WO2020024854A1 - 用于无线通信的电子设备和方法、计算机可读存储介质 - Google Patents

用于无线通信的电子设备和方法、计算机可读存储介质 Download PDF

Info

Publication number
WO2020024854A1
WO2020024854A1 PCT/CN2019/097451 CN2019097451W WO2020024854A1 WO 2020024854 A1 WO2020024854 A1 WO 2020024854A1 CN 2019097451 W CN2019097451 W CN 2019097451W WO 2020024854 A1 WO2020024854 A1 WO 2020024854A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
channel
electronic device
indication
multiple access
Prior art date
Application number
PCT/CN2019/097451
Other languages
English (en)
French (fr)
Inventor
崔琪楣
蔡博文
崔焘
陶小峰
Original Assignee
索尼公司
崔琪楣
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 崔琪楣 filed Critical 索尼公司
Priority to CN201980048592.5A priority Critical patent/CN112470505A/zh
Priority to US17/257,016 priority patent/US11546778B2/en
Priority to EP19845544.6A priority patent/EP3817428A4/en
Publication of WO2020024854A1 publication Critical patent/WO2020024854A1/zh
Priority to US17/994,445 priority patent/US11765600B2/en
Priority to US18/447,318 priority patent/US20230388811A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • This application relates to the field of wireless communication technologies, and in particular, to transmission technologies on unlicensed frequency bands. More specifically, it relates to electronic devices, methods, and computer-readable storage media for wireless communication.
  • User Equipment needs to perform channel detection, such as Listen Before Talk (LBT), to determine whether the unlicensed channel is idle when accessing the unlicensed frequency band. Only when the channel detection indicates that the unlicensed channel is idle can the UE successfully access the unlicensed frequency band for transmission. If the channel detection indicates that the unlicensed channel is occupied, the UE needs to randomly back off and perform the channel detection again until the channel detection indicates that the unlicensed channel is idle.
  • LBT Listen Before Talk
  • URLLC Ultra Reliable and Low Latency Communication
  • the UE After the UE accesses the unlicensed frequency band, for example, it can continuously occupy the channel for the maximum channel occupation time (Maximum Channel Occupancy Time (MCOT) length).
  • MCOT Maximum Channel Occupancy Time
  • NOMA Non-Orthogonal Multiple Access
  • an electronic device for wireless communication including: a processing circuit configured to generate whether to allow sharing with other user equipment when the user equipment successfully accesses an unlicensed frequency band; An indication of channel occupation time (COT) of the user equipment; and sending the indication to a base station or other user equipment.
  • a processing circuit configured to generate whether to allow sharing with other user equipment when the user equipment successfully accesses an unlicensed frequency band.
  • An indication of channel occupation time (COT) of the user equipment COT of channel occupation time
  • a method for wireless communication which includes: when a user equipment successfully accesses an unlicensed frequency band, generating a channel occupation time indicating whether the user equipment is allowed to share the user equipment with another user equipment And sending the instruction to a base station or other user equipment.
  • the electronic device and method according to the above aspects of the application can send an indication indicating whether the COT is allowed to be shared with other user equipment, so that other user equipment can share the COT of the user equipment, thereby improving the utilization of spectrum resources in the unlicensed frequency band and reducing Delay in small access to unlicensed bands.
  • an electronic device for wireless communication comprising: a processing circuit configured to obtain, from a user equipment that successfully accesses an unlicensed frequency band, whether or not other user equipment is allowed to share the user equipment. An indication of the channel occupancy time; and if the indication indicates that other user equipment is allowed to share the channel occupancy time of the user equipment, schedule the spectrum resource that the user equipment accesses within the channel occupancy time.
  • a method for wireless communication comprising: obtaining an indication indicating whether to allow other user equipment to share a channel occupation time of the user equipment from a user equipment that successfully accesses an unlicensed frequency band; and The indication indicates that in a case where other user equipment is allowed to share a channel occupation time of the user equipment, spectrum resources accessed by the user equipment are scheduled for the other user equipment within the channel occupation time.
  • the electronic device and method according to the above aspect of the present application enables multiple user devices to share the COT of one user device based on an indication from the user device whether or not other user devices are allowed to share their COT.
  • an electronic device for wireless communication including: a processing circuit configured to: if the user equipment successfully accesses an unlicensed frequency band, generating whether the Supports an indication of multiple handover points, where the handover point represents a handover between uplink transmission and downlink transmission; and including the indication in uplink control information to send to the base station.
  • a method for wireless communication includes: in a case where a user equipment successfully accesses an unlicensed frequency band, generating an indication indicating whether multiple switching points are supported within a maximum channel occupation time, The switching point indicates switching between uplink transmission and downlink transmission; and the indication is included in the uplink control information to send to the base station.
  • the electronic device and method according to the above aspects of the present application enable support for multiple switching points within one MCOT on an unlicensed frequency band.
  • an electronic device for wireless communication including: a processing circuit configured to obtain, from a user equipment successfully accessing an unlicensed frequency band, indicating whether multiple channels are supported within a maximum channel occupation time. An indication of a handover point, where the handover point represents a handover between uplink transmission and downlink transmission; and scheduling of a spectrum resource accessed by a user equipment within the maximum channel occupation time based on the indication.
  • a method for wireless communication including: obtaining an indication indicating whether multiple switching points are supported within a maximum channel occupation time from a user equipment that successfully accesses an unlicensed frequency band, wherein the switching The dot indicates the switching between uplink transmission and downlink transmission; and scheduling of the spectrum resource accessed by the user equipment within the maximum channel occupation time based on the indication.
  • the electronic device and method according to the above aspects of the present application enable support for multiple switching points within one MCOT on an unlicensed frequency band.
  • an electronic device for wireless communication including: a processing circuit configured to: in a case where the first non-orthogonal multiple access user equipment successfully accesses an unlicensed frequency band, Acquiring channel occupation time sharing information of the first non-orthogonal multiple access user equipment; and providing the channel occupation time sharing information to at least one second non-orthogonal multiple access user equipment to access the same spectrum resource, So that at least one second non-orthogonal multiple access user equipment accesses the spectrum resource within the channel occupation time of the first non-orthogonal multiple access user equipment without performing channel detection or performing only a simplified version of the channel Detection.
  • a method for wireless communication including: in a case where a first non-orthogonal multiple access user equipment successfully accesses an unlicensed frequency band, obtaining a first non-orthogonal multiple access Access the channel occupation time sharing information of the user equipment; and provide the channel occupation time sharing information to at least one second non-orthogonal multiple access user equipment to access the same spectrum resource so that the at least one second non-positive
  • the cross-multiple-access user equipment accesses the spectrum resource within the channel occupation time of the first non-orthogonal multiple-access user equipment without performing channel detection or performing only a simplified version of channel detection.
  • the electronic device and method according to the above aspects of the present application can implement COT sharing between non-orthogonal multiple access user equipments on unlicensed frequency bands, thereby reducing the load caused by channel detection and improving efficiency.
  • an electronic device for wireless communication including: a processing circuit configured to make a first non-orthogonal multiple access user equipment where the electronic device is located try to access through channel detection. Unlicensed frequency band; and in the case where the first non-orthogonal multiple access user equipment successfully accesses the unlicensed frequency band, it is directed to at least one second non-orthogonal through a physical direct link control channel (Physical Sidelink Control Channel, PSCCH)
  • PSCCH Physical Sidelink Control Channel
  • the multiple access user equipment sends the channel occupancy time sharing information of the first non-orthogonal multiple access user equipment, wherein at least one second non-orthogonal multiple access user equipment is based on the channel occupancy time sharing information in the first non-orthogonal multiple access user equipment.
  • the channel occupied by the cross-access multiple access user equipment accesses the same spectrum resources as the first non-orthogonal multiple-access user within the time occupied by the channel, without performing channel detection or performing only a simplified version of the channel detection.
  • a method for wireless communication including: enabling a first non-orthogonal multiple access user equipment to attempt to access an unlicensed frequency band through channel detection; and When the address access user equipment successfully accesses the unlicensed frequency band, the channel of the first non-orthogonal multiple access user equipment is sent to at least one second non-orthogonal multiple access user equipment through the physical direct link control channel. Occupied time sharing information, where at least one second non-orthogonal multiple access user accesses the first non-orthogonal based on channel occupation time shared information within the channel occupied time of the first non-orthogonal multiple access user equipment Multiple access users use the same spectrum resources without performing channel detection or performing only a simplified version of channel detection.
  • the electronic device and method according to the above aspects of the present application can implement COT sharing between non-orthogonal multiple access user equipments through PSCCH, thereby reducing the load caused by channel detection and improving efficiency.
  • FIG. 1 shows a functional module block diagram of an electronic device for wireless communication according to an embodiment of the present application
  • FIG. 2 illustrates a functional module block diagram of an electronic device for wireless communication according to another embodiment of the present application
  • FIG. 3 shows a schematic diagram of the COT of UE1 shared by UE2 and the base station
  • FIG. 4 shows a schematic diagram of the COT of UE2 sharing UE1;
  • FIG. 5 shows a schematic diagram of the COT of UE1 being shared by UE2 in a case where UE1 and UE2 are in a D2D connection;
  • FIG. 6 illustrates a functional module block diagram of an electronic device for wireless communication according to another embodiment of the present application.
  • FIG. 7 is a schematic diagram showing an example of a spectrum resource accessed by UE1 before accessing UE1 again;
  • FIG. 8 illustrates a functional module block diagram of an electronic device for wireless communication according to another embodiment of the present application.
  • FIG. 9 shows a functional module block diagram of an electronic device for wireless communication according to another embodiment of the present application.
  • FIG. 10 shows an example of the operation of each NOMA-UE in the case of simultaneous access attempts
  • FIG. 11 shows an example of the operation of each NOMA-UE in a case where access is not attempted at the same time
  • FIG. 12 illustrates a functional module block diagram of an electronic device for wireless communication according to another embodiment of the present application.
  • FIG. 13 illustrates a flowchart of a method for wireless communication according to an embodiment of the present application
  • FIG. 16 shows a flowchart of a method for wireless communication according to another embodiment of the present application.
  • FIG. 17 shows a flowchart of a method for wireless communication according to another embodiment of the present application.
  • FIG. 19 is a block diagram showing a first example of a schematic configuration of an eNB or a gNB to which the technology of the present disclosure can be applied;
  • 20 is a block diagram showing a second example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied;
  • 21 is a block diagram showing an example of a schematic configuration of a smartphone to which the technology of the present disclosure can be applied;
  • 22 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • FIG. 23 is a block diagram of an exemplary structure of a general-purpose personal computer in which a method and / or apparatus and / or system according to an embodiment of the present invention can be implemented.
  • FIG. 1 shows a functional module block diagram of an electronic device 100 for wireless communication according to an embodiment of the present application.
  • the electronic device 100 includes a generation unit 101 that successfully accesses an unlicensed frequency band at a UE.
  • the sending unit 102 is configured to send the indication to the base station or other UEs.
  • the generating unit 101 and the sending unit 102 may be implemented by one or more processing circuits, which may be implemented as chips, for example. And, it should be understood that each functional unit in the apparatus shown in FIG. 1 is only a logic module divided according to a specific function implemented by it, and is not used to limit a specific implementation manner. The same applies to examples of other electronic devices to be described later.
  • the electronic device 100 may be provided on the UE side or communicably connected to the UE, for example.
  • the electronic device 100 may be implemented at a chip level, or may also be implemented at a device level.
  • the electronic device 100 may work as a user device itself, and may also include external devices such as a memory, a transceiver (not shown in the figure), and the like.
  • the memory may be used to store programs and related data information that the user equipment needs to implement to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (for example, base stations, other user equipment, etc.), and the implementation form of the transceiver is not specifically limited here. The same applies to examples of other electronic devices to be described later.
  • the UE when the UE wants to send data, it performs channel detection such as LBT. When the LBT indicates that the channel is idle, the UE accesses the unlicensed frequency band. At this time, the UE can use the unlicensed channel to perform data transmission for the maximum time for MCOT. However, in some cases, the UE may only have a short uplink transmission burst, so it only takes less time than the MCOT. The electronic device 100 of the present application can share the remaining time in the MCOT with other UEs, thereby improving the resource utilization efficiency of the unlicensed frequency band.
  • LBT indicates that the channel is idle
  • the UE accesses the unlicensed frequency band. At this time, the UE can use the unlicensed channel to perform data transmission for the maximum time for MCOT. However, in some cases, the UE may only have a short uplink transmission burst, so it only takes less time than the MCOT.
  • the electronic device 100 of the present application can share the remaining time in the MCOT with other
  • sharing includes that other UEs access spectrum resources accessed by the UE within the COT of the UE without performing channel detection or performing only a simplified version of channel detection.
  • the UE in order to facilitate differentiation, refers to a UE that provides a shared COT, and other UEs are UEs that share the COT. For example, this UE may need to perform Cat 4 LBT when accessing unlicensed frequency bands. Other UEs may perform only 25 ⁇ s LBT or no LBT when sharing the COT of this UE, depending on the transmission between other UEs and this UE. interval.
  • the sharing may be implemented through base station scheduling, or may be implemented by the UE instructing other UEs through a side link.
  • the sending unit 102 may include the above instruction in uplink control information (Uplink Control Information) (UCI) to send to the base station.
  • UCI Uplink Control Information
  • a 1-bit information bit may be added to the UCI for the indication. When the information bit is 1, it indicates that the COT of the UE is allowed to be shared with other UEs. When the information bit is 0, it indicates that the COT of the UE is not allowed to be shared with other UEs, or the opposite is defined.
  • the COT sharing indication in the UCI may be multiplexed to send the indication, where the COT sharing indication indicates whether the base station is allowed to share the COT of the UE to send a control instruction.
  • the COT sharing indication in UCI is originally used to indicate whether the base station can share the COT of the UE to send downlink control information such as ACK / NACK for the UE.
  • the COT sharing indication is also used to indicate whether Allow other UEs to share the COT of this UE. For example, when the COT sharing instruction is set to 1, it means that the base station and other UEs are allowed to share the COT of the UE, and when the COT sharing instruction is set to 0, it means that the base station and other UEs are not allowed to share the COT of the UE, or vice versa Definition.
  • the sending unit 102 is further configured to set at least one of the MCOT duration of the UE, the maximum channel occupation deadline, priority, and time slots available for sharing
  • the information is sent to the base station. For example, this information may be included in UCI for transmission to a base station.
  • the base station uses this information to schedule the remaining COTs of the UE for other UEs and / or the base station itself.
  • the channel detection may not be performed or only a simplified version of the channel detection may be performed, thereby reducing the delay and meeting the requirements for delay-sensitive services. At the same time, the resource utilization efficiency of unlicensed frequency bands is also improved.
  • the sending unit 102 may also directly send an indication of whether to allow other UEs to share the COT to other UEs. This can be achieved, for example, by a D2D link between two UEs.
  • the sending unit 102 may include the above indication in a direct link control information (Sidelink Control Information) (SCI) to send to other UEs.
  • SCI Servicelink Control Information
  • the above-mentioned information of at least one of the MCOT duration of the UE, the maximum channel occupation cut-off time, the priority, and the time slot available for sharing may also be included in the SCI and sent to other UEs.
  • other UEs After receiving the instruction from the SCI of the UE, other UEs can determine whether the COT of the UE can be shared, and if it can be shared, access the spectrum resources of the UE within the COT of the UE for data transmission. No channel detection is performed or only a simplified version of the channel detection is performed.
  • the electronic device 100 can share the COT with other UEs by indicating whether the COT of the UE is allowed to be shared with other UEs, on the one hand, improving the spectrum efficiency of the unlicensed frequency band, and on the other hand, providing A low-latency transmission.
  • FIG. 2 shows a functional module block diagram of an electronic device 200 for wireless communication according to another embodiment of the present application.
  • the electronic device 200 includes: an obtaining unit 201 configured to be successfully accessed from A UE in an unlicensed band obtains an indication indicating whether other UEs are allowed to share the COT of the UE; and the scheduling unit 202 is configured to be another UE within the COT if the indication indicates that other UEs are allowed to share the COT of the UE. Schedule the spectrum resources that the UE accesses.
  • the obtaining unit 201 and the scheduling unit 202 may be implemented by one or more processing circuits, which may be implemented as a chip, for example. And, it should be understood that each functional unit in the apparatus shown in FIG. 2 is only a logic module divided according to a specific function implemented by it, and is not used to limit a specific implementation manner.
  • the electronic device 200 may be provided on the base station side or communicably connected to the base station.
  • the electronic device 200 may be implemented at a chip level, or may also be implemented at a device level.
  • the electronic device 200 may operate as the base station itself, and may also include external devices such as a memory, a transceiver (not shown), and the like.
  • the memory can be used to store programs and related data information that the base station needs to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (for example, user equipment, other base stations, etc.), and the implementation form of the transceiver is not specifically limited here.
  • the obtaining unit 201 obtains the instruction through UCI.
  • the indication may be represented by a 1-bit information bit added in UCI.
  • the COT sharing instruction in UCI may be multiplexed to send the instruction.
  • the COT sharing instruction is set to 1, it means that the base station and other UEs are allowed to share the COT of the UE.
  • the COT sharing instruction is set to 0, it means that the base station and other UEs are not allowed to share the COT of the UE, or the opposite is defined. .
