WO2020024372A1 - 触控面板、显示面板、显示装置和触控检测方法 - Google Patents

触控面板、显示面板、显示装置和触控检测方法 Download PDF

Info

Publication number
WO2020024372A1
WO2020024372A1 PCT/CN2018/105021 CN2018105021W WO2020024372A1 WO 2020024372 A1 WO2020024372 A1 WO 2020024372A1 CN 2018105021 W CN2018105021 W CN 2018105021W WO 2020024372 A1 WO2020024372 A1 WO 2020024372A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch panel
bumps
capacitance
sensing modules
bump
Prior art date
Application number
PCT/CN2018/105021
Other languages
English (en)
French (fr)
Inventor
陈慧
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/317,830 priority Critical patent/US20200064970A1/en
Publication of WO2020024372A1 publication Critical patent/WO2020024372A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • the present invention relates to the field of display technology, and in particular, to a touch panel, a display panel, a display device, and a touch detection method.
  • Touch technology is the main input form of human-computer interaction.
  • Touch technology mainly includes two-dimensional touch technology and three-dimensional touch technology.
  • the two-dimensional touch technology mainly performs multi-touch recognition on a two-dimensional plane composed of the X-axis and the Y-axis, and the three-dimensional touch technology adds the Touch recognition.
  • the user can perform different operations on the terminal by adjusting the pressing pressure on the terminal. For example, when using a mobile phone to play a game, you can control the speed and the degree of jumping according to the degree of pressing the mobile phone.
  • An object of the present invention is to provide a touch panel, a display panel, a display device, and a touch detection method, which can improve the accuracy of detecting the pressure value received by the touch panel.
  • An embodiment of the present invention provides a touch panel, including:
  • a plurality of sensing modules are spaced from each other, and a capacitor is formed between adjacent sensing modules;
  • the pressure detection module is electrically connected to a plurality of the induction modules, and the pressure detection module is configured to generate a value according to a change in capacitance between corresponding adjacent induction modules after the touch panel is pressed. A pressure value corresponding to the pressing.
  • each of the sensing modules includes a bump and a conductive layer
  • a plurality of the bumps are distributed in a grid shape. Two adjacent bumps located in a first direction are connected by a bridge, and two adjacent bumps located in a second direction are connected by a bridge. The first direction and the The second direction intersects;
  • the conductive layer is disposed on the bump and surrounds the bump.
  • the height H of the bumps ranges from 100 to 300 microns
  • the width W of the bumps ranges from To H microns
  • the distance L between two adjacent bumps ranges from Up to W microns.
  • the bump includes a plurality of sub-bumps, and a plurality of traces disposed on an edge of the bump; each trace is connected to a sub-bump corresponding to the trace.
  • a constituent material of the conductive layer includes a metal material and / or graphite.
  • the pressure detection module includes a capacitance detection module and a pressure generation module
  • the capacitance detection module is configured to detect a first capacitance between corresponding adjacent sensing modules before the touch panel is pressed, and detect the corresponding adjacent sensing modes after the touch panel is pressed.
  • the pressure generating module is configured to generate a pressure value corresponding to the touch panel being pressed according to a difference between the second capacitor and the first capacitor.
  • An embodiment of the present invention further provides a display panel including an organic light emitting device, a support layer, a buffer layer, and a touch panel, the touch panel, the buffer layer, the support layer, and the organic The light emitting devices are sequentially stacked and the buffer layer is disposed on the touch panel;
  • the touch panel includes a plurality of sensing modules, the plurality of sensing modules are spaced from each other, and a capacitor is formed between adjacent sensing modules;
  • the pressure detection module is electrically connected to a plurality of the induction modules, and the pressure detection module is configured to generate a value according to a change in capacitance between corresponding adjacent induction modules after the touch panel is pressed. A pressure value corresponding to the pressing.
  • each of the sensing modules includes a bump and a conductive layer
  • a plurality of the bumps are distributed in a grid shape. Two adjacent bumps located in a first direction are connected by a bridge, and two adjacent bumps located in a second direction are connected by a bridge. The first direction and the The second direction intersects;
  • the conductive layer is disposed on the bump and surrounds the bump.
  • the height H of the bumps ranges from 100 to 300 microns
  • the width W of the bumps ranges from To H microns
  • the distance L between two adjacent bumps ranges from Up to W microns.
  • the bump includes a plurality of sub-bumps, and a plurality of traces disposed on an edge of the bump; each trace is connected to a sub-bump corresponding to the trace.
  • a constituent material of the conductive layer includes a metal material and / or graphite.
  • the pressure detection module includes a capacitance detection module and a pressure generation module
  • the capacitance detection module is configured to detect a first capacitance between corresponding adjacent sensing modules before the touch panel is pressed, and detect the corresponding adjacent sensing modes after the touch panel is pressed.
  • the pressure generating module is configured to generate a pressure value corresponding to the touch panel being pressed according to a difference between the second capacitor and the first capacitor.
  • the display panel further includes a heat dissipation layer
  • the heat dissipation layer is disposed on a side of the buffer layer away from the support layer;
  • the touch panel is disposed on a side of the heat dissipation layer remote from the buffer layer.
  • An embodiment of the present invention further provides a display device, wherein the display device includes a back cover, a middle frame, a display panel, and a touch panel;
  • the middle frame is disposed on the back cover, and the middle frame and the back cover form a storage space;
  • the touch panel is disposed on a side of the middle frame close to the back cover, and the touch panel is disposed in the storage space;
  • the display panel is disposed on the touch panel
  • the touch panel includes a plurality of sensing modules, the plurality of sensing modules are spaced from each other, and a capacitor is formed between adjacent sensing modules;
  • the pressure detection module is electrically connected to a plurality of the induction modules, and the pressure detection module is configured to generate a value according to a change in capacitance between corresponding adjacent induction modules after the touch panel is pressed. A pressure value corresponding to the pressing.
  • each of the sensing modules includes a bump and a conductive layer
  • a plurality of the bumps are distributed in a grid shape. Two adjacent bumps located in a first direction are connected by a bridge, and two adjacent bumps located in a second direction are connected by a bridge. The first direction and the The second direction intersects;
  • the conductive layer is disposed on the bump and surrounds the bump.
  • the height H of the bumps ranges from 100 to 300 microns
  • the width W of the bumps ranges from To H microns
  • the distance L between two adjacent bumps ranges from Up to W microns.
  • the bump includes a plurality of sub-bumps, and a plurality of traces disposed on an edge of the bump; each trace is connected to a sub-bump corresponding to the trace.
  • a constituent material of the conductive layer includes a metal material and / or graphite.
  • the pressure detection module includes a capacitance detection module and a pressure generation module
  • the capacitance detection module is configured to detect a first capacitance between corresponding adjacent sensing modules before the touch panel is pressed, and detect the corresponding adjacent sensing modes after the touch panel is pressed.
  • the pressure generating module is configured to generate a pressure value corresponding to the touch panel being pressed according to a difference between the second capacitor and the first capacitor.
  • An embodiment of the present invention further provides a touch detection method for performing touch detection using the touch panel described above, which includes:
  • the sensing modules are arranged at intervals from each other, wherein a capacitor is formed between adjacent sensing modules, and then according to the corresponding neighboring sensing modules, The change in capacitance between the groups generates a pressure value corresponding to the pressing, so that the accuracy of the pressure value detection can be improved.
  • FIG. 1 is a schematic structural diagram of a touch panel according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a touch detection method according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an induction module according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a bump provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a display panel according to an embodiment of the present invention.
  • FIG. 6 is another schematic structural diagram of a display panel according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a display device according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a touch detection method according to an embodiment of the present invention.
  • an embodiment herein means that a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least one embodiment of the invention.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are they independent or alternative embodiments that are mutually exclusive with other embodiments. It is explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments.
  • FIG. 1 is a schematic structural diagram of a touch panel according to an embodiment of the present invention.
  • the touch panel 10 includes a plurality of sensing modules 11 and a pressure detection module 12.
  • the plurality of sensing modules 11 are spaced from each other, and a capacitor is formed between adjacent sensing modules 11.
  • the distance between adjacent sensing modules 11 is L1
  • the capacitance between adjacent sensing modules 11 is
