WO2020027046A1 - 含フッ素ポリマーを含有する組成物および成形品 - Google Patents

含フッ素ポリマーを含有する組成物および成形品 Download PDF

Info

Publication number
WO2020027046A1
WO2020027046A1 PCT/JP2019/029642 JP2019029642W WO2020027046A1 WO 2020027046 A1 WO2020027046 A1 WO 2020027046A1 JP 2019029642 W JP2019029642 W JP 2019029642W WO 2020027046 A1 WO2020027046 A1 WO 2020027046A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
acid
crosslinking
polymer
fluorine
Prior art date
Application number
PCT/JP2019/029642
Other languages
English (en)
French (fr)
Inventor
文宏 上谷
剛 野口
誠一 平野
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to US17/265,343 priority Critical patent/US20210317295A1/en
Priority to KR1020217003040A priority patent/KR102470957B1/ko
Priority to CN201980049213.4A priority patent/CN112513175B/zh
Priority to EP19843590.1A priority patent/EP3831876A4/en
Priority claimed from JP2019138605A external-priority patent/JP6708290B2/ja
Publication of WO2020027046A1 publication Critical patent/WO2020027046A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers

Definitions

  • the present disclosure relates to compositions and molded articles containing a fluoropolymer.
  • compositions made of fluorine-containing polymers are excellent in heat resistance, chemical resistance, solvent resistance, fuel oil resistance, etc., and are used for molding O-rings, hoses, stem seals, shaft seals, diaphragms, etc. It is widely used for manufacturing goods.
  • a composition for example, in Patent Document 1, a composite particle and a composition containing a fluoropolymer, wherein the composite particle is composed of a polymer and inorganic particles dispersed in the polymer A composition characterized by the following has been proposed.
  • An object of the present disclosure is to provide a composition containing a fluoropolymer and having excellent scorch resistance.
  • Compositions containing monomer units are provided.
  • the acid group-containing monomer unit is preferably an unsaturated carboxylic acid unit.
  • the acid group-containing monomer unit is preferably a methacrylic acid unit. It is preferable that the content of the acid group-containing monomer unit of the polymer is 1 to 100 mol% based on all monomer units.
  • the fluoropolymer is a fluoroelastomer.
  • the inorganic particles are inorganic nitride particles.
  • the composite particles are preferably obtained by polymerizing an acid group-containing monomer in a dispersion in which the inorganic particles are dispersed.
  • the composition is a molding material.
  • the composition of the present disclosure contains a fluoropolymer.
  • a fluorine-containing polymer a fluorine-containing elastomer is preferable because of excellent sealing properties, chemical resistance and heat resistance.
  • the fluorine-containing elastomer is an amorphous fluorine-containing polymer.
  • amorphous refers to a melting peak (differential scanning calorimetry [DSC] (heating rate 10 ° C./min)) or differential thermal analysis [DTA] (heating rate 10 ° C./min) of a fluorine-containing polymer.
  • DSC differential scanning calorimetry
  • DTA differential thermal analysis
  • ⁇ H is 4.5 J / g or less.
  • Fluorine-containing elastomers exhibit elastomer properties when crosslinked. By elastomeric properties is meant the property that allows the polymer to be stretched and retains its original length when the force required to stretch the polymer is no longer applied.
  • the fluoroelastomer may be a partially fluorinated elastomer or a perfluoroelastomer, but it is preferable to use a perfluoroelastomer from the viewpoint of more excellent chemical resistance and heat resistance.
  • a partially fluorinated elastomer is a fluoropolymer containing a fluoromonomer unit and having a perfluoromonomer unit content of less than 90 mol% based on all monomer units, and a glass transition temperature of 20 ° C or lower. And a melting peak ( ⁇ H) of 4.5 J / g or less.
  • a perfluoroelastomer is a fluoropolymer having a perfluoromonomer unit content of 90 mol% or more based on all monomer units, has a glass transition temperature of 20 ° C or less, and has a glass transition temperature of 4.5 J.
  • / G is a fluoropolymer having a magnitude of a melting peak ( ⁇ H) of not more than / g and a polymer having a fluorine atom concentration of 71% by mass or more contained in the fluoropolymer.
  • the concentration of fluorine atoms contained in the fluoropolymer is obtained by calculating the concentration (% by mass) of the fluorine atoms contained in the fluoropolymer from the type and content of each monomer constituting the fluoropolymer. It is.
  • a perfluoromonomer is a monomer having no carbon atom-hydrogen atom bond in the molecule.
  • the perfluoromonomer may be a monomer in which some of the fluorine atoms bonded to the carbon atoms have been replaced with chlorine atoms in addition to carbon atoms and fluorine atoms, and in addition to carbon atoms, nitrogen atoms, oxygen atoms And those having a sulfur atom.
  • the perfluoromonomer is preferably a monomer in which all hydrogen atoms have been replaced with fluorine atoms.
  • the perfluoromonomer does not include a monomer that provides a crosslinking site.
  • Examples of the partially fluorinated elastomer include vinylidene fluoride (VdF) fluorine rubber, tetrafluoroethylene (TFE) / propylene (Pr) fluorine rubber, and tetrafluoroethylene (TFE) / propylene / vinylidene fluoride (VdF) fluorine.
  • VdF vinylidene fluoride
  • TFE tetrafluoroethylene
  • Pr propylene
  • VdF vinylidene fluoride
  • HFP ethylene / hexafluoropropylene
  • HFP ethylene / hexafluoropropylene
  • VdF vinylidene fluoride
  • HFP ethylene / hexafluoropropylene
  • TFE tetrafluoroethylene fluorine Rubber and the like.
  • it is at least one selected from the group consisting of vinylidene fluoride-based fluororubber and tetrafluoroethylene / propylene-based fluororubber.
  • the vinylidene fluoride-based fluororubber is preferably a copolymer comprising 45 to 85 mol% of vinylidenefluoride and 55 to 15 mol% of at least one other monomer copolymerizable with vinylidenefluoride. .
  • Preferred is a copolymer comprising 50 to 80 mol% of vinylidene fluoride and 50 to 20 mol% of at least one other monomer copolymerizable with vinylidene fluoride.
  • the content of each monomer constituting the fluoropolymer can be calculated by appropriately combining NMR, FT-IR, elemental analysis, and X-ray fluorescence analysis depending on the type of the monomer.
  • Examples of the at least one other monomer copolymerizable with the vinylidene fluoride include TFE, HFP, fluoroalkyl vinyl ether, chlorotrifluoroethylene (CTFE), trifluoroethylene, trifluoropropylene, pentafluoropropylene, and trifluorobutene.
  • Tetrafluoroisobutene, hexafluoroisobutene, vinyl fluoride general formula (1): represented by CH 2 CFCFRf 1 (where Rf 1 is a linear or branched fluoroalkyl group having 1 to 12 carbon atoms)
  • a fluoromonomer represented by the general formula (2): CH 2 CHCH— (CF 2 ) n —X 2 (wherein X 2 is H or F, and n is an integer of 3 to 10).
  • Fluoromonomer monomer that provides a crosslinking site; ethylene, propylene, alkyl vinyl ether It includes non-fluorinated monomers like. These can be used alone or in any combination. Among these, it is preferable to use at least one selected from the group consisting of TFE, HFP, fluoroalkyl vinyl ether and CTFE.
  • CF 2 CF-ORf 3 (Wherein, Rf 3 represents a C 1-8 perfluoroalkyl group).
  • General formula (4): CF 2 CFOCF 2 ORf 4 (In the formula, Rf 4 is a linear or branched perfluoroalkyl group having 1 to 6 carbon atoms, a cyclic perfluoroalkyl group having 5 to 6 carbon atoms, and 2 to 6 carbon atoms containing 1 to 3 oxygen atoms.
  • CF 2 CFCFO (CF 2 CF (Y 5 ) O) m (CF 2 ) n F
  • Y 5 represents a fluorine atom or a trifluoromethyl group
  • m is an integer of 1 to 4
  • n is an integer of 1 to 4
  • It is preferably at least one kind, and more preferably a fluoromonomer represented by the general formula (3).
  • vinylidene fluoride-based fluorororubber examples include VdF / HFP-based rubber, VdF / HFP / TFE-based rubber, VdF / CTFE-based rubber, VdF / CTFE / TFE-based rubber, and VDF / general formula (1).
  • the VDF / CH 2 CFCFCF 3 rubber is preferably a copolymer composed of VDF 40 to 99.5 mol% and CH 2 CFCFCF 3 0.5 to 60 mol%, and VDF 50 to 85 mol%. And CH 2 CFCFCF 3 , which is more preferably 15 to 50 mol%.
  • the tetrafluoroethylene / propylene-based fluororubber is preferably a copolymer comprising 45 to 70 mol% of tetrafluoroethylene, 55 to 30 mol% of propylene, and 0 to 5 mol% of a fluoromonomer providing a crosslinking site. .
  • the fluorine-containing elastomer may be a perfluoroelastomer.
  • a perfluoroelastomer containing TFE for example, TFE / fluoromonomer copolymer represented by the general formula (3), (4) or (5), and TFE / general formula (3), At least one selected from the group consisting of a fluoromonomer represented by (4) or (5) / a monomer copolymer providing a crosslinking site is preferable.
  • the composition is preferably 45 to 90/10 to 55 (mol%), more preferably 55 to 80/20 to 45, and further preferably 55 to 70 / mol. 30 to 45.
  • the ratio is preferably from 45 to 89.9 / 10 to 54.9 / 0.01 to 4 (mol%), more preferably from 50 to 77.9 / 20-49.9 / 0.1-3.5, more preferably 55-69.8 / 30-44.8 / 0.2-3.
  • the TFE / fluoromonomer copolymer represented by the general formula (3), (4) or (5) having 4 to 12 carbon atoms it is preferably 50 to 90/10 to 50 (mol%), It is more preferably from 60 to 88/12 to 40, and still more preferably from 65 to 85/15 to 35.
  • perfluoroelastomer examples include TFE / fluoromonomer represented by the general formula (5) / monomer copolymer providing a crosslinking site, TFE / fluoromonomer copolymer represented by the general formula (5), TFE / general It is at least one member selected from the group consisting of a fluoromonomer copolymer represented by the formula (3) and a TFE / fluoromonomer represented by the general formula (3) / a monomer copolymer providing a crosslinking site. Is preferred.
  • perfluoroelastomer examples include perfluoroelastomers described in WO 97/24381, JP-B-61-57324, JP-B-4-81608, and JP-B-5-13961. Can be.
  • the monomer that provides a crosslinking site is a monomer having a crosslinkable group (a cure site monomer) that provides a crosslinking site for forming a crosslinking with a crosslinking agent to a fluoropolymer.
  • Z is a straight or branched chain having 1 to 5 carbon atoms which may have an oxygen atom.
  • X 6 is preferably a fluorine atom.
  • Rf 6 and Rf 7 are preferably a perfluoroalkylene group having 1 to 5 carbon atoms.
  • R 6 is preferably a hydrogen atom.
  • X 8 is preferably a cyano group, an alkoxycarbonyl group, an iodine atom, a bromine atom, or —CH 2 I.
  • X 9 is preferably a cyano group, an alkoxycarbonyl group, an iodine atom, a bromine atom, or —CH 2 OH.
  • the above-mentioned fluorine-containing elastomer preferably has a glass transition temperature of ⁇ 70 ° C. or higher, more preferably ⁇ 60 ° C. or higher, and more preferably ⁇ 50 ° C. or higher, from the viewpoint of excellent compression set resistance at high temperatures. Is more preferred. Further, from the viewpoint of good cold resistance, the temperature is preferably 5 ° C. or lower, more preferably 0 ° C. or lower, and further preferably -3 ° C. or lower.
  • a DSC curve was obtained by raising the temperature of a 10 mg sample at 10 ° C./min, and the glass transition temperature was determined before and after the secondary transition of the DSC curve.
  • the temperature can be obtained as a temperature indicating the midpoint between two intersections of the extension of the line and the tangent at the inflection point of the DSC curve.
  • the fluorine-containing elastomer preferably has a Mooney viscosity ML (1 + 20) at 170 ° C. of 30 or more, more preferably 40 or more, and further preferably 50 or more, from the viewpoint of good heat resistance. Further, from the viewpoint of good workability, it is preferably 150 or less, more preferably 120 or less, and further preferably 110 or less.
  • the fluorine-containing elastomer preferably has a Mooney viscosity ML (1 + 20) at 140 ° C. of 30 or more, more preferably 40 or more, and even more preferably 50 or more. Further, from the viewpoint of good workability, it is preferably 180 or less, more preferably 150 or less, and further preferably 110 or less.
  • the fluorine-containing elastomer preferably has a Mooney viscosity ML (1 + 10) at 100 ° C. of 10 or more, more preferably 20 or more, and further preferably 30 or more from the viewpoint of good heat resistance. Further, from the viewpoint of good workability, it is preferably 120 or less, more preferably 100 or less, and even more preferably 80 or less.
  • the Mooney viscosity can be measured at 170 ° C. or 140 ° C. and 100 ° C. according to JIS K6300 using a Mooney viscometer MV2000E manufactured by ALPHA TECHNOLOGIES.
  • the above-mentioned partially fluorinated elastomer and perfluoroelastomer can be produced by a conventional method, but the molecular weight distribution of the obtained polymer is narrow, the molecular weight can be easily controlled, and an iodine atom or a bromine atom is introduced into a terminal. For this reason, an iodine compound or a bromine compound can be used as a chain transfer agent.
  • Examples of the polymerization method using an iodine compound or a bromine compound include, for example, a method of performing emulsion polymerization in an aqueous medium while applying pressure in the presence of an iodine compound or a bromine compound in a substantially oxygen-free state.
  • iodine transfer polymerization method Representative examples of the iodine compound or bromine compound used include, for example, a compound represented by the following general formula: R 11 I x Br y (Where x and y are each an integer of 0 to 2 and satisfy 1 ⁇ x + y ⁇ 2, and R 11 is a saturated or unsaturated fluorohydrocarbon group having 1 to 16 carbon atoms or chlorofluoro A hydrocarbon group or a hydrocarbon group having 1 to 3 carbon atoms, which may contain an oxygen atom).
  • an iodine compound or a bromine compound an iodine atom or a bromine atom is introduced into the polymer and functions as a crosslinking point.
  • Examples of the iodine compound and the bromine compound include 1,3-diiodoperfluoropropane, 2-iodoperfluoropropane, 1,3-diiodo-2-chloroperfluoropropane, 1,4-diiodoperfluorobutane, 1,5-diiodo-2,4-dichloroperfluoropentane, 1,6-diiodoperfluorohexane, 1,8-diiodoperfluorooctane, 1,12-diiodoperfluorododecane, 1,16-diiodo perfluoro hexadecane, diiodomethane, 1,2-diiodoethane, 1,3-diiodo -n- propane, CF 2 Br 2, BrCF 2 CF 2 Br, CF 3 CFBrCF 2 Br, CFClBr 2, BrCF 2 CFCl
  • 1,4-diiodoperfluorobutane, 1,6-diiodoperfluorohexane, and 2-iodoperfluoropropane are used in view of polymerization reactivity, crosslinking reactivity, availability, and the like. Is preferred.
  • the fluoropolymer is preferably a fluoroelastomer having a cyano group (—CN group) at the terminal and / or side chain of the main chain.
  • Fluorine-containing elastomers having a cyano group (—CN group) at the terminal and / or side chain of the main chain can be crosslinked by forming a triazine ring by cyclization and trimerization of a cyano group, and are excellent in molded articles. Compression set and heat resistance.
  • fluorine-containing elastomer having a cyano group (—CN group) at the terminal and / or side chain of the main chain include perfluoroelastomers and partially fluorinated elastomers.
