WO2020021656A1 - 半導体遮断器及び遮断装置 - Google Patents

半導体遮断器及び遮断装置 Download PDF

Info

Publication number
WO2020021656A1
WO2020021656A1 PCT/JP2018/027901 JP2018027901W WO2020021656A1 WO 2020021656 A1 WO2020021656 A1 WO 2020021656A1 JP 2018027901 W JP2018027901 W JP 2018027901W WO 2020021656 A1 WO2020021656 A1 WO 2020021656A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
unit
zero point
accident
signal
Prior art date
Application number
PCT/JP2018/027901
Other languages
English (en)
French (fr)
Inventor
堀之内 克彦
嗣大 宅野
智子 ▲高▼須加
智史 石倉
広登 結城
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/027901 priority Critical patent/WO2020021656A1/ja
Priority to EP18927476.4A priority patent/EP3829016A4/en
Priority to US17/256,663 priority patent/US11848550B2/en
Priority to JP2018555693A priority patent/JP6497488B1/ja
Publication of WO2020021656A1 publication Critical patent/WO2020021656A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/083Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for three-phase systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/093Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current with timing means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0828Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/13Modifications for switching at zero crossing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/021Details concerning the disconnection itself, e.g. at a particular instant, particularly at zero value of current, disconnection in a predetermined order
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/033Details with several disconnections in a preferential order, e.g. following priority of the users, load repartition
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6871Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
    • H03K17/6874Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor in a symmetrical configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0027Measuring means of, e.g. currents through or voltages across the switch