  • is the dielectric permittivity of the dielectric
  • k is the electrostatic force constant
  • S is the facing area between the adjacent sensing modules 11.
  • each sensing module 11 includes a bump 111 and a conductive layer 112. Since it has a plurality of sensing modules 11, it also has a plurality of bumps 111. As shown in FIG. 3, these bumps 111 are distributed in a grid shape. Two adjacent bumps 111 located in a first direction are connected through a bridge 113, and two adjacent bumps 111 located in a second direction are connected through a bridge 113. The first direction and the second direction intersect.
  • the first direction may be a horizontal direction
  • the second direction may be a vertical direction.
  • the material of the bump 111 includes a polyimide (PI) photoresist.
  • PI polyimide
  • the value range of the height H of the bump 111 can be set to 100 to 300 ⁇ m, and the value range of the width W of the bump can be set to To H microns, the distance L between two adjacent bumps 111 is set to Up to W microns.
  • the bump 111 includes a plurality of sub-bumps 1112 and a plurality of traces 1111 disposed on the edge of the bump 111, wherein each trace 1111 is connected to its corresponding sub-bump 1112.
  • the conductive layer 112 is disposed on the bump 111 and surrounds the bump 111.
  • the constituent material of the conductive layer 112 includes a metal material and / or graphite.
  • the metal material is indium tin oxide.
  • the pressure detection module 12 is electrically connected to the plurality of sensing modules 11.
  • the pressure detecting module 12 is configured to detect a change value of the capacitance of the corresponding sensing module 11 before and after the touch panel 10 is pressed, and generate a pressure value corresponding to the press according to the change value of the capacitance.
  • the pressure detection module 12 includes a capacitance detection module 121 and a pressure generation module 122.
  • the capacitance detection module 121 can detect the first capacitance between the corresponding adjacent sensing modules 11 before the touch panel 10 is pressed, and can also detect the corresponding adjacent sensing modules after the touch panel 10 is pressed. 11 between the second capacitor. As shown in FIG. 1
  • the first capacitance detected by the capacitance detection module 121 is When the touch panel 10 is pressed, the second capacitance detected by the capacitance detection module 121 includes with The second capacitor between the two sensing modules 11 corresponding to the middle position is The second capacitance between two adjacent induction modules 11 near the middle position is The second capacitance between two adjacent sensing modules 11 far from the middle position is
  • the pressure generating module 122 generates a pressure value corresponding to the pressing according to the difference between the second capacitor and the first capacitor.
  • the difference between the second capacitor and the first capacitor, the pressure value, and the relationship between the two can be stored in advance, as shown in Table 1 below:
  • the pressure generation module 122 can calculate the difference between the second capacitance and the first capacitance, and then directly find the difference from Table 1 with the difference.
  • Corresponding pressure value For example, as shown in FIG. 2, the pressure value corresponding to the position can be found according to the difference between the second capacitance and the first capacitance corresponding to the middle position, or the second capacitance and the first capacitance corresponding to the near position can be found. The difference between them, find the pressure value corresponding to that position.
  • the sensing modules arranged at intervals are set, wherein a capacitance is formed between adjacent sensing modules, and then a corresponding value corresponding to the pressing is generated according to a change value of the capacitance between corresponding adjacent sensing modules.
  • Pressure value which can improve the accuracy of pressure value detection.
  • FIG. 5 is a schematic structural diagram of a display panel according to an embodiment of the present invention.
  • the display panel 1 includes a touch panel 10, an organic light emitting device 20, a support layer 30, and a buffer layer 40.
  • the touch panel 10, the buffer layer 40, the support layer 30, and the organic light-emitting device 20 are sequentially stacked.
  • the buffer layer 40 is disposed on the touch panel 10.
  • the organic light-emitting device 20 includes a light-emitting layer 21, a polarizer 22, a touch layer 23, and a cover 24 that are stacked in this order.
  • the light-emitting layer 21 is disposed on the support layer 30.
  • the light emitting layer 21 includes a thin film transistor layer, an organic light emitting layer, and a packaging layer.
  • the thin film transistor layer is used to drive the organic light emitting layer.
  • the encapsulation layer is used to isolate external water and oxygen.
  • the encapsulation layer is a thin-film encapsulation layer, and the thin-film encapsulation layer may be specifically formed by a combination of multiple organic-inorganic films.
  • the polarizer 22 is fixed on the encapsulation layer.
  • an optical glue can be coated on the encapsulation layer to fix the polarizer 22.
  • the polarizer 22 is used to adjust incoming external light.
  • Touch electrodes are disposed on the touch layer 23 and can be used to assist the touch panel 10 to implement touch functions.
  • the cover plate 24 has a characteristic of high hardness, and a friction resistant layer may be provided thereon to increase the wear resistance of the display panel 1.
  • the support layer 30 is used to support the organic light emitting device 20.
  • the support layer 30 may be made of a material such as polyethylene terephthalate.
  • the buffer layer 40 is used to reduce the stress on the display panel 1.
  • the touch panel 10 includes a plurality of sensing modules 11 and a pressure detection module 12. As shown in FIG. 1, the plurality of sensing modules 11 are spaced from each other, and a capacitor is formed between adjacent sensing modules 11. As shown in FIG. 2, when the touch panel 10 is not pressed, the distance between adjacent sensing modules 11 is L1, and the capacitance between adjacent sensing modules 11 is Where ⁇ is the dielectric permittivity of the dielectric, k is the electrostatic force constant, and S is the facing area between adjacent sensing modules 11.
  • the two sensing modules 11 corresponding to the middle position When the middle position of the touch panel 10 is pressed, the two sensing modules 11 corresponding to the middle position The distance between them becomes L2, the distance between two adjacent sensor modules 11 on both sides near the middle position becomes L3, and the distance between two adjacent sensor modules 11 on both sides far from the center becomes larger as L4.
  • the capacitance between adjacent induction modules 11 corresponding to the corresponding positions can be calculated as with Then, the pressure value corresponding to the pressing can be generated according to the change in capacitance between the adjacent sensing modules 11 before and after the pressing.
  • each sensing module 11 includes a bump 111 and a conductive layer 112. Since it has a plurality of sensing modules 11, it also has a plurality of bumps 111. As shown in FIG. 3, these bumps 111 are distributed in a grid shape. Two adjacent bumps 111 located in a first direction are connected through a bridge 113, and two adjacent bumps 111 located in a second direction are connected through a bridge 113. The first direction and the second direction intersect.
  • the first direction may be a horizontal direction
  • the second direction may be a vertical direction.
  • the material of the bump 111 includes a PI photoresist. As shown in FIG. 1, in order to improve the accuracy of the capacitance detection of the induction module 11, the value range of the height H of the bump 111 can be set to 100 to 300 ⁇ m, and the value range of the width W of the bump can be set to To H microns, the distance L between two adjacent bumps 111 is set to Up to W microns.
  • the bump 111 includes a plurality of sub-bumps 1112 and a plurality of traces 1111 disposed on the edge of the bump 111, wherein each trace 1111 is connected to its corresponding sub-bump 1112.
  • the conductive layer 112 is disposed on the bump 111 and surrounds the bump 111.
  • the constituent material of the conductive layer 112 includes a metal material and / or graphite.
  • the metal material is indium tin oxide.
  • the pressure detection module 12 is electrically connected to the plurality of sensing modules 11.
  • the pressure detecting module 12 is configured to detect a change value of the capacitance of the corresponding sensing module 11 before and after the touch panel 10 is pressed, and generate a pressure value corresponding to the press according to the change value of the capacitance.
  • the pressure detection module 12 includes a capacitance detection module 121 and a pressure generation module 122.
  • the capacitance detection module 121 can detect the first capacitance between the corresponding adjacent sensing modules 11 before the touch panel 10 is pressed, and can also detect the corresponding adjacent sensing modules after the touch panel 10 is pressed. 11 between the second capacitor.
  • the first capacitance detected by the capacitance detection module 121 is When the touch panel 10 is pressed, the second capacitance detected by the capacitance detection module 121 includes with The second capacitor between the two sensing modules 11 corresponding to the middle position is The second capacitance between two adjacent induction modules 11 near the middle position is The second capacitance between two adjacent sensing modules 11 far from the middle position is
  • the pressure generating module 122 generates a pressure value corresponding to the pressing according to the difference between the second capacitor and the first capacitor.
  • the difference between the second capacitor and the first capacitor, the pressure value, and the correlation between the two can be stored in advance, as shown in Table 1.
  • the pressure generation module 122 can calculate the difference between the second capacitance and the first capacitance, and then directly find the difference from Table 1 with the difference. Corresponding pressure value. For example, as shown in FIG.
  • the pressure value corresponding to the position can be found according to the difference between the second capacitance and the first capacitance corresponding to the middle position, or the second capacitance and the first capacitance corresponding to the near position can be found The difference between them, find the pressure value corresponding to that position.