  • the monomer copolymers providing sites there may be mentioned copolymers in which the monomer providing a crosslinking site is a monomer having a cyano group (—CN group).
  • the content of the monomer unit having a cyano group (—CN group) is represented by the TFE unit and the general formulas (3), (4) and (5) from the viewpoint of good crosslinking properties and heat resistance. It may be 0.1 to 5 mol%, or 0.3 to 3 mol%, based on the total amount with the fluoromonomer unit. Further preferred compositions are as described above.
  • CF 2 CFCF (OCF 2 CF (CF 3 )) m O (CF 2 ) n —CN (Wherein m is an integer of 0 to 5 and n is an integer of 1 to 8), and more preferably CF 2 CFCFOCF 2 CF (CF 3 ) OCF 2 CF 2 CN.
  • perfluoroelastomers can be manufactured by a conventional method.
  • perfluoroelastomers include fluorine rubbers described in WO 97/24381, JP-B-61-57324, JP-B-4-81608, JP-B-5-13961 and the like. Is raised.
  • Examples of the partially fluorinated elastomer having a cyano group (—CN group) at the terminal and / or side chain of the main chain include vinylidene fluoride (VdF) fluororubber, tetrafluoroethylene (TFE) / propylene fluororubber, and tetrafluoroethylene.
  • VdF vinylidene fluoride
  • TFE tetrafluoroethylene
  • propylene fluorororubber propylene fluororubber
  • tetrafluoroethylene tetrafluoroethylene
  • TFE propylene / vinylidene fluoride
  • HFP ethylene / hexafluoroethylene
  • HFP vinylidene fluoride
  • VdF vinylidene fluoride
  • Examples include fluoropropylene (HFP) / tetrafluoroethylene (TFE) -based fluororubber, fluorosilicone-based fluororubber, and fluorophosphazene-based fluororubber, each of which alone or without impairing the effects of the present disclosure. It can be used in any combination in a range.
  • the vinylidene fluoride-based fluororubber is a fluorine-containing copolymer comprising 45 to 85 mol% of vinylidenefluoride and 55 to 15 mol% of at least one other monomer copolymerizable with vinylidenefluoride.
  • it refers to a fluorine-containing copolymer comprising 50 to 80 mol% of vinylidene fluoride and 50 to 20 mol% of at least one other monomer copolymerizable with vinylidene fluoride.
  • TFE polystyrene fluoride
  • CTFE trifluoroethylene
  • HFP trifluoropropylene
  • tetrafluoropropylene pentafluoropropylene
  • trifluorobutene tetrafluoroisobutene
  • fluoromonomers such as perfluoro (alkyl vinyl ether) (PAVE) and vinyl fluoride
  • non-fluorinated monomers such as ethylene, propylene and alkyl vinyl ether.
  • TFE, HFP and perfluoro (alkyl vinyl ether) are preferred.
  • Specific rubbers include VdF-HFP rubber, VdF-HFP-TFE rubber, VdF-CTFE rubber, VdF-CTFE-TFE rubber and the like.
  • the tetrafluoroethylene / propylene-based fluororubber is composed of 45 to 70 mol% of tetrafluoroethylene and 55 to 30 mol% of propylene. Further, the monomer 0 to 5 which provides a crosslinking site is added to the total amount of tetrafluoroethylene and propylene. It refers to a fluorine-containing copolymer containing mol%.
  • Examples of the monomer for providing a crosslinking site include a cyano group-containing monomer described in JP-A-4-505345 and JP-A-5-500070, and a monomer having a cyano group (—CN group) described above. And so on.
  • thermoplastic fluorine rubber composed of an elastomeric fluorine-containing polymer chain segment and a non-elastomeric fluorine-containing polymer chain segment may be used.
  • the composition of the present disclosure further contains composite particles comprising a polymer containing an acid group-containing monomer unit and inorganic particles dispersed in the polymer. That is, in the composite particles, since the inorganic particles are covered with the polymer, the action of the inorganic particles on the crosslinking reaction is controlled. Therefore, the composition of the present disclosure has excellent scorch resistance.
  • the acid group-containing monomer that gives the acid group-containing monomer unit is not particularly limited as long as it has at least one ethylenically unsaturated bond and at least one acid group, but it can further improve scorch resistance. And at least one selected from the group consisting of unsaturated carboxylic acids, unsaturated sulfonic acids, unsaturated phosphonic acids and unsaturated phosphoric acids, and at least one selected from the group consisting of unsaturated carboxylic acids and unsaturated sulfonic acids. One type is more preferred and the unsaturated carboxylic acid is even more preferred.
  • the acid group-containing monomer may form a salt with a cation such as an alkali metal ion, an alkaline earth metal ion, and an ammonium ion.
  • unsaturated carboxylic acids examples include acrylic acid, methacrylic acid, vinyl acetic acid, crotonic acid, cinnamic acid, 3-allyloxypropionic acid, 3- (2-allyloxyethoxycarbonyl) propionic acid, itaconic acid and itaconic acid monoester.
  • CR 11 R 12 CR 13 -R 14 - (COOH) n
  • R 11 to R 13 are the same or different and are each a hydrogen atom or a monovalent hydrocarbon group
  • R 14 is a divalent or trivalent linking group
  • n is 1 or 2.
  • CR 15 R 16 CR 17 -R 18 -Ar-(-COOH) m
  • R 15 to R 17 are the same or different and are each a hydrogen atom or a monovalent hydrocarbon group
  • R 18 is a divalent or trivalent linking group
  • Ar is a divalent or trivalent cyclic aliphatic group. Or an aromatic group, m is 1 or 2.
  • at least one selected from the group consisting of compounds represented by the general formula (11) is more preferable.
  • R 11 to R 13 are the same or different and are preferably a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an aryl group.
  • the carbon number of the alkylene group represented by R 141 is preferably 1 to 10, more preferably 1 to 3.
  • n represents the general formula (11) represents the number of carboxyl groups, in the case of R 14 is divalent is 1, in the case of R 14 is trivalent 2.
  • R 14 and n in the general formula (11) R 14 is preferably a divalent linking group, and n is preferably 1.
  • R 15 to R 17 are the same or different and are preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • the number of carbon atoms of the alkylene group represented by R 181 is preferably from 1 to 10, more preferably from 1 to 3.
  • M in the general formula (12) represents the number of carboxyl groups, and is 1 when Ar is divalent and 2 when Ar is trivalent.
  • the number of carbon atoms of Ar is preferably 6.
  • unsaturated sulfonic acids examples include vinyl sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, 2-sulfoethyl acrylate, 2-ethyl sulfo methacrylate, 2-acrylamido-2-methylpropane sulfonic acid, styrene sulfonic acid, Allyloxy-2-hydroxypropanesulfonic acid and the like.
  • Examples of the unsaturated phosphonic acid include vinylphosphonic acid, allylphosphonic acid, vinylbenzylphosphonic acid, 1-phenylethenylphosphonic acid, 2-phenylethenylphosphonic acid, 2- (acryloyloxy) ethylphosphonic acid, 2- ( Examples include methacryloyloxy) ethylphosphonic acid, 3- (acryloyloxy) propylphosphonic acid, and 3- (methacryloyloxy) propylphosphonic acid.
  • Examples of the unsaturated phosphoric acid include 2- (acryloyloxy) ethyl phosphate and 2- (methacryloyloxy) ethyl phosphate.
  • the acid group-containing monomer at least one selected from the group consisting of methacrylic acid and vinyl sulfonic acid is preferable, and methacrylic acid is more preferable, because scorch resistance can be further improved.
  • the polymer may be a polymer composed of only the acid group-containing monomer unit, or a polymer containing the acid group-containing monomer unit and another monomer unit other than the acid group-containing monomer unit. Is also good.
  • the polymer may further contain an unsaturated carboxylic acid ester unit.
  • an unsaturated carboxylic acid ester which provides an unsaturated carboxylic acid ester unit, an alkyl acrylate having 1 to 10 carbon atoms in an alkyl group or an alkyl methacrylate having 1 to 10 carbon atoms in an alkyl group is preferable.
  • Examples of the (meth) acrylate include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, methyl methacrylate, n-propyl methacrylate, ethyl methacrylate, n-butyl methacrylate, isopropyl methacrylate, Examples thereof include alkyl (meth) acrylates such as 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, cyclohexyl acrylate, and cyclohexyl methacrylate.
  • “(meth) acrylate” means acrylate or methacrylate.
  • methyl methacrylate is preferable.
  • the content of the acid group-containing monomer unit is preferably from 1 to 100 mol% based on all monomer units, since scorch resistance can be further improved. , More preferably 10 to 100 mol%, and still more preferably 25 to 100 mol%. In this case, the content of the other monomer unit is 99 to 0 mol%, more preferably 90 to 0 mol%, and further preferably 75 to 0 mol%.
  • the content of the acid group-containing monomer unit is preferably from 1 to 99 mol% based on all monomer units from the viewpoint of scorch resistance. And more preferably from 10 to 90 mol%, even more preferably from 25 to 75 mol%. Further, the content of the unsaturated carboxylic acid ester unit is preferably from 99 to 1 mol%, more preferably from 90 to 10 mol%, further preferably from 75 to 25 mol%, based on all monomer units. %.
  • the polymer may further contain a styrene unit.
  • the content of the acid group-containing monomer unit is preferably from 1 to 99 mol%, more preferably from 1 to 99 mol%, from the viewpoint of scorch resistance. Is from 10 to 90 mol%. Further, the content of the styrene unit is preferably from 99 to 1 mol%, more preferably from 90 to 10 mol%, based on all monomer units.
  • the polymer preferably has a number average molecular weight (weight average molecular weight, etc.) of 10,000 to 1,000,000.
  • the molecular weight can be measured by a method using liquid chromatography or a precipitation method.
  • the inorganic particles are preferably inorganic nitride particles.
  • the triazine crosslinking reaction can be advanced by subjecting the cyano group in the fluoroelastomer to a cyclization trimerization reaction.
  • the inorganic particles are not particularly limited, and include inorganic nitride particles such as silicon nitride (Si 3 N 4 ), lithium nitride, titanium nitride, aluminum nitride, boron nitride, vanadium nitride, and zirconium nitride. .
  • silicon nitride particles are preferable because they can supply nano-sized fine particles and do not contain metals and the like that are disliked in the semiconductor manufacturing process.
  • These inorganic nitride particles may be used in combination of two or more.
  • the average particle diameter of the inorganic particles is preferably 1000 nm or less, more preferably 300 nm or less, and further preferably 100 nm or less.
  • the lower limit is not particularly limited, but is preferably 5 nm.
  • the composite particles preferably contain 1 to 80% by mass of the inorganic particles.
  • the content of the inorganic particles is more preferably 10% by mass or more, further preferably 20% by mass or more, particularly preferably 35% by mass or more, and most preferably 50% by mass or more. It is preferably at most 75% by mass, more preferably at most 70% by mass.
  • the average particle size of the composite particles is preferably 0.01 to 100 ⁇ m, more preferably 0.05 ⁇ m or more, further preferably 0.1 ⁇ m or more, more preferably 30 ⁇ m or less, and further preferably It is 15 ⁇ m or less.
  • the average particle diameter is a median diameter determined as a laser diffraction particle size distribution measuring device.
  • the composite particles are preferably obtained by polymerizing at least a monomer containing the acid group-containing monomer in a dispersion in which the inorganic particles are dispersed.
  • the composite particles can be produced by a known method (for example, a method described by Masato Tanaka, “Key Points of Nano / Microcapsule Preparation”, Techno System Publishing Co., Ltd., May 6, 2008).
  • the composite particles are, specifically, a step of dispersing an inorganic particle, a monomer containing at least the acid group-containing monomer, a dispersant and a polymerization initiator in a solvent to obtain a dispersion, and polymerizing the monomer in the dispersion. And obtaining a slurry by collecting the composite particles from the slurry.
  • the above-mentioned unsaturated carboxylic acid ester, styrene, or the like is polymerized with another monomer which gives another monomer unit constituting the above-mentioned polymer. You can also.
  • the mass ratio of the inorganic particles to the monomer is preferably 1/99 to 80/20, more preferably 10/90 or more, and more preferably 75/25 or less. .
  • At least one selected from the group consisting of polyvinylpyrrolidone, saponified polyvinyl alcohol and hydroxypropylcellulose is preferable, and polyvinylpyrrolidone is more preferable.
  • the polymerization initiator at least one selected from the group consisting of an azo compound and a peroxide is preferable, and an azo compound is more preferable.
  • the azo compound include 2,2′-azobis-2,4-dimethylvaleronitrile, 2,2′-azobisisobutyronitrile, and 2,2′-azobis (2-methylpropionitrile).
  • the solvent is preferably at least one selected from the group consisting of water, alcohol, benzene and toluene, and more preferably at least one selected from the group consisting of water and alcohol.
  • the alcohol is preferably an alcohol having 1 to 5 carbon atoms, and more preferably 1-butanol, methanol or ethanol.
  • a known means such as ultrasonic waves may be used to disperse each component in the solvent.
  • the polymerization of the above monomers can be started by heating the dispersion above the decomposition temperature of the polymerization initiator.
  • the decomposition temperature is usually from 30 to 120 ° C.
  • the polymerization time is usually 1 to 24 hours.
  • a slurry containing the composite particles and the solvent is generated.
  • Methods for recovering composite particles from a slurry are known. After collection, the composite particles may be dried if desired.
  • the content of the composite particles in the composition of the present disclosure is preferably 0.1 to 30 parts by mass, more preferably 0.3 parts by mass or more, based on 100 parts by mass of the fluoropolymer. It is preferably at least 0.5 part by mass, more preferably at most 10 parts by mass, and even more preferably at most 5 parts by mass.
  • the scorch resistance can be further improved, and the crosslinking reaction can be sufficiently advanced.
  • the crosslinker is not an essential component.
  • the composition may further contain a crosslinking agent.
  • the crosslinking agent include a crosslinking agent used in peroxide crosslinking, polyol crosslinking, polyamine crosslinking, triazine crosslinking, oxazole crosslinking, imidazole crosslinking, and thiazole crosslinking.
  • the fluorine-containing polymer is a fluorine-containing elastomer having a cyano group (—CN group) at a main chain terminal and / or a side chain
  • the crosslinking agent is selected from the group consisting of an oxazole crosslinking agent, an imidazole crosslinking agent, and a thiazole crosslinking agent. Preferably, at least one selected from them is used.
  • the crosslinking agent used in the peroxide crosslinking may be an organic peroxide that can easily generate a peroxy radical in the presence of heat or an oxidation-reduction system.
  • an organic peroxide that can easily generate a peroxy radical in the presence of heat or an oxidation-reduction system.