Definitions

  • the present invention relates to a semiconductor circuit breaker and a circuit breaker that cut off current using a semiconductor switch.
  • Circuit breakers installed in switchboards, control panels, etc. open and close the load current supplied to the load, and cut off the fault current that occurs when a fault such as a short circuit or ground fault occurs in the load or the power system leading to it.
  • a mechanical circuit breaker such as a gas circuit breaker, a vacuum circuit breaker, and an air circuit breaker is generally used.
  • a high-temperature discharge called an arc occurs at the time of breaking. Since the arc has the property that it does not extinguish unless the current value becomes zero, the mechanical circuit breaker in the AC power system has a timing at which the current value visited every half cycle of the AC becomes zero (hereinafter referred to as current zero point). The current is interrupted at.
  • Patent Literature 1 discloses a semiconductor AC circuit breaker that uses a thyristor as a semiconductor switch and turns off the thyristor by discharging a precharged commutation capacitor when a short circuit occurs.
  • a semiconductor circuit breaker using a thyristor or triac as a semiconductor switch has the characteristic that the current is not interrupted up to the current zero point. May exceed the current withstand capability. Therefore, it is necessary to use a semiconductor switch having a large current capacity or to connect a large number of semiconductor switches in parallel, and there is a problem that the semiconductor circuit breaker is increased in size and cost.
  • a semiconductor circuit breaker using a self-extinguishing type semiconductor switch such as a MOSFET, an IGBT, or a power transistor instead of a semiconductor switch such as a thyristor or a triac has been developed.
  • conduction and non-conduction are controlled by the control signal, so that the current can be cut off before reaching the current withstand capability of the semiconductor switch without waiting for the current zero point.
  • a semiconductor switch unit that switches between conduction and non-conduction between a power supply device and a load device based on a control signal is provided, and a current detected by a current detector is equal to or greater than a predetermined current threshold.
  • a semiconductor circuit breaker that shuts off a semiconductor switch unit when it is determined is disclosed.
  • the present invention has been made in order to solve the above-described problems, and suppresses the occurrence of a surge voltage when the power system is operating normally, while immediately interrupting the current when an accident occurs.
  • An object of the present invention is to provide a semiconductor circuit breaker that can be reduced in size and cost by interrupting a current.
  • a semiconductor circuit breaker is connected to an AC circuit, and has a semiconductor switch unit whose conduction and non-conduction is controlled based on a control signal, and an accident detection unit that detects an accident based on a current detected from the AC circuit. And a zero point detector for detecting a current zero based on the current detected from the AC circuit, and when the accident detector detects an accident or when the zero detector detects a current zero point in response to a command to cut off the current.
  • a control signal output unit for outputting a control signal for turning off the semiconductor switch unit.
  • the circuit breaker according to the present invention includes a semiconductor circuit breaker connected to a branch line branched from a bus connected to a power supply, and a current limiter connected in parallel to a main switch connected to the bus. .
  • the semiconductor circuit breaker when an accident is detected or when a current zero point is detected in response to a command to cut off current, a control signal for turning off the semiconductor switch unit is output,
  • the current that is supplied to the load when the power system is normal can be cut off by suppressing the generation of high-voltage surge voltage while shutting off the current flowing when an accident occurs before reaching the current withstand capability of the semiconductor switch section.
  • the circuit breaker can be reduced in size and cost.
  • the current limiter is connected in parallel with the main switch, so that when an accident occurs, the current flowing from the power supply side toward the load side is limited, and the semiconductor circuit breaker is limited. The current can be cut off immediately.
  • FIG. 1 is a schematic configuration diagram of a semiconductor circuit breaker according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic configuration diagram of a semiconductor switch unit of the semiconductor circuit breaker according to Embodiment 1 of the present invention.
  • 1 is a schematic configuration diagram of a semiconductor circuit breaker according to Embodiment 1 of the present invention.
  • 5 is a flowchart showing an operation of the semiconductor circuit breaker according to Embodiment 1 of the present invention.
  • FIG. 4 is an explanatory diagram for describing an operation of the semiconductor circuit breaker according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic configuration diagram of a semiconductor circuit breaker according to Embodiment 2 of the present invention.
  • FIG. 6 is a flowchart showing an operation of the semiconductor circuit breaker according to Embodiment 2 of the present invention.
  • FIG. 9 is an explanatory diagram for explaining an operation of the semiconductor circuit breaker according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic configuration diagram of a semiconductor circuit breaker according to Embodiment 2 of the present invention. 6 is a flowchart showing an operation of the semiconductor circuit breaker according to Embodiment 2 of the present invention. 6 is a flowchart showing an operation of the semiconductor circuit breaker according to Embodiment 2 of the present invention.
  • FIG. 13 is an explanatory diagram for explaining an operation of the semiconductor circuit breaker according to Embodiment 3 of the present invention.
  • FIG. 13 is an explanatory diagram for explaining an operation of the semiconductor circuit breaker according to Embodiment 3 of the present invention.
  • FIG. 13 is a schematic configuration diagram of a power system to which a shutoff device according to a fourth embodiment of the present invention is applied.
  • FIG. 13 is a schematic configuration diagram of a semiconductor circuit breaker according to Embodiment 4 of the present invention.
  • FIG. 13 is a schematic configuration diagram of a power system to which a shutoff device according to a fourth embodiment of the present invention is applied. It is a schematic structure figure of a phase control part of a semiconductor circuit breaker concerning Embodiment 5 of the present invention.
  • FIG. 13 is a schematic configuration diagram of a phase control unit of a semiconductor circuit breaker according to Embodiment 6 of the present invention.
  • FIG. 13 is a schematic configuration diagram of a phase control unit of a semiconductor circuit breaker according to Embodiment 6 of the present invention.
  • FIG. 13 is a schematic configuration diagram of a phase control unit of a semiconductor circuit breaker according to Embodiment 6 of the present invention.
  • FIG. 13 is a schematic configuration diagram of a phase control unit of a semiconductor circuit breaker according to Embodiment 6 of the present invention.
  • FIG. 13 is a schematic configuration diagram of a phase control unit of a semiconductor circuit breaker according to Embodiment 6 of the present invention.
  • FIG. 1 is a schematic configuration diagram showing a semiconductor circuit breaker according to Embodiment 1 of the present invention.
  • the semiconductor circuit breaker 100 includes semiconductor switches 10r, 10s, and 10t connected to the r, s, and t phases, respectively.
  • phase control units 20r, 20s, and 20t are connected between an AC power supply and a load, and each phase is provided with a current detector 30r, 30s, 30t for detecting a current.
  • each part having the same name provided in each of the r-phase, s-phase, and t-phase has the same configuration and function, and when describing the same configuration and function of each part, a semiconductor
  • the switch unit 10, the phase control unit 20, and the current detector 30 are described.
  • FIG. 2 is a schematic configuration diagram showing a semiconductor switch section of the semiconductor circuit breaker according to Embodiment 1 of the present invention.
  • the semiconductor switch unit 10 switches between conduction and non-conduction according to a control signal output from the phase control unit 20.
  • the semiconductor switch unit 10 is, for example, an IGBT (Insulated Gate Bipolar Transistor).
  • the semiconductor switch unit 10 includes a first semiconductor element 11a, a first diode 12a connected in parallel with the first semiconductor element 11a, and having a current flowing in a direction opposite to the current of the first semiconductor element 11a.
  • the semiconductor device includes a second semiconductor element 11b connected in a direction opposite to the first semiconductor element 11a, and a second diode 12b for flowing a current in a direction opposite to the current of the second semiconductor element 11b.
  • the semiconductor switch unit 10 is an IGBT.
  • any device can be used as long as conduction and non-conduction are controlled by a control signal. Off @ thyristor) or the like.
  • FIG. 3 is a schematic configuration diagram showing a phase control unit of the semiconductor circuit breaker according to Embodiment 1 of the present invention.
  • the phase control unit 20 detects an accident based on the current detected by the current detector 30, and detects a current zero point based on the current detected by the current detector 30.
  • the accident detection unit 21 acquires the current signal S1 from the current detector 30 and determines that an accident has occurred when the current value or the amount of change in the current value is equal to or greater than a predetermined threshold, and outputs the accident detection signal S2 to the control signal output unit. 23.
  • the threshold is set to be equal to or less than the current withstand capability of the semiconductor switch unit 10.
  • the zero point detection unit 22 acquires the current signal S1 from the current detector 30, detects when the current value is zero or when the sign of the current value is inverted as a current zero point, and outputs the zero point detection signal S3 to the control signal output unit. 23.
  • the zero point detection unit 22 may always detect the current zero point from the current signal S1, or may receive, for example, a command signal S5 for commanding to shut off the current from an externally provided operation unit 40 that can be operated by a user. After that, the detection of the current zero point may be started.
  • the operation unit 40 is a signal source such as a mechanical switch or another control device that outputs the command signal S5.
  • the zero point detection unit 22 may start detecting the current zero point after receiving the accident detection signal S2 for commanding to cut off the current output from the phase control unit 20 of another phase.
  • FIG. 3 shows an example in which the command signal S5 from the operation unit 40 is input to the zero point detection unit 22.
  • the operation signal from the operation unit 40 The command signal S5 may be input to the control signal output unit 23.
  • the control signal output unit 23 outputs the ON control signal S4a when the semiconductor switch unit 10 is turned on, and outputs the OFF control signal S4b to the semiconductor switch unit 10 when the semiconductor switch unit 10 is turned off.
  • the control signal output unit 23 outputs an off control signal S4b to the semiconductor switch unit 10 according to the accident detection signal S2 output from the accident detection unit 21.
  • the control signal output unit 23 outputs an off control signal S4b to the semiconductor switch unit 10 according to the zero point detection signal S3 output from the zero point detection unit 22.
  • the phase control unit 20 may be configured by, for example, a digital circuit having an A / D converter, a CPU such as a microprocessor, and an input / output circuit, or may be configured by an analog circuit.
  • the current detector 30 may be provided in the semiconductor circuit breaker 100, or may use, for example, a CT provided in an AC circuit outside the semiconductor circuit breaker 100.
  • FIG. 4 is a flowchart illustrating an example of the operation of the semiconductor circuit breaker according to Embodiment 1 of the present invention.
  • the phase control unit 20 of the semiconductor circuit breaker 100 acquires the current signal S1 from the current detector 30 (ST1).
  • the accident detection unit 21 determines whether the current value or the amount of change in the current value is equal to or greater than a predetermined threshold based on the obtained current signal S1 (ST2). If the accident is equal to or greater than the threshold value, the accident detection unit 21 determines that an accident has occurred, and outputs an accident detection signal S2 to the control signal output unit 23 (ST3).
  • the zero point detecting unit 22 detects the current zero point based on the acquired current signal S1 (ST5). When the current zero point is detected, the zero point detection unit 22 outputs a zero point detection signal S3 to the control signal output unit 23 (ST6).
  • the control signal output unit 23 outputs an off control signal S4b for turning off the semiconductor switch unit 10 to the semiconductor switch unit 10 according to the accident detection signal S2 or the zero point detection signal S3 (ST7).
  • non-conduction at the current zero point includes non-conduction after a lapse of a delay time ⁇ td required for signal processing of the phase control unit 20 from the detected current zero point.
  • FIG. 5 is an explanatory diagram for explaining the operation of the semiconductor circuit breaker according to Embodiment 1 of the present invention.
  • the vertical axis shows the current value (kA), and the horizontal axis shows time (s).
  • the current value and the amount of time change of the current value increase.
  • semiconductor breaker 100 according to the present embodiment determines that an accident has occurred at time Tb when a current value equal to or greater than a predetermined threshold value Rmax is detected. Can be quickly shut off before the current withstand current Cmax is reached.
  • the control signal output unit 23 turns off the semiconductor switch unit 10. And outputs an off control signal S4b.
  • the load is an inductive load such as a motor
  • the load is cut off, and the inductance L of the load and the semiconductor switch Generation of a high surge voltage corresponding to the product L ⁇ (dI / dt) of the current I flowing through the section 10 and the time variation dI / dt can be suppressed.
  • the semiconductor circuit breaker 100 is cut off without waiting for the current zero point without being affected by the inductance component of the load because the semiconductor circuit breaker 100 is separated from the load at the point of the accident. However, no surge voltage is generated by the load.
  • the semiconductor switch unit 10 in order to prevent the semiconductor switch unit 10 from being destroyed by the surge voltage, it is not necessary to use the semiconductor switch unit 10 having high withstand voltage performance or to use an arrester such as an arrester or a varistor that absorbs surge energy.
  • the size and cost of the semiconductor circuit breaker 100 can be reduced.
  • FIG. FIG. 6 is a schematic configuration diagram of a phase control unit of the semiconductor circuit breaker according to Embodiment 2 of the present invention.
  • the phase control units 20r, 20s, and 20t control the semiconductor switch units 10r, 10s, and 10t, respectively.
  • the phase control units 20r, 20s, and 20t communicate with each other.
  • the connected phase control unit 20 of the phase in which the accident has occurred at the time of the accident controls the semiconductor switch unit 10 of another normal phase.