  • the display panel 1 further includes a heat dissipation layer 50, and the heat dissipation layer 50 is used for heat dissipation. As shown in FIG. 6, the heat dissipation layer 50 is disposed on a side of the buffer layer 40 away from the support layer 30, and the touch panel 10 is disposed on a side of the heat dissipation layer 50 away from the buffer layer 40.
  • the display panel provided by the embodiment of the present invention firstly sets the sensing modules spaced apart from each other, wherein a capacitance is formed between adjacent sensing modules, and then the corresponding corresponding pressure is generated according to the change value of the capacitance between the corresponding neighboring sensing modules. Pressure value, which can improve the accuracy of pressure value detection.
  • FIG. 7 is a schematic structural diagram of a display device according to an embodiment of the present invention.
  • the display device 1000 includes a rear cover 1001, a middle frame 1002, a display panel 1003, and a touch panel 10.
  • the middle frame 1002 is disposed on the back cover 1001, and the middle frame 1002 and the back cover 1001 form a storage space a.
  • the touch panel 10 is disposed on a side of the middle frame 1002 near the back cover 1001, and the touch panel 10 is disposed in the storage space a.
  • a battery module 1004 is also stored in the storage space a, and the battery module 1004 is disposed between the touch panel 10 and the back cover 1001.
  • the touch panel 10 includes a plurality of sensing modules 11 and a pressure detection module 12.
  • the plurality of sensing modules 11 are spaced from each other, and a capacitor is formed between adjacent sensing modules 11.
  • the distance between adjacent sensing modules 11 is L1
  • the capacitance between adjacent sensing modules 11 is
  • is the dielectric permittivity of the dielectric
  • k is the electrostatic force constant
  • S is the facing area between adjacent sensing modules 11.
  • the two sensing modules 11 corresponding to the middle position When the middle position of the touch panel 10 is pressed, the two sensing modules 11 corresponding to the middle position The distance between them becomes L2, the distance between two adjacent sensing modules 11 near the middle position becomes L3, and the distance between two adjacent sensing modules 11 far from the middle position becomes L4.
  • the capacitances between the corresponding sensing modules 11 at the corresponding positions can be calculated as with Then, the pressure value corresponding to the pressing can be generated according to the change in capacitance between the adjacent sensing modules 11 before and after the pressing.
  • each sensing module 11 includes a bump 111 and a conductive layer 112. Since it has a plurality of sensing modules 11, it also has a plurality of bumps 111. As shown in FIG. 3, these bumps 111 are distributed in a grid shape. Two adjacent bumps 11 located in a first direction are connected through a bridge 113, and two adjacent bumps 111 located in a second direction are connected through a bridge 113. The first direction and the second direction intersect.
  • the first direction may be a horizontal direction
  • the second direction may be a vertical direction.
  • the material of the bump 111 includes a PI photoresist. As shown in FIG. 1, in order to improve the accuracy of the capacitance detection of the sensing module 11, the range of the height H of the bump 111 can be set to 100 to 300 ⁇ m, and the range of the width W of the bump can be set to To H microns, the distance L between two adjacent bumps 111 is set to Up to W microns.
  • the bump 111 includes a plurality of sub-bumps 1112 and a plurality of traces 1111 disposed on the edge of the bump 111, wherein each trace 1111 is connected to its corresponding sub-bump 1112.
  • the conductive layer 112 is disposed on the bump 111 and surrounds the bump 111.
  • the constituent material of the conductive layer 112 includes a metal material and / or graphite.
  • the metal material is indium tin oxide.
  • the pressure detection module 12 is electrically connected to the plurality of sensing modules 11.
  • the pressure detecting module 12 is configured to detect a change value of the capacitance of the corresponding sensing module 11 before and after the touch panel 10 is pressed, and generate a pressure value corresponding to the press according to the change value of the capacitance.
  • the pressure detection module 12 includes a capacitance detection module 121 and a pressure generation module 122.
  • the capacitance detection module 121 can detect the first capacitance between the corresponding adjacent sensing modules 11 before the touch panel 10 is pressed, and can also detect the corresponding adjacent sensing modules after the touch panel 10 is pressed. 11 between the second capacitor. As shown in FIG. 1
  • the first capacitance detected by the capacitance detection module 121 is When the touch panel 10 is pressed, the second capacitance detected by the capacitance detection module 121 includes with The second capacitor between the two sensing modules 11 corresponding to the middle position is The second capacitance between two adjacent induction modules 11 near the middle position is The second capacitance between two adjacent sensing modules 11 far from the middle position is
  • the pressure generating module 122 generates a pressure value corresponding to the pressing according to the difference between the second capacitor and the first capacitor.
  • the difference between the second capacitor and the first capacitor, the pressure value, and the relationship between the two can be preset, as shown in Table 1.
  • the pressure generation module 122 can calculate the difference between the second capacitance and the first capacitance, and then directly find the difference from Table 1 with the difference.
  • Corresponding pressure value For example, as shown in FIG. 2, the pressure value corresponding to the position can be found according to the second capacitance corresponding to the intermediate position, or the pressure value corresponding to the position can be found according to the second capacitance corresponding to the intermediate position.
  • the display panel 1003 is disposed on the touch panel 10.
  • the display panel 1003 includes a heat dissipation layer 10031, a buffer layer 10032, a support layer 10033, a light emitting layer 10034, a polarizer 10035, a touch layer 10036, and a cover plate 10037.
  • the heat dissipation layer 10031, the buffer layer 10032, the support layer 10033, the light emitting layer 10034, the polarizer 10035, the touch layer 10036, and the cover plate 10037 are sequentially stacked from bottom to top.
  • the heat dissipation layer 10031 is used for heat dissipation.
  • the buffer layer 10032 is used to relieve the stress received by the display panel 1003.
  • the support layer 30 is used to support the light emitting layer 10034, the polarizer 10035, the touch layer 10036, and the cover plate 10037 thereon.
  • the light emitting layer 10034 includes a thin film transistor layer, an organic light emitting layer, and a packaging layer.
  • the thin film transistor layer is used to drive the organic light emitting layer.
  • the encapsulation layer is used to isolate external water and oxygen.
  • the encapsulation layer is a thin-film encapsulation layer, and the thin-film encapsulation layer may be specifically formed by a combination of multiple organic-inorganic films.
  • the polarizer 10035 is fixed on the packaging layer. Specifically, an optical glue can be coated on the packaging layer to fix the polarizer 10035.
  • the polarizer 10035 is used to adjust incident external light.
  • the touch layer 10036 is provided with a touch electrode, which can be used to assist the touch function.
  • the cover plate 10037 has a characteristic of high hardness, and a friction-resistant layer may be disposed thereon to increase the wear resistance of the display panel 1003.
  • the sensing modules arranged at intervals are arranged, wherein a capacitance is formed between adjacent sensing modules, and then a corresponding value corresponding to the pressing is generated according to a change value of the capacitance between corresponding adjacent sensing modules.
  • Pressure value which can improve the accuracy of pressure value detection.
  • FIG. 8 is a flowchart of a touch detection method according to an embodiment of the present invention. The method includes:
  • step S101 when the touch panel is pressed, the pressed position information is acquired.
  • the pressed position information includes a position where the touch panel is pressed, and a position where the touch panel is pressed around.
  • Step S102 Determine a change value of the capacitance between the corresponding sensing modules according to the pressed position information.
  • the position information includes a middle position, a position where both sides are close to the middle position, and a position where both sides are far from the middle position.
  • the distance between the two sensor modules 11 corresponding to the middle position has been increased from L1 to L2
  • the distance between two adjacent sensor modules 11 on both sides close to the middle position has been changed from L1 to L3
  • the two sides are away from the middle
  • the distance between two adjacent sensing modules 11 at the position is changed from L1 to L4. Therefore, it is possible to calculate the change in capacitance between adjacent sensing modules 11 corresponding to the corresponding positions as with
  • step S103 a pressing pressure value is generated according to a change value of the capacitance.
  • the capacitance change value, pressure value, and the relationship between the two can be stored in advance, as shown in Table 2 below.
  • the pressure value corresponding to the capacitance change value can be found directly from Table 2.
  • the pressure value corresponding to the position corresponding to the intermediate position can be found, or the pressure value corresponding to the position can be found according to the change value of the capacitance corresponding to the intermediate position.
  • the touch detection method of the embodiment of the present invention determines the change value of the capacitance between the corresponding sensing modules by acquiring the position information of the pressing, and generates the pressing pressure value according to the change value of the capacitance, thereby improving the accuracy of the pressure detection.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Abstract

