WO2020026793A1 - 情報処理システム、情報処理装置、プログラム、及び情報処理方法 - Google Patents
情報処理システム、情報処理装置、プログラム、及び情報処理方法 Download PDFInfo
- Publication number
- WO2020026793A1 WO2020026793A1 PCT/JP2019/027977 JP2019027977W WO2020026793A1 WO 2020026793 A1 WO2020026793 A1 WO 2020026793A1 JP 2019027977 W JP2019027977 W JP 2019027977W WO 2020026793 A1 WO2020026793 A1 WO 2020026793A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information processing
- degree
- evaluation value
- physical quantity
- series data
- Prior art date
Links
- 230000010365 information processing Effects 0.000 title claims abstract description 78
- 238000003672 processing method Methods 0.000 title claims description 6
- 238000011156 evaluation Methods 0.000 claims abstract description 62
- 238000004364 calculation method Methods 0.000 claims abstract description 9
- 230000006866 deterioration Effects 0.000 claims description 54
- 230000006870 function Effects 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 6
- 230000015556 catabolic process Effects 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 abstract 1
- 238000001514 detection method Methods 0.000 description 16
- 238000004891 communication Methods 0.000 description 13
- 230000015654 memory Effects 0.000 description 13
- 230000001133 acceleration Effects 0.000 description 5
- 238000005070 sampling Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H13/00—Measuring resonant frequency
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M7/00—Vibration-testing of structures; Shock-testing of structures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H1/00—Measuring characteristics of vibrations in solids by using direct conduction to the detector
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H1/00—Measuring characteristics of vibrations in solids by using direct conduction to the detector
- G01H1/003—Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
Definitions
- the present invention relates to an information processing system, an information processing apparatus, a program, and an information processing method.
- Patent Literature 1 discloses a railway vehicle abnormality diagnosis system that performs an abnormality diagnosis based on the acceleration, speed, and current position of a railway vehicle due to deterioration of components of the railway vehicle or the like.
- Patent Document 2 discloses a structure in which in an angle detector using a ball bearing as a bearing, an acceleration sensor is provided on a bearing fixing plate provided with the bearing, and vibration generated when a rotation operation failure occurs is detected. I have.
- an object of the present invention is to provide an information processing system, an information processing apparatus, a program, and an information processing method that improve the convenience of a technique for estimating the state of a device using data from a sensor. It is in.
- An information processing system includes: Acquiring means for acquiring vibration of the device vibrating during operation as time-series data of a physical quantity A represented by a plurality of axis components in a three-dimensional coordinate system; Calculating means for calculating a first evaluation value E indicating a degree of deviation of vibration of the device between axes based on time-series data of the physical quantity A; Estimating means for estimating the degree of deterioration G of the device based on the first evaluation value E; Is provided.
- An information processing apparatus includes: Acquiring means for acquiring vibration of the device vibrating during operation as time-series data of a physical quantity A represented by a plurality of axis components in a three-dimensional coordinate system; Calculating means for calculating a first evaluation value E indicating a degree of deviation of vibration of the device between axes based on time-series data of the physical quantity A; Estimating means for estimating the degree of deterioration G of the device based on the first evaluation value E; Is provided.
- An information processing apparatus includes: An acquisition unit configured to acquire vibration of a device that vibrates during operation as time-series data of a physical quantity A represented by a plurality of axis components in a three-dimensional coordinate system, and based on the time-series data of the physical quantity A,
- An information processing system includes a calculating unit that calculates a first evaluation value E indicating a degree of deviation of the vibration of the device, and an estimating unit that estimates the degree of deterioration G of the device based on the first evaluation value E. for, At least one of the acquisition unit, the calculation unit, and the estimation unit is provided.
- the program includes: Information processing device, Acquiring means for acquiring vibration of the device vibrating during operation as time-series data of a physical quantity A represented by a plurality of axis components in a three-dimensional coordinate system; Calculating means for calculating a first evaluation value E indicating a degree of deviation of vibration of the device between axes based on time-series data of the physical quantity A; Estimating means for estimating the degree of deterioration G of the device based on the first evaluation value E; Function as
- the program includes: Acquisition means configured by a plurality of information processing devices communicably connected and acquiring vibration of a device that vibrates during operation as time-series data of a physical quantity A represented by a plurality of axis components in a three-dimensional coordinate system, Calculating means for calculating a first evaluation value E indicating a degree of deviation of vibration of the device between axes based on the time-series data of the physical quantity A; and a deterioration degree G of the device based on the first evaluation value E And an estimating unit for estimating the one of the plurality of information processing apparatuses, It is caused to function as at least one of the acquisition unit, the calculation unit, and the estimation unit.
- An information processing method includes: Acquiring vibration of the device that vibrates during operation as time-series data of a physical quantity A represented by a plurality of axis components in a three-dimensional coordinate system; Calculating a first evaluation value E indicating a degree of deviation of vibration of the device between axes based on the time-series data of the physical quantity A; Estimating the degree of deterioration G of the device based on the first evaluation value E; including.
- the convenience of the technology for estimating the state of the device using the data from the sensor is improved.
- FIG. 1 is a block diagram illustrating a schematic configuration of an information processing system according to an embodiment of the present invention.
- FIG. 2 is a block diagram illustrating a schematic configuration of an information processing device. It is a flowchart which shows an example of operation
- movement of a detection apparatus. 9 is a flowchart illustrating an example of an operation of the information processing device. It is a figure showing an example of correspondence of each axis component Ci of rate C and each axis component Di of the 2nd index D.
- 5 is a flowchart illustrating an example of an operation of the server. 5 is a flowchart illustrating an example of an operation of the terminal device.
- the information processing system 1 includes a detection device 20, an information processing device 30, a server 40, and a terminal device 50.
- the information processing device 30, the server 40, and the terminal device 50 are communicably connected to a network 60 such as the Internet, for example.
- the information processing system 1 is a system that estimates the degree of deterioration of the device 10 and presents it to the user.
- the device 10 is, for example, a rotating machine, but may be any device that vibrates during operation.
- the information processing system 1 uses the detection device 20 to detect vibration of the device 10 that vibrates during operation.
- the information processing system 1 estimates the degree of deterioration G of the device 10 by the information processing device 30 based on the output of the detection device 20.
- the information processing system 1 stores the degree of deterioration G of the device 10 in the server 40.
- the information processing system 1 transmits the degree of deterioration G of the device 10 stored in the server 40 to the terminal device 50 used by the user. Then, the information processing system 1 presents the deterioration degree G of the device 10 to the user through the terminal device 50.
- the detection device 20 is a device including a sensor used by being attached to the device 10 and an output interface that outputs data detected by the sensor.
- the sensor included in the detection device 20 is, for example, a three-axis acceleration sensor or a three-axis gyro sensor, but is not limited thereto.
- a sensor having a sampling frequency of several hundred Hz can be adopted as a sensor included in the detection device 20.
- the information processing device 30 includes a communication unit 31, a storage unit 32, and a control unit 33.
- the communication unit 31 is one or more communication interfaces that communicate with an external device via wireless or wired communication.
- the communication unit 31 includes a communication interface that communicates with the detection device 20 and a communication interface that communicates with the network 60.
- the storage unit 32 is one or more memories.
- the memory is, for example, a semiconductor memory, a magnetic memory, an optical memory, or the like, but is not limited thereto, and may be any memory.