  • description of the same points as in the first embodiment will be omitted, and different points will be mainly described.
  • FIG. 7 is a flowchart showing an example of the operation of the semiconductor circuit breaker according to Embodiment 2 of the present invention.
  • the r-phase control unit 20r acquires the current signal S1 from the current detector 30r that detects the current flowing in the r-phase (ST101).
  • the r-phase accident detection unit 21r determines whether the current value or the amount of change in the current value is equal to or greater than a predetermined threshold based on the obtained current signal S1 (ST102).
  • the r-phase fault detection unit 21r determines that a fault has occurred when the value is equal to or greater than the threshold, and outputs the fault detection signal S2 to the r-phase control signal output unit 23r and the s-phase and t-phase zero-point detection units 22s and 22t, respectively. Is output (ST103).
  • the r-phase control signal output unit 23r outputs an off-control signal S4b for turning off the semiconductor switch unit 10 to the r-phase semiconductor switch unit 10r in response to the accident detection signal S2 from the r-phase accident detection unit 21r. Output (ST104).
  • the r-phase semiconductor switch unit 10r becomes non-conductive and interrupts the current before reaching the current withstand capability of the semiconductor switch unit 10 without waiting for the current zero point (ST105).
  • the s-phase and t-phase zero point detectors 22s and 22t acquire the current signals S1 from the current detectors 30s and 30t that detect the currents flowing in the s-phase and t-phase, respectively (ST106).
  • the s-phase and t-phase zero point detection units 22s and 22t receive the accident detection signal S2 from the r-phase accident detection unit 21r as a signal for commanding the interruption of the current, based on the current signal S1 acquired from each phase. , Respectively, to detect a current zero point (ST107). Then, when the current zero point is detected, the zero point detection signal S3 is output to the s-phase and t-phase control signal output units 23s and 23t, respectively (ST108).
  • the s-phase and t-phase control signal output units 23s and 23t output an off-control signal S4b for turning off the s-phase and t-phase semiconductor switch units 10s and 10t in response to the zero point detection signal S3 (ST109). .
  • the s-phase and t-phase semiconductor switch units 10s and 10t cut off the current at the current zero point according to the off control signal S4b (ST110).
  • FIG. 8 is an explanatory diagram for describing an example of the operation of the semiconductor circuit breaker according to Embodiment 2 of the present invention.
  • the vertical axis indicates the current value (kA), and the horizontal axis indicates time (s).
  • currents Ir, Is, and It flow in the r, s, and t phases, respectively.
  • the off-control signal S4b is output without waiting for the current zero point, and the current Ir is interrupted at the time T1 before the current withstand capability of the semiconductor switch unit 10r is reached.
  • the current Is in the s-phase and the current It in the t-phase are cut off at time T3 and time T2, respectively, at which the current reaches zero.
  • FIG. 9 is a schematic configuration diagram of a phase control unit of the semiconductor circuit breaker according to Embodiment 2 of the present invention.
  • transmission and reception of signals in a specific case described below are indicated by arrows, and transmission and reception of signals between the accident detection unit 21t and the control signal output unit 23t are omitted.
  • FIG. 10 is a flowchart showing the operation of the r-phase phase control unit of the semiconductor circuit breaker according to Embodiment 1 of the present invention.
  • the r-phase phase control unit 20r acquires the current signal S1 from the r-phase current detector 30r (ST201R).
  • the r-phase accident detection unit 21r determines whether the current value or the amount of change in the current value is equal to or greater than a predetermined threshold based on the acquired current signal S1 (ST202R).
  • the r-phase fault detection unit 21r determines that a fault has occurred when the value is equal to or greater than the threshold value, and outputs the fault detection signal S2 to the r-phase control signal output unit 23r and the s-phase and t-phase zero-point detection units 22s and 22t. Output (ST203R).
  • the s-phase accident detection section 21s acquires the current signal S1 from the s-phase current detector 30s (ST201S). Based on the obtained current signal S1, the s-phase accident detection unit 21s determines whether the current value or the amount of change in the current value is equal to or greater than a predetermined threshold (ST202S). If the s-phase fault detection unit 21s is equal to or larger than the threshold value, the fault is determined to be a fault, and the fault detection signal S2 is sent to the s-phase control signal output unit 23s and the r-phase and t-phase zero-point detection units 22r and 22t. Output (ST203S).
  • the r-phase zero point detection unit 22r receives the accident detection signal S2 from the s-phase accident detection unit 21s as a signal for commanding the interruption of the current (ST204R). Then, the current zero point is detected based on the current signal S1 acquired from the r-phase current detector 30r (ST205R). Then, when the current zero point is detected, the zero point detection signal S3 is output to the r-phase control signal output unit 23r (ST206R).
  • the r-phase control signal output unit 23r outputs the OFF control signal S4b in response to the signal input earlier among the accident detection signal S2 from the accident detection unit 21r and the zero detection signal S3 from the zero detection unit 22r. Is output to the r-phase semiconductor switch unit 10r (ST207R). The semiconductor switch unit 10r becomes non-conductive by the off control signal S4b and cuts off the current (ST208R).
  • the s-phase zero point detection unit 22s receives the accident detection signal S2 from the r-phase accident detection unit 21r as a signal for commanding the interruption of the current (ST204S). Then, a current zero point is detected based on the current signal S1 obtained from the s-phase current detector 30s (ST205S). Then, when the current zero point is detected, the zero point detection signal S3 is output to the s-phase control signal output unit 23s (ST206S).
  • the s-phase control signal output unit 23s outputs the OFF control signal S4b in accordance with the signal input first among the accident detection signal S2 from the accident detection unit 21s and the zero detection signal S3 from the zero detection unit 22s. Is output to the s-phase semiconductor switch section 10s (ST207S). The semiconductor switch unit 10s is turned off by the off control signal S4b and cuts off the current (ST208S).
  • FIG. 11 is a flowchart showing the operation of the t-phase phase control unit of the semiconductor circuit breaker according to Embodiment 1 of the present invention.
  • the t-phase zero point detection unit 22t acquires the current signal S1 from the t-phase current detector 30t (ST209).
  • the t-phase zero point detection unit 22t receives the fault detection signal S2 from the r-phase and s-phase fault detection units 21r and 21s as a signal for commanding the interruption of the current, respectively (ST210).
  • a current zero point is detected based on the current signal S1 acquired from the t-phase current detector 30t according to the previously input signal (ST211).
  • the zero point detection signal S3 is output to the t-phase control signal output unit 23t (ST212).
  • the t-phase control signal output unit 23t outputs the off-control signal S4b to the t-phase semiconductor switch unit 10t according to the zero point detection signal S3 (ST213).
  • the t-phase semiconductor switch unit 10t becomes non-conductive at the current zero point in response to the off control signal S4b, and cuts off the current (ST214).
  • the same operation as the above-described operation is performed. Omitted because there is.
  • the above-described operation may be partially performed before or after. Further, the operations (ST201R) to (ST208R) of the r-phase control unit 20r and the operations (ST201S) to (ST208S) of the s-phase control unit 20s may be performed simultaneously.
  • the semiconductor circuit breaker 100 when an accident is detected, the semiconductor circuit breaker 100 according to the present embodiment immediately shuts off the current before reaching the current withstand capability of the semiconductor switch unit 10, and issues a command to shut off the current. In such a case, generation of a surge voltage can be suppressed by interrupting the current at the current zero point. Further, in the present embodiment, when the accident detection unit 21 detects an accident in at least one phase, the control signal output unit 23 of the phase in which the accident is detected is turned off to the semiconductor switch unit 10 of the phase in which the accident is detected.
  • the control signal output unit 23 outputs the control signal S4b, and the control signal output unit 23 of another phase different from the phase in which the accident is detected receives the command to cut off the current from the accident detection unit 21 of the phase in which the accident is detected, and When the zero point detection unit 22 detects the current zero point, it outputs an off control signal S4b to the semiconductor switch unit 10 of another phase.
  • the semiconductor switch section 10 of the phase in which the fault has occurred is immediately turned off after the fault is detected, and the semiconductor switch sections 10 of the other normal phases are turned off at the current zero point detected after the fault is detected.
  • the semiconductor switch section 10 of the normal phase non-conductive at the current zero point, the occurrence of the surge voltage is suppressed, and the fault current flowing in the faulty phase is transferred to the other normal phases. It can prevent sneaking around.
  • FIG. 12 is an explanatory diagram for explaining an example of the operation of the semiconductor circuit breaker according to Embodiment 3 of the present invention.
  • the vertical axis indicates the current value (kA), and the horizontal axis indicates time (s).
  • the zero point detection unit 22 outputs the off control signal S4b for turning off the semiconductor switch unit 10 when the current zero point is detected, the currents Ir, Is, and It flowing through each phase are detected. It may not be cut off just at the current zero point, but may be cut off after a delay time ⁇ td has elapsed from the detected current zero point.
  • the delay time ⁇ td is, for example, the sampling rate of the A / D converter and the processing time of the CPU. In the case of an analog circuit, this is a delay time due to a delay in analog signal processing in an internal circuit.
  • the zero point detection unit 22 estimates a later current zero point, for example, from the cycle of the detected current zero point.
  • the later current zero point may be a current zero point at a time several cycles later estimated from the current detected current.
  • the zero point detection unit 22 estimates a delay time ⁇ td required for the control signal output unit 23 to output the control signal.
  • a zero point detection signal S3 is output at a time before the delay time ⁇ td from the time Tc estimated as the current zero point.
  • the control signal output unit 23 outputs an off control signal S4b to the semiconductor switch unit 10 when the current reaches the estimated zero point according to the zero point detection signal S3.
  • the semiconductor circuit breaker 100 when an accident is detected, the semiconductor circuit breaker 100 according to the present embodiment immediately shuts off the current before reaching the current withstand capability of the semiconductor switch unit 10, and issues a command to shut off the current. In such a case, generation of a surge voltage can be suppressed by interrupting the current at the current zero point.
  • a configuration is adopted in which the time Tc at which the current is zero later is estimated, and the zero point detection signal S3 is output at a time earlier than the estimated time Tc and before the delay time ⁇ td. With this configuration, it is possible to reduce the effect of the delay time ⁇ td from when the phase control unit 20 detects the current zero point to when the phase control unit 20 outputs the off control signal S4b.
  • FIG. 13 is an explanatory diagram for explaining the operation of the semiconductor circuit breaker according to Embodiment 3 of the present invention.
  • the vertical axis indicates the current value (kA)
  • the horizontal axis indicates time (s).
  • the current waveforms of the currents Is and It flowing in the other normal s-phase and t-phase may be different from the normal periodic current waveform due to, for example, the effect of an accident occurring in the r-phase.
  • the zero point detection unit 22 outputs a zero point detection signal S3 when the current zero point is obtained after analyzing and estimating the transient current waveform after the occurrence of the accident.
  • the transient current waveform after the occurrence of the accident is analyzed using, for example, fitting using a sine function or polynomial approximation using the least squares method.
  • the zero point detection unit 22 may output the zero point detection signal S3 before the delay time ⁇ td from the time Tc estimated as the current zero point later.
  • the periodicity up to the current zero point after the other phase due to the occurrence of the accident in one phase is Even when the time interval changes, the current flowing in other normal phases can be cut off at the current zero point, and the generation of surge voltage can be further suppressed.
  • FIG. 14 is a schematic configuration diagram showing a power system to which the shutoff device according to Embodiment 4 of the present invention is applied.
  • a main switch 2 is connected in series with a power supply 1 to a bus 3 connected to a power supply 1, and a bus 3 on the opposite side of the power supply 1 of the main switch 2 is provided with:
  • Two branch lines 4a and 4b are provided.
  • Induction motors 5a, 5b are connected to the branch lines 4a, 4b as loads, and power is supplied from the power supply 1.
  • the power source 1 is, for example, an external general power generation facility.
  • the master switch 2 is, for example, a mechanical circuit breaker or a semiconductor circuit breaker.
  • FIG. 14 shows an example in which the load is the induction motors 5a and 5b, but may be an inductive load such as a motor, a reactor, a transformer, or a resistance load.
  • Circuit breaker 200 is connected to semiconductor circuit breakers 100a and 100b connected to branch lines 4a and 4b branched from bus 3 connected to power supply 1 and main switch 2 connected to bus 3 in parallel. And a flow device 6.
  • cutoff device 200 current-limits current flowing from current source 6 toward power source 1 toward induction motors 5a and 5b.
  • the current limiter 6 is, for example, a resistor or a reactor.
  • FIG. 14 shows an example in which the semiconductor circuit breakers 100a and 100b are connected to the branch lines 4a and 4b, respectively, but the circuit breaker provided on one of the branch lines 4a and 4b is a mechanical circuit breaker. You may. Further, although an example is shown in which two branch lines 4a and 4b are provided, for example, three or four and more than that may be used. Although the branch lines 4a and 4b are each shown by one line, in the case of a three-phase AC circuit, each is constituted by three lines.
  • the circuit breaker 200 is provided with the semiconductor circuit breaker 100 on at least one of the branch lines 4a and 4b branched from the bus 3 connected to the power supply 1 so that when an accident is detected, If a command to cut off the current is issued immediately before the current withstand capability of the semiconductor switch section 10 is reached and the command to cut off the current is issued, the current can be cut off at the current zero point to suppress the surge voltage.