一种触控面板、显示面板、显示装置和触控检测方法,其中触控面板(10)包括多个感应模组(11),多个所述感应模组(11)相互间隔设置,相邻所述感应模组(11)之间形成电容;压力检测模组(12),与多个所述感应模组(11)电性连接,所述压力检测模组(12)用于在所述触控面板(10)受到按压后,根据相应相邻感应模组(11)之间电容的变化值,生成所述按压对应的压力值。

Description

触控面板、显示面板、显示装置和触控检测方法 技术领域
本发明涉及显示技术领域,特别是涉及一种触控面板、显示面板、显示装置和触控检测方法。
背景技术
触控技术是人机交互的主要输入形式。触控技术主要包括二维触控技术以及三维触控技术。其中,二维触控技术主要对X轴、Y轴组成的二维平面,进行多点式触摸识别,而三维触控技术在二维触控技术的基础上,新增了对Z轴方向的触控识别。
在三维触控技术下,用户可以通过调节对终端的按压力度,来对终端进行不同的操作。比如,利用手机玩游戏时,可以根据按压手机的程度,来控制速度、跳跃程度等。
然而,现有的压力值的检测方法准确性较低,因此需要提供一种能在Z轴方向上进行准确触控识别的方法,以提高压力值检测的准确性。
技术问题
本发明的目的在于提供一种触控面板、显示面板、显示装置和触控检测方法,可以提高检测触控面板受到的压力值的准确性。
技术解决方案
本发明实施例提供了一种触控面板,其中,包括:
多个感应模组,多个所述感应模组相互间隔设置,相邻所述感应模组之间形成电容;
压力检测模组,与多个所述感应模组电性连接,所述压力检测模组用于在所述触控面板受到按压后,根据相应相邻感应模组之间电容的变化值,生成所述按压对应的压力值。
在一些实施例中,每一所述感应模组包括一凸块和一导电层;
多个所述凸块呈网格状分布,位于第一方向的两相邻凸块通过跨桥连接,位于第二方向的两相邻凸块通过跨桥连接,所述第一方向和所述第二方向相交;
所述导电层设置在所述凸块上,包裹所述凸块。
在一些实施例中,所述凸块的高度H的取值范围为100至300微米,所述凸块的宽度W的取值范围为
Figure PCTCN2018105021-appb-000001
至H微米,两相邻所述凸块之间的间隔距离L的取值范围为
Figure PCTCN2018105021-appb-000002
至W微米。
在一些实施例中,所述凸块包括多个子凸块,以及设置在所述凸块边缘的多条走线;每一走线与所述走线对应的子凸块连接。
在一些实施例中,所述导电层的组成材料包括金属材料和/或石墨。
在一些实施例中,所述压力检测模组包括电容检测模组和压力生成模组;
所述电容检测模组,用于在所述触控面板受到按压前,检测相应相邻感应模组之间的第一电容,并在所述触控面板受到按压后,检测相应相邻感应模组之间的第二电容;
所述压力生成模组,用于根据所述第二电容和所述第一电容之间的差值,生成所述触控面板受到按压对应的压力值。
本发明实施例还提供了一种显示面板,其中,包括有机发光器件、支撑层、缓冲层,以及触控面板,所述触控面板、所述缓冲层、所述支撑层,以及所述有机发光器件依次层叠设置,所述缓冲层设置在所述触控面板上;
所述触控面板包括多个感应模组,多个所述感应模组相互间隔设置,相邻所述感应模组之间形成电容;
压力检测模组,与多个所述感应模组电性连接,所述压力检测模组用于在所述触控面板受到按压后,根据相应相邻感应模组之间电容的变化值,生成所述按压对应的压力值。
在一些实施例中,每一所述感应模组包括一凸块和一导电层;
多个所述凸块呈网格状分布,位于第一方向的两相邻凸块通过跨桥连接,位于第二方向的两相邻凸块通过跨桥 连接,所述第一方向和所述第二方向相交;
所述导电层设置在所述凸块上,包裹所述凸块。
在一些实施例中,所述凸块的高度H的取值范围为100至300微米,所述凸块的宽度W的取值范围为
Figure PCTCN2018105021-appb-000003
至H微米,两相邻所述凸块之间的间隔距离L的取值范围为
Figure PCTCN2018105021-appb-000004
至W微米。
在一些实施例中,所述凸块包括多个子凸块,以及设置在所述凸块边缘的多条走线;每一走线与所述走线对应的子凸块连接。
在一些实施例中,所述导电层的组成材料包括金属材料和/或石墨。
在一些实施例中,所述压力检测模组包括电容检测模组和压力生成模组;
所述电容检测模组,用于在所述触控面板受到按压前,检测相应相邻感应模组之间的第一电容,并在所述触控面板受到按压后,检测相应相邻感应模组之间的第二电容;
所述压力生成模组,用于根据所述第二电容和所述第一电容之间的差值,生成所述触控面板受到按压对应的压力值。
在一些实施例中,所述显示面板还包括散热层;
所述散热层,设置在所述缓冲层远离所述支撑层的一 侧;
所述触控面板,设置在所述散热层远离所述缓冲层的一侧。
本发明实施例还提供了一种显示装置,其中,所述显示装置包括后盖、中框、显示面板以及触控面板;
所述中框,设置在所述后盖上,所述中框与所述后盖形成收纳空间;
所述触控面板,设置在所述中框靠近所述后盖的一侧,所述触控面板设置在所述收纳空间中;
所述显示面板,设置在所述触控面板上;
所述触控面板包括多个感应模组,多个所述感应模组相互间隔设置,相邻所述感应模组之间形成电容;
压力检测模组,与多个所述感应模组电性连接,所述压力检测模组用于在所述触控面板受到按压后,根据相应相邻感应模组之间电容的变化值,生成所述按压对应的压力值。
在一些实施例中,每一所述感应模组包括一凸块和一导电层;
多个所述凸块呈网格状分布,位于第一方向的两相邻凸块通过跨桥连接,位于第二方向的两相邻凸块通过跨桥连接,所述第一方向和所述第二方向相交;
所述导电层设置在所述凸块上,包裹所述凸块。
在一些实施例中,所述凸块的高度H的取值范围为100至300微米,所述凸块的宽度W的取值范围为
Figure PCTCN2018105021-appb-000005
至H微米,两相邻所述凸块之间的间隔距离L的取值范围为
Figure PCTCN2018105021-appb-000006
至W微米。
在一些实施例中,所述凸块包括多个子凸块,以及设置在所述凸块边缘的多条走线;每一走线与所述走线对应的子凸块连接。
在一些实施例中,所述导电层的组成材料包括金属材料和/或石墨。
在一些实施例中,所述压力检测模组包括电容检测模组和压力生成模组;
所述电容检测模组,用于在所述触控面板受到按压前,检测相应相邻感应模组之间的第一电容,并在所述触控面板受到按压后,检测相应相邻感应模组之间的第二电容;
所述压力生成模组,用于根据所述第二电容和所述第一电容之间的差值,生成所述触控面板受到按压对应的压力值。
本发明实施例还提供了一种触控检测方法,用于使用上述的触控面板,进行触控检测,其中,包括:
当所述触控面板受到按压时,获取按压的位置信息;
根据所述按压的位置信息,确定对应感应模组之间电 容的变化值;
根据所述电容的变化值,生成所述按压的压力值。
有益效果
本发明实施例的触控面板、显示面板组、显示装置和触控检测方法,通过先设置相互间隔设置的感应模组,其中相邻感应模组之间形成电容,然后根据相应相邻感应模组之间电容的变化值,生成按压对应的压力值,从而可以提高压力值检测的准确性。
附图说明
为让本发明的上述内容能更明显易懂,下文特举优选实施例,并配合所附图式,作详细说明如下:
图1为本发明实施例提供的触控面板的结构示意图。
图2为本发明实施例提供的触控检测方法的场景示意图。
图3为本发明实施例提供的感应模组的结构示意图。
图4为本发明实施例提供的凸块的结构示意图。
图5为本发明实施例提供的显示面板的结构示意图。
图6为本发明实施例提供的显示面板的另一结构示意图。
图7为本发明实施例提供的显示装置的结构示意图。
图8为本发明实施例提供的触控检测方法的流程示 意图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
在图中,结构相似的单元是以相同标号表示。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本发明实施例提供了一种触控面板,请参照图1,图1为本发明实施例提供的触控面板的结构示意图。该触控面板10包括多个感应模组11和压力检测模组12。
如图1所示,该多个感应模组11相互间隔设置,相邻感应模组11之间形成电容。如图2所示,当触控面板10未受到按压时,相邻感应模组11之间的间距为L1,此时相邻感应模组11之间的电容为
Figure PCTCN2018105021-appb-000007
