WO2020020995A1 - Temperierelement mit sorptionsmaterial, insbesondere zur temperierung einer batteriezelleneinheit eines kraftfahrzeugs - Google Patents

Temperierelement mit sorptionsmaterial, insbesondere zur temperierung einer batteriezelleneinheit eines kraftfahrzeugs Download PDF

Info

Publication number
WO2020020995A1
WO2020020995A1 PCT/EP2019/070010 EP2019070010W WO2020020995A1 WO 2020020995 A1 WO2020020995 A1 WO 2020020995A1 EP 2019070010 W EP2019070010 W EP 2019070010W WO 2020020995 A1 WO2020020995 A1 WO 2020020995A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature control
control element
battery cell
motor vehicle
sorption material
Prior art date
Application number
PCT/EP2019/070010
Other languages
English (en)
French (fr)
Inventor
Bernd Beyer
Walter Mittelbach
Andreas GÄHME
Charles PEUROIS
Original Assignee
Fahrenheit Gmbh
Volkswagen Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fahrenheit Gmbh, Volkswagen Aktiengesellschaft filed Critical Fahrenheit Gmbh
Priority to US17/263,214 priority Critical patent/US20210206292A1/en
Priority to KR1020217006178A priority patent/KR20210070267A/ko
Priority to EP19750077.0A priority patent/EP3830892A1/de
Priority to CN201980058720.4A priority patent/CN112673510A/zh
Priority to JP2021504417A priority patent/JP2021531632A/ja
Publication of WO2020020995A1 publication Critical patent/WO2020020995A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/659Means for temperature control structurally associated with the cells by heat storage or buffering, e.g. heat capacity or liquid-solid phase changes or transition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/143Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the heat being derived from cooling an electric component, e.g. electric motors, electric circuits, fuel cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/46Heat pumps, e.g. for cabin heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Temperature control element with sorption material especially for temperature control of a
  • the invention relates to a temperature control element with sorption material, in particular for
  • the invention further relates to a battery cell unit with such a temperature control element, a temperature control system with such a battery cell unit and a motor vehicle with such a temperature control system.
  • Traction batteries of this type which can be designed, for example, as lithium-ion batteries, are temperature-sensitive. At relatively low temperatures, these have only a limited storage capacity, which is
  • the temperature of the traction batteries of electrified motor vehicles is kept at a temperature which is at least within a defined range during operation of the motor vehicle
  • Heating device can be provided to both cool and heat the traction battery.
  • Such a type of temperature control for a traction battery requires the provision of relatively high electrical power over a relatively long period of time, if necessary. If the motor vehicle is not connected to an external electrical power supply, this electrical power must be taken from the traction battery. This leads to a reduced state of charge of the traction battery, which has a correspondingly negative effect on the range of the motor vehicle.
  • This problem can be reduced by using a sorption unit for tempering a traction battery in a motor vehicle, as is known, for example, from DE 10 2012 012 820 A1, DE 10 2015 204 678 A1 or DE 10 2015 204 667 A1.
  • Such a sorption unit comprises a sorption device which has a sorption material which can absorb or adsorb a process medium, which can be in the form of a sorptive, in particular in gaseous form, with thermal energy being released.
  • a sorption unit comprises an evaporator / condenser device, hereinafter referred to as a phase changer, in which the process medium, for example water, can either be evaporated, as a result of which this can be absorbed or adsorbed by the sorption material of the sorption device, or in which the process medium after this was desorbed from the sorption material with the addition of heat, condensed with the absorption of thermal energy.
  • the invention had for its object to show a possibility
  • a battery cell unit with such a temperature control element, a temperature control system with such a battery cell unit and a motor vehicle with such a temperature control system are the subject of claims 10, 12 and 14.
  • Advantageous embodiments of the temperature control element according to the invention, the battery cell unit according to the invention, the temperature control system according to the invention and the motor vehicle according to the invention are the subject of Further claims and / or result from the following description of the invention.