- the storage unit 32 functions as, for example, a primary storage device or a secondary storage device.
- the storage unit 32 is built in the information processing device 30, for example, but may be configured to be externally connected to the information processing device 30 via an arbitrary interface.
- the control unit 33 is one or more processors.
- the control unit 33 is a microcontroller, but is not limited thereto, and may be an arbitrary processor such as a general-purpose processor or a special-purpose processor dedicated to a specific process.
- the control unit 33 controls the operation of the entire information processing device 30.
- the server 40 is one or a plurality of server devices that can communicate with each other.
- the server 40 includes a communication interface that communicates with the network 60, one or more memories, and one or more processors, but is not limited thereto, and may include any hardware.
- the terminal device 50 is, for example, a personal computer, a smartphone, a tablet terminal, or the like, but is not limited thereto, and may be any device used by a user.
- the terminal device 50 includes a communication interface that communicates with the network 60, one or more memories, one or more processors, and a user interface that presents information to a user by video output or audio output.
- the present invention is not limited to this, and may include arbitrary hardware.
- the software configuration of the information processing device 30 will be described with reference to FIG.
- One or more programs used for controlling the operation of the information processing device 30 are stored in the storage unit 32.
- the control unit 33 causes the control unit 33 to function as the storage unit 331, the acquisition unit 332, the calculation unit 333, the estimation unit 334, and the transmission unit 335.
- the storage unit 331 is a unit that stores information in the storage unit 32.
- the acquisition unit 332 is a unit that acquires information from the storage unit 32.
- the calculating unit 333 is a unit that calculates a first evaluation value E indicating the bias of the vibration of the device 10 using data input from the detecting device 20 as described later.
- the estimation unit 334 is a unit that estimates the degree of deterioration G of the device 10 based on the first evaluation value E, as described later.
- the transmitting unit 335 is a unit that transmits the degree of deterioration G to the server 40 via the communication unit 31 and the network 60. The specific operation of each means will be described later.
- the physical quantity A is, for example, a physical quantity such as acceleration, velocity, angular acceleration, angular velocity, or displacement, but is not limited thereto.
- Step S101 The detection device 20 outputs the time series data of the physical quantity A detected in step S100 to the information processing device 30.
- steps S200 to S211 shown in FIG. 4 are executed.
- Step S200 The storage unit 331 stores the time-series data of the physical quantity A input from the detection device 20 via the communication unit 31 in the storage unit 32.
- time-series data of the physical quantity A in n periods T1 to Tn is stored (where n is an integer of 2 or more) as described later.
- Step S201 The calculating means 333 sets the variable m to 1.
- Step S202 The acquiring unit 332 acquires time-series data in the period Tm from the time-series data of the physical quantity A stored in the storage unit 32.
- the first index B is calculated by the following equation (1).
- Equation (1) the number of data of each axis component included in the time-series data of the physical quantity A is k (where k is an integer of 2 or more).
- the first index B is a parameter indicating the degree of variation of the physical quantity A for each axis component.
- the axial component Di of the second index D increases as the axial component Ci of the ratio C moves away from 1/3.
- the degree of deterioration G of the device 10 is estimated in steps S207 to S210 described later based on the first evaluation value E indicating the degree of vibration bias.
- the first evaluation value E is directly used as the deterioration degree G.
- the accuracy of estimating the degree of deterioration G is improved by steps S207 to S210 described later. The reason why the estimation accuracy of the deterioration degree G is improved will be described later.
- Step S208 The calculating means 333 increments m. Thereafter, the process returns to step S202. Therefore, steps S202 to S208 are repeated until n first evaluation values E (hereinafter, also referred to as first evaluation values E1 to En) corresponding to the n periods T1 to Tn are calculated.
- first evaluation values E hereinafter, also referred to as first evaluation values E1 to En
- the standard deviation is calculated as the second evaluation value F.
- the second evaluation value F is calculated by the following equation (5).
- the second evaluation value F is a parameter indicating the degree of dispersion of the n first evaluation values E1 to En (that is, the temporal stability of the degree of deviation of the vibration of the device 10 between the three axes).
- Step S210 The estimation unit 334 estimates the common logarithm of the second evaluation value F as the deterioration degree G.
- the degree of deviation of the vibration of the rotating machine among the three axes becomes unstable with time and becomes larger or smaller. Therefore, it is possible to estimate the deterioration of the rotating machine based on whether or not the degree of deviation of the vibration of the rotating machine among the three axes is stable over time. For this reason, in the present embodiment, as described in steps S207 to S210 described above, the degree of dispersion of the n first evaluation values E1 to En (that is, the degree of deviation of the degree of bias of the vibration of the device 10 between the three axes over time) is reduced.
- the deterioration degree G is estimated based on the second evaluation value F indicating the stability.
- the common logarithm of the second evaluation value F is assumed to be the degree of deterioration G on the assumption that the number of digits of the second evaluation value F differs depending on the degree of deterioration of the device 10, but the second evaluation value Another embodiment in which F is used as it is as the degree of deterioration G is also possible.
- Step S211 The transmitting unit 335 transmits the degree of deterioration G of the device 10 to the server 40 via the communication unit 31 and the network 60.
- steps S300 to S301 shown in FIG. 6 are executed.
- Step S300 The server 40 receives the degree of deterioration G of the device 10 from the information processing device 30 via the network 60, and stores it in the memory.
- Step S301 The server 40 acquires the degree of deterioration G of the device 10 from the memory and transmits it to the terminal device 50 via the network 60.
- the deterioration degree G may be, for example, pull-distributed from the server 40 in response to a request from the terminal device 50, or may be push-distributed from the server 40.
- steps S400 to S401 shown in FIG. 7 are executed.
- Step S400 The terminal device 50 receives the degree of deterioration G of the device 10 from the server 40 via the network 60 and stores it in the memory.
- Step S400 The terminal device 50 acquires the deterioration degree G from the memory, for example, automatically or in response to a user operation, and presents it to the user by video output or audio output. For example, even when the user is away from the device 10, the user can determine whether maintenance or inspection of the device 10 is necessary based on the degree of deterioration G presented by the terminal device 50.
- estimating means 3334 for estimating the degree of deterioration G of the device 10 based on the first evaluation value E. According to such a configuration, it is not necessary to perform frequency analysis on the time-series data of the physical quantity A.
- a sensor having a relatively low sampling frequency (for example, about 170 Hz) can be used for the detection device 20.
- a processor having a relatively low computing power can be used for the information processing device 30. Therefore, the convenience of the technique of estimating the state of the device using the data from the sensor is improved.
- the detection device 20 and the information processing device 30 according to the above-described embodiment may be configured as one device.
- a configuration in which the server 40 executes a part or all of the operations executed by the information processing device 30 in the above-described embodiment is also possible.
- a configuration in which each configuration or each unit of the information processing device 30 is dispersedly arranged in a plurality of information processing devices is also possible.
- a configuration is also possible in which at least one of the plurality of information processing apparatuses is realized as, for example, a server connected to the network 60.
- the normal value of each axis component of the ratio C calculated when the device 10 is operating normally is 1/3.
- a predetermined conversion function f (Ci) is set so that each axis component Ci of the ratio C is minimized (for example, 0) when the axis component Ci is a normal value (1 / in the above-described embodiment).
- the configuration in which the second index D is calculated by converting the second index D has been described.
