WO2020024747A1 - 光模块 - Google Patents

光模块 Download PDF

Info

Publication number
WO2020024747A1
WO2020024747A1 PCT/CN2019/093891 CN2019093891W WO2020024747A1 WO 2020024747 A1 WO2020024747 A1 WO 2020024747A1 CN 2019093891 W CN2019093891 W CN 2019093891W WO 2020024747 A1 WO2020024747 A1 WO 2020024747A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
optical module
module according
vent hole
Prior art date
Application number
PCT/CN2019/093891
Other languages
English (en)
French (fr)
Inventor
杜光超
李丹
唐永正
姜云鹏
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2020024747A1 publication Critical patent/WO2020024747A1/zh
Priority to US17/162,159 priority Critical patent/US11294128B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4251Sealed packages
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
    • G02B6/4208Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback using non-reciprocal elements or birefringent plates, i.e. quasi-isolators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
    • G02B6/4208Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback using non-reciprocal elements or birefringent plates, i.e. quasi-isolators
    • G02B6/4209Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4251Sealed packages
    • G02B6/4254Sealed packages with an inert gas, e.g. nitrogen or oxygen
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4287Optical modules with tapping or launching means through the surface of the waveguide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • G02B6/29365Serial cascade of filters or filtering operations, e.g. for a large number of channels in a multireflection configuration, i.e. beam following a zigzag path between filters or filtering operations
    • G02B6/29367Zigzag path within a transparent optical block, e.g. filter deposited on an etalon, glass plate, wedge acting as a stable spacer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM

Definitions

  • the present disclosure relates to the field of optical communication, and in particular to an optical module.
  • Light emitting devices usually include a series of optical elements and auxiliary elements designed according to different schemes. These components usually adopt active or passive coupling, and are fixed on the shell with glue or welding. Finally, the shell is sealed by parallel sealing welding or glue bonding. The optical components are sealed inside the tube case, so that the optical components can work normally and stably for a long time in a complex external environment. In order to ensure that the shell is completely sealed, the sealed shell usually also needs to be leak tested.
  • the tube shell When the tube shell is sealed with glue, the tube shell needs to be heated so that the glue can be stably bonded.
  • the gas in the tube shell is thermally expanded, which easily causes the cover plate to collapse due to gas expansion, thereby reducing the manufacturing yield of the light emitting device, which is not conducive to the packaging operation.
  • an optical module including:
  • the tube shell includes a box body and a cover plate, the box body is provided with a receiving slot, and the cover plate cover is arranged at the opening of the receiving slot to close the receiving slot. ;
  • At least one optical device disposed on the tube housing
  • a seal is provided at the vent hole, and the seal is matched with the vent hole to seal the vent hole.
  • FIG. 1 is a schematic perspective view of an optical module according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a three-dimensional structure of a box body of the optical module shown in FIG. 1;
  • FIG. 2 is a schematic diagram of a three-dimensional structure of a box body of the optical module shown in FIG. 1;
  • FIG. 3 is a schematic structural diagram of an optical device optical path according to the optical module shown in FIG. 1;
  • FIG. 4 is a schematic structural diagram of a seal and a box of another optical module according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a seal of the optical module shown in FIG. 4;
  • FIG. 6 is a flowchart of a method for manufacturing the optical module shown in FIG. 1;
  • FIG. 7A is a schematic diagram of a sealed optical module according to some embodiments of the present disclosure.
  • FIG. 7B is a schematic diagram of a sealed optical module according to some embodiments of the present disclosure.
  • the indication of directions (such as up, down, left, right, front, and rear) is used to explain that the structure and movement of various elements of the present disclosure are not absolute but relative. These descriptions are appropriate when these elements are in the positions shown in the drawings. If the description of the position of these elements changes, the indications of these directions change accordingly.
  • an embodiment of the present disclosure provides an optical module.
  • the optical module includes a tube case 10 and at least one optical device.
  • the optical device is fixed to the tube case 10.
  • the tube housing 10 includes a box body 11 and a cover plate 12.
  • the box body 11 is provided with a receiving groove 111.
  • the cover plate 12 is installed at the opening of the receiving groove 111 to close the receiving groove 111.
  • At least one vent hole 112 is defined in the tube shell 10.
  • the ventilation hole 112 communicates the accommodation groove 111 of the tube housing 10 with the outside world. It can be understood that the vent hole 112 may be provided on the box body 11 and / or the cover plate 12 of the tube housing 10, and the position of the vent hole 112 is not limited here, as long as the receiving groove 111 of the tube housing 10 can communicate with the outside Just fine.
  • a glue layer is provided on an end surface of the cover plate 12 and the box body 11, and the glue layer is bonded to the cover plate 12 and the box body 11.
  • the glue layer seals and connects the cover plate 12 and the box body 11.
  • the glue may be UV (Ultraviolet Rays) structural glue.
  • the box body 11 is a metal box body 11.
  • the box body 11 includes a bottom plate 113 and a frame 114.
  • the frame 114 is fixed on the bottom plate 113.
  • the frame 114 and the bottom plate 113 surround a receiving groove 111.
  • the cover plate 12 is a transparent plate.
  • a glass plate can be used as the transparent plate.
  • the thermal expansion coefficient of the glass material is close to that of the metal of the case 11.
  • the thermal expansion and deformation amount of the cover plate 12 and the box body 11 are similar to ensure that the cover plate 12 and the box body 11 can be tightly closed and connected.
  • the cover plate 12 may also be a metal plate.
  • the parts that need to be observed to observe the internal state after sealing are individually sealed, sealed with a glass cover plate 12, and the light exit portion of the tube housing is made of glass material.
  • the cover plate 12 functions as a seal, the operator can visually inspect the optical devices in the tube shell through the transparent plate. After the light emitting device enters the client, the customer can observe the components of the optical device in the shell 10 through the transparent plate, and at the same time can observe and analyze the components of the optical device without opening the cover plate 12.
  • the box body 11 and the cover plate 12 of the tube housing 10 may be made of metal material.
  • the cover body 12 functions as a seal, and seals the components of the optical device in the tube housing 10.
  • the cover plate 12 can block light and reduce environmental impact. Impact of optical devices.
  • the cover 12 and the box body 11 are sealed with glue to reduce the sealing difficulty.
  • the optical device is fixed on the tube case 10.
  • the optical device may be a light emitting device and / or a light receiving device.
  • the optical device is a light emitting device.
  • the light emitting device includes a plurality of laser chips, a plurality of collimating lenses 21, an optical multiplexer 22, a displacement prism 23, an optical isolator 24, a focusing lens 25, and an adapter 26.
  • the laser chip, the collimating lens 21, the optical multiplexer 22, the displacement prism 23, the optical isolator 24, and the focusing lens 25 are located in the receiving groove of the tube case, and the adapter 26 is located on the outer side wall of the box body 11.
  • the laser chip is stored in the receiving slot 111 and is used for emitting a light beam. There are multiple laser chips. Multiple laser chips are emitted to generate multiple beams.
  • the plurality of collimating lenses 21 are received in the receiving groove 111 and fixed on the bottom plate 113.
  • the laser chip emits a laser beam and is incident on the collimator lens 21.
  • the plurality of collimating lenses 21 are used to collimate multiple light beams, respectively.
  • One laser chip corresponds to a collimating lens 21.
  • the collimating lens 21 can be selected according to the needs of the product, and can be a spherical focusing lens or a self-focusing lens, or an already assembled lens array.
  • the optical multiplexer 22 is housed in the receiving groove 111 and is fixed on the bottom plate 113.
  • the optical multiplexer 22 is provided on the light-exiting side of the plurality of collimating lenses 21.
  • the optical multiplexer 22 is configured to combine multiple collimated beams that have passed through the collimating lens into one beam.
  • the optical multiplexer 22 may be a Filter type demultiplexer.
  • the optical multiplexer 22 includes a glass carrier 221 coated with a reflective film on one side, and a plurality of narrow-band filters 222.
  • the optical multiplexer 22 may adjust the beam splitting band corresponding to the optical multiplexer 22 by adding or reducing the narrowband filter 222 according to needs.
  • the optical multiplexer 22 includes four narrow-band filters 222.
  • the optical multiplexer 22 may select the corresponding four collimated beams for combining, and finally the combined beam is emitted from the output end of the optical multiplexer 22.
  • the displacement prism 23 is provided at an output end of the optical multiplexer 22.
  • the displacement prism 23 is fixed to the bottom plate 113.
  • the light beam can adjust the propagation path of the light beam through the displacement prism 23 so as to conveniently set the optical device.
  • the displacement prism 23 may be a total reflection mirror. The light beam passes through the displacement prism 23 to adjust the light emitting position of the light beam.
  • the optical isolator 24 is housed in the receiving groove 111 and is fixed on the bottom plate 113.
  • the optical isolator 24 is provided on the light-exiting side of the optical multiplexer 22, and the optical isolator 24 is used for reverse isolation of the light beam.
  • the optical isolator 24 prevents the reflected light from being reflected back to the previous displacement prism 23, the optical multiplexer 22, and the collimator lens 21, and ensures high-quality transmission of the optical signal.
  • the focus lens 25 is received in the receiving groove 111 and is fixed on the bottom plate 113.
  • the focusing lens 25 is disposed on the light exit side of the optical isolator 24, and the focusing lens 25 is used for focusing and converging the light beam.
  • the focusing lens 25 focuses and converges the light beam transmitted in the optical path to ensure the intensity of the light beam.
  • the adapter 26 is provided on the light-exiting side of the focusing lens 25 and is fixed on the outer side wall of the box body 11.
  • the adapter 26 will be used to introduce light into the fiber and output the optical module.
  • the adapter 26 may be welded on the outer wall of the box body 11 or fixed on the outer wall of the box body 11 by other methods, which is not limited herein.