  • a temperature control element is provided with two cover plates arranged at a distance from one another, which delimit an intermediate space within which one
  • Support structure is arranged, which holds the cover plates spaced from each other, a sorption material is also accommodated in the intermediate space, which contacts the cover plates and the support structure at least in sections, preferably over the entire surface.
  • a temperature control element according to the invention is advantageously also used for the direct temperature control of, for example, one or more battery cells of one according to the invention
  • Such a battery cell unit according to the invention comprises at least one battery cell, i.e. a storage element for electrical energy, and at least one according to the invention, which bears directly or indirectly on the battery cell with at least one of the cover plates
  • Temperature control elements can in particular be integrated into a housing that surrounds the at least one battery cell and preferably even form a section thereof.
  • a temperature control element according to the invention can (in each case) be arranged between two battery cells of the battery cell unit, as a result of which a particularly advantageous cooling of the individual battery cell (s) can be achieved with dimensions of the battery cell unit that are still compact.
  • Temperature control element on, for example, one or more battery cells
  • the height of a device according to the invention preferably defined by the thickness of the cover plates and by the distance between the cover plates Temperature control element is significantly smaller than the length and width.
  • the length and width are at least ten times, preferably fifty times, particularly preferably one hundred times the height.
  • the temperature control of a battery cell unit according to the invention or the individual battery cell (s) thereof can be achieved by integrating one or more
  • Battery cell unit (s) according to the invention take place in a temperature control system according to the invention, in which the intermediate space of the temperature control element (s) is (in each case) connected via a control valve to a phase changer in such a way that when the control valve is open, a process medium in a gaseous state between the one in the intermediate space and the assigned temperature control element arranged sorption material and the phase changer can flow. Flows through the gaseous process medium after this in the phase changer Supply of thermal energy was evaporated to the sorbent of the or
  • Temperature control elements of a battery cell unit according to the invention this is absorbed or adsorbed from the sorption material while releasing thermal energy.
  • the battery cell unit and in particular its battery cell (s) can be heated, for example in order to be preheated after or for start-up at relatively cold ambient temperatures.
  • its battery cells produce waste heat, which can be used to desorb the sorption material of the temperature control element or elements of a battery cell unit according to the invention, which then flows to the phase changer when the control valve is open, where it is cooled by the phase changer and thus the gaseous process medium condensed with the release of thermal energy.
  • the heat energy required for the desorption of the process medium from the sorption material is thereby dissipated from the battery cell unit, which cools it.
  • the phase changer can preferably be connectable to a refrigerant circuit of a refrigeration machine of the temperature control system, which makes it possible to apply relatively cold refrigerant to the phase changer in order to ensure reliable condensation of the process medium on the phase changer.
  • the refrigeration machine which can preferably comprise at least one condenser, one evaporator and one compressor, can in particular be provided as an air conditioning system for a motor vehicle according to the invention, which basically comprises at least one temperature control system according to the invention.
  • the refrigeration machine can comprise an air conditioning heat exchanger which is provided for temperature control and in particular cooling of air to be supplied from an interior of the motor vehicle.
  • air can also flow through the evaporator of the refrigeration machine as a climate heat exchanger, which air is provided for air conditioning an interior of the motor vehicle, as a result of which heat energy can be extracted from this air, which is used in the evaporator to evaporate the refrigerant passed through it is being used.
  • a cooling system in particular to a cooling system of a motor vehicle according to the invention.
  • a cooling system is at least characterized in that, by means of a coolant flowing therein, thermal energy can be dissipated to ambient air via a coolant cooler.
  • a refrigeration machine with the refrigerant flowing in it
  • there is no phase change in the coolant in order to realize a particularly advantageous transfer of thermal energy between the cover plates and the sorption material, it can preferably be provided that the
  • Cover plates and the support structure are formed at least in sections, preferably completely, from a thermally highly conductive material, in particular from one or more metals, for example aluminum.
  • a design made of metal (s) also has the advantages of being inexpensive to manufacture and having good structural resilience.
  • the or at least one of the cover plates and / or the support structure is at least partially coated with the sorption material on those wall surfaces with which they delimit the space or are arranged within the space.