  • the crosslinking assistant that can be used may be a compound having a reaction activity for a peroxy radical and a polymer radical.
  • triallyl cyanurate triallyl isocyanurate (TAIC), triacrylformal, triallyl trimellitate, N, N'-n-phenylenebismaleimide, dipropagyl terephthalate, diallyl phthalate, tetraallyl Terephthalate amide, triallyl phosphate, bismaleimide, fluorinated triallyl isocyanurate (1,3,5-tris (2,3,3-trifluoro-2-propenyl) -1,3,5-triazine 2,4, 6-trione), tris (diallylamine) -S-triazine, triallyl phosphite, N, N-diallylacrylamide, 1,6-divinyldodecafluorohexane and the like.
  • TAIC triallyl cyanurate
  • TAIC triallyl isocyanurate
  • triacrylformal triallyl trimellitate
  • N N'-n-phenylenebismaleimide
  • R 21 to R 23 are each independently a hydrogen atom, a fluorine atom, an alkyl group, a fluorinated alkyl group, or a substituted or unsubstituted aryl group, and at least one of R 21 to R 23 is ,
  • a fluorine atom or a group containing a fluorine atom, m is an integer of 1 to 5.
  • m is 2 or more, m R 21 to R 23 are different even if they are the same.
  • the hydrogen atom of the benzene ring may be substituted.
  • R 24 is a single bond, —SO 2 —, —O—, —S—, —CO—, a heteroatom-containing group, a substituted or unsubstituted An alkylene group, a substituted or unsubstituted cycloalkylene group or a substituted or unsubstituted arylene group; m is an integer of 1 to 5.).
  • crosslinking agent used for polyol crosslinking examples include polyhydric alcohol compounds such as bisphenol A and bisphenol AF.
  • crosslinking agent used for the polyamine crosslinking examples include polyamine compounds such as hexamethylenediaminecarbamate, N, N'-dicinnamylidene-1,6-hexanediamine, and 4,4'-bis (aminocyclohexyl) methanecarbamate.
  • crosslinking agent used for triazine crosslinking examples include organotin compounds such as tetraphenyltin and triphenyltin.
  • crosslinking agent used for oxazole crosslinking, imidazole crosslinking, and thiazole crosslinking include, for example, a compound represented by the general formula (30)
  • R 31 is —SO 2 —, —O—, —CO—, an alkylene group having 1 to 6 carbon atoms, a perfluoroalkylene group having 1 to 10 carbon atoms or a single bond, or
  • R 32 and R 33 is —NH 2 and the other is —NHR 34 , —NH 2 , —OH or —SH, and R 34 is a hydrogen atom, a fluorine atom or a monovalent An organic group, and preferably, R 32 is —NH 2 and R 33 is —NHR 34 .
  • R 34 is a hydrogen atom, a fluorine atom or a monovalent An organic group, and preferably, R 32 is —NH 2 and R 33 is —NHR 34 .
  • Preferred specific examples of the alkylene group having 1 to 6 carbon atoms include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group and a hexylene group. Is
  • Bisaminophenol-based crosslinking agent bisaminothiophenol-based crosslinking agent, general formula (31):
  • R 31 is, as described above, R 35 is independently any of the following groups.
  • Rf 31 is a perfluoroalkylene group having 1 to 10 carbon atoms
  • n is an integer of 1 to 10.
  • bisaminophenol-based crosslinking agents bisaminothiophenol-based crosslinking agents, bisdiaminophenyl-based crosslinking agents, and the like have been conventionally used in crosslinking systems having a cyano group as a crosslinking point. It also reacts with the group to form an oxazole ring, thiazole ring, imidazole ring to give a crosslinked product.
  • crosslinking agents include compounds having a plurality of 3-amino-4-hydroxyphenyl groups or 3-amino-4-mercaptophenyl groups, or a compound represented by the general formula (34):
  • R 31 , R 32 and R 33 are as described above), and specifically, for example, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane (Generic name: bis (aminophenol) AF), 2,2-bis (3-amino-4-mercaptophenyl) hexafluoropropane, tetraaminobenzene, bis-3,4-diaminophenylmethane, bis-3,4 -Diaminophenyl ether, 2,2-bis (3,4-diaminophenyl) hexafluoropropane, 2,2-bis [3-amino-4- (N-phenylamino) phenyl] hexafluoropropane, 2,2- Bis [3-amino-4- (N-methylamino) phenyl] hexafluoropropane, 2,2-bis [3-amino-4- (N-ethyl Amino)
  • 2,2-bis [3-amino-4- (N-phenylamino) phenyl] hexafluoropropane is preferred as a crosslinking agent from the viewpoint of heat resistance, steam resistance, amine resistance, and good crosslinking property. Is preferred.
  • the content of the crosslinking agent is preferably 0.05 to 10 parts by mass, more preferably 0.5 to 5 parts by mass, based on 100 parts by mass of the fluoropolymer.
  • the composition may contain a general filler.
  • Examples of the general filler include imide-based fillers having an imide structure such as polyimide, polyamideimide, and polyetherimide, polyarylate, polysulfone, polyethersulfone, polyphenylene sulfide, polyetheretherketone, polyetherketone, and polyoxyimide.
  • Organic fillers made of engineering plastics such as benzoate; metal oxide fillers such as aluminum oxide, silicon oxide and yttrium oxide; metal carbides such as silicon carbide and aluminum carbide; metal nitride fillers such as silicon nitride and aluminum nitride; and aluminum fluoride And inorganic fillers such as carbon fluoride, barium sulfate, carbon black, silica, clay and talc.
  • carbon black, aluminum oxide, yttrium oxide, silicon oxide, polyimide, and carbon fluoride are preferred from the viewpoint of the shielding effect of various plasmas.
  • inorganic filler and organic filler may be used alone or in combination of two or more.
  • the amount of the general filler is preferably 0.5 to 100 parts by mass, more preferably 5 to 50 parts by mass, based on 100 parts by mass of the fluoropolymer.
  • compositions of the present disclosure are as follows. That is, a composition comprising a composite particle and a fluorine-containing elastomer having a cyano group (—CN group) at a main chain terminal and / or a side chain, wherein the composite particle is dispersed in a polymer and the polymer.
  • the polymer comprises inorganic nitride particles, and the polymer contains the acid group-containing monomer unit, and contains 0.1 to 30 parts by mass of the composite particles per 100 parts by mass of the fluoroelastomer.
  • a composition As the fluoroelastomer, a perfluoroelastomer is preferable. Further, as the inorganic nitride particles, silicon nitride particles are preferable. Further, as the acid group-containing monomer unit, the above unsaturated carboxylic acid unit is preferable.
  • the above composition can be suitably used as a molding material for obtaining a molded product by cross-linking molding.
  • the composition is a step of obtaining a dispersion by dispersing the inorganic particles, the monomer containing at least the acid group-containing monomer, the dispersant and the polymerization initiator in the solvent, and polymerizing the monomer in the dispersion.
  • the method can include a step of obtaining a slurry by mixing, a step of collecting composite particles from the slurry, and a step of kneading the composite particles and the fluoropolymer.
  • kneading can be carried out using a usual processing machine for polymers, for example, an open roll, a Banbury mixer, a kneader, a closed mixer or the like.
  • the method of obtaining a preformed body using the above composition as a molding material may be a conventional method, and may be a known method such as a method of heating and compressing with a mold, a method of pressing into a heated mold, or a method of extruding with an extruder. Can do it.
  • a molded product can be obtained by performing heat crosslinking with steam or the like after extrusion.
  • a method for obtaining a molded article from the above composition may be an ordinary method. After obtaining a preformed article, a molded article can be obtained in the order of primary crosslinking and finally secondary crosslinking.
  • the primary crosslinking is preferably performed at 150 to 200 ° C. for 5 to 120 minutes, more preferably at 170 to 190 ° C. for 5 to 60 minutes. Any known crosslinking means may be used as the crosslinking means, and examples thereof include press crosslinking.
  • the secondary crosslinking is preferably performed at 180 to 320 ° C. for 2 to 24 hours, more preferably at 190 to 310 ° C. for 5 to 20 hours.
  • the secondary crosslinking may be performed at 250 to 320 ° C. for 2 to 24 hours, or at 280 to 310 ° C. for 5 to 20 hours.
  • a known crosslinking means may be used, and examples thereof include oven crosslinking.
  • the molded article of the present disclosure is obtained from the above composition.
  • the molded product of the present disclosure can be suitably used as a sealing material of a semiconductor manufacturing apparatus that requires particularly heat resistance, particularly a semiconductor manufacturing apparatus that performs high-density plasma irradiation.
  • the sealing material include an O-ring, a square-ring, a gasket, a packing, an oil seal, a bearing seal, and a lip seal.
  • it can be used as various polymer products used in semiconductor manufacturing equipment, for example, diaphragms, tubes, hoses, various rubber rolls, belts and the like. It can also be used as a coating material and a lining material.
  • the semiconductor manufacturing apparatus referred to in the present disclosure is not particularly limited to an apparatus for manufacturing a semiconductor, and is widely used for a semiconductor that requires a high degree of cleanliness, such as an apparatus for manufacturing a liquid crystal panel or a plasma panel. This includes all manufacturing apparatuses used in the field, and examples thereof include the following.
  • etching apparatus Dry etching equipment Plasma etching machine Reactive ion etching machine Reactive ion beam etching machine Sputter etching machine Ion beam etching machine Wet etching equipment Ashing equipment (2) Cleaning system Dry etching cleaning equipment UV / O 3 cleaning machine Ion Beam cleaning device Laser beam cleaning device Plasma cleaning device Gas etching cleaning device Extraction cleaning device Soxhlet extraction cleaning device High-temperature high-pressure extraction cleaning device Microwave extraction cleaning device Supercritical extraction cleaning device (3) Exposure device Stepper coater / developer (4) Polishing device CMP equipment (5) Film formation equipment CVD equipment Sputtering equipment (6) Diffusion / ion implantation equipment Oxidation diffusion equipment Ion implantation equipment
  • the molded product of the present disclosure exhibits excellent performance as a sealing material for, for example, a CVD device, a plasma etching device, a reactive ion etching device, an ashing device, or an excimer laser exposure machine.
  • Preparation Examples 1 to 6 As a reaction tank, a separable flask having a capacity of 1000 ml was used. In a reaction vessel, 15 g of polyvinylpyrrolidone and the monomers shown in Table 1 were dissolved in 790 ml of 1-butanol, and 40 g of silicon nitride particles (average particle diameter: 30 nm) were added.
  • the composite particles were separated from the slurry obtained by the reduced-pressure filtration device, and dried for 15 hours by a dryer set at 75 ° C. Then, it heated at 100 degreeC in inert gas for 2 hours.
  • the obtained composite particles had a structure in which silicon nitride particles were dispersed in a polymer.
  • Ratio of silicon nitride in composite particles Using a thermal mass meter (TG-DTA7200, manufactured by SII Nano Technology Co., Ltd.), change the mass under the conditions of air 200 ml / min, heating rate 10 ° C./min, and temperature range 20 to 600 ° C. It was measured and determined from the residual ratio when the temperature was raised to 600 ° C. Table 1 shows the results.
  • the obtained fluororubber composition was put in an alumina bag, vacuum-packaged, and stored at 40 ° C for the storage period shown in Table 2.
  • a moving die rheometer MDR2000 manufactured by Alpha Technologies vulcanization characteristics were measured at 180 ° C. for 30 minutes, and storage stability was evaluated from a change in ML.
  • ML is a minimum torque value, and this numerical value is an index of fluidity at the time of vulcanization molding. The smaller the value, the better the fluidity, and the greater the scorch due to the crosslinking reaction, the greater the value. Table 2 shows the results.
  • the obtained fluororubber composition was pressed at 180 ° C. for 30 minutes to perform crosslinking, and then subjected to oven crosslinking in an oven at 200 ° C. for 12 hours, 250 ° C. for 3 hours, and 290 ° C. for 3 hours.
  • a test sample of a crosslinked product having a thickness of 2 mm was prepared.
  • the physical properties of the obtained test samples were measured by the following methods.
  • Example 2 A fluororubber composition was prepared in the same manner as in Example 1, except that the composite particles were changed to those obtained in Preparation Example 2. Using the obtained fluororubber composition, storage stability was evaluated in the same manner as in Example 1. Table 2 shows the results. In the same manner as in Example 1, a test sample of a crosslinked product having a thickness of 2 mm was prepared. The physical properties of the obtained test samples were measured in the same manner as in Example 1. Table 3 shows the results.
  • Example 3 A fluororubber composition was prepared in the same manner as in Example 1, except that the composite particles were changed to those obtained in Preparation Example 3. Using the obtained fluororubber composition, storage stability was evaluated in the same manner as in Example 1. Table 2 shows the results. In the same manner as in Example 1, a test sample of a crosslinked product having a thickness of 2 mm was prepared. The physical properties of the obtained test samples were measured in the same manner as in Example 1. Table 3 shows the results.
  • Example 4 A fluororubber composition was prepared in the same manner as in Example 1, except that the composite particles were changed to those obtained in Preparation Example 4. Using the obtained fluororubber composition, storage stability was evaluated in the same manner as in Example 1. Table 2 shows the results. In the same manner as in Example 1, a test sample of a crosslinked product having a thickness of 2 mm was prepared. The physical properties of the obtained test samples were measured in the same manner as in Example 1. Table 3 shows the results.
  • Example 5 A fluororubber composition was prepared in the same manner as in Example 1, except that the composite particles were changed to those obtained in Preparation Example 5. Using the obtained fluororubber composition, storage stability was evaluated in the same manner as in Example 1. Table 2 shows the results. In the same manner as in Example 1, a test sample of a crosslinked product having a thickness of 2 mm was prepared. The physical properties of the obtained test samples were measured in the same manner as in Example 1. Table 3 shows the results.
  • Comparative Example 1 A fluororubber composition was prepared in the same manner as in Example 1, except that the composite particles were changed to those obtained in Preparation Example 6. Using the obtained fluororubber composition, storage stability was evaluated in the same manner as in Example 1. Table 2 shows the results. In the same manner as in Example 1, a test sample of a crosslinked product having a thickness of 2 mm was prepared. The physical properties of the obtained test samples were measured in the same manner as in Example 1. Table 3 shows the results.