  • the structure of the light emitting device is not limited to the above structure provided by the embodiments of the present disclosure, and may be other structures known to those skilled in the art, which is not limited here .
  • the optical device may be a light receiving device.
  • the light receiving device may include: an adapter, a displacement prism, a demultiplexer, a condensing lens, and a photoreceptor.
  • the adapter is arranged on the outer side wall of the box body, and is used to convert the light in the optical fiber into parallel light;
  • the displacement prism is stored in the storage slot for shifting the parallel light;
  • the demultiplexer is stored in the storage It is located in the slot and is located on the light exit side of the displacement prism to separate the received light according to different wavelengths;
  • a converging lens is housed in the storage slot and is located on the light exit side of the optical multiplexer to converge multiple channels of light with different wavelengths And transmitted to the photoreceptor;
  • the photoreceptor is housed in a receiving slot and converts the optical signal into an electric signal.
  • the structure of the light receiving device is not limited to the above structure provided by the embodiments of the present disclosure, and may be other structures known to those skilled in the art, which is not limited here. .
  • a vent hole 112 is provided on the tube housing 10. Therefore, during the curing of the baking glue, the vent hole 112 can balance the air pressure inside and outside the tube shell 10, and the cover plate 12 will not be pushed open due to the expansion of the internal gas.
  • vent hole 112 is opened on the frame 114 and can be conveniently operated on the vent hole 112. It can be understood that, in other embodiments, the vent hole 112 may also be opened on the cover plate 12.
  • the vent hole 112 can be opened on any side wall structure of the tube housing 10, as long as the strength of the side wall structure of the tube housing 10 provided with the vent hole 112 can meet the requirements for use.
  • the position design of the plurality of vent holes 112 should also meet the strength requirements of the tube shell 10.
  • At least two ventilation holes 112 are provided on the side wall of the tube housing 10.
  • the two vent holes 112 opposite to each other can easily achieve mutual convection. When the inert gas is filled into the tube shell 10, gas filling is facilitated.
  • the optical module further includes a sealing member 30.
  • the seal 30 is provided at the vent hole 112.
  • the seal 30 is adapted to the vent hole 112 to seal the vent hole 112.
  • the sealing member 30 may be a plug or a screw.
  • the sealing member 30 is a columnar plug or a cone-shaped plug or a combined structure of a columnar plug and a cone-shaped plug in an interference fit with the vent hole 112.
  • the vent hole 112 may also be a cylindrical through hole or a tapered through hole or a combined structure of a cylindrical through hole and a tapered through hole.
  • the vent hole 112 may be a threaded hole structure.
  • the sealing member 30 is a stud matched with it.
  • a groove is defined in the annular side wall of the sealing member 30.
  • the groove extends along the axial direction of the seal 30.
  • the seal 30 is fixedly inserted into the vent hole 112 to seal the vent hole 112.
  • a ventilation channel can be formed between the groove and the vent hole 112.
  • the sealing member 30 includes a first cylinder 31, a second cylinder 32, and a conical table 33 disposed between the first cylinder 31 and the second cylinder 32.
  • the diameter of the first aid 31 is larger than the diameter of the second cylinder 32.
  • the specific shapes of the sealing member 30 and the vent hole 112 are not limited herein, as long as the sealing member 30 and the vent hole 112 can be maintained in a sealed connection.
  • the outer wall of the tube housing 10 is provided with a sinker 115 at the vent hole 112.
  • the sinker 115 is in communication with the vent hole 112.
  • the sinker 115 is a circular or square groove or the like. The shape of the sinker 115 is not limited herein.
  • the sealing member 30 blocks the vent hole 112, and the tube housing 10 is completely sealed at this time.
  • a sealing glue is injected into the sink 115 to enhance the sealing effect.
  • the pore size of the vent hole 112 is slightly larger than the diameter of the seal 30.
  • the diameter of the vent hole 112 is slightly larger than the diameter of the seal 30.
  • the second cylinder 32 is received in the ventilation hole 112, and the first cylinder 31 is received in the sink 115.
  • the glue will enter the sink 115 from the seal 30. Therefore, glue will flow around the seal 30.
  • the glue will stick to the top surface of the first cylinder 31 and a part of the side surface of the first cylinder 31 of the sealing member 30. Thereby, the sealing member 30 can maintain a stable sealing connection with the vent hole 112.
  • an end surface of the open end of the box body 11 is provided with an accommodation groove 116 adapted to the cover plate 12.
  • the accommodating groove 116 can be used for receiving glue for bonding the cover plate 12 and the box body 11 to form a glue layer.
  • the tube housing 10 further includes a partition 13.
  • the partition plate 13 is disposed in the receiving groove 111 and divides the receiving groove 111 into a plurality of sub-grooves 117.
  • the sub-slot 117 may be used to receive different optical devices. For example, the light emitting device 28 and the light receiving device 29.
  • the light-emitting device 28 and the light-receiving device 29 may be located in two sub-grooves 117 of the same tube housing 10, and a rib 14 is provided on an outer side wall of the partition plate 13 facing the cover plate 12.
  • the convex rib 14 is fixedly connected with the cover plate 12 in cooperation. It can be understood that the side of the cover plate 12 facing the partition plate 13 is provided with a long groove matching the rib 14 to ensure that the cover plate 12 can be stably disposed above the frame 114.
  • the light emitting device 28 is located on one side and the light receiving device 29 is located on the other side.
  • the tube and shell 10 are processed once, thereby reducing the processing cost.
  • the cover plate 12 can be made of different materials according to different requirements of the light emitting device 28 and the light receiving device 29; for example, the light emitting device 28 can be sealed with a glass cover plate 12 or a metal cover plate 12 according to the requirements of the light device and the design.
  • the light receiving device 29 may also adopt a glass cover or a metal cover according to internal device requirements and design requirements, thereby improving the flexibility of the combination and reducing the product cost according to actual needs.
  • the light emitting device 28 and the light receiving device 29 are packaged separately, which can reduce the interference of light between each other.
  • the cover plate 12 of different materials is also bonded to the tube shell 10 with a glue seal.
  • the light emitting device 28 and the light receiving device 29 are respectively located in a tube housing 10, but the material of the cover plate 12 can be selected from the glass material or the metal material cover plate 12 according to the internal device requirements and design requirements; this solution requires The processing of the two shells 10 can meet the requirement that the light emitting device 28 and the light receiving device 29 do not interfere with each other.
  • the light emitting device 28 and the light receiving device 29 may be located in the same tube housing 10 or may be respectively located in different tube housings 10.
  • the sealing performance of the above-mentioned tube housing 10 that individually seals the light emitting device or the light receiving device is good, and meets the design requirements of light emitting devices with high sealing requirements.
  • the light emitting device and the light receiving device may be located in a single tube and shell.
  • Some components with high sealing requirements are individually sealed, and a cover plate with better sealing performance is used.
  • some components that need to be sealed to observe the internal state are individually sealed, and glass cover plates are used for sealing.
  • components sealed by different cover plates are separated by a glass material partition.
  • step S10 the cover plate 12 is sealed with the box body 11 with glue.
  • step S20 the tube shell 10 is placed in a vacuum oven to be operated for about one hour, and then filled with nitrogen.
  • nitrogen can also be selected from other inert gases, such as argon, neon, and the like.
  • step S30 the vent hole 112 is blocked with a suitable sealing member 30 in a nitrogen environment.
  • the gas inside the tube housing 10 can be the required nitrogen, and the internal optical device can also work in nitrogen.
  • the method of first sealing the cover plate 12 and then the vent hole 112 is adopted to solve the problem of glue sealing, and the problem of expansion and cracking during the baking and curing of the glue has been solved by firstly sealing the cover plate 12.
  • the method of resealing the vent hole 112 by the sealing member 30 solves the cracking problem of the cover plate 12.
  • the above-mentioned light emitting device guarantees the internal nitrogen environment of the tube shell 10 by sealing the vent hole 112 in a nitrogen environment and cooling after high temperature heating. By sealing the vent hole 112 in a nitrogen environment, the internal oxygen and water vapor are exhausted to prevent the optical devices inside the tube housing 10 from being damaged by oxidation.