  • the cover plate (s) and / or the support structure is at least partially coated with the sorption material on those wall surfaces with which they delimit the space or are arranged within the space.
  • the support structure adheres to a layer which is stable in itself and which consists at least partially, preferably completely, of the sorption material.
  • the corresponding coatings can preferably be made relatively thin (for example between 0.01 mm and 0.2 mm in the case of a direct coating and up to several millimeters in the application (in particular gluing) of already dimensionally stable coating layers), so that on the one hand they can be achieved can that such a temperature control element according to the invention is relatively compact, making it particularly advantageous for cooling a battery cell unit.
  • Sorption material with a large area contact with the thermally conductive structure of the temperature control element i.e. with at least the cover plates and the support structure and
  • an advantageous heat transfer between the sorption material and the heat-conducting structure of the temperature control element can be achieved.
  • the relatively thin layers can in particular also ensure that the often relatively poor thermal conductivity of the sorption material itself has only a small negative
  • the material structure of the sorption material from which the layers are formed can be so compact that flow through this material structure by means of the gaseous process medium is not possible or is possible only to a small extent. In order to nevertheless have the fullest possible contact between the process medium and the
  • the layers formed by the coating of the cover plate (s) and / or the support structure constructively design or limit one or more flow channels, which guarantee the greatest possible flow through the entire intermediate space and thus the largest possible contact between the process medium and the sorption material.
  • Sorption material can optionally also be dispensed with such structurally designed flow channels.
  • the support structure should be as large as possible, so that a correspondingly large contact with the
  • the support structure can comprise, in particular, a corrugated sheet metal structure and / or a foam structure and / or a nonwoven structure, or can be designed as such a structure.
  • the support structure is consequently formed by one or more components which differ from the cover plates, the support structure and the cover plates being produced in the course of the production of a corresponding one
  • Tempering element according to the invention can be firmly connected (positively, non-positively or cohesively, e.g. by soldering). In addition or as an alternative, however, there is also the possibility of supporting at least one of the projections
  • a sheet metal structure it can further preferably be provided that it forms a plurality of channels extending parallel to one another and extending along a longitudinal extent of the sheet metal structure.
  • the channels can further preferably extend (preferably continuously) over the entire longitudinal extent of the sheet metal structure.
  • Temperature control element can also be provided that such a corrugated sheet metal structure along the longitudinal extent is divided into a plurality of strip-shaped sections extending in a transverse direction, the channels of adjoining sections being offset in the transverse direction with respect to one another.
  • Such a configuration of the support structure of a temperature control element according to the invention can be particularly advantageous
  • a corrugated sheet metal structure also has a plurality of vanes extending from this corrugated sheet metal structure, which also in the form of cuts from the sheet metal structure itself produced by at least two adjacent sides can be designed so that the corrugated sheet metal structure corresponding
  • At least one media channel delimited from the intermediate space can also run within the intermediate space of a temperature control element according to the invention.
  • This media channel can serve to guide a cooling medium that should not have direct contact with the sorption material and the other components of the temperature control element.
  • the media channel can in particular be connectable to a cooling system, in particular to a cooling system of a motor vehicle according to the invention. This makes it possible, for example, to cool a battery cell unit according to the invention only temporarily, in particular only for a relatively short time, by means of a temperature control element according to the invention as part of a sorption unit of a temperature control system according to the invention, while cooling is carried out for a longer time as part of the cooling system.
  • the media channel is directly adjacent to the cover plate (s) and / or or the support structure is arranged or integrated into it. A transfer of the thermal energy also through the sorption material, which is often relatively poorly heat-conducting, can be avoided in this way.
  • a temperature control element according to the invention may further comprise an electrical heating element, whereby a battery cell, for example, is heated
  • Battery cell unit according to the invention is also made possible as required if Process medium has been essentially completely absorbed or adsorbed by the sorption material and therefore at least temporarily no thermal energy can be released by a corresponding absorption or adsorption.
  • a motor vehicle according to the invention can in particular be a wheel-based and not rail-bound motor vehicle (preferably a car or a truck).
