port 143 is operated to communicate with the tumor simulation pipe 174b, and the flow path from the connection port 143 to the first water tank 116 is shut off. That is, a simulated tumor is set downstream of the connection port 143.
  • connection ports 141, 142, 144 to 148 can simulate a normal tissue by communicating with the first water tank 116. That is, the first branch flow path is switched to the flow path toward the connection port 143, and the flow paths toward the other connection ports 141, 142, and 144 to 148 become the second branch flow paths.
  • the balloon 50 is expanded at a portion upstream of the branch portion 128 to close the second branch channel 124b. Then, colored water or a colored embolic agent imitating a therapeutic agent is administered from the terminal opening 47 of the catheter 46.
  • the liquid L preferentially flows out of the third branch channel 128a through the tumor simulation pipe 174b of the connection port 143 corresponding to the simulation tumor.
  • the liquid L hardly flows out of the connection port 143 because the position of the liquid surface L1 of the first water tank 116 is substantially the same height as the tissue model 120.
  • the branch flow path leading to the simulated tumor can be changed, and the simulation of the procedure using the plurality of branch flow paths 124a to 134b can be easily performed.
  • the training can be easily performed by switching between the branch channel connected to the simulated tumor and the branch channel connected to the simulated normal tissue.
  • the procedure simulator 10C of the present embodiment includes a first water tank 116 that stores the liquid L, a plurality of pipes 151 to 158 that connect the plurality of third branch flow paths 126a to 134b and the first water tank 116, and a plurality of pipes 151 to 158.
  • Tumor simulation pipes 174a to 174c which are provided in at least one of the pipes 151 to 158, are branched from the pipes 151 to 158, and have an end 174 set at a position lower than the liquid level L1 of the first water tank 116, and pipes 151 to 158.
  • Three-way cocks 172a to 172c are provided at the branch between the 158 and the tumor simulation pipes 174a to 174c to selectively communicate the tumor simulation pipes 174a to 174c to one of the first water tank 116 and one of the tumor simulation pipes 174a to 174c.
  • Channel switching means With this configuration, it is possible to change the site of the simulated tumor simply by operating the three-way cocks 172a to 172c, and to easily perform a procedure simulation using the plurality of third branch channels 126a to 134b of the tissue model 120. Can be implemented.
  • the second branch flow paths 124a to 130b and the third branch flow paths 126a to 134b are at the same height as the liquid level L1 of the first water tank 116.
  • a differential pressure other than the pressure difference required for reproducing the simulated tumor is not generated in the branch flow paths 124a to 134b. Therefore, reproducibility is high and uniform training can be performed.
  • the terminal 174 of the tumor simulation pipes 174a to 174c has the filter 159.
  • the embolic agent used as the therapeutic agent can be separated and removed while collecting the liquid L. This can reduce the mixing of the embolic agent into the flow channel 160 and confirm the state in which the embolic agent accumulates from the filter 159 toward the tumor simulation pipes 174a to 174c. At this time, it is preferable that the embolization state can be visually confirmed by the attachment of the colored embolic agent.
  • the used filter 159 can be removed from the tissue model 120 and discarded together with at least one of the tumor simulation pipes 174a to 174c, so that the embolizing agent mixed in the tissue model 120 and the channel 160 can be treated. This is unnecessary, and the cleaning work can be simplified.
  • the tissue model 120 may branch the branch flow path symmetrically with respect to the longitudinal axis of the flow path (linear portion 112b) before branching.
  • the flow path lengths of the left and right branch flow paths become substantially the same, and even if the position of the simulated tumor (filter 159) is switched left and right, the simulation of the procedure can be performed under the same conditions.
  • the tissue model 120 may branch into a substantially isosceles triangle or an equilateral triangle with the apexes of the branches 122 to 134. Further, in this case, the length from the first branch portion 122 to the connection ports 141 to 148 at the end may be formed to be substantially equal. Accordingly, even when a simulated tumor (tumor simulated pipes 174a to 174c and a filter 159) is connected to any of the third branch flow paths 126a to 134b, the simulation of the procedure can be performed under the same conditions.
  • the second water tank 110 having the liquid surface L2 at a position lower than the liquid surface L1 of the first water tank 116 is provided, and the pump 113 (liquid flow generating member) pumps the liquid L in the second water tank 110.
  • the pump 113 liquid flow generating member
  • it may be supplied to the upstream side of the flow channel 160.
  • a drain tube 170 for returning the liquid L in the first water tank 116 to the second water tank 110 may be provided. Thereby, the liquid L can be circulated and used, and the simulation of the procedure can be performed for a long time.
  • all or some of the pipes 151 to 158 connected to the tissue model 120 may be provided with a clamp (flow rate adjusting means).
  • the clean can reduce the cross-sectional area of the flow path of the pipes 151 to 158.
  • the cross-sectional area of the pipes 151 to 158 changes due to the clamp, and the flow resistance (flow rate) can be changed.
  • the flow resistance of the pipes 151 to 158 is increased by the clamp with respect to the liquid L flowing at a constant flow rate by the pump 113, the internal pressure of the branch flow path to which the clamp is connected is increased, and a pressure difference can be generated. That is, the clamp can function as a pressure difference generating member. This makes it possible to further complicate the conditions for generating the pressure difference, so that training for advanced users is possible.
  • the first water tank 180 is formed in a C-shape when viewed from above.
  • the first water tank 180 surrounds the connection ports 141 to 148 of the tissue model 120 such that the distance between each of the connection ports 141 to 148 at the end of the tissue model 120 and the first water tank 180 is substantially the same.
  • a portion 180a is formed.
  • Tubes 181 to 188 are connected to the connection ports 141 to 148, respectively.
  • the tubes 181 to 188 are connected to the side portion 180 a of the first water tank 180 and communicate with the first water tank 180.
  • the lengths of the tubes 181 to 188 are substantially the same, and the length of the flow path including the tubes 181 to 188 in each branch flow path is substantially the same.
  • a drain tube 170 may be provided.
  • each branch channel By setting the length of each branch channel to be the same, the flow resistance of the branch channel becomes substantially the same. Therefore, even if a gentler fluid flow is used, a pressure gradient can be easily generated, and a reverse flow due to the pressure gradient can be reproduced. Therefore, a simulation of the procedure can be performed under conditions closer to the actual tissue.
  • 10A, 10B, 10C, 10D Procedure simulator 12, 60, 160 ... Channel 13, 113 ... Pump (liquid flow generating member) 14 catheter insertion port 16 water tanks 22, 122, 124, 126, 128, 130, 132, 134 branch portions 24, 74 first branch channels 26, 76 second branch channels 40, 88 Tubes (pressure difference generating members) 62, 116: first water tank 64, 110: second water tank 151 to 158: pipe 159: filter 172: three-way cock (channel switching means) 174a to 174c: Tumor simulation pipe L: Liquid

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Educational Administration (AREA)
  • Medical Informatics (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Chemical & Material Sciences (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Medicinal Chemistry (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Pulmonology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Instructional Devices (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Gyroscopes (AREA)
  • Amplifiers (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

バルーンで血管を閉塞することによって圧較差が生じ、特定部位に選択的に治療剤を投与することが可能であることを体感できる手技シミュレータを提供する。手技シミュレータ(10A)は、血液を模した液体(L)を内包する流路(12)と、液体(L)に流れを付与する液流発生部材と、カテーテル挿入ポート(14)とを備える。流路(12)は、分岐部(22)の下流に、第1の分岐流路(24)と第2の分岐流路(26)とを有する。手技シミュレータ(10A)は、さらに、第1の分岐流路(24)の下流側と第2の分岐流路(26)の下流側との間に圧較差を発生させる圧較差発生部材を備える。液流発生部材は、第1の分岐流路(24)の下流側と第2の分岐流路(26)の下流側とに付与される圧力よりも高い圧力を発生する。