- the normal value of each axis component of the ratio C can be different from each other.
- the normal value of Cx may be 2/5
- the normal value of Cy may be 2/5
- the normal value of Cz may be 1/5. Therefore, in one embodiment of the present invention, the normal value of each axis component of the ratio C may be determined in advance by, for example, an experiment or a simulation. The normal value is greater than 0 and less than 1.
- each axis component has a minimum (for example, 0) when the axis component Ci of the ratio C is a normal value and a maximum (for example, 1) when the axis component Ci is 0 or 1.
- the conversion functions fx (Cx), fy (Cy), and fz (Cz) may be determined in advance.
- the vibration of the device 10 may be detected and acquired as time-series data of the physical quantity A represented by a two-axis component in the three-dimensional coordinate system.
- “three-axis component” and “between three axes” can be read as “two-axis component” and “between two axes”, respectively.
- control unit 33 of the information processing device 30 have been described as software configurations. At least some of these units use software resources and / or hardware resources. It may be a concept including.
- the storage unit 331 may include one or more memories.
- a device such as a computer or a mobile phone can be used to function as the information processing device 30 according to the above-described embodiment.
- the device can be realized by storing a program describing processing contents for realizing each function of the information processing device 30 according to the embodiment in a memory of the device, and reading and executing the program by a processor of the device. It is.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Computational Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Databases & Information Systems (AREA)
- Operations Research (AREA)
- Probability & Statistics with Applications (AREA)
- Bioinformatics & Computational Biology (AREA)
- Algebra (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Biology (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
情報処理システムは、動作中に振動する機器の振動を3次元座標系における複数の軸成分で示される物理量Aの時系列データとして取得する取得手段と、物理量Aの時系列データに基づいて軸間における機器の振動の偏り度合いを示す第1評価値Eを算出する算出手段と、第1評価値Eに基づいて機器の劣化度Gを推定する推定手段と、を備える。
Description
本発明は、情報処理システム、情報処理装置、プログラム、及び情報処理方法に関する。
従来、センサからのデータを用いて機器の状態を推定する技術が知られている。例えば特許文献1には、鉄道車両の加速度、速度、及び現在位置に基づいて、当該鉄道車両の部品の劣化等に起因した異常診断をする鉄道車両用異常診断システムが開示されている。また特許文献2には、軸受としてボールベアリングを使用する角度検出器において、当該軸受の設けられた軸受固定板上に加速度センサを設け、回転動作不良発生時に生じる振動を検出する構造が開示されている。
従来、機器の振動の大きさが所定の閾値を超えるか否かに基づいて機器の状態を推定する手法が知られている。しかしながら、機器の振動の大きさは、例えば機器の負荷によっても変化するため、当該手法では、機器の状態の推定精度が必ずしも十分でない。一方、機器の状態を精度良く推定するために、機器の振動の周波数解析が一般的に行われている。周波数解析の実行には、比較的高いサンプリング周波数(例えば、80kHz程度)のセンサで機器の振動を検出し、センサから出力される大量のデータを比較的高い演算能力の計算機で処理する必要がある。このため、比較的低いサンプリング周波数(例えば、数百Hz程度)のセンサや、比較的低い演算能力の計算機を利用することができない。このように、センサからのデータを用いて機器の状態を推定する技術の利便性は必ずしも高くない。
かかる事情に鑑みてなされた本発明の目的は、センサからのデータを用いて機器の状態を推定する技術の利便性を向上させる情報処理システム、情報処理装置、プログラム、及び情報処理方法を提供することにある。
本発明の一実施形態に係る情報処理システムは、
動作中に振動する機器の振動を、3次元座標系における複数の軸成分で示される物理量Aの時系列データとして取得する取得手段と、
前記物理量Aの時系列データに基づいて、軸間における前記機器の振動の偏り度合いを示す第1評価値Eを算出する算出手段と、
前記第1評価値Eに基づいて前記機器の劣化度Gを推定する推定手段と、
を備える。
動作中に振動する機器の振動を、3次元座標系における複数の軸成分で示される物理量Aの時系列データとして取得する取得手段と、
前記物理量Aの時系列データに基づいて、軸間における前記機器の振動の偏り度合いを示す第1評価値Eを算出する算出手段と、
前記第1評価値Eに基づいて前記機器の劣化度Gを推定する推定手段と、
を備える。
本発明の一実施形態に係る情報処理装置は、
動作中に振動する機器の振動を、3次元座標系における複数の軸成分で示される物理量Aの時系列データとして取得する取得手段と、
前記物理量Aの時系列データに基づいて、軸間における前記機器の振動の偏り度合いを示す第1評価値Eを算出する算出手段と、
前記第1評価値Eに基づいて前記機器の劣化度Gを推定する推定手段と、
を備える。
動作中に振動する機器の振動を、3次元座標系における複数の軸成分で示される物理量Aの時系列データとして取得する取得手段と、
前記物理量Aの時系列データに基づいて、軸間における前記機器の振動の偏り度合いを示す第1評価値Eを算出する算出手段と、
前記第1評価値Eに基づいて前記機器の劣化度Gを推定する推定手段と、
を備える。
本発明の一実施形態に係る情報処理装置は、
動作中に振動する機器の振動を、3次元座標系における複数の軸成分で示される物理量Aの時系列データとして取得する取得手段と、前記物理量Aの時系列データに基づいて、軸間における前記機器の振動の偏り度合いを示す第1評価値Eを算出する算出手段と、前記第1評価値Eに基づいて前記機器の劣化度Gを推定する推定手段と、を備える情報処理システムを構成するために、