  • the obtaining unit 201 may also obtain information of at least one of the MCOT duration, the maximum channel occupation deadline, priority, and time slots available for sharing from the UE for the scheduling unit 202 to use during scheduling.
  • the scheduling unit 202 schedules the spectrum resources accessed by the UE for the other UE or the base station within the remaining COT of the UE, the base station or other UE.
  • the spectrum resource may be accessed without performing channel detection or only performing a simplified version of channel detection.
  • the scheduling unit 202 may also be configured to indicate to other UEs to share the COT of the UE through Downlink Control Information (DCI), in other words, to notify other UEs that the time-frequency resources to be subsequently accessed have been performed.
  • DCI Downlink Control Information
  • the UE for channel detection is provided for sharing, so that other UEs do not perform channel detection or perform only a simplified version of channel detection when accessing spectrum resources within the shared COT.
  • FIG. 3 shows a schematic diagram of the COT shared by UE2 and the base station of UE1.
  • UE1 successfully accesses an unlicensed band and completes uplink transmission by executing Cat4 LBT.
  • the uplink transmission may be an autonomous uplink transmission (AUL) transmission or a scheduled uplink ( Scheduled uplink transmission (SUL) transmission.
  • AUL autonomous uplink transmission
  • SUL Scheduled uplink transmission
  • the MCOT of UE1 is not over yet, and UE1 wishes to share its COT with other UEs, so the base station is notified through, for example, an instruction included in the UCI.
  • UE1 also allows sharing its COT with the base station. Therefore, the base station accesses the spectrum resources of UE1 for downlink transmission.
  • Figure 3 shows that the base station performed 25 ⁇ s LBT before the downlink transmission, but this is only an example, and the base station may not perform LBT. Whether or not to perform LBT may depend on the interval between the uplink transmission of UE1 and the downlink transmission of the base station, for example.
  • the downlink transmission of the base station for example, sends DCI, including feedback on the uplink transmission of UE1, and control and scheduling information for UE2, or the base station may also send downlink data.
  • UE2 accesses the spectrum resource of UE1 for uplink transmission under the scheduling of the base station.
  • UE2 may perform 25 ⁇ s LBT or not perform LBT.
  • FIG. 4 shows a schematic diagram of the COT of UE1 sharing UE1.
  • the difference between FIG. 4 and FIG. 3 is that the base station does not share the COT of UE1, and the downlink scheduling of UE2 may be implemented by the base station by accessing other spectrum resources. Therefore, the hatched part in FIG. 4 indicates the time period during which no transmission is performed.
  • FIG. 5 shows a schematic diagram of sharing the COT of UE1 by UE2 in a case where UE1 and UE2 are in a D2D connection.
  • UE1 instructs UE2 to share the COT of UE1 through the SCI, so that UE2 can access the spectrum resources of UE1 and only needs to perform 25 ⁇ s LBT or not perform LBT.
  • the electronic device 200 can implement COT sharing between multiple UEs, thereby improving spectrum utilization efficiency of an unlicensed frequency band and reducing time delay.
  • FIG. 6 shows a functional module block diagram of an electronic device 300 for wireless communication according to another embodiment of the present application.
  • the electronic device 300 includes a generating unit 301 configured to successfully access the UE.
  • an indication is generated indicating whether multiple switching points are supported in the MCOT, where the switching point indicates switching between uplink transmission and downlink transmission; and the sending unit 302 is configured to include the indication in the UCI To send to the base station.
  • the generating unit 301 and the sending unit 302 may be implemented by one or more processing circuits, which may be implemented as a chip, for example.
  • the electronic device 300 may be provided on the UE side or communicably connected to the UE, for example.
  • the sending unit 302 is configured to add 1-bit information bit to the UCI for the above indication.
  • the information bit indicates that multiple switching points are supported.
  • the information bit indicates that multiple switching points are not supported, or the definition is reversed.
  • the COT sharing instruction in the UCI may also be multiplexed to send the instruction, where the COT sharing instruction indicates whether the base station is allowed to share the COT of the UE to send a control instruction. For example, when the COT sharing instruction is set to 1, it indicates that multiple switching points are supported. When the COT sharing instruction is set to 0, it indicates that multiple switching points are not supported, or the opposite definition is made.
  • the sending unit 302 also sends information of at least one of the MCOT duration of the UE, the maximum channel occupation deadline, priority, and time slots available for sharing To the base station. This information may be contained in UCI, for example.
  • the UE allows other UEs and base stations to share the COT of the UE. These UEs and base stations do not perform channel detection or execution when accessing the spectrum resources accessed by the UE. Simplified version of channel detection.
  • FIG. 7 is a schematic diagram illustrating an example of a spectrum resource accessed by UE1 before accessing UE1 again. It can be seen that after the base station performs downlink transmission, UE1 accesses spectrum resources again for uplink transmission. At this time, UE1 may not perform LBT or perform 25 ⁇ s LBT. In the example of FIG. 7, there are two switching points, but it is not limited to this, and there may be more switching points.
  • the electronic device 300 can support multiple switching points in the MCOT, thereby achieving more flexible use of spectrum resources and improving spectrum utilization efficiency.
  • FIG. 8 shows a functional module block diagram of an electronic device 400 for wireless communication according to another embodiment of the present application.
  • the electronic device 400 includes: an obtaining unit 401 configured to successfully access a non- The UE in the authorized frequency band obtains an indication indicating whether multiple switching points are supported in the MCOT, wherein the switching point indicates switching between uplink transmission and downlink transmission; and the scheduling unit 402 is configured to perform UE assignments in the MCOT based on the indication. Scheduling of access to spectrum resources.
  • the obtaining unit 401 and the scheduling unit 402 may be implemented by one or more processing circuits, which may be implemented as a chip, for example.
  • the electronic device 400 may be provided on the base station side or communicably connected to the base station, for example.
  • the indication is represented by an added 1-bit information bit in UCI. When the information bit is 1, it indicates that multiple switching points are supported. When the information bit is 0, it indicates that multiple switching points are not supported, or the definition is reversed.
  • the indication may also be represented by a COT sharing indication in UCI, where the COT sharing indication indicates whether the base station is allowed to share the COT of the UE to send a control instruction. For example, when the COT sharing instruction is set to 1, it indicates that multiple switching points are supported. When the COT sharing instruction is set to 0, it indicates that multiple switching points are not supported, or the opposite definition is made.
  • the obtaining unit 401 is further configured to obtain from the UE at least one of its MCOT duration, maximum channel occupation deadline, priority, and time slot available for sharing Information. This information may be contained in UCI, for example.
  • supporting multiple switching points means allowing multiple UEs to share the COT of one UE.
  • the scheduling unit 402 for which the UE scheduling the spectrum resource does not perform channel detection or performs a simplified version of channel detection when accessing the spectrum resource is further configured to instruct, through DCI, that the scheduled UE does not perform channel detection or performs a simplified version of channel detection when accessing the spectrum resources in the MCOT.
  • the scheduled UE may be a UE that sends an indication of supporting multiple switching points, or may be another UE.
  • the electronic device 400 can support multiple switching points in the MCOT, thereby achieving more flexible use of spectrum resources and improving spectrum utilization efficiency.
  • FIG. 9 shows a functional module block diagram of an electronic device 500 for wireless communication according to another embodiment of the present application.
  • the electronic device 500 includes: an obtaining unit 501 configured to be in the first NOMA- When the UE successfully accesses the unlicensed frequency band, the COT shared information of the first NOMA-UE is acquired; and the providing unit 502 is configured to provide the COT shared information to at least one second NOMA- to which the same spectrum resource is to be accessed.
  • UE so that at least one NOMA-UE accesses spectrum resources within the COT of the first NOMA-UE without performing channel detection or performing only a simplified version of channel detection.
  • the obtaining unit 501 and the providing unit 502 may be implemented by one or more processing circuits, which may be implemented as a chip, for example.
  • the electronic device 500 may be provided on the base station side or communicably connected to the base station, for example.
  • the NOMA architecture multiple UEs can use the same time-frequency resource for data transmission. Therefore, in an unlicensed band, when the channel detection of one UE indicates that a channel is available, other UEs using the same time-frequency resource can share the COT of the UE, that is, the UE's COT can access the same COT as the UE. Spectrum resources without performing channel detection or performing a simplified version of channel detection. It should be understood that the first NOMA-UE and the second NOMA-UE in this embodiment are only for distinguishing the NOMA-UE that provides COT sharing from the NOMA-UE that performs COT-sharing (that is, sharing the COT of other UEs). Has a sequential or other meaning.
  • the acquiring unit 501 acquires its COT shared information from the first NOMA-UE that successfully accesses the unlicensed frequency band.
  • the COT sharing information may include one or more of the following: MCOT duration, maximum channel occupation deadline, priority, and time slot available for sharing.
  • the COT shared information may be included in UCI, for example.
  • the providing unit 502 may be configured to provide the COT shared information to at least one second NOMA-UE through a physical downlink control channel (Physical Downlink Control Channel, PDCCH) or a broadcast channel.
  • PDCCH Physical Downlink Control Channel
  • the COT shared information may be included in the DCI, for example.
  • the COT shared information may be included in a broadcast message, for example.
  • At least one second NOMA-UE may attempt to access the unlicensed frequency band simultaneously with the first NOMA-UE, or may attempt to access the unlicensed frequency band after the first NOMA-UE.
  • the base station can schedule the same spectrum resource for the first NOMA-UE and at least one second NOMA-UE at the same time, or it can schedule the spectrum resource for the first NOMA-UE first, and then schedule the spectrum for at least the second NOMA-UE. Resources.
  • FIG. 10 shows an example of the operation of each NOMA-UE in the case of simultaneous access attempts.
  • a total of N UEs try to access at the same time.
  • the channel detection (LBT in FIG. 10) of the first NOMA-UE succeeds first, that is, its LBT result indicates that the channel is idle, so the first NOMA-UE successfully connects first.
  • the first NOMA-UE provides its COT shared information to the obtaining unit 501.
  • the providing unit 502 then provides the COT shared information to other NOMA-UEs, that is, at least one second NOMA-UE (shown as UE2 to UEN in FIG. 10). At least one second NOMA-UE accesses the scheduled spectrum resources according to the COT shared information, and no longer performs channel detection or performs only a simplified version of channel detection.
  • the providing unit 502 may be configured to provide at least one second NOMA-UE Provide information indicating access. After receiving the information indicating access, at least one second NOMA-UE may access the scheduled spectrum resources without performing channel detection or performing only a simplified version of channel detection. It can be seen from FIG. 10 that the MCOT of UE2 to UEN may be less than or equal to the MCOT of UE1.
  • the providing unit 502 is further configured to instruct the first NOMA-UE and at least one second NOMA-UE to set a timer, and when the timer expires, the first NOMA-UE has not successfully accessed the unlicensed frequency band.
  • at least one second NOMA-UE determines not to perform COT sharing.
  • the timing duration of the timer may be specified by the providing unit 502, for example.
  • the providing unit 502 may also set a timer on the base station side. In the case that the timer has expired when the COT shared information is received, the providing unit 502 does not provide the COT shared information to any NOMA-UE and And / or information indicating access.
  • the providing unit 502 may be further configured to indicate to the first NOMA-UE and at least one second NOMA-UE a type of channel detection to be performed.
  • the first NOMA-UE is instructed to perform a complete channel detection
  • at least one second NOMA-UE is instructed to perform a simplified version of channel detection or not perform channel detection.
  • the providing unit 502 may indicate the type of channel detection to be performed by the NOMA-UE according to its capability, or specify it randomly.
  • UE1 is instructed to perform a full LBT, and other UEs are instructed to perform 25 ⁇ s LBT or not perform LBT (that is, the LBT of UE2 to UEN in FIG. 10 may be omitted or have a different type from the LBT of UE1) .
  • at least one second NOMA-UE waits for the channel detection of the first NOMA-UE to be completed and acquires the COT shared information from the first NOMA-UE via the base station.
  • the providing unit 502 may also be configured to instruct the first NOMA-UE and at least one second NOMA-UE to set timers, and the first NOMA-UE has not yet successfully accessed when the timer expires.
  • at least one second NOMA-UE determines not to perform COT sharing.
  • the providing unit 502 may also set a timer on the base station side. When the timer expires when the COT shared information is received, the providing unit 502 does not provide the COT shared information to any NOMA-UE and And / or information indicating access. At this time, at least one second NOMA-UE performs channel detection on its own.
  • the first NOMA-UE first attempts to access the unlicensed frequency band, and at least one second NOMA-UE subsequently attempts to access the unlicensed frequency band.
  • the base station schedules the first NOMA-UE and UE at different timings. At least one second NOMA-UE.
  • FIG. 11 shows an example of the operation of each NOMA-UE when such a NOMA-UE does not attempt to access at the same time.
  • UE1 first performs LBT and successfully accesses the channel. After a period of time, UEN, UE3, UE2, and the like successively access the channel. Within the MCOT of UE1, UE2 to UEN can directly access the channel without performing LBT.
  • this embodiment also discloses a device on the NOMA-UE side.
  • the device may include a providing unit configured to provide the base station with the COT sharing information when the channel detection indicates that the channel is idle.
  • the device on the NOMA-UE side may further include an acquisition unit configured to acquire COT shared information from the base station or information indicating access so as to connect without performing channel detection or performing only a simplified version of channel detection. Into the spectrum resources.
  • the device on the NOMA-UE side further includes a timer configured to start the timer when receiving a schedule from the base station and start channel detection when the timer expires.
  • the providing unit and the obtaining unit and the timer may be implemented by one or more processing circuits, which may be implemented as a chip, for example.
  • the electronic device 500 according to this embodiment can implement COT sharing among multiple NOMA-UEs to which the same spectrum resource is scheduled.
  • FIG. 12 shows a functional module block diagram of an electronic device 600 for wireless communication according to another embodiment of the present application.
  • the electronic device 600 includes a channel detection unit 601 configured to detect The first NOMA-UE where the electronic device 600 is located attempts to access an unlicensed frequency band; and the sending unit 602 is configured to, when the first NOMA-UE successfully accesses the unlicensed frequency band, send at least one second NOMA- The UE sends the COT shared information of the first NOMA-UE, wherein at least one second NOMA-UE accesses the same spectrum resource as the first NOMA-UE within the COT of the first NOMA-UE based on the COT shared information, without Perform channel detection or only a simplified version of channel detection.
  • the channel detection unit 601 and the transmission unit 602 may be implemented by one or more processing circuits, which may be implemented as a chip, for example.
  • the electronic device 600 may be provided on the UE side or communicably connected to the UE, for example.
  • This embodiment is different from the fifth embodiment in that the first NOMA-UE sends the COT shared information to at least one second NOMA-UE through a direct link in D2D communication. Therefore, COT shared information is transmitted through the PSCCH.
  • COT shared information may be included in the SCI for transmission.
  • the COT sharing information may include one or more of the following: MCOT duration, maximum channel occupation cutoff time, priority, and time slots available for sharing.
  • the COT shared information may also include information on time-frequency resources targeted by the shared COT.
  • PSCCH transmission uses resources selected from a predetermined resource pool and the UE is allocated time-frequency resources to send or detect the PSCCH.
  • NOMA-UE detects the PSCCH, if it receives the COT shared information from UE1, it can access the corresponding time-frequency resource and start uplink transmission without performing channel detection or performing a simplified version of channel detection.
  • the electronic device 600 may further include a receiving unit 603 configured to receive shared information from the second NOMA-UE via the PSCCH, and the electronic device 600 receives the shared information based on the shared information.
  • a receiving unit 603 configured to receive shared information from the second NOMA-UE via the PSCCH, and the electronic device 600 receives the shared information based on the shared information.
  • the electronic device according to this embodiment can be applied to the two scenarios of simultaneous attempted access and different attempted accesses shown above with reference to FIGS. 10 and 11.
  • the electronic device 600 of this embodiment can implement COT sharing among multiple NOMA-UEs to which the same spectrum resource is scheduled.
  • FIG. 13 shows a flowchart of a method for wireless communication according to an embodiment of the present application.
  • the method includes: in a case where the UE successfully accesses an unlicensed frequency band, generating whether to allow and The other UE shares an indication of the COT of the UE (S11); and sends the indication to the base station or other UE (S12).
  • This method may be performed on the UE side, for example.
  • sharing includes that other UEs access spectrum resources accessed by the UE within the UE's COT without performing channel detection or performing only a simplified version of channel detection.
  • the above instruction may be included in the UCI to be sent to the base station.
  • a 1-bit information bit can be added to the UCI for the indication, or the COT sharing indication in the UCI can be reused to send the indication, where the COT sharing indication indicates whether the base station is allowed to share the UE's COT to send control signaling. .
  • information on at least one of the MCOT duration, the maximum channel occupation deadline, priority, and time slots available for sharing of the UE is sent to the base station or other User equipment. This information may be included in the UCI for transmission to the base station.
  • the foregoing indication and / or the foregoing information may be sent to other UEs through the PSCCH, for example, may be included in the SCI to be sent.
  • FIG. 14 shows a flowchart of a method for wireless communication according to another embodiment of the present application.
  • the method includes: obtaining from a UE that successfully accesses an unlicensed band to indicate whether other UEs are allowed to share An indication of the COT of the UE (S21); and in a case where the indication indicates that other UEs are allowed to share the COT of the UE, scheduling the spectrum resource accessed by the UE for the other UE within the COT (S21).
  • This method can be executed on the base station side.
  • the indication may be represented by a 1-bit information bit added in UCI.
  • the indication may be represented by multiplexing the COT sharing indication in the UCI, where the COT sharing indication indicates whether the base station is allowed to share the COT of the UE to send control signaling.
  • the method may further include: instructing other UEs to share the COT of the UE through DCI, so that other UEs do not perform channel detection when accessing spectrum resources within the COT of the UE. Or just perform a simplified version of the channel detection.
  • FIG. 15 shows a flowchart of a method for wireless communication according to another embodiment of the present application.
  • the method includes: when the user equipment successfully accesses an unlicensed frequency band, generating a representation in An indication of whether multiple handover points are supported in the MCOT (S31), where the handover point represents a handover between uplink transmission and downlink transmission; and the indication is included in the UCI to be sent to the base station (S32).
  • This method may be performed on the UE side, for example.