Abstract

一种光模块包括管壳(10)、及设置于管壳(10)上的光器件。管壳(10)包括盒体(11)及盖板(12),盒体(11)开设有收容槽(111),盖板(12)盖设于收容槽(111)的开口处,以封闭收容槽(111),管壳(10)上至少开设一通气孔(112)。

Description

光模块
本申请要求在2018年8月1日提交中国专利局、申请号为201810860700.6、发明名称为“光模块及其光发射器件”的中国专利申请的优先权,其全部内容以引入的方式并入本申请中。
技术领域
本公开涉及光通信领域,特别是一种光模块。
背景技术
在高速数据通信领域中,微光学组装的技术应用越来越广泛。光发射器件通常包括一系列光学元件及根据不同方案设计的辅助元件。这些元器件通常采用有源或无源耦合的方式,用胶水或者焊接的方式固定在管壳上。最后采用平行封焊或胶水粘结的方式将管壳密封。光学元器件密封在管壳的内部,以使光学元器件能在复杂的外部环境下仍旧能够长期正常稳定地工作。为了确保管壳是完全密封的,密封好的管壳通常还需要做检漏测试。
当利用胶水将管壳密封的时候,需要对管壳进行加热以使胶水能稳定粘合。当对管壳进行加热密封的时候,管壳内的气体受热膨胀,容易导致盖板因气体膨胀崩开,从而降低光发射器件的制造良率,不利于封装操作。
发明内容
一方面,本公开实施例提供一种光模块,包括:
管壳,包括盒体及盖板,所述盒体开设有收容槽,所述盖板盖设于所述收容槽的开口处,以封闭所述收容槽,所述管壳上至少开设一通气孔;
至少一个光器件,设置于所述管壳上;
密封件,设于所述通气孔处,所述密封件与所述通气孔相适配以密封所述通气孔。
附图说明
图1为本公开实施例的一种光模块的立体示意图;
图2为根据图1所示的光模块的盒体的立体结构示意图;
图3为根据图1所示的光模块的光器件光路的结构示意图;
图4为本公开实施例的另一种光模块的密封件与盒子的部分结构示意图;
图5为根据图4所示的光模块的密封件的结构示意图;
图6为根据图1所示的光模块的制作方法流程图;
图7A为根据本公开一些实施例的密封后的光模块的示意图;
图7B为根据本公开一些实施例的密封后的光模块的示意图。
具体实施方式
尽管本公开可以容易地表现为不同形式的实施方式,但在附图中示出并且在本说明书中将详细说明的仅仅是其中一些具体实施方式,同时可以理解的是本说明书应视为是本公开原理的示范性说明,而并非旨在将本公开限制到在此所说明的那样。
由此,本说明书中所指出的一个特征将用于说明本公开的一个实施方式的其中一个特征,而不是暗示本公开的每个实施方式必须具有所说明的特征。此外,应当注意的是本说明书描述了许多特征。尽管某些特征可以组合在一起以示出可能的系统设计,但是这些特征也可用于其他的未明确说明的组合。由此,除非另有说明,所说明的组合并非旨在限制。
在附图所示的实施方式中,方向的指示(诸如上、下、左、右、前和后)用于解释本公开的各种元件的结构和运动不是绝对的而是相对的。当这些元件处于附图所示的位置时,这些说明是合适的。如果这些元件的位置的说明发生改变时,则这些方向的指示也相应地改变。
以下结合本说明书的附图,对本公开的实施方式予以进一步地详尽阐述。
参见图1,本公开实施例提供一种光模块。光模块包括管壳10及至少一个光器件。光器件固定于管壳10。
管壳10包括盒体11及盖板12。盒体11开设有收容槽111。盖板12盖设于收容槽111的开口处,以封闭收容槽111。管壳10上至少开设一通气孔112。通气孔112将管壳10的收容槽111与外界连通。可以理解,通气孔112可以设置于管壳10的盒体11和\或盖板12上,此处对通气孔112的位置不做限定,只要能够将管壳10的收容槽111与外界相连通即可。
在一些实施例中,盖板12与盒体11的端面设有胶水层,胶水层粘接盖板12与盒体11。胶水层将盖板12与盒体11密封连接。可选地,胶水可以为UV(Ultraviolet Rays)结构胶。
在一些实施例中,盒体11为金属盒体11。盒体11包括底板113及框架114。框架114固定设于底板113上。框架114与底板113围成一收容槽111。
盖板12为透明板。透明板可以采用应玻璃板。并且,该玻璃材质热膨胀系数与盒体11的金属的热膨胀系数接近。在对管壳10进行加热的时候,盖板12与盒体11发生的热膨胀变形量相近,以保证盖板12与盒体11能够紧密封闭连接。
在另一些实施例中,盖板12还可以为金属板。在这样的实施方式中,对需封盖后观察内部状态的部分进行单独密封,采用玻璃盖板12密封,管壳内部出光口部分采用玻璃材质。
盖板12在起密封作用同时,操作人员可以透过透明板对管壳内的光器件进行目检。在光发射器件进入客户端后,客户可以透过透明板对管壳10内的光器件的元件进行观察,同时可以在不开盖板12的条件下对光器件的元件进行观测和分析。
在一些实施例中,管壳10的盒体11、盖板12可以采用金属材质,盖体12起密封作用,将光器件的元件密封在管壳10内,盖板12可以遮光,降低环境对光器件的影响。盖板12和盒体11之间用胶水密封,降低密封难度。
光器件固定在管壳10上。光器件可以为光发射器件和/或光接收器件。