其中ε为介质介电常数,k为静电力常量,S为相邻感应模组11之间的正 对面积,当触控面板10中间位置受到按压后,中间位置对应的两感应模组11之间的间距变大至L2,两侧靠近中间位置的两相邻感应模组11之间的间距变大为L3,两侧远离中间位置的两相邻感应模组11之间的间距变大为L4。同理,可以计算出相应位置对应的相邻感应模组11之间的电容分别为
Figure PCTCN2018105021-appb-000008
Figure PCTCN2018105021-appb-000009
接着,即可根据按压前后,相邻感应模组11之间电容的变化值,来生成该按压对应的压力值。
具体的,如图1所示,每一感应模组11包括一凸块111和一导电层112。由于具有多个感应模组11,因此对应也具有多个凸块111。如图3所示,这些凸块111呈网格状分布,位于第一方向的两相邻凸块111通过跨桥113连接,位于第二方向的两相邻凸块111通过跨桥113连接,其中第一方向和第二方向相交,优选的,该第一方向可以为水平方向,第二方向可以为竖直方向。
其中凸块111的组成材料包括聚酰亚胺(Polyimide,PI)光阻。如图1所示,为了提高感应模组11电容检测的精度,可以将凸块111高度H的取值范围设置为100至300微米,将凸块的宽度W的取值范围设置为
Figure PCTCN2018105021-appb-000010
至H微米,两相邻凸块111之间的间隔距离L设置为
Figure PCTCN2018105021-appb-000011
至W微米。
如图4所示,凸块111包括多个子凸块1112,以及设置在凸块111边缘的多条走线1111,其中每一走线1111与其对应的子凸块1112连接。
导电层112设置在凸块111上,并包裹凸块111。其中,导电层112的组成材料包括金属材料和/或石墨,优选的,该金属材料为氧化铟锡。
如图1所示,压力检测模组12与上述多个感应模组11电性连接。压力检测模组12用于在触控面板10受到按压后,检测相应感应模组11在按压前后电容的变化值,并根据该电容的变化值生成该按压对应的压力值。
在一些实施例中,如图1所示,该压力检测模组12包括电容检测模组121和压力生成模组122。其中,电容检测模组121可以在触控面板10受到按压前,检测相应相邻感应模组11之间的第一电容,还可以在触控面板10受到按压后,检测相应相邻感应模组11之间的第二电容。如图2所示,当触控面板10受到按压前,电容检测模组121检测到的第一电容为
Figure PCTCN2018105021-appb-000012
当触控面板10受到按压后,电容检测模组121检测到的第二电容包括
Figure PCTCN2018105021-appb-000013
Figure PCTCN2018105021-appb-000014
Figure PCTCN2018105021-appb-000015
其中,中间位置对应的两感应模组11之间的第二电容为
Figure PCTCN2018105021-appb-000016
靠近中间位置的两相邻感应模组 11之间的第二电容为
Figure PCTCN2018105021-appb-000017
远离中间位置的两相邻感应模组11之间的第二电容为
Figure PCTCN2018105021-appb-000018
最后,压力生成模组122根据该第二电容和第一电容之间的差值,生成按压对应的压力值。具体的,可以预先存储第二电容和第一电容之间的差值、压力值,以及二者之间的关联关系,具体如下表1所示:
表1
第二电容和第一电容之间的差值 压力值
ΔC1 P1
ΔC2 P2
ΔC2 P3
这样,当电容检测模组121检测出第一电容和第二电容后,压力生成模块122可以计算出第二电容和第一电容之间的差值,然后直接从表1中查找与该差值对应的压力值。比如,如图2所示,可以根据中间位置对应的第二电容和第一电容之间的差值,查找该位置对应的压力值,或可以根据靠近中间位置对应的第二电容和第一电容之间的差值,查找该位置对应的压力值。
本发明实施例的触控面板,通过先设置相互间隔设置的感应模组,其中相邻感应模组之间形成电容,然后根据相应相邻感应模组之间电容的变化值,生成按压对应的压 力值,从而可以提高压力值检测的准确性。
本发明实施例还提供了一种显示面板,请参照图5,图5为本发明实施例提供的显示面板的结构示意图。显示面板1包括触控面板10、有机发光器件20、支撑层30,以及缓冲层40。该触控面板10、缓冲层40、支撑层30,以及有机发光器件20依次层叠设置,其中缓冲层40设置在触控面板10上。
其中,有机发光器件20包括依次层叠设置的发光层21、偏光片22、触控层23以及盖板24,其中发光层21设置在支撑层30上。具体的,发光层21包括薄膜晶体管层、有机发光层以及封装层。其中,薄膜晶体管层用于对有机发光层进行驱动。封装层用于隔离外界水氧。优选的,封装层为薄膜封装层,具体可以通过多层的有机-无机薄膜的组合来形成该薄膜封装层。偏光片22固定在封装层上,具体可以在封装层上涂布光学胶,固定偏光片22。偏光片22用于调节射入的外界光线。触控层23上设置有触控电极,可以用于辅助触控面板10实现触控功能。盖板24具有硬度高的特性,其上可设置耐摩擦的图层,以增加显示面板1的耐磨性能。
支撑层30用于支撑有机发光器件20,具体的,支撑层30可以采用聚对苯二甲酸乙二醇酯等材料制成。缓冲层40用于减少显示面板1受到的应力。
触控面板10包括多个感应模组11和压力检测模组12。如图1所示,该多个感应模组11相互间隔设置,相邻感应模组11之间形成电容。如图2所示,当触控面板10未受到按压时,相邻感应模组11之间的间距为L1,此时相邻感应模组11之间的电容为
Figure PCTCN2018105021-appb-000019
其中ε为介质介电常数,k为静电力常量,S为相邻感应模组11之间的正对面积,当触控面板10中间位置受到按压后,中间位置对应的两感应模组11之间的间距变大至L2,两侧靠近中间位置的两相邻感应模组11之间的间距变大为L3,两侧远离中间位置的两相邻感应模组11之间的间距变大为L4。同理,可以计算出相应位置对应的相邻感应模组11之间的电容分别为
Figure PCTCN2018105021-appb-000020
Figure PCTCN2018105021-appb-000021
接着,即可根据按压前后,相邻感应模组11之间电容的变化值,来生成该按压对应的压力值。
具体的,如图1所示,每一感应模组11包括一凸块111和一导电层112。由于具有多个感应模组11,因此对应也具有多个凸块111。如图3所示,这些凸块111呈网格状分布,位于第一方向的两相邻凸块111通过跨桥113连接,位于第二方向的两相邻凸块111通过跨桥113连接,其中第一方向和第二方向相交,优选的,该第一方向可以为水平方向,第二方向可以为竖直方向。
其中凸块111的组成材料包括PI光阻。如图1所示,为了提高感应模组11电容检测的精度,可以将凸块111高度H的取值范围设置为100至300微米,将凸块的宽度W的取值范围设置为
Figure PCTCN2018105021-appb-000022
至H微米,两相邻凸块111之间的间隔距离L设置为
Figure PCTCN2018105021-appb-000023
至W微米。
如图4所示,凸块111包括多个子凸块1112,以及设置在凸块111边缘的多条走线1111,其中每一走线1111与其对应的子凸块1112连接。
导电层112设置在凸块111上,并包裹凸块111。其中,导电层112的组成材料包括金属材料和/或石墨,优选的,该金属材料为氧化铟锡。
如图1所示,压力检测模组12与上述多个感应模组11电性连接。压力检测模组12用于在触控面板10受到按压后,检测相应感应模组11在按压前后电容的变化值,并根据该电容的变化值生成该按压对应的压力值。
在一些实施例中,如图1所示,该压力检测模组12包括电容检测模组121和压力生成模组122。其中,电容检测模组121可以在触控面板10受到按压前,检测相应相邻感应模组11之间的第一电容,还可以在触控面板10受到按压后,检测相应相邻感应模组11之间的第二电容。
如图2所示,当触控面板10受到按压前,电容检测 模组121检测到的第一电容为
Figure PCTCN2018105021-appb-000024
当触控面板10受到按压后,电容检测模组121检测到的第二电容包括
Figure PCTCN2018105021-appb-000025
Figure PCTCN2018105021-appb-000026