  • a 1-bit information bit can be added to the UCI for the indication, or the COT sharing indication in the UCI can be reused to send the indication, where the COT sharing indication indicates whether the base station is allowed to share the UE's COT to send control signaling. .
  • the above method may further include: re-accessing the spectrum resource accessed by the UE within the MCOT range under the scheduling of the base station.
  • channel detection may not be performed or a simplified version of channel detection may be performed.
  • step S32 information of at least one of the MCOT duration of the UE, the maximum channel occupation deadline, priority, and handover points is also sent to the base station. .
  • FIG. 16 shows a flowchart of a method for wireless communication according to another embodiment of the present application.
  • the method includes: acquiring from a UE that successfully accesses an unlicensed band to indicate whether it is supported in the MCOT. Indication of multiple switching points (S41), wherein the switching point indicates switching between uplink transmission and downlink transmission; and scheduling of spectrum resources accessed by the UE within the MCOT based on the indication (S42).
  • This method can be executed on the base station side.
  • the indication may be represented by a 1-bit information bit added in UCI or a COT sharing indication in UCI.
  • the above method may further include: instructing the scheduled UE through the DCI to not perform channel detection or perform a simplified version of channel detection when accessing the spectrum resource in the MCOT.
  • FIG. 17 shows a flowchart of a method for wireless communication according to another embodiment of the present application.
  • the method includes: in a case where the first NOMA-UE successfully accesses an unlicensed frequency band, Acquiring the COT sharing information of the first NOMA-UE (S51); and providing the COT sharing information to at least one second NOMA-UE to access the same spectrum resource, so that at least one second NOMA-UE
  • the COMA of the NOMA-UE accesses the spectrum resource without performing channel detection or performing only a simplified version of channel detection (S52).
  • This method can be executed on the base station side.
  • the COT shared information may be provided to at least one second NOMA-UE through a PDCCH or a broadcast channel.
  • the COT sharing information may include one or more of the following: MCOT duration, maximum channel occupation cutoff time, priority, and time slots available for sharing.
  • the first NOMA-UE and at least one second NOMA-UE simultaneously attempt to access an unlicensed frequency band.
  • the first NOMA-UE and at least one second NOMA-UE may be instructed to perform a type of channel detection to be performed, wherein the first NOMA-UE is instructed to perform a completed channel detection and at least one second NOMA-UE is instructed to perform A simplified version of channel detection or no channel detection is performed.
  • the above method may further include: instructing the first NOMA-UE and at least one second NOMA-UE to set a timer, and when the timer expires, the first NOMA-UE has not successfully accessed unauthorized access In the case of a frequency band, at least one second NOMA-UE determines not to perform channel occupation time sharing.
  • FIG. 18 shows a flowchart of a method for wireless communication according to another embodiment of the present application.
  • the method includes: making a first NOMA-UE attempt to access an unlicensed frequency band through channel detection ( S61); and in the case where the first NOMA-UE successfully accesses an unlicensed frequency band, the COT sharing information of the first NOMA-UE is sent to at least one second NOMA-UE through the PSCCH (S62), where at least one second The NOMA-UE accesses the same spectrum resource as the first NOMA-UE in the COT of the first NOMA-UE based on the COT shared information, without performing channel detection or performing only a simplified version of the channel detection.
  • This method may be performed on the UE side, for example.
  • the COT sharing information may include one or more of the following: MCOT duration, maximum channel occupation deadline, priority, and time slots available for sharing.
  • the technology of the present disclosure can be applied to various products.
  • the electronic devices 200, 400, and 500 may be implemented as various base stations.
  • a base station can be implemented as any type of evolved Node B (eNB) or gNB (5G base station).
  • the eNB includes, for example, a macro eNB and a small eNB.
  • a small eNB may be an eNB covering a cell smaller than a macro cell, such as a pico eNB, a pico eNB, and a home (femto) eNB. The same can be said for gNB.
  • the base station may be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • BTS base transceiver station
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRH) provided at a place different from the main body.
  • a main body also referred to as a base station device
  • RRH remote wireless headends
  • various types of user equipment can work as a base station by temporarily or semi-persistently performing a base station function.
  • the electronic devices 100, 300, and 600 may be implemented as various user devices.
  • the user equipment may be implemented as a mobile terminal such as a smartphone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable / dongle-type mobile router, and a digital camera device, or a vehicle-mounted terminal such as a car navigation device.
  • the user equipment may also be implemented as a terminal (also called a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) mounted on each of the terminals described above.
  • FIG. 19 is a block diagram showing a first example of a schematic configuration of an eNB or a gNB to which the technology of the present disclosure can be applied. Note that the following description takes the eNB as an example, but the same applies to the gNB.
  • the eNB 800 includes one or more antennas 810 and a base station device 820.
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna), and is used for the base station apparatus 820 to transmit and receive wireless signals.
  • the eNB 800 may include multiple antennas 810.
  • multiple antennas 810 may be compatible with multiple frequency bands used by eNB 800.
  • FIG. 19 shows an example in which the eNB 800 includes a plurality of antennas 810, the eNB 800 may also include a single antenna 810.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 820. For example, the controller 821 generates a data packet according to data in a signal processed by the wireless communication interface 825, and transmits the generated packet via the network interface 823. The controller 821 may bundle data from multiple baseband processors to generate a bundled packet, and pass the generated bundled packet. The controller 821 may have a logical function that performs control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 822 includes a RAM and a ROM, and stores programs executed by the controller 821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
  • the controller 821 may communicate with a core network node or another eNB via the network interface 823.
  • the eNB 800 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface.
  • the network interface 823 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 823 is a wireless communication interface, compared to a frequency band used by the wireless communication interface 825, the network interface 823 can use a higher frequency band for wireless communication.
  • the wireless communication interface 825 supports any cellular communication scheme such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to a terminal located in a cell of an eNB 800 via an antenna 810.
  • the wireless communication interface 825 may generally include, for example, a baseband (BB) processor 826 and an RF circuit 827.
  • the BB processor 826 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and execute layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)).
  • L1 Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • the BB processor 826 may have a part or all of the above-mentioned logic functions.
  • the BB processor 826 may be a memory storing a communication control program, or a module including a processor and related circuits configured to execute the program. Updating the program can change the function of the BB processor 826.
  • the module may be a card or a blade inserted into a slot of the base station device 820. Alternatively, the module may be a chip mounted on a card or a blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 810.
  • the wireless communication interface 825 may include a plurality of BB processors 826.
  • multiple BB processors 826 may be compatible with multiple frequency bands used by eNB 800.
  • the wireless communication interface 825 may include a plurality of RF circuits 827.
  • multiple RF circuits 827 may be compatible with multiple antenna elements.
  • FIG. 19 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827.
  • the transceivers of the electronic devices 200, 400, and 500 may be implemented by the wireless communication interface 825. At least a part of the functions may also be implemented by the controller 821.
  • the controller 821 may implement the functions of the acquisition unit 201 and the scheduling unit 202 to share the COT of the UE that has successfully accessed the unlicensed band, and may perform the functions of the acquisition unit 401 and the scheduling unit 402 to support the MCOT.
  • COT sharing between multiple NOMA-UEs can be implemented by performing the functions of the obtaining unit 501 and the providing unit 502.
  • the eNB 830 includes one or more antennas 840, a base station device 850, and an RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via an RF cable.
  • the base station equipment 850 and the RRH 860 may be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for RRH860 to transmit and receive wireless signals.
  • the eNB 830 may include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 20 shows an example in which the eNB 830 includes a plurality of antennas 840, the eNB 830 may also include a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports any cellular communication scheme such as LTE and LTE-Advanced, and provides wireless communication to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may generally include, for example, a BB processor 856.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 19 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 may include a plurality of BB processors 856.
  • multiple BB processors 856 may be compatible with multiple frequency bands used by the eNB 830.
  • FIG. 20 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may also include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station equipment 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module for communication in the above-mentioned high-speed line connecting the base station equipment 850 (wireless communication interface 855) to the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station equipment 850.
  • the connection interface 861 may also be a communication module for communication in the above-mentioned high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may generally include, for example, an RF circuit 864.
  • the RF circuit 864 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may include a plurality of RF circuits 864.
  • multiple RF circuits 864 may support multiple antenna elements.
  • FIG. 20 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may include a single RF circuit 864.
  • the transceivers of the electronic devices 200, 400, and 500 may be implemented by the wireless communication interface 825. At least a part of the functions may also be implemented by the controller 821.
  • the controller 821 may implement the functions of the acquisition unit 201 and the scheduling unit 202 to share the COT of the UE that has successfully accessed the unlicensed band, and may perform the functions of the acquisition unit 401 and the scheduling unit 402 to support the MCOT.
  • COT sharing between multiple NOMA-UEs can be implemented by performing the functions of the obtaining unit 501 and the providing unit 502.
  • FIG. 21 is a block diagram showing an example of a schematic configuration of a smartphone 900 to which the technology of the present disclosure can be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, a camera device 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more An antenna switch 915, one or more antennas 916, a bus 917, a battery 918, and an auxiliary controller 919.
  • the processor 901 may be, for example, a CPU or a system on chip (SoC), and controls functions of an application layer and another layer of the smartphone 900.
  • the memory 902 includes a RAM and a ROM, and stores data and programs executed by the processor 901.
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting external devices such as a memory card and a universal serial bus (USB) device to the smartphone 900.
  • the imaging device 906 includes an image sensor such as a charge-coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 907 may include a set of sensors such as a measurement sensor, a gyroscope sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts a sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives an operation or information input from a user.
  • the display device 910 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts an audio signal output from the smartphone 900 into a sound.
  • the wireless communication interface 912 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 912 may generally include, for example, a BB processor 913 and an RF circuit 914.
  • the BB processor 913 can perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 914 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 916. Note that although the figure shows the case where one RF link is connected to one antenna, this is only schematic and also includes the case where one RF link is connected to multiple antennas through multiple phase shifters.
  • the wireless communication interface 912 may be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG. 21, the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914. Although FIG. 21 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914.
  • the wireless communication interface 912 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 912 may include a BB processor 913 and an RF circuit 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches a connection destination of the antenna 916 between a plurality of circuits included in the wireless communication interface 912 (for example, circuits for different wireless communication schemes).
  • Each of the antennas 916 includes a single or multiple antenna elements, such as multiple antenna elements included in a MIMO antenna, and is used for the wireless communication interface 912 to transmit and receive wireless signals.
  • the smartphone 900 may include a plurality of antennas 916.
  • FIG. 21 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may also include a single antenna 916.
  • the smartphone 900 may include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, the memory 902, the storage device 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other connection.
  • the battery 918 supplies power to each block of the smartphone 900 shown in FIG. 21 via a feeder, and the feeder is partially shown as a dotted line in the figure.
  • the auxiliary controller 919 operates, for example, a minimum necessary function of the smartphone 900 in the sleep mode.
  • the transceivers of the electronic devices 100, 300, and 600 may be implemented by the wireless communication interface 912. At least a part of the functions may also be implemented by the processor 901 or the auxiliary controller 919.
  • the processor 901 or the auxiliary controller 919 may implement the function of allowing the other UEs to share the COT of the UE by executing the functions of the generating unit 101 and the sending unit 102, and may support the MCOT by performing the functions of the generating unit 301 and the sending unit 302.
  • COT sharing between multiple NOMA-UEs can be implemented by performing the functions of the channel detection unit 601 and the sending unit 602.
  • FIG. 22 is a block diagram showing an example of a schematic configuration of a car navigation device 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and a wireless device.
  • the processor 921 may be, for example, a CPU or a SoC, and controls navigation functions and other functions of the car navigation device 920.
  • the memory 922 includes a RAM and a ROM, and stores data and programs executed by the processor 921.
  • the GPS module 924 uses a GPS signal received from a GPS satellite to measure the position (such as latitude, longitude, and altitude) of the car navigation device 920.
  • the sensor 925 may include a set of sensors such as a gyroscope sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 926 is connected to, for example, an in-vehicle network 941 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 927 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 930, and receives an operation or information input from a user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may generally include, for example, a BB processor 934 and an RF circuit 935.
  • the BB processor 934 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 937.
  • the wireless communication interface 933 may also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935.
  • FIG. 22 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935.
  • the wireless communication interface 933 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 between a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or multiple antenna elements, such as multiple antenna elements included in a MIMO antenna, and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • the car navigation device 920 may include a plurality of antennas 937.
  • FIG. 22 shows an example in which the car navigation device 920 includes a plurality of antennas 937, the car navigation device 920 may also include a single antenna 937.
  • the car navigation device 920 may include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 22 via a feeder, which is partially shown as a dotted line in the figure.
  • the battery 938 accumulates power supplied from the vehicle.
  • the transceivers of the electronic devices 100, 300, and 600 may be implemented by the wireless communication interface 912. At least a part of the functions may also be implemented by the processor 901 or the auxiliary controller 919.
  • the processor 901 or the auxiliary controller 919 may implement the function of allowing the other UEs to share the COT of the UE by executing the functions of the generating unit 101 and the sending unit 102, and may support the MCOT by performing the functions of the generating unit 301 and the sending unit 302.
  • COT sharing between multiple NOMA-UEs can be implemented by performing the functions of the channel detection unit 601 and the sending unit 602.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 940 including one or more of a car navigation device 920, an in-vehicle network 941, and a vehicle module 942.
  • vehicle module 942 generates vehicle data such as vehicle speed, engine speed, and failure information, and outputs the generated data to the in-vehicle network 941.
  • the present invention also provides a program product that stores a machine-readable instruction code.
  • the instruction code is read and executed by a machine, the method according to the embodiment of the present invention may be executed.
  • a storage medium for a program product carrying the above-mentioned storage machine-readable instruction code is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • a computer for example, a general-purpose computer 2300 shown in FIG. 23
  • a program constituting the software from a storage medium or a network.
  • Various programs are installed on the computer It can perform various functions, etc.
  • a central processing unit (CPU) 2301 performs various processes according to a program stored in a read only memory (ROM) 2302 or a program loaded from a storage section 2308 to a random access memory (RAM) 2303.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 2301 performs various processes and the like is also stored as necessary.
  • the CPU 2301, the ROM 2302, and the RAM 2303 are connected to each other via a bus 2304.
  • An input / output interface 2305 is also connected to the bus 2304.
  • the following components are connected to the input / output interface 2305: input section 2306 (including keyboard, mouse, etc.), output section 2307 (including displays such as cathode ray tubes (CRT), liquid crystal displays (LCD), etc., and speakers, etc.),
  • the storage section 2308 (including a hard disk, etc.) and the communication section 2309 (including a network interface card such as a LAN card, a modem, etc.).
  • the communication section 2309 performs communication processing via a network such as the Internet.
  • the driver 2310 can also be connected to the input / output interface 2305 as needed.
  • Removable media 2311 such as magnetic disks, optical disks, magneto-optical disks, semiconductor memories, etc. are installed on the drive 2310 as needed, so that the computer programs read out therefrom are installed into the storage section 2308 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as a removable medium 2311.
  • a storage medium is not limited to the removable medium 2311 shown in FIG. 23 in which the program is stored and distributed separately from the device to provide the program to the user.
  • the removable medium 2311 include a magnetic disk (including a floppy disk (registered trademark)), an optical disk (including a compact disk read-only memory (CD-ROM) and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered Trademark)) and semiconductor memory.
  • the storage medium may be a hard disk or the like included in the ROM 2302, the storage portion 2308, and the like, in which programs are stored, and are distributed to users along with the devices containing them.
  • each component or each step can be disassembled and / or recombined.
  • These decompositions and / or recombinations should be considered as equivalent solutions of the present invention.
  • the steps for performing the series of processes described above can be performed naturally in chronological order in accordance with the described order, but need not necessarily be performed in chronological order. Certain steps can be performed in parallel or independently of each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了用于无线通信的电子设备、方法和计算机可读存储介质,一种电子设备包括:处理电路,被配置为:在用户设备成功接入非授权频段的情况下,生成表示是否允许与其他用户设备共享该用户设备的信道占用时间的指示;以及将该指示发送至基站或其他用户设备。 (图1)