前記取得手段、前記算出手段、及び前記推定手段のうち少なくとも1つを備える。
動作中に振動する機器の振動を、3次元座標系における複数の軸成分で示される物理量Aの時系列データとして取得する取得手段と、前記物理量Aの時系列データに基づいて、軸間における前記機器の振動の偏り度合いを示す第1評価値Eを算出する算出手段と、前記第1評価値Eに基づいて前記機器の劣化度Gを推定する推定手段と、を備える情報処理システムを構成するために、
前記取得手段、前記算出手段、及び前記推定手段のうち少なくとも1つを備える。
本発明の一実施形態に係るプログラムは、
情報処理装置を、
動作中に振動する機器の振動を、3次元座標系における複数の軸成分で示される物理量Aの時系列データとして取得する取得手段と、
前記物理量Aの時系列データに基づいて、軸間における前記機器の振動の偏り度合いを示す第1評価値Eを算出する算出手段と、
前記第1評価値Eに基づいて前記機器の劣化度Gを推定する推定手段と、
として機能させる。
情報処理装置を、
動作中に振動する機器の振動を、3次元座標系における複数の軸成分で示される物理量Aの時系列データとして取得する取得手段と、
前記物理量Aの時系列データに基づいて、軸間における前記機器の振動の偏り度合いを示す第1評価値Eを算出する算出手段と、
前記第1評価値Eに基づいて前記機器の劣化度Gを推定する推定手段と、
として機能させる。
本発明の一実施形態に係るプログラムは、
通信可能に接続された複数の情報処理装置によって構成され、動作中に振動する機器の振動を、3次元座標系における複数の軸成分で示される物理量Aの時系列データとして取得する取得手段と、前記物理量Aの時系列データに基づいて、軸間における前記機器の振動の偏り度合いを示す第1評価値Eを算出する算出手段と、前記第1評価値Eに基づいて前記機器の劣化度Gを推定する推定手段と、を備える情報処理システムにおける、前記複数の情報処理装置のうち1つの情報処理装置を、
前記取得手段、前記算出手段、及び前記推定手段のうち少なくとも1つとして機能させる。
通信可能に接続された複数の情報処理装置によって構成され、動作中に振動する機器の振動を、3次元座標系における複数の軸成分で示される物理量Aの時系列データとして取得する取得手段と、前記物理量Aの時系列データに基づいて、軸間における前記機器の振動の偏り度合いを示す第1評価値Eを算出する算出手段と、前記第1評価値Eに基づいて前記機器の劣化度Gを推定する推定手段と、を備える情報処理システムにおける、前記複数の情報処理装置のうち1つの情報処理装置を、
前記取得手段、前記算出手段、及び前記推定手段のうち少なくとも1つとして機能させる。
本発明の一実施形態に係る情報処理方法は、
動作中に振動する機器の振動を、3次元座標系における複数の軸成分で示される物理量Aの時系列データとして取得するステップと、
前記物理量Aの時系列データに基づいて、軸間における前記機器の振動の偏り度合いを示す第1評価値Eを算出するステップと、
前記第1評価値Eに基づいて前記機器の劣化度Gを推定するステップと、
を含む。
動作中に振動する機器の振動を、3次元座標系における複数の軸成分で示される物理量Aの時系列データとして取得するステップと、
前記物理量Aの時系列データに基づいて、軸間における前記機器の振動の偏り度合いを示す第1評価値Eを算出するステップと、
前記第1評価値Eに基づいて前記機器の劣化度Gを推定するステップと、
を含む。
本発明の一実施形態に係る情報処理システム、情報処理装置、プログラム、及び情報処理方法によれば、センサからのデータを用いて機器の状態を推定する技術の利便性が向上する。
以下、本発明の実施形態について説明する。
図1を参照して、本発明の一実施形態に係る情報処理システム1について説明する。本実施形態において、情報処理システム1は、検出装置20と、情報処理装置30と、サーバ40と、端末装置50と、を備える。情報処理装置30、サーバ40、及び端末装置50は、例えばインターネット等のネットワーク60と通信可能に接続される。
情報処理システム1は、機器10の劣化の度合いを推定してユーザに提示するシステムである。機器10は、例えば回転機であるが、動作中に振動する任意の機器であってもよい。概要として、情報処理システム1は、動作中に振動する機器10の振動を検出装置20により検出する。情報処理システム1は、検出装置20の出力に基づいて、機器10の劣化度Gを情報処理装置30により推定する。情報処理システム1は、機器10の劣化度Gをサーバ40に蓄積する。情報処理システム1は、サーバ40に蓄積された機器10の劣化度Gを、ユーザが使用する端末装置50へ送信する。そして、情報処理システム1は、機器10の劣化度Gを端末装置50によりユーザに提示する。
(検出装置のハードウェア構成)
検出装置20のハードウェア構成について説明する。検出装置20は、機器10に取り付けて用いられるセンサと、センサにより検出されたデータを出力する出力インタフェースと、を備える装置である。検出装置20が備えるセンサは、例えば3軸加速度センサ又は3軸ジャイロセンサ等であるが、これらに限られない。後述するように、検出装置20が備えるセンサとして、数百Hz(例えば、約170Hz)のサンプリング周波数を有するセンサが採用可能である。
検出装置20のハードウェア構成について説明する。検出装置20は、機器10に取り付けて用いられるセンサと、センサにより検出されたデータを出力する出力インタフェースと、を備える装置である。検出装置20が備えるセンサは、例えば3軸加速度センサ又は3軸ジャイロセンサ等であるが、これらに限られない。後述するように、検出装置20が備えるセンサとして、数百Hz(例えば、約170Hz)のサンプリング周波数を有するセンサが採用可能である。
(情報処理装置のハードウェア構成)
情報処理装置30のハードウェア構成について、図2を参照して説明する。情報処理装置30は、通信部31と、記憶部32と、制御部33と、を備える。
情報処理装置30のハードウェア構成について、図2を参照して説明する。情報処理装置30は、通信部31と、記憶部32と、制御部33と、を備える。
通信部31は、無線又は有線を介して外部装置と通信する1つ以上の通信インタフェースである。本実施形態において、通信部31は、検出装置20と通信する通信インタフェース、及びネットワーク60と通信する通信インタフェースを含む。
記憶部32は、1つ以上のメモリである。メモリは、例えば半導体メモリ、磁気メモリ、又は光メモリ等であるが、これらに限られず任意のメモリとすることができる。記憶部32は、例えば一次記憶装置又は二次記憶装置として機能する。記憶部32は、例えば情報処理装置30に内蔵されるが、任意のインタフェースを介して情報処理装置30に外部から接続される構成も可能である。
制御部33は、1つ以上のプロセッサである。本実施形態において、制御部33はマイクロコントローラ(Microcontroller)であるがこれに限られず、例えば汎用のプロセッサ、又は特定の処理に特化した専用プロセッサ等、任意のプロセッサとすることができる。制御部33は、情報処理装置30全体の動作を制御する。
(サーバのハードウェア構成)
図1に示すサーバ40のハードウェア構成について説明する。サーバ40は、1つ又は互いに通信可能な複数のサーバ装置である。サーバ40は、ネットワーク60と通信する通信インタフェースと、1つ以上のメモリと、1つ以上のプロセッサと、を備えるが、これらに限られず任意のハードウェアを備えてもよい。
図1に示すサーバ40のハードウェア構成について説明する。サーバ40は、1つ又は互いに通信可能な複数のサーバ装置である。サーバ40は、ネットワーク60と通信する通信インタフェースと、1つ以上のメモリと、1つ以上のプロセッサと、を備えるが、これらに限られず任意のハードウェアを備えてもよい。
(端末装置のハードウェア構成)
端末装置50のハードウェア構成について説明する。端末装置50は、例えばパーソナルコンピュータ、スマートフォン、又はタブレット端末等であるが、これらに限られず、ユーザによって使用される任意の装置であってもよい。端末装置50は、ネットワーク60と通信する通信インタフェースと、1つ以上のメモリと、1つ以上のプロセッサと、情報を映像出力又は音声出力によってユーザに提示するユーザインタフェースと、を備えるが、これらに限られず任意のハードウェアを備えてもよい。
端末装置50のハードウェア構成について説明する。端末装置50は、例えばパーソナルコンピュータ、スマートフォン、又はタブレット端末等であるが、これらに限られず、ユーザによって使用される任意の装置であってもよい。端末装置50は、ネットワーク60と通信する通信インタフェースと、1つ以上のメモリと、1つ以上のプロセッサと、情報を映像出力又は音声出力によってユーザに提示するユーザインタフェースと、を備えるが、これらに限られず任意のハードウェアを備えてもよい。