Abstract

複合粒子、および、含フッ素ポリマーを含有する組成物であって、前記複合粒子は、ポリマーと、前記ポリマー中に分散した無機粒子とからなり、前記ポリマーが、酸基含有モノマー単位を含有する組成物を提供する。

Description

含フッ素ポリマーを含有する組成物および成形品
 本開示は、含フッ素ポリマーを含有する組成物および成形品に関する。
 含フッ素エラストマー等の含フッ素ポリマーからなる組成物は、耐熱性、耐薬品性、耐溶剤性、耐燃料油性などに優れることから、O-リング、ホース、ステムシール、シャフトシール、ダイヤフラム等の成形品を製造するために、広く使用されている。このような組成物として、たとえば、特許文献1では、複合粒子、及び、含フッ素ポリマーを含む組成物であって、上記複合粒子は、ポリマーと、上記ポリマー中に分散した無機粒子とからなることを特徴とする組成物が提案されている。
国際公開第2016/204272号
 本開示では、含フッ素ポリマーを含有する組成物であって、耐スコーチ性に優れる組成物を提供することを目的とする。
 本開示によれば、複合粒子、および、含フッ素ポリマーを含有する組成物であって、前記複合粒子は、ポリマーと、前記ポリマー中に分散した無機粒子とからなり、前記ポリマーが、酸基含有モノマー単位を含有する組成物が提供される。
 前記酸基含有モノマー単位が、不飽和カルボン酸単位であることが好ましい。
 前記酸基含有モノマー単位が、メタクリル酸単位であることが好ましい。
 前記ポリマーの前記酸基含有モノマー単位の含有量が、全単量体単位に対して、1~100モル%であることが好ましい。
 前記含フッ素ポリマーが、含フッ素エラストマーであることが好ましい。
 前記無機粒子が、無機窒化物粒子であることが好ましい。
 前記複合粒子が、前記無機粒子が分散した分散液中で、酸基含有モノマーを重合することにより得られることが好ましい。
 前記組成物が、成形材料であることが好ましい。
 また、本開示によれば、上記の組成物から得られる成形品が提供される。
 本開示によれば、含フッ素ポリマーを含有する組成物であって、耐スコーチ性に優れる組成物を提供することができる。
 以下、本開示の具体的な実施形態について詳細に説明するが、本開示は、以下の実施形態に限定されるものではない。
 本開示の組成物は、含フッ素ポリマーを含有する。上記含フッ素ポリマーとしては、シール性、耐薬品性および耐熱性が優れることから、含フッ素エラストマーが好ましい。
 本開示において、含フッ素エラストマーとは、非晶質含フッ素ポリマーである。「非晶質」とは、含フッ素ポリマーの示差走査熱量測定〔DSC〕(昇温速度10℃/分)あるいは示差熱分析〔DTA〕(昇温速度10℃/分)において現われた融解ピーク(ΔH)の大きさが4.5J/g以下であることをいう。含フッ素エラストマーは、架橋することにより、エラストマー特性を示す。エラストマー特性とは、ポリマーを延伸することができ、ポリマーを延伸するのに必要とされる力がもはや適用されなくなったときに、その元の長さを保持できる特性を意味する。
 上記含フッ素エラストマーとしては、部分フッ素化エラストマーであってもよいし、パーフルオロエラストマーであってもよいが、耐薬品性、耐熱性がさらに優れている点よりパーフルオロエラストマーを用いることが好ましい。
 本開示において、部分フッ素化エラストマーとは、フルオロモノマー単位を含み、全単量体単位に対するパーフルオロモノマー単位の含有量が90モル%未満の含フッ素ポリマーであって、20℃以下のガラス転移温度を有し、4.5J/g以下の融解ピーク(ΔH)の大きさを有する含フッ素ポリマーである。
 本開示において、パーフルオロエラストマーとは、全単量体単位に対するパーフルオロモノマー単位の含有量が90モル%以上の含フッ素ポリマーであって、20℃以下のガラス転移温度を有し、4.5J/g以下の融解ピーク(ΔH)の大きさを有する含フッ素ポリマーであり、さらに、含フッ素ポリマーに含まれるフッ素原子の濃度が71質量%以上であるポリマーである。本開示において、含フッ素ポリマーに含まれるフッ素原子の濃度は、含フッ素ポリマーを構成する各モノマーの種類と含有量より、含フッ素ポリマーに含まれるフッ素原子の濃度(質量%)を計算により求めるものである。
 本開示において、パーフルオロモノマーとは、分子中に炭素原子-水素原子結合を含まないモノマーである。上記パーフルオロモノマーは、炭素原子及びフッ素原子の他、炭素原子に結合しているフッ素原子のいくつかが塩素原子で置換されたモノマーであってもよく、炭素原子の他、窒素原子、酸素原子及び硫黄原子を有するものであってもよい。上記パーフルオロモノマーとしては、全ての水素原子がフッ素原子に置換されたモノマーであることが好ましい。上記パーフルオロモノマーには、架橋部位を与えるモノマーは含まれない。
 上記部分フッ素化エラストマーとしては、ビニリデンフルオライド(VdF)系フッ素ゴム、テトラフルオロエチレン(TFE)/プロピレン(Pr)系フッ素ゴム、テトラフルオロエチレン(TFE)/プロピレン/ビニリデンフルオライド(VdF)系フッ素ゴム、エチレン/ヘキサフルオロプロピレン(HFP)系フッ素ゴム、エチレン/ヘキサフルオロプロピレン(HFP)/ビニリデンフルオライド(VdF)系フッ素ゴム、エチレン/ヘキサフルオロプロピレン(HFP)/テトラフルオロエチレン(TFE)系フッ素ゴム等が挙げられる。なかでも、ビニリデンフルオライド系フッ素ゴムおよびテトラフルオロエチレン/プロピレン系フッ素ゴムからなる群より選択される少なくとも1種であることが好ましい。
 上記ビニリデンフルオライド系フッ素ゴムは、ビニリデンフルオライド45~85モル%と、ビニリデンフルオライドと共重合可能な少なくとも1種の他のモノマー55~15モル%とからなる共重合体であることが好ましい。好ましくは、ビニリデンフルオライド50~80モル%と、ビニリデンフルオライドと共重合可能な少なくとも1種の他のモノマー50~20モル%とからなる共重合体である。
 本開示において、含フッ素ポリマーを構成する各モノマーの含有量は、NMR、FT-IR、元素分析、蛍光X線分析をモノマーの種類によって適宜組み合わせることで算出できる。
 上記ビニリデンフルオライドと共重合可能な少なくとも1種の他のモノマーとしては、TFE、HFP、フルオロアルキルビニルエーテル、クロロトリフルオロエチレン(CTFE)、トリフルオロエチレン、トリフルオロプロピレン、ペンタフルオロプロピレン、トリフルオロブテン、テトラフルオロイソブテン、ヘキサフルオロイソブテン、フッ化ビニル、一般式(1):CH=CFRf(式中、Rfは炭素数1~12の直鎖または分岐したフルオロアルキル基)で表されるフルオロモノマー、一般式(2):CH=CH-(CF-X(式中、XはHまたはFであり、nは3~10の整数である。)で表されるフルオロモノマー;架橋部位を与えるモノマー;エチレン、プロピレン、アルキルビニルエーテル等の非フッ素化モノマーが挙げられる。これらをそれぞれ単独で、または、任意に組み合わせて用いることができる。これらのなかでも、TFE、HFP、フルオロアルキルビニルエーテルおよびCTFEからなる群より選択される少なくとも1種を用いることが好ましい。
 上記フルオロアルキルビニルエーテルとしては、
 一般式(3):CF=CF-ORf
(式中、Rfは、炭素数1~8のパーフルオロアルキル基を表す。)で表されるフルオロモノマー、
 一般式(4):CF=CFOCFORf
(式中、Rfは炭素数1~6の直鎖または分岐状パーフルオロアルキル基、炭素数5~6の環式パーフルオロアルキル基、1~3個の酸素原子を含む炭素数2~6の直鎖または分岐状パーフルオロオキシアルキル基である)で表されるフルオロモノマー、および、
 一般式(5):CF=CFO(CFCF(Y)O)(CF
(式中、Yはフッ素原子またはトリフルオロメチル基を表す。mは1~4の整数である。nは1~4の整数である。)で表されるフルオロモノマー
からなる群より選択される少なくとも1種であることが好ましく、一般式(3)で表されるフルオロモノマーがより好ましい。
 ビニリデンフルオライド系フッ素ゴムの具体例としては、VdF/HFP系ゴム、VdF/HFP/TFE系ゴム、VdF/CTFE系ゴム、VdF/CTFE/TFE系ゴム、VDF/一般式(1)で表されるフルオロモノマー系ゴム、VDF/一般式(1)で表されるフルオロモノマー/TFE系ゴム、VDF/パーフルオロ(メチルビニルエーテル)〔PMVE〕系ゴム、VDF/PMVE/TFE系ゴム、VDF/PMVE/TFE/HFP系ゴム等が挙げられる。VDF/一般式(1)で表されるフルオロモノマー系ゴムとしては、VDF/CH=CFCF系ゴムが好ましく、VDF/一般式(1)で表されるフルオロモノマー/TFE系ゴムとしては、VDF/TFE/CH=CFCF系ゴムが好ましい。
 上記VDF/CH=CFCF系ゴムは、VDF40~99.5モル%、および、CH=CFCF0.5~60モル%からなる共重合体であることが好ましく、VDF50~85モル%、および、CH=CFCF15~50モル%からなる共重合体であることがより好ましい。
 上記テトラフルオロエチレン/プロピレン系フッ素ゴムは、テトラフルオロエチレン45~70モル%、プロピレン55~30モル%、および、架橋部位を与えるフルオロモノマー0~5モル%からなる共重合体であることが好ましい。
 上記含フッ素エラストマーは、パーフルオロエラストマーであってもよい。上記パーフルオロエラストマーとしては、TFEを含むパーフルオロエラストマー、例えばTFE/一般式(3)、(4)または(5)で表されるフルオロモノマー共重合体、および、TFE/一般式(3)、(4)または(5)で表されるフルオロモノマー/架橋部位を与えるモノマー共重合体からなる群より選択される少なくとも1種が好ましい。
 その組成は、TFE/PMVE共重合体の場合、好ましくは、45~90/10~55(モル%)であり、より好ましくは55~80/20~45であり、さらに好ましくは55~70/30~45である。
 TFE/PMVE/架橋部位を与えるモノマー共重合体の場合、好ましくは45~89.9/10~54.9/0.01~4(モル%)であり、より好ましくは50~77.9/20~49.9/0.1~3.5であり、さらに好ましくは55~69.8/30~44.8/0.2~3である。
 TFE/炭素数が4~12の一般式(3)、(4)または(5)で表されるフルオロモノマー共重合体の場合、好ましくは50~90/10~50(モル%)であり、より好ましくは60~88/12~40であり、さらに好ましくは65~85/15~35である。
 TFE/炭素数が4~12の一般式(3)、(4)または(5)で表されるフルオロモノマー/架橋部位を与えるモノマー共重合体の場合、好ましくは50~89.9/10~49.9/0.01~4(モル%)であり、より好ましくは60~87.9/12~39.9/0.1~3.5であり、さらに好ましくは65~84.8/15~34.8/0.2~3である。
 これらの組成の範囲を外れると、ゴム弾性体としての性質が失われ、樹脂に近い性質となる傾向がある。
 上記パーフルオロエラストマーとしては、TFE/一般式(5)で表されるフルオロモノマー/架橋部位を与えるモノマー共重合体、TFE/一般式(5)で表されるフルオロモノマー共重合体、TFE/一般式(3)で表されるフルオロモノマー共重合体、および、TFE/一般式(3)で表されるフルオロモノマー/架橋部位を与えるモノマー共重合体からなる群より選択される少なくとも1種であることが好ましい。
 上記パーフルオロエラストマーとしては、国際公開第97/24381号、特公昭61-57324号公報、特公平4-81608号公報、特公平5-13961号公報等に記載されているパーフルオロエラストマーも挙げることができる。
 架橋部位を与えるモノマーとは、架橋剤により架橋を形成するための架橋部位を含フッ素ポリマーに与える架橋性基を有するモノマー(キュアサイトモノマー)である。
 架橋部位を与えるモノマーとしては、
 一般式(6):CX =CX-RfCHR
(式中、Xは、同一または異なって、水素原子、フッ素原子またはCH、Rfは、フルオロアルキレン基、パーフルオロアルキレン基、フルオロ(ポリ)オキシアルキレン基またはパーフルオロ(ポリ)オキシアルキレン基、Rは、水素原子またはCH、Xは、ヨウ素原子または臭素原子である)で表されるフルオロモノマー、
 一般式(7):CX =CX-Rf
(式中、Xは、同一または異なって、水素原子、フッ素原子またはCH、Rfは、フルオロアルキレン基、パーフルオロアルキレン基、フルオロ(ポリ)オキシアルキレン基またはパーフルオロ(ポリ)オキシアルキレン基、Xは、ヨウ素原子または臭素原子である)で表されるフルオロモノマー、
 一般式(8):CF=CFO(CFCF(CF)O)(CF-X
(式中、mは0~5の整数、nは1~3の整数、Xは、シアノ基、カルボキシル基、アルコキシカルボニル基、ヨウ素原子、臭素原子、または、-CHIである)で表されるフルオロモノマー、
 一般式(9):CH=CFCFO(CF(CF)CFO)(CF(CF))-X
(式中、mは0~5の整数、nは1~3の整数、Xは、シアノ基、カルボキシル基、アルコキシカルボニル基、ヨウ素原子、臭素原子、またはCHOHである)で表されるフルオロモノマー、および、
 一般式(10):CR10 =CR10-Z-CR10=CR10
(式中、R10は、同一または異なって、水素原子または炭素数1~5のアルキル基である。Zは、直鎖または分岐状で酸素原子を有していてもよい、炭素数1~18のアルキレン基、炭素数3~18のシクロアルキレン基、少なくとも部分的にフッ素化している炭素数1~10のアルキレン基もしくはオキシアルキレン基、または、
-(Q)-CFO-(CFCFO)(CFO)-CF-(Q)
(式中、Qはアルキレン基またはオキシアルキレン基である。pは0または1である。m/nが0.2~5である。)で表され、分子量が500~10000である(パー)フルオロポリオキシアルキレン基である。)で表されるモノマーからなる群より選択される少なくとも1種であることが好ましい。
 Xは、フッ素原子であることが好ましい。RfおよびRfは炭素数が1~5のパーフルオロアルキレン基であることが好ましい。Rは、水素原子であることが好ましい。Xは、シアノ基、アルコキシカルボニル基、ヨウ素原子、臭素原子、または、-CHIであることが好ましい。Xは、シアノ基、アルコキシカルボニル基、ヨウ素原子、臭素原子、または-CHOHであることが好ましい。
 架橋部位を与えるモノマーとしては、CF=CFOCFCF(CF)OCFCFCN、CF=CFOCFCF(CF)OCFCFCOOH、CF=CFOCFCF(CF)OCFCFCHI、CF=CFOCFCFCHI、CH=CFCFOCF(CF)CFOCF(CF)CN、CH=CFCFOCF(CF)CFOCF(CF)COOH、CH=CFCFOCF(CF)CFOCF(CF)CHOH、CH=CHCFCFI、CH=CH(CFCH=CH、CH=CH(CFCH=CH、および、CF=CFO(CFCNからなる群より選択される少なくとも1種であることが好ましく、CF=CFOCFCF(CF)OCFCFCNおよびCF=CFOCFCFCHIからなる群より選択される少なくとも1種であることがより好ましい。