Description

用于无线通信的电子设备和方法、计算机可读存储介质
本申请要求于2018年7月31日提交中国专利局、申请号为201810867254.1、发明名称为“用于无线通信的电子设备和方法、计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,具体地涉及非授权频段上的传输技术。更具体地,涉及用于无线通信的电子设备、方法以及计算机可读存储介质。
背景技术
用户设备(User Equipment,UE)在接入非授权频段需要执行信道检测比如先听后说(Listen Before Talk,LBT)以确定非授权信道是否空闲。在信道检测指示非授权信道空闲的情况下,UE才能成功接入非授权频段来进行传输。如果信道检测指示非授权信道被占用,则UE需要随机回退并再次执行信道检测,直到信道检测指示非授权信道空闲。但是,对于一些延迟敏感的场景比如超可靠低延时通信(Ultra Reliable and Low Latency Communication,URLLC),这是不合适的。
在UE接入非授权频段后,例如可以持续占用信道达最大信道占用时间(Maximum Channel Occupancy Time,MCOT)的长度。
此外,在非正交多址接入(Non-Orthogonal Multiple Access,NOMA)架构中,多个UE可以接入相同的时频资源。
发明内容
在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论 述的更详细描述的前序。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:在用户设备成功接入非授权频段的情况下,生成表示是否允许与其他用户设备共享该用户设备的信道占用时间(Channel Occupancy Time,COT)的指示;以及将该指示发送至基站或其他用户设备。
根据本申请的另一个方面,提供了一种用于无线通信的方法,包括:在用户设备成功接入非授权频段的情况下,生成表示是否允许与其他用户设备共享该用户设备的信道占用时间的指示;以及将该指示发送至基站或其他用户设备。
根据本申请的上述方面的电子设备和方法能够通过发送表示是否允许与其他用户设备共享COT的指示,使得其他用户设备能够共享本用户设备的COT,从而提高非授权频段的频谱资源利用率,减小接入非授权频段的时延。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:从成功接入非授权频段的用户设备获取表示是否允许其他用户设备共享该用户设备的信道占用时间的指示;以及在该指示表示允许其他用户设备共享该用户设备的信道占用时间的情况下,在所述信道占用时间内为其他用户设备调度该用户设备所接入的频谱资源。
根据本申请的一个方面,提供了一种用于无线通信的方法,包括:从成功接入非授权频段的用户设备获取表示是否允许其他用户设备共享该用户设备的信道占用时间的指示;以及在该指示表示允许其他用户设备共享该用户设备的信道占用时间的情况下,在所述信道占用时间内为其他用户设备调度该用户设备所接入的频谱资源。
根据本申请的上述方面的电子设备和方法通过基于来自用户设备的表示是否允许其他用户设备共享其COT的指示,使得多个用户设备能够共享一个用户设备的COT。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:在用户设备成功接入非授权频段的情况下, 生成表示在最大信道占用时间内是否支持多个切换点的指示,其中,切换点表示上行传输和下行传输之间的切换;以及将该指示包括在上行控制信息中,以发送至基站。
根据本申请的一个方面,提供了一种用于无线通信的方法,包括:在用户设备成功接入非授权频段的情况下,生成表示在最大信道占用时间内是否支持多个切换点的指示,其中,切换点表示上行传输和下行传输之间的切换;以及将该指示包括在上行控制信息中,以发送至基站。
根据本申请的上述方面的电子设备和方法使得能够支持非授权频段上的一个MCOT内的多个切换点。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:从成功接入非授权频段的用户设备获取表示在最大信道占用时间内是否支持多个切换点的指示,其中,切换点表示上行传输和下行传输之间的切换;以及基于该指示在所述最大信道占用时间内进行用户设备所接入的频谱资源的调度。
根据本申请的一个方面,提供了一种用于无线通信的方法,包括:从成功接入非授权频段的用户设备获取表示在最大信道占用时间内是否支持多个切换点的指示,其中,切换点表示上行传输和下行传输之间的切换;以及基于该指示在所述最大信道占用时间内进行用户设备所接入的频谱资源的调度。
根据本申请的上述方面的电子设备和方法使得能够支持非授权频段上的一个MCOT内的多个切换点。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:在第一非正交多址接入用户设备成功接入非授权频段的情况下,获取第一非正交多址接入用户设备的信道占用时间共享信息;以及将信道占用时间共享信息提供给要接入相同的频谱资源的至少一个第二非正交多址接入用户设备,以使得至少一个第二非正交多址接入用户设备在第一非正交多址接入用户设备的信道占用时间内接入所述频谱资源而不执行信道检测或仅执行简化版本的信道检测。
根据本申请的一个方面,提供了一种用于无线通信的方法,包括:在第一非正交多址接入用户设备成功接入非授权频段的情况下,获取第 一非正交多址接入用户设备的信道占用时间共享信息;以及将信道占用时间共享信息提供给要接入相同的频谱资源的至少一个第二非正交多址接入用户设备,以使得至少一个第二非正交多址接入用户设备在第一非正交多址接入用户设备的信道占用时间内接入所述频谱资源而不执行信道检测或仅执行简化版本的信道检测。
根据本申请的上述方面的电子设备和方法能够实现非授权频段上非正交多址接入用户设备之间的COT共享,从而减轻了信道检测所引起的负荷,提高了效率。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:通过信道检测使得电子设备所在的第一非正交多址接入用户设备尝试接入非授权频段;以及在第一非正交多址接入用户设备成功接入非授权频段的情况下,通过物理直通链路控制信道(Physical Sidelink Control Channel,PSCCH)向至少一个第二非正交多址接入用户设备发送第一非正交多址接入用户设备的信道占用时间共享信息,其中,至少一个第二非正交多址接入用户基于信道占用时间共享信息在第一非正交多址接入用户设备的信道占用时间内接入与第一非正交多址接入用户相同的频谱资源,而不执行信道检测或仅执行简化版本的信道检测。
根据本申请的一个方面,提供了一种用于无线通信的方法,包括:通过信道检测使得第一非正交多址接入用户设备尝试接入非授权频段;以及在第一非正交多址接入用户设备成功接入非授权频段的情况下,通过物理直通链路控制信道向至少一个第二非正交多址接入用户设备发送第一非正交多址接入用户设备的信道占用时间共享信息,其中,至少一个第二非正交多址接入用户基于信道占用时间共享信息在第一非正交多址接入用户设备的信道占用时间内接入与第一非正交多址接入用户相同的频谱资源,而不执行信道检测或仅执行简化版本的信道检测。
根据本申请的上述方面的电子设备和方法能够通过PSCCH实现非正交多址接入用户设备之间的COT共享,从而减轻了信道检测所引起的负荷,提高了效率。
依据本发明的其它方面,还提供了用于实现上述用于无线通信的方 法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述用于无线通信的方法的计算机程序代码的计算机可读存储介质。
通过以下结合附图对本发明的优选实施例的详细说明,本发明的这些以及其他优点将更加明显。
附图说明
为了进一步阐述本发明的以上和其它优点和特征,下面结合附图对本发明的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本发明的典型示例,而不应看作是对本发明的范围的限定。在附图中:
图1示出了根据本申请的一个实施例的用于无线通信的电子设备的功能模块框图;
图2示出了根据本申请的另一个实施例的用于无线通信的电子设备的功能模块框图;
图3示出了UE2和基站共享UE1的COT的一个示意图;
图4示出了UE2共享UE1的COT的一个示意图;
图5示出了UE1和UE2处于D2D连接中的情况下,UE2共享UE1的COT的一个示意图;
图6示出了根据本申请的另一个实施例的用于无线通信的电子设备的功能模块框图;
图7示出了UE1再次接入UE1之前所接入的频谱资源的一个示例的示意图;
图8示出了根据本申请的另一个实施例的用于无线通信的电子设备的功能模块框图;
图9示出了根据本申请的另一个实施例的用于无线通信的电子设备的功能模块框图;
图10示出了同时尝试接入的情况下,各个NOMA-UE的操作的示例;
图11示出了不同时尝试接入的情况下,各个NOMA-UE的操作的示例;
图12示出了根据本申请的另一个实施例的用于无线通信的电子设备的功能模块框图;
图13示出了根据本申请的一个实施例的用于无线通信的方法的流程图;
图14示出了根据本申请的另一个实施例的用于无线通信的方法的流程图;
图15示出了根据本申请的另一个实施例的用于无线通信的方法的流程图;
图16示出了根据本申请的另一个实施例的用于无线通信的方法的流程图;
图17示出了根据本申请的另一个实施例的用于无线通信的方法的流程图;
图18示出了根据本申请的另一个实施例的用于无线通信的方法的流程图;
图19是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图;
图20是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图;
图21是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图22是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图;以及
图23是其中可以实现根据本发明的实施例的方法和/或装置和/或系统的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
<第一实施例>
图1示出了根据本申请的一个实施例的用于无线通信的电子设备100的功能模块框图,如图1所示,该电子设备100包括:生成单元101,在UE成功接入非授权频段的情况下,生成表示是否允许与其他UE共享该UE的COT的指示;以及发送单元102,被配置为将该指示发送至基站或其他UE。
其中,生成单元101和发送单元102可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。并且,应该理解,图1中所示的装置中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。这同样适用于随后要描述的其他电子设备的示例。
电子设备100例如可以设置在UE侧或者可通信地连接到UE。这里,还应指出,电子设备100可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备100可以工作为用户设备本身,并且还可以包括诸如存储器、收发器(图中未示出)等外部设备。存储器可以用于存储用户设备实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,基站、其他用户设备等等)间的通信,这里不具体限制收发器的实现形式。这同样适用于随后要描述的其他电子设备的示例。
在非授权频段上,在UE要发送数据的情况下,其执行信道检测比如LBT,当LBT指示信道空闲时,UE接入非授权频段。此时,UE可以使用非授权信道进行最长时间为MCOT的数据传输。但是,在一些情况下,UE可能只有很短的上行传输突发,从而只需要占用短于MCOT的时间。本申请的电子设备100可以将该MCOT中剩余的时间共享给其他UE,从而提高了非授权频段的资源利用效率。
例如,共享包括其他UE在本UE的COT内接入本UE所接入的频谱资源而不执行信道检测或仅执行简化版本的信道检测。在本申请中,为了便于区分,本UE指的是提供共享COT的UE,其他UE是共享该COT的UE。例如,本UE在接入非授权频段时,可能需要执行Cat 4 LBT,其他UE在共享本UE的COT时可以仅执行25μs LBT或者不执行LBT,这取决于其他UE与本UE之间的传输间隔。该共享可以通过基站调度来实现,也可以由本UE通过直通链路(sidelink)指示其他UE来实现。
在一个示例中,发送单元102可以将上述指示包含在上行控制信息(Uplink Control Information,UCI)中,以发送至基站。例如,可以在UCI中增加1比特信息位来用于该指示。当该信息位为1时,表示允许与其他UE共享本UE的COT,当该信息位为0时,表示不允许与其他UE共享本UE的COT,或者进行相反的定义。或者,可以复用UCI中的COT共享指示来发送所述指示,其中,COT共享指示表示是否允许基站共享UE的COT来发送控制指令。即,UCI中的COT共享指示本来用于指示基站是否能够共享本UE的COT来发送下行控制信息比如针对本UE的ACK/NACK等,在本实施例中,该COT共享指示还用于指示是否允许其他UE共享本UE的COT。例如,当该COT共享指示设置为1时,表示允许基站和其他UE共享本UE的COT,当该COT共享指示设置为0时,表示不允许基站和其他UE共享本UE的COT,或者进行相反的定义。
此外,在允许与其他UE共享本UE的COT的情况下,发送单元102还被配置为将本UE的MCOT持续时段、最大信道占用截止时间、优先级、可用于共享的时隙中的至少一个的信息发送至基站。例如,这些信息可以包括在UCI中以发送至基站。基站使用这些信息为其他UE以及/或者基站本身调度本UE的剩余COT。基站和/或其他UE在本UE的COT内接入本UE的频谱资源时,可以不执行信道检测或者仅执行简化 版本的信道检测,从而能够降低延迟,满足对延时敏感的业务的需求,同时也提高了非授权频段的资源利用效率。
在另一个示例中,发送单元102还可以将是否允许其他UE共享COT的指示直接发送给其他UE。例如,可以通过在两个UE之间的D2D链接来实现这一点。发送单元102可以将上述指示包括在直通链路控制信息(Sidelink Control Information,SCI)中发送给其他UE。此外,以上所述的本UE的MCOT持续时段、最大信道占用截止时间、优先级、可用于共享的时隙中的至少一个的信息也可以包括在SCI中发送给其他UE。其他UE在接收到来自本UE的SCI中的指示之后,可以确定是否能够共享本UE的COT,并且在能够共享的情况下,在本UE的COT内接入本UE的频谱资源进行数据传输而不执行信道检测或者仅执行简化版本的信道检测。
综上所述,根据本实施例的电子设备100能够通过表示是否允许与其他UE共享本UE的COT的指示与其他UE共享COT,一方面提高了非授权频段的频谱效率,另一方面提供了一种低延迟传输的方式。
<第二实施例>
图2示出了根据本申请的另一个实施例的用于无线通信的电子设备200的功能模块框图,如图2所示,该电子设备200包括:获取单元201,被配置为从成功接入非授权频段的UE获取表示是否允许其他UE共享本UE的COT的指示;以及调度单元202,被配置为在所述指示表示允许其他UE共享本UE的COT的情况下,在COT内为其他UE调度本UE所接入的频谱资源。
类似地,获取单元201和调度单元202可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。并且,应该理解,图2中所示的装置中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。
电子设备200可以设置在基站侧或者可通信地连接到基站。这里,还应指出,电子设备200可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备200可以工作为基站本身,并且还可以包括诸如存储器、收发器(未示出)等外部设备。存储器可以用于存储基站实现 各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,用户设备、其他基站等等)间的通信,这里不具体限制收发器的实现形式。