Description

手技シミュレータ
 本発明は、手技シミュレータに関する。すなわち、カテーテルを用いて治療する際の、生体の癌や腫瘍の血流状態を再現することができ、さらには手術の効果や原理等を学ぶことのできる手技シミュレータに関する。
 肝臓癌や、前立腺癌、子宮筋腫等に対して、動脈内に挿入したカテーテルを通じて造影剤等の診断剤や、抗癌剤や塞栓物質等の治療剤を投与し、診断・治療する技術が知られている。これらの治療は、癌や腫瘍等の治療対象組織に選択的に治療剤を投与するとともに、正常組織にはできる限り治療剤が流れないようにすることが望ましい。
 近年、癌組織には微小な動脈血管が過剰形成されることで、動脈流が集中し得ることに着目し、この現象を利用したB-TACE(Balloon occluded Trans Arterial Chemo Embolization)等と呼ばれる手技が、例えば、以下の文献で報告されている。
 入江、他2名(Irie et al.)、「選択的バルーン閉塞動脈塞栓術中の肝細胞癌結節におけるリピオドールエマルジョンの高密度集積:バルーン閉塞動脈圧の測定(Dense Accumulation of Lipiodol Emulsion in Hepatocellular Carcinoma Nodule during Selective Balloon-occluded Transarterial Chemoembolization: Measurement of Balloon-occluded Arterial Stump Pressure)」、カーディオバスキュラー・アンド・インターベンション・ラジオロジー(Cardio Vascular and Intervention Radiology)、2013年、36号、p.706-713
 松本、他9名(Matsumoto et al.)、「バルーン閉塞した動脈の化学塞栓術前のバルーン閉塞動脈圧(Balloon-occluded arterial stump pressure before balloon-occluded transarterial chemoembolization)」、ミニマリ・インベイシブ・セラピー・アンド・アライド・テクノロジーズ(Minimally Invasive Therapy & Allied Technologies)、2015年9月25日、インターネット〈URL:http://www.tandfonline.com/action/journalInformation?journalCode=imit20〉
 米国特許第9844383号明細書
 B-TACEは、カテーテル先端部のバルーンで治療対象組織より上流の動脈を閉塞した状態で治療剤を投与することで、正常組織と治療対象組織との間で局所的な血圧の較差(圧較差)を生じさせ、治療剤を血流に乗って移動させることにより治療対象部位に特異的に治療剤を集中させる手法である。
 しかしながら、従来の治療に慣れている医師にとって、生体内で局所的に発生するこのような現象を直感的に理解することは難しく、これらの手技が医療現場で普及しているとは言い難いのが実情である。
 そのため、バルーンで血管を閉塞することによって圧較差が生じ、特定部位に選択的に治療剤を投与することが可能であることを体感できる手技シミュレータが求められている。
 以下の開示の一態様は、カテーテルを用いた手技をトレーニングするための手技シミュレータであって、血液を模した液体を内包する流路と、前記液体に流れを付与する液流発生部材と、前記流路内に前記カテーテルを介入させるカテーテル挿入ポートと、を備え、前記流路は、前記カテーテル挿入ポートよりも下流に設けられるとともに少なくとも2つの流路に分岐する分岐部と、前記分岐部の下流に設けられた複数の分岐流路とを有し、前記複数の分岐流路は、第1の分岐流路と第2の分岐流路とを有し、前記手技シミュレータは、さらに、前記第1の分岐流路の下流側と前記第2の分岐流路の下流側との間に圧較差を発生させる圧較差発生部材を備え、前記液流発生部材は、前記第1の分岐流路の下流側と前記第2の分岐流路の下流側とに付与される圧力よりも高い圧力を発生する、手技シミュレータである。
 上記態様の手技シミュレータによれば、バルーンカテーテルにより分岐部よりも上流側の流路を閉塞すると、圧較差によって第1の分岐流路と第2の分岐流路の一方から他方へと向かう液体の流れが発生する。この状態でバルーンカテーテルの末端開口から模擬治療剤を投与すると、圧較差によって発生した液体の流れに乗って模擬治療剤が流れる。さらに圧較差が維持できるような構成を行うことで、時間的に余裕もって現象を再現できる。従って、使用者は、バルーンで血管を閉塞することによって圧較差が生じ、特定部位への選択的な治療剤の投与が可能であることを体感することができる。
第1実施形態に係る手技シミュレータの斜視図である。 バルーンカテーテルの構成説明図である。 第1実施形態に係る手技シミュレータの第1の作用説明図である。 第1実施形態に係る手技シミュレータの第2の作用説明図である。 変形例に係る組織モデルの構成説明図である。 第2実施形態に係る手技シミュレータの斜視図である。 第2実施形態に係る手技シミュレータの組織モデルの構成説明図である。 第2実施形態に係る手技シミュレータの第1の作用説明図である。 第2実施形態に係る手技シミュレータの第2の作用説明図である。 第2実施形態における各流路の長さ及び径を示す表1である。 第3実施形態に係る手技シミュレータの斜視図である。 第3実施形態に係る手技シミュレータの第1水槽、第2水槽及び組織モデルの高さ方向の位置関係を示す説明図である。 第3実施形態に係る手技シミュレータの組織モデルの断面図である。 第3実施形態に係る手技シミュレータの作用説明図である(その1)。 第3実施形態に係る手技シミュレータの作用説明図である(その2)。 第3実施形態の変形例に係る手技シミュレータの平面図である。
 以下、手技シミュレータについて好適な複数の実施形態を挙げ、添付の図面を参照しながら説明する。
 図1に示すように、本実施形態の第1実施形態に係る手技シミュレータ10Aは、血液を模した液体Lを内包する流路12と、液体Lに流れを付与する液流発生部材の一例であるポンプ13と、流路12内にカテーテルを介入させるように構成されたカテーテル挿入ポート14と、液体Lを貯留する容器の一例である水槽16とを備える。液体Lとしては、水、グリセリン、マンニトール、低級アルコールのうちの少なくとも1つから選ばれる液体を、単独あるいは混合して用いる。液体Lに適宜、造影剤、着色顔料、防腐剤、抗菌剤等を添加してもよい。
 流路12は、生体組織の血管を模した組織モデル20を有する。組織モデル20は、血管モデルと捉えることもできる。組織モデル20は、硬質の樹脂ブロック内に、血管を模した管腔を有するものでもよい。組織モデル20は、カテーテル挿入ポート14の下流に設けられるとともに少なくとも2つの流路に分岐する分岐部22と、分岐部22の下流に設けられた第1の分岐流路24及び第2の分岐流路26とを有する。第1の分岐流路24と第2の分岐流路26とは、同一水平面内に設けられている。従って、第1の分岐流路24と第2の分岐流路26とは同一高さに設けられている。
 第1の分岐流路24は、第1の終端28に連通している。第2の分岐流路26は、第2の終端30に連通している。第1の終端28と第2の終端30に付与される圧力は互いに異なり、かつ、いずれの圧力も液流発生部材(ポンプ13)によって発生される圧力よりも低い。第1の分岐流路24及び第2の分岐流路26は、それぞれ組織を表現したものとなっている。このうち、第1の分岐流路24は正常な肝臓組織を表現しており、第2の分岐流路26は癌細胞が増殖した肝臓組織を表現している。
 第1の分岐流路24に連通する第1の終端28は、第1排出口28aを構成する。第1排出口28aは、第1の分岐流路24の下流で、水槽16の水面より高い位置から水槽16へ液体Lを排出する。第1排出口28aは、外気に開放した開口部である。このため、第1の分岐流路24には下流側(第1排出口28a側)から、大気圧以外の圧力が略付与されない状態となっている。
 第2の分岐流路26に連通する第2の終端30は、第2排出口30aを構成する。第2排出口30aは、第2の分岐流路26の下流で、水槽16の底面近傍に接続している。第2排出口30aは、水槽16内に貯留された液体Lの液面よりも低い位置に設けられていればよい。水槽16内の液体Lの液面は、組織モデル20(後述する流路形成ブロック32)よりも低い位置に設定されている。サイフォンの原理により、第2の分岐流路26の下流側では、水槽16へ液体Lが流れ落ちる力が働く。これにより、第2の分岐流路26の下流側は、下流側に向かって圧が付与され続ける状態となる。第2排出口30aが設けられる高さは、水槽16の底面に限るものではなく、組織モデル20よりも低い位置であればよい。第2排出口30aを、水槽16の側面の低い位置に設けてもよい。
 第1の分岐流路24は、第1の分岐流路24の他の箇所よりも内径が小さい複数の第1小径分岐流路24aを有する。第2の分岐流路26は、第2の分岐流路26の他の箇所よりも内径が小さい複数の第2小径分岐流路26aを有する。第1の分岐流路24及び第2の分岐流路26は、それぞれ、微小血管を模した流路である。第1の分岐流路24及び第2の分岐流路26は、それぞれ、さらに内径が小さい、複数の分岐流路24b、26bを有する。すなわち、第1の分岐流路24、及び、第2の分岐流路26は、流路が枝分かれするごとに、流路の内径が小さくなっている。
 全ての流路12は内部の液体Lの流れが目視可能なように、透明な材料から形成されている。第1実施形態では、流路12の一部を構成する組織モデル20(分岐部22、第1の分岐流路24、第2の分岐流路26、第1小径分岐流路24a、第2小径分岐流路26a及びそれらの近傍箇所)が、シリコン等の透明な材料からなる流路形成ブロック32に設けた孔(空洞)によって形成されている。流路12の他の部分は、複数のチューブによって形成されている。
 流路形成ブロック32は、支持台33上に水平に設置されている。第1の実施形態において流路形成ブロック32は、パネル状に形成されるとともに、上面視で四角形状に形成されている。流路形成ブロック32は、少なくとも第1の分岐流路24と第2の分岐流路26を平面に保持している。なお、流路形成ブロック32の形状は四角形状に限るものではなく、平面視で円形や他の多角形状に形成されてもよい。流路形成ブロック32は、パネル状でなくてもよい。
 具体的に、流路12のうち、水槽16とポンプ13との間、ポンプ13と流路形成ブロック32との間、流路形成ブロック32と第1排出口28aとの間、及び流路形成ブロック32と第2排出口30aとの間が、それぞれチューブ34、36、38、40によって形成されている。
 なお、流路12は、流路形成ブロック32を用いずに、組織モデル20がチューブで構成されてもよい。この場合、複数のチューブで構成された組織モデル20が、支持部材(例えば、支持プレート)に固定されることにより形状が維持されやすくしてもよい。第1実施形態においては分岐部22にて2つの流路に分岐するものとしたが、3つ以上に分岐するものであってもよい。
 ポンプ13は、チューブ34を介して水槽16に入れられた液体Lを汲み上げ、流路12内に、水槽16側から組織モデル20側へと向かう液流を発生させる。液体Lは、チューブ36を介して、流路形成ブロック32に形成された組織モデル20へと送られる。チューブ36は、四角形状の流路形成ブロック32の一側面32aに接続されている。流路形成ブロック32の上記一側面32aとは反対側の側面32bに、チューブ38、40がそれぞれ接続されている。チューブ38の出口が、第1の終端28(第1排出口28a)を構成している。チューブ40の出口が、第2の終端30(第2排出口30a)を構成している。手技シミュレータ10Aが設置される面からの高さを比較すると、第2排出口30aは、第1排出口28aよりも低い位置にある。チューブ40は、第1の分岐流路24の下流側と第2の分岐流路26の下流側との間に圧較差を発生させる圧較差発生部材と捉えることができる。