  • the breaker 200 includes the current limiter 6 connected in parallel to the main switch 2 connected to the bus 3 so that an accident occurs in at least one of the branch lines 4a and 4b.
  • the current flowing from the power supply 1 toward the induction motors 5a and 5b, which are loads, is limited, so that the semiconductor circuit breaker 100 can immediately cut off the current.
  • the circuit breaker 200 includes the semiconductor circuit breaker 100 so that, when an accident occurs in at least one of the branch lines 4a and 4b, the induction motors 5a and 5b connected to the normal branch lines 4a and 4b. Acts as a generator, and can prevent current from flowing from the normal branch lines 4a and 4b to the branch line 4a where an accident has occurred.
  • the semiconductor circuit breaker 100 can suppress the occurrence of a surge voltage due to the inductance component of the load, so that it is not necessary to provide a lightning arrester.
  • lightning arresters 7r, 7s, 7t may be provided on the IN side of the semiconductor circuit breaker 100 of each phase of the three-phase AC circuit for the purpose of protecting against surges caused by components, lightning, and the like.
  • the circuit breaker 200 does not provide the lightning arresters 7 individually to the semiconductor circuit breakers 100a and 100b provided on the branch lines 4a and 4b, but places the lightning arresters 7 on the bus 3 which is a branch portion. At least one may be provided.
  • FIG. 17 is a schematic configuration diagram of a phase control unit of a semiconductor circuit breaker according to Embodiment 5 of the present invention.
  • the semiconductor switch unit 10 is controlled to be conductive according to a true logic signal H and non-conductive according to a false logic signal L.
  • the phase control unit 20 includes an accident detection unit 21, a zero point detection unit 22, and a control signal output unit 23. Further, the phase control unit 20 includes a current detection terminal 201, an external signal terminal 202, an accident signal terminal 203, a control signal terminal 204, and a reset signal terminal 205.
  • the current detection terminal 201 is connected to the current detector 30, the external signal terminal 202 is connected to the operation unit 40, the fault signal terminal 203 is connected to the phase control unit 20 of another phase, and the control signal terminal 204 is connected to the semiconductor switch unit. 10 is connected. Two or more of these terminals may be provided as necessary.
  • the phase control unit 20 acquires the current signal S1 from the current detector 30 and inputs the current signal S1 to the accident detection unit 21 and the zero point detection unit 22 via the current detection terminal 201.
  • the accident detection unit 21 includes an amplifier 211, a rectifier circuit 212, and a comparison unit 213.
  • the current signal S1 input to the accident detection unit 21 is converted into a voltage signal having an appropriate amplitude by the amplifier 211 and amplified.
  • the voltage signal amplified by the amplifier 211 is rectified by the rectifier circuit 212 and converted into an amplitude signal indicating the magnitude of the amplitude of the alternating current.
  • the comparing unit 213 compares the amplitude signal with a predetermined threshold for determining whether or not an accident has occurred.
  • the accident detection unit 21 When the comparison unit 213 determines that an accident has occurred, the accident detection unit 21 outputs a false logic signal L to the control signal output unit 23 as the accident detection signal S2. Further, the accident detection unit 21 outputs the false logic signal L to the phase control unit 20 of another phase via the accident signal terminal 203.
  • the zero detector 22 includes a switch 221, an amplifier 222, a comparator 223, and a NOT circuit 224.
  • the switch 221 may be configured not only by a mechanical switch but also by an electronic switch without a movable portion or a circuit that performs the same operation.
  • the switch 221 is normally non-conductive, and the current signal S1 input to the zero point detection unit 22 is cut off by the switch 221.
  • the switch 221 is turned on by an external signal input via the external signal terminal 202, and the current signal S 1 is input to the amplifier 222.
  • the external signal includes a command signal S5 for commanding to cut off the current output from the operation unit 40 and an accident detection signal S2 for commanding to cut off the current output from the phase control unit 20 of another phase. And so on.
  • the amplifier 222 converts the current signal S1 into a voltage signal having an appropriate amplitude.
  • the comparing section 223 compares the voltage signal amplified by the amplifier 222 with zero potential, and determines whether the amplified voltage signal is positive or negative.
  • the comparison unit 223 outputs a true logic signal H when the voltage signal is positive, and outputs a false logic signal L when the voltage signal is negative.
  • the true or false logical signals H and L output from the comparing unit 223 are respectively branched into two, one is output to the control signal output unit 23 as it is, and the other is logically inverted through the NOT circuit 224. It is output to the control signal output unit 23.
  • the zero point detection unit 22 can output both the current zero point where the current changes from positive to negative and the current zero point where the current changes from negative to positive as the zero point detection signal S3.
  • the control signal output unit 23 includes three latches 231a, 231b, and 231c, and two AND circuits 232a and 232b.
  • the latches 231a, 231b, and 231c hold the output at the false logic signal L when the input logic signal changes from true to false, and hold the output at the true logic signal H when the input logic signal changes from false to true. Is done.
  • the signal output from the zero point detection unit 22 without passing through the NOT circuit 224 is input to the latch 231b, and the signal output via the NOT circuit 224 is input to the latch 231c.
  • the output of the latch 231b is held at the false logic signal L corresponding to the current zero point when the current changes from positive to negative.
  • the output of the latch 231c is held at the false logic signal L corresponding to the current zero point when the current changes from negative to positive.
  • the AND circuit 232a calculates the logical product of the signal output from the latch 231b and the signal output from the latch 231c.
  • the AND circuit 232b calculates the logical product of the signal output from the AND circuit 232a and the signal output from the latch 231a, so that at least one of the latches 231a, 231b, and 231c is a false logical signal.
  • L is output, a false logic signal L is output as the off control signal S4b for turning off the semiconductor switch unit 10.
  • a reset signal is input to each of the latches 231a, 231b, and 231c via the reset signal terminal 205.
  • the false logic signal L that resets the latches 231a, 231b, and 231c and turns off the semiconductor switch unit 10 after the accident is eliminated or before the restart after the normal stop. Is released, and the semiconductor switch unit 10 is made conductive.
  • the semiconductor circuit breaker 100 when an accident is detected, the semiconductor circuit breaker 100 according to the present embodiment immediately shuts off the current before reaching the current withstand capability of the semiconductor switch unit 10, and issues a command to shut off the current. In such a case, generation of a surge voltage can be suppressed by interrupting the current at the current zero point.
  • the semiconductor circuit breaker 100 includes an accident detection unit 21 having an amplifier 211, a rectifier circuit 212, and a comparison unit 213, a zero point detection unit 22 having an amplifier 222, a comparison unit 223, and a NOT circuit 224;
  • This is a simple configuration including two latches 231a, 231b, 231c and a control signal output unit 23 having two AND circuits 232a, 232b.
  • the delay time of signal transmission in the latches 231a, 231b, 231c, the NOT circuit 224, and the AND circuits 232a, 232b is about 100 ns.
  • the delay time ⁇ td required for the semiconductor switch unit 10 to become non-conductive after the current passes through the current zero point is about 2 ⁇ s to 3 ⁇ s.
  • the current zero point is detected and cut off after the delay time has elapsed.
  • the current value at this time can be a current value that is smaller by about five orders of magnitude than the peak value of the amplitude.
  • FIG. 18 is a schematic configuration diagram of a phase control unit of a semiconductor circuit breaker according to Embodiment 6 of the present invention.
  • the zero point detection unit 22 normally closes the switch 221 to turn on when receiving a command to cut off the current signal S1 with the switch 221, and starts detecting the current zero point.
  • the zero point detection unit 22 always detects the current zero point.
  • the phase control unit 20 acquires the current signal S1 from the current detector 30 and inputs the current signal S1 to the accident detection unit 21 and the zero point detection unit 22 via the current detection terminal 201.
  • the accident detection unit 21 receives the current signal S1 and determines whether or not an accident has occurred. When determining that an accident has occurred, the accident detection unit 21 outputs a false logic signal L to the control signal output unit 23 as the accident detection signal S2, or outputs the signal to the phase control unit 20 of another phase from the accident signal terminal 203.
  • the true or false logical signals H and L output from the comparing unit 223 are respectively branched into two, one is output to the control signal output unit 23 as it is, and the other is logically inverted through the NOT circuit 224. It is output to the control signal output unit 23.
  • the control signal output unit 23 includes a latch 231a, D latches 231d and 231e, and AND circuits 232a and 232b.
  • the signal output from the accident detection unit 21 is input to the latch 231a.
  • the D latches 231d and 231e include a CLK terminal to which a signal is input from the zero point detection unit 22, a D terminal to which a signal is input via the external signal terminal 202, and a Q terminal to output a signal.
  • the D latches 231d and 231e output the signal input to the D terminal from the Q terminal, and then input the signal to the CLK terminal.
  • the logic signal output from the Q terminal continues to be held until the logic signal changes from false to true or from true to false.
  • the signal output from the zero point detection unit 22 without passing through the NOT circuit 224 is input to the CLK terminal of the D latch 231d, and the signal output via the NOT circuit 224 is input to the CLK terminal of the D latch 231e.
  • An external signal output from the external operation unit 40 or another phase control unit 20 via the external signal terminal 202 is input to the D terminal of the D latch 231d.
  • the ⁇ ⁇ ⁇ D latch 231d outputs, to the Q terminal, an external signal input to the D terminal at the current zero point where the current value changes from positive to negative based on the signal input to the CLK terminal.
  • the D latch 231e outputs an external signal input to the D terminal to the Q terminal at a current zero point where the current changes from negative to positive.
  • the external signal is a command signal S5 for commanding to cut off the current output from the external operation unit 40 or the phase control unit 20 of another phase, and outputs a false logic signal L to the Q terminal.
  • the AND circuit 232a calculates the logical product of the signal output from the D latch 231d and the signal output from the D latch 231e.
  • the AND circuit 232b calculates the logical product of the signal output from the AND circuit 232a and the signal output from the accident detection unit 21, so that at least one of the latch 231a and the D latch 231d or 231e is false.
  • a false logic signal L is output as the off control signal S4b for turning off the semiconductor switch unit 10.
  • the semiconductor circuit breaker 100 when an accident is detected, the semiconductor circuit breaker 100 according to the present embodiment immediately shuts off the current before reaching the current withstand capability of the semiconductor switch unit 10, and issues a command to shut off the current. In such a case, generation of a surge voltage can be suppressed by interrupting the current at the current zero point.
  • the semiconductor circuit breaker 100 includes an accident detection unit 21 having an amplifier 211, a rectifier circuit 212 and a comparison unit 213, a zero point detection unit 22 having an amplifier 222, a comparison unit 223 and a NOT circuit 224, and a latch. 231a, a simple configuration including two D latches 231d and 231e and a control signal output unit 23 having two AND circuits 232a and 232b.
  • the delay time of signal transmission in the latch 231a, the D latches 231d and 231e, the NOT circuit 224, and the AND circuits 232a and 232b is about 100 ns.
  • the delay time from the passage of the current zero point to the output of the control signal by the control signal output unit 23 is about 2 ⁇ s to 3 ⁇ s, and the current is cut off in a very short time compared to the cycle of the alternating current of the commercial power supply. Can be.
  • the semiconductor signal is output at the current zero point according to an external signal for commanding the interruption of the current.
  • the switch unit 10 can be made non-conductive.
  • the accident detection unit 21 compares positive or negative current values with one threshold to determine whether or not an accident has occurred.
  • a configuration different from the above configuration may be adopted.
  • the accident detection unit 21 can determine whether or not an accident has occurred using two different thresholds for a positive current value and a negative current value.
  • the accident detection unit 21 can determine whether or not an accident has occurred based on whether or not the amount of change in the current value is equal to or greater than the threshold.
  • FIG. 21 is a schematic configuration diagram showing another example of the accident detection unit of the semiconductor circuit breaker according to Embodiment 6 of the present invention.
  • the accident detection unit 21 includes an amplifier 211, a differentiator 215, two comparators 213a and 213b connected in parallel, and an OR circuit 214.
  • the current signal S1 input to the accident detection unit 21 is converted by the amplifier 211 into a voltage signal having an appropriate amplitude.
  • the differentiating circuit 215 differentiates the amplified voltage signal and calculates a change amount of the voltage signal.
  • the change amount of the voltage signal is branched into two, one of which is compared with a threshold value of a change amount of a positive current value in a comparison unit 213a, and the other is compared with a threshold value of a change amount of a negative current value in a comparison unit 213b. Is done.
  • the OR circuit 214 determines that one of the voltage signals is equal to or larger than the threshold value of the change amount of the positive current value and equal to or smaller than the threshold value of the change amount of the negative current value in the comparator 213a, and outputs the false logic signal L. I do.
  • the accident detection unit 21 can determine whether an accident has occurred using two different thresholds based on the amount of change in the positive current value and the amount of change in the negative current value.
  • the semiconductor circuit breaker connected to the three-phase AC circuit has been described as an example.
  • the circuit breaker may be connected to another circuit, for example, a single-phase three-wire circuit. Is also good.
  • phase control units 20r, 20s, and 20t are separately provided, but the functions executed by the phase control units 20r, 20s, and 20t are performed by one control unit. It may be performed.
  • the present invention may be appropriately combined with a plurality of constituent elements disclosed in the first to sixth embodiments without departing from the gist of the present invention.