 上記含フッ素エラストマーは、高温における耐圧縮永久歪特性に優れる点から、ガラス転移温度が-70℃以上であることが好ましく、-60℃以上であることがより好ましく、-50℃以上であることがさらに好ましい。また、耐寒性が良好であるという点から、5℃以下であることが好ましく、0℃以下であることがより好ましく、-3℃以下であることがさらに好ましい。
 上記ガラス転移温度は、示差走査熱量計(メトラー・トレド社製、DSC822e)を用い、試料10mgを10℃/minで昇温することによりDSC曲線を得て、DSC曲線の二次転移前後のベースラインの延長線と、DSC曲線の変曲点における接線との2つの交点の中点を示す温度として求めることができる。
 上記含フッ素エラストマーは、耐熱性が良好な点で、170℃におけるムーニー粘度ML(1+20)が30以上であることが好ましく、40以上であることがより好ましく、50以上であることがさらに好ましい。また、加工性が良好な点で、150以下であることが好ましく、120以下であることがより好ましく、110以下であることがさらに好ましい。
 上記含フッ素エラストマーは、耐熱性が良好な点で、140℃におけるムーニー粘度ML(1+20)が30以上であることが好ましく、40以上であることがより好ましく、50以上であることがさらに好ましい。また、加工性が良好な点で、180以下であることが好ましく、150以下であることがより好ましく、110以下であることがさらに好ましい。
 上記含フッ素エラストマーは、耐熱性が良好な点で、100℃におけるムーニー粘度ML(1+10)が10以上であることが好ましく、20以上であることがより好ましく、30以上であることがさらに好ましい。また、加工性が良好な点で、120以下であることが好ましく、100以下であることがより好ましく、80以下であることがさらに好ましい。
 上記ムーニー粘度は、ALPHA TECHNOLOGIES社製 ムーニー粘度計MV2000E型を用いて、170℃または140℃、100℃において、JIS K6300に従い測定することができる。
 上述した部分フッ素化エラストマーおよびパーフルオロエラストマーは、常法により製造することができるが、得られる重合体の分子量分布が狭く、分子量の制御が容易である点、末端にヨウ素原子または臭素原子を導入することができる点から、連鎖移動剤としてヨウ素化合物または臭素化合物を使用することもできる。ヨウ素化合物または臭素化合物を使用して行う重合方法としては、例えば、実質的に無酸素状態で、ヨウ素化合物または臭素化合物の存在下に、加圧しながら水媒体中で乳化重合を行う方法が挙げられる(ヨウ素移動重合法)。使用するヨウ素化合物または臭素化合物の代表例としては、例えば、一般式:
 R11Br
(式中、xおよびyはそれぞれ0~2の整数であり、かつ1≦x+y≦2を満たすものであり、R11は炭素数1~16の飽和もしくは不飽和のフルオロ炭化水素基またはクロロフルオロ炭化水素基、または炭素数1~3の炭化水素基であり、酸素原子を含んでいてもよい)で表される化合物が挙げられる。ヨウ素化合物または臭素化合物を使用することによって、ヨウ素原子または臭素原子が重合体に導入され、架橋点として機能する。
 ヨウ素化合物および臭素化合物としては、例えば1,3-ジヨードパーフルオロプロパン、2-ヨードパーフルオロプロパン、1,3-ジヨード-2-クロロパーフルオロプロパン、1,4-ジヨードパーフルオロブタン、1,5-ジヨード-2,4-ジクロロパーフルオロペンタン、1,6-ジヨードパーフルオロヘキサン、1,8-ジヨードパーフルオロオクタン、1,12-ジヨードパーフルオロドデカン、1,16-ジヨードパーフルオロヘキサデカン、ジヨードメタン、1,2-ジヨードエタン、1,3-ジヨード-n-プロパン、CFBr、BrCFCFBr、CFCFBrCFBr、CFClBr、BrCFCFClBr、CFBrClCFClBr、BrCFCFCFBr、BrCFCFBrOCF、1-ブロモ-2-ヨードパーフルオロエタン、1-ブロモ-3-ヨードパーフルオロプロパン、1-ブロモ-4-ヨードパーフルオロブタン、2-ブロモ-3-ヨードパーフルオロブタン、3-ブロモ-4-ヨードパーフルオロブテン-1、2-ブロモ-4-ヨードパーフルオロブテン-1、ベンゼンのモノヨードモノブロモ置換体、ジヨードモノブロモ置換体、ならびに(2-ヨードエチル)および(2-ブロモエチル)置換体等が挙げられ、これらの化合物は、単独で使用してもよく、相互に組み合わせて使用することもできる。
 これらのなかでも、重合反応性、架橋反応性、入手容易性等の点から、1,4-ジヨードパーフルオロブタン、1,6-ジヨードパーフルオロヘキサン、2-ヨードパーフルオロプロパンを用いるのが好ましい。
 上記含フッ素ポリマーとしては、主鎖末端および/または側鎖にシアノ基(-CN基)を有する含フッ素エラストマーであることが好ましい。主鎖末端および/または側鎖にシアノ基(-CN基)を有する含フッ素エラストマーは、シアノ基が環化三量化によりトリアジン環を形成して架橋することができるものであり、成形品にすぐれた耐圧縮永久歪みおよび耐熱性を付与できる。
 主鎖末端および/または側鎖にシアノ基(-CN基)を有する含フッ素エラストマーとしては、たとえば、パーフルオロエラストマーおよび部分フッ素化エラストマーがあげられる。
 主鎖末端および/または側鎖にシアノ基(-CN基)を有するパーフルオロエラストマーとしては、上述した、TFE/一般式(3)、(4)または(5)で表されるフルオロモノマー/架橋部位を与えるモノマー共重合体のうち、架橋部位を与えるモノマーが、シアノ基(-CN基)を有するモノマーである共重合体が挙げられる。この場合、シアノ基(-CN基)を有するモノマー単位の含有量は、良好な架橋特性および耐熱性の観点から、TFE単位と一般式(3)、(4)および(5)で表されるフルオロモノマー単位との合計量に対して、0.1~5モル%であってよく、0.3~3モル%であってよい。さらに好適な組成は、上述したとおりである。
 また、シアノ基(-CN基)を有するモノマーとしては、たとえば、
 式:CY =CY(CF-CN
(式中、Yは、同一または異なって、水素原子またはフッ素原子、nは1~8の整数である)
 式:CF=CFCFRf-CN
(式中、Rfは-(OCF-または-(OCF(CF))-であり、nは0~5の整数である)
 式:CF=CFCF(OCF(CF)CF(OCHCFCFOCHCF-CN
(式中、mは0~5の整数、nは0~5の整数である)
 式:CF=CFCF(OCHCFCF(OCF(CF)CFOCF(CF)-CN
(式中、mは0~5の整数、nは0~5の整数である)
 式:CF=CF(OCFCF(CF))O(CF-CN
(式中、mは0~5の整数、nは1~8の整数である)
 式:CF=CF(OCFCF(CF))-CN
(式中、mは1~5の整数)
 式:CF=CFOCF(CF(CF)OCFCF(-CN)CF
(式中、nは1~4の整数)
 式:CF=CFO(CFOCF(CF)-CN
(式中、nは2~5の整数)
 式:CF=CFO(CF-(C)-CN
(式中、nは1~6の整数)
 式:CF=CF(OCFCF(CF))OCFCF(CF)-CN
(式中、nは1~2の整数)
 式:CH=CFCFO(CF(CF)CFO)CF(CF)-CN
(式中、nは0~5の整数)、
 式:CF=CFO(CFCF(CF)O)(CF-CN
(式中、mは0~5の整数、nは1~3の整数である)
 式:CH=CFCFOCF(CF)OCF(CF)-CN
 式:CH=CFCFOCHCF-CN
 式:CF=CFO(CFCF(CF)O)CFCF(CF)-CN
(式中、mは0以上の整数である)
 式:CF=CFOCF(CF)CFO(CF-CN
(式中、nは1以上の整数)
 式:CF=CFOCFOCFCF(CF)OCF-CN
で表されるモノマーなどがあげられ、これらをそれぞれ単独で、または任意に組み合わせて用いることができる。
 上記の中でも、
 式:CF=CF(OCFCF(CF))O(CF-CN
(式中、mは0~5の整数、nは1~8の整数である)で表されるモノマーが好ましく、CF=CFOCFCF(CF)OCFCFCNがより好ましい。
 これらのモノマーがシアノ基を有するので、そのシアノ基が環化三量化反応してトリアジン架橋が進行する。
 これらのパーフルオロエラストマーは、常法により製造することができる。
 かかるパーフルオロエラストマーの具体例としては、国際公開第97/24381号、特公昭61-57324号公報、特公平4-81608号公報、特公平5-13961号公報などに記載されているフッ素ゴムなどがあげられる。
 主鎖末端および/または側鎖にシアノ基(-CN基)を有する部分フッ素化エラストマーとしては、ビニリデンフルオライド(VdF)系フッ素ゴム、テトラフルオロエチレン(TFE)/プロピレン系フッ素ゴム、テトラフルオロエチレン(TFE)/プロピレン/ビニリデンフルオライド(VdF)系フッ素ゴム、エチレン/ヘキサフルオロエチレン(HFP)系フッ素ゴム、エチレン/ヘキサフルオロプロピレン(HFP)/ビニリデンフルオライド(VdF)系フッ素ゴム、エチレン/ヘキサフルオロプロピレン(HFP)/テトラフルオロエチレン(TFE)系フッ素ゴム、フルオロシリコーン系フッ素ゴム、またはフルオロホスファゼン系フッ素ゴムなどがあげられ、これらをそれぞれ単独で、または本開示の効果を損なわない範囲で任意に組み合わせて用いることができる。
 ビニリデンフルオライド系フッ素ゴムとは、ビニリデンフルオライド45~85モル%と、ビニリデンフルオライドと共重合可能な少なくとも1種の他のモノマー55~15モル%とからなる含フッ素共重合体をいう。好ましくは、ビニリデンフルオライド50~80モル%と、ビニリデンフルオライドと共重合可能な少なくとも1種の他のモノマー50~20モル%とからなる含フッ素共重合体をいう。
 ビニリデンフルオライドと共重合可能な少なくとも1種の他のモノマーとしては、たとえば、TFE、CTFE、トリフルオロエチレン、HFP、トリフルオロプロピレン、テトラフルオロプロピレン、ペンタフルオロプロピレン、トリフルオロブテン、テトラフルオロイソブテン、パーフルオロ(アルキルビニルエーテル)(PAVE)、フッ化ビニルなどのフルオロモノマー、エチレン、プロピレン、アルキルビニルエーテルなどの非フッ素化モノマーがあげられる。これらをそれぞれ単独で、または、任意に組み合わせて用いることができる。これらのなかでも、TFE、HFP、パーフルオロ(アルキルビニルエーテル)が好ましい。
 具体的なゴムとしては、VdF-HFP系ゴム、VdF-HFP-TFE系ゴム、VdF-CTFE系ゴム、VdF-CTFE-TFE系ゴムなどがあげられる。
 テトラフルオロエチレン/プロピレン系フッ素ゴムとは、テトラフルオロエチレン45~70モル%、プロピレン55~30モル%からなり、さらにテトラフルオロエチレンとプロピレンの合計量に対して、架橋部位を与えるモノマー0~5モル%含有する含フッ素共重合体をいう。
 架橋部位を与えるモノマーとしては、特表平4-505345号公報、特表平5-500070号公報に記載されているようなシアノ基含有モノマーや、上述のシアノ基(-CN基)を有するモノマーなどがあげられる。
 これらの部分フッ素化エラストマーは、常法により製造することができる。
 また、含フッ素エラストマーとして、エラストマー性含フッ素ポリマー鎖セグメントと非エラストマー性含フッ素ポリマー鎖セグメントからなる熱可塑性フッ素ゴムを用いてもよい。
 本開示の組成物は、酸基含有モノマー単位を含有するポリマーと、このポリマー中に分散した無機粒子とからなる複合粒子を、さらに含有する。すなわち、上記複合粒子においては、上記無機粒子が上記ポリマーに覆われていることから、上記無機粒子の架橋反応への作用が制御される。したがって、本開示の組成物は、耐スコーチ性に優れる。
 上記酸基含有モノマー単位を与える酸基含有モノマーとしては、少なくとも1つのエチレン性の不飽和結合および少なくとも1つの酸基を有するモノマーであれば、特に限定されないが、耐スコーチ性をさらに改善できることから、不飽和カルボン酸、不飽和スルホン酸、不飽和ホスホン酸および不飽和リン酸からなる群より選択される少なくとも1種が好ましく、不飽和カルボン酸および不飽和スルホン酸からなる群より選択される少なくとも1種がより好ましく、不飽和カルボン酸がさらに好ましい。上記酸基含有モノマーは、アルカリ金属イオン、アルカリ土類金属イオン、アンモニウムイオンなどのカチオンとともに、塩を形成していてもよい。
 上記不飽和カルボン酸としては、アクリル酸、メタクリル酸、ビニル酢酸、クロトン酸、桂皮酸、3-アリルオキシプロピオン酸、3-(2-アリロキシエトキシカルボニル)プロピオン酸、イタコン酸、イタコン酸モノエステル、マレイン酸、マレイン酸モノエステル、フマル酸、フマル酸モノエステル、フタル酸ビニル、ピロメリット酸ビニル、ウンデシレン酸、2-メタクリロイルオキシエチルコハク酸、2-アクリロイルオキシエチルコハク酸、2-メタクリロイルオキシエチルフタル酸、2-アクリロイルオキシエチルフタル酸、2-メタクリロイルオキシエチルヘキサヒドロフタル酸、2-アクリロイルオキシエチルヘキサヒドロフタル酸、2-アクリロイルオキシプロピルフタル酸、2-アクリロイルオキシプロピルヘキサヒドロフタル酸、2-アクリロイルオキシプロピルテトラヒドロフタル酸、メタクリロキシエチルトリメリット酸、クロトン酸、N-アクリロイルアラニン、無水マレイン酸、無水シトラコン酸、4-ビニル安息香酸などが挙げられる。
 上記不飽和カルボン酸としては、なかでも、
 一般式(11):CR1112=CR13-R14-(COOH)
(式中、R11~R13は、同一または異なって、水素原子または一価の炭化水素基、R14は2価または3価の連結基、nは1または2である。)で表される化合物、および、
 一般式(12):CR1516=CR17-R18-Ar-(-COOH)
(式中、R15~R17は、同一または異なって、水素原子または一価の炭化水素基、R18は2価または3価の連結基、Arは2価または3価の環状脂肪族基または芳香族基、mは1または2である。)で表される化合物
からなる群より選択される少なくとも1種が好ましく、一般式(11)で表される化合物がより好ましい。
 R11~R13としては、同一または異なって、水素原子、炭素数1~5のアルキル基またはアリール基が好ましい。R14としては、単結合手、または、式:-(C=O)n1-(O)n2-R141-(式中、n1およびn2は、同一または異なって、0または1、R141は、炭素-炭素原子間に酸素原子が挿入されていてもよいアルキレン基である。)で表される2価の連結基が好ましい。R141のアルキレン基の炭素数としては、1~10が好ましく、1~3がより好ましい。
 また、一般式(11)におけるnは、カルボキシル基の個数を表し、R14が2価の場合は1であり、R14が3価の場合は2である。一般式(11)におけるR14およびnとしては、R14が2価の連結基であり、nが1であることが好ましい。
 R15~R17としては、同一または異なって、水素原子または炭素数1~5のアルキル基が好ましい。R18としては、単結合手、または、式:-(C=O)m1-(O)m2-R181-(O)m3-(C=O)m4-(式中、m1~m4は、同一または異なって、0または1、R181は、炭素-炭素原子間に酸素原子が挿入されていてもよいアルキレン基である。)で表される2価の連結基が好ましい。R181のアルキレン基の炭素数としては、1~10が好ましく、1~3がより好ましい。