(情報処理装置のソフトウェア構成)
情報処理装置30のソフトウェア構成について、図2を参照して説明する。情報処理装置30の動作の制御に用いられる1つ以上のプログラムが記憶部32に記憶される。当該1つ以上のプログラムは、制御部33によって読み込まれると、制御部33を記憶手段331、取得手段332、算出手段333、推定手段334、及び送信手段335として機能させる。
情報処理装置30のソフトウェア構成について、図2を参照して説明する。情報処理装置30の動作の制御に用いられる1つ以上のプログラムが記憶部32に記憶される。当該1つ以上のプログラムは、制御部33によって読み込まれると、制御部33を記憶手段331、取得手段332、算出手段333、推定手段334、及び送信手段335として機能させる。
各手段の概要について説明する。記憶手段331は、情報を記憶部32に記憶する手段である。取得手段332は、記憶部32から情報を取得する手段である。算出手段333は、後述するように、検出装置20から入力されるデータを用いて、機器10の振動の偏りを示す第1評価値Eを算出する手段である。推定手段334は、後述するように、第1評価値Eに基づいて機器10の劣化度Gを推定する手段である。送信手段335は、通信部31及びネットワーク60を介して劣化度Gをサーバ40へ送信する手段である。各手段の具体的な動作については後述する。
(情報処理システムの動作)
図3~図7を参照して、情報処理システム1が機器10の劣化度Gを推定する動作について説明する。まず、検出装置20において、図3に示すステップS100~S101が実行される。
図3~図7を参照して、情報処理システム1が機器10の劣化度Gを推定する動作について説明する。まず、検出装置20において、図3に示すステップS100~S101が実行される。
ステップS100:検出装置20は、動作中に振動する機器10の振動を、3次元座標系における3軸(x軸,y軸,z軸)成分で示される物理量A=(Ax,Ay,Az)の時系列データとして検出する。物理量Aは、例えば加速度、速度、角加速度、角速度、又は変位等の物理量であるが、これらに限られない。
ステップS101:検出装置20は、ステップS100で検出した物理量Aの時系列データを情報処理装置30へ出力する。
次に、情報処理装置30において、図4に示すステップS200~S211が実行される。
ステップS200:記憶手段331は、検出装置20から通信部31を介して入力された物理量Aの時系列データを記憶部32に記憶する。ここでは、後述するようにn個(ただし、nは2以上の整数。)の期間T1~Tnにおける物理量Aの時系列データが記憶されるものとする。
ステップS201:算出手段333は、変数mを1に設定する。
ステップS202:取得手段332は、記憶部32に記憶された物理量Aの時系列データのうち、期間Tmにおける時系列データを取得する。
ステップS203:算出手段333は、ステップS202で取得した物理量Aの時系列データの軸成分毎の分散又は標準偏差を、第1指標B=(Bx,By,Bz)として算出する。例えば、物理量Aの時系列データの軸成分毎の分散を第1指標Bとする場合、第1指標Bは以下の式(1)で算出される。
式(1)において、物理量Aの時系列データに含まれる各軸成分のデータ数をk個(ただし、kは2以上の整数。)とする。第1指標Bは、物理量Aの軸成分毎のばらつき度合いを示すパラメータである。
ステップS204:算出手段333は、第1指標Bの各軸成分Bi(ただし、iはx,y,又はz。)の合計に対する各軸成分Biの割合C=(Cx,Cy,Cz)を算出する。具体的には、算出手段333は、第1指標Bを用いて以下の式(2)により割合Cを算出する。
C=(Cx,Cy,Cz)
={Bx/(Bx+By+Bz),By/(Bx+By+Bz),
Bz/(Bx+By+Bz)} (2)
割合Cは、第1指標B(物理量Aの軸成分毎のばらつき度合い)の、3軸間におけるバランス(均等さ)を示すパラメータである。例えば、Cx=Cy=Cz=1/3であるとき、第1指標Bの3軸間におけるバランスは均等であることを示す。
C=(Cx,Cy,Cz)
={Bx/(Bx+By+Bz),By/(Bx+By+Bz),
Bz/(Bx+By+Bz)} (2)
割合Cは、第1指標B(物理量Aの軸成分毎のばらつき度合い)の、3軸間におけるバランス(均等さ)を示すパラメータである。例えば、Cx=Cy=Cz=1/3であるとき、第1指標Bの3軸間におけるバランスは均等であることを示す。
ステップS205:算出手段333は、割合Cの各軸成分Ciを、軸成分Ciが1/3であるときに最小(例えば、0)となり、軸成分Ciが0又は1であるときに最大(例えば、1)となるように所定の変換関数f(Ci)を用いて変換し、第2指標D=(Dx,Dy,Dz)を算出する。具体的には、算出手段333は、割合Cを用いて以下の式(3)により第2指標Dを算出する。
D=(Dx,Dy,Dz)
={f(Cx),f(Cy),f(Cz)} (3)
D=(Dx,Dy,Dz)
={f(Cx),f(Cy),f(Cz)} (3)
ここで図5は、変換関数Di=f(Ci)の一例を示すグラフである。図5に示す例では、割合Cの軸成分Ciが1/3から離れるにしたがって第2指標Dの軸成分Diが増加している。しかしながら、変換関数Di=f(Ci)は、図5に示す例に限られない。例えば、割合Cの軸成分Ciが1/3から離れるにしたがって第2指標Dの軸成分Diが減少するような軸成分Ciの範囲があってもよいし、或いは割合Cの軸成分Ciが変化しても第2指標Dの軸成分Diが変化しない軸成分Ciの範囲があってもよい。
ステップS206:算出手段333は、第2指標Dの各軸成分Diの積を第1評価値Eとして算出する。具体的には、算出手段333は、第2指標Dを用いて以下の式(4)により第1評価値Eを算出する。
E=Dx×Dy×Dz (4)
E=Dx×Dy×Dz (4)
第1評価値Eは、3軸間における機器10の振動の偏り度合いを示すパラメータである。即ち、第1指標B(物理量Aの軸成分毎のばらつき度合い)の3軸間におけるバランスが均等(Cx=Cy=Cz=1/3)であるときに(換言すると、3軸間における機器10の振動の偏りがないときに)、第1評価値Eは最小となる。そして、第1指標Bの3軸間におけるバランスが崩れて均等ではなくなると(換言すると、3軸間における機器10の振動の偏り度合いが大きくなると)、第1評価値Eは増加する。
一般的に、回転機の劣化が進むと、特定の周波数の振動がx軸、y軸、及びz軸のいずれかの方向に顕著にあらわれる。このため、例えば振動を周波数解析して、当該特定の周波数の振動を検出することにより回転機の劣化度合いを推定する手法が考えられる。しかしながら、周波数解析を行うためには、サンプリング周波数が比較的高い(例えば、80kHz程度)のセンサを用いて回転機の振動を検出する必要があり、処理負担が増大するという不都合が生じる。
ここで、当該特定の周波数の振動が何れかの軸方向にあらわれることによって、3軸間における機器10の振動の偏り度合いが大きくなると考えられる。したがって、3軸間における機器10の振動の偏り度合いの多寡に基づいて回転機の劣化を推定可能である。このため本実施形態では、振動の偏り度合いを示す第1評価値Eに基づいて、後述するステップS207~210により機器10の劣化度Gを推定する。なお、例えば第1評価値Eをそのまま劣化度Gとする他の実施形態も可能である。かかる場合、劣化度Gが大きいほど、機器10が劣化していることを示す。しかしながら本実施形態では、後述するステップS207~S210により、劣化度Gの推定精度を向上させる。劣化度Gの推定精度が向上する理由については後述する。
ステップS207:算出手段333は、m=nであるか否かを判定する。m=nと判定した場合(ステップS207-Yes)、プロセスはステップS209に進む。一方、m≠nと判定した場合(ステップS207-No)、プロセスはステップS208に進む。
ステップS208:算出手段333は、mをインクリメントする。その後、プロセスはステップS202に戻る。したがって、n個の期間T1~Tnにそれぞれ対応するn個の第1評価値E(以下、第1評価値E1~Enともいう。)が算出されるまで、ステップS202~S208が繰り返される。
ステップS209:ステップS207でm=nと判定した場合(即ち、n個の第1評価値E1~Enが算出された場合)、推定手段334は、n個の第1評価値E1~Enの分散又は標準偏差を第2評価値Fとして算出する。例えば、n個の第1評価値E1~Enの標準偏差を第2評価値Fとする場合、第2評価値Fは以下の式(5)で算出される。
第2評価値Fは、n個の第1評価値E1~Enのばらつき度合い(即ち、3軸間における機器10の振動の偏り度合いの経時的な安定性)を示すパラメータである。
ステップS210:推定手段334は、第2評価値Fの常用対数を劣化度Gとして推定する。