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Electronic Switches (AREA)

Abstract

制御信号によって導通及び非導通が制御される半導体スイッチを用いて電流を遮断する際にサージ電圧の発生を抑制する半導体遮断器及び遮断装置を得る。 交流回路に接続された半導体スイッチ部10と、制御信号により半導体スイッチ部10の導通及び非導通を制御する位相制御部20とを備える。位相制御部20は、交流回路から検出された電流に基づいて事故を検出する事故検出部21と、交流回路から検出された電流に基づいて電流零点を検出する零点検出部22とを備え、事故検出部21が事故を検出したとき又は電流を遮断する指令を受け、零点検出部22が電流零点を検出したとき、半導体スイッチ部10を非導通にする制御信号を出力する制御信号出力部23とを備える。

Description

半導体遮断器及び遮断装置
 本発明は、半導体スイッチを用いて電流を遮断する半導体遮断器及び遮断装置に関する。
 配電盤や制御盤等に設けられる遮断器は、負荷に供給される負荷電流を開閉するとともに、負荷やそこへ至る電力系統において短絡や地絡等の事故が発生した場合に生じる事故電流を遮断する。交流電力系統では、一般的にガス遮断器、真空遮断器、空気遮断器等の機械式遮断器が使用されている。このような機械式遮断器では、遮断する際にアークという高温の放電が発生する。アークは電流値が零にならなければ消弧しないという性質があるため、交流電力系統における機械式遮断器は、交流の半周期ごとに訪れる電流値が零となるタイミング(以下、電流零点という)で電流が遮断される。
 高温のアークを発生させない方法として、機械式遮断器の代わりに半導体遮断器を用いる方法がある。半導体遮断器では、事故発生後、半導体スイッチを高速に非導通にすることで、アークを発生させることなく事故電流を遮断する。例えば特許文献1には、半導体スイッチとしてサイリスタを用い、短絡事故が発生した場合、予め充電された転流コンデンサを放電させることでサイリスタをターンオフさせる半導体交流遮断器が開示されている。
 しかし、サイリスタやトライアック等を半導体スイッチとして用いた半導体遮断器では、電流零点まで電流が遮断されないという特徴をもつため、事故電流が電流値のピークを越えてから電流零点に至る場合には半導体スイッチの電流耐量を超える可能性がある。そのため、大きな電流耐量を有する半導体スイッチを用いたり、多数の半導体スイッチを並列接続したりすることが必要となり、半導体遮断器が大型化及び高コスト化するという問題がある。
 そこで、サイリスタやトライアック等の半導体スイッチの代わりに、MOSFET、IGBT、パワートランジスタ等の自己消弧型の半導体スイッチを用いた半導体遮断器が開発されている。これらの半導体スイッチでは、制御信号によって導通及び非導通が制御されるため、電流零点を待つことなく、半導体スイッチの電流耐量に至る前に電流を遮断できる。例えば特許文献2では、制御信号に基づいて電源装置と負荷装置との間を導通と非導通に切り替える半導体スイッチ部を備え、電流検出器によって検出された電流が、所定の電流閾値以上であると判定した場合に、半導体スイッチ部を遮断する半導体遮断器が開示されている。
特開昭50-032461号公報 特開2013-172603号公報
 しかしながら、制御信号により導通及び非導通が制御される半導体スイッチを備えた半導体遮断器では、電力系統が正常に動作している際に負荷に供給される電流を遮断する場合、電流零点以外で遮断される可能性がある。負荷がモータ等の誘導負荷である場合、電流零点以外で電流を遮断すると高圧のサージ電圧が発生して半導体スイッチが破壊される恐れがあるため、サージ電圧の発生を抑制するための機器やそれを接続するための回路が必要となり、半導体遮断器が大型化及び高コスト化するという問題があった。
 本発明は、上述のような課題を解決するためになされたものであり、事故発生時に速やかに電流を遮断しつつ、電力系統が正常に動作している際にサージ電圧の発生を抑制して電流を遮断することで小型化及び低コスト化が可能な半導体遮断器を提供することを目的とする。
 本発明に係る半導体遮断器は、交流回路に接続され、制御信号に基づいて導通及び非導通が制御される半導体スイッチ部と、交流回路から検出された電流に基づいて事故を検出する事故検出部と、交流回路から検出された電流に基づいて電流零点を検出する零点検出部と、事故検出部が事故を検出したとき又は電流を遮断する指令を受けて零点検出部が電流零点を検出したとき、半導体スイッチ部を非導通にする制御信号を出力する制御信号出力部とを備える。
 また、本発明に係る遮断装置は、電源に接続された母線から分岐された分岐線路に接続された半導体遮断器と、母線に接続された主幹スイッチに並列に接続された限流器とを備える。
 本発明に係る半導体遮断器によれば、事故が検出されたとき又は電流を遮断する指令を受けて電流零点を検出したときに、半導体スイッチ部を非導通にする制御信号を出力することで、事故発生時に流れる電流を半導体スイッチ部の電流耐量に至る前に遮断しつつ、電力系統の正常時に負荷に供給される電流を、高圧のサージ電圧の発生を抑制して遮断することができ、半導体遮断器の小型化及び低コスト化が可能となる。
 また、本発明に係る遮断装置によれば、主幹スイッチに並列に限流器を接続することで、事故が起こった場合に、電源側から負荷側に向かって流れる電流を限流し、半導体遮断器で直ちに電流を遮断することができる。
本発明の実施の形態1に係る半導体遮断器の概略構成図である。 本発明の実施の形態1に係る半導体遮断器の半導体スイッチ部の概略構成図である 本発明の実施の形態1に係る半導体遮断器の概略構成図である。 本発明の実施の形態1に係る半導体遮断器の動作を示すフローチャートである。 本発明の実施の形態1に係る半導体遮断器の動作を説明するための説明図である。 本発明の実施の形態2に係る半導体遮断器の概略構成図である。 本発明の実施の形態2に係る半導体遮断器の動作を示すフローチャートである。 本発明の実施の形態2に係る半導体遮断器の動作を説明するための説明図である。 本発明の実施の形態2に係る半導体遮断器の概略構成図である。 本発明の実施の形態2に係る半導体遮断器の動作を示すフローチャートである。 本発明の実施の形態2に係る半導体遮断器の動作を示すフローチャートである。 本発明の実施の形態3に係る半導体遮断器の動作を説明するための説明図である。 本発明の実施の形態3に係る半導体遮断器の動作を説明するための説明図である。 本発明の実施の形態4に係る遮断装置を適用した電力系統の概略構成図である。 本発明の実施の形態4に係る半導体遮断器の概略構成図である。 本発明の実施の形態4に係る遮断装置を適用した電力系統の概略構成図である。 本発明の実施の形態5に係る半導体遮断器の位相制御部の概略構成図である。 本発明の実施の形態6に係る半導体遮断器の位相制御部の概略構成図である。 本発明の実施の形態6に係る半導体遮断器の位相制御部の概略構成図である。 本発明の実施の形態6に係る半導体遮断器の位相制御部の概略構成図である。 本発明の実施の形態6に係る半導体遮断器の位相制御部の概略構成図である。
実施の形態1.
 図1は、本発明の実施の形態1に係る半導体遮断器を示す概略構成図である。本実施の形態では、一例としてr相、s相及びt相の三相交流回路に接続された半導体遮断器について説明する。図1に示すように、半導体遮断器100は、r相、s相及びt相にそれぞれ接続された半導体スイッチ部10r、10s、10tと、各半導体スイッチ部10r、10s、10tの導通及び非導通を制御する位相制御部20r、20s、20tとを備える。半導体遮断器100は、交流電源と負荷との間に接続され、各相には電流を検出する電流検出器30r、30s、30tが設けられている。
 以下では、r相、s相及びt相にそれぞれ設けられた同一の名称を有する各部は、同様の構成及び機能を有するものとし、各部の同様の構成及び機能を述べる際は、一括して半導体スイッチ部10、位相制御部20、電流検出器30と記載する。
 図2は、本発明の実施の形態1に係る半導体遮断器の半導体スイッチ部を示す概略構成図である。半導体スイッチ部10は、位相制御部20から出力される制御信号によって、導通と非導通とが切り替わる。図2に示すように、半導体スイッチ部10は、例えばIGBT(Insulated Gate Bipolar Transistor)である。半導体スイッチ部10は、第1の半導体素子11aと、第1の半導体素子11aに並列に接続された、第1の半導体素子11aの電流と逆向きの電流を流す第1のダイオード12aと、第1の半導体素子11aと逆向きに接続された第2の半導体素子11bと、第2の半導体素子11bの電流と逆向きの電流を流す第2のダイオード12bとを備える。
 ここで、半導体スイッチ部10がIGBTである例を示したが、制御信号により導通及び非導通が制御されるものであればよく、例えばGTO(Gate Turn-Off thyristor)、GCT(Gate Commutated Turn-Off thyristor)等であってもよい。
 図3は、本発明の実施の形態1に係る半導体遮断器の位相制御部を示す概略構成図である。図3に示すように、位相制御部20は、電流検出器30で検出された電流に基づいて事故を検出する事故検出部21と、電流検出器30で検出された電流に基づいて電流零点を検出する零点検出部22と、事故が検出されたとき又は電流を遮断する指令を受けて電流零点が検出されたとき、半導体スイッチ部10を非導通にする制御信号を出力する制御信号出力部23とを備える。
 事故検出部21は、電流検出器30から電流信号S1を取得し、電流値又は電流値の変化量が所定の閾値以上となった場合に事故と判定し、事故検出信号S2を制御信号出力部23に出力する。ここで閾値は、半導体スイッチ部10の電流耐量以下に設定されている。
 零点検出部22は、電流検出器30から電流信号S1を取得し、電流値が零であるとき又は電流値の符号が反転したときを電流零点として検出し、零点検出信号S3を制御信号出力部23に出力する。零点検出部22は、電流信号S1から常時、電流零点を検出していてもよいし、例えば、外部に設けられた使用者が操作できる操作部40から電流の遮断を指令する指令信号S5が入力されてから電流零点の検出を開始してもよい。ここで操作部40は、例えば、機械式スイッチや、指令信号S5を出力する他の制御機器等の信号源である。また、零点検出部22は、後述するように、他の相の位相制御部20から出力された電流の遮断を指令する事故検出信号S2が入力されてから電流零点の検出を開始してもよい。ここで、図3では操作部40からの指令信号S5が、零点検出部22に入力される例を示しているが、零点検出部22が常時、電流零点を検出する場合、操作部40からの指令信号S5は制御信号出力部23に入力されてもよい。
 制御信号出力部23は、半導体スイッチ部10を導通にする際はオン制御信号S4aを出力し、非導通にする際はオフ制御信号S4bを半導体スイッチ部10に出力する。制御信号出力部23は、事故検出部21から出力された事故検出信号S2に応じて、半導体スイッチ部10にオフ制御信号S4bを出力する。また制御信号出力部23は、零点検出部22から出力された零点検出信号S3に応じて、オフ制御信号S4bを半導体スイッチ部10に出力する。
 位相制御部20は、例えば、A/D変換器と、マイクロプロセッサー等のCPUと、入出力回路とを有するデジタル回路で構成してもよいし、アナログ回路で構成してもよい。
 電流検出器30は、半導体遮断器100に設けられてもよいし、例えば半導体遮断器100の外部の交流回路に設けられたCTを用いてもよい。
 次に、半導体遮断器100の動作について説明する。ここで、位相制御部20は、各々の相に設けられた電流検出器30から検出された電流に基づいて、各々の相に設けられた半導体スイッチ部10を制御するものとする。図4は、本発明の実施の形態1に係る半導体遮断器の動作の一例を示すフローチャートである。半導体遮断器100の位相制御部20は、電流検出器30から電流信号S1を取得する(ST1)。
 事故検出部21は、取得された電流信号S1に基づいて、電流値又は電流値の変化量が所定の閾値以上か否かを判定する(ST2)。事故検出部21は、閾値以上であった場合、事故と判定し、事故検出信号S2を制御信号出力部23に出力する(ST3)。
 また電流の遮断を指令する指令信号S5が位相制御部20に出力された場合(ST4)、零点検出部22は、取得された電流信号S1に基づいて、電流零点を検出する(ST5)。零点検出部22は、電流零点が検出されたとき、零点検出信号S3を制御信号出力部23に出力する(ST6)。
 制御信号出力部23は、事故検出信号S2又は零点検出信号S3に応じて、半導体スイッチ部10を非導通にするオフ制御信号S4bを半導体スイッチ部10に出力する(ST7)。
 半導体スイッチ部10は、事故検出信号S2に応じて出力されたオフ制御信号S4bを受けた場合、半導体スイッチ部10の電流耐量に至る前に非導通となり電流を遮断する。また半導体スイッチ部10は、零点検出信号S3に応じて出力されたオフ制御信号S4bを受けた場合、検出された電流零点で非導通となり電流を遮断する(ST8)。ここで、電流零点で非導通になるとは、検出された電流零点から位相制御部20の信号処理にかかる遅延時間Δtd経過後に非導通になる場合も含む。
 図5は、本発明の実施の形態1に係る半導体遮断器の動作を説明するための説明図である。図5において縦軸は電流値(kA)、横軸は時間(s)を示す。図5に示すように、電力系統に短絡や地絡等が発生すると、電流値及び電流値の時間変化量が増大する。本実施の形態に係る半導体遮断器100は、時刻Taで事故発生後、所定の閾値Rmax以上の電流値が検出された時刻Tbで事故と判定し、電流零点を待つことなく、半導体スイッチ部10の電流耐量Cmaxに至る前に速やか遮断することができる。そのため、電流耐量の大きい半導体スイッチ部10を用いたり、半導体スイッチ部10を並列接続したりする必要がなく、半導体遮断器100の小型化及び低コスト化が可能となる。さらに制御信号で非導通に制御される半導体スイッチ部10を用いることで、予め充電されたコンデンサから逆電流を重畳するための回路を設ける必要がなく、半導体遮断器100を小型化及び低コスト化できる。
 また、本実施の形態に係る半導体遮断器100は、電流を遮断する指令が出された場合、零点検出部22が電流零点を検出したとき、制御信号出力部23が半導体スイッチ部10を非導通にするオフ制御信号S4bを出力する。これにより、負荷が例えばモータのような誘導負荷であった場合に、電流が電流零点以外のとき、特に交流電流の電流値のピークとなるときに遮断されて、負荷のインダクタンスLと、半導体スイッチ部10を流れる電流Iの時間変化量dI/dtとの積L×(dI/dt)に相当する高圧のサージ電圧が発生するのを抑制することができる。
 また短絡や地絡等の事故が発生した場合、半導体遮断器100は負荷と事故点で回路的に切り離されているため、負荷のインダクタンス成分の影響は受けず、電流零点を待つことなく遮断しても負荷によるサージ電圧は発生しない。
 そのため、サージ電圧により半導体スイッチ部10が破壊されるのを防ぐために、耐電圧性能の高い半導体スイッチ部10を用いたり、サージエネルギーを吸収するアレスターやバリスタ等の避雷器を用いたりする必要がなくなり、半導体遮断器100の小型化及び低コスト化が可能となる。
実施の形態2.
 図6は、本発明の実施の形態2に係る半導体遮断器の位相制御部の概略構成図である。実施の形態1では、位相制御部20r、20s、20tが、それぞれ半導体スイッチ部10r、10s、10tを制御していたのに対し、本実施の形態では、位相制御部20r、20s、20tが互いに接続され、事故発生時に事故が発生した相の位相制御部20が、正常な他の相の半導体スイッチ部10を制御する。以下では、実施の形態1と同様である点の説明を省略し、異なる点を中心に説明する。
 図6に示すように、r相、s相及びt相の各相に設けられた半導体スイッチ部10r、10s、10tの導通及び非導通を制御する位相制御部20r、20s、20tは、信号の送受信が可能となるように、互いに接続されている。ここで、図6では、以下に述べる特定の場合における信号の送受信を矢印で示しており、事故検出部21sと制御信号出力部23sとの間や、事故検出部21tと制御信号出力部23tとの間の信号の送受信は省略されている。また、図6では、事故検出部21rからの信号を他の相の零点検出部22s、22tに出力する例を示しているが、零点検出部22が常時、電流零点を検出している場合、他の相の制御信号出力部23s、23tに出力してもよい。