  • Components are to be understood in such a way that they are present at least once and can be present more than once.
  • Fig. 4 an alternative support structure for a in a perspective view
  • the motor vehicle is electrified and accordingly comprises at least one electrical one Traction motor 1, the drive power of which can be transferred to driven wheels 2 of the motor vehicle.
  • the motor vehicle can, for example, be a battery-electric one
  • Motor vehicle (BEV) be trained.
  • this only includes the one or more electric traction motors 1 and a traction battery 3, which, among other things, is provided to provide the electrical power required to drive the traction motor (s) 1.
  • the motor vehicle can also be a hybrid vehicle. In this case, this includes
  • Motor vehicle also an internal combustion engine (not shown), which is also at least temporarily provided to generate drive power that is transmitted to the driven wheels of the motor vehicle.
  • the hybrid vehicle can be used in one
  • HEV hybrid vehicle
  • PHEV plug-in hybrid vehicle
  • the traction battery 3 is integrated in a temperature control system according to the invention.
  • a temperature control system is shown in one possible embodiment in FIG. 2.
  • the traction battery 3 designed as a battery cell unit according to the invention in the temperature control system according to FIG. 2 comprises a plurality of battery cells 6 which,
  • the housing wall of this housing 4 is assigned a temperature control element 5 according to the invention, the temperature control element 5 itself preferably forming this housing wall.
  • temperature control elements 4 can also be placed between two battery cells 6 be arranged in order to achieve a temperature control of the battery cells 6 that is as uniform as possible by means of the temperature control element or elements 5.
  • a temperature control element 5 comprises a housing, within which a sorption material 7, for example zeolite or silica gel, is arranged.
  • the housing of the temperature control element 5 is formed by two cover plates 8 (see FIGS. 3 and 5) and side walls (not shown).
  • the interior of the housing receiving the sorption material 7 is connected via a connecting line 9 to a heat exchanger
  • Phase changer 10 in fluid-conducting connection A control valve 11 is integrated into the connecting line 9 and can be controlled via a control device (not shown).
  • the fluid-conducting connection via the connecting line 9 can be released or blocked by means of the control valve 11.
  • Sorption material 7 or the temperature control element 5 (which represents a sorption device of the sorption unit) and the phase changer 10 can be transferred alternately in both directions.
  • the battery cell unit 3 is tempered and, if necessary, cooled or heated.
  • the sorption unit For cooling the battery cells 6, for example, during a charging process for the traction battery 3 when the motor vehicle is not in operation, i.e. if the traction battery 3 is connected to an external electrical power supply, the sorption unit in one
  • waste heat which is generated when charging the battery cells, is used to desorb process medium previously absorbed or adsorbed by the sorption material 7 of the temperature control element or elements 5 (for example water).
  • the sorption material 7 of the temperature control element or elements 5 for example water.
  • tempering the sorption material to a temperature of approximately 25 ° C. is sufficient for this.
  • the battery cells 6 are due to this heat transfer to the
  • the refrigerant can have a temperature of, for example, -5 ° C. when flowing through the phase changer 10.
  • the refrigeration machine 12 includes a refrigerant circuit 13, in which a condenser 14, a compressor 15, an evaporator 16 provided as a climate heat exchanger of a motor vehicle according to the invention and a plurality of control valves 17 are integrated.
  • air 19 which is used for
  • Temperature control is to be supplied to a (passenger) interior of the motor vehicle, to be cooled, for which purpose the refrigerant circulating in the refrigerant circuit 13 is compressed in the gaseous state by means of the compressor 15.
  • the compressed, gaseous refrigerant then condenses in the condenser 14, the heat energy released in the process being released into ambient air 18.
  • the refrigerant liquefied in this way is then conveyed by means of, for example, a pump (not shown) to the climate heat exchanger 16, in which it can relax, as a result of which the refrigerant evaporates again or is converted into the gas form.
  • the heat energy absorbed during the evaporation extracts the refrigerant from the air 19 provided for air conditioning the interior of the motor vehicle, which also flows through the climate heat exchanger 16.