 第1実施形態において、ポンプ13は、第1排出口28aに与えられる大気圧及び第2排出口30aに与えられる水圧よりも高い圧力で液体Lを送液する。ポンプ13の形式は特に限定されるものではなく、例えば、遠心ポンプが挙げられる。なお、ポンプ13を、水槽16内に設置してもよい。本実施形態に適用可能な液流発生部材は、ポンプ13に限るものではなく、流路12内に一方向の液流を発生させるものであればよい。例えば、液体Lを収容したバッグを、チューブを介して流路12に接続し、組織モデル20よりも高い位置にバッグを設置して、液体Lを落差により流して、流路12に液流を発生させてもよい。
 分岐部22よりも上流には、流路12にカテーテルを介入させるためのカテーテル挿入ポート14を設ける。カテーテル挿入ポート14は、カテーテルを血管内に挿入する挿入口を模擬している。カテーテル挿入ポート14には、カテーテルを挿入できるが、流路12内の液体Lが漏れ出さないよう、図示しない弁がカテーテル挿入ポート14内に設けられている。
 なお、チューブ34、36、38、40のうち1つ以上に、バルブ、クレンメ、コック等の流量調整デバイスを設置し、流量調整デバイスにより流量を調整し、圧力を変化させることができる。さらにバルブ等を可変型電磁弁等に置き換え、PCや専用の制御装置を用いることにより、様々な条件を設定して自動制御することも可能である。
 図2に示すように、手技シミュレータ10Aに使用するためのカテーテル46(バルーンカテーテル)は、カテーテル本体48と、カテーテル本体48の先端部に設けられた拡張及び収縮が可能なバルーン50と、カテーテル本体48の基端部に接続されるハブ52とを備える。バルーン50の内部は、カテーテル本体48に設けられた拡張用ルーメンを介して、ハブ52に設けられた拡張用ポート54に連通している。拡張用ポート54から拡張用液体を注入することで、バルーン50が拡張する。図2では、拡張状態のバルーン50を示している。なお、拡張用液体は、図示しないシリンジ等を用いて注入される。
 ハブ52は、ターゲットとする組織の血管に、治療剤を注入するための注入用ポート56を有する。注入用ポート56は、カテーテル本体48の内部に設けられた注入用ルーメンを介して、カテーテル46の末端開口47に連通する。注入用ポート56から注入された治療剤は、末端開口47から血管内に投与される。なお、注入用ルーメンは、ガイドワイヤルーメンとしても機能する。
 次に、上記のように構成された手技シミュレータ10Aの作用を説明する。
 図3に示すように、使用者は、カテーテル挿入ポート14を介してカテーテル46を流路12に挿入し、バルーン50を拡張していない状態で、末端開口47から模擬治療剤を投与した場合の模擬治療剤の挙動を視認できる。使用者は、模擬治療剤として、着色された液体L′(以下、着色水と呼ぶ)を投与(注入)する。バルーン50を拡張していない状態では、流路12に投与された着色水は、ポンプ13によって送液される液体Lとともに、下流側に流れる。この際、分岐部22においては、液体L及び着色水は、第1の分岐流路24及び第2の分岐流路26のいずれにも流れる。これは、ポンプ13(図1)により送り出される流圧が、第1の分岐流路24及び第2の分岐流路26の下流側の圧力のいずれよりも高いためである。後述する液体Lの液面と組織モデル20との落差が大きくないため、著しい陰圧が発生してない、すなわち圧較差以上にポンプの流れが成立するように調整されている。また着色水の移動による格差を認知するには、液体Lは透明であることが好ましい。なお、着色水には、固形塞栓物質を加えてもよい。固形塞栓物質としては、ゼラチン、球状プラスティック、蛍光片が好適に用いられる。
 次に、使用者は、図4に示すように、バルーン50を拡張して分岐部22よりも上流側の流路12を閉塞させる場合の模擬治療剤の挙動を視認できる。バルーン50を拡張した状態でカテーテル本体48の末端開口47から着色水を投与する。着色水は、バルーン50によって上流側の流路が閉塞されていることから、ポンプ13による圧力を受けることが無い。このため、着色水は、着色水注入時の圧力のみが付与されて、下流側に流される。
 この際、使用者が着色水を、液体Lの流れ(血流)に変化を与えることの無いよう、少量ずつ、非常に弱い圧力で注入すると、第1排出口28a側から逆流した液体Lが、分岐部22を経由して第2の分岐流路26及び第2排出口30a側へ流れる現象が生じる。微弱な圧力で投与された着色水は、第1排出口28a側から第2排出口30a側への液体Lの流れに乗り、第1の分岐流路24側には流れず、第2の分岐流路26側のみに選択的に流れていく現象が生じる。このとき、バルーン50の閉塞位置よりも下流の流路では、第2の分岐流路26から第2排出口30aへの流れ込みによる陰圧力が付与されるため、圧力値はゼロにならないが、第1排出口28a側が大気圧であることにより、相対的に第2排出口30a側よりも圧力が高くなっているからである。使用者が大気圧よりも高い圧力で着色水を注入した場合は、第2の分岐流路26側のみに選択的に流れていく現象が生じない。後述する図6は、図3の第1排出口28aからの逆流に対して、持続的な流れを発生さできるよう、かつ、図2の流路12からの流れを維持できるような構成としたものである。
 これにより、手技シミュレータ10Aの使用者は、血管分岐部の上流でバルーン50を拡張し、血管を閉塞した状態で治療剤を投与するB-TACE手技をはじめとしてバルーン閉鎖手技の理解やトレーニングの習得を好適に実施できる。使用者は、目標部位の上流側で圧較差が生じていることを確認する訓練や、周囲の組織よりも低圧となっている目標部位に対して治療剤を選択的に投与する訓練を習得できる。さらに、B-TACE手技に必要な、弱い圧力でゆっくりと薬剤を投与する方法を習得できるため、ワンショットで注入する従来の造影剤や治療剤とは異なる治療手技を身に着けることができる。また、B-TACE以外でも、バルーンを用いた血流遮断技術を行った場合に、他の血流が流れ込む様子や、組織中の圧較差がある部分の手技説明やシミュレーションモデルとして使用できる。
 この手技シミュレータ10Aは、第1の分岐流路24及び第2の分岐流路26が形成された流路形成ブロック32を備える。この構成により、生体組織を模した第1の分岐流路24及び第2の分岐流路26の形状及び高さを所望の状態に安定して設定することができる。
 第2の終端30は、第1の分岐流路24と第2の分岐流路26よりも低い位置に配置されている。このため、第1の分岐流路24と第2の分岐流路26が液体で満たされていれば、サイフォンの原理により第2の終端30には、水槽16内に向かう圧(陰圧)が付与される。これにより簡単な構成で、第1の分岐流路24と第2の分岐流路26との間に圧較差を発生させることができる。
 液流発生部材は、ポンプ13であるため、所望の圧力で容易かつ確実に、流路12内に流れを付与することができる。また、水槽16の液体Lを、流路12内で循環させることで、長時間の訓練を行うことができる。
 図1に示した手技シミュレータ10Aでは、第1の分岐流路24及び第2の分岐流路26がそれぞれ下流側接続ポート25、27を1つずつ有する組織モデル20が用いられているが、このような組織モデル20に代えて、図5に示す組織モデル20mが用いられてもよい。この組織モデル20mは、図1等に示した組織モデル20よりも流路の分岐が複雑となっており、ヒトの肝臓組織により近い構造を有している。
 図5に示すように、組織モデル20mの第1の分岐流路24m及び第2の分岐流路26mは、それぞれ下流側接続ポート24ma、26maを複数個ずつ有する。具体的に、第1の分岐流路24mは、下流側接続ポート24maを2つ有する。例えば、第2の分岐流路26mは、下流側接続ポート26maを4つ有する。図1等に示した組織モデル20と同様に、この組織モデル20mにおいても、第1の分岐流路24m及び第2の分岐流路26mは、それぞれ複数の小径流路58(58b~58d)を有する。一例であるが、流路58aの径は2.5mmであり、これより細い流路58bの径は2mmであり、さらに細い流路58cの径は1.5mmであり、最も細い流路58dの径は1mmである。
 手技シミュレータ10Aにおいて組織モデル20mを用いることにより、手技シミュレータ10Aの使用者は、よりリアリティのあるトレーニングを実施することができる。
 図6に示すように、本実施形態の第2実施形態に係る手技シミュレータ10Bは、血液を模した液体Lを内包する流路60と、液体Lに流れを付与する液流発生部材の一例であるポンプ13と、流路60内にカテーテルを介入させるカテーテル挿入ポート14と、液体Lを貯留する第1容器の一例である第1水槽62と、液体Lを貯留する第2容器の一例である第2水槽64とを備える。すなわち、図6は、図1の第1排出口28aを第1水槽62に接続させたものであり、図1における水槽16は、図6における第2水槽64と位置づけられる。
 全ての流路60は内部の液体Lの流れが目視可能なように、透明な材料から形成されている。流路60は、生体組織の血管を模した組織モデル70(血管モデル)に連通する。組織モデル70は、シリコン等の透明な材料からなる流路形成ブロック72と、流路形成ブロック72内に設けられるとともに、流路形成ブロック72の一端側から他端側に通じる管腔とを有する。流路形成ブロック72は、第2水槽64の上部(第2水槽64内の液体Lの液面よりも上方)に設置される。第1水槽62は、流路形成ブロック72の上面よりも上部に液面を有するように設置される。
 組織モデル70は、複数の分岐流路として、第1の分岐流路74と、第2の分岐流路76とを有する。第1の分岐流路74は、第1の終端78に連通している。第2の分岐流路76は、第2の終端80に連通している。第2の分岐流路76は組織モデル70より低い位置であってもよい。第1の終端78と第2の終端80に付与される圧力は互いに異なり、かつ、液流発生部材(ポンプ13)によって発生される圧力よりも低い。第1の分岐流路74及び第2の分岐流路76は、それぞれ肝臓組織を表現したものとなっている。このうち、第1の分岐流路74は正常な肝臓組織を表現しており、第2の分岐流路76は癌細胞が増殖した肝臓組織を表現している。
 図7に示すように、組織モデル70は、分岐部82aで主流路81から2本の流路83に分岐しており、さらに下流に設けられた分岐部82b、82cで2回ずつ分岐し、最終的に人の肝臓の部位を想定した計8本の流路S1~S8に分岐している。分岐部82a~82cは、第2実施形態ではいずれも2本の流路に分岐するものとしたが、複数本の任意の数の分岐とすることができる。
 各分岐部82a~82cの下流には、分岐した流路同士をつなぐ連結流路85が複数本ずつ(この実施形態では2本ずつ)設けられている。各連結流路85は、組織の側副血行路を模したものである。組織モデル70における流路の径(内径)は、分岐する毎に、元の(分岐前の)流路の径よりも細くなるように設計されている。分岐後の径は、分岐前の径の70~90%となるよう設計されることが好ましい。この実施形態では、分岐後の径は、ヒトの肝臓組織に近づけるため、分岐前の径の80%程度(78~82%)となるよう設計されている。第2実施形態における各流路の長さ及び径は、図10に示す表1の通りである。
 図7に示すように、流路S1~S3、S7、S8は、流路形成ブロック72に接続されたチューブ86を介して下流で合流し、単一の流路となる。すなわち、チューブ86は、流路S1~S3、S7、S8に接続された複数の接続流路86aと、複数の接続流路86aと合流部86bを介して繋がった1つの合流路86cとを有する。同様に、流路S4~S6は、流路形成ブロック72に接続されたチューブ88を介して下流で合流し、単一の流路となる。すなわち、チューブ88は、流路S4~S6に接続された複数の接続流路88aと、複数の接続流路88aと合流部88bを介して繋がった1つの合流路88cとを有する。正常な肝臓組織を表現した第1の分岐流路74は、流路S1~S3、S7、S8を有する。癌細胞が増殖した肝臓組織を表現した第2の分岐流路76は、流路S4~S6を有する。