Figure PCTCN2018105021-appb-000027
其中,中间位置对应的两感应模组11之间的第二电容为
Figure PCTCN2018105021-appb-000028
靠近中间位置的两相邻感应模组11之间的第二电容为
Figure PCTCN2018105021-appb-000029
远离中间位置的两相邻感应模组11之间的第二电容为
Figure PCTCN2018105021-appb-000030
最后,压力生成模组122根据该第二电容和第一电容之间的差值,生成按压对应的压力值。具体的,可以预先存储第二电容和第一电容之间的差值、压力值,以及二者之间的关联关系,具体如表1所示。这样,当电容检测模组121检测出第一电容和第二电容后,压力生成模块122可以计算出第二电容和第一电容之间的差值,然后直接从表1中查找与该差值对应的压力值。比如,如图2所示,可以根据中间位置对应的第二电容和第一电容之间的差值,查找该位置对应的压力值,或可以根据靠近中间位置对应的第二电容和第一电容之间的差值,查找该位置对应的压力值。
在一些实施例中,显示面板1还包括散热层50,散热层50用于散热。如图6所示,散热层50设置在缓冲层 40远离支撑层30的一侧,触控面板10设置在散热层50远离缓冲层40的一侧。
本发明实施例提供的显示面板,通过先设置相互间隔设置的感应模组,其中相邻感应模组之间形成电容,然后根据相应相邻感应模组之间电容的变化值,生成按压对应的压力值,从而可以提高压力值检测的准确性。
本发明实施例还提供了一种显示装置,请参照图7,图7为本发明实施例提供的显示装置的结构示意图。显示装置1000包括后盖1001、中框1002、显示面板1003以及触控面板10。
其中,中框1002设置在后盖1001上,中框1002与后盖1001形成收纳空间a。触控面板10设置在中框1002靠近后盖1001的一侧,并且触控面板10设置在收纳空间a中。其中收纳空间a中还收纳了电池模组1004,该电池模组1004设置在触控面板10与后盖1001之间。
如图1所示,触控面板10包括多个感应模组11和压力检测模组12。该多个感应模组11相互间隔设置,相邻感应模组11之间形成电容。如图2所示,当触控面板10未受到按压时,相邻感应模组11之间的间距为L1,此时相邻感应模组11之间的电容为
Figure PCTCN2018105021-appb-000031
其中ε为介质介电常数,k为静电力常量,S为相邻感应模组11之间的正对面积,当触控面板10中间位置受到按压后,中间位置对 应的两感应模组11之间的间距变大至L2,靠近中间位置的两相邻感应模组11之间的间距变大为L3,远离中间位置的两相邻感应模组11之间的间距变大为L4。同理,可以计算出相应位置对应的感应模组11之间的电容分别为
Figure PCTCN2018105021-appb-000032
Figure PCTCN2018105021-appb-000033
接着,即可根据按压前后,相邻感应模组11之间电容的变化值,来生成该按压对应的压力值。
具体的,如图1所示,每一感应模组11包括一凸块111和一导电层112。由于具有多个感应模组11,因此对应也具有多个凸块111。如图3所示,这些凸块111呈网格状分布,位于第一方向的两相邻凸块11通过跨桥113连接,位于第二方向的两相邻凸块111通过跨桥113连接,其中第一方向和第二方向相交,优选的,该第一方向可以为水平方向,第二方向可以为竖直方向。
其中凸块111的组成材料包括PI光阻。如图1所示,为了提高感应模组11电容检测的精度,可以将凸块111高度H的取值范围设置为100至300微米,将凸块的宽度W的取值范围设置为
Figure PCTCN2018105021-appb-000034
至H微米,两相邻凸块111之间的间隔距离L设置为
Figure PCTCN2018105021-appb-000035
至W微米。
如图4所示,凸块111包括多个子凸块1112,以及设置在凸块111边缘的多条走线1111,其中每一走线1111 与其对应的子凸块1112连接。
导电层112设置在凸块111上,并包裹凸块111。其中,导电层112的组成材料包括金属材料和/或石墨,优选的,该金属材料为氧化铟锡。
如图1所示,压力检测模组12与上述多个感应模组11电性连接。压力检测模组12用于在触控面板10受到按压后,检测相应感应模组11在按压前后电容的变化值,并根据该电容的变化值生成该按压对应的压力值。
在一些实施例中,如图1所示,该压力检测模组12包括电容检测模组121和压力生成模组122。其中,电容检测模组121可以在触控面板10受到按压前,检测相应相邻感应模组11之间的第一电容,还可以在触控面板10受到按压后,检测相应相邻感应模组11之间的第二电容。如图2所示,当触控面板10受到按压前,电容检测模组121检测到的第一电容为
Figure PCTCN2018105021-appb-000036
当触控面板10受到按压后,电容检测模组121检测到的第二电容包括
Figure PCTCN2018105021-appb-000037
Figure PCTCN2018105021-appb-000038
Figure PCTCN2018105021-appb-000039
其中,中间位置对应的两感应模组11之间的第二电容为
Figure PCTCN2018105021-appb-000040
靠近中间位置的两相邻感应模组11之间的第二电容为
Figure PCTCN2018105021-appb-000041
远离中间位置的两相邻感应 模组11之间的第二电容为
Figure PCTCN2018105021-appb-000042
最后,压力生成模组122根据该第二电容和第一电容之间的差值,生成按压对应的压力值。具体的,可以预先第二电容和第一电容之间的差值、压力值,以及二者之间的关联关系,具体如表1所示。
这样,当电容检测模组121检测出第一电容和第二电容后,压力生成模块122可以计算出第二电容和第一电容之间的差值,然后直接从表1中查找与该差值对应的压力值。比如,如图2所示,可以根据中间位置对应的第二电容,查找该位置对应的压力值,或可以根据靠近中间位置对应的第二电容,查找该位置对应的压力值。
显示面板1003设置在触控面板10上。具体的,显示面板1003包括散热层10031、缓冲层10032、支撑层10033、发光层10034、偏光片10035、触控层10036以及盖板10037。其中散热层10031、缓冲层10032、支撑层10033、发光层10034、偏光片10035、触控层10036以及盖板10037从下至上依次层叠设置。
其中,散热层10031用于散热。缓冲层10032用于缓解显示面板1003受到的应力。支撑层30用于支撑其上的发光层10034、偏光片10035、触控层10036以及盖板10037。发光层10034包括薄膜晶体管层、有机发光层以及封装层。其中,薄膜晶体管层用于对有机发光层进行驱动。封装层 用于隔离外界水氧。优选的,封装层为薄膜封装层,具体可以通过多层的有机-无机薄膜的组合来形成该薄膜封装层。偏光片10035固定在封装层上,具体可以在封装层上涂布光学胶,固定偏光片10035。偏光片10035用于调节射入的外界光线。触控层10036上设置有触控电极,可以用于辅助实现触控功能。盖板10037具有硬度高的特性,其上可设置耐摩擦的图层,以增加显示面板1003的耐磨性能。
本发明实施例提供的显示装置,通过先设置相互间隔设置的感应模组,其中相邻感应模组之间形成电容,然后根据相应相邻感应模组之间电容的变化值,生成按压对应的压力值,从而可以提高压力值检测的准确性。
本发明实施例还提供了一种触控检测方法,用于上述的触控面板10进行触控检测。请参照图8,图8为本发明实施例提供的触控检测方法的流程图,该方法包括:
步骤S101,当触控面板受到按压时,获取按压的位置信息。
当触控面板受到按压后,该按压位置对应的位置会受到压力,在竖直方向上产生形变,同时按压位置对应的周边位置也会受到挤压,在竖直方向上产生形变。因此按压的位置信息包括触控面板受到按压的位置,以及该按压位置周围受到挤压的位置。
步骤S102,根据按压的位置信息,确定对应感应模组之间电容的变化值。
如图2所示,当触控面板10中间位置受到按压后,触控面板10中间位置以及周边位置都在竖直方向上产生了形变。因此位置信息包括中间位置、两侧靠近中间位置的位置,以及两侧远离中间位置的位置。其中,中间位置对应的两感应模组11之间的间距由L1变大至L2,两侧靠近中间位置的两相邻感应模组11之间的间距由L1变大为L3,两侧远离中间位置的两相邻感应模组11之间的间距由L1变大为L4。因此,可以计算出相应位置对应的相邻感应模组11之间电容的变化值分别为