 まず三相交流回路において、1相で事故が発生して他の2相が正常である場合について説明する。一例として、r相で短絡や地絡等による事故が発生し、s相及びt相が正常であるとする。図7は、本発明の実施の形態2に係る半導体遮断器の動作の一例を示すフローチャートである。
 r相の位相制御部20rは、r相に流れる電流を検出する電流検出器30rから電流信号S1を取得する(ST101)。r相の事故検出部21rは、取得された電流信号S1に基づいて、電流値又は電流値の変化量が所定の閾値以上か否かを判定する(ST102)。r相の事故検出部21rは、閾値以上であった場合、事故と判定し、r相の制御信号出力部23rと、s相及びt相の零点検出部22s、22tとにそれぞれ事故検出信号S2を出力する(ST103)。
 r相の制御信号出力部23rは、r相の事故検出部21rからの事故検出信号S2に応じて、半導体スイッチ部10を非導通にするオフ制御信号S4bを、r相の半導体スイッチ部10rに出力する(ST104)。r相の半導体スイッチ部10rは、オフ制御信号S4bに応じて、電流零点を待つことなく、半導体スイッチ部10の電流耐量に至る前に非導通となり電流を遮断する(ST105)。
 s相及びt相の零点検出部22s、22tは、s相及びt相に流れる電流を検出する電流検出器30s、30tからそれぞれ電流信号S1を取得する(ST106)。s相及びt相の零点検出部22s、22tは、r相の事故検出部21rから、電流の遮断を指令する信号として事故検出信号S2を受け、各相から取得された電流信号S1に基づいて、それぞれ電流零点を検出する(ST107)。そして、電流零点を検出したとき、零点検出信号S3をs相及びt相の制御信号出力部23s、23tにそれぞれ出力する(ST108)。
 s相及びt相の制御信号出力部23s、23tは、零点検出信号S3に応じて、s相及びt相の半導体スイッチ部10s、10tを非導通にするオフ制御信号S4bを出力する(ST109)。s相及びt相の半導体スイッチ部10s、10tは、オフ制御信号S4bに応じて、電流零点で電流を遮断する(ST110)。
 図8は、本発明の実施の形態2に係る半導体遮断器の動作の一例を説明するための説明図である。図8において縦軸は電流値(kA)、横軸は時間(s)を示す。図8に示すように、r相、s相及びt相にそれぞれ電流Ir、Is、Itが流れているとする。事故が発生したr相では、時刻Taで事故発生後、電流零点を待つことなくオフ制御信号S4bが出力され、半導体スイッチ部10rの電流耐量に至る前の時刻T1で電流Irが遮断される。また正常なs相及びt相では、r相で事故を検出後、s相の電流Is及びt相の電流Itがそれぞれ電流零点となる時刻T3、時刻T2でそれぞれ遮断される。
 ここで、s相で事故が発生してr相及びt相が正常である場合及びt相で事故が発生してr相及びs相が正常である場合も、上述と同様の動作であるため省略する。上述の動作は、一部前後してもよい。
 次に2相で事故が発生して1相が正常である場合について説明する。一例としてr相及びs相で短絡や地絡等による事故が発生し、t相が正常である場合について説明する。図9は、本発明の実施の形態2に係る半導体遮断器の位相制御部の概略構成図である。ここで、図9では、以下に述べる特定の場合における信号の送受信を矢印で示しており、事故検出部21tと制御信号出力部23tとの間の信号の送受信は省略されている。
 図10は、本発明の実施の形態1に係る半導体遮断器のr相の位相制御部の動作を示すフローチャートである。r相の位相制御部20rは、r相の電流検出器30rから電流信号S1を取得する(ST201R)。r相の事故検出部21rは、取得された電流信号S1に基づいて、電流値又は電流値の変化量が所定の閾値以上か否か判定する(ST202R)。r相の事故検出部21rは、閾値以上であった場合、事故と判定し、r相の制御信号出力部23rと、s相及びt相の零点検出部22s、22tとに事故検出信号S2を出力する(ST203R)。
 同様に、s相の事故検出部21sは、s相の電流検出器30sから電流信号S1を取得する(ST201S)。s相の事故検出部21sは、取得された電流信号S1に基づいて、電流値又は電流値の変化量が所定の閾値以上か否かを判定する(ST202S)。s相の事故検出部21sは、閾値以上であった場合、事故と判定し、s相の制御信号出力部23sと、r相及びt相の零点検出部22r、22tとに事故検出信号S2を出力する(ST203S)。
 r相の零点検出部22rは、s相の事故検出部21sから、電流の遮断を指令する信号として事故検出信号S2を受ける(ST204R)。そして、r相の電流検出器30rから取得された電流信号S1に基づいて電流零点を検出する(ST205R)。そして、電流零点を検出したとき、零点検出信号S3をr相の制御信号出力部23rに出力する(ST206R)。r相の制御信号出力部23rは、事故検出部21rからの事故検出信号S2と、零点検出部22rからの零点検出信号S3とのうち、先に入力された信号に応じて、オフ制御信号S4bをr相の半導体スイッチ部10rに出力する(ST207R)。半導体スイッチ部10rは、オフ制御信号S4bにより非導通となり電流を遮断する(ST208R)。
 同様に、s相の零点検出部22sは、r相の事故検出部21rから電流の遮断を指令する信号として事故検出信号S2を受ける(ST204S)。そして、s相の電流検出器30sから取得された電流信号S1に基づいて電流零点を検出する(ST205S)。そして、電流零点を検出したとき、零点検出信号S3をs相の制御信号出力部23sに出力する(ST206S)。s相の制御信号出力部23sは、事故検出部21sからの事故検出信号S2と、零点検出部22sからの零点検出信号S3とのうち、先に入力された信号に応じて、オフ制御信号S4bをs相の半導体スイッチ部10sに出力する(ST207S)。半導体スイッチ部10sは、オフ制御信号S4bにより非導通になり電流を遮断する(ST208S)。
 図11は、本発明の実施の形態1に係る半導体遮断器のt相の位相制御部の動作を示すフローチャートである。t相の零点検出部22tは、t相の電流検出器30tから電流信号S1を取得する(ST209)。t相の零点検出部22tは、r相及びs相の事故検出部21r、21sから、電流の遮断を指令する信号としてそれぞれ事故検出信号S2を受ける(ST210)。先に入力された信号に応じて、t相の電流検出器30tから取得された電流信号S1に基づいて電流零点を検出する(ST211)。そして、電流零点を検出したとき、零点検出信号S3をt相の制御信号出力部23tに出力する(ST212)。t相の制御信号出力部23tは、零点検出信号S3に応じて、オフ制御信号S4bをt相の半導体スイッチ部10tへ出力する(ST213)。t相の半導体スイッチ部10tは、オフ制御信号S4bに応じて電流零点で非導通となり電流を遮断する(ST214)。
 ここで、s相及びt相で事故が発生し、r相が正常である場合及びt相及びr相で事故が発生し、s相が正常である場合も、上述した動作と同様の動作であるため省略する。上述の動作は、一部前後してもよい。また、r相の位相制御部20rの動作(ST201R)~(ST208R)と、s相の位相制御部20sの動作(ST201S)~(ST208S)とは同時に行われてもよい。
 上述のとおり、本実施の形態に係る半導体遮断器100は、事故が検出された場合には、半導体スイッチ部10の電流耐量に至る前に直ちに電流を遮断し、電流を遮断する指令が出された場合には、電流零点で電流を遮断することで、サージ電圧の発生を抑制できる。さらに本実施の形態では、事故検出部21が少なくとも1つの相で事故を検出した場合、事故が検出された相の制御信号出力部23は、事故が検出された相の半導体スイッチ部10にオフ制御信号S4bを出力し、事故が検出された相と異なる他の相の制御信号出力部23は、事故が検出された相の事故検出部21から電流を遮断する指令を受けて他の相の零点検出部22が電流零点を検出したとき、他の相の半導体スイッチ部10にオフ制御信号S4bを出力する。
 これにより、事故が発生した相の半導体スイッチ部10は、事故検出後直ちに非導通となり、正常な他の相の半導体スイッチ部10は、事故検出後に検出された電流零点で非導通となる。このように、正常な相の半導体スイッチ部10を電流零点で非導通にすることで、サージ電圧が発生するのを抑制しつつ、事故が発生した相に流れる事故電流が他の正常な相に回り込むのを防ぐことができる。
実施の形態3.
 実施の形態1では、零点検出部22が電流零点を検出したとき制御信号出力部23が半導体スイッチ部10を非導通にする制御信号を出力していたのに対し、本実施の形態では、位相制御部20を構成する回路に起因する遅延時間Δtdを考慮して、検出された電流に基づいて、後の電流零点となるときを推定し、推定された、後の電流零点となるとき半導体スイッチ部10を非導通にする制御信号を出力する。以下では、実施の形態1と同様である点の説明を省略し、異なる点を中心に説明する。
 図12は、本発明の実施の形態3に係る半導体遮断器の動作の一例を説明するための説明図である。図12において縦軸は電流値(kA)、横軸は時間(s)を示す。図12に示すように、零点検出部22が電流零点を検出したときに半導体スイッチ部10を非導通にするオフ制御信号S4bを出力すると、各相に流れる電流Ir、Is、Itは、検出された電流零点丁度では遮断されず、検出された電流零点から遅延時間Δtd経過後に遮断される場合がある。この遅延時間Δtdは、位相制御部20の内部回路をA/D変換及びCPUを用いたデジタル回路で構成している場合であれば、例えばA/D変換器のサンプリングレートとCPUの処理時間に起因する遅延時間にあたり、アナログ回路であれば内部回路でのアナログ信号処理の遅れに起因する遅延時間である。
 零点検出部22は、例えば検出された電流零点の周期から、後の電流零点を推定する。ここで、後の電流零点とは、現在検出された電流から推定される数周期後の時間における電流零点であってもよい。また、零点検出部22は、制御信号出力部23が制御信号を出力するまでにかかる遅延時間Δtdを推定する。そして、電流零点と推定される時刻Tcから遅延時間Δtdより前の時刻に、零点検出信号S3を出力する。制御信号出力部23は、零点検出信号S3に応じて、推定された後の電流零点となるとき、オフ制御信号S4bを半導体スイッチ部10に出力する。
 上述のとおり、本実施の形態に係る半導体遮断器100は、事故が検出された場合には、半導体スイッチ部10の電流耐量に至る前に直ちに電流を遮断し、電流を遮断する指令が出された場合には、電流零点で電流を遮断することで、サージ電圧の発生を抑制できる。さらに本実施の形態では、後の電流零点となる時刻Tcを推定し、推定された時刻Tcから遅延時間Δtdより前の時刻に、零点検出信号S3を出力する構成とした。この構成により、位相制御部20が電流零点を検出してからオフ制御信号S4bを出力するまでにかかる遅延時間Δtdの影響を小さくすることができる。
 図12に示すように、電流零点を検出してから実際に半導体スイッチ部10が遮断されるまでの間に遅延時間Δtdが発生すると、遅延時間Δtdの間に微小な電流iが流れることになる。負荷が誘導負荷である場合、負荷に供給される電流iを遮断しようとすると、負荷のインダクタンス成分Lと、電流iの時間変化量di/dtとの積で表されるL×(di/dt)の値に相当するサージ電圧が発生する。また、負荷から半導体遮断器100に至るまでの回路に、浮遊静電容量Cがある場合には、サージインピーダンスZ=√L/Cがあるため、iZに相当するサージ電圧が発生する。
 電流零点となる時刻を推定し、遅延時間Δtdの影響を小さくすることで、これらのサージ電圧の発生を抑制することができるため、半導体スイッチ部10を保護するための機器やそれを接続するための回路を必要とせず、半導体遮断器100をさらに小型化及び低コスト化することができる。
 なお、例えば、三相交流回路のある相で事故が発生した場合、他の正常な相では、過渡的な電流波形を解析することにより、後の電流零点の時刻が推定されるとさらに好ましい。図13は、本発明の実施の形態3に係る半導体遮断器の動作を説明するための説明図である。図13において縦軸は電流値(kA)、横軸は時間(s)を示す。図13に示すように、例えばr相で事故が発生した影響で、他の正常なs相及びt相に流れる電流Is、Itの電流波形が通常の周期的な電流波形と異なる場合がある。
 零点検出部22は、事故発生後の過渡的な電流波形を解析して推定される後の電流零点となるときに零点検出信号S3を出力する。事故発生後の過渡的な電流波形は、例えば正弦関数によるフィッティングや、最小二乗法を使った多項式近似を用いて解析される。ここで、零点検出部22は、後の電流零点と推定される時刻Tcから遅延時間Δtdより前に零点検出信号S3を出力してもよい。
 このように、事故発生後の過渡的な電流波形を解析して、後の電流零点を推定することにより、ある相で事故が発生した影響で他の相の後の電流零点までの周期的な時間間隔が変わった場合であっても、他の正常な相に流れる電流を電流零点で遮断でき、サージ電圧の発生をさらに抑制することができる。
実施の形態4.
 図14は、本発明の実施の形態4に係る遮断装置を適用した電力系統を示す概略構成図である。以下では、実施の形態1と同様である点の説明を省略し、異なる点を中心に説明する。図14に示すように、電力系統では、電源1に接続された母線3に主幹スイッチ2が電源1と直列に接続されており、主幹スイッチ2の電源1側と反対側の母線3には、2つに分岐された分岐線路4a、4bが設けられている。分岐線路4a、4bには負荷として誘導電動機5a、5bが接続されており、電源1から電力が供給されている。
 電源1は、例えば外部の一般の発電設備である。主幹スイッチ2は、例えば機械式遮断器や半導体遮断器である。図14では、負荷が誘導電動機5a、5bである例を示しているが、例えばモータ、リアクトル、トランス等の誘導負荷又は抵抗負荷であってもよい。
 遮断装置200は、電源1に接続された母線3から分岐された分岐線路4a、4bに接続された半導体遮断器100a、100bと、母線3に接続された主幹スイッチ2に並列に接続された限流器6とを備える。遮断装置200は、電力系統で事故が発生した場合、限流器6が電源1側から負荷である誘導電動機5a、5b側に向かって流れる電流を限流する。限流器6は、例えば抵抗器やリアクトルである。
 ここで図14では、分岐線路4a、4bに半導体遮断器100a、100bがそれぞれ接続された例を示しているが、分岐線路4a、4bの一方に設けられた遮断器が機械式遮断器であってもよい。また2本の分岐線路4a、4bである例を示しているが、例えば3本、4本とそれより多くてもよい。また分岐線路4a、4bをそれぞれ1本の線で示しているが、三相交流回路である場合それぞれ3本の線路で構成される。
 本実施の形態に係る遮断装置200は、電源1に接続された母線3から分岐された分岐線路4a、4bの少なくともいずれかに半導体遮断器100を設けることで、事故が検出された場合には、半導体スイッチ部10の電流耐量に至る前に直ちに電流を遮断し、電流を遮断する指令が出された場合には、電流零点で電流を遮断し、サージ電圧を抑制できる。さらに本実施の形態で遮断装置200は、母線3に接続された主幹スイッチ2に並列に接続された限流器6を備えることで、分岐線路4a、4bの少なくともいずれかに事故が起こった場合に、電源1側から負荷である誘導電動機5a、5b側に向かって流れる電流を限流し、半導体遮断器100が直ちに電流を遮断することができる。
 また、遮断装置200では、半導体遮断器100を備えることで、少なくともいずれか一方の分岐線路4a、4bで事故が起こった場合に、正常な分岐線路4a、4bに接続された誘導電動機5a、5bが発電機として作用し、正常な分岐線路4a、4bから事故が発生した分岐線路4aに電流が回り込むのを防ぐことができる。
 なお、実施の形態1から4において、半導体遮断器100は、負荷のインダクタンス成分によるサージ電圧の発生を抑制できるため、避雷器を設ける必要がないとしたが、負荷のインダクタンス成分ではなく交流電源のインダクタンス成分や雷等に起因するサージから保護する目的では、図15に示すように、三相交流回路の各相の半導体遮断器100のIN側に、避雷器7r、7s、7tを設けてもよい。また、図16に示すように、遮断装置200は、分岐線路4a、4bに設けられた半導体遮断器100a、100bに個々に避雷器7を設けるのではなく、分岐部分である母線3に避雷器7を少なくとも1つ設けてもよい。このような構成でも、交流電源のインダクタンス成分や雷等に起因するサージから保護する効果が十分に得られ、半導体遮断器100の個々に避雷器7を設ける場合と比べ、低コスト化が可能である。