 図6において、ポンプ13は、第2水槽64に入れられた液体Lを汲み上げ、流路60内に、第2水槽64側から組織モデル70側へと向かう液流を発生させる。具体的に、ポンプ13は、第2水槽64に接続されたチューブ90を介して第2水槽64から液体Lを汲み上げ、チューブ91を介してT字形管92に送られる。T字形管92の一端92aは、流路形成ブロック72に接続されたチューブ94に接続されている。T字形管92の他端92bには、カテーテル挿入ポート14が設けられている。ポンプ13によって汲み上げられた液体Lは、T字形管92を介して、組織モデル70へと送られる。
 第1水槽62及び第2水槽64は、それぞれ液体Lを貯留し、互いに液面高さが異なる。具体的に、第1水槽62内の液体Lの液面は、第2水槽64内の液体Lの液面及び組織モデル70(流路形成ブロック72)よりも高い位置にある。
 一端が第1の分岐流路74に接続されたチューブ86の他端は、第1の終端78を構成しており、第1水槽62の貯留槽内に連通するとともに第1水槽62内の液体Lの液面よりも低い位置に接続している。第2実施形態では、チューブ86の他端(第1の終端78)は第1水槽62内の液体Lに水没する態様で配置されているが、このような構成に代えて、チューブ86の他端は第1水槽62の壁に接続されて第1水槽62の貯留槽と連通してもよい。
 第1水槽62には、第1の終端78よりも高い位置で、排出流路の一例であるチューブ96の一端(入口96a)が接続されている。チューブ96の他端(出口96b)は、チューブ96の一端よりも低く、かつ第2水槽64内の液体Lの液面よりも高い位置に設けられている。チューブ86を介して第1水槽62内に液体Lが流入し、第1水槽62内の液体Lの液面がチューブ96の入口96aの高さに達すると、液体Lはチューブ96を介して第2水槽64内へと排出される。従って、第1水槽62内の液体Lの液面高さは、チューブ96の入口96aの高さで一定に保たれ、訓練中に第1水槽62から液体Lがあふれ出ることを抑制する。チューブ96は、チューブ86から流れ込む液体Lの量と、チューブ101から流れ込む液体Lの量との和に対して、十分排出可能な径を有する。これにより、第1水槽62の液面を一定に保つとともに、チューブ86を介して、第1の分岐流路74(正常な肝臓組織を模す)に付与する圧(バックフロー)を、長時間にわたって一定にすることができる。
 一端が第2の分岐流路76に接続されたチューブ88の他端は、第2の終端80を構成しており、第2水槽64の貯留槽内に連通するとともに第2水槽64内の液体Lの液面よりも低い位置で接続している。チューブ88は、第1の分岐流路74の下流側と第2の分岐流路76の下流側との間に圧較差を発生させる圧較差発生部材と捉えることができる。第2実施形態では、チューブ88の他端(第2の終端80)は第2水槽64の壁に接続されて第2水槽64の貯留槽と連通しているが、このような構成に代えて、チューブ88の他端が第2水槽64内の液体Lに水没する態様(第2水槽64の壁に接続されていない態様)で配置されてもよい。
 図6において、第1の分岐流路74と連通した第1の終端78と、第2の分岐流路76と連通した第2の終端80とは、圧力値が異なる。このため、第1の分岐流路74と第2の分岐流路76との間には圧較差が生じている。具体的には、第1の分岐流路74には、第1水槽62内の液体Lの水位と組織モデル70(流路形成ブロック72)との高低差に応じた圧力(陽圧)がかかり、第2の分岐流路76には、組織モデル70(流路形成ブロック72)と第2水槽64との高低差に応じた圧力(陰圧)がかかっている。従って、第1の分岐流路74と第2の分岐流路76との間では、第1の分岐流路74にかかる圧力が相対的に高く、第2の分岐流路76にかかる圧力が相対的に低い。
 ポンプ13が発生する流圧は、第1の終端78及び第2の終端80に付与される圧力よりも高い。すなわち、分岐部82aの上流側に付与される単位断面積あたりの圧力は、第1の終端78における単位断面積あたりの圧力よりも大きい。また、分岐部82aの上流側に付与される単位断面積あたりの圧力は、第2の終端80における単位断面積あたりの圧力よりも大きい。このため、図8に示すように、ポンプ13によって液体Lに流れが付与された流路60内に、カテーテル挿入ポート14からカテーテル46を挿入し、分岐部82aの上流側にカテーテル46の末端を配置し、バルーン50を拡張しない状態でカテーテル46の末端開口47から治療剤(着色水)を投与(注入)すると、第1の分岐流路74側と第2の分岐流路76側の両方に流れていく。
 一方、図9に示すように、分岐部82aの上流でバルーン50を拡張することにより流路を閉塞した状態で、カテーテル46の末端開口47から治療剤を模擬した着色水を微弱な圧力で投与すると、上記した圧較差により、組織モデル70内では第1の分岐流路74側から第2の分岐流路76側へと液体Lが流れる現象が生じる。従って、末端開口47から吐出された着色水は、第1の分岐流路74側には流れず、第2の分岐流路76側(流路S4~S6)のみに流れていく現象が生じる。すなわち、分岐流路が接続する終端の圧力の差に基づき、カテーテル46で塞栓したときと、塞栓していないときとで、S1~S3、S7、S8で着色水の流れる方向が図8とは反対となる。このときに第1水槽62の液体Lの液面が組織モデル70の上面より同じ、または1~5cm、好ましくは1~3cm程度高い場合、組織モデル70内の液体Lの流れが視認しやすい流速となる。
 従って、第1実施形態と同様に、第2実施形態に係る手技シミュレータ10Bの使用者は、血管分岐部の上流でバルーン50を拡張し、血管を閉塞した状態でゆっくりと治療剤を投与した場合、下流側に圧較差の生じ得る条件があることを目視で確認できる。これにより、目標部位が低圧であることが確認されれば、使用者は、目標部位に選択的に投与が可能であることを実感することができる。また、血管を閉塞した状態で、高い圧力で治療剤を投与した場合、使用者は、バルーン50で閉塞した下流側において圧較差を利用した投与はできないことを理解することができる。
 また、図6に示したように、この手技シミュレータ10Bは、液体Lを貯留する第1水槽62及び第2水槽64を備え、第1水槽62内の液体Lの液面は、第2水槽64内の液体Lの液面よりも高い位置に設定されている。第1の終端78は、第1水槽62の貯留槽内に連通するとともに、第1水槽62内の液体Lの液面よりも低い位置に配置されている。第2の終端80は、第2水槽64の貯留槽内に連通するとともに第2水槽64内の液体Lの液面よりも低い位置に配置されている。第1の分岐流路74及び第2の分岐流路76は、第1水槽62内の液体Lの液面と、第2水槽64内の液体Lの液面との間の高さに配置される。この構成により、流路60内でバルーン50を拡張したときに、第1の終端78から空気が流入することがなく、第1の分岐流路74側から第2の分岐流路76側へと向かう流れを連続的に作り出すことができる。すなわち、図1においては第1の終端28からバルーンを膨らました際に一定以上時間がたつと空気が流入しうるが、図6では空気が流入しないように構成されている。また、図6の手技シミュレータ10Bにおいて、チューブ88、及び/または、第2水槽64を省略することができる。すなわち、第2の分岐流路76に対して、チューブ86を陽圧発生部材としても、手技シミュレータ10Bと同様のシミュレータが実現できる。
 この手技シミュレータ10Bは、第1の終端78よりも高い位置に配置された入口96aを有する排出流路(チューブ96)を備え、排出流路は、第1水槽62から第2水槽64へと液体Lを排出する。この構成により、バルーン50が流路60内に挿入されていないとき、または、バルーン50が流路60内で拡張されていないときに、第1の分岐流路74から第1の終端78を介して第1水槽62に液体Lが流入する。その際、チューブ96は十分な内腔を有するため、所定量を超える分の液体Lは、排出流路(チューブ96)により第2水槽64へと排出される。このため、持続的にシミュレーションを行うことができる。また、チューブ101をT字形管92から第1水槽62へさらに接続することで、バルーン50を拡張したときに、第1水槽62に液体Lを補充することができる。これにより、第1の分岐流路74から第2の分岐流路76の流れを、より長い時間発生させることが可能になり、長時間のトレーニングが可能となる。
 図7に示したように、第2実施形態においては、複数の側副血行路の役割を示す連結流路85を有するため、バルーン50の拡張位置を分岐部82aの上流のみならず、その下流の様々な位置で試すことができる。例えば、図7において、連結流路85aに対して若干だけ上流の位置P1にバルーン50を配置して、拡張せずに着色水を強い圧力で投与した場合(例えば、1mLの着色水を数秒間で注入する場合や、造影剤を注入して血管造影する場合と同程度の注入圧力)、着色水は、分岐部82bの下流の流路S5~S8全体に流れるとともに、位置P1のすぐ下流の連結流路85aを介して一部が流路S1~S4側にも流れて行く。
 また、位置P1にバルーン50を配置して拡張し、位置P1で流路を塞いで着色水をゆっくりと投与した場合、そのすぐ下流の連結流路85aには、流路S4~S6(第2の分岐流路76)を介してチューブ88からの陰圧がかかるため、流路S4~S6側には着色水が選択的に流れる。このため、投与された着色水は、接続流路86aからの圧力により流路S7、S8には流れない。
 位置P2にバルーン50を配置して拡張した場合に、着色水を強い圧力で注入すれば、S5~S8に流れるが、着色水を微弱な圧力で注入すれば、流路S5及びS6側のみに、より選択的に流れる現象が生じることが示せるということである。これは、位置P2のすぐ下流に連結流路85bがあるためである。使用者は、側副血行路の存在を容易に視認できるため、バルーン50を拡張させる位置を選択するトレーニングや、適切な注入圧を習得することができる。これにより、使用者は、例えば、患者の正常組織へ到達する抗がん剤を減らす手技が習得できる。
 このように、第2実施形態では、様々な位置にバルーン50を配置し拡張させた場合に生じる現象を確認することができる。また、血管造影手技と異なる治療剤投与手技を模擬することができ、ターゲット組織へ選択的に、治療剤を効果的に投与する訓練を行うことができる。なお、流路S1~S8の圧較差の組み合わせは、チューブ86、88の接続部位を変えることで自由に設定変更が可能である。
 ここで、実際の血管の現象に近く、理想的な圧較差による血流の変化を生じさせる条件としては、図6において、例えば、ポンプ13による流圧が130mmHg程度のとき、第2の分岐流路76に連通する低圧の排出口(第2の終端80)側の圧力はそれぞれ64mmHg以下とし、第1の分岐流路74に連通する高圧の排出口(第1の終端78)側の圧力は、それぞれ130mmHgよりも低く、第2の分岐流路76に連通する排出口(第2の終端80)側の圧力よりも高いことが望ましい。
 図11に示すように、第3実施形態に係る手技シミュレータ10Cは、第1水槽116と、第2水槽110と、血液を模した液体Lを内包する流路160と、生体組織の血管を模した組織モデル120(血管モデル)とを有する。組織モデル120は、アクリル樹脂やポリカーボネート等の透明な材料からなる流路形成ブロック112に設けられている。組織モデル120は、シリコン樹脂等の軟質材(ゴム材)により構成されてもよい。具体的に、組織モデル120は、樹形図状に形成された流路形成ブロック112と、その内部に設けた孔(空洞)とによって構成される。流路形成ブロック112は、第2水槽110の上部(第2水槽110内の液体Lの液面L2よりも上方)に設けられた台座111の上に設置されている。