  • the phase changer 10 is connected to the refrigerant circuit 13 via separate connecting lines 20 and three of the total of four control valves 17.
  • the heat energy released in the phase changer 10 due to the condensation of the process medium during a regeneration operation of the sorption unit is dissipated via the refrigerant. It can be provided that the refrigerant by means of a pump 21, which is in one of the
  • Connection lines 20 of the phase changer 10 is integrated, is conveyed in a circuit which otherwise only comprises the phase changer 10 and the condenser 14 (cf. FIG. 2a), the condenser 14 in this case only serving to recool the refrigerant. There is no phase change of the refrigerant in this circuit.
  • the refrigerant circuit therefore corresponds functionally to a coolant circuit.
  • Phase changer 10 released thermal energy can also be dissipated via refrigerant, which is conducted in a circuit which additionally comprises the compressor 15.
  • the compressor 15 then compresses refrigerant in the gaseous state and supplies it to the condenser 14, in which it is condensed and thus liquefied.
  • the liquid refrigerant is then fed to the phase changer 10 using the pump 21, in which it evaporates.
  • the heat energy required for the refrigerant is extracted from the process medium of the sorption unit, causing it to condense.
  • the corresponding circuit of the refrigerant is highlighted in Fig. 2b (with arrows without area filling).
  • the sorption unit remains unused, for which purpose the control valve 11 of the sorption unit is then kept closed. This prevents overflow of process medium between the temperature control element 5 and the phase changer 10.
  • Any necessary cooling of the traction battery 3 can then preferably be implemented by an additional cooling system of the motor vehicle (not shown), in which a coolant is led through coolant channels (not shown) integrated in the traction battery 3. Thermal energy that was transferred from the battery cells 6 to the coolant is then transferred to ambient air in a coolant cooler of the cooling system.
  • the coolant channels can preferably also be integrated in the temperature control element or elements 5 of the battery cell unit 3.
  • the traction battery 3 has a correspondingly low temperature when the motor vehicle is started up again (cold start), which leads to a considerable restriction of the storage capacity of the battery cells 6.
  • the sorption unit is then operated in a sorption operation, for which purpose the control valve 11 of the sorption unit is opened and, moreover, refrigerant in a refrigerant circuit according to, for example, FIG. 2a or 2b (with the flow direction reversed in comparison to the regeneration mode (cf.
  • Phase changer 10 passes from the refrigerant, which also has ambient temperature (for example 0 ° C.) to the liquid process medium contained therein, in order to evaporate this process medium, which then flows via the connecting line 9 to the temperature control element 5.
  • the sorption material 7 contained in the temperature control element 5 then absorbs or adsorbs the gaseous process medium with heat being released.
  • the heat energy released in this way is used for tempering or heating the Battery cells 6 of the battery cell unit / traction battery 3 are used at temperatures of, for example, approximately 25 ° C.
  • such a temperature control element 5 comprises two cover plates 8 arranged at a distance from one another, which form an intermediate space within which a support structure 23 is arranged.
  • the space on the circumference is closed by side walls (not shown).
  • the side walls can be part of a separate frame, which is sealingly connected to the cover plates 8 (for example cohesively, in particular soldered). Alternatively, however, the side walls can also be formed by angled sections of one or both cover plates.
  • Cover plates 8 held spaced apart. In the space between the
  • Cover plates 8 also contain the sorption material 7, which contacts both the cover plates 8 and the support structure 23.
  • the support structure 23 serves on the one hand for the structural strength of the temperature control element 5 and on the other hand for the partial quantities of the
  • Sorbent material 7, which only contact the support structure 23, is thermally conductive with the
  • both the cover plates 8 and the support structure 23 are made of highly heat-conducting materials, for example aluminum.
  • the support structure 23 in the temperature control element 5 shown in FIG. 3 is designed in the form of a corrugated (ie back and forth) sheet metal structure which has a plurality of channels 24 which extend parallel to one another and extend along a longitudinal extent (perpendicular to the plane of the drawing) of the sheet metal structure form, the channels 24
  • the channels accordingly represent separate spaces within the space within which the sorption material 7 is received.