ステップS207~S210により、劣化度Gの推定精度が向上する理由について説明する。機器10の劣化が進むと、上述したように3軸間における機器10の振動の偏り度合いが大きくなり、振動の偏り度合いを示す第1評価値Eも大きくなる。しかしながら、例えば劣化以外の何らかの要因で3軸間における振動の偏り度合いが大きくなっている場合を想定すると、機器10が劣化していないにも関わらず、第1評価値Eが大きくなってしまう。したがって、例えば第1評価値Eをそのまま劣化度Gとする他の実施形態では、劣化度Gの推定精度は必ずしも十分でない。
ここで、回転機の劣化が進むと、回転機の振動の周波数スペクトルの経時的な変化が大きくなる。即ち、回転機の劣化が進むと、3軸間における回転機の振動の偏り度合いが経時的に不安定になり、大きくなったり小さくなったりする。したがって、3軸間における回転機の振動の偏り度合いが経時的に安定しているか否かに基づいて回転機の劣化を推定可能である。このため本実施形態では、上述したステップS207~S210で説明したように、n個の第1評価値E1~Enのばらつき度合い(即ち、3軸間における機器10の振動の偏り度合いの経時的な安定性)を示す第2評価値Fに基づいて劣化度Gを推定する。なお本実施形態では、機器10の劣化の程度に応じて第2評価値Fの桁数が異なることを想定して第2評価値Fの常用対数を劣化度Gとしているが、第2評価値Fをそのまま劣化度Gとする他の実施形態も可能である。
ステップS211:送信手段335は、機器10の劣化度Gを、通信部31及びネットワーク60を介してサーバ40へ送信する。
次に、サーバ40において、図6に示すステップS300~S301が実行される。
ステップS300:サーバ40は、情報処理装置30からネットワーク60を介して機器10の劣化度Gを受信し、メモリに蓄積する。
ステップS301:サーバ40は、機器10の劣化度Gをメモリから取得し、ネットワーク60を介して端末装置50へ送信する。劣化度Gは、例えば端末装置50からの要求に応じてサーバ40からプル配信されてもよく、或いはサーバ40からプッシュ配信されてもよい。
次に、端末装置50において、図7に示すステップS400~S401が実行される。
ステップS400:端末装置50は、サーバ40からネットワーク60を介して機器10の劣化度Gを受信し、メモリに記憶する。
ステップS400:端末装置50は、例えば自動的に又はユーザ操作に応じて、メモリから劣化度Gを取得し、映像出力又は音声出力によってユーザに提示する。ユーザは、例えば機器10から離れた場所にいるときであっても、端末装置50により提示された劣化度Gに基づいて、機器10のメンテナンス又は検査等の要否を判断可能である。
以上述べたように、本発明の一実施形態に係る情報処理システム1は、機器10の振動を、3次元座標系における3軸(x,y,z)成分で示される物理量A=(Ax,Ay,Az)の時系列データとして取得する取得手段332と、物理量Aの時系列データに基づいて、3軸間における機器10の振動の偏り度合いを示す第1評価値Eを算出する算出手段333と、第1評価値Eに基づいて機器10の劣化度Gを推定する推定手段3334と、を備える。かかる構成によれば、物理量Aの時系列データを周波数解析する必要がない。このため、比較的低いサンプリング周波数(例えば、170Hz程度)のセンサを検出装置20に採用可能である。また、比較的低い演算能力のプロセッサを情報処理装置30に採用可能である。したがって、センサからのデータを用いて機器の状態を推定する技術の利便性が向上する。
本発明を諸図面や実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。したがって、これらの変形や修正は本発明の範囲に含まれることに留意されたい。例えば、各手段、各ステップ等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の手段やステップ等を1つに組み合わせたり、或いは分割したりすることが可能である。
例えば、上述した実施形態に係る検出装置20及び情報処理装置30が、1つの装置として構成されてもよい。また例えば、上述した実施形態において情報処理装置30が実行する一部又は全部の動作を、サーバ40が実行する構成も可能である。また例えば、情報処理装置30の各構成又は各手段が、複数の情報処理装置に分散配置された構成も可能である。当該複数の情報処理装置のうち少なくとも1つが、例えばネットワーク60に接続されたサーバとして実現される構成も可能である。
また、上述した実施形態において、図3、図4、図6、及び図7を参照して情報処理システム1の動作の例について説明した。しかしながら、上述した動作に含まれる一部のステップ、又は1つのステップに含まれる一部の動作が、論理的に矛盾しない範囲内において省略された構成も可能である。また、上述した動作に含まれる複数のステップの順番が、論理的に矛盾しない範囲内において入れ替わった構成も可能である。
また、上述した実施形態において、第1指標B(物理量Aの軸成分毎のばらつき度合い)の、3軸間におけるバランス(均等さ)を示す割合Cに関して、例えば、Cx=Cy=Cz=1/3であるとき、第1指標Bの3軸間におけるバランスは均等であると説明した。換言すると、上述した実施形態では、機器10が正常に動作しているときに算出される割合Cの各軸成分の正常値を1/3としていた。そして、割合Cの各軸成分Ciを、軸成分Ciが正常値(上述した実施形態では、1/3)であるときに最小(例えば、0)となるように所定の変換関数f(Ci)を用いて変換し、第2指標Dを算出する構成について説明した。
しかしながら、機器10が正常に動作していても、第1指標Bの3軸管におけるバランスが均等でない場合が想定される。換言すると、割合Cの各軸成分の正常値は互いに異なり得る。例えば、Cxの正常値が2/5、Cyの正常値が2/5、及びCzの正常値が1/5であり得る。このため、本発明の一実施形態では、例えば実験又はシミュレーションにより、割合Cの各軸成分の正常値を予め決定してもよい。正常値は、0より大きく1より小さい。また、割合Cの軸成分Ciが正常値であるときに最小(例えば、0)となり、軸成分Ciが0又は1であるときに〕最大(例えば、1)となるように、軸成分ごとに変換関数fx(Cx)、fy(Cy)、及びfz(Cz)を予め決定してもよい。かかる場合、算出手段333は、割合Cの軸成分Cx、Cy、及びCzを、変換関数fx(Cx)、fy(Cy)、及びfz(Cz)を用いてそれぞれ変換し、第2指標D=(Dx,Dy,Dz)を算出してもよい。
また、上述した実施形態において、回転機の劣化が進むと特定の周波数の振動が3軸いずれかの軸方向にあらわれるという想定のもと、3軸間における機器10の振動の偏り度合いの多寡に基づいて回転機の劣化を推定する構成について説明した。しかしながら、回転機によっては、上述したように各軸成分の正常値が互いに異なる場合や、回転機の劣化が進むと、特定の周波数の振動が、ある1つの軸方向には実質的にあらわれず、残りの2軸のいずれかの軸方向にあらわれる場合も想定される。このため、本発明の一実施形態では、機器10の振動を、3次元座標系における2軸成分で示される物理量Aの時系列データとして検出及び取得されてもよい。かかる場合、上述した説明において「3軸成分」及び「3軸間」を、それぞれ「2軸成分」及び「2軸間」と読み替えることができる。
また、上述した実施形態において、情報処理装置30の制御部33によって実現される各種の手段をソフトウェア構成として説明したが、これらのうち少なくとも一部の手段は、ソフトウェア資源及び/又はハードウェア資源を含む概念であってもよい。例えば、記憶手段331は、1つ以上のメモリを含んでもよい。
また、上述した実施形態に係る情報処理装置30として機能させるために、コンピュータ又は携帯電話等の装置を用いることができる。当該装置は、実施形態に係る情報処理装置30の各機能を実現する処理内容を記述したプログラムを、当該装置のメモリに格納し、当該装置のプロセッサによって当該プログラムを読み出して実行させることによって実現可能である。
1 情報処理システム
10 機器
20 検出装置
30 情報処理装置
31 通信部
32 記憶部
33 制御部
331 記憶手段
332 取得手段
333 算出手段
334 推定手段
335 送信手段
40 サーバ
50 端末装置
60 ネットワーク
10 機器
20 検出装置
30 情報処理装置
31 通信部
32 記憶部
33 制御部
331 記憶手段
332 取得手段
333 算出手段
334 推定手段
335 送信手段
40 サーバ
50 端末装置
60 ネットワーク
Claims (10)
- 動作中に振動する機器の振動を、3次元座標系における複数の軸成分で示される物理量Aの時系列データとして取得する取得手段と、