在一些实施例中,光器件为光发射器件。如图3所示,光发射器件包括多个激光芯片、多个准直透镜21、光复用器22、位移棱镜23、光隔离器24、聚焦透镜25及适配器26。其中,激光芯片、准直透镜21、光复用器22、位移棱镜23、光隔离器24以及聚焦透镜25位于管壳的收容槽内,适配器26位于盒体11的外侧壁上。
激光芯片收容于收容槽111内,用于发射光束。激光芯片为多个。多个激光芯片分别发射产生多路光束。
多个准直透镜21收容于收容槽111内,且固定在底板113上。激光芯片发射出激光光束,入射到准直透镜21上。多个准直透镜21用于分别对多路光束进行准直。一个激光芯片对应一准直透镜21。
准直透镜21可以通过产品需要进行选择,可以是球面聚焦透镜或者自聚焦透镜,也可以是已经组装好的透镜阵列等。
光复用器22收容于收容槽111内,且固定在底板113上。光复用器22设于多个准直透镜21的出光侧,光复用器22用于将经过准直透镜后的多路 准直光束合成一路光束。
光复用器22可选为Filter型解复用器。光复用器22包括一侧镀有反射膜的玻璃载体221、多个窄带滤波器222。光复用器22可以根据需要通过增加或者减少窄带滤波器222,来调节光复用器22对应的分束波段。具体地,该光复用器22包括四片窄带滤波器222。该光复用器22可以选择相应四路准直光束进行合束,最后合束光束从光复用器22出射端出射。
位移棱镜23设于光复用器22的出射端。且,位移棱镜23固定在底板113上。光束经位移棱镜23可以对光束的传播路径进行调整,以方便设置光器件。位移棱镜23可以为全反射镜。光束经位移棱镜23调整光束的出光位置。
光隔离器24收容于收容槽111内,且固定在底板113上。光隔离器24设于光复用器22的出光侧,光隔离器24用于光束进行反向隔离。光束在光器件的各个元件穿过的过程中,容易产生反方向的反射光,反射光会导致光信号质量下降。因此,光隔离器24避免反射光反射回之前的位移棱镜23、光复用器22及准直透镜21中去,保证光信号高质量传输。
聚焦透镜25收容于收容槽111内,且固定在底板113上。聚焦透镜25设于光隔离器24的出光侧,聚焦透镜25用于对光束进行聚焦会聚。聚焦透镜25将光路中传输的光束进行聚焦会聚,保证光束强度。
适配器26设于聚焦透镜25的出光侧,且固定在盒体11的外侧壁上。适配器26将用于将光引入到光纤内部,输出光模块。适配器26可以焊接在盒体11的外侧壁上,或采用其他方式固定在盒体11的外侧壁上,在此不做限定。
以上仅是举例说明光发射器件的具体结构,在具体实施时,光发射器件的结构不限于本公开实施例提供的上述结构,还可以是本领域技术人员可知的其他结构,在此不做限定。
在一些实施例中,光器件可以为光接收器件。光接收器件可以包括:适配器、位移棱镜、解复用器、汇聚透镜、感光器。
其中,适配器设置于所述盒体的外侧壁上,用于将光纤中的光转变成平行光;位移棱镜,收容于收容槽内,用于将平行光位移;解复用器,收容于收容槽内,且设于位移棱镜的出光侧,将接收到的光按照不同波长分开;汇聚透镜,收容于收容槽内,且设于光复用器的出光侧,将多路不同波长的光汇聚,并传输至感光器;感光器,收容于收容槽内,将光信号转换成电信号。
以上仅是举例说明光接收器件的具体结构,在具体实施时,光接收器件的结构不限于本公开实施例提供的上述结构,还可以是本领域技术人员可知的其他结构,在此不做限定。
在相关技术中,在将盖板12封装到管壳的盒体的过程中,需要用胶水粘结,而胶水凝固过程中需要加热。在加热过程中,可能会因为胶水凝固不牢,在内部气体膨胀过程中,将盖板12顶开。在本公开公开的光模块中,在管壳10上设有通气孔112。因此,在烘烤胶水凝固的过程中,该通气孔112可以平衡管壳10内外气压,盖板12不会因为内部气体膨胀而被顶开。
在一些实施例中,通气孔112可以为多个。通气孔112开设于框架114上,可以方便对通气孔112操作。可以理解,在另一些实施例中,通气孔112还可以开设在盖板12上。通气孔112可开设于管壳10的任一侧壁结构上,只要能够保证开设有通气孔112的管壳10侧壁结构的强度满足使用要求即可。多个通气孔112的位置设计也要满足管壳10的强度要求。
并且,至少两个通气孔112相对设于管壳10的侧壁上。相对设置的两个通气孔112可以容易实现相互对流。当对管壳10内进行充入惰性气体的时候,方便气体充入。
光模块还包括密封件30。密封件30设于通气孔112处。密封件30与通气孔112相适配以密封通气孔112。可以理解,密封件30可以为塞子或螺丝。密封件30为与通气孔112过盈配合的柱状塞或锥状塞或柱状塞与锥状塞的组合结构。相应地,通气孔112也可以柱状通孔或锥形通孔或柱状通孔与锥形通孔的组合结构等。通气孔112可以是螺纹孔结构,此时密封件30为与之相匹配的螺柱。
密封件30的环形侧壁上开设有凹槽。凹槽沿密封件30的轴向延伸设置。密封件30固定插入到通气孔112内,以密封通气孔112。凹槽与通气孔112之间可以形成透气通道,当光模块的管壳10受热膨胀或受冷收缩的时候,凹槽可以与外界形成气体交互,以平衡管壳10的内外气压,以避免管壳10受到的压强不平衡使盖板12相对于盒体11翘起,影响管壳10的密封性。