在一个示例中,获取单元201通过UCI来获取所述指示。例如,该指示可以用UCI中增加的1比特信息位来表示。该该信息位为1时,表示允许与其他UE共享本UE的COT,当该信息位为0时,表示不允许与其他UE共享本UE的COT,或者进行相反的定义。或者,与第一实施例中类似地,也可以复用UCI中的COT共享指示来发送所述指示。当该COT共享指示设置为1时,表示允许基站和其他UE共享本UE的COT,当该COT共享指示设置为0时,表示不允许基站和其他UE共享本UE的COT,或者进行相反的定义。
此外,获取单元201还可以从UE获取该UE的MCOT持续时段、最大信道占用截止时间、优先级、可用于共享的时隙中的至少一个的信息,以供调度单元202在调度时使用。
在上述指示表示允许其他UE和/或者基站共享本UE的COT的情况下,调度单元202例如在本UE的剩余COT内为其他UE或基站调度本UE所接入的频谱资源,基站或其他UE可以不执行信道检测或者仅执行简化版本的信道检测而接入该频谱资源。
此外,调度单元202还可以被配置为通过下行控制信息(Downlink Control Information,DCI)向其他UE指示要共享本UE的COT,换言之,通知其他UE随后要接入的时频资源是由已经进行了信道检测的UE提供用于共享的,以使得其他UE在所共享的COT内接入频谱资源时不执行信道检测或者仅执行简化版本的信道检测。
为了便于理解,图3示出了UE2和基站共享UE1的COT的一个示意图。如图3所示,UE1通过执行Cat 4 LBT而成功接入非授权频段并完成上行传输,该上行传输可以是自发上行链路(Autonomous uplink transmission,AUL)传输,也可以是调度上行链路(Scheduled uplink transmission,SUL)传输。此时,UE1的MCOT还没有结束,UE1希望与其他UE共享其COT,因此例如通过UCI中包括的指示来通知基站。在图3所示的示例中,UE1还允许与基站共享其COT。因此,基站接入UE1的频谱资源来进行下行传输,图3中示出了基站在进行下行传输之 前执行了25μs LBT,但是这仅是一个示例,基站也可以不执行LBT。是否执行LBT例如可以取决于UE1的上行传输与基站的下行传输之间的间隔。基站的下行传输例如发送DCI,包括对UE1的上行传输的反馈以及对UE2的控制和调度信息等,或者,基站也可以发送下行数据。接下来,UE2在基站的调度下接入UE1的频谱资源来进行上行传输。类似地,UE2可以执行25μsLBT或者不执行LBT。
此外,图4示出了UE2共享UE1的COT的一个示意图。图4与图3的区别在于基站不共享UE1的COT,UE2的下行调度可能是基站通过接入其他频谱资源来实现的,因此图4中的斜线填充部分表示没有执行传输的时间段。
图5示出了UE1和UE2处于D2D连接中的情况下,UE2共享UE1的COT的一个示意图。在该示例中,UE1通过SCI指示UE2可以共享UE1的COT,以使得UE2可以接入UE1的频谱资源而仅需执行25μs LBT或者不执行LBT。
根据本实施例的电子设备200能够实现多个UE之间的COT共享,从而提高了非授权频段的频谱利用效率,并减小了时延。
<第三实施例>
图6示出了根据本申请的另一个实施例的用于无线通信的电子设备300的功能模块框图,如图6所示,电子设备300包括:生成单元301,被配置为在UE成功接入非授权频段的情况下,生成表示在MCOT内是否支持多个切换点的指示,其中,切换点表示上行传输和下行传输之间的切换;以及发送单元302,被配置为将该指示包括在UCI中,以发送至基站。
类似地,生成单元301和发送单元302可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。电子设备300例如可以设置在UE侧或者可通信地连接到UE。
这里,通过在MCOT内支持多个切换点,可以实现更灵活的传输。在一个示例中,发送单元302被配置为在UCI中增加1比特信息位来用于上述指示。该该信息位为1时,表示支持多个切换点,该信息位为0 时,表示不支持多个切换点,或者进行相反的定义。另外,也可以复用UCI中的COT共享指示来发送该指示,其中,COT共享指示表示是否允许基站共享UE的COT来发送控制指令。例如,当该COT共享指示设置为1时,表示支持多个切换点,当该COT共享指示设置为0时,表示不支持多个切换点,或者进行相反的定义。
在所述指示表示在MCOT内支持多个切换点的情况下,发送单元302还将UE的MCOT持续时段、最大信道占用截止时间、优先级、可用于共享的时隙中的至少一个的信息发送至基站。这些信息例如可以包含在UCI中。
当所述指示表示支持多个切换点时,同时意味着本UE允许其他UE和基站共享本UE的COT,这些UE和基站在接入本UE所接入的频谱资源时不执行信道检测或者执行简化版本的信道检测。
此外,在基站的调度下,除了其他UE,本UE也可以在MCOT范围内再次接入本UE所接入的频谱资源。本UE再次接入该频谱资源时不执行信道检测或者执行简化版本的信道检测。图7示出了UE1再次接入UE1之前所接入的频谱资源的一个示例的示意图。可以看出,在基站执行完下行传输之后,UE1再次接入频谱资源进行上行传输,此时UE1可以不执行LBT或者执行25μs LBT。在图7的示例中,存在两个切换点,但是并不限于此,还可以存在更多的切换点。
根据本实施例的电子设备300可以支持在MCOT内存在多个切换点,从而实现对频谱资源的更灵活的使用,提高频谱利用效率。
<第四实施例>
图8示出了根据本申请的另一个实施例的用于无线通信的电子设备400的功能模块框图,如图8所示,电子设备400包括:获取单元401,被配置为从成功接入非授权频段的UE获取表示在MCOT内是否支持多个切换点的指示,其中,切换点表示上行传输和下行传输之间的切换;以及调度单元402,被配置为基于该指示在MCOT内进行UE所接入的频谱资源的调度。
类似地,获取单元401和调度单元402可以由一个或多个处理电路 实现,该处理电路例如可以实现为芯片。电子设备400例如可以设置在基站侧或者可通信地连接到基站。
在一个示例中,所述指示用UCI中增加的1比特信息位来表示。该该信息位为1时,表示支持多个切换点,该信息位为0时,表示不支持多个切换点,或者进行相反的定义。另外,所述指示也可以用UCI中的COT共享指示来表示,其中,COT共享指示表示是否允许基站共享UE的COT来发送控制指令。例如,当该COT共享指示设置为1时,表示支持多个切换点,当该COT共享指示设置为0时,表示不支持多个切换点,或者进行相反的定义。
此外,在所述指示表示支持多个切换点的情况下,获取单元401还被配置为从UE获取其MCOT持续时段、最大信道占用截止时间、优先级、可用于共享的时隙中的至少一个的信息。这些信息例如可以包含在UCI中。
如第三实施例中所述,支持多个切换点意味着允许多个UE共享一个UE的COT。相应地,调度单元402为其调度所述频谱资源的UE在接入该频谱资源时不执行信道检测或者执行简化版本的信道检测。例如,调度单元402还被配置为通过DCI来指示被调度的UE在MCOT内接入频谱资源时不执行信道检测或者执行简化版本的信道检测。此外,如图7所示,被调度的UE可以是发送支持多个切换点的指示的UE,也可以是其他UE。
根据本实施例的电子设备400能够支持MCOT内的多个切换点,从而实现对频谱资源的更灵活的使用,提高频谱利用效率。
<第五实施例>
图9示出了根据本申请的另一个实施例的用于无线通信的电子设备500的功能模块框图,如图9所示,电子设备500包括:获取单元501,被配置为在第一NOMA-UE成功接入非授权频段的情况下,获取第一NOMA-UE的COT共享信息;以及提供单元502,被配置为将COT共享信息提供给要接入相同的频谱资源的至少一个第二NOMA-UE,以使得至少一个NOMA-UE在第一NOMA-UE的COT内接入频谱资源而不执行信道检测或者仅执行简化版本的信道检测。
类似地,获取单元501和提供单元502可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。电子设备500例如可以设置在基站侧或者可通信地连接到基站。
如前所述,在NOMA架构中,多个UE可以使用相同的时频资源进行数据传输。因此,在非授权频段中,当一个UE的信道检测指示信道可用时,使用相同的时频资源的其他UE可以共享该UE的COT,即在该UE的COT内可以接入与该UE相同的频谱资源而不执行信道检测或者执行简化版本的信道检测。应该理解,本实施例中的第一NOMA-UE和第二NOMA-UE仅是为了区分提供COT共享的NOMA-UE与执行COT-共享(即共享其他UE的COT)的NOMA-UE,并不具有顺序上的或其他方面的含义。
相应地,获取单元501从成功接入非授权频段的第一NOMA-UE获取其COT共享信息。在一个示例中,COT共享信息可以包括如下中的一个或多个:MCOT持续时段、最大信道占用截止时间、优先级、可用于共享的时隙。COT共享信息例如可以包括在UCI中。
其中,提供单元502可以被配置为通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)或者广播信道向至少一个第二NOMA-UE提供COT共享信息。当通过PDCCH提供COT共享信息时,该COT共享信息例如可以包含在DCI中。当通过广播信道提供COT共享信息时,该COT共享信息例如可以包括在广播消息中。
其中,至少一个第二NOMA-UE可以与第一NOMA-UE同时尝试接入非授权频段,也可以在第一NOMA-UE之后尝试接入非授权频段。换言之,基站可以同时为第一NOMA-UE与至少一个第二NOMA-UE调度相同的频谱资源,也可以先为第一NOMA-UE调度该频谱资源,随后为至少第二NOMA-UE调度该频谱资源。
在至少一个第二NOMA-UE与第一NOMA-UE同时尝试接入非授权频段的情况下,这些NOMA-UE例如可以同时执行信道检测。为了便于理解,图10示出了同时尝试接入的情况下,各个NOMA-UE的操作的示例。在图10中,共有N个UE同时尝试接入。
非限定性地,例如第一NOMA-UE(图10中示出为UE1)的信道检测(图10中为LBT)首先成功,即其LBT结果指示信道空闲,从而 第一NOMA-UE首先成功接入非授权频段,根据本实施例,第一NOMA-UE将其COT共享信息提供给获取单元501。提供单元502随后将该COT共享信息提供给其他NOMA-UE,即至少一个第二NOMA-UE(图10中示出为UE2至UEN)。至少一个第二NOMA-UE根据该COT共享信息接入所调度的频谱资源而不再执行信道检测或者仅执行简化版本的信道检测。
此外,这里虽然示出了提供单元502向至少一个第二NOMA-UE提供COT共享信息的示例,但是并不限于此,替代地,提供单元502还可以被配置为向至少一个第二NOMA-UE提供指示接入的信息。至少一个第二NOMA-UE在接收到该指示接入的信息后,可以接入所调度的频谱资源而不再执行信道检测或者仅执行简化版本的信道检测。从图10中可以看出,UE2至UEN的MCOT可以小于或者等于UE1的MCOT。
为了进一步提高效率,提供单元502还被配置为指示第一NOMA-UE和至少一个第二NOMA-UE设置定时器,在定时器期满时第一NOMA-UE还未成功接入非授权频段的情况下,至少一个第二NOMA-UE确定不进行COT共享。换言之,在定时器期满后,至少一个第二NOMA-UE不再共享其他NOMA-UE的COT。其中,定时器的定时时长例如可以由提供单元502进行指定。此外,为了实现这一功能,还可以由提供单元502在基站侧设置定时器,在接收到COT共享信息时定时器已经过期的情况下,提供单元502不向任何NOMA-UE提供COT共享信息以及/或者指示接入的信息。
作为另一个示例,提供单元502还可以被配置为向第一NOMA-UE和至少一个第二NOMA-UE指示其要执行的信道检测的类型。其中,第一NOMA-UE被指示执行完整的信道检测,至少一个第二NOMA-UE被指示执行简化版本的信道检测或者不执行信道检测。其中,提供单元502可以根据NOMA-UE的能力指示其要执行的信道检测的类型,或者随机地指定。
仍然参照图10的示例,例如UE1被指示执行完整的LBT,其他UE被指示执行25μs LBT或者不执行LBT(即图10中的UE2至UEN的LBT可以省略或者与UE1的LBT具有不同的类型)。在这种情况下,至少一个第二NOMA-UE等待第一NOMA-UE的信道检测完成并经由基站获取来自第一NOMA-UE的COT共享信息。
类似地,为了进一步提高效率,提供单元502也可以被配置为指示第一NOMA-UE和至少一个第二NOMA-UE设置定时器,在定时器期满时第一NOMA-UE还未成功接入非授权频段的情况下,至少一个第二NOMA-UE确定不进行COT共享。或者,为了实现这一功能,还可以由提供单元502在基站侧设置定时器,在接收到COT共享信息时定时器已经过期的情况下,提供单元502不向任何NOMA-UE提供COT共享信息以及/或者指示接入的信息。此时,至少一个第二NOMA-UE自行执行信道检测。
在另一种场景下,第一NOMA-UE首先尝试接入非授权频段,至少一个第二NOMA-UE随后尝试接入非授权频段,换言之,基站在不同的定时处调度第一NOMA-UE和至少一个第二NOMA-UE。图11示出了这种NOMA-UE不同时尝试接入的情况下,各个NOMA-UE的操作的示例。
在图11的示例中,UE1首先进行LBT并成功接入信道,在经过一段时间之后,UEN、UE3和UE2等相继要接入信道。在UE1的MCOT内,UE2至UEN可以不执行LBT而直接接入信道。
相应地,本实施例也公开了一种NOMA-UE侧的装置,该装置可以包括提供单元,被配置为在信道检测指示信道空闲的情况下向基站提供COT共享信息。此外,该NOMA-UE侧的装置还可以包括获取单元,被配置为获取来自基站的COT共享信息或者指示接入的信息,以在不执行信道检测或者仅执行简化版本的信道检测的情况下接入频谱资源。
在一个示例中,该NOMA-UE侧的装置还包括定时器,被配置为在接收到来自基站的调度时启动定时器并且在定时器期满时启动信道检测。
类似地,提供单元和获取单元以及定时器均可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。
根据本实施例的电子设备500能够实现被调度了相同的频谱资源的多个NOMA-UE之间的COT共享。
<第六实施例>
图12示出了根据本申请的另一个实施例的用于无线通信的电子设备600的功能模块框图,如图12所示,电子设备600包括:信道检测单元601,被配置为通过信道检测使得电子设备600所在的第一NOMA-UE尝试接入非授权频段;以及发送单元602,被配置为在第一NOMA-UE成功接入非授权频段的情况下,通过PSCCH向至少一个第二NOMA-UE发送第一NOMA-UE的COT共享信息,其中,至少一个第二NOMA-UE基于该COT共享信息在第一NOMA-UE的COT内接入与第一NOMA-UE相同的频谱资源,而不执行信道检测或者仅执行简化版本的信道检测。
类似地,信道检测单元601和发送单元602可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。电子设备600例如可以设置在UE侧或者可通信地连接到UE。
该实施例与第五实施例的区别在于,第一NOMA-UE通过D2D通信中的直通链路向至少一个第二NOMA-UE发送COT共享信息。因此,COT共享信息通过PSCCH进行传输。
例如,COT共享信息可以包括在SCI中进行传输。例如,COT共享信息可以包括如下中的一个或多个:MCOT持续时段、最大信道占用截止时间、优先级、可用于共享的时隙。此外,COT共享信息还可以包括该共享的COT所针对的时频资源的信息。
在D2D场景中,PSCCH传输使用从预定资源池中选择的资源并且UE被分配时频资源用来发送或检测PSCCH。当至少一个第二NOMA-UE检测PSCCH时,如果接收到来自UE1的COT共享信息,则可以接入相应的时频资源开始上行传输而不执行信道检测或者执行简化版本的信道检测。
此外,如图12中的虚线框所示,电子设备600还可以包括:接收单元603,被配置为经由PSCCH接收来自第二NOMA-UE的共享信息,并且,电子设备600基于该共享信息来接入频谱资源而不执行信道检测或者仅执行简化版本的信道检测。根据本实施例的电子设备能够应用于以上参照图10和图11所示的同时尝试接入和不同时尝试接入的两种场景。
本实施例的电子设备600能够实现被调度了相同的频谱资源的多个 NOMA-UE之间的COT共享。
<第七实施例>
在上文的实施方式中描述用于无线通信的电子设备的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于无线通信的电子设备的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,用于无线通信的电子设备的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的用于无线通信的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用用于无线通信的电子设备的硬件和/或固件。
图13示出了根据本申请的一个实施例的用于无线通信的方法的流程图,如图13所示,该方法包括:在UE成功接入非授权频段的情况下,生成表示是否允许与其他UE共享该UE的COT的指示(S11);以及将该指示发送至基站或其他UE(S12)。该方法例如可以在UE侧执行。
例如,共享包括其他UE在该UE的COT内接入该UE所接入的频谱资源而不执行信道检测或仅执行简化版本的信道检测。
其中,上述指示可以包含在UCI中,以发送至基站。例如,可以在UCI中增加1比特信息位来用于该指示,也可以复用UCI中的COT共享指示来发送该指示,其中COT共享指示表示是否允许基站共享该UE的COT来发送控制信令。
此外,在允许与其他UE共享该UE的COT的情况下,将该UE的MCOT持续时段、最大信道占用截止时间、优先级、可用于共享的时隙中的至少一个的信息发送至基站或其他用户设备。这些信息可以包括在UCI中以发送给基站。
在另一个示例中,上述指示以及/或者上述信息可以通过PSCCH发送给其他UE,例如可以包括在SCI中进行发送。
图14示出了根据本申请的另一个实施例的用于无线通信的方法的流程图,如图14所示,该方法包括:从成功接入非授权频段的UE获取表示是否允许其他UE共享该UE的COT的指示(S21);以及在该指示 表示允许其他UE共享所述UE的COT的情况下,在COT内为所述其他UE调度所述UE所接入的频谱资源(S21)。该方法可以在基站侧执行。
例如,所述指示可以用UCI中增加的1比特信息位表示。或者,该指示可以通过复用UCI中的COT共享指示来表示,其中,COT共享指示表示是否允许基站共享该UE的COT来发送控制信令。
此外,虽然图14中未示出,该方法还可以包括:通过DCI向其他UE指示要共享所述UE的COT,以使得其他UE在所述UE的COT内接入频谱资源时不执行信道检测或仅执行简化版本的信道检测。
图15示出了根据本申请的另一个实施例的用于无线通信的方法的流程图,如图15所示,该方法包括:在用户设备成功接入非授权频段的情况下,生成表示在MCOT内是否支持多个切换点的指示(S31),其中,切换点表示上行传输和下行传输之间的切换;以及将该指示包括在UCI中,以发送至基站(S32)。该方法例如可以在UE侧执行。
例如,可以在UCI中增加1比特信息位来用于该指示,也可以复用UCI中的COT共享指示来发送该指示,其中COT共享指示表示是否允许基站共享该UE的COT来发送控制信令。
虽然图15中未示出,上述方法还可以包括:在基站的调度下,在MCOT范围内再次接入UE所接入的频谱资源。在再次接入所述频谱资源时可以不执行信道检测或者执行简化版本的信道检测。
在所述指示表示在MCOT内支持多个切换点的情况下,在步骤S32中还将UE的MCOT持续时段、最大信道占用截止时间、优先级、切换点中的至少一种的信息发送至基站。
图16示出了根据本申请的另一个实施例的用于无线通信的方法的流程图,如图16所示,该方法包括:从成功接入非授权频段的UE获取表示在MCOT内是否支持多个切换点的指示(S41),其中,切换点表示上行传输和下行传输之间的切换;以及基于该指示在MCOT内进行所述UE所接入的频谱资源的调度(S42)。该方法可以在基站侧执行。
类似地,该指示可以用UCI中增加的1比特信息位表示,或者用UCI中的COT共享指示来表示。
此外,上述方法还可以包括:通过DCI指示被调度的UE在MCOT内接入所述频谱资源时不执行信道检测或者执行简化版本的信道检测。
图17示出了根据本申请的另一个实施例的用于无线通信的方法的流程图,如图17所示,该方法包括:在第一NOMA-UE成功接入非授权频段的情况下,获取第一NOMA-UE的COT共享信息(S51);以及将该COT共享信息提供给要接入相同的频谱资源的至少一个第二NOMA-UE,以使得至少一个第二NOMA-UE在第一NOMA-UE的COT内接入所述频谱资源而不执行信道检测或仅执行简化版本的信道检测(S52)。该方法可以在基站侧执行。
在步骤S52中,可以通过PDCCH或广播信道向至少一个第二NOMA-UE提供COT共享信息。例如,COT共享信息可以包括如下中的一个或多个:MCOT持续时段、最大信道占用截止时间、优先级、可用于共享的时隙。
在一个示例中,第一NOMA-UE和至少一个第二NOMA-UE同时尝试接入非授权频段。可以向第一NOMA-UE和至少一个第二NOMA-UE指示其要执行的信道检测的类型,其中,第一NOMA-UE被指示执行完成的信道检测,至少一个第二NOMA-UE被指示执行简化版本的信道检测或者不执行信道检测。
虽然图中未示出,上述方法还可以包括:指示第一NOMA-UE和至少一个第二NOMA-UE设置定时器,在该定时器期满时第一NOMA-UE还未成功接入非授权频段的情况下,至少一个第二NOMA-UE确定不进行信道占用时间共享。
图18示出了根据本申请的另一个实施例的用于无线通信的方法的流程图,如图18所示,该方法包括:通过信道检测使得第一NOMA-UE尝试接入非授权频段(S61);以及在第一NOMA-UE成功接入非授权频段的情况下,通过PSCCH向至少一个第二NOMA-UE发送第一NOMA-UE的COT共享信息(S62),其中,至少一个第二NOMA-UE基于COT共享信息在第一NOMA-UE的COT内接入与第一NOMA-UE相同的频谱资源,而不执行信道检测或仅执行简化版本的信道检测。该方法例如可以在UE侧执行。
例如,COT共享信息可以包括如下中的一个或多个:MCOT持续 时段、最大信道占用截止时间、优先级、可用于共享的时隙。
注意,上述各个方法可以结合或单独使用,其细节在第一至第六实施例中已经进行了详细描述,在此不再重复。
本公开内容的技术能够应用于各种产品。
例如,电子设备200、400和500可以被实现为各种基站。基站可以被实现为任何类型的演进型节点B(eNB)或gNB(5G基站)。eNB例如包括宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。对于gNB也可以由类似的情形。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,各种类型的用户设备均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
电子设备100、300和600可以被实现为各种用户设备。用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[关于基站的应用示例]
(第一应用示例)
图19是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图。注意,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发 送和接收无线信号。如图19所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图19示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀 片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图19所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图19所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图19示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
在图19所示的eNB 800中,电子设备200、400和500的收发器可以由无线通信接口825实现。功能的至少一部分也可以由控制器821实现。例如,控制器821可以通过执行获取单元201和调度单元202的功能来实现已成功接入非授权频段的UE的COT的共享,可以通过执行获取单元401和调度单元402的功能来支持MCOT内的多个切换点,可以通过执行获取单元501和提供单元502的功能实现多个NOMA-UE之间的COT共享。
(第二应用示例)
图20是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图。注意,类似地,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图20所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图20示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图19描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图19描述的BB处理器826相同。如图20所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图20示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图20所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图20示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图20所示的eNB 830中,电子设备200、400和500的收发器可以由无线通信接口825实现。功能的至少一部分也可以由控制器821实现。例如,控制器821可以通过执行获取单元201和调度单元202的功能来实现已成功接入非授权频段的UE的COT的共享,可以通过执行获取单元401和调度单元402的功能来支持MCOT内的多个切换点,可以通过执行获取单元501和提供单元502的功能实现多个NOMA-UE之间的COT共享。
[关于用户设备的应用示例]
(第一应用示例)
图21是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。注意,图中虽然示出了一个RF链路与一个天线连接的情形,但是这仅是示意性的,还包括一个RF链路通过多个移相器与多个天线连接的情形。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图21所示,无线通信接口 912可以包括多个BB处理器913和多个RF电路914。虽然图21示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图21所示,智能电话900可以包括多个天线916。虽然图21示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图21所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图21所示的智能电话900中,电子设备100、300和600的收发器可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过执行生成单元101和发送单元102的功能来实现允许其他UE共享本UE的COT的功能,可以通过执行生成单元301和发送单元302的功能来支持MCOT内的多个切换点,可以通过执行信道检测单元601和发送单元602的功能来实现多个NOMA-UE之间的COT共享。
(第二应用示例)
图22是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图22所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图22示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路 935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图22所示,汽车导航设备920可以包括多个天线937。虽然图22示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图22所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图22示出的汽车导航设备920中,电子设备100、300和600的收发器可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过执行生成单元101和发送单元102的功能来实现允许其他UE共享本UE的COT的功能,可以通过执行生成单元301和发送单元302的功能来支持MCOT内的多个切换点,可以通过执行信道检测单元601和发送单元602的功能来实现多个NOMA-UE之间的COT共享。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的 是,对本领域的技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本发明的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
而且,本发明还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本发明的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图23所示的通用计算机2300)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图23中,中央处理单元(CPU)2301根据只读存储器(ROM)2302中存储的程序或从存储部分2308加载到随机存取存储器(RAM)2303的程序执行各种处理。在RAM 2303中,也根据需要存储当CPU 2301执行各种处理等等时所需的数据。CPU 2301、ROM 2302和RAM 2303经由总线2304彼此连接。输入/输出接口2305也连接到总线2304。
下述部件连接到输入/输出接口2305:输入部分2306(包括键盘、鼠标等等)、输出部分2307(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分2308(包括硬盘等)、通信部分2309(包括网络接口卡比如LAN卡、调制解调器等)。通信部分2309经由网络比如因特网执行通信处理。根据需要,驱动器2310也可连接到输入/输出接口2305。可移除介质2311比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器2310上,使得从中读出的计算机程序根据需要被安装到存储部分2308中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质2311安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图23所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质 2311。可移除介质2311的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 2302、存储部分2308中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本发明的装置、方法和系统中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本发明的实施例,但是应当明白,上面所描述的实施方式只是用于说明本发明,而并不构成对本发明的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本发明的实质和范围。因此,本发明的范围仅由所附的权利要求及其等效含义来限定。

Claims (38)

  1. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    在用户设备成功接入非授权频段的情况下,生成表示是否允许与其他用户设备共享所述用户设备的信道占用时间的指示;以及
    将所述指示发送至基站或所述其他用户设备。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为将所述指示包含在上行控制信息中,以发送至所述基站。
  3. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为在允许与所述其他用户设备共享所述用户设备的信道占用时间的情况下,将所述用户设备的最大信道占用时间持续时段、最大信道占用截止时间、优先级、可用于共享的时隙中的至少一个的信息发送至所述基站或所述其他用户设备。
  4. 根据权利要求2所述的电子设备,其中,所述处理电路被配置为在所述上行控制信息中增加1比特信息位来用于所述指示。
  5. 根据权利要求2所述的电子设备,其中,所述处理电路被配置为复用所述上行控制信息中的信道占用时间共享指示来发送所述指示,其中所述信道占用时间共享指示表示是否允许所述基站共享所述用户设备的信道占用时间来发送控制信令。
  6. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为通过物理直通链路控制信道将所述指示发送至所述其他用户设备。
  7. 根据权利要求3所述的电子设备,其中,所述处理电路被配置为将所述信息包括在上行控制信息中,以发送给所述基站。
  8. 根据权利要求3所述的电子设备,其中,所述处理电路被配置为将所述信息包括在直通链路控制信息中,以发送给所述其他用户设备。
  9. 根据权利要求1所述的电子设备,其中,所述共享包括所述其他用户设备在所述用户设备的信道共享时间内接入所述用户设备所接入的频谱资源而不执行信道检测或仅执行简化版本的信道检测。
  10. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    从成功接入非授权频段的用户设备获取表示是否允许其他用户设备共享所述用户设备的信道占用时间的指示;以及
    在所述指示表示允许其他用户设备共享所述用户设备的信道占用时间的情况下,在所述信道占用时间内为所述其他用户设备调度所述用户设备所接入的频谱资源。
  11. 根据权利要求10所述的电子设备,其中,所述指示用上行控制信息中增加的1比特信息位表示。
  12. 根据权利要求10所述的电子设备,其中,所述指示通过复用上行控制信息中的信道占用时间共享指示来表示,其中所述信道占用时间共享指示表示是否允许基站共享所述用户设备的信道占用时间来发送控制信令。
  13. 根据权利要求10所述的电子设备,其中,所述处理电路还被配置为通过下行控制信息向所述其他用户设备指示要共享所述用户设备的信道占用时间,以使得所述其他用户设备在所述用户设备的信道占用时间内接入所述频谱资源时不执行信道检测或仅执行简化版本的信道检测。
  14. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    在用户设备成功接入非授权频段的情况下,生成表示在最大信道占用时间内是否支持多个切换点的指示,其中,切换点表示上行传输和下行传输之间的切换;以及
    将所述指示包括在上行控制信息中,以发送至基站。
  15. 根据权利要求14所述的电子设备,其中,所述处理电路被配置为在所述上行控制信息中增加1比特信息位来用于所述指示。
  16. 根据权利要求14所述的电子设备,其中,所述处理电路被配置为复用所述上行控制信息中的信道占用时间共享指示来发送所述指示,其中所述信道占用时间共享指示表示是否允许所述基站共享所述用户设 备的信道占用时间来发送控制信令。
  17. 根据权利要求14所述的电子设备,其中,所述处理电路被配置为在所述基站的调度下,在所述最大信道占用时间范围内再次接入所述用户设备所接入的频谱资源。
  18. 根据权利要求17所述的电子设备,其中,所述处理电路被配置为在再次接入所述频谱资源时不执行信道检测或者执行简化版本的信道检测。
  19. 根据权利要求14所述的电子设备,其中,所述处理电路还被配置为在所述指示表示在最大信道占用时间内支持多个切换点的情况下,将所述用户设备的最大信道占用时间持续时段、最大信道占用截止时间、优先级、切换点中的至少一种的信息发送至所述基站。
  20. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    从成功接入非授权频段的用户设备获取表示在最大信道占用时间内是否支持多个切换点的指示,其中,切换点表示上行传输和下行传输之间的切换;以及
    基于所述指示在所述最大信道占用时间内进行所述用户设备所接入的频谱资源的调度。
  21. 根据权利要求20所述的电子设备,其中,所述指示用上行控制信息中增加的1比特信息位来表示。
  22. 根据权利要求20所述的电子设备,其中,所述指示用上行控制信息中的信道占用时间共享指示来表示,其中所述信道占用时间共享指示表示是否允许所述基站共享所述用户设备的信道占用时间来发送控制信令。
  23. 根据权利要求20所述的电子设备,其中,所述处理电路还被配置为通过下行控制信息指示被调度的用户设备在所述最大信道占用时间内接入所述频谱资源时不执行信道检测或者执行简化版本的信道检测。
  24. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    在第一非正交多址接入用户设备成功接入非授权频段的情况下,获取所述第一非正交多址接入用户设备的信道占用时间共享信息;以及
    将所述信道占用时间共享信息提供给要接入相同的频谱资源的至少一个第二非正交多址接入用户设备,以使得所述至少一个第二非正交多址接入用户设备在所述第一非正交多址接入用户设备的信道占用时间内接入所述频谱资源而不执行信道检测或仅执行简化版本的信道检测。
  25. 根据权利要求24所述的电子设备,其中,所述处理电路被配置为通过物理下行控制信道或广播信道向所述至少一个第二非正交多址接入用户设备提供所述信道占用时间共享信息。
  26. 根据权利要求24所述的电子设备,其中,所述信道占用时间共享信息包括如下中的一个或多个:最大信道占用时间持续时段、最大信道占用截止时间、优先级、可用于共享的时隙。
  27. 根据权利要求24所述的电子设备,其中,所述第一非正交多址接入用户设备和所述至少一个第二非正交多址接入用户设备同时尝试接入所述非授权频段。
  28. 根据权利要求27所述的电子设备,其中,所述处理电路还被配置成向所述第一非正交多址接入用户设备和所述至少一个第二非正交多址接入用户设备指示其要执行的信道检测的类型,其中,所述第一非正交多址接入用户设备被指示执行完整的信道检测,所述至少一个第二非正交多址接入用户设备被指示执行简化版本的信道检测或者不执行信道检测。
  29. 根据权利要求27所述的电子设备,其中,所述处理电路还被配置为指示所述第一非正交多址接入用户设备和所述至少一个第二非正交多址接入用户设备设置定时器,在所述定时器期满时所述第一非正交多址接入用户设备还未成功接入非授权频段的情况下,所述至少一个第二非正交多址接入用户设备确定不进行信道占用时间共享。
  30. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    通过信道检测使得所述电子设备所在的第一非正交多址接入用户设备尝试接入非授权频段;以及
    在所述第一非正交多址接入用户设备成功接入所述非授权频段的情况下,通过物理直通链路控制信道向至少一个第二非正交多址接入用户设备发送所述第一非正交多址接入用户设备的信道占用时间共享信息,其中,所述至少一个第二非正交多址接入用户设备基于所述信道占用时间共享信息在所述第一非正交多址接入用户设备的信道占用时间内接入与所述第一非正交多址接入用户设备相同的频谱资源,而不执行信道检测或仅执行简化版本的信道检测。
  31. 根据权利要求30所述的电子设备,其中,所述信道占用时间共享信息包括如下中的一个或多个:最大信道占用时间持续时段、最大信道占用截止时间、优先级、可用于共享的时隙。
  32. 一种用于无线通信的方法,包括:
    在用户设备成功接入非授权频段的情况下,生成表示是否允许与其他用户设备共享所述用户设备的信道占用时间的指示;以及
    将所述指示发送至基站或所述其他用户设备。
  33. 一种用于无线通信的方法,包括:
    从成功接入非授权频段的用户设备获取表示是否允许其他用户设备共享所述用户设备的信道占用时间的指示;以及
    在所述指示表示允许其他用户设备共享所述用户设备的信道占用时间的情况下,在所述信道占用时间内为所述其他用户设备调度所述用户设备所接入的频谱资源。
  34. 一种用于无线通信的方法,包括:
    在用户设备成功接入非授权频段的情况下,生成表示在最大信道占用时间内是否支持多个切换点的指示,其中,切换点表示上行传输和下行传输之间的切换;以及
    将所述指示包括在上行控制信息中,以发送至基站。
  35. 一种用于无线通信的方法,包括:
    从成功接入非授权频段的用户设备获取表示在最大信道占用时间内是否支持多个切换点的指示,其中,切换点表示上行传输和下行传输之间的切换;以及
    基于所述指示在所述最大信道占用时间内进行所述用户设备所接入的频谱资源的调度。
  36. 一种用于无线通信的方法,包括:
    在第一非正交多址接入用户设备成功接入非授权频段的情况下,获取所述第一非正交多址接入用户设备的信道占用时间共享信息;以及
    将所述信道占用时间共享信息提供给要接入相同的频谱资源的至少一个第二非正交多址接入用户设备,以使得所述至少一个第二非正交多址接入用户设备在所述第一非正交多址接入用户设备的信道占用时间内接入所述频谱资源而不执行信道检测或仅执行简化版本的信道检测。
  37. 一种用于无线通信的方法,包括:
    通过信道检测使得第一非正交多址接入用户设备尝试接入非授权频段;以及
    在所述第一非正交多址接入用户设备成功接入所述非授权频段的情况下,通过物理直通链路控制信道向至少一个第二非正交多址接入用户设备发送所述第一非正交多址接入用户设备的信道占用时间共享信息,其中,所述至少一个第二非正交多址接入用户设备基于所述信道占用时间共享信息在所述第一非正交多址接入用户设备的信道占用时间内接入与所述第一非正交多址接入用户设备相同的频谱资源,而不执行信道检测或仅执行简化版本的信道检测。
  38. 一种计算机可读存储介质,其上存储有计算机可执行指令,当所述计算机可执行指令被执行时,执行根据权利要求32至37中任意一项所述的用于无线通信的方法。
PCT/CN2019/097451 2018-07-31 2019-07-24 用于无线通信的电子设备和方法、计算机可读存储介质 WO2020024854A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980048592.5A CN112470505A (zh) 2018-07-31 2019-07-24 用于无线通信的电子设备和方法、计算机可读存储介质
US17/257,016 US11546778B2 (en) 2018-07-31 2019-07-24 Electronic device and method for wireless communication and computer-readable storage medium
EP19845544.6A EP3817428A4 (en) 2018-07-31 2019-07-24 ELECTRONIC DEVICE AND METHOD FOR WIRELESS COMMUNICATION AND COMPUTER-READABLE STORAGE MEDIUM
US17/994,445 US11765600B2 (en) 2018-07-31 2022-11-28 Electronic device and method for wireless communication and computer-readable storage medium
US18/447,318 US20230388811A1 (en) 2018-07-31 2023-08-10 Electronic device and method for wireless communication and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810867254.1A CN110784874A (zh) 2018-07-31 2018-07-31 用于无线通信的电子设备和方法、计算机可读存储介质
CN201810867254.1 2018-07-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/257,016 A-371-Of-International US11546778B2 (en) 2018-07-31 2019-07-24 Electronic device and method for wireless communication and computer-readable storage medium
US17/994,445 Continuation US11765600B2 (en) 2018-07-31 2022-11-28 Electronic device and method for wireless communication and computer-readable storage medium

Publications (1)

Publication Number Publication Date
WO2020024854A1 true WO2020024854A1 (zh) 2020-02-06

Family

ID=69231424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097451 WO2020024854A1 (zh) 2018-07-31 2019-07-24 用于无线通信的电子设备和方法、计算机可读存储介质

Country Status (4)

Country Link
US (3) US11546778B2 (zh)
EP (1) EP3817428A4 (zh)
CN (2) CN110784874A (zh)
WO (1) WO2020024854A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021255673A1 (en) * 2020-06-17 2021-12-23 Lenovo (Singapore) Pte. Ltd. Channel occupancy time sharing
WO2022026141A1 (en) * 2020-07-30 2022-02-03 Qualcomm Incorporated Channel occupancy time (cot) sharing propagation
WO2022040650A1 (en) * 2020-08-18 2022-02-24 Qualcomm Incorporated Limiting spatial range of channel occupancy sharing in unlicensed spectrum via hop counting
WO2022087551A1 (en) * 2020-10-19 2022-04-28 Qualcomm Incorporated Channel occupancy time sharing aware resource selection for unlicensed cv2x communications
WO2022115836A1 (en) * 2020-11-24 2022-06-02 Qualcomm Incorporated Listen before talk based resource modification and reduced channel occupancy time sharing signaling for sidelink communication in unlicensed spectrum
WO2022132505A1 (en) * 2020-12-15 2022-06-23 Qualcomm Incorporated Cot-sharing techniques based on a non-zero packet preparation delay
WO2022147310A1 (en) * 2021-01-04 2022-07-07 Qualcomm Incorporated Channel occupancy time (cot) sharing for sidelink
WO2022165032A1 (en) * 2021-01-29 2022-08-04 Qualcomm Incorporated Channel occupancy time-structure information indication for new radio-unlicensed sidelink
EP4084547A1 (en) * 2021-04-26 2022-11-02 Mitsubishi Electric R&D Centre Europe B.V. Autonomous inter-terminal radio resource sharing for device-to-device communications
WO2023130322A1 (zh) * 2022-01-06 2023-07-13 北京小米移动软件有限公司 确定共享信道占用时间的方法及其装置
EP4136792A4 (en) * 2020-04-16 2024-01-24 Qualcomm Incorporated CYCLIC PREFIX (CP) EXTENSION IN CHANNEL OCCUPANCY TIME (COT) SHARING FOR SIDELINK COMMUNICATION
EP4158982A4 (en) * 2020-05-27 2024-01-24 Qualcomm Incorporated MULTIPLE START POINTS RELATED TO A CHANNEL OCCUPANCY TIME (COT) FOR SIDELINK COMMUNICATIONS

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162804A1 (en) * 2019-02-07 2020-08-13 Telefonaktiebolaget Lm Ericsson (Publ) User equipment initiated channel occupancy time (cot) sharing between multiple user equipments
CN113455092A (zh) * 2019-02-15 2021-09-28 苹果公司 用于在未许可频谱中进行信道占用时间(cot)共享的系统和方法
CN111698699A (zh) * 2019-03-14 2020-09-22 索尼公司 电子设备、无线通信方法和计算机可读存储介质
CN111757497B (zh) * 2019-03-29 2024-01-19 华为技术有限公司 控制信息的传输方法和装置
CN112770324B (zh) * 2019-11-06 2023-02-07 维沃移动通信有限公司 共享信道占用时间的方法、终端设备和网络设备
EP4136906A4 (en) * 2020-04-15 2023-12-06 Qualcomm Incorporated TECHNIQUES FOR USER DEVICE TO USER DEVICE CHANNEL SHARING IN THE UNLICENSED SPECTRUM
WO2021212256A1 (en) * 2020-04-20 2021-10-28 Qualcomm Incorporated Quality of service (qos) -based channel occupancy time (cot) sharing
WO2021212254A1 (en) * 2020-04-20 2021-10-28 Qualcomm Incorporated Hop-based channel occupancy time (cot) sharing
WO2021212354A1 (en) * 2020-04-22 2021-10-28 Lenovo (Beijing) Limited Method and apparatus for sharing channel occupancy time
US11812474B2 (en) * 2020-06-18 2023-11-07 Qualcomm Incorporated Sub-channel-based occupancy time sharing for unlicensed sidelink
WO2022036688A1 (en) * 2020-08-21 2022-02-24 Lenovo (Beijing) Limited Methods and apparatus for sharing channel occupancy time for sidelink transmission
US20220095117A1 (en) * 2020-09-22 2022-03-24 Qualcomm Incorporated Resource reservation for sidelink communications in shared radio frequency spectrum
CN116018873A (zh) * 2020-09-29 2023-04-25 Oppo广东移动通信有限公司 信道占用时间共享的方法及设备节点
CN112867156A (zh) * 2021-01-15 2021-05-28 中兴通讯股份有限公司 信道占用时间确定方法、装置、第一通信节点及存储介质
US11778589B2 (en) * 2021-01-15 2023-10-03 Qualcomm Incorporated Group resource sharing for wireless communication
CN115412889A (zh) * 2021-05-28 2022-11-29 华为技术有限公司 一种数据传输的方法及通信装置
WO2022252196A1 (en) * 2021-06-03 2022-12-08 Nokia Shanghai Bell Co., Ltd. Channel occupancy time sharing for transmission in unlicensed band
CN114731528A (zh) * 2021-06-22 2022-07-08 上海诺基亚贝尔股份有限公司 共享信道占用时间的机制
CN114051747A (zh) * 2021-09-23 2022-02-15 北京小米移动软件有限公司 一种共享信道占用时间的方法及其装置
CN115915409A (zh) * 2021-09-28 2023-04-04 展讯通信(上海)有限公司 侧链路通信方法及通信装置
CN118077293A (zh) * 2021-10-18 2024-05-24 高通股份有限公司 用于侧链路的信道占用时间共享
WO2023102716A1 (en) * 2021-12-07 2023-06-15 Qualcomm Incorporated Network-assisted sidelink communication over unlicensed spectrum
WO2023108610A1 (en) * 2021-12-17 2023-06-22 Qualcomm Incorporated Sidelink channel occupancy time sharing resource awareness
WO2023115275A1 (zh) * 2021-12-20 2023-06-29 Oppo广东移动通信有限公司 一种共享信道占用时间的方法及其终端设备
WO2023197200A1 (zh) * 2022-04-13 2023-10-19 Oppo广东移动通信有限公司 无线通信方法、第一终端设备和第二终端设备
CN116980863A (zh) * 2022-04-21 2023-10-31 索尼集团公司 用户设备、无线通信方法和计算机可读存储介质
CN117042168A (zh) * 2022-04-29 2023-11-10 华为技术有限公司 通信方法和通信装置
CN117320166A (zh) * 2022-06-20 2023-12-29 维沃移动通信有限公司 非授权频段的旁链路传输处理方法、装置及相关设备
WO2024094811A1 (en) 2022-11-03 2024-05-10 Telefonaktiebolaget Lm Ericsson (Publ) Technique for handling a sidelink between radio devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105611637A (zh) * 2016-02-06 2016-05-25 北京佰才邦技术有限公司 信道发送状态的指示方法和终端
US20160212625A1 (en) * 2015-01-19 2016-07-21 Qualcomm Incorporated Medium access for shared or unlicensed spectrum
CN105933982A (zh) * 2016-06-28 2016-09-07 北京工业大学 一种lte-u网络中的传输机会共享方法
CN108293266A (zh) * 2015-11-27 2018-07-17 华为技术有限公司 网络节点及其方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9787443B2 (en) * 2014-05-30 2017-10-10 Qualcomm Incorporated Techniques for managing transmissions of uplink data over an unlicensed radio frequency spectrum band
EP3477986B1 (en) * 2014-07-25 2021-01-06 Sony Corporation Circuitry for a mobile communications device and mobile communications system for determining an indication of an occupancy level
WO2016163709A1 (ko) * 2015-04-09 2016-10-13 삼성전자 주식회사 비면허 대역을 사용하는 셀룰러 네트워크에서의 자원할당 방법 및 그 장치
US10887912B2 (en) 2016-01-20 2021-01-05 Lg Electronics Inc. Method for transmitting uplink signal and apparatus supporting method in wireless communication system supporting non-licensed band
WO2017165405A2 (en) * 2016-03-22 2017-09-28 Intel IP Corporation Co-existence of grantless uplink and scheduled transmissions
US10750462B2 (en) * 2017-06-07 2020-08-18 Samsung Electronics Co., Ltd. Methods and systems for D2D operation in unlicensed spectrum
WO2019139876A1 (en) * 2018-01-10 2019-07-18 Idac Holdings, Inc. Data transmissions and harq-ack associated with an unlicensed spectrum
KR20210006403A (ko) * 2018-05-10 2021-01-18 텔레폰악티에볼라겟엘엠에릭슨(펍) 하이브리드 자동 반복 요청(harq)을 위한 방법 및 장치
CN118119029A (zh) * 2018-06-19 2024-05-31 交互数字专利控股公司 用于在非授权频谱中进行系统接入的方法、装置和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160212625A1 (en) * 2015-01-19 2016-07-21 Qualcomm Incorporated Medium access for shared or unlicensed spectrum
CN108293266A (zh) * 2015-11-27 2018-07-17 华为技术有限公司 网络节点及其方法
CN105611637A (zh) * 2016-02-06 2016-05-25 北京佰才邦技术有限公司 信道发送状态的指示方法和终端
CN105933982A (zh) * 2016-06-28 2016-09-07 北京工业大学 一种lte-u网络中的传输机会共享方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4136792A4 (en) * 2020-04-16 2024-01-24 Qualcomm Incorporated CYCLIC PREFIX (CP) EXTENSION IN CHANNEL OCCUPANCY TIME (COT) SHARING FOR SIDELINK COMMUNICATION
EP4158982A4 (en) * 2020-05-27 2024-01-24 Qualcomm Incorporated MULTIPLE START POINTS RELATED TO A CHANNEL OCCUPANCY TIME (COT) FOR SIDELINK COMMUNICATIONS
WO2021255673A1 (en) * 2020-06-17 2021-12-23 Lenovo (Singapore) Pte. Ltd. Channel occupancy time sharing
WO2022026141A1 (en) * 2020-07-30 2022-02-03 Qualcomm Incorporated Channel occupancy time (cot) sharing propagation
WO2022040650A1 (en) * 2020-08-18 2022-02-24 Qualcomm Incorporated Limiting spatial range of channel occupancy sharing in unlicensed spectrum via hop counting
WO2022087551A1 (en) * 2020-10-19 2022-04-28 Qualcomm Incorporated Channel occupancy time sharing aware resource selection for unlicensed cv2x communications
WO2022115836A1 (en) * 2020-11-24 2022-06-02 Qualcomm Incorporated Listen before talk based resource modification and reduced channel occupancy time sharing signaling for sidelink communication in unlicensed spectrum
US11895700B2 (en) 2020-11-24 2024-02-06 Qualcomm Incorporated Listen before talk based resource modification and reduced channel occupancy time sharing signaling for sidelink communication in unlicensed spectrum
WO2022132505A1 (en) * 2020-12-15 2022-06-23 Qualcomm Incorporated Cot-sharing techniques based on a non-zero packet preparation delay
WO2022147310A1 (en) * 2021-01-04 2022-07-07 Qualcomm Incorporated Channel occupancy time (cot) sharing for sidelink
US11638248B2 (en) 2021-01-29 2023-04-25 Qualcomm Incorporated Channel occupancy time-structure information indication for new radio-unlicensed sidelink
WO2022165032A1 (en) * 2021-01-29 2022-08-04 Qualcomm Incorporated Channel occupancy time-structure information indication for new radio-unlicensed sidelink
WO2022230239A1 (en) * 2021-04-26 2022-11-03 Mitsubishi Electric Corporation Method implemented by first device, first device, computer program, method implemented by second device
EP4084547A1 (en) * 2021-04-26 2022-11-02 Mitsubishi Electric R&D Centre Europe B.V. Autonomous inter-terminal radio resource sharing for device-to-device communications
WO2023130322A1 (zh) * 2022-01-06 2023-07-13 北京小米移动软件有限公司 确定共享信道占用时间的方法及其装置

Also Published As

Publication number Publication date
US20210368351A1 (en) 2021-11-25
EP3817428A1 (en) 2021-05-05
US11765600B2 (en) 2023-09-19
US11546778B2 (en) 2023-01-03
US20230388811A1 (en) 2023-11-30
CN110784874A (zh) 2020-02-11
EP3817428A4 (en) 2021-11-17
US20230087182A1 (en) 2023-03-23
CN112470505A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
WO2020024854A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US10531281B2 (en) Apparatus and method in wireless communication system
US11997716B2 (en) Electronic device for wireless communication system, method and storage medium
WO2021169904A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
EP3713359B1 (en) User equipment-side apparatus and method
JP2021503830A (ja) 無線通信システムにおける装置及び方法、並びにコンピュータ可読記憶媒体
EP3941104A1 (en) Electronic device, wireless communication method, and computer readable storage medium
WO2017167165A1 (zh) 电子装置、信息处理设备和信息处理方法
US11690093B2 (en) Electronic device and method for wireless communication, and computer readable storage medium
WO2019007262A1 (zh) 无线通信方法和无线通信设备
US12015931B2 (en) Electronic device and method for wireless communication, and computer readable storage medium
US20190090228A1 (en) User equipment and base station in wireless communications system, and wireless communications method
WO2021031881A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021244359A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20230345533A1 (en) Electronic device, wireless communication method, and non-transitory computer-readable storage medium
WO2020143522A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19845544

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2019845544

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019845544

Country of ref document: EP

Effective date: 20210128

NENP Non-entry into the national phase

Ref country code: DE