  • the sorption material 7 is provided in the form of coatings that are applied to the wall surfaces of the cover plates 8 and the support structure 23 that delimit the intermediate space.
  • the sorption material 7 is provided in the form of coatings that are applied to the wall surfaces of the cover plates 8 and the support structure 23 that delimit the intermediate space.
  • Flow channels 25 are kept clear.
  • the gaseous process medium of the sorption unit can come into contact with the sorption material 7 over the largest possible area through these flow channels 25.
  • a distribution space (not shown) can be provided within the space delimited by the cover plates 8, into which all of the flow channels 25 open and which is also connected to the connecting line 9 of the sorption unit.
  • the support structure 23 of a temperature control element 5 according to FIG. 3 can alternatively also be designed in the form of a turbulence plate, as shown in FIG. 4.
  • a turbulence sheet is also a corrugated sheet structure which forms a plurality of channels 24 which extend along a longitudinal extension of the sheet structure and run parallel to one another.
  • the sheet metal structure along the longitudinal extent is additionally subdivided into a plurality of strip-shaped sections 26 which extend in a transverse direction, the channels 24 of adjoining sections 26 being offset from one another in the transverse direction.
  • FIG. 5 and 6 show an alternative embodiment for a temperature control element 5 according to the invention, in which the support structure 23 is formed by the two cover plates 8 themselves, in each case by forming a multiplicity of projections 27, the projections 27 of the two cover plates 8 opposite one another lie and contact each other.
  • the cover plates 8 are preferably firmly connected to one another at these contact points, for example by corresponding soldering points. Sorption material 7 is in turn accommodated within the space delimited by the cover plates 8. This is shown by way of example in FIG. 5 as a bed. Alternatively, however, the support structure 23 is formed by the two cover plates 8 themselves, in each case by forming a multiplicity of projections 27, the projections 27 of the two cover plates 8 opposite one another lie and contact each other.
  • the cover plates 8 are preferably firmly connected to one another at these contact points, for example by corresponding soldering points.
  • Sorption material 7 is in turn accommodated within the space delimited by the cover plates 8. This is shown by way of example in FIG. 5 as
  • Sorption material 7 may be provided.

Abstract

Es ist ein Temperierelement (5) mit zwei zueinander beabstandet angeordneten Deckplatten (8) vorgesehenen, die einen Zwischenraum begrenzen, innerhalb dessen eine Stützstruktur (23) angeordnet ist, die die Deckplatten (8) beabstandet zueinander hält, wobei in dem Zwischenraum zudem ein Sorptionsmaterial (7) aufgenommen ist, das die Deckplatten (8) und die Stützstruktur (23) kontaktiert. Ein solches Temperierelement (5) ermöglicht eine besonders gute Übertragung von Wärmeenergie zwischen dem Sorptionsmaterial (7) und den Deckplatten (8), indem die Stützstruktur (23) nicht nur der mechanischen Verbindung zwischen den Deckplatten (8) und damit der strukturellen Festigkeit des Temperierelements (5) dient, sondern eine Übertragung von Wärmeenergie zwischen dem Sorptionsmaterial (7) und den Deckplatten (8) bewirkt. Dadurch ist ein erfindungsgemäßes Temperierelement (5) in vorteilhafter Weise auch zur direkten Temperierung von beispielsweise einer oder mehreren Batteriezellen einer Batteriezelleneinheit, beispielsweise einer Traktionsbatterie eines elektrifizierten Kraftfahrzeugs, geeignet.

Description

B E S C H R E I B U N G
Temperierelement mit Sorptionsmaterial, insbesondere zur Temperierung einer
Batteriezelleneinheit eines Kraftfahrzeugs
Die Erfindung betrifft ein Temperierelement mit Sorptionsmaterial, insbesondere zur
Temperierung einer Batteriezelleneinheit eines Kraftfahrzeugs. Die Erfindung betrifft weiterhin eine Batteriezelleneinheit mit einem solchen Temperierelement, ein Temperiersystem mit einer solchen Batteriezelleneinheit sowie ein Kraftfahrzeug mit einem solchen Temperiersystem.