実施の形態5.
 本実施の形態では、半導体遮断器100の位相制御部20の詳細な構成の一例について説明する。図17は、本発明の実施の形態5に係る半導体遮断器の位相制御部の概略構成図ある。
 以下では、半導体スイッチ部10は、真の論理信号Hに応じて導通となり、偽の論理信号Lに応じて非導通となるように制御されるものとする。
 図17に示すように、位相制御部20は、事故検出部21と、零点検出部22と、制御信号出力部23とを備える。また位相制御部20は、電流検出端子201と、外部信号端子202と、事故信号端子203と、制御信号端子204と、リセット信号端子205とを備える。電流検出端子201は電流検出器30に接続され、外部信号端子202は操作部40に接続され、事故信号端子203は他の相の位相制御部20に接続され、制御信号端子204は半導体スイッチ部10に接続される。これらの端子は、必要に応じて2個以上備えていてもよい。
 位相制御部20は、電流検出器30から電流信号S1を取得し、電流検出端子201を介して事故検出部21及び零点検出部22にそれぞれ入力する。
 事故検出部21は、アンプ211と、整流回路212と、比較部213とを備える。事故検出部21に入力された電流信号S1は、アンプ211によって適切な大きさの振幅の電圧信号に変換されて増幅される。アンプ211で増幅された電圧信号は、整流回路212で整流され、交流電流の振幅の大きさを示す振幅信号に変換される。比較部213は、振幅信号と事故か否かを判定する所定の閾値とを比較し、振幅信号が閾値以上であれば事故と判定する。ここで、事故検出部21は、交流電流の正の電流値及び負の電流値双方に対して、1つの閾値との比較で事故か否かの判定するものとする。
 事故検出部21は、比較部213で事故と判定された場合、事故検出信号S2として、偽の論理信号Lを制御信号出力部23に出力する。また事故検出部21は、事故信号端子203を介して偽の論理信号Lを他の相の位相制御部20に出力する。
 零点検出部22は、スイッチ221と、アンプ222と、比較部223と、NOT回路224とを備える。ここでスイッチ221は、機械的なスイッチだけでなく、可動部のない電子的なスイッチや、同様の動作を行う回路によって構成されてもよい。
 スイッチ221は、通常、非導通であり、零点検出部22に入力された電流信号S1は、スイッチ221で遮断されている。スイッチ221は、外部信号端子202を介して入力される外部信号により導通となり、電流信号S1がアンプ222に入力される。ここで外部信号は、操作部40から出力される電流を遮断することを指令する指令信号S5や、他の相の位相制御部20から出力される電流を遮断することを指令する事故検出信号S2等である。
 アンプ222は、電流信号S1を適切な大きさの振幅の電圧信号に変換する。比較部223は、アンプ222で増幅された電圧信号と零電位とを比較し、増幅された電圧信号の正負を判定する。比較部223は、電圧信号が正の場合、真の論理信号Hを出力し、電圧信号が負の場合、偽の論理信号Lを出力する。
 比較部223から出力された真又は偽の論理信号H、Lは、それぞれ2つに分岐し、一方はそのまま制御信号出力部23に出力され、他方はNOT回路224を介して、論理反転されて制御信号出力部23に出力される。これにより、零点検出部22は、電流が正から負へ変化する電流零点及び負から正へ変化する電流零点の双方を零点検出信号S3として出力できる。
 制御信号出力部23は、3つのラッチ231a、231b、231cと、2つのAND回路232a、232bとを備える。ラッチ231a、231b、231cは、入力される論理信号が真から偽へ変化した際に出力が偽の論理信号Lに保持され、偽から真に変化した際に出力が真の論理信号Hに保持される。
 事故検出部21が事故を検出した際に出力した偽の論理信号Lは、ラッチ231aに入力されて出力が保持される。これにより、事故が発生して電流が遮断された後に、事故原因が除去されないまま半導体スイッチ部10が導通となり、再度事故電流が流れてしまうことを防止する。
 零点検出部22がNOT回路224を介さず出力した信号は、ラッチ231bに入力され、NOT回路224を介して出力した信号はラッチ231cに入力される。ラッチ231bは、電流が正から負へ変化するときの電流零点に対応して、出力が偽の論理信号Lに保持される。またラッチ231cは、電流が負から正へと変化するときの電流零点に対応して出力が偽の論理信号Lに保持される。
 AND回路232aは、ラッチ231bが出力した信号とラッチ231cが出力した信号との論理積をとる。また、AND回路232bは、AND回路232aが出力した信号と、ラッチ231aが出力した信号との論理積をとることで、ラッチ231a、ラッチ231b、231cのうち、少なくともいずれか1つが偽の論理信号Lを出力した場合、半導体スイッチ部10を非導通にするオフ制御信号S4bとして、偽の論理信号Lを出力する。
 ラッチ231a、231b、231cには、それぞれリセット信号端子205を介してリセット信号が入力される。リセット信号が入力されることで、事故が除去された後や、通常停止後の再起動前に、ラッチ231a、231b、231cをリセットし、半導体スイッチ部10を非導通にする偽の論理信号Lを解除し、半導体スイッチ部10を導通にする。
 上述のとおり、本実施の形態に係る半導体遮断器100は、事故が検出された場合には、半導体スイッチ部10の電流耐量に至る前に直ちに電流を遮断し、電流を遮断する指令が出された場合には、電流零点で電流を遮断することで、サージ電圧の発生を抑制できる。
 さらに本実施の形態では、半導体遮断器100は、アンプ211、整流回路212及び比較部213を有する事故検出部21と、アンプ222、比較部223及びNOT回路224を有する零点検出部22と、3つのラッチ231a、231b、231c及び2つのAND回路232a、232bを有する制御信号出力部23とを備える簡単な構成である。
 ラッチ231a、231b、231c、NOT回路224及びAND回路232a、232bにおける信号伝達の遅延時間は100ns程度であるため、例えば、アンプ222や比較部223として遅延時間が1μs程度のものを選定すれば、電流が電流零点を通過してから、半導体スイッチ部10が非導通になるまでにかかる遅延時間Δtdは2μsから3μs程度となる。このように、零点検出部22及び制御信号出力部23を構成することにより、商用電源の交流電流の周期に比べて非常に短い時間で電流を遮断することができる。
 例えば、制御信号出力部23に通常接続される半導体スイッチ部10のゲートドライブ回路の遅延時間を含めて、全体の遅延時間を5μsと見積もった場合、電流零点を検出して遅延時間経過後に遮断するときの電流値は、その振幅のピーク値に対して、約5桁小さな電流値とすることができる。
実施の形態6.
 本実施の形態では、半導体遮断器100の位相制御部20の詳細な構成の一例について説明する。図18は、本発明の実施の形態6に係る半導体遮断器の位相制御部の概略構成図ある。実施の形態5では、零点検出部22は、通常、スイッチ221で電流信号S1を遮断し、電流を遮断する指令を受けたとき、スイッチ221を閉じて導通させ、電流零点の検出を開始していたのに対し、本実施の形態では、零点検出部22が、常時、電流零点を検出している。以下では、実施の形態5と同様の構成である箇所は、省略して説明する。
 位相制御部20は、電流検出器30から電流信号S1を取得し、電流検出端子201を介して事故検出部21と零点検出部22とにそれぞれ入力する。
 事故検出部21は、電流信号S1が入力され、事故か否かを判定する。事故検出部21は、事故と判定すると、事故検出信号S2として偽の論理信号Lを制御信号出力部23に出力する又は事故信号端子203から他の相の位相制御部20に出力する
 零点検出部22は、アンプ222と、比較部223と、NOT回路224とを備える。零点検出部22には常時、電流信号S1が入力される。電流信号S1は、アンプ222によって適切な大きさの振幅の電圧信号に変換されて増幅される。比較部223は、増幅された電圧信号を零電位と比較し、増幅された電圧信号の正負を判定する。比較部223は、電圧信号が正の場合、真の論理信号Hを出力し、電圧信号が負の場合、偽の論理信号Lを出力する。
 比較部223から出力された真又は偽の論理信号H、Lは、それぞれ2つに分岐し、一方はそのまま制御信号出力部23に出力され、他方はNOT回路224を介して、論理反転されて制御信号出力部23に出力される。
 制御信号出力部23は、ラッチ231aと、Dラッチ231d、231eと、AND回路232a、232bとを備える。事故検出部21が出力した信号は、ラッチ231aに入力される。
 Dラッチ231d、231eは、零点検出部22から信号が入力されるCLK端子と、外部信号端子202を介して信号が入力されるD端子と、信号を出力するQ端子とを備える。Dラッチ231d、231eは、CLK端子に入力される論理信号が、偽から真又は真から偽に変化した際に、D端子に入力される信号をQ端子から出力し、次にCLK端子に入力される論理信号が、偽から真又は真から偽へ変化するまでQ端子から出力する信号を保持し続ける。
 零点検出部22がNOT回路224を介さず出力した信号は、Dラッチ231dのCLK端子に入力され、NOT回路224を介して出力した信号は、Dラッチ231eのCLK端子に入力される。また、外部の操作部40又は他の相の位相制御部20が外部信号端子202を介して出力した外部信号は、Dラッチ231dのD端子に入力される。
 Dラッチ231dは、CLK端子に入力された信号に基づいて、電流値が正から負へ変化する電流零点でD端子に入力される外部信号をQ端子に出力する。また、Dラッチ231eでは、電流が負から正へ変化する電流零点で、D端子に入力される外部信号をQ端子に出力する。ここで外部信号は、外部の操作部40又は他の相の位相制御部20から出力された電流の遮断を指令する指令信号S5であり、偽の論理信号LをQ端子に出力する。
 AND回路232aは、Dラッチ231dが出力した信号と、Dラッチ231eが出力した信号との論理積をとる。また、AND回路232bは、AND回路232aが出力した信号と、事故検出部21が出力した信号との論理積をとることで、ラッチ231a、Dラッチ231d、231eのうち、少なくともいずれか1つが偽の論理信号Lを出力した場合、半導体スイッチ部10を非導通にするオフ制御信号S4bとして、偽の論理信号Lを出力する。
 ラッチ231a、Dラッチ231d、231eにはそれぞれリセット信号端子205からリセット信号が入力される。事故が除去された後や、通常停止後の再起動前に、リセット信号を入力することで、ラッチ231a、Dラッチ231d、231eをリセットし、それぞれのラッチで保持されている出力を解除し、半導体スイッチ部10を導通にする。
 上述のとおり、本実施の形態に係る半導体遮断器100は、事故が検出された場合には、半導体スイッチ部10の電流耐量に至る前に直ちに電流を遮断し、電流を遮断する指令が出された場合には、電流零点で電流を遮断することで、サージ電圧の発生を抑制できる。
 さらに本実施の形態では、半導体遮断器100は、アンプ211、整流回路212及び比較部213を有する事故検出部21と、アンプ222、比較部223及びNOT回路224を有する零点検出部22と、ラッチ231a、2つのDラッチ231d、231eと2つのAND回路232a、232bを有する制御信号出力部23とを備える簡単な構成である。
 ラッチ231a、Dラッチ231d、231e、NOT回路224及びAND回路232a、232bにおける信号伝達の遅延時間は100ns程度であるため、アンプや比較部の遅延時間が1μs程度のものを選定すれば、電流が電流零点を通過してから、制御信号出力部23が制御信号を出力するまでの遅延時間が2μsから3μs程度となり、商用電源の交流電流の周期に比べて非常に短い時間で電流を遮断することができる。さらに本実施の形態では、制御信号出力部23にDラッチ231d、231eを備えることで、電流零点を常時検出している場合に、電流の遮断を指令する外部信号に応じて、電流零点で半導体スイッチ部10を非導通とすることができる。
 なお、実施の形態5及び6で事故検出部21は、正又は負の電流値を1つの閾値で比較し、事故か否かを判定する例を示したが、事故か否かを判定する方法によって、上述の構成と異なる構成としてもよい。
 図19は、本発明の実施の形態6に係る半導体遮断器の事故検出部の他の例を示す概略構成図である。図19に示すように、事故検出部21は、アンプ211と、2つに並列に接続された比較部213a、213bと、OR回路214とを備える。事故検出部21に入力された電流信号S1は、アンプによって適切な大きさの振幅の電圧信号に変換される。増幅された電圧信号は、2つに分岐され、一方は比較部213aで正の電流値の閾値と比較され、他方は、比較部213bで負の電流値の閾値と比較される。OR回路214は、電圧信号が比較部213aで正の電流の閾値以上か、負の電流の閾値以下かのいずれか一方で事故と判定し、偽の論理信号Lを出力する。
 この構成により、事故検出部21は、正の電流値を負の電流値とで2つの異なる閾値を用いて事故か否かを判定することができる。
 図20は、本発明の実施の形態6に係る半導体遮断器の事故検出部の他の例を示す概略構成図である。図20に示すように、事故検出部21は、アンプ211と、微分回路215と、整流回路212と、比較部213とを備える。事故検出部21に入力された電流信号S1は、アンプによって適切な大きさの振幅の電圧信号に変換される。微分回路215は、増幅された電圧信号を微分し、電圧信号の変化量を算出する。整流回路212は、電圧信号の変化量を整流し、変化の大きさの絶対値とする。比較部213は、電流変化量を所定の閾値と比較する。変化の大きさが、所定の閾値以上であれば事故と判定し、偽の論理信号Lを出力する。
 この構成により、事故検出部21は、電流値の変化量が閾値以上か否かにより、事故か否かを判定することができる。
 図21は、本発明の実施の形態6に係る半導体遮断器の事故検出部の他の例を示す概略構成図である。図21に示すように、事故検出部21は、アンプ211と、微分回路215と、2つ並列に接続された比較部213a、213bと、OR回路214とを備える。事故検出部21に入力された電流信号S1は、アンプ211によって適切な大きさの振幅の電圧信号に変換される。微分回路215は、増幅された電圧信号を微分し、電圧信号の変化量を算出する。電圧信号の変化量は、2つに分岐され、一方は比較部213aで正の電流値の変化量の閾値と比較され、他方は、比較部213bで負の電流値の変化量の閾値と比較される。OR回路214は、電圧信号が比較部213aで正の電流値の変化量の閾値以上、負の電流値の変化量の閾値以下のいずれか一方で事故と判定し、偽の論理信号Lを出力する。
 この構成により、事故検出部21は、正の電流値の変化量と負の電流値の変化量とで2つの異なる閾値で事故か否かを判定することができる。
 なお、実施の形態1から6において、三相交流回路に接続された半導体遮断器を例に説明したが、その他の回路に接続されていてもよく、例えば単相3線式の回路であってもよい。
 また、実施の形態1から6において、位相制御部20r、20s、20tがそれぞれ別に設けられた例を示したが、位相制御部20r、20s、20tにより実行される機能は、1つの制御部によって実行されてもよい。
 また、本発明はその要旨を逸脱しない範囲で、実施の形態1から6に開示されている複数の構成要素の適宜組み合わせてもよい。
 1 電源、2 主幹スイッチ、3 母線、4a、4b 分岐線路、5a、5b 誘導電動機、6 限流器、7 避雷器、10 半導体スイッチ部、20 位相制御部、21 事故検出部、22 零点検出部、23 制御信号出力部、30 電流検出器、 40 操作部、100 半導体遮断器、200 遮断装置、201 電流検出端子、202 外部信号端子、203 事故信号端子、204 制御信号端子、205 リセット信号端子、211 アンプ、212 整流回路、213 比較部、214 OR回路、215 微分回路、221 スイッチ、222 アンプ、223 比較部、224 NOT回路、231a、231b、231c ラッチ、231d、231e Dラッチ、232a、232b AND回路。