Figure PCTCN2018105021-appb-000043
Figure PCTCN2018105021-appb-000044
Figure PCTCN2018105021-appb-000045
步骤S103,根据电容的变化值,生成按压的压力值。
可以预先存储电容的变化值、压力值,以及二者之间的关联关系,具体如下表2所示。这样可以直接从表2中查找电容的变化值对应的压力值。比如,如图2所示,可以根据中间位置对应的电容的变化值,查找该位置对应的压力值,或可以根据靠近中间位置对应的电容的变化值,查找该位置对应的压力值。
表2
电容的变化值 压力值
ΔC1 P1
ΔC2 P2
ΔC2 P3
本发明实施例的触控检测方法,通过获取按压的位置信息,来确定对应感应模组之间电容的变化值,并根据电容的变化值生成按压的压力值,提高了压力检测的准确性。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种触控面板,其中,包括:
    多个感应模组,多个所述感应模组相互间隔设置,相邻所述感应模组之间形成电容;
    压力检测模组,与多个所述感应模组电性连接,所述压力检测模组用于在所述触控面板受到按压后,根据相应相邻感应模组之间电容的变化值,生成所述按压对应的压力值。
  2. 根据权利要求1所述的触控面板,其中,每一所述感应模组包括一凸块和一导电层;
    多个所述凸块呈网格状分布,位于第一方向的两相邻凸块通过跨桥连接,位于第二方向的两相邻凸块通过跨桥连接,所述第一方向和所述第二方向相交;
    所述导电层设置在所述凸块上,包裹所述凸块。
  3. 根据权利要求2所述的触控面板,其中,所述凸块的高度H的取值范围为100至300微米,所述凸块的宽度W的取值范围为
    Figure PCTCN2018105021-appb-100001
    至H微米,两相邻所述凸块之间的间隔距离L的取值范围为
    Figure PCTCN2018105021-appb-100002
    至W微米。
  4. 根据权利要求2所述的触控面板,其中,所述凸块包括多个子凸块,以及设置在所述凸块边缘的多条走线;每一走线与所述走线对应的子凸块连接。
  5. 根据权利要求2所述的触控面板,其中,所述导电层的组成材料包括金属材料和/或石墨。
  6. 根据权利要求1所述的触控面板,其中,所述压力检测模组包括电容检测模组和压力生成模组;
    所述电容检测模组,用于在所述触控面板受到按压前,检测相应相邻感应模组之间的第一电容,并在所述触控面板受到按压后,检测相应相邻感应模组之间的第二电容;
    所述压力生成模组,用于根据所述第二电容和所述第一电容之间的差值,生成所述触控面板受到按压对应的压力值。
  7. 一种显示面板,其中,包括有机发光器件、支撑层、缓冲层,以及触控面板,所述触控面板、所述缓冲层、所述支撑层,以及所述有机发光器件依次层叠设置,所述缓冲层设置在所述触控面板上;
    所述触控面板包括多个感应模组,多个所述感应模组相互间隔设置,相邻所述感应模组之间形成电容;
    压力检测模组,与多个所述感应模组电性连接,所述压力检测模组用于在所述触控面板受到按压后,根据相应相邻感应模组之间电容的变化值,生成所述按压对应的压力值。
  8. 根据权利要求7所述的显示面板,其中,每一所述感应模组包括一凸块和一导电层;
    多个所述凸块呈网格状分布,位于第一方向的两相邻凸块通过跨桥连接,位于第二方向的两相邻凸块通过跨桥连接,所述第一方向和所述第二方向相交;
    所述导电层设置在所述凸块上,包裹所述凸块。
  9. 根据权利要求8所述的显示面板,其中,所述凸块的高度H的取值范围为100至300微米,所述凸块的宽度W的取值范围为
    Figure PCTCN2018105021-appb-100003
    至H微米,两相邻所述凸块之间的间隔距离L的取值范围为
    Figure PCTCN2018105021-appb-100004
    至W微米。
  10. 根据权利要求8所述的显示面板,其中,所述凸块包括多个子凸块,以及设置在所述凸块边缘的多条走线;每一走线与所述走线对应的子凸块连接。
  11. 根据权利要求8所述的显示面板,其中,所述导电层的组成材料包括金属材料和/或石墨。
  12. 根据权利要求7所述的显示面板,其中,所述压力检测模组包括电容检测模组和压力生成模组;
    所述电容检测模组,用于在所述触控面板受到按压前,检测相应相邻感应模组之间的第一电容,并在所述触控面板受到按压后,检测相应相邻感应模组之间的第二电容;
    所述压力生成模组,用于根据所述第二电容和所述第一电容之间的差值,生成所述触控面板受到按压对应的压力值。
  13. 根据权利要求7所述的显示面板,其中,所述显示面板还包括散热层;
    所述散热层,设置在所述缓冲层远离所述支撑层的一侧;
    所述触控面板,设置在所述散热层远离所述缓冲层的一侧。
  14. 一种显示装置,其中,所述显示装置包括后盖、中框、显示面板以及触控面板;
    所述中框,设置在所述后盖上,所述中框与所述后盖形成收纳空间;
    所述触控面板,设置在所述中框靠近所述后盖的一侧,所述触控面板设置在所述收纳空间中;
    所述显示面板,设置在所述触控面板上;
    所述触控面板包括多个感应模组,多个所述感应模组相互间隔设置,相邻所述感应模组之间形成电容;
    压力检测模组,与多个所述感应模组电性连接,所述压力检测模组用于在所述触控面板受到按压后,根据相应相邻感应模组之间电容的变化值,生成所述按压对应的压力值。
  15. 根据权利要求14所述的显示装置,其中,每一所述感应模组包括一凸块和一导电层;
    多个所述凸块呈网格状分布,位于第一方向的两相邻 凸块通过跨桥连接,位于第二方向的两相邻凸块通过跨桥连接,所述第一方向和所述第二方向相交;
    所述导电层设置在所述凸块上,包裹所述凸块。
  16. 根据权利要求15所述的显示装置,其中,所述凸块的高度H的取值范围为100至300微米,所述凸块的宽度W的取值范围为
    Figure PCTCN2018105021-appb-100005
    至H微米,两相邻所述凸块之间的间隔距离L的取值范围为
    Figure PCTCN2018105021-appb-100006
    至W微米。
  17. 根据权利要求15所述的显示装置,其中,所述凸块包括多个子凸块,以及设置在所述凸块边缘的多条走线;每一走线与所述走线对应的子凸块连接。
  18. 根据权利要求15所述的显示装置,其中,所述导电层的组成材料包括金属材料和/或石墨。
  19. 根据权利要求14所述的显示装置,其中,所述压力检测模组包括电容检测模组和压力生成模组;
    所述电容检测模组,用于在所述触控面板受到按压前,检测相应相邻感应模组之间的第一电容,并在所述触控面板受到按压后,检测相应相邻感应模组之间的第二电容;
    所述压力生成模组,用于根据所述第二电容和所述第一电容之间的差值,生成所述触控面板受到按压对应的压力值。
  20. 一种触控检测方法,用于使用如权利要求1所述 的触控面板,进行触控检测,其中,包括:
    当所述触控面板受到按压时,获取按压的位置信息;
    根据所述按压的位置信息,确定对应感应模组之间电容的变化值;
    根据所述电容的变化值,生成所述按压的压力值。
PCT/CN2018/105021 2018-08-03 2018-09-11 触控面板、显示面板、显示装置和触控检测方法 WO2020024372A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/317,830 US20200064970A1 (en) 2018-08-03 2018-09-11 Touch panel, display panel, display device and touch detecting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810875928.2 2018-08-03
CN201810875928.2A CN109101142B (zh) 2018-08-03 2018-08-03 触控面板、显示面板、显示装置和触控检测方法