 図13に示すように、組織モデル120は、複数の分岐流路を備えている。液体Lが流入する始端部112a側に最も近い部分に、分岐部122が形成されている。この分岐部122からは、2つの第1分岐流路122a、122bが分岐して延びている。第1分岐流路122a、122bは、分岐部122の上流側の直線部112bに対して左右に対称な角度で分岐し、かつ、分岐部122から次の分岐までの長さは等しい。2つの第1分岐流路122a、122bは、分岐部122、第2分岐部124、130を頂点とした二等辺三角形または正三角形を形成するように延びている。第1分岐流路122aの末端には第2分岐部124が設けられており、第2分岐部124からは、第2分岐流路124a、124bがさらに分岐して延びている。また、第1分岐流路122bの末端には第2分岐部130が設けられており、第2分岐部130からは、第2分岐流路130a、130bが分岐して伸びている。
 上記の第2分岐流路124a、124b、130a、130bの末端部には、第3分岐部126、128、132、134がそれぞれ設けられている。それらの第3分岐部126、128、132、134からは、第3分岐流路126a、126b、128a、128b、132a、132b、134a、134bがそれぞれ分岐して延びている。すなわち、各分岐部122~134において、各々2本の分岐流路に分岐しており、3段階の分岐部を経て、8本の第3分岐流路126a、126b、128a、128b、132a、132b、134a、134bに分岐している。組織モデル120において、どの分岐流路に模擬腫瘍を接続した場合であっても、同等な条件(流動抵抗)を発生できるように、各分岐流路が等しい長さに形成され、直線部112bの長軸方向に対して左右に対称になるように同じ平面上に形成する。分岐部122~134の接続角度、例えば60°とすることができる。なお、分岐部122~134の分岐数は2本に限定されるものではなく、複数本の任意の数に分岐してもよい。
 また、各分岐部122~134の下流には、分岐した流路同士をつなぐ連結流路122c~134cが複数本ずつ設けられている。図示の例では、各分岐部122~134に対して2~3本の連結流路122c~134cが設けられている。これらの、連結流路122c~134cは、組織の側副血行路を模したものである。組織モデル120において、分岐流路122a~134bの径(内径)は、分岐する毎に、分岐前の径の70~90%となるように設計されていることが好ましい。この実施形態では、分岐後の径は、ヒトの管組織に近づけるために、分岐前の径の80%程度(78~82%)となるように設定されている。流路160の直線部112bの内径は、例えば5mm程度とすることができる。この場合、第1分岐流路122a、122bの内径は4mm程度とすることができる。また、第2分岐流路124a、124b、130a、130bの内径は3.3mm程度とすることができる。さらに、末端の第3分岐流路126a、126b、128a、128b、132a、132b、134a、134bの内径は2.8mm程度とすることができる。各連結流路122c~134cの内径は、1.5~1.8mmとすることができる。
 上記の組織モデル120の8本の第3分岐流路126a、126b、128a、128b、132a、132b、134a、134bの末端には、それぞれ接続ポート141~148が設けられている。図11に示すように、接続ポート141~148には、配管151~158がそれぞれ接続されている。接続ポート141~148は、配管151~158の内側で嵌合させる。配管151~158は、全て第1水槽116に接続されている。各配管151~158の内径は、例えば2.1mm程度とすることができる。配管151~158は、途中で合流して集合配管を構成してもよい。なお、第1水槽116に向かう複数の配管151~158の少なくとも2つの配管には、三方活栓172a~172c(流路切換手段)が設けられている。三方活栓172には、腫瘍模擬配管174a~174cの一端部が脱着可能に接続されている。図示の例では、3つの配管152、153、154にそれぞれ三方活栓172a、172b、172cが取り付けられている。また、三方活栓172が取り付けられていない配管151、155~158には、ポート150が装着されている。なお、三方活栓172は、全ての配管151~158に設けられていてもよい。配管151~158において三方活栓172は、どの位置に設けられていてもよい。
 ポート150は、手技シミュレータ10Cをセットアップ作業時に配管151、155~158内の気泡の除去を可能とするべく、シリンジの先端ノズルを挿入可能な弁を備えて構成されている。ポート150の弁は、シリンジの先端ノズルを挿入すると開いて配管151、155~158内の気泡をシリンジで吸い出すことが可能となっている。ポート150は、シリンジの先端ノズルを引き抜くと閉塞する。
 配管154の三方活栓172cは、接続ポート144に対して、第1水槽116または腫瘍模擬配管174cの終端を選択的に連通させることができる。三方活栓172cにより接続ポート144と腫瘍模擬配管174cとを連通させると、液体Lは腫瘍模擬配管174cの終端のフィルタ159から流出し、第1水槽116には流出しない。配管152、153に設けられた三方活栓172a、172bも、同様にして、接続ポート142、143と腫瘍模擬配管174a、174c、あるいは、接続ポート142、143と第1水槽116、のいずれかで選択的に連通させる。これにより、三方活栓172の操作のみで、模擬腫瘍(フィルタ159)のある流路を切り換えることができる。
 腫瘍模擬配管174a~174cの他端部は、終端174を有する。終端174は、第1水槽116の液面L1よりも低い位置に設定されることで圧較差部材として捉えることができる。腫瘍模擬配管174a~174cは、模擬腫瘍を表現するべく、組織モデル120と腫瘍模擬配管174a~174cの終端174との落差の分だけ、他の配管よりも液体Lが流れやすくなっている。腫瘍模擬配管174a~174cの終端174には、フィルタ159が設けられている。フィルタ159については後述する。
 図11の例では腫瘍模擬配管174a~174cの終端174が、第2水槽110の外側に配置されているが、本実施形態はこれに限定されるものではなく、腫瘍模擬配管174a~174cが第2水槽110の内部に引き回されてその終端174が第2水槽110内に配置されていてもよい。この場合には、腫瘍模擬配管174a~174cから排出される液体Lを第2水槽110内に回収することができる。腫瘍模擬配管174a~174cは少なくとも一部分が、組織モデル120より低い部分の配置されている。
 フィルタ159は、円筒状の透明な樹脂製筐体の内部に、フィルタを内蔵している。フィルタは、孔径数μm程度の微細な細孔を有する多孔質部材である。好ましくはポリエーテルスルホン(PES)、ポリウレタン等から製造された膜状部材や、ポリエチレン焼結体等を使用することができる。塞栓剤のような模擬治療剤の投与訓練をする際に、フィルタ159で塞栓剤を捕捉することができる。さらに、液体Lを通過可能とし、塞栓剤のみ補足するようなフィルタ159とするのが好ましい。このように構成すると、塞栓剤を注入してゆくことにより、フィルタ159が徐々に塞栓されて流体の流れ方に変化が起こり、逆流や液体Lの停滞が発生する。このようにして、組織モデル120は、腫瘍細胞に繋がる血管が塞栓される様子を再現し、使用者に塞栓剤注入の治療効果を認知させることができる。
 なお、フィルタ159の種類や配置、及びフィルタ面積を適宜調整してもよく、また塞栓材に含まれる塞栓物の直径(サイズ)を変えてもよい。フィルタ159及び塞栓物のサイズや量を調整することで、閉塞する時間をコントロールすることができ、様々な条件で手技のシミュレーションを行うことができる。また、青色等に着色した模擬塞栓物と、白色のフィルタを用いれば、白色のフィルタに青色の模擬塞栓物が蓄積する様子を容易に視認することができる。さらに、フィルタ159に塞栓剤が捕捉された後は、腫瘍模擬配管174a~174cとフィルタ159を流路から取り外して廃棄することができる。これにより、流路160内に塞栓剤が混入しにくくなるため、訓練を連続して行うことができる。バルーン50による流向変化のみならず塞栓による流れる速さの変化をみることで、使用者は、塞栓治療法をより深く理解することができる。
 第1水槽116は、組織モデル120から排出された液体Lの出口である排出ポート161~168と、第1水槽116に溜まった液体Lを第2水槽110に還流させるドレインチューブ170とを備えている。排出ポート161~168は、組織モデル120の末端の接続ポート141~148にそれぞれ対応して設けられている。排出ポート161~168は、配管151~158を介して接続ポート141~148にそれぞれ接続されている。
 図12に示すように、排出ポート161~168は、第1水槽116の側壁部に開口している。これらの排出ポート161~168は、第1水槽116に貯留される液体Lの液面L1よりも低い位置となるように、ドレインチューブ170よりも低い位置に開口している。一方、ドレインチューブ170は、組織モデル120と略同じ高さに設けられている。ドレインチューブ170は、第1水槽116から第2水槽110に向けて延びており、第1水槽116に集まった液体Lを第2水槽110に還流させるように構成されている。第1水槽116の液面L1の位置がドレインチューブ170の高さになると、液体Lが第2水槽110に還流するため、第1水槽116の液面L1の位置は、ドレインチューブ170の高さと同じとなる。第1水槽116の下には、支持部材117が配置されている。支持部材117は、ドレインチューブ170の高さが組織モデル120の高さと略同じとなるか僅かに高くなるように設定されている。液面L1の高さが組織モデル120の高さと同じとなっているため、組織モデル120は液体Lで常に満たされるとともに、組織内の圧較差を再現できるように、ゆっくりと液体Lを流すことができる。
 なお、ドレインチューブ170は、排出ポート161~168を介して流入する液体Lの流量に対してオーバーフローしない内径に形成されていることが好ましい。そのため、ドレインチューブ170の内径は、ドレインチューブ170の断面積Aが8本の配管151~158の流路断面積の合計Bに対して、例えば、60%以上となるように設定することが好ましい。配管151~158の内径が2.1mmの場合には、流路断面積の合計Bは、33.94mm2となる。この場合、ドレインチューブ170の内径を10mmとすると、その断面積Aは28.14mm2となるため、AがBの83%となり、第1水槽116からの液体Lの排出を確実に行うことができる。従って、ドレインチューブ170の内径は、10mm以上とすればよく、例えば10~12mm程度とすることができる。
 従って、排出ポート161~168は、第1水槽116の液面L1よりも下側に接続される。このため、組織モデル120の流路160(図1参照)の内圧を高めることや、逆流させることなく、血液を模した液体Lを流通させることができる。そのため、ポンプ113の液体Lの吐出圧力を少なくすることができる。これにより、流路160内の液体Lの流れを緩やかにして、圧較差の発生及び圧較差による逆流といった現象を、緩やかな流れの下で再現することができる。本実施形態では、流路160のうちの分岐前の流路(直線部112b)を除く箇所において、バルーン50(図14参照)を作用させる訓練を行う場合、図6のようなチューブ101を設けることなく、第1水槽116の液面を一定に保つことができる。これにより、第1水槽116の液面高さは一定に維持されるため、正常な肝臓組織を模した分岐流路に対する圧較差を、長時間にわたって、安定的に発生させることができる。
 ポンプ113は、第2水槽110内に設けられている。ポンプ113は、チューブ118を介して組織モデル120の端部112aに接続されている。ポンプ113は、第2水槽110内の液体Lを汲みだして組織モデル120の流路160に液体Lを供給する。ポンプ113による流圧は、第1水槽116の液面L1の位置及び液体Lの流動抵抗に応じた圧力となる。