 また、一般式(12)におけるmは、カルボキシル基の個数を表し、Arが2価の場合は1であり、Arが3価の場合は2である。Arの炭素数としては、6が好ましい。
 上記不飽和スルホン酸としては、ビニルスルホン酸、アリルスルホン酸、メタリルスルホン酸、2-スルホエチルアクリレート、2-エチルスルホメタクリレート、2-アクリルアミド-2-メチルプロパンスルホン酸、スチレンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸などが挙げられる。
 上記不飽和ホスホン酸としては、ビニルホスホン酸、アリルホスホン酸、ビニルベンジルホスホン酸、1-フェニルエテニルホスホン酸、2-フェニルエテニルホスホン酸、2-(アクリロイルオキシ)エチルホスホン酸、2-(メタクリロイルオキシ)エチルホスホン酸、3-(アクリロイルオキシ)プロピルホスホン酸、3-(メタクリロイルオキシ)プロピルホスホン酸などが挙げられる。
 上記不飽和リン酸としては、2-(アクリロイルオキシ)エチルホスファート、2-(メタクリロイルオキシ)エチルホスファートなどが挙げられる。
 上記酸基含有モノマーとしては、なかでも、耐スコーチ性をさらに改善できることから、メタクリル酸およびビニルスルホン酸からなる群より選択される少なくとも1種が好ましく、メタクリル酸がより好ましい。
 上記ポリマーは、上記酸基含有モノマー単位のみからなるポリマーであってもよいし、上記酸基含有モノマー単位と上記酸基含有モノマー単位以外の他の単量体単位とを含有するポリマーであってもよい。
 上記ポリマーは、不飽和カルボン酸エステル単位をさらに含有してもよい。不飽和カルボン酸エステル単位を与える不飽和カルボン酸エステルとしては、アルキル基の炭素数が1~10のアクリル酸アルキルエステル、または、アルキル基の炭素数が1~10のメタクリル酸アルキルエステルが好ましい。上記(メタ)アクリル酸エステルとしては、たとえば、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、メチルメタクリレート、n-プロピルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、イソプロピルメタクリレート、2-エチルへキシルアクリレート、2-エチルヘキシルメタクリレート、シクロヘキシルアクリレート、シクロヘキシルメタクリレートなどの(メタ)アクリル酸アルキルエステルが挙げられる。なお、本開示において、「(メタ)アクリル酸エステル」とは、アクリル酸エステル又はメタクリル酸エステルを意味する。
 上記(メタ)アクリル酸エステルとしては、メチルメタクリレートが好ましい。
 上記複合粒子に含有される上記ポリマーにおいて、上記酸基含有モノマー単位の含有量としては、耐スコーチ性をさらに改善できることから、全単量体単位に対して、好ましくは1~100モル%であり、より好ましくは10~100モル%であり、さらに好ましくは25~100モル%である。この場合の他の単量体単位の含有量としては、99~0モル%であり、より好ましくは90~0モル%であり、さらに好ましくは75~0モル%である。
 上記ポリマーが不飽和カルボン酸エステル単位をさらに含有する場合の上記酸基含有モノマー単位の含有量は、耐スコーチ性の観点から、全単量体単位に対して、好ましくは1~99モル%であり、より好ましくは10~90モル%であり、さらに好ましくは25~75モル%である。また、不飽和カルボン酸エステル単位の含有量は、全単量体単位に対して、好ましくは99~1モル%であり、より好ましくは90~10モル%であり、さらに好ましくは75~25モル%である。
 上記ポリマーは、スチレン単位をさらに含有してもよい。上記ポリマーがスチレン単位をさらに含有する場合の上記酸基含有モノマー単位の含有量は、耐スコーチ性の観点から、全単量体単位に対して、好ましくは1~99モル%であり、より好ましくは10~90モル%である。また、スチレン単位の含有量は、全単量体単位に対して、好ましくは99~1モル%であり、より好ましくは90~10モル%である。
 上記ポリマーは、数平均分子量(重量平均分子量等)が1万~100万であることが好ましい。上記分子量は、液体クロマトグラフィーを使用する方法や、沈殿法により測定することができる。
 上記無機粒子は、無機窒化物粒子であることが好ましい。上記組成物が無機窒化物粒子を含有する場合、含フッ素エラストマー中のシアノ基を環化三量化反応させて、トリアジン架橋反応を進行させることができる。
 上記無機粒子としては、特に限定されるものではないが、窒化ケイ素(Si)、窒化リチウム、窒化チタン、窒化アルミニウム、窒化ホウ素、窒化バナジウム、窒化ジルコニウムなどの無機窒化物粒子があげられる。これらの中でも、ナノサイズの微粒子が供給可能であること、半導体製造工程で嫌われる金属等を含んでいない点から、窒化ケイ素粒子であることが好ましい。また、これらの無機窒化物粒子は2種以上混合使用してもよい。
 上記無機粒子の平均粒子径は、好ましくは1000nm以下であり、より好ましくは300nm以下であり、さらに好ましくは100nm以下である。下限値は特に限定されないが、5nmであることが好ましい。
 上記複合粒子は、上記無機粒子を1~80質量%含有することが好ましい。上記無機粒子の含有量としては、より好ましくは10質量%以上であり、さらに好ましくは20質量%以上であり、特に好ましくは35質量%以上であり、最も好ましくは50質量%以上であり、より好ましくは75質量%以下であり、さらに好ましくは70質量%以下である。上記無機粒子の含有量が上記範囲にあると、耐スコーチ性をより一層改善することができるとともに、架橋反応を十分に進行させられる。
 上記複合粒子の平均粒子径は、好ましくは0.01~100μmであり、より好ましくは0.05μm以上であり、さらに好ましくは0.1μm以上であり、より好ましくは30μm以下であり、さらに好ましくは15μm以下である。上記複合粒子の平均粒子径が上記範囲にあると、取り扱い性に優れるとともに、組成物中に十分に分散させることができる。上記平均粒子径は、レーザ回折式粒度分布測定装置として求めるメジアン径である。
 上記複合粒子は、上記無機粒子が分散した分散液中で、少なくとも上記酸基含有モノマーを含有するモノマーを重合することにより得られるものであることが好ましい。
 上記複合粒子は、公知の方法(例えば、田中眞人著、「ナノ・マイクロカプセル調製のキーポイント」、株式会社テクノシステム出版、2008年5月6日に記載の方法)により製造することができる。
 上記複合粒子は、具体的には、無機粒子、少なくとも上記酸基含有モノマーを含有するモノマー、分散剤および重合開始剤を溶媒に分散させて分散液を得る工程、上記分散液中でモノマーを重合してスラリーを得る工程、ならびに、上記スラリーから複合粒子を回収する工程を含む製造方法により製造することができる。
 上記重合においては、上記モノマーとして、上記酸基含有モノマーに加えて、上記不飽和カルボン酸エステル、スチレンなどの、上記ポリマーを構成する他の単量体単位を与える他の単量体を重合することもできる。
 上記無機粒子と上記モノマーとの質量比(無機粒子/モノマー)としては、好ましくは1/99~80/20であり、より好ましくは10/90以上であり、より好ましくは75/25以下である。
 上記分散剤としては、ポリビニルピロリドン、ポリビニルアルコールのケン化物およびヒドロキシプロピルセルロースからなる群から選択される少なくとも1種が好ましく、ポリビニルピロリドンがより好ましい。
 上記重合開始剤としては、アゾ化合物および過酸化物からなる群から選択される少なくとも1種が好ましく、アゾ化合物がより好ましい。上記アゾ化合物としては、2,2’-アゾビス-2,4-ジメチルバレロニトリル、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルプロピオニトリル)などが挙げられる。
 上記溶媒としては、水、アルコール、ベンゼンおよびトルエンからなる群から選択される少なくとも1種が好ましく、水およびアルコールからなる群より選択される少なくとも1種がより好ましい。上記アルコールとしては、炭素数が1~5のアルコールが好ましく、1-ブタノール、メタノールまたはエタノールがより好ましい。
 各成分を溶媒に分散させるために、超音波等の公知の手段を用いてもよい。
 上記モノマーの重合は、重合開始剤の分解温度以上に分散液を加熱することによって開始することができる。分解温度は、通常、30~120℃である。重合時間は、通常、1~24時間である。
 重合が完了すると、上記複合粒子および上記溶媒を含有するスラリーが生成する。スラリーから複合粒子を回収する方法は公知である。回収後に所望により複合粒子を乾燥してもよい。
 本開示の組成物における上記複合粒子の含有量は、上記含フッ素ポリマー100質量部に対して、好ましくは0.1~30質量部であり、より好ましくは0.3質量部以上であり、さらに好ましくは0.5質量部以上であり、より好ましくは10質量部以下であり、さらに好ましくは5質量部以下である。上記複合粒子の含有量が上記範囲にあると、耐スコーチ性をより一層改善することができるとともに、架橋反応を十分に進行させられる。
 架橋剤は必須成分ではない。しかし、上記組成物は、架橋剤をさらに含有してもよい。上記架橋剤としては、パーオキサイド架橋、ポリオール架橋、ポリアミン架橋、トリアジン架橋、オキサゾール架橋、イミダゾール架橋、および、チアゾール架橋において用いる架橋剤が挙げられる。上記含フッ素ポリマーが主鎖末端および/または側鎖にシアノ基(-CN基)を有する含フッ素エラストマーである場合、架橋剤としては、オキサゾール架橋剤、イミダゾール架橋剤およびチアゾール架橋剤からなる群より選択される少なくとも1種であることが好ましい。
 パーオキサイド架橋において用いる架橋剤は、熱や酸化還元系の存在下で容易にパーオキシラジカルを発生し得る有機過酸化物であればよく、具体的には、たとえば1,1-ビス(t-ブチルパーオキシ)-3,5,5-トリメチルシクロヘキサン、2,5-ジメチルヘキサン-2,5-ジヒドロパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、ジクミルパーオキサイド、α,α-ビス(t-ブチルパーオキシ)-p-ジイソプロピルベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-ヘキシン-3、ベンゾイルパーオキサイド、t-ブチルパーオキシベンゼン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシイソプロピルカーボネート、1,3-ビス(t-ブチルパーオキシイソプロピル)ベンゼンなどをあげることができる。一般に活性-O-O-の量、分解温度などを考慮して有機過酸化物の種類並びに使用量が選ばれる。
 また、この場合に用いることのできる架橋助剤としては、パーオキシラジカルとポリマーラジカルに対して反応活性を有する化合物であればよく、たとえば-CH=CH、-CHCH=CH、-CF=CF、-C(CF)=CF、-C(CH)=CF、-CF=CF(CF)、-CF=CF(CH)、-C(C)=CF、-CF=CF(C)、-CH=CF、-CF=CHF、-C(CF)=CHF、-CF=CH(CF)、-CH=CF(CF)などの官能基を有する多官能性化合物があげられる(各式中の「C」はフェニル基を表す)。具体的には、たとえばトリアリルシアヌレート、トリアリルイソシアヌレート(TAIC)、トリアクリルホルマール、トリアリルトリメリテート、N,N’-n-フェニレンビスマレイミド、ジプロパギルテレフタレート、ジアリルフタレート、テトラアリルテレフタレートアミド、トリアリルホスフェート、ビスマレイミド、フッ素化トリアリルイソシアヌレート(1,3,5-トリス(2,3,3-トリフルオロ-2-プロペニル)-1,3,5-トリアジン2,4,6-トリオン)、トリス(ジアリルアミン)-S-トリアジン、亜リン酸トリアリル、N,N-ジアリルアクリルアミド、1,6-ジビニルドデカフルオロヘキサンなどがあげられる。
 架橋剤、または、パーオキサイド架橋において用いる架橋剤とともに用いる架橋助剤としては、一般式(21):
Figure JPOXMLDOC01-appb-C000001
(式中、R21~R23は、独立に、水素原子、フッ素原子、アルキル基、フッ素化アルキル基、または、置換もしくは非置換のアリール基であり、R21~R23の少なくとも1つは、フッ素原子またはフッ素原子を含む基である。mは1~5の整数である。mが2以上である場合、m個のR21~R23は、それぞれ、同じであっても、異なっていてもよい。ベンゼン環の水素原子は、置換されていてもよい。)で表される構造を、少なくとも1つ有する化合物を挙げることもできる。mが1の場合は、該構造を2以上有することが好ましい。
 一般式(11)で表される構造を有する化合物としては、一般式(22):
Figure JPOXMLDOC01-appb-C000002
(式中、R21~R23は、上記のとおり。pは0~2の整数であり、nは2~6の整数である。)で表される化合物、一般式(23):
Figure JPOXMLDOC01-appb-C000003
(式中、R21~R23は、上記のとおり。R24は、単結合手、-SO-、-O-、-S-、-CO-、ヘテロ原子含有基、置換もしくは非置換のアルキレン基、置換もしくは非置換のシクロアルキレン基または置換もしくは非置換のアリーレン基である。mは1~5の整数である。)で表される化合物などを挙げることができる。
 ポリオール架橋に用いる架橋剤としては、ビスフェノールA、ビスフェノールAFなどの多価アルコール化合物があげられる。
 ポリアミン架橋に用いる架橋剤としては、ヘキサメチレンジアミンカルバメート、N,N’-ジシンナミリデン-1,6-ヘキサンジアミン、4,4’-ビス(アミノシクロヘキシル)メタンカルバメートなどの多価アミン化合物があげられる。
 トリアジン架橋に用いる架橋剤としては、テトラフェニルスズ、トリフェニルスズなどの有機スズ化合物があげられる。
 オキサゾール架橋、イミダゾール架橋、チアゾール架橋に使用する架橋剤としては、たとえば一般式(30):
Figure JPOXMLDOC01-appb-C000004
(式中、R31は-SO-、-O-、-CO-、炭素数1~6のアルキレン基、炭素数1~10のパーフルオロアルキレン基または単結合手、または、
Figure JPOXMLDOC01-appb-C000005
で示される基であり、R32およびR33は一方が-NHであり他方が-NHR34、-NH、-OHまたは-SHであり、R34は水素原子、フッ素原子または一価の有機基であり、好ましくはR32が-NHでありR33が-NHR34である。炭素数1~6のアルキレン基の好ましい具体例としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基などをあげることができ、炭素数1~10のパーフルオロアルキレン基としては、
Figure JPOXMLDOC01-appb-C000006
などがあげられる。なお、これらの化合物は、特公平2-59177号公報、特開平8-120146号公報などで、ビスジアミノフェニル化合物の例示として知られているものである)で示されるビスジアミノフェニル系架橋剤、ビスアミノフェノール系架橋剤、ビスアミノチオフェノール系架橋剤、一般式(31):