Publications (1)

Publication Number Publication Date
WO2020024372A1 true WO2020024372A1 (zh) 2020-02-06

Family

ID=64848341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105021 WO2020024372A1 (zh) 2018-08-03 2018-09-11 触控面板、显示面板、显示装置和触控检测方法

Country Status (3)

Country Link
US (1) US20200064970A1 (zh)
CN (1) CN109101142B (zh)
WO (1) WO2020024372A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817829A (zh) * 2019-01-31 2019-05-28 武汉华星光电半导体显示技术有限公司 散热膜及显示面板
CN109947288B (zh) * 2019-02-27 2020-06-30 武汉华星光电半导体显示技术有限公司 一种内嵌式触控面板与制造方法
CN110707232A (zh) * 2019-09-12 2020-01-17 武汉华星光电半导体显示技术有限公司 显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105117055A (zh) * 2015-08-14 2015-12-02 宸鸿科技(厦门)有限公司 触压式三维信号输入装置及使用方法及多功能触控面板
CN205581828U (zh) * 2016-03-28 2016-09-14 惠州Tcl移动通信有限公司 触摸显示模组及电子设备
CN107134220A (zh) * 2016-02-29 2017-09-05 上海和辉光电有限公司 电子装置、显示面板及其制造方法
US20180059869A1 (en) * 2016-08-31 2018-03-01 Japan Display Inc. Touch sensor and touch screen
CN108108047A (zh) * 2016-11-24 2018-06-01 希迪普公司 触摸输入装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101500425B1 (ko) * 2008-08-27 2015-03-09 삼성디스플레이 주식회사 터치 스크린 표시 장치
KR101452302B1 (ko) * 2013-07-29 2014-10-22 주식회사 하이딥 터치 센서 패널
CN104423740B (zh) * 2013-08-30 2018-07-13 唐山东唐电气股份有限公司 基于电容式触控装置的感测方法
CN104423748A (zh) * 2013-09-02 2015-03-18 友达光电股份有限公司 触控显示装置
CN205540645U (zh) * 2016-01-26 2016-08-31 宸盛光电有限公司 压力感测触控模组
CN105700753B (zh) * 2016-03-03 2018-11-30 京东方科技集团股份有限公司 压力检测单元、压力检测方法和显示面板
KR20170127296A (ko) * 2016-05-11 2017-11-21 삼성전자주식회사 입력 장치 및 이를 구비하는 전자 장치
CN106339129B (zh) * 2016-09-13 2019-01-04 厦门天马微电子有限公司 触控显示面板及其驱动方法、内嵌式触控显示器
CN108227994B (zh) * 2018-01-03 2021-11-16 京东方科技集团股份有限公司 触控面板及其驱动方法、触控显示装置和指纹识别方法
KR102575557B1 (ko) * 2018-04-05 2023-09-06 삼성디스플레이 주식회사 표시장치 및 연성회로기판

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105117055A (zh) * 2015-08-14 2015-12-02 宸鸿科技(厦门)有限公司 触压式三维信号输入装置及使用方法及多功能触控面板
CN107134220A (zh) * 2016-02-29 2017-09-05 上海和辉光电有限公司 电子装置、显示面板及其制造方法
CN205581828U (zh) * 2016-03-28 2016-09-14 惠州Tcl移动通信有限公司 触摸显示模组及电子设备
US20180059869A1 (en) * 2016-08-31 2018-03-01 Japan Display Inc. Touch sensor and touch screen
CN108108047A (zh) * 2016-11-24 2018-06-01 希迪普公司 触摸输入装置

Also Published As

Publication number Publication date
CN109101142B (zh) 2020-09-08
US20200064970A1 (en) 2020-02-27
CN109101142A (zh) 2018-12-28

Similar Documents

Publication Publication Date Title
US10095335B2 (en) In-cell type touch panel and manufacturing method thereof, liquid crystal display device
CN105677130B (zh) 压感触控方法、压感触控装置及压感式触摸屏
US20170364183A1 (en) Touch sensor, touch detection device and detection method, and touch control apparatus
WO2018040717A1 (zh) 触控显示面板及其驱动方法以及触控显示装置
WO2020024372A1 (zh) 触控面板、显示面板、显示装置和触控检测方法
TWI554993B (zh) 具有光感應輸入的顯示驅動電路
US10216344B2 (en) In-cell touch panel, method for driving the same, and display device
US10627943B2 (en) Touch panel, method of driving touch panel, and touch device
US20150185911A1 (en) Flexible touch panel and manufacturing method thereof
TW201545014A (zh) 內嵌式有源矩陣有機發光二極體觸控面板
CN1942851A (zh) 触控式显示器
US10572052B2 (en) Pressure force touch panel and method for manufacturing the same, and display apparatus
WO2017092404A1 (zh) 触控显示装置及其驱动方法
US9236421B2 (en) In-cell active matrix OLED touch display panel structure of narrow border
WO2017063433A1 (zh) 显示装置及其驱动方法、电子设备
CN109634471A (zh) 一种触控显示面板及触控显示装置
US9678377B2 (en) Touch structure, LCD panel and display device
US10620735B2 (en) Force touch module, manufacturing method thereof, display screen and display device
US20230266840A1 (en) Display Module, Electronic Device, and Electronic Device Control Method
US20140160059A1 (en) Touch sensor mechanism and manufacturing method thereof
TW201530405A (zh) 電容式觸控面板的主動陣列及相關的電容式觸控面板
CN106648206B (zh) 一种显示面板及显示装置
US20180188580A1 (en) Touch display screen and electronic apparatus using the same
WO2022141177A1 (zh) 传感器件及显示装置
WO2020062454A1 (zh) 显示面板和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18928161

Country of ref document: EP

Kind code of ref document: A1