 チューブ118には、組織モデル120の流路160にカテーテル46(図2参照)を介入させるためのカテーテル挿入ポート114が設けられている。カテーテル挿入ポート114には、カテーテル46を血管内に挿入する挿入口を模擬している。カテーテル挿入ポート114には、カテーテル46を挿入できるが、流路160内に液体Lが漏れ出さないように、図示しない弁が設けられている。
 次に、以上のように構成された手技シミュレータ10Cの作用を説明する。
 手技シミュレータ10Cに使用するためのカテーテル46は、カテーテル挿入ポート114(図11参照)を介して、組織モデル120の流路160内に挿入される。配管154に設けられた三方活栓172によって、接続ポート144の配管154が、腫瘍模擬配管174cに連通すると同時に、第1水槽116側への流れを止める。図14に示すように、配管154に設けられた三方活栓172cによって、接続ポート144の配管154と、腫瘍模擬配管174cとを連通させると同時に、第1水槽116側への流れを止める。その他の接続ポート141~143、145~148は、第1水槽116に連通している。これにより、接続ポート144を模擬腫瘍部へ接続する血管、その他の接続ポート141~143、145~148を正常組織へ接続する血管と見立てることができる。接続ポート144に向かう流路が第1の分岐流路に対応し、他の接続ポート141~143、145~148に向かう流路が第2の分岐流路に対応する。使用者は、第3分岐部128よりも上流の部分でバルーン50を拡張して第2分岐流路124bを閉塞させる。そして、カテーテル46の末端開口47から治療剤を模した着色水または着色塞栓剤を投与する。このとき、着色水または着色塞栓剤は、バルーン50による閉塞のためにポンプ113による圧力を受けることがない。このため、着色水または着色塞栓剤は、注入時の圧力のみが付与されて、下流側、すなわち腫瘍模擬配管174cの多端部に向かって流される。
 図14では、三方活栓172cにより、第3分岐流路128bにおいて、模擬腫瘍に相当する腫瘍模擬配管174cを通じて液体Lが優先的に排出される。その一方で、第3分岐流路128a側は、第1水槽116の液面L1の位置が組織モデル120と略同じ高さとなっているために、液体Lが接続ポート143から第1水槽116側へ流出しない。さらに、このとき、接続ポート143は、三方活栓172bによって、第1水槽116と連通し、かつ、腫瘍模擬配管174bと連通していない状態である。このため、第3分岐流路128bから液体Lが排出されるとともに、第3分岐流路128aから液体Lが逆流して、第3分岐流路128bに向かって流れ込む現象が生じる。そのため、カテーテル46から投与された着色水は、液体Lの流れに乗って、第3分岐流路128bに選択的に流れていく現象が生じる。すなわち、手技シミュレータ10A、10Bと同じ液体Lの流れの変化を再現できる。
 治療剤として着色塞栓剤を用いた場合には、フィルタ159に着色塞栓剤が目詰まりすることで、液体Lの流れが徐々に遅くなり、やがて流れが止まる。使用者は、塞栓剤による治療効果を目視で確認することができる。塞栓剤は、フィルタ159に捕捉されるため、第2水槽110内に流入しない。このため、その後の別の分岐流路を用いた手技のシミュレーションを支障なく続行することができる。使用した塞栓剤は、フィルタ159及び腫瘍模擬配管174a~174cとともに取り外して廃棄できるため、片付けが簡便になって好適である。図14では、三方活栓172cを切り替えて、第1水槽116へ液体Lの流れを遮断し、腫瘍模擬配管174cへ流路を切り替えることで、腫瘍模擬配管174cをターゲット部位としてトレーニングを行える。トレーニング後は、腫瘍模擬配管174c及びフィルタ159cを、三方活栓172cから取り外して廃棄することができる。
 次に、別の第3分岐流路128bに、模擬腫瘍の位置を切り換えるべく、三方活栓172の連通状態を切り換える。図15に示す例では、接続ポート144の配管154に設けられた三方活栓172cを操作することで、腫瘍模擬配管174cへの流れを遮断するとともに、第1水槽116に連通させる。さらに、接続ポート143の配管153に設けられた三方活栓172bを操作して、腫瘍模擬配管174bに連通させるとともに、接続ポート143から第1水槽116への流路を遮断する。すなわち、接続ポート143の下流側に模擬腫瘍を設定する。その他の接続ポート141、142、144~148は、第1水槽116に連通することで、正常組織を模擬させることができる。すなわち、第1の分岐流路が接続ポート143に向かう流路に切り換わり、その他の接続ポート141、142、144~148に向かう流路が第2の分岐流路となる。
 このとき、分岐部128よりも上流の部分でバルーン50を拡張して第2分岐流路124bを閉塞させる。そして、カテーテル46の末端開口47から治療剤を模した着色水または着色塞栓剤を投与する。第3分岐流路128aは、模擬腫瘍に相当する接続ポート143の腫瘍模擬配管174bを通じて液体Lが優先的に流出する。その一方で、第3分岐流路128bは、第1水槽116の液面L1の位置が組織モデル120と略同じ高さとなっているために、液体Lが接続ポート143からは殆ど流出しない。そのため、第3分岐流路128aから液体Lが排出されるとともに、第3分岐流路128bから液体Lが逆流して、第3分岐流路128aに流れ込む現象が生じる。そのため、カテーテル46から投与された着色水または着色塞栓剤は、液体Lの流れに乗って、模擬腫瘍に繋がる第3分岐流路128aに選択的に流れていく現象が生じる。
 このように、三方活栓172を操作するだけで、模擬腫瘍に繋がる分岐流路を変えることができ、複数の分岐流路124a~134bを用いた手技のシミュレーションを容易に行うことができる。これにより、模擬腫瘍に繋がる分岐流路と、模擬正常組織に繋がる分岐流路と、を簡便に切り替えてトレーニングをすることができる。
 本実施形態の手技シミュレータ10Cは、液体Lを貯留する第1水槽116と、複数の第3分岐流路126a~134bと第1水槽116とを各々接続する複数の配管151~158と、複数の配管151~158の少なくとも1つに設けられ、配管151~158から分岐して終端174が第1水槽116の液面L1よりも低い位置に設定された腫瘍模擬配管174a~174cと、配管151~158と腫瘍模擬配管174a~174cとの分岐部に設けられ、腫瘍模擬配管174a~174cを第1水槽116及び腫瘍模擬配管174a~174cのいずれか一方に選択的に連通させる三方活栓172a~172c(流路切換手段)と、を備える。このように構成することにより、三方活栓172a~172cを操作するだけで、模擬腫瘍の部位を変えることができ、組織モデル120の複数の第3分岐流路126a~134bを用いた手技シミュレーションを簡単に実施することができる。
 上記の手技シミュレータ10Cにおいて、第2分岐流路124a~130b、及び第3分岐流路126a~134bは、第1水槽116の液面L1と同じ高さにある。このように構成することにより、分岐流路124a~134bに、模擬腫瘍を再現に必要な圧較差以外の差圧を発生させない。このため、再現性が高く、均質な訓練を実施することができる。
 上記の手技シミュレータ10Cにおいて、腫瘍模擬配管174a~174cの終端174は、フィルタ159を有する。フィルタ159により、液体Lを回収しながら、治療剤として用いる塞栓剤を分離除去することができる。これにより、流路160への塞栓剤の混入を低減するとともに、塞栓剤が、フィルタ159から腫瘍模擬配管174a~174cに向かって蓄積する様子を確認することができる。この際、着色した塞栓剤の付着により、塞栓状態を視覚的に確認することができて好適である。また、使用後のフィルタ159は、腫瘍模擬配管174a~174cの少なくとも1つとともに組織モデル120から取り外して廃棄することができるので、組織モデル120内及び流路160内に混入した塞栓剤の処理が不要となり、片付け作業を簡便化できる。
 上記の手技シミュレータ10Cにおいて、組織モデル120は、分岐前の流路(直線部112b)の長軸方向を軸として、線対称に分岐流路が分岐してもよい。これにより、左右の分岐流路の流路長さが略同じとなり、模擬腫瘍(フィルタ159)の位置を左右入れ替えても同等の条件で手技のシミュレーションを行うことができる。
 上記の手技シミュレータ10Cにおいて、組織モデル120は、分岐部122~134を頂点とした略二等辺三角形状または正三角形状に分岐してもよい。さらに、この場合、最初の分岐部122から末端の接続ポート141~148までの長さが略等しくなるように形成されていてもよい。これにより、いずれの第3分岐流路126a~134bに模擬腫瘍(腫瘍模擬配管174a~174c及びフィルタ159)を接続した場合であっても、同等の条件で手技のシミュレーションを行うことができる。
 上記の手技シミュレータ10Cにおいて、第1水槽116の液面L1よりも低い位置に液面L2を有する第2水槽110を備え、ポンプ113(液流発生部材)が第2水槽110の液体Lを汲み上げて流路160の上流側に供給するようにしてもよい。この場合には、第1水槽116の液体Lを第2水槽110に還流させるドレインチューブ170を備えていてもよい。これにより、液体Lを循環させて使用することができ、長時間に亘って手技のシミュレーションを行うことができる。
 なお、組織モデル120に接続される配管151~158の全部または一部には、クレンメ(流量調整手段)が取り付けられていてもよい。クレンメは、配管151~158の流路の断面積を減少させることができる。すなわち、クレンメによって配管151~158の断面積が変化して、流動抵抗(流量)を変化させることができる。ポンプ113によって一定流量で流れ込む液体Lに対して、クレンメで配管151~158の流動抵抗を増加させると、そのクレンメが接続された分岐流路の内圧が高まり、圧較差を発生させることができる。すなわち、クレンメは、圧較差発生部材としての機能を果たすことができる。これにより、さらに圧較差の発生条件を複雑化させることができるため、上級者向けの訓練が可能となる。
 図16の第3実施形態の変形例に係る手技シミュレータ10Dでは、第1水槽180が上方から見てC字状に形成されている。第1水槽180は、組織モデル120の末端の接続ポート141~148の各々と、第1水槽180との距離が概ね同一となるように、組織モデル120の接続ポート141~148を取り囲むように側部180aが形成されている。接続ポート141~148には、それぞれチューブ181~188が接続されている。チューブ181~188は、第1水槽180の側部180aに接続されて第1水槽180と連通している。各チューブ181~188の長さは、概ね同じ長さに形成されており、各分岐流路において、チューブ181~188を含む流路の長さが略同一となるように構成されている。また、ドレインチューブ170を有してもよい。
 このように、各分岐流路の長さを同一としておくことで、分岐流路の流動抵抗が略同じとなる。そのため、より緩やかな流体の流れを用いても、容易に圧較差を発生させることができ、圧較差による逆流を再現することができる。そのため、より実際の組織に近い条件の下で、手技のシミュレーションを行うことができる。
 上記の諸実施形態は上記した例示に限定されるものではなく、上記の諸実施形態の要旨を逸脱しない範囲において、種々の改変が可能である。
10A、10B、10C、10D…手技シミュレータ
12、60、160…流路
13、113…ポンプ(液流発生部材)
14…カテーテル挿入ポート         16…水槽
22、122、124、126、128、130、132、134…分岐部
24、74…第1の分岐流路
26、76…第2の分岐流路
40、88…チューブ(圧較差発生部材)   62、116…第1水槽
64、110…第2水槽           151~158…配管
159…フィルタ
172…三方活栓(流路切換手段)
174a~174c…腫瘍模擬配管
L…液体