前記物理量Aの時系列データに基づいて、軸間における前記機器の振動の偏り度合いを示す第1評価値Eを算出する算出手段と、
前記第1評価値Eに基づいて前記機器の劣化度Gを推定する推定手段と、
を備える、情報処理システム。 - 請求項1に記載の情報処理システムであって、
前記算出手段は、
前記物理量Aの時系列データの軸成分毎の分散又は標準偏差を、第1指標Bとして算出し、
前記第1指標Bの各軸成分を所定の変換処理により変換して第2指標Dを算出し、
前記第2指標Dの各軸成分の積を前記第1評価値Eとして算出する、情報処理システム。 - 請求項2に記載の情報処理システムであって、
前記算出手段は、前記変換処理において、
前記第1指標Bの各軸成分の合計に対する各軸成分の割合Cを算出し、
前記割合Cの各軸成分を、前記軸成分が0より大きく1より小さい所定値であるときに最小となり、前記軸成分が0又は1であるときに最大となるように変換して、前記第2指標Dを算出する、情報処理システム。 - 請求項1から3のいずれか一項に記載の情報処理システムであって、
前記算出手段は、互いに異なる複数の期間にそれぞれ検出された物理量Aの複数の時系列データに基づいて、前記複数の期間にそれぞれ対応する複数の第1評価値Eを算出し、
前記推定手段は、前記複数の第1評価値Eの分散又は標準偏差を第2評価値Fとして算出し、前記第2評価値Fに基づいて前記劣化度Gを推定する、情報処理システム。 - 請求項4に記載の情報処理システムであって、
前記推定手段は、前記第2評価値Fの常用対数を前記劣化度Gとする、情報処理システム。 - 動作中に振動する機器の振動を、3次元座標系における複数の軸成分で示される物理量Aの時系列データとして取得する取得手段と、
前記物理量Aの時系列データに基づいて、軸間における前記機器の振動の偏り度合いを示す第1評価値Eを算出する算出手段と、
前記第1評価値Eに基づいて前記機器の劣化度Gを推定する推定手段と、
を備える、情報処理装置。 - 動作中に振動する機器の振動を、3次元座標系における複数の軸成分で示される物理量Aの時系列データとして取得する取得手段と、前記物理量Aの時系列データに基づいて、軸間における前記機器の振動の偏り度合いを示す第1評価値Eを算出する算出手段と、前記第1評価値Eに基づいて前記機器の劣化度Gを推定する推定手段と、を備える情報処理システムを構成するために、
前記取得手段、前記算出手段、及び前記推定手段のうち少なくとも1つを備える、情報処理装置。 - 情報処理装置を、
動作中に振動する機器の振動を、3次元座標系における複数の軸成分で示される物理量Aの時系列データとして取得する取得手段と、
前記物理量Aの時系列データに基づいて、軸間における前記機器の振動の偏り度合いを示す第1評価値Eを算出する算出手段と、
前記第1評価値Eに基づいて前記機器の劣化度Gを推定する推定手段と、
として機能させる、プログラム。 - 通信可能に接続された複数の情報処理装置によって構成され、動作中に振動する機器の振動を、3次元座標系における複数の軸成分で示される物理量Aの時系列データとして取得する取得手段と、前記物理量Aの時系列データに基づいて、軸間における前記機器の振動の偏り度合いを示す第1評価値Eを算出する算出手段と、前記第1評価値Eに基づいて前記機器の劣化度Gを推定する推定手段と、を備える情報処理システムにおける、前記複数の情報処理装置のうち1つの情報処理装置を、
前記取得手段、前記算出手段、及び前記推定手段のうち少なくとも1つとして機能させる、プログラム。 - 動作中に振動する機器の振動を、3次元座標系における複数の軸成分で示される物理量Aの時系列データとして取得するステップと、
前記物理量Aの時系列データに基づいて、軸間における前記機器の振動の偏り度合いを示す第1評価値Eを算出するステップと、
前記第1評価値Eに基づいて前記機器の劣化度Gを推定するステップと、
を含む、情報処理方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/263,153 US11821783B2 (en) | 2018-07-30 | 2019-07-16 | Information processing system, information processing apparatus, program, and information processing method |
EP19845053.8A EP3832285B1 (en) | 2018-07-30 | 2019-07-16 | Information processing system, program, and information processing method |
JP2019564119A JP6718166B1 (ja) | 2018-07-30 | 2019-07-16 | 情報処理システム、情報処理装置、プログラム、及び情報処理方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018142729 | 2018-07-30 | ||
JP2018-142729 | 2018-07-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020026793A1 true WO2020026793A1 (ja) | 2020-02-06 |
Family
ID=69230660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/027977 WO2020026793A1 (ja) | 2018-07-30 | 2019-07-16 | 情報処理システム、情報処理装置、プログラム、及び情報処理方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11821783B2 (ja) |
EP (1) | EP3832285B1 (ja) |
JP (2) | JP6718166B1 (ja) |
WO (1) | WO2020026793A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116702510B (zh) * | 2023-08-01 | 2023-10-20 | 聊城市誉林工业设计有限公司 | 基于工业信息和数据处理的换向器超速性能仿真计算方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6317422U (ja) * | 1986-07-15 | 1988-02-05 | ||
JP3392552B2 (ja) * | 1994-12-08 | 2003-03-31 | 株式会社東芝 | 振動波形の識別方法と識別装置 |
JP4918291B2 (ja) * | 2006-06-16 | 2012-04-18 | 東日本旅客鉄道株式会社 | 橋梁健全度評価システム、橋梁健全度評価方法及び橋梁健全度評価プログラム |
JP2012100434A (ja) | 2010-11-02 | 2012-05-24 | Akebono Brake Ind Co Ltd | 鉄道車両用異常診断システム |
JP2012251858A (ja) | 2011-06-02 | 2012-12-20 | Tamagawa Seiki Co Ltd | 角度検出器の軸受自己診断構造および軸受診断用センサ付き角度検出器 |
US20120330614A1 (en) * | 2011-06-22 | 2012-12-27 | Honeywell International Inc. | Rule-based diagnostics apparatus and method for rotating machinery |
JP5425038B2 (ja) * | 2010-11-02 | 2014-02-26 | Jfeメカニカル株式会社 | 携帯型振動診断装置 |
JP5709794B2 (ja) * | 2012-05-10 | 2015-04-30 | 九州電力株式会社 | 鉄塔健全性評価装置及び鉄塔健全性評価方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6754569B2 (en) * | 2001-05-24 | 2004-06-22 | Simmonds Precision Products, Inc. | Method and apparatus for normalizing condition indicators |
JP3919738B2 (ja) | 2003-11-19 | 2007-05-30 | 独立行政法人科学技術振興機構 | ポンプの診断方法、コンピュータプログラム、及び、ポンプを診断するための装置 |
US7409319B2 (en) * | 2003-11-24 | 2008-08-05 | General Electric Company | Method and apparatus for detecting rub in a turbomachine |
US8803683B2 (en) | 2006-09-13 | 2014-08-12 | Trackpoint Systems, Llc | System, method, and device for measuring and reporting changing levels of liquids in storage tanks |
JP5733656B2 (ja) | 2010-11-25 | 2015-06-10 | 公立大学法人会津大学 | ジェスチャ認識装置及びジェスチャ認識方法 |
JP6222096B2 (ja) | 2012-09-19 | 2017-11-01 | 株式会社ニコン | 電子機器、及びプログラム |
JP6684673B2 (ja) * | 2016-07-19 | 2020-04-22 | オークマ株式会社 | 工作機械の主軸装置 |
JP6496061B1 (ja) * | 2018-03-30 | 2019-04-03 | オークマ株式会社 | 転がり軸受の異常診断方法及び異常診断装置 |
-
2019
- 2019-07-16 WO PCT/JP2019/027977 patent/WO2020026793A1/ja unknown
- 2019-07-16 EP EP19845053.8A patent/EP3832285B1/en active Active
- 2019-07-16 US US17/263,153 patent/US11821783B2/en active Active
- 2019-07-16 JP JP2019564119A patent/JP6718166B1/ja active Active
-
2020
- 2020-06-04 JP JP2020097920A patent/JP7016101B2/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6317422U (ja) * | 1986-07-15 | 1988-02-05 | ||
JP3392552B2 (ja) * | 1994-12-08 | 2003-03-31 | 株式会社東芝 | 振動波形の識別方法と識別装置 |
JP4918291B2 (ja) * | 2006-06-16 | 2012-04-18 | 東日本旅客鉄道株式会社 | 橋梁健全度評価システム、橋梁健全度評価方法及び橋梁健全度評価プログラム |
JP2012100434A (ja) | 2010-11-02 | 2012-05-24 | Akebono Brake Ind Co Ltd | 鉄道車両用異常診断システム |
JP5425038B2 (ja) * | 2010-11-02 | 2014-02-26 | Jfeメカニカル株式会社 | 携帯型振動診断装置 |
JP2012251858A (ja) | 2011-06-02 | 2012-12-20 | Tamagawa Seiki Co Ltd | 角度検出器の軸受自己診断構造および軸受診断用センサ付き角度検出器 |
US20120330614A1 (en) * | 2011-06-22 | 2012-12-27 | Honeywell International Inc. | Rule-based diagnostics apparatus and method for rotating machinery |
JP5709794B2 (ja) * | 2012-05-10 | 2015-04-30 | 九州電力株式会社 | 鉄塔健全性評価装置及び鉄塔健全性評価方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3832285A4 |
Also Published As
Publication number | Publication date |
---|---|
US11821783B2 (en) | 2023-11-21 |
JP2020165981A (ja) | 2020-10-08 |
EP3832285A1 (en) | 2021-06-09 |
JP6718166B1 (ja) | 2020-07-08 |
JP7016101B2 (ja) | 2022-02-04 |
US20210164829A1 (en) | 2021-06-03 |
JPWO2020026793A1 (ja) | 2020-08-06 |
EP3832285B1 (en) | 2024-02-28 |
EP3832285A4 (en) | 2022-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2012503194A (ja) | 加速度計からの測定値を処理する方法 | |
JP2016509211A (ja) | 磁力計及び加速度計を使用する角速度推定 | |
Larey et al. | Multiple inertial measurement units–an empirical study | |
CN113188505B (zh) | 姿态角度的测量方法、装置、车辆及智能臂架 | |
JP6085375B2 (ja) | 進行方向判定装置、マップマッチング装置、進行方向判定方法、およびプログラム | |
JP7016101B2 (ja) | 情報処理システム、情報処理装置、プログラム、及び情報処理方法 | |
JP5407263B2 (ja) | 相対加速度検出装置、相対加速度の検出方法およびプログラム | |
CN113936044B (zh) | 激光设备运动状态的检测方法、装置、计算机设备及介质 | |
CN118057120A (zh) | 用于估计设备姿态的方法和装置 | |
US11378377B2 (en) | Information processing apparatus, non-transitory computer-readable storage medium having stored therein information processing program, information processing system, and information processing method | |
CN111767513B (zh) | 数据处理方法及装置、电子设备和计算机可读存储介质 | |
Kannan et al. | Adaptive sensor fusion technology for mobile and wearable applications | |
CN105027037B (zh) | 使用便携式电子设备来进行用户输入 | |
JP5816879B2 (ja) | 磁気式ジャイロ | |
CN112346468A (zh) | 一种自动引导运输车运动监控方法、系统及电子设备 | |
JP6448458B2 (ja) | 回転状態算出装置 | |
EP4375618A1 (en) | Dynamic gravity vector estimation for memory constrained devices | |
JP5815866B2 (ja) | ヨーレートセンサユニットの出力信号の評価方法、及び、ヨーレートセンサユニット | |
RU2794283C1 (ru) | Способ определения ориентации объекта в бесплатформенной инерциальной навигационной системе | |
CN113927157B (zh) | 激光设备输出功率的控制方法、装置、计算机设备及介质 | |
JP6448459B2 (ja) | 回転状態算出装置 | |
JP6767326B2 (ja) | センサ信号処理方法、センサ信号処理装置、およびプログラム | |
CN118816948A (zh) | 设备参数标定方法、装置、设备及存储介质 | |
CN117740033A (zh) | 陀螺仪的标定方法、装置及电子设备 | |
CN117064376A (zh) | 一种人体失衡救助系统及其控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019564119 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19845053 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019845053 Country of ref document: EP Effective date: 20210301 |