具体在本实施方式中,请参阅图4及图5所示,密封件30包括第一圆柱31、第二圆柱32及设于第一圆柱31与第二圆柱32之间的圆锥台33。第一援助31的直径大于第二圆柱32的直径。此处对密封件30和通气孔112的具体形状不做限定,只要能够密封件30与通气孔112保持密封连接即可。
管壳10的外侧壁于通气孔112处设有沉槽115。沉槽115与通气孔112连通。沉槽115为圆形或方形槽等。此处对沉槽115的形状不做限定。
密封件30将该通气孔112堵住,此时管壳10已经完全密封。为加强密封效果,待用密封件30密封好后,在沉槽115里面注入密封胶水,加强密封效果。
具体在本实施方式中,通气孔112的孔径大小略大于密封件30的直径大小。当通气孔112处设有沉槽115的时候,通气孔112的孔径大小略大于密封件30的直径大小。第二圆柱32收容于通气孔112内,第一圆柱31收容于沉槽115内。当对沉槽115进行填充胶水的时候,胶水会从密封件30进入到沉槽115内。因此,胶水会流入到密封件30的四周。胶水会粘住密封件30的第一圆柱31的顶面及第一圆柱31的部分侧面。从而使密封件30能够与通气孔112保持稳定的密封连接。
在一些实施例中,如图1和图2所示,盒体11的开口端的端面上开设有盖板12相适配的容置槽116。容置槽116可以用于收容盖板12与盒体11粘接用的胶水,形成胶水层。
在一些实施例中,如图1所示,管壳10还包括隔板13。隔板13设于收容槽111内,将收容槽111分隔为多个子槽117。子槽117可以用于收容不同的光器件。例如,光发射器件28及光接收器件29。
光发射器件28和光接收器件29可以位于同一个管壳10的两个子槽117内,隔板13的朝向盖板12的外侧壁上设有凸筋14。凸筋14配合与盖板12固定连接。可以理解,盖板12朝向隔板13的一侧面设有与凸筋14相适配的长槽,以保证盖板12能够稳定地设于框架114的上方。
光发射器件28位于一侧,光接收器件29位于另外一侧,管壳10加工一次,降低加工成本。盖板12可以根据光发射器件28和光接收器件29的不同需求采用不同材质;比如光发射器件28可以根据光器件要求和设计要求,采用玻璃盖板12或金属盖板12密封。光接收器件29也可以根据内部器件要求和设计要求,采用玻璃盖板或金属盖板,从而根据实际需求,提高组合的灵活性,降低产品成本。同时,光发射器件28和光接收器件29分开封装,可以降低相互之间光的干扰。同时,不同材质盖板12同样采用胶水密封与管壳10粘结。
在一些实施例中,光发射器件28和光接收器件29分别位于一个管壳10 内,但其盖板12材质可以根据内部器件要求和设计要求,选择玻璃材质或金属材质盖板12;该方案需加工两只管壳10,可以满足光发射器件28和光接收器件29相互不干扰的要求。
光发射器件28和光接收器件29可以位于同一个管壳10内或也可以分别位于不同的管壳10内。上述单独密封光发射器件或光接收器件的管壳10的密封性能较好,满足对密封要求较高的光发射器件的设计需求。
在一些实施例中,如图7A和7B所示,光发射器件和光接收器件可位于一个管壳内。对密封要求高的部分元件进行单独密封,采用密封性能较好的盖板,同时对需封盖后观察内部状态的部分元件进行单独密封,采用玻璃盖板密封。并且,同一光路中,不同盖板密封的元件之间采用玻璃材质的隔板隔开。
本公开所公开的光发射器件,为控制内部气体成分,可以采用如下密封步骤:请参阅图6;
步骤S10,盖板12用胶水与盒体11进行密封。
步骤S20,将管壳10放入待操作位真空烤箱烘烤1个小时左右,充入氮气。可以理解,氮气还可以选用其他惰性气体,例如氩气、氖气等。
步骤S30,在氮气环境下,将通气孔112用合适密封件30堵住。
此时管壳10内部的气体成为即可为需要的氮气,而内部光器件也可以在氮气中工作。
根据上述光发射器件的具体结构及制作方法,相较于相关的光发射器件而言,至少具有以下优点:
首先,采用先密封盖板12再密封通气孔112方法,解决了胶水密封,烘烤固化胶水过程已膨胀开裂问题,通过先密封盖板12。通过密封件30再密封通气孔112方法,解决盖板12开裂问题。
其次,解决了单个盖板12密封面积过大,难度增加问题,通过使用部分密封的方案,将敏感元件单独密封,降低密封难度,减少成本。采用全部或部分密封方案,降低密封难度和成本。
再次,解决了金属盖板12封盖后无法目检内部结构问题,通过使用玻璃盖板12,在封盖盖板12后依旧可以观察管壳10的内部结构和状态,便于上述光发射器件封盖后的目检和状态跟踪。
并且,解决了胶水密封,内部氧气和水汽无法排出问题。上述光发射器 件通过在氮气环境密封通气孔112,高温加热后冷却方法,保证管壳10的内部氮气环境。通过在氮气环境密封通气孔112,排出内部氧气和水汽,防止管壳10内部的光器件氧化受损。
虽然已参照几个典型实施方式描述了本公开,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本公开能够以多种形式具体实施而不脱离公开的精神或实质,所以应当理解,上述实施方式不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims (14)

  1. 一种光模块,包括:
    管壳,包括盒体及盖板,所述盒体开设有收容槽,所述盖板盖设于所述收容槽的开口处,以封闭所述收容槽,所述管壳上至少开设一通气孔;
    至少一个光器件,设置于所述管壳上;
    密封件,设于所述通气孔处,所述密封件与所述通气孔相适配以密封所述通气孔。
  2. 如权利要求1所述的光模块,所述光器件为光发射器件和/或光接收器件。
  3. 如权利要求2所述的光模块,所述光发射器件包括:
    多个激光芯片,收容于所述收容槽内,用于发射多路光束;
    多个准直透镜,收容于所述收容槽内,多个所述准直透镜用于分别对所述多路光束进行准直;
    光复用器,收容于所述收容槽内,且设于多个所述准直透镜的出光侧,所述光复用器用于将所述准直透镜射出的多路准直光束合成一路光束;
    位移棱镜,收容于所述收容槽内,且设于光复用器的出光侧,用于调整光束的出光位置;
    光隔离器,收容于所述收容槽内,设于所述位移棱镜的出光侧,所述光隔离器用于对所述位移棱镜射出的所述光束进行反向隔离;
    聚焦透镜,收容于所述收容槽内,设于所述光隔离器的出光侧,所述聚焦透镜用于对穿过所述光隔离器的所述光束进行聚焦会聚;
    适配器,设于所述聚焦透镜的出光侧,且设置于所述盒体的外侧壁上,用于将光引入到光纤内部,并输出。
  4. 如权利要求2所述的光模块,所述光接收器件包括:
    适配器,设置于所述盒体的外侧壁上,用于将光纤中的光转变成平行光;
    位移棱镜,收容于所述收容槽内,用于将平行光位移;
    解复用器,收容于所述收容槽内,且设于所述位移棱镜的出光侧,用于将接收到的光按照不同波长分开;
    汇聚透镜,收容于所述收容槽内,且设于光复用器的出光侧,用于将多路不同波长的光汇聚,并传输到感光器;
    感光器,收容于收容槽内,用于将光信号转换成电信号。
  5. 如权利要求1所述的光模块,所述密封件为与所述通气孔过盈配合的柱状塞或锥状塞或柱状塞与锥状塞的组合结构。
  6. 如权利要求5所述的光模块,所述密封件的环形侧壁上开设有凹槽,所述凹槽沿所述密封件的轴向延伸设置。
  7. 如权利要求1所述的光模块,所述密封件包括第一圆柱、第二圆柱及设于所述第一圆柱与所述第二圆柱之间的圆锥台,所述第一圆柱和所述第二圆柱的直径不同。
  8. 如权利要求1所述的光模块,所述通气孔的孔径大小略大于所述密封件的直径大小。
  9. 如权利要求1所述的光模块,所述通气孔为多个,且相对设于所述管壳的侧壁上。
  10. 如权利要求1所述的光模块,所述管壳的外侧壁于所述通气孔处设有沉槽,所述沉槽与所述通气孔连通。
  11. 如权利要求1所述的光模块,所述盒体的开口端的端面上开设有所述盖板相适配的容置槽,所述容置槽内设有胶水层,所述胶水层粘接所述盖板与所述盒体。
  12. 如权利要求1所述的光模块,所述盖板为透明板。
  13. 如权利要求2所述的光模块,所述管壳还包括隔板,隔板设于收容槽内,将收容槽分隔为多个子槽,所述光发射器件和所述光接收器件分别位于不同子槽。
  14. 如权利要求13所述的光模块,所述光发射器件和所述光接收器件对应不同的盖板。
PCT/CN2019/093891 2018-08-01 2019-06-28 光模块 WO2020024747A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/162,159 US11294128B2 (en) 2018-08-01 2021-01-29 Optical module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810860700.6A CN108873195B (zh) 2018-08-01 2018-08-01 光模块及其光发射器件
CN201810860700.6 2018-08-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/162,159 Continuation-In-Part US11294128B2 (en) 2018-08-01 2021-01-29 Optical module

Publications (1)

Publication Number Publication Date
WO2020024747A1 true WO2020024747A1 (zh) 2020-02-06

Family

ID=64306714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093891 WO2020024747A1 (zh) 2018-08-01 2019-06-28 光模块

Country Status (3)

Country Link
US (1) US11294128B2 (zh)
CN (1) CN108873195B (zh)
WO (1) WO2020024747A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108873195B (zh) 2018-08-01 2020-10-13 青岛海信宽带多媒体技术有限公司 光模块及其光发射器件
CN109031549B (zh) * 2018-08-31 2019-11-19 武汉联特科技有限公司 光发射组件以及光模块
CN209249904U (zh) * 2019-02-15 2019-08-13 深圳市星汉激光科技有限公司 一种激光器的密封结构
WO2020181938A1 (zh) * 2019-03-14 2020-09-17 青岛海信宽带多媒体技术有限公司 一种光模块
CN112558246B (zh) * 2019-05-24 2022-09-27 青岛海信宽带多媒体技术有限公司 一种光模块
CN112305681B (zh) * 2019-07-25 2023-12-15 青岛海信宽带多媒体技术有限公司 光模块
CN114200599B (zh) * 2020-09-18 2023-05-05 青岛海信宽带多媒体技术有限公司 一种光模块
CN113219601A (zh) * 2021-04-23 2021-08-06 武汉英飞光创科技有限公司 一种器件壳体和模块壳体一体化的光模块及光模块外壳
CN113376765B (zh) * 2021-05-20 2023-04-18 武汉联特科技股份有限公司 一种用于多路并行接收光器件的系统及方法
CN113311549B (zh) * 2021-07-28 2021-10-22 武汉英飞光创科技有限公司 一种光模块的光接收次模块的耦合方法
CN114325971A (zh) * 2022-01-13 2022-04-12 深圳市易飞扬通信技术有限公司 光发射组件的封装方法及光发射组件
CN115508959B (zh) * 2022-11-17 2023-03-24 灏讯电缆连接器制造(常州)有限公司 一种用于rosa气密性封装的封装工艺、密封装置及测试机构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102141652A (zh) * 2010-02-02 2011-08-03 鸿富锦精密工业(深圳)有限公司 光纤耦合连接器及其组装方法
CN107193089A (zh) * 2017-05-18 2017-09-22 青岛海信宽带多媒体技术有限公司 一种光模块
CN107219596A (zh) * 2017-08-04 2017-09-29 青岛海信宽带多媒体技术有限公司 一种光学次模块及光模块
CN108873195A (zh) * 2018-08-01 2018-11-23 青岛海信宽带多媒体技术有限公司 光模块及其光发射器件

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2334733A1 (en) 2000-03-09 2001-09-09 Douglas Stephen Burbidge A hermetic fiber optic package and a method of manufacturing same
US6972968B2 (en) * 2003-07-18 2005-12-06 Hon Hai Precision Ind. Co., Ltd Shielding cage assembly adapted for dense transceiver modules
JP4718135B2 (ja) * 2004-07-06 2011-07-06 株式会社日立製作所 光モジュール
EP2416459B1 (en) * 2010-03-10 2015-09-09 Panasonic Intellectual Property Management Co., Ltd. Semiconductor laser apparatus
CN105093461A (zh) * 2015-07-13 2015-11-25 南昌欧菲光电技术有限公司 摄像头模组
CN105759371B (zh) * 2016-01-07 2018-08-07 武汉电信器件有限公司 一种用于双链路传输的并行收发光模块和制作方法
CN107577015A (zh) * 2017-09-26 2018-01-12 青岛海信宽带多媒体技术有限公司 光发射器和光模块
CN107966773B (zh) * 2018-01-10 2019-12-24 青岛海信宽带多媒体技术有限公司 光发射次模块及光模块

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102141652A (zh) * 2010-02-02 2011-08-03 鸿富锦精密工业(深圳)有限公司 光纤耦合连接器及其组装方法
CN107193089A (zh) * 2017-05-18 2017-09-22 青岛海信宽带多媒体技术有限公司 一种光模块
CN107219596A (zh) * 2017-08-04 2017-09-29 青岛海信宽带多媒体技术有限公司 一种光学次模块及光模块
CN108873195A (zh) * 2018-08-01 2018-11-23 青岛海信宽带多媒体技术有限公司 光模块及其光发射器件

Also Published As

Publication number Publication date
US20210149131A1 (en) 2021-05-20
US11294128B2 (en) 2022-04-05
CN108873195A (zh) 2018-11-23
CN108873195B (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
WO2020024747A1 (zh) 光模块
US9939593B2 (en) Light steering for silicon photonic devices
KR20170142191A (ko) 광섬유 조명 장치 및 방법
US10162135B2 (en) Optical transmitter assembly for vertical coupling
WO2019105113A1 (zh) 光收发器件
KR20150145124A (ko) 양방향 광송수신 모듈 및 이의 정렬방법
JP2006351608A (ja) 発光モジュール及び一芯双方向光通信モジュール
US9885842B2 (en) Wavelength-multiplexing optical communication module
CN112038884A (zh) 激光器
US9772467B2 (en) Hermetically sealing an optical subassembly
CN107462987B (zh) 光路控制系统及光模块
CN104007086A (zh) 光纤氢气传感器
KR101039797B1 (ko) To can 평행광 패키지
TWM470270U (zh) 光次模組
CN103994985A (zh) 光纤氢气传感器及其制作方法
JP2021034501A (ja) 発光装置
JP6819677B2 (ja) 光モジュール
CN203870020U (zh) 光纤氢气传感器
US20110042558A1 (en) Optical device and method of manufacturing the same
JP2017112202A (ja) 封止構造体及びその製造方法
CN112103765A (zh) 一种半导体激光器
JP2664457B2 (ja) 位置決め装置及びそれから形成した気密パッケージ
TW201430431A (zh) 光次模組及其封裝方法
JP2016102834A (ja) 光アセンブリ及び光モジュール
JPS61145876A (ja) 発光素子用パツケ−ジ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844290

Country of ref document: EP

Kind code of ref document: A1