Claims (15)

  1.  カテーテルを用いた手技をトレーニングするための手技シミュレータであって、
     血液を模した液体を内包する流路と、
     前記液体に流れを付与する液流発生部材と、
     前記流路内に前記カテーテルを介入させるカテーテル挿入ポートと、を備え、
     前記流路は、前記カテーテル挿入ポートよりも下流に設けられるとともに少なくとも2つの流路に分岐する分岐部と、前記分岐部の下流に設けられた複数の分岐流路とを有し、
     前記複数の分岐流路は、第1の分岐流路と第2の分岐流路とを有し、
     前記手技シミュレータは、さらに、前記第1の分岐流路の下流側と前記第2の分岐流路の下流側との間に圧較差を発生させる圧較差発生部材を備え、
     前記液流発生部材は、前記第1の分岐流路の下流側と前記第2の分岐流路の下流側とに付与される圧力よりも高い圧力を発生する、手技シミュレータ。
  2.  請求項1記載の手技シミュレータにおいて、
     前記圧較差発生部材は、前記第2の分岐流路の下流側に接続されるともに前記第2の分岐流路よりも低い位置に排出口を有するチューブ、及び/または、前記第1の分岐流路よりも高い位置に排出口を有するチューブ、により構成されている、手技シミュレータ。
  3.  請求項1記載の手技シミュレータにおいて、
     前記第1の分岐流路及び第2の分岐流路が形成された流路形成ブロックを備える、手技シミュレータ。
  4.  請求項3記載の手技シミュレータにおいて、
     前記流路形成ブロックは、パネル状に形成されている、手技シミュレータ。
  5.  請求項1記載の手技シミュレータにおいて、
     前記液体を貯留する第1容器及び第2容器を備え、
     前記第1の分岐流路は、第1の終端に連通し、
     前記第2の分岐流路は、第2の終端に連通し、
     前記第1容器内の前記液体の液面は、前記第2容器内の前記液体の液面よりも高い位置に設定され、
     前記第1の終端は、前記第1容器の貯留槽内に連通するとともに前記第1容器内の前記液体の液面よりも低い位置に配置され、
     前記第2の終端は、前記第2容器の貯留槽内に連通するとともに前記第2容器内の前記液体の液面よりも低い位置に配置され、
     前記第1の分岐流路及び前記第2の分岐流路は、前記第1容器内の前記液体の液面と、前記第2容器内の前記液体の液面との間の高さに配置される、手技シミュレータ。
  6.  請求項5記載の手技シミュレータにおいて、
     前記第1の終端よりも高い位置に配置された入口を有する排出流路を備え、
     前記排出流路は、前記第1容器から前記第2容器へと前記液体を排出する、手技シミュレータ。
  7.  請求項1~6のいずれか1項に記載の手技シミュレータにおいて、
     前記第1の分岐流路は、前記第1の分岐流路の他の箇所よりも内径が小さい複数の第1小径分岐流路を有し、
     前記第2の分岐流路は、前記第2の分岐流路の他の箇所よりも内径が小さい複数の第2小径分岐流路を有する、手技シミュレータ。
  8.  請求項1~7のいずれか1項に記載の手技シミュレータにおいて、
     前記流路は、側副血行路を模した連結流路を有する、手技シミュレータ。
  9.  請求項1記載の手技シミュレータにおいて、
     前記液体を貯留する第1容器と、
     前記複数の分岐流路と前記第1容器とを各々接続する複数の配管と、
     前記複数の配管の少なくとも一つに設けられ、かつ、一端部が前記配管に接続され他端部が前記第1容器の液面よりも低い位置に設けられた、前記圧較差発生部材としての腫瘍模擬配管と、
     前記配管と前記腫瘍模擬配管との分岐部に設けられ、前記分岐流路を前記第1容器及び前記腫瘍模擬配管のいずれか一方に選択的に連通させる流路切換手段と、
     を備えた、手技シミュレータ。
  10.  請求項9記載の手技シミュレータにおいて、
     前記腫瘍模擬配管の他端部に、液体を通過可能なフィルタを有する、手技シミュレータ。
  11.  請求項9または10記載の手技シミュレータにおいて、
     前記複数の分岐流路は、分岐前の流路の方向を軸として線対称に形成されるとともに、前記複数の分岐流路の各々の長さが同じ長さに形成されている、手技シミュレータ。
  12.  請求項11記載の手技シミュレータにおいて、
     前記複数の分岐流路と前記第1容器とを接続する前記複数の配管の長さが各々同じ長さである、手技シミュレータ。
  13.  請求項12記載の手技シミュレータにおいて、前記圧較差発生部材は、さらに前記配管の流路断面積を変化させる流量調整手段を備える、手技シミュレータ。
  14.  請求項9または10記載の手技シミュレータにおいて、前記第1容器の液面よりも低い位置に液面がある第2容器を備え、前記液流発生部材は前記第2容器の前記液体を汲み上げて前記流路の上流側に供給する、手技シミュレータ。
  15.  請求項14記載の手技シミュレータにおいて、前記第1容器の液体を前記第2容器に還流させるドレインチューブを備える、手技シミュレータ。
PCT/JP2019/021830 2018-08-07 2019-05-31 手技シミュレータ WO2020031474A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201980007428.XA CN111566714B (zh) 2018-08-07 2019-05-31 手术操作模拟器
ES19846288T ES2945351T3 (es) 2018-08-07 2019-05-31 Simulador de técnica
EP19846288.9A EP3792900B1 (en) 2018-08-07 2019-05-31 Technique simulator
JP2020536345A JP7280268B2 (ja) 2018-08-07 2019-05-31 手技シミュレータ
CA3103762A CA3103762C (en) 2018-08-07 2019-05-31 Technique simulator
AU2019317840A AU2019317840B2 (en) 2018-08-07 2019-05-31 Technique simulator
EP23158109.1A EP4207140A1 (en) 2018-08-07 2019-05-31 Technique simulator
US17/061,487 US11417242B2 (en) 2018-08-07 2020-10-01 Technique simulator
AU2021221800A AU2021221800B2 (en) 2018-08-07 2021-08-25 Technique simulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018148494 2018-08-07
JP2018-148494 2018-08-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/061,487 Continuation US11417242B2 (en) 2018-08-07 2020-10-01 Technique simulator