Figure JPOXMLDOC01-appb-C000007
(R31は、上記のとおり、R35は、独立に、以下の基のいずれかである。)
Figure JPOXMLDOC01-appb-C000008
で示されるビスアミドラゾン系架橋剤、一般式(32):
Figure JPOXMLDOC01-appb-C000009
(式中、Rf31は炭素数1~10のパーフルオロアルキレン基である)で示されるビスアミドラゾン系化合物、または一般式(33):
Figure JPOXMLDOC01-appb-C000010
(式中、nは1~10の整数である)で示されるビスアミドオキシム系架橋剤などがあげられる。これらのビスアミノフェノール系架橋剤、ビスアミノチオフェノール系架橋剤またはビスジアミノフェニル系架橋剤などは従来シアノ基を架橋点とする架橋系に使用していたものであるが、カルボキシル基およびアルコキシカルボニル基とも反応し、オキサゾール環、チアゾール環、イミダゾール環を形成し、架橋物を与える。
 とくに好ましい架橋剤としては、複数個の3-アミノ-4-ヒドロキシフェニル基、または3-アミノ-4-メルカプトフェニル基を有する化合物、もしくは一般式(34):
Figure JPOXMLDOC01-appb-C000011
(式中、R31、R32およびR33は上記のとおり。)で示される化合物があげられ、具体的には、たとえば2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(一般名:ビス(アミノフェノール)AF)、2,2-ビス(3-アミノ-4-メルカプトフェニル)ヘキサフルオロプロパン、テトラアミノベンゼン、ビス-3,4-ジアミノフェニルメタン、ビス-3,4-ジアミノフェニルエーテル、2,2-ビス(3,4-ジアミノフェニル)ヘキサフルオロプロパン、2,2-ビス[3-アミノ-4-(N-フェニルアミノ)フェニル]ヘキサフルオロプロパン、2,2-ビス[3-アミノ-4-(N-メチルアミノ)フェニル]ヘキサフルオロプロパン、2,2-ビス[3-アミノ-4-(N-エチルアミノ)フェニル]ヘキサフルオロプロパン、2,2-ビス[3-アミノ-4-(N-プロピルアミノ)フェニル]ヘキサフルオロプロパン、2,2-ビス[3-アミノ-4-(N-パーフルオロフェニルアミノ)フェニル]ヘキサフルオロプロパン、2,2-ビス[3-アミノ-4-(N-ベンジルアミノ)フェニル]ヘキサフルオロプロパンなどである。
 これらの中でも、架橋剤としては耐熱性、耐スチーム性、耐アミン性、良好な架橋性の点から、2,2-ビス[3-アミノ-4-(N-フェニルアミノ)フェニル]ヘキサフルオロプロパンが好ましい。
 上記架橋剤の含有量は、含フッ素ポリマー100質量部に対して、好ましくは0.05~10質量部であり、より好ましくは0.5~5質量部である。
 上記組成物は、一般的な充填剤を含有してもよい。
 上記一般的な充填剤としては、ポリイミド、ポリアミドイミド、ポリエーテルイミドなどのイミド構造を有するイミド系フィラー、ポリアリレート、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリオキシベンゾエートなどのエンジニアリングプラスチック製の有機物フィラー、酸化アルミニウム、酸化ケイ素、酸化イットリウムなどの金属酸化物フィラー、炭化ケイ素、炭化アルミニウムなどの金属炭化物、窒化ケイ素、窒化アルミニウムなどの金属窒化物フィラー、フッ化アルミニウム、フッ化カーボン、硫酸バリウム、カーボンブラック、シリカ、クレー、タルクなどの無機物フィラーがあげられる。
 これらの中でも、各種プラズマの遮蔽効果の点から、カーボンブラック、酸化アルミニウム、酸化イットリウム、酸化ケイ素、ポリイミド、フッ化カーボンが好ましい。
 また、上記無機物フィラー、有機物フィラーを単独で、または2種以上を組み合わせて配合してもよい。
 上記一般的な充填剤の配合量は、含フッ素ポリマー100質量部に対して、好ましくは0.5~100質量部、より好ましくは5~50質量部である。
 とくに高純度かつ非汚染性が要求されない分野では、必要に応じて含フッ素ポリマー組成物に配合される通常の添加物、たとえば充填剤、加工助剤、可塑剤、着色剤などを配合することができ、前記のものとは異なる常用の架橋剤や架橋助剤を1種またはそれ以上配合してもよい。
 本開示の組成物として、特に好適な態様を例示すれば、次のとおりである。すなわち、複合粒子、および、主鎖末端および/または側鎖にシアノ基(-CN基)を有する含フッ素エラストマーを含む組成物であって、上記複合粒子は、ポリマーと、上記ポリマー中に分散した無機窒化物粒子とからなり、上記ポリマーが、上記酸基含有モノマー単位を含有しており、上記含フッ素エラストマー100質量部あたり0.1~30質量部の上記複合粒子を含むことを特徴とする組成物である。上記含フッ素エラストマーとしては、パーフルオロエラストマーが好ましい。また、上記無機窒化物粒子としては、窒化ケイ素粒子が好ましい。また、上記酸基含有モノマー単位としては、上記不飽和カルボン酸単位が好ましい。
 上記組成物は、架橋成形して成形品を得るための成形材料として好適に使用できる。
 上記組成物は、上記無機粒子、少なくとも上記酸基含有モノマーを含有するモノマー、上記分散剤および上記重合開始剤を上記溶媒に分散させて分散液を得る工程、上記分散液中でモノマーを重合してスラリーを得る工程、上記スラリーから複合粒子を回収する工程、および、上記複合粒子および含フッ素ポリマーを混練する工程を含む製造方法により製造することができる。
 上記混練は、通常のポリマー用加工機械、たとえば、オープンロール、バンバリーミキサー、ニーダー、密閉式混合機などを用いて実施することができる。
 上記組成物を成形材料として予備成形体を得る方法は通常の方法でよく、金型にて加熱圧縮する方法、加熱された金型に圧入する方法、押出機で押出す方法など公知の方法で行なうことができる。ホースや電線などの押出製品の場合は押出後にスチームなどによる加熱架橋を行なうことで、成形品を得ることができる。
 上記組成物から成形品を得る方法は通常の方法でよく、予備成形体を得た後、一次架橋、最後に二次架橋の順で成形品を得ることができる。
 一次架橋は、150~200℃で5~120分間行うことが好ましく、170~190℃で5~60分間行うことがより好ましい。架橋手段としては、公知の架橋手段を用いればよく、例えば、プレス架橋などをあげることができる。
 二次架橋は、180~320℃で2~24時間行うことが好ましく、190~310℃で5~20時間行うことがより好ましい。また、二次架橋は、250~320℃で2~24時間行ってもよく、280~310℃で5~20時間行ってもよい。架橋手段としては、公知の架橋手段を用いればよく、例えば、オーブン架橋などをあげることができる。
 本開示の成形品は、上記組成物から得られる。
 本開示の成形品は、特に耐熱性が要求される半導体製造装置、特に高密度プラズマ照射が行なわれる半導体製造装置のシール材として好適に使用できる。上記シール材としては、O-リング、角-リング、ガスケット、パッキン、オイルシール、ベアリングシール、リップシール等が挙げられる。
 そのほか、半導体製造装置に使用される各種のポリマー製品、例えばダイヤフラム、チューブ、ホース、各種ゴムロール、ベルト等としても使用できる。また、コーティング用材料、ライニング用材料としても使用できる。
 なお、本開示でいう半導体製造装置は、特に半導体を製造するための装置に限られるものではなく、広く、液晶パネルやプラズマパネルを製造するための装置等、高度なクリーン度が要求される半導体分野において用いられる製造装置全般を含むものであり、例えば次のようなものを挙げることができる。
(1)エッチング装置
ドライエッチング装置
プラズマエッチング装置
反応性イオンエッチング装置
反応性イオンビームエッチング装置
スパッタエッチング装置
イオンビームエッチング装置
ウェットエッチング装置
アッシング装置
(2)洗浄装置
乾式エッチング洗浄装置
UV/O洗浄装置
イオンビーム洗浄装置
レーザービーム洗浄装置
プラズマ洗浄装置
ガスエッチング洗浄装置
抽出洗浄装置
ソックスレー抽出洗浄装置
高温高圧抽出洗浄装置
マイクロウェーブ抽出洗浄装置
超臨界抽出洗浄装置
(3)露光装置
ステッパー
コータ・デベロッパー
(4)研磨装置
CMP装置
(5)成膜装置
CVD装置
スパッタリング装置
(6)拡散・イオン注入装置
酸化拡散装置
イオン注入装置
 本開示の成形品は、例えば、CVD装置、プラズマエッチング装置、反応性イオンエッチング装置、アッシング装置またはエキシマレーザー露光機のシール材として優れた性能を発揮する。
 以上、実施形態を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
 つぎに本開示の実施形態について実施例をあげて説明するが、本開示はかかる実施例のみに限定されるものではない。
調製例1~6
 反応槽として、容積1000mlのセパラブルフラスコを用いた。反応槽中で790mlの1-ブタノールにポリビニルピロリドン15g、表1に記載のモノマーを溶解させ、さらに窒化ケイ素粒子(平均粒子径30nm)40gを加え、ホモジナイザーにより5,000rpm、5分間分散させた。
 6枚羽傾斜パドルを使用して撹拌しながら、重合開始剤として2,2’-アゾビス(2-メチルプロピオニトリル)2.0gを溶解させた後、70℃まで昇温し、15時間分散重合を行った。
 分散重合終了後、減圧濾過装置により得られたスラリーから複合粒子を分離した後、75℃に設定した乾燥機で15時間乾燥した。その後、不活性ガス中にて100℃、2時間加熱した。得られた複合粒子はポリマー中に窒化ケイ素粒子が分散した構造を有していた。
 以下の方法により、得られた複合粒子を評価した。
複合粒子の50%径(メジアン径)
 Sympatec社製レーザ回折式粒度分布測定装置 HELOS&RODOSにより測定した。結果を表1に示す。
複合粒子中の窒化ケイ素比率
 熱質量計(エスアイアイ・ナノテクノロジー社製 TG-DTA7200)を用い、空気200ml/min、昇温速度10℃/min、温度範囲20~600℃の条件で質量変化を測定し、600℃昇温時の残存率から求めた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000012
実施例1
 100質量部の含フッ素エラストマー(TFE/PMVE/シアノ基含有単量体=59.4/40.1/0.5(モル比))に対し、調製例1で得られた複合粒子を0.5質量部、架橋剤として4,4’-[2,2,2-トリフルオロ-1-(トリフルオロメチル)エチリデン]ビス[N1-フェニル-1,2-ベンゼンジアミン]を0.8質量部、フィラーとしてカーボンブラック(平均粒子径0.3μm)を23質量部、を配合したものをオープンロールにて混練して、架橋可能なフッ素ゴム組成物を調製した。
 得られたフッ素ゴム組成物をアルミナ袋に入れ真空包装後、表2に記載の保存期間、40℃にて貯蔵した。アルファテクノロジーズ社製ムービングダイレオメーターMDR2000を用いて、180℃/30分の条件で加硫特性を測定し、MLの変化から貯蔵安定性を評価した。なお、MLとは、最小トルク値であり、この数値は、加硫成形時の流動性の指標で、小さいほど流動性が良く、架橋反応によりスコーチが進行すると大きくなる。結果を表2に示す。
 得られたフッ素ゴム組成物を180℃で30分間プレスして架橋を行ったのち、さらにオーブン中にて200℃で12時間、250℃で3時間、290℃で3時間オーブン架橋を施し、厚さ2mmの架橋物の被験サンプルを作製した。得られた被験サンプルについて、以下の方法により常態物性を測定した。
常態物性
 JIS K6251に準じて、厚さ2mmの被験サンプルの常態(25℃)での100%引張応力(MPa)、引張強度(MPa)、伸び(%)、硬度Peak(Shore A)を測定した。結果を表3に示す。
実施例2
 複合粒子を調製例2で得られたものに変更した以外は、実施例1と同様にして、フッ素ゴム組成物を調製した。得られたフッ素ゴム組成物を用いて、実施例1と同様にして、貯蔵安定性の評価を行った。結果を表2に示す。また、実施例1と同様にして、厚さ2mmの架橋物の被験サンプルを作製した。得られた被験サンプルについて、実施例1と同様に常態物性を測定した。結果を表3に示す。
実施例3
 複合粒子を調製例3で得られたものに変更した以外は、実施例1と同様にして、フッ素ゴム組成物を調製した。得られたフッ素ゴム組成物を用いて、実施例1と同様にして、貯蔵安定性の評価を行った。結果を表2に示す。また、実施例1と同様にして、厚さ2mmの架橋物の被験サンプルを作製した。得られた被験サンプルについて、実施例1と同様に常態物性を測定した。結果を表3に示す。
実施例4
 複合粒子を調製例4で得られたものに変更した以外は、実施例1と同様にして、フッ素ゴム組成物を調製した。得られたフッ素ゴム組成物を用いて、実施例1と同様にして、貯蔵安定性の評価を行った。結果を表2に示す。また、実施例1と同様にして、厚さ2mmの架橋物の被験サンプルを作製した。得られた被験サンプルについて、実施例1と同様に常態物性を測定した。結果を表3に示す。
実施例5
 複合粒子を調製例5で得られたものに変更した以外は、実施例1と同様にして、フッ素ゴム組成物を調製した。得られたフッ素ゴム組成物を用いて、実施例1と同様にして、貯蔵安定性の評価を行った。結果を表2に示す。また、実施例1と同様にして、厚さ2mmの架橋物の被験サンプルを作製した。得られた被験サンプルについて、実施例1と同様に常態物性を測定した。結果を表3に示す。
比較例1
 複合粒子を調製例6で得られたものに変更した以外は、実施例1と同様にして、フッ素ゴム組成物を調製した。得られたフッ素ゴム組成物を用いて、実施例1と同様にして、貯蔵安定性の評価を行った。結果を表2に示す。また、実施例1と同様にして、厚さ2mmの架橋物の被験サンプルを作製した。得られた被験サンプルについて、実施例1と同様に常態物性を測定した。結果を表3に示す。
参考例1
 複合粒子を使用せず、100質量部の含フッ素エラストマー(TFE/PMVE/シアノ基含有単量体=59.4/40.1/0.5(モル比))に対し、窒化ケイ素(平均粒子径30nm)を0.25質量部、架橋剤4,4’-[2,2,2-トリフルオロ-1-(トリフルオロメチル)エチリデン]ビス[N1-フェニル-1,2-ベンゼンジアミン]を0.8質量部、フィラーとしてカーボンブラック(平均粒子径0.3μm)を23質量部配合した以外は、実施例1と同様にして、フッ素ゴム組成物を調製した。得られたフッ素ゴム組成物を用いて、実施例1と同様にして、厚さ2mmの架橋物の被験サンプルを作製した。得られた被験サンプルについて、実施例1と同様に常態物性を測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 表2より、メタクリル酸を用いて得られた複合粒子を配合した実施例1~5では、メタクリル酸を用いることなく得られた複合粒子を配合していない比較例1に比べて、40℃の貯蔵試験後のML増加が小さくなっており、スコーチ安定性が改善されていることがわかる。また、表3より、架橋ゴム物性については、実施例1~5と参考例1とで殆ど差異はなく、複合粒子を配合しても、従来の架橋物と同等の優れた物性が得られることがわかる。

Claims (9)

  1.  複合粒子、および、含フッ素ポリマーを含有する組成物であって、前記複合粒子は、ポリマーと、前記ポリマー中に分散した無機粒子とからなり、
     前記ポリマーが、酸基含有モノマー単位を含有する組成物。
  2.  前記酸基含有モノマー単位が、不飽和カルボン酸単位である請求項1に記載の組成物。
  3.  前記酸基含有モノマー単位が、メタクリル酸単位である請求項1または2に記載の組成物。
  4.  前記ポリマーの前記酸基含有モノマー単位の含有量が、全単量体単位に対して、1~100モル%である請求項1~3のいずれかに記載の組成物。
  5.  前記含フッ素ポリマーが、含フッ素エラストマーである請求項1~4のいずれかに記載の組成物。
  6.  前記無機粒子が、無機窒化物粒子である請求項1~5のいずれかに記載の組成物。
  7.  前記複合粒子が、前記無機粒子が分散した分散液中で、酸基含有モノマーを重合することにより得られる請求項1~6のいずれかに記載の組成物。
  8.  成形材料である請求項1~7のいずれかに記載の組成物。
  9.  請求項1~7のいずれかに記載の組成物から得られる成形品。
PCT/JP2019/029642 2018-08-03 2019-07-29 含フッ素ポリマーを含有する組成物および成形品 WO2020027046A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/265,343 US20210317295A1 (en) 2018-08-03 2019-07-29 Composition and molded article containing fluorine-containing polymer
KR1020217003040A KR102470957B1 (ko) 2018-08-03 2019-07-29 불소 함유 폴리머를 함유하는 조성물 및 성형품
CN201980049213.4A CN112513175B (zh) 2018-08-03 2019-07-29 含有含氟聚合物的组合物和成型品
EP19843590.1A EP3831876A4 (en) 2018-08-03 2019-07-29 COMPOSITION AND MOLDING ARTICLE WITH FLUORESCENT POLYMER

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018147204 2018-08-03
JP2018-147204 2018-08-03
JP2019-138605 2019-07-29
JP2019138605A JP6708290B2 (ja) 2018-08-03 2019-07-29 含フッ素ポリマーを含有する組成物および成形品

Publications (1)

Publication Number Publication Date
WO2020027046A1 true WO2020027046A1 (ja) 2020-02-06

Family

ID=69232499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029642 WO2020027046A1 (ja) 2018-08-03 2019-07-29 含フッ素ポリマーを含有する組成物および成形品

Country Status (1)

Country Link
WO (1) WO2020027046A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157324A (ja) 1984-05-26 1986-03-24 ヴエルネル・ウント・プフライデレル スクリユ−式押出し機のためのフイルタ装置
JPH0259177A (ja) 1988-08-26 1990-02-28 Babcock Hitachi Kk 溶接ヘッド
JPH0481608A (ja) 1990-07-24 1992-03-16 Furuno Electric Co Ltd 傾斜センサおよび傾斜角測定装置
JPH05500070A (ja) 1989-05-19 1993-01-14 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー ヨウ素硬化部位を有するシアノ含有パーフルオロポリマー類
JPH0513961A (ja) 1991-06-28 1993-01-22 Toshiba Corp 多層配線板
JPH08120146A (ja) 1994-10-21 1996-05-14 Nippon Mektron Ltd 含フッ素エラストマー組成物
WO1997024381A1 (fr) 1995-12-28 1997-07-10 Daikin Industries, Ltd. Copolymeres elastiques contenant du fluor, composition durcissable les contenant et materiau d'etancheite prepare a l'aide de ces copolymeres
JP2005008651A (ja) * 2003-06-16 2005-01-13 Toyota Motor Corp 回折格子顔料及びその製造方法、塗料、並びに樹脂組成物
JP2008075078A (ja) * 2006-08-22 2008-04-03 Hitachi Chem Co Ltd 透明高分子組成物および光学部材
JP2008523224A (ja) * 2004-12-10 2008-07-03 スリーエム イノベイティブ プロパティズ カンパニー 充填剤入りポリマー複合材料
JP2013228741A (ja) * 2008-07-22 2013-11-07 Fujifilm Corp 反射防止フィルム、偏光板、及び画像表示装置
CN104046012A (zh) * 2014-05-19 2014-09-17 安徽安缆模具有限公司 汽车离合器分离轴承用高强耐磨尼龙66复合材料及其制备方法
WO2016204272A1 (ja) 2015-06-19 2016-12-22 ダイキン工業株式会社 含フッ素ポリマーからなる組成物及び成形品

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157324A (ja) 1984-05-26 1986-03-24 ヴエルネル・ウント・プフライデレル スクリユ−式押出し機のためのフイルタ装置
JPH0259177A (ja) 1988-08-26 1990-02-28 Babcock Hitachi Kk 溶接ヘッド
JPH05500070A (ja) 1989-05-19 1993-01-14 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー ヨウ素硬化部位を有するシアノ含有パーフルオロポリマー類
JPH0481608A (ja) 1990-07-24 1992-03-16 Furuno Electric Co Ltd 傾斜センサおよび傾斜角測定装置
JPH0513961A (ja) 1991-06-28 1993-01-22 Toshiba Corp 多層配線板
JPH08120146A (ja) 1994-10-21 1996-05-14 Nippon Mektron Ltd 含フッ素エラストマー組成物
WO1997024381A1 (fr) 1995-12-28 1997-07-10 Daikin Industries, Ltd. Copolymeres elastiques contenant du fluor, composition durcissable les contenant et materiau d'etancheite prepare a l'aide de ces copolymeres
JP2005008651A (ja) * 2003-06-16 2005-01-13 Toyota Motor Corp 回折格子顔料及びその製造方法、塗料、並びに樹脂組成物
JP2008523224A (ja) * 2004-12-10 2008-07-03 スリーエム イノベイティブ プロパティズ カンパニー 充填剤入りポリマー複合材料
JP2008075078A (ja) * 2006-08-22 2008-04-03 Hitachi Chem Co Ltd 透明高分子組成物および光学部材
JP2013228741A (ja) * 2008-07-22 2013-11-07 Fujifilm Corp 反射防止フィルム、偏光板、及び画像表示装置
CN104046012A (zh) * 2014-05-19 2014-09-17 安徽安缆模具有限公司 汽车离合器分离轴承用高强耐磨尼龙66复合材料及其制备方法
WO2016204272A1 (ja) 2015-06-19 2016-12-22 ダイキン工業株式会社 含フッ素ポリマーからなる組成物及び成形品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASATO TANAKA: "Key points for Preparing Nano-Microcapsules", 6 May 2008, TECHNO SYSTEM PUBLISHING CO., LTD.

Similar Documents

Publication Publication Date Title
JP5487584B2 (ja) 架橋性エラストマー組成物および該組成物からなる成形品
TWI335337B (en) Fluorine-containing elastomer composition having execllent prevention effect of plasma aging and molded article using the same
JP6463474B2 (ja) 含フッ素ポリマーからなる組成物及び成形品
JP4600393B2 (ja) 含フッ素エラストマー組成物
TWI798274B (zh) 交聯性彈性體組成物及氟橡膠成形品
JP7206519B2 (ja) 含フッ素ポリマーを含有する組成物および成形品
TW201825597A (zh) 組成物以及成形品
JP7265197B2 (ja) 含フッ素エラストマー組成物および物品
US20220227909A1 (en) Composition containing fluorine-containing polymer and crosslinked article
JP2019501247A (ja) フッ素化エラストマー用硬化剤
WO2022260138A1 (ja) 含フッ素エラストマー水性分散液の製造方法、含フッ素エラストマーおよび組成物
JP6708290B2 (ja) 含フッ素ポリマーを含有する組成物および成形品
WO2020027046A1 (ja) 含フッ素ポリマーを含有する組成物および成形品
JP7319573B1 (ja) 組成物および架橋物
TW202227517A (zh) 氟聚合物、水性分散液、組成物及交聯物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217003040

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019843590

Country of ref document: EP

Effective date: 20210303