Claims (9)

  1. 交流回路に接続され、制御信号に基づいて導通及び非導通が制御される半導体スイッチ部と、
    前記交流回路から検出された電流に基づいて事故を検出する事故検出部と、
    前記交流回路から検出された電流に基づいて電流零点を検出する零点検出部と、
    前記事故検出部が事故を検出したとき又は電流を遮断する指令を受けて前記零点検出部が前記電流零点を検出したとき、前記半導体スイッチ部を非導通にする前記制御信号を出力する制御信号出力部と
    を備えることを特徴とする半導体遮断器。
  2. 前記事故検出部は、前記交流回路から検出された電流に基づいて電流値又は電流値の変化量が閾値以上であった場合、事故と判定することを特徴とする請求項1に記載の半導体遮断器。
  3. 前記交流回路の各相に対応してそれぞれ前記半導体スイッチ部、前記事故検出部、前記零点検出部及び前記制御信号出力部を備え、少なくとも1つの相の前記事故検出部が事故を検出したとき電流を遮断する指令を出力し、事故が検出された相の前記制御信号出力部は、事故が検出された相の前記半導体スイッチ部を非導通にする前記制御信号を出力し、他の相の前記制御信号出力部は、事故が検出された相の前記事故検出部から電流を遮断する指令を受けて前記他の相の前記零点検出部が前記電流零点を検出したとき、前記他の相の前記半導体スイッチ部を非導通にする前記制御信号を出力することを特徴とする請求項1又は2に記載の半導体遮断器。
  4. 交流回路に接続され、制御信号に基づいて導通及び非導通が制御される半導体スイッチ部と、
    前記交流回路から検出された電流に基づいて事故を検出する事故検出部と、
    前記交流回路から検出された電流に基づいて電流零点を検出し、検出された前記電流零点より後の電流零点及び前記制御信号の出力にかかる遅延時間を推定する零点検出部と、
    前記事故検出部が事故を検出したとき又は電流を遮断する指令を受けて前記遅延時間に基づいて前記後の電流零点となるとき、前記半導体スイッチ部を非導通にする前記制御信号を出力する制御信号出力部と
    を備えることを特徴とする半導体遮断器。
  5. 前記事故検出部は、前記交流回路から検出された電流から電流信号を取得して電圧信号に変換するアンプと、前記電圧信号と事故か否かを判定する閾値とを比較して比較結果を示す信号を出力する比較部とを備えることを特徴とする請求項1から4のいずれか一項に記載の半導体遮断器。
  6. 前記零点検出部は、前記交流回路から検出された電流から電流信号を取得して電圧信号に変換するアンプと、電圧信号と零電位とを比較して比較結果を示す信号を出力する比較部と、前記比較部から2つに分岐されて出力された前記比較結果を示す信号のうち、一方の信号を論理反転して出力するNOT回路とを備えることを特徴とする請求項1から5のいずれか一項に記載の半導体遮断器。
  7. 前記制御信号出力部は、前記事故検出部及び前記零点検出部から出力された信号の出力をそれぞれ保持するラッチと、前記ラッチから出力された信号の論理積に応じて前記制御信号を出力するAND回路とを備えることを特徴とする請求項5又は6に記載の半導体遮断器。
  8. 前記制御信号出力部は、前記事故検出部から出力された信号の出力を保持するラッチと、前記零点検出部から出力された信号に応じて、電流を遮断する指令信号の出力を保持するDラッチと、前記ラッチ及び前記Dラッチから出力された信号の論理積に応じて前記制御信号を出力するAND回路とを備えることを特徴とする請求項5又は6に記載の半導体遮断器。
  9. 電源に接続された母線から分岐された分岐線路に接続された請求項1から8のいずれか一項に記載の半導体遮断器と、前記母線に接続された主幹スイッチに並列に接続された限流器とを備えることを特徴とする遮断装置。
PCT/JP2018/027901 2018-07-25 2018-07-25 半導体遮断器及び遮断装置 WO2020021656A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2018/027901 WO2020021656A1 (ja) 2018-07-25 2018-07-25 半導体遮断器及び遮断装置
EP18927476.4A EP3829016A4 (en) 2018-07-25 2018-07-25 SEMICONDUCTOR CIRCUIT BREAKER AND CIRCUIT BREAKER
US17/256,663 US11848550B2 (en) 2018-07-25 2018-07-25 Semiconductor circuit breaker and circuit breaking device
JP2018555693A JP6497488B1 (ja) 2018-07-25 2018-07-25 半導体遮断器及び遮断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/027901 WO2020021656A1 (ja) 2018-07-25 2018-07-25 半導体遮断器及び遮断装置

Publications (1)

Publication Number Publication Date
WO2020021656A1 true WO2020021656A1 (ja) 2020-01-30

Family

ID=66092584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027901 WO2020021656A1 (ja) 2018-07-25 2018-07-25 半導体遮断器及び遮断装置

Country Status (4)

Country Link
US (1) US11848550B2 (ja)
EP (1) EP3829016A4 (ja)
JP (1) JP6497488B1 (ja)
WO (1) WO2020021656A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199377A1 (ja) * 2022-04-11 2023-10-19 日本電信電話株式会社 遮断器および遮断方法
WO2023199378A1 (ja) * 2022-04-11 2023-10-19 日本電信電話株式会社 遮断器および遮断方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3767316B1 (en) * 2019-07-19 2022-03-30 Yazaki Corporation Switch failure detection device
EP4033505B1 (en) 2019-09-17 2024-04-24 National University Corporation Saitama University Current interruption device and current interruption method
JP6808116B1 (ja) * 2020-04-16 2021-01-06 三菱電機株式会社 移動体用配電システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032461A (ja) 1973-07-26 1975-03-29
JPS52151819A (en) * 1976-06-11 1977-12-16 Mitsubishi Electric Corp Inverter device connected in parallel
JPS61293115A (ja) * 1985-06-18 1986-12-23 ノ−ザン・テレコム・リミテツド 電話加入者用ラインインタ−フエ−ス回路の保護装置
JP2003281978A (ja) * 2002-03-25 2003-10-03 Fuji Electric Co Ltd 3相交流開閉装置
JP2003289625A (ja) * 2002-03-28 2003-10-10 Mitsubishi Electric Corp 電圧変動補償装置
JP2013172603A (ja) 2012-02-22 2013-09-02 Ntt Facilities Inc 半導体遮断器、及び直流給電システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4245184A (en) * 1979-03-23 1981-01-13 Westinghouse Electric Corp. AC Solid-state circuit breaker
EP0016646B1 (en) 1979-03-23 1983-09-21 Westinghouse Electric Corporation Ac solid-state circuit breaker
JPH04208023A (ja) * 1990-11-30 1992-07-29 Toshiba Corp ディジタル形保護継電装置
US5600233A (en) * 1995-08-22 1997-02-04 Chicago Stage Equipment Co. Electronic power control circuit
EP0866557A1 (en) * 1997-03-18 1998-09-23 Carlo Gavazzi AG Solid state relay
US7177125B2 (en) * 2003-02-12 2007-02-13 Honeywell International Inc. Arc fault detection for SSPC based electrical power distribution systems
US6900643B2 (en) * 2003-08-06 2005-05-31 Ballard Power Systems Corporation Ride through in electronic power converters
JP2008072865A (ja) 2006-09-15 2008-03-27 Mitsubishi Electric Corp 電力供給回路
FR2959357B1 (fr) * 2010-04-27 2017-08-11 Denso Corp Dispositif d'alimentation electrique pour vehicule
EP2701255B1 (en) * 2012-08-23 2016-05-04 General Electric Technology GmbH Circuit interruption device
JP6468758B2 (ja) * 2014-08-27 2019-02-13 ルネサスエレクトロニクス株式会社 半導体装置
KR102167948B1 (ko) * 2014-12-31 2020-10-20 엘에스일렉트릭(주) 직류차단기 및 이의 차단방법
JP6706834B2 (ja) * 2016-01-21 2020-06-10 国立大学法人東京工業大学 回路遮断装置
CN107732875A (zh) * 2016-08-12 2018-02-23 通用电气公司 固态断路器及电机驱动系统
JP6808116B1 (ja) 2020-04-16 2021-01-06 三菱電機株式会社 移動体用配電システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032461A (ja) 1973-07-26 1975-03-29
JPS52151819A (en) * 1976-06-11 1977-12-16 Mitsubishi Electric Corp Inverter device connected in parallel
JPS61293115A (ja) * 1985-06-18 1986-12-23 ノ−ザン・テレコム・リミテツド 電話加入者用ラインインタ−フエ−ス回路の保護装置
JP2003281978A (ja) * 2002-03-25 2003-10-03 Fuji Electric Co Ltd 3相交流開閉装置
JP2003289625A (ja) * 2002-03-28 2003-10-10 Mitsubishi Electric Corp 電圧変動補償装置
JP2013172603A (ja) 2012-02-22 2013-09-02 Ntt Facilities Inc 半導体遮断器、及び直流給電システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3829016A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199377A1 (ja) * 2022-04-11 2023-10-19 日本電信電話株式会社 遮断器および遮断方法
WO2023199378A1 (ja) * 2022-04-11 2023-10-19 日本電信電話株式会社 遮断器および遮断方法

Also Published As

Publication number Publication date
JP6497488B1 (ja) 2019-04-10
JPWO2020021656A1 (ja) 2020-08-06
US11848550B2 (en) 2023-12-19
EP3829016A4 (en) 2021-07-21
US20210265831A1 (en) 2021-08-26
EP3829016A1 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
WO2020021656A1 (ja) 半導体遮断器及び遮断装置
CA2614245C (en) An apparatus and method for identifying a loss of a current transformer signal in a power system
JP6275352B1 (ja) 電力変換装置
EP2747116A1 (en) Three-phase ground fault circuit interrupter
US11588321B2 (en) Low-voltage protection switch unit
TWI441402B (zh) 發電系統及其開關裝置
US3733517A (en) Electrical apparatus with ground fault detector and instantaneous trip circuit
JPH03504192A (ja) 電流障害保護装置
JPS62156576A (ja) 直列接続の制御ターンオフ半導体素子の同時導通防止のための方法と装置
WO2012044646A1 (en) Integrated photovoltaic source circuit combiner and protection subsystem
WO2022167863A1 (en) Inrush current limiting transformer energization apparatuses, methods, systems and technique
Askan et al. Bidirectional switch based on silicon high voltage superjunction MOSFETs and TVS diode used in low voltage DC SSCB
Savaliya et al. Comparative analysis and coordination study of bi-directional Z-source breaker with reclosing capabilities
CN111817268A (zh) 故障处理方法、故障处理装置和直流输电系统
CN116964939A (zh) 用于隔离开关的谐振电路
WO2022121779A1 (zh) 一种单相接地的处理方法
JP3560752B2 (ja) 車両用電源装置
Pang et al. Diode clamped solid-state circuit breaker: a novel solid-state circuit breaker without dynamic voltage unbalancing issues
Cairoli et al. Ultra-fast utility disconnect switch for high efficiency medium voltage UPS
KR20140106881A (ko) 고속 인터럽터를 이용한 상전도 한류기
CA2837468C (en) Three-phase ground fault circuit interrupter
JP7407969B2 (ja) 電力供給制御装置
US11682920B1 (en) Systems and methods of accelerating transfer in a static transfer switch
Fuentes-Burruel et al. Auxiliary Protection Scheme for Assembly Hybrid HVDC Breakers
JPH0866047A (ja) 電圧形電力変換装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018555693

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018927476

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018927476

Country of ref document: EP

Effective date: 20210225