Publications (1)

Publication Number Publication Date
WO2020031474A1 true WO2020031474A1 (ja) 2020-02-13

Family

ID=69414625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021830 WO2020031474A1 (ja) 2018-08-07 2019-05-31 手技シミュレータ

Country Status (8)

Country Link
US (1) US11417242B2 (ja)
EP (2) EP3792900B1 (ja)
JP (2) JP7280268B2 (ja)
CN (1) CN111566714B (ja)
AU (2) AU2019317840B2 (ja)
CA (1) CA3103762C (ja)
ES (1) ES2945351T3 (ja)
WO (1) WO2020031474A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157285A1 (ja) * 2020-02-04 2021-08-12 テルモ株式会社 手技シミュレータ及びそれを用いた手技訓練方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220406222A1 (en) * 2021-06-16 2022-12-22 Nokia Technologies Oy Perfusive tissue phantom
EP4377942A1 (en) * 2021-07-25 2024-06-05 Mentice AB System for advanced physician training and patient specific rehearsals
WO2023239859A1 (en) * 2022-06-10 2023-12-14 The Johns Hopkins University Apparatus for developing and testing devices and methods for embolizing a blood vessel

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000342692A (ja) * 1999-06-04 2000-12-12 Univ Waseda 人工冠動脈及び冠動脈ステント性能評価シミュレータ
JP2006122354A (ja) * 2004-10-29 2006-05-18 Univ Waseda 血流シミュレータ及び流れ変換装置
JP2014032362A (ja) * 2012-08-06 2014-02-20 Shonan Kasei:Kk 管状モデルの製造方法、血管モデル、血管モデルシミュレータ及び成形型
JP2015069054A (ja) * 2013-09-30 2015-04-13 ファインバイオメディカル有限会社 カテーテル治療シミュレータ
US20150161347A1 (en) * 2011-09-13 2015-06-11 Medtronic Inc. Physiologic simulator system
WO2016075732A1 (ja) * 2014-11-10 2016-05-19 国立大学法人大阪大学 カテーテル・シミュレーター、及びカテーテル・シミュレーター用造影方法
US9844383B2 (en) 2013-05-08 2017-12-19 Embolx, Inc. Devices and methods for low pressure tumor embolization
US9852660B1 (en) * 2015-12-03 2017-12-26 Robert Fairbanks Catheterization procedure training apparatus
WO2018034074A1 (ja) * 2016-08-17 2018-02-22 テルモ株式会社 手技シミュレータ
WO2018079711A1 (ja) * 2016-10-28 2018-05-03 国立大学法人大阪大学 カテーテル・シミュレーター用臓器モデル

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020107504A1 (en) * 2001-02-06 2002-08-08 Gordon Lucas S. Apparatus for local drug delivery in limb
US20140322688A1 (en) * 2006-03-03 2014-10-30 EBM Corporation System for evaluating cardiac surgery training
US8608484B2 (en) * 2008-03-04 2013-12-17 Medrad, Inc. Dynamic anthropomorphic cardiovascular phantom
US20090246747A1 (en) * 2008-03-25 2009-10-01 Operative Experience, Inc. Simulator for major surgical operations
JP2012513292A (ja) * 2008-12-23 2012-06-14 シルク・ロード・メディカル・インコーポレイテッド 急性虚血性脳卒中の治療方法及び治療システム
US20100196865A1 (en) * 2009-02-05 2010-08-05 Pinnacle Health Hospitals Fluid delivery system for patient simulation manikin
US9569985B2 (en) * 2012-05-07 2017-02-14 St. Jude Medical, Cardiology Division, Inc. Transcatheter heart valve delivery deployment simulator
US20140370490A1 (en) * 2013-06-12 2014-12-18 Medtronic, Inc. Heart-lung preparation and method of use
US9589484B2 (en) * 2014-01-24 2017-03-07 Cardiovascular Systems, Inc. Simulation device
WO2016158222A1 (ja) * 2015-03-30 2016-10-06 国立大学法人大阪大学 カテーテル・シミュレーター用容器、及びこの容器内に収容される心臓モデル
EP3333833B1 (en) * 2015-08-03 2022-03-23 Terumo Kabushiki Kaisha Technique simulator
US10360813B2 (en) * 2015-08-20 2019-07-23 Osaka University Pulsatile pump for catheter simulator
JP2017111340A (ja) * 2015-12-17 2017-06-22 テルモ株式会社 手技シミュレータ
WO2017127724A1 (en) * 2016-01-21 2017-07-27 The University Of North Carolina At Chapel Hill Simulator systems and methods
CN109074753A (zh) * 2016-05-13 2018-12-21 基诺斯有限公司 血管的脉动模拟器
IT201600114762A1 (it) * 2016-11-14 2018-05-14 Milano Politecnico Assieme di banco prova per la simulazione di interventi di cardiochirurgia e/o procedure di cardiologia interventistica
US10885813B2 (en) * 2016-11-29 2021-01-05 Prytime Medical Devices, Inc. Body model for temporary hemorrhage control training and simulation
US11176849B2 (en) * 2018-10-29 2021-11-16 The Aga Khan University Pumping heart simulator
US20200242973A1 (en) * 2019-01-29 2020-07-30 Simmo3D, LLC Anatomical structure model and components for use in training surgical procedures

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000342692A (ja) * 1999-06-04 2000-12-12 Univ Waseda 人工冠動脈及び冠動脈ステント性能評価シミュレータ
JP2006122354A (ja) * 2004-10-29 2006-05-18 Univ Waseda 血流シミュレータ及び流れ変換装置
US20150161347A1 (en) * 2011-09-13 2015-06-11 Medtronic Inc. Physiologic simulator system
JP2014032362A (ja) * 2012-08-06 2014-02-20 Shonan Kasei:Kk 管状モデルの製造方法、血管モデル、血管モデルシミュレータ及び成形型
US9844383B2 (en) 2013-05-08 2017-12-19 Embolx, Inc. Devices and methods for low pressure tumor embolization
JP2015069054A (ja) * 2013-09-30 2015-04-13 ファインバイオメディカル有限会社 カテーテル治療シミュレータ
WO2016075732A1 (ja) * 2014-11-10 2016-05-19 国立大学法人大阪大学 カテーテル・シミュレーター、及びカテーテル・シミュレーター用造影方法
US9852660B1 (en) * 2015-12-03 2017-12-26 Robert Fairbanks Catheterization procedure training apparatus
WO2018034074A1 (ja) * 2016-08-17 2018-02-22 テルモ株式会社 手技シミュレータ
WO2018079711A1 (ja) * 2016-10-28 2018-05-03 国立大学法人大阪大学 カテーテル・シミュレーター用臓器モデル

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IRIE ET AL.: "Dense Accumulation of Lipiodol Emulsion in Hepatocellular Carcinoma Nodule during Selective Balloon-occluded Transarterial Chemoembolization: Measurement of Balloon-occluded Arterial Stump Pressure", CARDIO VASCULAR AND INTERVENTION RADIOLOGY, no. 36, 2013, pages 706 - 713
MATSUMOTO ET AL.: "Balloon-occluded arterial stump pressure before balloon-occluded transarterial chemoembolization", MINIMALLY INVASIVE THERAPY ALLIED TECHNOLOGIES, 25 September 2015 (2015-09-25), Retrieved from the Internet <URL:URL:http://www.tandfonline.com/action/journalInformation?journalCode=imit20>
See also references of EP3792900A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157285A1 (ja) * 2020-02-04 2021-08-12 テルモ株式会社 手技シミュレータ及びそれを用いた手技訓練方法

Also Published As

Publication number Publication date
CA3103762C (en) 2024-02-20
AU2021221800A1 (en) 2021-09-23
CA3103762A1 (en) 2020-02-13
EP3792900A1 (en) 2021-03-17
EP3792900A4 (en) 2021-04-07
CN111566714A (zh) 2020-08-21
AU2019317840A1 (en) 2020-10-01
US11417242B2 (en) 2022-08-16
JP2023099619A (ja) 2023-07-13
EP4207140A1 (en) 2023-07-05
CN111566714B (zh) 2022-12-13
EP3792900B1 (en) 2023-04-19
ES2945351T3 (es) 2023-06-30
JPWO2020031474A1 (ja) 2021-08-12
US20210020071A1 (en) 2021-01-21
AU2021221800B2 (en) 2022-09-29
AU2019317840B2 (en) 2021-08-19
JP7280268B2 (ja) 2023-05-23

Similar Documents

Publication Publication Date Title
WO2020031474A1 (ja) 手技シミュレータ
US20200297351A1 (en) Devices and methods for low pressure tumor embolization
JP2868559B2 (ja) 逆行潅流処置装置
JP5749909B2 (ja) 模擬人体
RU2604714C2 (ru) Катетер для обмена текучей средой и способ разблокирования катетера для обмена текучей средой
US6106497A (en) System and method for preventing an air embolism in a surgical procedure
US7025741B2 (en) Arteriovenous access valve system and process
JPH07502443A (ja) 2方向性大腿動脈用カニューレ
JPH02500888A (ja) 逆行潅流の改良
WO2002041285A3 (en) Medical simulation apparatus and related method
EP1202759B1 (en) Perfusion system
CN114556458B (zh) 手术操作模拟器以及使用该手术操作模拟器的手术操作训练方法
US20100261262A1 (en) System for forming and maintaining biological tissue
JP3354652B2 (ja) 薬液投与装置
EP4284462A1 (en) Syringe-based microbubble generator with an aerator
WO2023234236A1 (ja) 手技シミュレータ
CN219759021U (zh) 一种血液透析用动静脉内瘘穿刺训练模具
US20060015065A1 (en) Method of drug perfusion in paraaortic lymph node tumors, sheath for inserting catheter, and oxygenated blood perfusion apparatus
CN117017400A (zh) 一种肿瘤内科药物介入治疗装置
CN105679166A (zh) 可用于观测静脉畸形充盈状态的体外实验模型及实验方法
JP2650932B2 (ja) 体内の腫瘍治療用カテーテル装置
JP2024505005A (ja) エアレータ付シリンジ型マイクロバブル発生器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846288

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020536345

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019317840

Country of ref document: AU

Date of ref document: 20190531

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 19846288.9

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019846288

Country of ref document: EP

Effective date: 20201207

ENP Entry into the national phase

Ref document number: 3103762

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE