WO2020027003A1 - 電解液及び電気化学デバイス - Google Patents

電解液及び電気化学デバイス Download PDF

Info

Publication number
WO2020027003A1
WO2020027003A1 PCT/JP2019/029543 JP2019029543W WO2020027003A1 WO 2020027003 A1 WO2020027003 A1 WO 2020027003A1 JP 2019029543 W JP2019029543 W JP 2019029543W WO 2020027003 A1 WO2020027003 A1 WO 2020027003A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
electrolytic solution
negative electrode
fluorine
formula
Prior art date
Application number
PCT/JP2019/029543
Other languages
English (en)
French (fr)
Inventor
馨 今野
薫平 山田
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to CN201980062244.3A priority Critical patent/CN112740459A/zh
Priority to JP2020533508A priority patent/JPWO2020027003A1/ja
Priority to KR1020217005823A priority patent/KR20210033042A/ko
Publication of WO2020027003A1 publication Critical patent/WO2020027003A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/42Powders or particles, e.g. composition thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolytic solution and an electrochemical device.
  • Patent Document 1 discloses an electrolyte for a non-aqueous electrolyte battery containing a specific siloxane compound in order to improve cycle characteristics and internal resistance characteristics.
  • An index of the heat resistance of the electrochemical device includes, for example, suppression of expansion of the electrochemical device after storage at a high temperature.
  • deterioration of various performances of the electrochemical device such as a degree of capacity decrease after storage at a high temperature and a degree of increase in direct current (DCR) during discharge, is suppressed. If the electrochemical device expands and ruptures during storage at a high temperature, there is a problem in safety. Therefore, it is particularly important to suppress the expansion of the electrochemical device.
  • an object of the present invention is to provide an electrolytic solution that can suppress the expansion of an electrochemical device even at a high temperature.
  • Another object of the present invention is to provide an electrochemical device in which expansion is suppressed even at a high temperature.
  • the present inventors have found that by including a specific compound containing a silicon atom and a sulfur atom and a fluorine-containing cyclic carbonate in an electrolytic solution, the expansion of the electrochemical device is significantly increased as compared with the case where each compound is contained alone. We found that it could be suppressed.
  • the present inventors have also found that the incorporation of these compounds in the electrolytic solution suppresses a decrease in the capacity of the electrochemical device after storage at a high temperature and suppresses an increase in DCR during discharge. .
  • the present invention provides, as a first aspect, an electrolytic solution containing a compound represented by the following formula (1) and a fluorine-containing cyclic carbonate.
  • R 1 to R 3 each independently represent an alkyl group or a fluorine atom
  • R 4 represents an alkylene group
  • R 5 represents an organic group containing a sulfur atom.
  • the number of silicon atoms in one molecule of the compound represented by the formula (1) is preferably one.
  • R 5 is preferably a group represented by any of the following formulas (2), (3) and (4).
  • R 6 represents an alkyl group, and * represents a bond.
  • R 7 represents an alkyl group, and * represents a bond.
  • R 8 represents an alkyl group, and * represents a bond.
  • At least one of R 1 to R 3 is preferably a fluorine atom.
  • the fluorine-containing cyclic carbonate is preferably 4-fluoro-1,3-dioxolan-2-one.
  • the total of the content of the compound represented by the formula (1) and the content of the fluorine-containing cyclic carbonate is preferably 10% by mass or less based on the total amount of the electrolytic solution.
  • the present invention provides, as a second aspect, an electrochemical device including a positive electrode, a negative electrode, and the above-mentioned electrolytic solution.
  • the negative electrode preferably contains a carbon material.
  • the carbon material preferably contains graphite.
  • the negative electrode preferably further contains a material containing at least one element selected from the group consisting of silicon and tin.
  • the electrochemical device is preferably a non-aqueous electrolyte secondary battery or a capacitor.
  • an electrolytic solution that can suppress the expansion of an electrochemical device even at a high temperature. Further, according to the present invention, it is possible to provide an electrochemical device in which expansion is suppressed even at a high temperature.
  • FIG. 2 is an exploded perspective view illustrating an electrode group of the secondary battery illustrated in FIG. 1. It is a graph which shows the measurement result of the volume increase rate in an Example and a comparative example. It is a graph which shows the measurement result of the capacity maintenance ratio in an example and a comparative example. It is a graph which shows the measurement result of discharge DCR in an example and a comparative example.
  • FIG. 1 is a perspective view showing an electrochemical device according to one embodiment.
  • the electrochemical device is a non-aqueous electrolyte secondary battery.
  • the nonaqueous electrolyte secondary battery 1 includes an electrode group 2 including a positive electrode, a negative electrode, and a separator, and a bag-shaped battery case 3 that houses the electrode group 2.
  • the positive electrode and the negative electrode are provided with a positive electrode current collecting tab 4 and a negative electrode current collecting tab 5, respectively.
  • the positive electrode current collecting tab 4 and the negative electrode current collecting tab 5 protrude from the inside of the battery package 3 to the outside such that the positive electrode and the negative electrode can be electrically connected to the outside of the nonaqueous electrolyte secondary battery 1 respectively. .
  • the battery exterior 3 is filled with an electrolyte (not shown).
  • the non-aqueous electrolyte secondary battery 1 may be a battery (a coin type, a cylindrical type, a stacked type, or the like) having a shape other than the so-called “laminated type” as described above.
  • the battery outer package 3 may be a container formed of, for example, a laminate film.
  • the laminated film may be, for example, a laminated film in which a resin film such as a polyethylene terephthalate (PET) film, a metal foil such as aluminum, copper, and stainless steel, and a sealant layer such as polypropylene are laminated in this order.
  • PET polyethylene terephthalate
  • metal foil such as aluminum, copper, and stainless steel
  • a sealant layer such as polypropylene
  • FIG. 2 is an exploded perspective view showing one embodiment of the electrode group 2 in the nonaqueous electrolyte secondary battery 1 shown in FIG.
  • the electrode group 2 includes a positive electrode 6, a separator 7, and a negative electrode 8 in this order.
  • the positive electrode 6 and the negative electrode 8 are arranged such that the surfaces on the positive electrode mixture layer 10 side and the negative electrode mixture layer 12 side face the separator 7, respectively.
  • the positive electrode 6 includes a positive electrode current collector 9 and a positive electrode mixture layer 10 provided on the positive electrode current collector 9.
  • the positive electrode current collector 9 is provided with a positive electrode current collector tab 4.
  • the positive electrode current collector 9 is made of, for example, aluminum, titanium, stainless steel, nickel, calcined carbon, conductive polymer, conductive glass, or the like.
  • the positive electrode current collector 9 may be formed by processing a surface of aluminum, copper, or the like with carbon, nickel, titanium, silver, or the like for the purpose of improving adhesiveness, conductivity, and oxidation resistance.
  • the thickness of the positive electrode current collector 9 is, for example, 1 to 50 ⁇ m in terms of electrode strength and energy density.
  • the positive electrode mixture layer 10 contains a positive electrode active material, a conductive agent, and a binder.
  • the thickness of the positive electrode mixture layer 10 is, for example, 20 to 200 ⁇ m.
  • the positive electrode active material may be, for example, a lithium oxide.
  • the lithium oxide include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , Li x Co y M 1-y O z , and Li x Ni 1 ⁇ y M y O z, Li x Mn 2 O 4 and Li x Mn 2-y M y O 4 ( in each formula, M represents, Na, Mg, Sc, Y , Mn, Fe, Co, Cu, Zn, Al , Cr, Pb, Sb, V and B represent at least one element selected from the group consisting of M and X (where M is an element different from the other elements in each formula).
  • the positive electrode active material may be, for example, a lithium phosphate.
  • the lithium phosphate include lithium manganese phosphate (LiMnPO 4 ), lithium iron phosphate (LiFePO 4 ), lithium cobalt phosphate (LiCoPO 4 ), and lithium vanadium phosphate (Li 3 V 2 (PO 4 )). 3 ).
  • the content of the positive electrode active material may be 80% by mass or more, or 85% by mass or more, and may be 99% by mass or less based on the total amount of the positive electrode mixture layer.
  • the conductive agent may be a carbon material such as carbon black such as acetylene black and Ketjen black, graphite, graphene, and carbon nanotube.
  • the content of the conductive agent may be, for example, 0.01% by mass or more, 0.1% by mass or more, or 1% by mass or more, based on the total amount of the positive electrode mixture layer, and 50% by mass or less, 30% by mass or less. Or less, or 15% by mass or less.
  • binder examples include resins such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, polyimide, aromatic polyamide, cellulose, and nitrocellulose; SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), and fluorine rubber Styrene / butadiene / styrene block copolymer or hydrogenated product thereof, EPDM (ethylene / propylene / diene terpolymer), styrene / ethylene / butadiene / Thermoplastic elastomers such as ethylene copolymer, styrene / isoprene / styrene block copolymer or hydrogenated product thereof; syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene / bi acetate Soft resins such as styrene copolymers and propylene /
  • the content of the binder may be, for example, 0.1% by mass or more, 1% by mass or more, or 1.5% by mass or more, based on the total amount of the positive electrode mixture layer, and 30% by mass or less, 20% by mass or less. % Or 10% by mass or less.
  • the separator 7 is not particularly limited as long as it electrically insulates the positive electrode 6 and the negative electrode 8 while allowing ions to permeate, and has resistance to oxidizing property on the positive electrode 6 side and reducing property on the negative electrode 8 side. Not done.
  • Examples of the material (material) of such a separator 7 include a resin and an inorganic substance.
  • the resin examples include an olefin-based polymer, a fluorine-based polymer, a cellulose-based polymer, polyimide, and nylon.
  • the separator 7 is preferably a porous sheet or a nonwoven fabric formed of a polyolefin such as polyethylene or polypropylene from the viewpoint of being stable with respect to the electrolytic solution and having excellent liquid retaining properties.
  • the separator 7 may be, for example, a separator in which a fibrous or particulate inorganic substance is adhered to a thin film substrate such as a nonwoven fabric, a woven fabric, or a microporous film.
  • the negative electrode 8 includes a negative electrode current collector 11 and a negative electrode mixture layer 12 provided on the negative electrode current collector 11.
  • the negative electrode current collector 11 is provided with a negative electrode current collection tab 5.
  • the negative electrode current collector 11 is formed of copper, stainless steel, nickel, aluminum, titanium, calcined carbon, conductive polymer, conductive glass, aluminum-cadmium alloy, or the like.
  • the negative electrode current collector 11 may be formed of a material obtained by treating a surface of copper, aluminum, or the like with carbon, nickel, titanium, silver, or the like for the purpose of improving adhesion, conductivity, and reduction resistance.
  • the thickness of the negative electrode current collector 11 is, for example, 1 to 50 ⁇ m in terms of electrode strength and energy density.
  • the negative electrode mixture layer 12 contains, for example, a negative electrode active material and a binder.
  • the negative electrode active material is not particularly limited as long as it can absorb and release lithium ions.
  • Examples of the negative electrode active material include carbon materials, metal composite oxides, oxides or nitrides of Group 4 elements such as tin, germanium, and silicon; simple substances of lithium; lithium alloys such as lithium aluminum alloys; and Sn and Si. And the like which can form an alloy with lithium.
  • the negative electrode active material is preferably at least one selected from the group consisting of a carbon material and a metal composite oxide from the viewpoint of safety.
  • the negative electrode active material may be one of these alone or a mixture of two or more thereof.
  • the shape of the negative electrode active material may be, for example, a particle shape.
  • the carbon material examples include an amorphous carbon material, natural graphite, a composite carbon material in which a coating of an amorphous carbon material is formed on natural graphite, artificial graphite (a resin material such as an epoxy resin and a phenol resin, or oil, coal, etc.). Obtained by firing the pitch-based raw material obtained from the above).
  • the metal composite oxide preferably contains one or both of titanium and lithium, and more preferably contains lithium.
  • the negative electrode active material may further include a material containing at least one element selected from the group consisting of silicon and tin.
  • the material containing at least one element selected from the group consisting of silicon and tin may be a simple substance of silicon or tin, or a compound containing at least one element selected from the group consisting of silicon and tin.
  • the compound may be an alloy containing at least one element selected from the group consisting of silicon and tin.
  • nickel, copper, iron, cobalt, manganese, zinc, indium, silver An alloy containing at least one selected from the group consisting of titanium, germanium, bismuth, antimony and chromium.
  • the compound containing at least one element selected from the group consisting of silicon and tin may be an oxide, a nitride, or a carbide, and specifically, for example, silicon oxide such as SiO, SiO 2 , LiSiO, and the like.
  • silicon oxide such as SiO, SiO 2 , LiSiO, and the like.
  • the negative electrode mixture layer 12 preferably contains a carbon material, more preferably contains graphite, more preferably contains a carbon material, more preferably a carbon material, It includes a mixture with a material containing at least one element selected from the group consisting of silicon and tin, particularly preferably a mixture of graphite and silicon oxide.
  • the content of the material (silicon oxide) containing at least one element selected from the group consisting of silicon and tin in the mixture is 1% by mass or more, or 3% by mass or more based on the total amount of the mixture. It may be 30% by mass or less.
  • the content of the negative electrode active material may be 80% by mass or more, or 85% by mass or more, and may be 99% by mass or less based on the total amount of the negative electrode mixture layer.
  • the binder and its content may be the same as the binder and its content in the positive electrode mixture layer described above.
  • the negative electrode mixture layer 12 may further contain a thickener for adjusting the viscosity.
  • the thickener is not particularly limited, but may be carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, salts thereof, and the like.
  • the thickener may be one of these alone or a mixture of two or more thereof.
  • the negative electrode mixture layer 12 contains a thickener
  • its content is not particularly limited.
  • the content of the thickener may be 0.1% by mass or more, preferably 0.2% by mass or more based on the total amount of the negative electrode mixture layer. , More preferably 0.5% by mass or more.
  • the content of the thickener may be 5% by mass or less, preferably 3% by mass, based on the total amount of the negative electrode mixture layer, from the viewpoint of suppressing a decrease in battery capacity or an increase in resistance between the negative electrode active materials. %, More preferably 2% by mass or less.
  • the electrolytic solution contains a compound represented by the following formula (1), a fluorine-containing cyclic carbonate, an electrolyte salt, and a non-aqueous solvent.
  • R 1 to R 3 each independently represent an alkyl group or a fluorine atom
  • R 4 represents an alkylene group
  • R 5 represents an organic group containing a sulfur atom.
  • the alkyl group represented by R 1 to R 3 may have one or more carbon atoms, and may have three or less carbon atoms.
  • R 1 to R 3 may be a methyl group, an ethyl group, or a propyl group, and may be linear or branched. At least one of R 1 to R 3 is preferably a fluorine atom.
  • the carbon number of the alkylene group represented by R 4 may be 1 or more, 2 or more, or 5 or less or 4 or less.
  • the alkylene group represented by R 4 may be a methylene group, an ethylene group, a propylene group, a butylene group, or a pentylene group, and may be linear or branched.
  • R 5 is a group represented by the following formula (2) from the viewpoint of further suppressing the expansion of the electrochemical device, and easily suppressing the decrease in capacity at high temperatures and the increase in DCR at the time of discharge. It may be.
  • R 6 represents an alkyl group.
  • the alkyl group may be the same as the alkyl group represented by R 1 to R 3 described above. * Indicates a bond.
  • R 5 is represented by the following formula (3) in another embodiment from the viewpoint of further suppressing the expansion of the electrochemical device and facilitating the reduction of the capacity at high temperatures and the increase of DCR at the time of discharge. It may be a group.
  • R 7 represents an alkyl group. The alkyl group may be the same as the alkyl group represented by R 1 to R 3 described above. * Indicates a bond.
  • R 5 is represented by the following formula (4) in another embodiment from the viewpoint of further suppressing the expansion of the electrochemical device, and easily suppressing the decrease in capacity at high temperatures and the increase in DCR during discharge. It may be a group.
  • R 8 represents an alkyl group. The alkyl group may be the same as the alkyl group represented by R 1 to R 3 described above. * Indicates a bond.
  • the number of silicon atoms in one molecule of the compound represented by the formula (1) is one. That is, in one embodiment, the organic group represented by R 5 does not include a silicon atom.
  • the content of the compound represented by the formula (1) is based on the total amount of the electrolytic solution from the viewpoint that the expansion of the electrochemical device is further suppressed, and the capacity reduction at a high temperature and the increase of DCR at the time of discharge are easily suppressed.
  • Fluorine-containing cyclic carbonate is a cyclic carbonate containing a fluorine atom in the molecule.
  • the fluorine-containing cyclic carbonate is a cyclic carbonate containing a fluoro group.
  • the fluorine-containing cyclic carbonate is not particularly limited as long as it is a cyclic carbonate ester containing a fluoro group.
  • 4-fluoro-1,3-dioxolan-2-one fluoroethylene carbonate; FEC
  • 1,2 -Difluoroethylene carbonate 1,1-difluoroethylene carbonate, 1,1,2-trifluoroethylene carbonate, 1,1,2,2-tetrafluoroethylene carbonate and the like.
  • the fluorine-containing cyclic carbonate is preferably 4-fluoro-1,3-dioxolan-2-one (fluoroethylene carbonate; FEC) from the viewpoint of suppressing a side reaction when a stable film is formed on the negative electrode. .
  • FEC fluoroethylene carbonate
  • the content of the fluorine-containing cyclic carbonate further suppresses the expansion of the electrochemical device, and from the viewpoint of easily suppressing the decrease in capacity at high temperatures and the increase in DCR during discharge, based on the total amount of the electrolyte, preferably 0.001% by mass or more, 0.005% by mass or more, 0.01% by mass or more, 0.05% by mass or more, or 0.1% by mass or more, 5% by mass or less, 3% by mass or less, 2% by mass % Or less, or 1% by mass or less.
  • the sum of the content of the compound represented by the formula (1) and the content of the fluorine-containing cyclic carbonate further suppresses the expansion of the electrochemical device, and also suppresses the capacity reduction at high temperature and the increase of DCR at the time of discharge.
  • based on the total amount of the electrolyte preferably 0.001% by mass or more, 0.005% by mass or more, 0.01% by mass or more, 0.1% by mass or more, or 0.5% by mass or more And preferably 10% by mass or less, 7% by mass or less, 5% by mass or less, 3% by mass or less, 2% by mass or less, or 1.5% by mass or less.
  • the total content of the compound represented by the formula (1) and the content of the fluorine-containing cyclic carbonate is preferably 0.001 to 10% by mass, 0.001 to 10% by mass based on the total amount of the electrolytic solution.
  • 0.005 to 5% 0.005 to 3% by mass, 0.005 to 2% by mass
  • 0.005 to 1.5% by mass 0.01 to 10% by mass, 0.01 To 7% by mass, 0.01 to 5% by mass, 0.01 to 3% by mass, 0.01 to 2% by mass, 0.01 to 1.5% by mass, 0.1 to 10% by mass, 0.1 Up to 7% by mass, 0.1 to 5% by mass, 0.1 to 3% by mass, 0.1 to 2% by mass, 0.1 to 1.5% by mass, 0.5 to 10% by mass,
  • the mass ratio of the content of the compound represented by the formula (1) to the content of the fluorine-containing cyclic carbonate is determined by the electrochemical device. It is 0.01 or more, 0.05 or more, or 0.1 or more, from the viewpoint of further suppressing the expansion of, and from the viewpoint of easily suppressing the decrease in capacity at high temperatures and the increase in DCR during discharge. , 100 or less, 50 or less, or 20 or less.
  • the electrolyte salt may be, for example, a lithium salt.
  • Lithium salt for example, LiPF 6, LiBF 4, LiClO 4, LiB (C 6 H 5) 4, LiCH 3 SO 3, CF 3 SO 2 OLi, LiN (SO 2 F) 2 (Li [FSI], lithium bis At least one selected from the group consisting of fluorosulfonylimide), LiN (SO 2 CF 3 ) 2 (Li [TFSI], lithium bistrifluoromethanesulfonylimide), and LiN (SO 2 CF 2 CF 3 ) 2 Good.
  • the lithium salt preferably contains LiPF 6 from the viewpoint of further improving solubility in a solvent, charge / discharge characteristics of a secondary battery, output characteristics, cycle characteristics, and the like.
  • the concentration of the electrolyte salt is preferably 0.5 mol / L or more, more preferably 0.7 mol / L or more, and still more preferably 0.8 mol / L or more, based on the total amount of the nonaqueous solvent, from the viewpoint of excellent charge / discharge characteristics. And preferably 1.5 mol / L or less, more preferably 1.3 mol / L or less, and still more preferably 1.2 mol / L or less.
  • Non-aqueous solvents include, for example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, ⁇ -butyl lactone, acetonitrile, 1,2-dimethoxyethane, dimethoxymethane, tetrahydrofuran, dioxolan, methylene chloride, methyl acetate, etc. It may be.
  • the non-aqueous solvent may be a single type of these or a mixture of two or more types, and is preferably a mixture of two or more types.
  • the electrolytic solution may further contain other materials other than the compound represented by the formula (1), the fluorine-containing cyclic carbonate, the electrolyte salt, and the non-aqueous solvent.
  • the other material may be, for example, a cyclic carbonate having a carbon-carbon double bond, and may be a nitrogen atom, a sulfur atom, or a heterocyclic compound containing a nitrogen atom and a sulfur atom other than the compounds described above, Acid esters and the like may be used.
  • Other materials may be compounds having an unsaturated bond in the molecule other than the above-mentioned compounds.
  • a cyclic carbonate having a carbon-carbon double bond is a cyclic carbonate having a carbon-carbon double bond.
  • two carbons constituting the ring may form a double bond.
  • the cyclic carbonate may be vinylene carbonate, vinylene carbonate, methyl vinylene carbonate, dimethyl vinylene carbonate (4,5-dimethyl vinylene carbonate), ethyl vinylene carbonate (4,5-diethyl vinylene carbonate), diethyl vinylene carbonate, or the like. From the viewpoint of improving the performance of the chemical device, vinylene carbonate is preferred.
  • the present inventors have studied compounds having various structures and functional groups. As a result, by applying the compound represented by the above formula (1) and the fluorine-containing cyclic carbonate to the electrolytic solution, each compound can be used alone. It has been clarified that the expansion of the electrochemical device under high temperature can be suppressed as compared with the case of applying the method. In particular, the present inventors have found that, when the fluorine-containing cyclic carbonate is used alone in the electrolytic solution, the expansion of the electrochemical device cannot be suppressed, but when the compound is used in combination with the compound represented by the formula (1). Revealed that the expansion of the electrochemical device can be significantly suppressed.
  • the present inventors presume the effects of using the compound represented by the formula (1) and the fluorine-containing cyclic carbonate in the electrolytic solution as follows. That is, the compound A and the fluorine-containing cyclic carbonate act on the places where the effects are most easily exerted in the lithium ion secondary battery, and contribute to, for example, stable film formation of the positive electrode or the negative electrode, or stabilization of the electrolytic solution. It is thought that. Alternatively, it is considered that the interaction between the compound represented by the formula (1) and the fluorine-containing cyclic carbonate stabilizes the electrolytic solution and suppresses gas generation due to decomposition of the electrolyte salt. As a result, expansion of an electrochemical device such as the non-aqueous electrolyte secondary battery 1 at a high temperature is suppressed.
  • the compound represented by the formula (1) forms a stable film on the positive electrode or the negative electrode. This suppresses a decrease in output characteristics caused by the decomposition product of the electrolytic solution being deposited on the positive electrode or the negative electrode.
  • a decrease in capacity and an increase in resistance including an increase in DC resistance (discharge DCR) at the time of discharge) due to decomposition of the electrolyte salt are caused at high temperatures. Is also suppressed. This effect becomes more remarkable when the compound represented by the formula (1) and the fluorine-containing cyclic carbonate are used in combination.
  • the method for manufacturing the nonaqueous electrolyte secondary battery 1 includes a first step of obtaining the positive electrode 6, a second step of obtaining the negative electrode 8, and a third step of housing the electrode group 2 in the battery exterior body 3, A fourth step of injecting the electrolyte into the battery exterior body 3.
  • the material used for the positive electrode mixture layer 10 is dispersed in a dispersion medium using a kneader, a disperser, or the like to obtain a positive electrode mixture in a slurry form.
  • the positive electrode 6 is obtained by coating the positive electrode current collector 9 by dipping, spraying, or the like, and then volatilizing the dispersion medium. After volatilizing the dispersion medium, a compression molding step by a roll press may be provided as necessary.
  • the positive electrode mixture layer 10 may be formed as a positive electrode mixture layer having a multilayer structure by performing the above-described steps from application of the positive electrode mixture to volatilization of the dispersion medium a plurality of times.
  • the dispersion medium may be water, 1-methyl-2-pyrrolidone (hereinafter, also referred to as NMP) or the like.
  • the second step may be the same as the first step described above, and the method of forming the negative electrode mixture layer 12 on the negative electrode current collector 11 may be the same method as the first step described above. .
  • the electrode group 2 is formed by sandwiching the separator 7 between the produced positive electrode 6 and negative electrode 8.
  • the electrode group 2 is housed in the battery exterior body 3.
  • the electrolytic solution is injected into the battery case 3.
  • the electrolyte solution can be prepared, for example, by first dissolving the electrolyte salt in a non-aqueous solvent, and then dissolving other materials.
  • the electrochemical device may be a capacitor.
  • the capacitor may include an electrode group composed of a positive electrode, a negative electrode, and a separator, and a bag-shaped battery case housing the electrode group, similarly to the nonaqueous electrolyte secondary battery 1 described above. Details of each component of the capacitor may be the same as those of the nonaqueous electrolyte secondary battery 1.
  • Example 1 Lithium cobalt oxide (95% by mass) as a positive electrode active material, fibrous graphite (1% by mass) and acetylene black (AB) (1% by mass) as a conductive agent, and a binder (3% by mass) Were added sequentially and mixed. NMP as a dispersion medium was added to the obtained mixture and kneaded to prepare a slurry-like positive electrode mixture. A predetermined amount of this positive electrode mixture was uniformly and uniformly applied to a 20 ⁇ m-thick aluminum foil as a positive electrode current collector. Thereafter, the dispersion medium was volatilized, and then pressed to a density of 3.6 g / cm 3 by pressing to obtain a positive electrode.
  • a binder and carboxymethyl cellulose as a thickener were added to graphite as a negative electrode active material.
  • the mass ratio of the negative electrode active material: the binder: the thickener was 98: 1: 1.
  • Water as a dispersion medium was added to the obtained mixture, and the mixture was kneaded to prepare a slurry negative electrode mixture.
  • This negative electrode mixture was uniformly and uniformly applied in a predetermined amount to a rolled copper foil having a thickness of 10 ⁇ m as a negative electrode current collector. Thereafter, the dispersion medium was volatilized, and then pressed to a density of 1.6 g / cm 3 by pressing to obtain a negative electrode.
  • the positive electrode cut into a square of 13.5 cm 2 is sandwiched between polyethylene porous sheets (trade name: Hypore (registered trademark), manufactured by Asahi Kasei Corporation, 30 ⁇ m in thickness) as a separator, and further a square of 14.3 cm 2 .
  • the electrode group was prepared by overlapping the cut negative electrodes. This electrode group was housed in a container (battery exterior) formed of an aluminum laminate film (trade name: aluminum laminate film, manufactured by Dai Nippon Printing Co., Ltd.). Next, 1 mL of an electrolytic solution was added into the container, and the container was heat-sealed to produce a lithium ion secondary battery for evaluation.
  • a mixture of ethylene carbonate, dimethyl carbonate and diethyl carbonate containing 1 mol / L of LiPF 6 was mixed with 1 mass% of vinylene carbonate (VC) based on the total amount of the mixed solution, and represented by the following formula (5).
  • VC vinylene carbonate
  • Example 2 A lithium ion secondary battery was produced in the same manner as in Example 1, except that 0.8% by mass of compound A and 0.2% by mass of FEC (based on the total amount of the electrolytic solution) were added.
  • Example 3 A lithium ion secondary battery was fabricated in the same manner as in Example 1, except that 0.2% by mass of Compound A and 0.8% by mass of FEC (based on the total amount of the electrolytic solution) were added.
  • Example 4 lithium ion was added in the same manner as in Example 1 except that 0.5% by mass of compound B represented by the following formula (6) and 1.0% by mass of FEC (based on the total amount of the electrolytic solution) were added. A secondary battery was manufactured.
  • Example 5 lithium ion was added in the same manner as in Example 1 except that 0.1% by mass of compound C represented by the following formula (7) and 1.0% by mass of FEC (based on the total amount of the electrolytic solution) were added. A secondary battery was manufactured.
  • Example 2 A lithium ion secondary battery was fabricated in the same manner as in Example 1 except that Compound A was not used and FEC was added in an amount of 1.0% by mass.
  • the lithium ion secondary battery of Comparative Example 2 in which the electrolytic solution containing the fluorine-containing cyclic carbonate was used was the same as that of Comparative Example 1 in which the electrolytic solution containing neither Compound A nor the fluorine-containing cyclic carbonate was used.
  • the volume increase rate was larger than that of the lithium ion secondary battery. This is because the fluorine-containing cyclic carbonate is oxidatively decomposed in a high voltage (about 4.45 V) and high temperature (80 ° C.) environment to generate gas, or the decomposition product reacts with the electrolyte component to form a gas. Probably because it occurred.
  • the lithium ion secondary batteries of Examples 1 to 5 to which the electrolytic solution containing both the compound A and the fluorine-containing cyclic carbonate were applied were compared with the lithium ion secondary batteries of Comparative Examples 1 and 2 and Reference Example 1 in volume.
  • the rate of increase was dramatically reduced, confirming the effect of suppressing expansion of the lithium ion secondary battery due to gas generation.
  • the mechanism of this volume increase rate reduction is not necessarily clear, it is considered that the decomposition of the electrolytic solution or LiPF 6 was suppressed because a stable film was formed on the positive electrode or the negative electrode by the interaction of the compound A and the fluorine-containing cyclic carbonate. .
  • the electrolyte solution or LiPF 6 was stabilized by the interaction of the compound A and the fluorine-containing cyclic carbonate, and the decomposition of the electrolyte solution or LiPF 6 was suppressed.
  • the lithium ion secondary battery of Comparative Example 2 including a fluorine-containing cyclic carbonate and using an electrolyte solution containing no compound A was prepared using an electrolyte solution containing neither the compound A nor the fluorine-containing cyclic carbonate.
  • the capacity retention ratio was slightly better than that of the lithium ion secondary battery of Comparative Example 1 applied. It is considered that the capacity maintenance ratio of the lithium ion secondary battery of Comparative Example 1 was improved because the fluorine-containing cyclic carbonate or the compound A formed a stable film on the positive electrode or the negative electrode and suppressed the decomposition of the electrolytic solution.
  • the lithium ion secondary batteries of Examples 1 to 5 to which the electrolytic solution containing both the compound A and the fluorine-containing cyclic carbonate are applied have a higher capacity retention ratio than the lithium ion secondary batteries of Comparative Examples 1 and 2. It was good. Although the mechanism for improving the capacity retention rate is not necessarily clear, the compound A and the fluorine-containing cyclic carbonate act on the places where the effects are most likely to be exhibited in the lithium ion secondary battery, for example, to stabilize the positive electrode or the negative electrode. This is considered to have contributed to the formation of a thin film or stabilization of the electrolytic solution. Alternatively, it is probable that the interaction between the compound A and the fluorine-containing cyclic carbonate provided an effect of, for example, suppressing the decomposition of the electrolytic solution or LIPF 6 .
  • the direct current resistance (discharge DCR) at the time of discharging was measured as follows. First, constant current charging at 0.2 C was performed up to an upper limit voltage of 4.45 V, and then constant voltage charging was performed at 4.45 V. The charge termination condition was a current value of 0.02C. Thereafter, a constant current discharge with a final voltage of 2.5 V was performed at a current value of 0.2 C. The current value at this time was I 0.2 C , and the voltage change 10 seconds after the start of discharge was ⁇ V 0.2 C.
  • the lithium ion secondary battery of Comparative Example 2 including a fluorine-containing cyclic carbonate and using an electrolytic solution containing no compound A was prepared using an electrolytic solution containing neither the compound A nor the fluorine-containing cyclic carbonate.
  • the discharge DCR slightly decreased as compared with the lithium ion secondary battery of Comparative Example 1 to which the present invention was applied. It is considered that the discharge DCR of Comparative Example 1 was slightly lowered because the fluorine-containing cyclic carbonate formed a stable coating on the positive electrode or the negative electrode.
  • the lithium ion secondary batteries of Examples 1 to 5 to which the electrolytic solution containing both the compound A and the fluorine-containing cyclic carbonate are applied have a further higher discharge DCR than the lithium ion secondary batteries of Comparative Examples 1 and 2. Good (decreased).
  • the mechanism of good discharge DCR in the lithium ion secondary batteries of Examples 1 to 5 is not necessarily clear, a stable and good ion conductive film is formed on the positive electrode or the negative electrode by the interaction of compound A and the fluorine-containing cyclic carbonate. It is considered that LiPF 6 was stabilized by the formation or their interaction, and a decrease in the concentration of Li carrier due to decomposition of LiPF 6 was suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、一態様として、下記式(1)で表される化合物及びフッ素含有環状カーボネートを含有する、電解液を提供する。 [式(1)中、R1~R3は、それぞれ独立に、アルキル基又はフッ素原子を示し、R4はアルキレン基を示し、R5は、硫黄原子を含む有機基を示す。]

Description

電解液及び電気化学デバイス
 本発明は、電解液及び電気化学デバイスに関する。
 近年、携帯型電子機器、電気自動車等の普及により、リチウムイオン二次電池に代表される非水電解液二次電池、キャパシタ等の高性能な電気化学デバイスが必要とされている。電気化学デバイスの性能を向上させる手段としては、例えば、電解液に所定の添加剤を添加する方法が検討されている。特許文献1には、サイクル特性及び内部抵抗特性を改善するために、特定のシロキサン化合物を含有させた非水電解液電池用電解液が開示されている。
特開2015-005329号公報
 電気化学デバイスを車載用途へ適用するためには、高温下での耐熱性を向上させることが重要である。電気化学デバイスの耐熱性の指標としては、例えば、高温保存後の電気化学デバイスの膨張が抑制されていることが挙げられる。または、高温保存後の容量低下の程度、放電時の直流抵抗(DCR:Direct Current Resistance)の上昇の程度等、電気化学デバイスの種々の性能の劣化が抑制されていることも挙げられる。高温保存中に電気化学デバイスが膨張して破裂すると安全面で問題となるため、電気化学デバイスの膨張を抑制することは特に重要である。
 そこで本発明は、高温下でも電気化学デバイスの膨張を抑制することができる電解液を提供することを目的とする。また、本発明は、高温下でも膨張が抑制された電気化学デバイスを提供することを目的とする。
 本発明者らは、ケイ素原子及び硫黄原子を含む特定の化合物と、フッ素含有環状カーボネートとを電解液に含有させることにより、それぞれの化合物を単独で含有させるよりも電気化学デバイスの膨張を顕著に抑制できることを見出した。
 さらに、これらの化合物を電解液に含有させることにより、高温保存後の電気化学デバイスの容量低下が抑制され、放電時のDCRの上昇が抑制されることも、本発明者らにより見出された。
 本発明は、第1の態様として、下記式(1)で表される化合物及びフッ素含有環状カーボネートを含有する、電解液を提供する。
Figure JPOXMLDOC01-appb-C000005
[式(1)中、R~Rは、それぞれ独立に、アルキル基又はフッ素原子を示し、Rはアルキレン基を示し、Rは、硫黄原子を含む有機基を示す。]
 第1の態様において、式(1)で表される化合物1分子中のケイ素原子の数は、好ましくは1個である。
 Rは、好ましくは、下記式(2)、式(3)又は式(4)のいずれかで表される基である。
Figure JPOXMLDOC01-appb-C000006
[式(2)中、Rはアルキル基を示し、*は結合手を示す。]
Figure JPOXMLDOC01-appb-C000007
[式(3)中、Rはアルキル基を示し、*は結合手を示す。]
Figure JPOXMLDOC01-appb-C000008
[式(4)中、Rはアルキル基を示し、*は結合手を示す。]
 R~Rの少なくとも1つは、好ましくはフッ素原子である。
 フッ素含有環状カーボネートは、好ましくは、4-フルオロ-1,3-ジオキソラン-2-オンである。
 式(1)で表される化合物の含有量及びフッ素含有環状カーボネートの含有量の合計は、好ましくは、電解液全量を基準として10質量%以下である。
 本発明は、第2の態様として、正極と、負極と、上記の電解液と、を備える電気化学デバイスを提供する。
 第2の態様において、負極は、好ましくは炭素材料を含有する。炭素材料は、好ましくは黒鉛を含有する。負極は、好ましくは、ケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む材料を更に含有する。
 電気化学デバイスは、好ましくは、非水電解液二次電池又はキャパシタである。
 本発明によれば、高温下でも電気化学デバイスの膨張を抑制することができる電解液を提供することができる。また、本発明によれば、高温下でも膨張が抑制された電気化学デバイスを提供することができる。
一実施形態に係る電気化学デバイスとしての非水電解液二次電池を示す斜視図である。 図1に示した二次電池の電極群を示す分解斜視図である。 実施例及び比較例における体積増加率の測定結果を示すグラフである。 実施例及び比較例における容量維持率の測定結果を示すグラフである。 実施例及び比較例における放電DCRの測定結果を示すグラフである。
 以下、図面を適宜参照しながら、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。
 図1は、一実施形態に係る電気化学デバイスを示す斜視図である。本実施形態において、電気化学デバイスは非水電解液二次電池である。図1に示すように、非水電解液二次電池1は、正極、負極及びセパレータから構成される電極群2と、電極群2を収容する袋状の電池外装体3とを備えている。正極及び負極には、それぞれ正極集電タブ4及び負極集電タブ5が設けられている。正極集電タブ4及び負極集電タブ5は、それぞれ正極及び負極が非水電解液二次電池1の外部と電気的に接続可能なように、電池外装体3の内部から外部へ突き出している。電池外装体3内には、電解液(図示せず)が充填されている。非水電解液二次電池1は、上述したようないわゆる「ラミネート型」以外の形状の電池(コイン型、円筒型、積層型等)であってもよい。
 電池外装体3は、例えばラミネートフィルムで形成された容器であってよい。ラミネートフィルムは、例えば、ポリエチレンテレフタレート(PET)フィルム等の樹脂フィルムと、アルミニウム、銅、ステンレス鋼等の金属箔と、ポリプロピレン等のシーラント層とがこの順で積層された積層フィルムであってよい。
 図2は、図1に示した非水電解液二次電池1における電極群2の一実施形態を示す分解斜視図である。図2に示すように、電極群2は、正極6と、セパレータ7と、負極8とをこの順に備えている。正極6及び負極8は、正極合剤層10側及び負極合剤層12側の面がそれぞれセパレータ7と対向するように配置されている。
 正極6は、正極集電体9と、正極集電体9上に設けられた正極合剤層10とを備えている。正極集電体9には、正極集電タブ4が設けられている。
 正極集電体9は、例えば、アルミニウム、チタン、ステンレス、ニッケル、焼成炭素、導電性高分子、導電性ガラス等で形成されている。正極集電体9は、接着性、導電性及び耐酸化性向上の目的で、アルミニウム、銅等の表面にカーボン、ニッケル、チタン、銀等で処理が施されたもので形成されていてもよい。正極集電体9の厚さは、電極強度及びエネルギー密度の点から、例えば1~50μmである。
 正極合剤層10は、一実施形態において、正極活物質と、導電剤と、結着剤とを含有する。正極合剤層10の厚さは、例えば20~200μmである。
 正極活物質は、例えばリチウム酸化物であってよい。リチウム酸化物としては、例えば、LiCoO、LiNiO、LiMnO、LiCoNi1-y、LiCo1-y、LiNi1-y、LiMn及びLiMn2-y(各式中、Mは、Na、Mg、Sc、Y、Mn、Fe、Co、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群より選ばれる少なくとも1種の元素を示す(ただし、Mは、各式中の他の元素と異なる元素である)。x=0~1.2、y=0~0.9、z=2.0~2.3である。)が挙げられる。LiNi1-yで表されるリチウム酸化物は、LiNi1-(y1+y2)Coy1Mny2(ただし、x及びzは上述したものと同様であり、y1=0~0.9、y2=0~0.9であり、かつ、y1+y2=0~0.9である。)であってよく、例えばLiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3、LiNi0.6Co0.2Mn0.22、LiNi0.8Co0.1Mn0.1であってよい。LiNi1-yで表されるリチウム酸化物は、LiNi1-(y3+y4)Coy3Aly4(ただし、x及びzは上述したものと同様であり、y3=0~0.9、y4=0~0.9であり、かつ、y3+y4=0~0.9である。)であってよく、例えばLiNi0.8Co0.15Al0.05であってもよい。
 正極活物質は、例えばリチウムのリン酸塩であってもよい。リチウムのリン酸塩としては、例えば、リン酸マンガンリチウム(LiMnPO)、リン酸鉄リチウム(LiFePO)、リン酸コバルトリチウム(LiCoPO)及びリン酸バナジウムリチウム(Li(PO)が挙げられる。
 正極活物質の含有量は、正極合剤層全量を基準として、80質量%以上、又は85質量%以上であってよく、99質量%以下であってよい。
 導電剤は、アセチレンブラック、ケッチェンブラック等のカーボンブラック、黒鉛、グラフェン、カーボンナノチューブなどの炭素材料であってよい。導電剤の含有量は、正極合剤層全量を基準として、例えば、0.01質量%以上、0.1質量%以上、又は1質量%以上であってよく、50質量%以下、30質量%以下、又は15質量%以下であってよい。
 結着剤は、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂;SBR(スチレン-ブタジエンゴム)、NBR(アクリロニトリル-ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン-プロピレンゴム等のゴム;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー;シンジオタクチック-1、2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体等の軟質樹脂;ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体、ポリテトラフルオロエチレン・フッ化ビニリデン共重合体等のフッ素含有樹脂;ニトリル基含有モノマーをモノマー単位として有する樹脂;アルカリ金属イオン(例えばリチウムイオン)のイオン伝導性を有する高分子組成物などが挙げられる。
 結着剤の含有量は、正極合剤層全量を基準として、例えば、0.1質量%以上、1質量%以上、又は1.5質量%以上であってよく、30質量%以下、20質量%以下、又は10質量%以下であってよい。
 セパレータ7は、正極6及び負極8間を電子的には絶縁する一方でイオンを透過させ、かつ、正極6側における酸化性及び負極8側における還元性に対する耐性を備えるものであれば、特に制限されない。このようなセパレータ7の材料(材質)としては、樹脂、無機物等が挙げられる。
 樹脂としては、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン等が挙げられる。セパレータ7は、電解液に対して安定で、保液性に優れる観点から、好ましくは、ポリエチレン、ポリプロピレン等のポリオレフィンで形成された多孔質シート又は不織布である。
 無機物としては、アルミナ、二酸化珪素等の酸化物、窒化アルミニウム、窒化珪素等の窒化物、硫酸バリウム、硫酸カルシウム等の硫酸塩が挙げられる。セパレータ7は、例えば、不織布、織布、微多孔性フィルム等の薄膜状基材に、繊維状又は粒子状の無機物を付着させたセパレータであってよい。
 負極8は、負極集電体11と、負極集電体11上に設けられた負極合剤層12とを備えている。負極集電体11には、負極集電タブ5が設けられている。
 負極集電体11は、銅、ステンレス、ニッケル、アルミニウム、チタン、焼成炭素、導電性高分子、導電性ガラス、アルミニウム-カドミウム合金等で形成されている。負極集電体11は、接着性、導電性、耐還元性向上の目的で、銅、アルミニウム等の表面にカーボン、ニッケル、チタン、銀等で処理が施されたもので形成されていてもよい。負極集電体11の厚さは、電極強度及びエネルギー密度の点から、例えば1~50μmである。
 負極合剤層12は、例えば、負極活物質と、結着剤とを含有する。
 負極活物質は、リチウムイオンを吸蔵及び放出可能な物質であれば特に制限されない。負極活物質としては、例えば、炭素材料、金属複合酸化物、錫、ゲルマニウム、ケイ素等の第四族元素の酸化物又は窒化物、リチウムの単体、リチウムアルミニウム合金等のリチウム合金、Sn、Si等のリチウムと合金を形成可能な金属などが挙げられる。負極活物質は、安全性の観点からは、好ましくは炭素材料及び金属複合酸化物からなる群より選択される少なくとも1種である。負極活物質は、これらの1種単独又は2種以上の混合物であってよい。負極活物質の形状は、例えば、粒子状であってよい。
 炭素材料としては、非晶質炭素材料、天然黒鉛、天然黒鉛に非晶質炭素材料の被膜を形成した複合炭素材料、人造黒鉛(エポキシ樹脂、フェノール樹脂等の樹脂原料、又は、石油、石炭等から得られるピッチ系原料を焼成して得られるもの)などが挙げられる。金属複合酸化物は、高電流密度充放電特性の観点からは、好ましくはチタン及びリチウムのいずれか一方又は両方を含有し、より好ましくはリチウムを含有する。
 負極活物質には、ケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む材料が更に含まれていてもよい。ケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む材料は、ケイ素又はスズの単体、ケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む化合物であってよい。当該化合物は、ケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む合金であってよく、例えば、ケイ素及びスズの他に、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモン及びクロムからなる群より選ばれる少なくとも1種を含む合金である。ケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む化合物は、酸化物、窒化物、又は炭化物であってもよく、具体的には、例えば、SiO、SiO、LiSiO等のケイ素酸化物、Si、SiO等のケイ素窒化物、SiC等のケイ素炭化物、SnO、SnO、LiSnO等のスズ酸化物などであってよい。
 負極合剤層12は、サイクル特性等の電気化学デバイスの性能を更に向上させる観点から、負極活物質として、好ましくは炭素材料を含み、より好ましくは黒鉛を含み、更に好ましくは、炭素材料と、ケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む材料との混合物を含み、特に好ましくは、黒鉛とケイ素酸化物との混合物を含む。当該混合物におけるケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む材料(ケイ素酸化物)の含有量は、当該混合物全量を基準として、1質量%以上、又は3質量%以上であってよく、30質量%以下であってよい。
 負極活物質の含有量は、負極合剤層全量を基準として、80質量%以上、又は85質量%以上であってよく、99質量%以下であってよい。
 結着剤及びその含有量は、上述した正極合剤層における結着剤及びその含有量と同様であってよい。
 負極合剤層12は、粘度を調節するために増粘剤を更に含有してもよい。増粘剤は、特に制限されないが、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン、これらの塩等であってよい。増粘剤は、これらの1種単独又は2種以上の混合物であってよい。
 負極合剤層12が増粘剤を含む場合、その含有量は特に制限されない。増粘剤の含有量は、負極合剤層の塗布性の観点からは、負極合剤層全量を基準として、0.1質量%以上であってよく、好ましくは0.2質量%以上であり、より好ましくは0.5質量%以上である。増粘剤の含有量は、電池容量の低下又は負極活物質間の抵抗の上昇を抑制する観点からは、負極合剤層全量を基準として、5質量%以下であってよく、好ましくは3質量%以下であり、より好ましくは2質量%以下である。
 電解液は、一実施形態において、下記式(1)で表される化合物と、フッ素含有環状カーボネートと、電解質塩と、非水溶媒とを含有する。
Figure JPOXMLDOC01-appb-C000009
式(1)中、R~Rは、それぞれ独立に、アルキル基又はフッ素原子を示し、Rはアルキレン基を示し、Rは、硫黄原子を含む有機基を示す。
 R~Rで表されるアルキル基の炭素数は、1以上であってよく、3以下であってよい。R~Rは、メチル基、エチル基、又はプロピル基であってよく、直鎖状でも分岐状でもよい。R~Rの少なくとも1つは、好ましくはフッ素原子である。
 Rで表されるアルキレン基の炭素数は、1以上又は2以上であってよく、5以下又は4以下であってよい。Rで表されるアルキレン基は、メチレン基、エチレン基、プロピレン基、ブチレン基、又はペンチレン基であってよく、直鎖状でも分岐状でもよい。
 Rは、電気化学デバイスの膨張を更に抑制し、高温下での容量低下及び放電時のDCRの増加も抑制しやすくする観点から、一実施形態において、下記式(2)で表される基であってよい。
Figure JPOXMLDOC01-appb-C000010
式(2)中、Rはアルキル基を示す。アルキル基は、上述したR~Rで表されるアルキル基と同様であってよい。*は結合手を示す。
 Rは、電気化学デバイスの膨張を更に抑制し、高温下での容量低下及び放電時のDCRの増加も抑制しやすくする観点から、他の実施形態において、下記式(3)で表される基であってもよい。
Figure JPOXMLDOC01-appb-C000011
式(3)中、Rはアルキル基を示す。アルキル基は、上述したR~Rで表されるアルキル基と同様であってよい。*は結合手を示す。
 Rは、電気化学デバイスの膨張を更に抑制し、高温下での容量低下及び放電時のDCRの増加も抑制しやすくする観点から、他の実施形態において、下記式(4)で表される基であってもよい。
Figure JPOXMLDOC01-appb-C000012
式(4)中、Rはアルキル基を示す。アルキル基は、上述したR~Rで表されるアルキル基と同様であってよい。*は結合手を示す。
 一実施形態において、式(1)で表される化合物1分子中のケイ素原子の数は1個である。すなわち、一実施形態において、Rで表される有機基は、ケイ素原子を含まない。
 式(1)で表される化合物の含有量は、電気化学デバイスの膨張を更に抑制し、高温下での容量低下及び放電時のDCRの増加も抑制しやすくする観点から、電解液全量を基準として、好ましくは、0.001質量%以上、0.005質量%以上、0.01質量%以上、0.05質量%以上、又は0.1質量%以上であり、8質量%以下、5質量%以下、3質量%以下、2質量%以下、又は1質量%以下である。
 フッ素含有環状カーボネートは、フッ素原子を分子中に含有する環状炭酸エステルである。一実施形態において、フッ素含有環状カーボネートは、フルオロ基を含有する環状炭酸エステルである。フッ素含有環状カーボネートとしては、フルオロ基を含有する環状炭酸エステルであれば特に制限はないが、例えば、4-フルオロ-1,3-ジオキソラン-2-オン(フルオロエチレンカーボネート;FEC)、1,2-ジフルオロエチレンカーボネート、1,1-ジフルオロエチレンカーボネート、1,1,2-トリフルオロエチレンカーボネート、1,1,2,2-テトラフルオロエチレンカーボネート等であってよい。フッ素含有環状カーボネートは、負極上で安定な被膜を形成した際の副反応を抑制する観点から、好ましくは、4-フルオロ-1,3-ジオキソラン-2-オン(フルオロエチレンカーボネート;FEC)である。
 フッ素含有環状カーボネートの含有量は、電気化学デバイスの膨張を更に抑制し、高温下での容量低下及び放電時のDCRの増加も抑制しやすくする観点から、電解液全量を基準として、好ましくは、0.001質量%以上、0.005質量%以上、0.01質量%以上、0.05質量%以上、又は0.1質量%以上であり、5質量%以下、3質量%以下、2質量%以下、又は1質量%以下である。
 式(1)で表される化合物の含有量及びフッ素含有環状カーボネートの含有量の合計は、電気化学デバイスの膨張を更に抑制し、高温下での容量低下及び放電時のDCRの増加も抑制しやすくする観点から、電解液全量を基準として、好ましくは、0.001質量%以上、0.005質量%以上、0.01質量%以上、0.1質量%以上、又は0.5質量%以上であり、好ましくは、10質量%以下、7質量%以下、5質量%以下、3質量%以下、2質量%以下、又は1.5質量%以下である。式(1)で表される化合物の含有量及びフッ素含有環状カーボネートの含有量の合計は、同様の観点から、電解液全量を基準として、好ましくは、0.001~10質量%、0.001~7質量%、0.001~5質量%、0.001~3質量%、0.001~2質量%、0.001~1.5質量%、0.005~10質量%、0.005~7質量%、0.005~5質量%、0.005~3質量%、0.005~2質量%、0.005~1.5質量%、0.01~10質量%、0.01~7質量%、0.01~5質量%、0.01~3質量%、0.01~2質量%、0.01~1.5質量%、0.1~10質量%、0.1~7質量%、0.1~5質量%、0.1~3質量%、0.1~2質量%、0.1~1.5質量%、0.5~10質量%、0.5~7質量%、0.5~5質量%、0.5~3質量%、0.5~2質量%、又は0.5~1.5質量%である。
 フッ素含有環状カーボネートの含有量に対する式(1)で表される化合物の含有量の質量比(式(1)で表される化合物の含有量/フッ素含有環状カーボネートの含有量)は、電気化学デバイスの膨張を更に抑制し、高温下での容量低下及び放電時のDCRの増加も抑制しやすくする観点から、0.01以上、0.05以上、又は0.1以上であり、また、好ましくは、100以下、50以下、又は20以下である。
 電解質塩は、例えばリチウム塩であってよい。リチウム塩は、例えば、LiPF、LiBF、LiClO、LiB(C、LiCHSO、CFSOOLi、LiN(SOF)(Li[FSI]、リチウムビスフルオロスルホニルイミド)、LiN(SOCF(Li[TFSI]、リチウムビストリフルオロメタンスルホニルイミド)、及びLiN(SOCFCFからなる群より選ばれる少なくとも1種であってよい。リチウム塩は、溶媒に対する溶解性、二次電池の充放電特性、出力特性、サイクル特性等に更に優れる観点から、好ましくはLiPFを含む。
 電解質塩の濃度は、充放電特性に優れる観点から、非水溶媒全量を基準として、好ましくは0.5mol/L以上、より好ましくは0.7mol/L以上、更に好ましくは0.8mol/L以上であり、また、好ましくは1.5mol/L以下、より好ましくは1.3mol/L以下、更に好ましくは1.2mol/L以下である。
 非水溶媒は、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ-ブチルラクトン、アセトニトリル、1,2-ジメトキシエタン、ジメトキシメタン、テトラヒドロフラン、ジオキソラン、塩化メチレン、酢酸メチル等であってよい。非水溶媒は、これらの1種単独又は2種以上の混合物であってよく、好ましくは2種以上の混合物である。
 電解液は、式(1)で表される化合物及びフッ素含有環状カーボネート、電解質塩並びに非水溶媒以外のその他の材料を更に含有してもよい。その他の材料は、例えば、炭素-炭素二重結合を有する環状カーボネートであってよく、また、上述した化合物以外の窒素原子、硫黄原子、又は窒素原子及び硫黄原子を含有する複素環化合物、環状カルボン酸エステル等であってもよい。その他の材料は、上述した化合物以外の、分子内に不飽和結合を有する化合物であってもよい。
 炭素-炭素二重結合を有する環状カーボネートは、炭素-炭素二重結合を有する環状炭酸エステルである。一実施形態では、環状カーボネートにおいて、環を構成する二つの炭素が二重結合を形成していてよい。環状カーボネートは、ビニレンカーボネート、ビニレンカーボネート、メチルビニレンカーボネート、ジメチルビニレンカーボネート(4,5-ジメチルビニレンカーボネート)、エチルビニレンカーボネート(4,5-ジエチルビニレンカーボネート)、ジエチルビニレンカーボネート等であってよく、電気化学デバイスの性能を向上させることができる観点から、好ましくは、ビニレンカーボネートである。
 本発明者らは、様々な構造及び官能基を有する化合物を検討した結果、上述した式(1)で表される化合物及びフッ素含有環状カーボネートを電解液に適用することによって、それぞれの化合物を単独で適用する場合よりも、電気化学デバイスの高温下での膨張を抑制できることを明らかにした。特に、本発明者らは、フッ素含有環状カーボネートを単独で電解液に適用した場合には電気化学デバイスの膨張が抑制できないにも関わらず、式(1)で表される化合物と併用した場合に、電気化学デバイスの膨張を顕著に抑制できることを明らかにした。本発明者らは、式(1)で表される化合物及びフッ素含有環状カーボネートを電解液に用いることによる作用効果を以下のように推察している。すなわち、化合物A及びフッ素含有環状カーボネートが、それぞれリチウムイオン二次電池内において最も効果を発現しやすい場所に作用して、例えば、正極又は負極の安定な被膜形成、又は電解液の安定化に寄与すると考えられる。または、式(1)で表される化合物及びフッ素含有環状カーボネートの相互作用によって電解液が安定化し、電解質塩の分解に起因するガス発生が抑制されると考えられる。その結果、非水電解液二次電池1のような電気化学デバイスの高温下での膨張が抑制される。
 式(1)で表される化合物は、正極又は負極上で安定な被膜を形成する。これにより、電解液の分解物が正極又は負極上に堆積することに起因する出力特性の低下が抑制される。式(1)で表される化合物が電解液を安定化させることにより、電解質塩の分解に起因する容量低下及び抵抗増加(放電時の直流抵抗(放電DCR)の増加も含む)が高温下においても抑制される。この効果は、式(1)で表される化合物とフッ素含有環状カーボネートを併用することにより一層顕著となる。
 続いて、非水電解液二次電池1の製造方法を説明する。非水電解液二次電池1の製造方法は、正極6を得る第1の工程と、負極8を得る第2の工程と、電極群2を電池外装体3に収容する第3の工程と、電解液を電池外装体3に注液する第4の工程と、を備える。
 第1の工程では、正極合剤層10に用いる材料を混練機、分散機等を用いて分散媒に分散させてスラリー状の正極合剤を得た後、この正極合剤をドクターブレード法、ディッピング法、スプレー法等により正極集電体9上に塗布し、その後分散媒を揮発させることにより正極6を得る。分散媒を揮発させた後、必要に応じて、ロールプレスによる圧縮成型工程が設けられてもよい。正極合剤層10は、上述した正極合剤の塗布から分散媒の揮発までの工程を複数回行うことにより、多層構造の正極合剤層として形成されてもよい。分散媒は、水、1-メチル-2-ピロリドン(以下、NMPともいう。)等であってよい。
 第2の工程は、上述した第1の工程と同様であってよく、負極集電体11に負極合剤層12を形成する方法は、上述した第1の工程と同様の方法であってよい。
 第3の工程では、作製した正極6及び負極8の間にセパレータ7を挟み、電極群2を形成する。次いで、この電極群2を電池外装体3に収容する。
 第4の工程では、電解液を電池外装体3に注入する。電解液は、例えば、電解質塩を初めに非水溶媒に溶解させてから、その他の材料を溶解させることにより調製することができる。
 他の実施形態として、電気化学デバイスはキャパシタであってもよい。キャパシタは、上述した非水電解液二次電池1と同様に、正極、負極及びセパレータから構成される電極群と、電極群を収容する袋状の電池外装体とを備えていてよい。キャパシタにおける各構成要素の詳細は、非水電解液二次電池1と同様であってよい。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
[正極の作製]
 正極活物質としてのコバルト酸リチウム(95質量%)に、導電剤としての繊維状の黒鉛(1質量%)及びアセチレンブラック(AB)(1質量%)と、結着剤(3質量%)とを順次添加し、混合した。得られた混合物に対し、分散媒としてのNMPを添加し、混練することによりスラリー状の正極合剤を調製した。この正極合剤を正極集電体としての厚さ20μmのアルミニウム箔に均等かつ均質に所定量塗布した。その後、分散媒を揮発させてから、プレスすることにより密度3.6g/cmまで圧密化して、正極を得た。
[負極の作製]
 負極活物質としての黒鉛に、結着剤と、増粘剤としてのカルボキシメチルセルロースとを添加した。これらの質量比については、負極活物質:結着剤:増粘剤=98:1:1とした。得られた混合物に対し、分散媒としての水を添加し、混練することによりスラリー状の負極合剤を調製した。この負極合剤を負極集電体としての厚さ10μmの圧延銅箔に均等かつ均質に所定量塗布した。その後、分散媒を揮発させてから、プレスすることにより密度1.6g/cmまで圧密化して、負極を得た。
[リチウムイオン二次電池の作製]
 13.5cmの四角形に切断した正極電極を、セパレータであるポリエチレン製多孔質シート(商品名:ハイポア(登録商標)、旭化成株式会社製、厚さ30μm)で挟み、更に14.3cmの四角形に切断した負極を重ね合わせて電極群を作製した。この電極群を、アルミニウム製のラミネートフィルム(商品名:アルミラミネートフィルム、大日本印刷株式会社製)で形成された容器(電池外装体)に収容した。次いで、容器の中に電解液を1mL添加し、容器を熱溶着させ、評価用のリチウムイオン二次電池を作製した。電解液としては、1mol/LのLiPFを含むエチレンカーボネート、ジメチルカーボネート及びジエチルカーボネートの混合溶液に、混合溶液全量に対してビニレンカーボネート(VC)を1質量%と、下記式(5)で表される化合物Aを0.5質量%及び4-フルオロ-1,3-ジオキソラン-2-オン(フルオロエチレンカーボネート;FEC)を0.5質量%(電解液全量基準)添加したものを使用した。
Figure JPOXMLDOC01-appb-C000013
(実施例2)
 実施例1において、化合物Aを0.8質量%及びFECを0.2質量%(電解液全量基準)添加した以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
(実施例3)
 実施例1において、化合物Aを0.2質量%及びFECを0.8質量%(電解液全量基準)添加した以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
(実施例4)
 実施例1において、下記式(6)で表される化合物Bを0.5質量%及びFECを1.0質量%(電解液全量基準)添加した以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
Figure JPOXMLDOC01-appb-C000014
(実施例5)
 実施例1において、下記式(7)で表される化合物Cを0.1質量%及びFECを1.0質量%(電解液全量基準)添加した以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
Figure JPOXMLDOC01-appb-C000015
(比較例1)
 実施例1において、化合物A及びFECを使用しなかった以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
(比較例2)
 実施例1において、化合物Aを使用せず、FECを1.0質量%添加した以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
(参考例1)
 実施例1において、FECを使用せず、化合物Aを1.0質量%添加した以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
[初回充放電]
 作製したリチウムイオン電池について、以下に示す方法で初回充放電を実施した。まず、25℃の環境下において0.1Cの電流値で定電流充電を上限電圧4.45Vまで行い、続いて4.45Vで定電圧充電を行った。充電終止条件は、電流値0.01Cとした。その後、0.1Cの電流値で終止電圧2.5Vの定電流放電を行った。この充放電サイクルを3回繰り返した(電流値の単位として用いた「C」とは、「電流値(A)/電池容量(Ah)」を意味する。)。3サイクル目の放電容量をこの電池の容量Q1とした。
[高温保存試験]
 実施例1~5、比較例1~2、参考例1の各二次電池を、25℃の環境下において0.1Cの電流値で定電流充電を上限電圧4.45Vまで行い、続いて4.45Vで定電圧充電を行った。充電終止条件は、電流値0.01Cとした。その後、それらの二次電池を80℃の恒温槽中で4時間保管した。
[体積増加率の測定]
 実施例1~5、比較例1~2、参考例1の各二次電池の体積をアルキメデス法に基づく比重計(電子比重計MDS-300、アルファミラージュ社製)により測定した。高温保存試験前の体積(V1)及び高温保存試験後25℃の環境下に30分間保持した二次電池の体積(V2)から、体積増加率を下記の式により算出した。結果を図3に示す。
 体積増加率=V2/V1
 図3に示すように、フッ素含有環状カーボネートを含む電解液を適用した比較例2のリチウムイオン二次電池は、化合物A及びフッ素含有環状カーボネートのどちらも含まない電解液を適用した比較例1のリチウムイオン二次電池と比較して、体積増加率が大きかった。これは、フッ素含有環状カーボネートが高電圧(約4.45V)かつ高温(80℃)の環境下で酸化分解を起こしガスが発生したため、又は、その分解物と電解液成分が反応してガスが発生したため、と考えられる。一方、化合物A及びフッ素含有環状カーボネートを両方含む電解液を適用した実施例1~5のリチウムイオン二次電池は、比較例1~2及び参考例1のリチウムイオン二次電池と比較して体積増加率が劇的に低減しており、ガス発生によるリチウムイオン二次電池の膨張の抑制効果が確認できた。この体積増加率低減のメカニズムは必ずしも明らかではないが、化合物A及びフッ素含有環状カーボネートの相互作用によって正極又は負極に安定な被膜を形成したために電解液又はLiPFの分解を抑制できたためと考えられる。または、化合物A及びフッ素含有環状カーボネートの相互作用によって電解液又はLiPFが安定化され、電解液又はLiPFの分解が抑制されたため、と考えられる。
[容量維持率の測定]
 80℃の恒温槽中で4時間保管した実施例1~5、及び比較例1~2の各二次電池を恒温槽から取り出し、25℃の環境下に30分間保持した後、0.1Cの電流値で終止電圧2.5Vの定電流放電を行った。この時の放電容量をQ2とした。上記Q1、Q2を用いて、容量維持率を下記の式を用いて算出した。結果を図4に示す。
 容量維持率(%)=Q2/Q1×100
 図4に示すように、フッ素含有環状カーボネートを含み、化合物Aを含まない電解液を適用した比較例2のリチウムイオン二次電池は、化合物A及びフッ素含有環状カーボネートのどちらも含まない電解液を適用した比較例1のリチウムイオン二次電池と比較して、容量維持率が僅かに良好であった。フッ素含有環状カーボネート又は化合物Aが、正極又は負極にて安定な被膜を形成し、電解液の分解を抑制したために、比較例1のリチウムイオン二次電池の容量維持率が向上したと考えられる。一方、化合物A及びフッ素含有環状カーボネートを両方含む電解液を適用した実施例1~5のリチウムイオン二次電池は、比較例1~2のリチウムイオン二次電池と比較して容量維持率が更に良好であった。この容量維持率の向上メカニズムは必ずしも明らかではないが、化合物A及びフッ素含有環状カーボネートが、それぞれリチウムイオン二次電池内において最も効果を発現しやすい場所に作用して、例えば、正極又は負極の安定な被膜形成、又は電解液の安定化に寄与したためと考えられる。または、化合物A及びフッ素含有環状カーボネートとの相互作用により、例えば電解液又はLIPFの分解を抑制する等の効果が得られたためと考えられる。
[放電DCRの測定]
 高温保存試験後の二次電池について、放電時の直流抵抗(放電DCR)を、以下のように測定した。
 まず、0.2Cの定電流充電を上限電圧4.45Vまで行い、続いて4.45Vで定電圧充電を行った。充電終止条件は、電流値0.02Cとした。その後、0.2Cの電流値で終止電圧2.5Vの定電流放電を行い、このときの電流値をI0.2C、放電開始10秒後の電圧変化をΔV0.2Cとした。次に、0.2Cの定電流充電を上限電圧4.45Vまで行い、続いて4.45Vで定電圧充電を行った後(充電終止条件は、電流値0.02Cとした。)、0.5Cの電流値で終止電圧2.5Vの定電流放電を行い、このときの電流値をI0.5C、放電開始10秒後の電圧変化をΔV0.5Cとした。同様の充放電から1Cの電流値をI1C、放電開始10秒後の電圧変化ΔV1Cを評価した。その電流値-電圧変化の3点のプロット(I0.2C、ΔV0.2C)、(I0.5C、ΔV0.5C)、(I1C、ΔV1C)に最小二乗法を用いて一次近似直線を引き、その傾きを放電DCRの値とした。結果を図5に示す。
 図5に示すように、フッ素含有環状カーボネートを含み、化合物Aを含まない電解液を適用した比較例2のリチウムイオン二次電池は、化合物A及びフッ素含有環状カーボネートのどちらも含まない電解液を適用した比較例1のリチウムイオン二次電池と比較して、放電DCRが僅かに低下した。フッ素含有環状カーボネートが正極又は負極にて安定な被膜を形成したために、比較例1の放電DCRが僅かに低下したと考えられる。一方、化合物A及びフッ素含有環状カーボネートを両方含む電解液を適用した実施例1~5のリチウムイオン二次電池は、比較例1~2のリチウムイオン二次電池と比較して、放電DCRが更に良好であった(低下した)。実施例1~5のリチウムイオン二次電池において放電DCRが良好なメカニズムは必ずしも明らかではないが、化合物A及びフッ素含有環状カーボネートの相互作用によって正極又は負極に安定かつイオン導電性の良好な被膜を形成したこと、又は、それらの相互作用によってLiPFが安定化され、LiPFの分解によるLiキャリアの濃度低下が抑制されたためと考えられる。
 1…非水電解液二次電池(電気化学デバイス)、6…正極、7…セパレータ、8…負極。

Claims (11)

  1.  下記式(1)で表される化合物及びフッ素含有環状カーボネートを含有する、電解液。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、R~Rは、それぞれ独立に、アルキル基又はフッ素原子を示し、Rはアルキレン基を示し、Rは、硫黄原子を含む有機基を示す。]
  2.  前記式(1)で表される化合物1分子中のケイ素原子の数は1個である、請求項1に記載の電解液。
  3.  前記Rは、下記式(2)、式(3)又は式(4)のいずれかで表される基である、請求項1又は2に記載の電解液。
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、Rはアルキル基を示し、*は結合手を示す。]
    Figure JPOXMLDOC01-appb-C000003
    [式(3)中、Rはアルキル基を示し、*は結合手を示す。]
    Figure JPOXMLDOC01-appb-C000004
    [式(4)中、Rはアルキル基を示し、*は結合手を示す。]
  4.  前記R~Rの少なくとも1つはフッ素原子である、請求項1~3のいずれか一項に記載の電解液。
  5.  前記フッ素含有環状カーボネートは、4-フルオロ-1,3-ジオキソラン-2-オンである、請求項1~4のいずれか一項に記載の電解液。
  6.  前記式(1)で表される化合物の含有量及び前記フッ素含有環状カーボネートの含有量の合計は、前記電解液全量を基準として10質量%以下である、請求項1~5のいずれか一項に記載の電解液。
  7.  正極と、負極と、請求項1~6のいずれか一項に記載の電解液と、を備える電気化学デバイス。
  8.  前記負極は炭素材料を含有する、請求項7に記載の電気化学デバイス。
  9.  前記炭素材料は黒鉛を含有する、請求項8に記載の電気化学デバイス。
  10.  前記負極は、ケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む材料を更に含有する、請求項8又は9に記載の電気化学デバイス。
  11.  前記電気化学デバイスは、非水電解液二次電池又はキャパシタである、請求項7~10のいずれか一項に記載の電気化学デバイス。
PCT/JP2019/029543 2018-07-31 2019-07-26 電解液及び電気化学デバイス WO2020027003A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980062244.3A CN112740459A (zh) 2018-07-31 2019-07-26 电解液及电化学器件
JP2020533508A JPWO2020027003A1 (ja) 2018-07-31 2019-07-26 電解液及び電気化学デバイス
KR1020217005823A KR20210033042A (ko) 2018-07-31 2019-07-26 전해액 및 전기 화학 디바이스

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-144303 2018-07-31
JP2018144303 2018-07-31

Publications (1)

Publication Number Publication Date
WO2020027003A1 true WO2020027003A1 (ja) 2020-02-06

Family

ID=69232582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029543 WO2020027003A1 (ja) 2018-07-31 2019-07-26 電解液及び電気化学デバイス

Country Status (5)

Country Link
JP (1) JPWO2020027003A1 (ja)
KR (1) KR20210033042A (ja)
CN (1) CN112740459A (ja)
TW (1) TWI825137B (ja)
WO (1) WO2020027003A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288112A (ja) * 2007-05-18 2008-11-27 Sony Corp 非水電解質二次電池
WO2009113545A1 (ja) * 2008-03-13 2009-09-17 宇部興産株式会社 リチウム電池用非水電解液、それを用いたリチウム電池、及びそれに用いられるヒドロキシ酸誘導体化合物
JP2011222450A (ja) * 2010-04-14 2011-11-04 Denso Corp 二次電池用非水電解液及び該電解液を用いた非水電解液二次電池
US20130250485A1 (en) * 2011-06-09 2013-09-26 Wildcat Discovery Technologies, Inc. Materials for electrolytes and methods for use
JP2015213014A (ja) * 2014-05-02 2015-11-26 ソニー株式会社 電池、電池パック、バッテリモジュール、電子機器、電動車両、蓄電装置および電力システム
JP2016189327A (ja) * 2015-03-27 2016-11-04 旭化成株式会社 非水蓄電デバイス用電解液の添加剤
WO2017221634A1 (ja) * 2016-06-22 2017-12-28 株式会社村田製作所 電解液、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2018098021A (ja) * 2016-12-13 2018-06-21 マクセルホールディングス株式会社 非水電解液系電気化学素子用負極、その製造方法、リチウムイオン二次電池およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6255722B2 (ja) 2012-06-13 2018-01-10 セントラル硝子株式会社 非水電解液電池用電解液、及びこれを用いた非水電解液電池
WO2015166620A1 (ja) * 2014-05-02 2015-11-05 ソニー株式会社 電池、電池パック、バッテリモジュール、電子機器、電動車両、蓄電装置および電力システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288112A (ja) * 2007-05-18 2008-11-27 Sony Corp 非水電解質二次電池
WO2009113545A1 (ja) * 2008-03-13 2009-09-17 宇部興産株式会社 リチウム電池用非水電解液、それを用いたリチウム電池、及びそれに用いられるヒドロキシ酸誘導体化合物
JP2011222450A (ja) * 2010-04-14 2011-11-04 Denso Corp 二次電池用非水電解液及び該電解液を用いた非水電解液二次電池
US20130250485A1 (en) * 2011-06-09 2013-09-26 Wildcat Discovery Technologies, Inc. Materials for electrolytes and methods for use
JP2015213014A (ja) * 2014-05-02 2015-11-26 ソニー株式会社 電池、電池パック、バッテリモジュール、電子機器、電動車両、蓄電装置および電力システム
JP2016189327A (ja) * 2015-03-27 2016-11-04 旭化成株式会社 非水蓄電デバイス用電解液の添加剤
WO2017221634A1 (ja) * 2016-06-22 2017-12-28 株式会社村田製作所 電解液、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2018098021A (ja) * 2016-12-13 2018-06-21 マクセルホールディングス株式会社 非水電解液系電気化学素子用負極、その製造方法、リチウムイオン二次電池およびその製造方法

Also Published As

Publication number Publication date
TWI825137B (zh) 2023-12-11
JPWO2020027003A1 (ja) 2021-08-10
TW202017241A (zh) 2020-05-01
CN112740459A (zh) 2021-04-30
KR20210033042A (ko) 2021-03-25

Similar Documents

Publication Publication Date Title
WO2020116583A1 (ja) 電解液及び電気化学デバイス
JP7074132B2 (ja) 電解液及び電気化学デバイス
US11444325B2 (en) Electrolytic solution and electrochemical device
WO2020116574A1 (ja) 電解液及び電気化学デバイス
WO2020027003A1 (ja) 電解液及び電気化学デバイス
JP2020004542A (ja) 負極及び電気化学デバイス
WO2020027004A1 (ja) 電解液及び電気化学デバイス
JP7415947B2 (ja) 電解液及び電気化学デバイス
KR102576486B1 (ko) 전해액 및 전기화학 디바이스
WO2020116578A1 (ja) 電解液及び電気化学デバイス
WO2018220799A1 (ja) 電解液及び電気化学デバイス
WO2018220795A1 (ja) 電解液及び電気化学デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020533508

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217005823

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19843429

Country of ref document: EP

Kind code of ref document: A1