Für den Betrieb von elektrifizierten Kraftfahrzeugen, wie beispielsweise batterieelektrischen Kraftfahrzeugen (BEV) oder Hybridfahrzeugen (HEV oder PHEV), werden leistungsstarke (Traktions-)Batterien eingesetzt, um einen elektrischen Traktionsmotor des Kraftfahrzeugs mit elektrischer Leistung zu versorgen. Derartige Traktionsbatterien, welche beispielsweise als Lithium-Ionen-Batterien ausgebildet sein können, sind temperatursensibel. Bei relativ niedrigen Temperaturen weisen diese nur eine eingeschränkte Speicherfähigkeit auf, was sich
entsprechend negativ hinsichtlich einer auf einem Antrieb mittels des elektrischen
Traktionsmotors beruhenden Reichweite des Kraftfahrzeugs auswirkt. Relativ hohe
Temperaturen führen dagegen zu einer vergleichsweise schnellen Alterung der Batterien, womit bereits nach relativ kurzer Nutzungsdauer ebenfalls eine dann dauerhafte Einschränkung der Speicherfähigkeit einhergeht.
Um diese Probleme zu vermeiden oder zumindest zu vermindern kann es vorgesehen sein, Traktionsbatterien von elektrifizierten Kraftfahrzeugen zu temperieren, um deren Temperaturen zumindest während eines Betriebs des Kraftahrzeugs innerhalb eines definierten
Temperaturbereichs zu halten. Für eine solche Temperierung von Traktionsbatterien können diese in ein Kühlsystem des Kraftfahrzeugs integriert sein, wobei zusätzlich eine
Heizvorrichtung vorgesehen sein kann, um die Traktionsbatterie sowohl kühlen als auch erwärmen zu können. Eine solche Art der Temperierung einer Traktionsbatterie erfordert die Bereitstellung von relativ hoher elektrischer Leistung über gegebenenfalls einen relativ langen Zeitraum. Ist das Kraftfahrzeug dabei nicht an eine externe elektrische Energieversorgung angeschlossen, muss diese elektrische Leistung der Traktionsbatterie entnommen werden. Dies führt zu einem verringerten Ladezustand der Traktionsbatterie, der sich entsprechend negativ auf die Reichweite des Kraftfahrzeugs auswirkt. Verringern lässt sich diese Problematik durch die Verwendung einer Sorptionseinheit zur Temperierung einer Traktionsbatterie eines Kraftfahrzeugs, wie dies beispielsweise aus der DE 10 2012 012 820 A1 , der DE 10 2015 204 678 A1 oder der DE 10 2015 204 667 A1 bekannt ist.
Eine solche Sorptionseinheit umfasst eine Sorptionsvorrichtung, die ein Sorptionsmaterial aufweist, das ein Prozessmedium, das als Sorptiv insbesondere gasförmig vorliegen kann, absorbieren oder adsorbieren kann, wobei Wärmeenergie freigesetzt wird. Weiterhin umfasst eine solche Sorptionseinheit eine nachfolgend als Phasenwechsler bezeichnete Verdampfer- /Kondensator-Vorrichtung, in der das Prozessmedium, beispielsweise Wasser entweder verdampft werden kann, wodurch dieses von dem Sorptionsmaterial der Sorptionsvorrichtung ab- oder adsorbiert werden kann, oder in der das Prozessmedium, nachdem dieses aus dem Sorptionsmaterial unter Wärmezufuhr desorbiert wurde, unter Aufnahme von Wärmeenergie kondensiert.
Der Erfindung lag die Aufgabe zugrunde, eine Möglichkeit aufzuzeigen, eine
(Traktions-)Batterie eines Kraftfahrzeugs auf vorteilhafte Weise zu temperieren.
Diese Aufgabe wird mittels eines Temperierelements gemäß dem Patentanspruch 1 gelöst.
Eine Batteriezelleneinheit mit einem solchen Temperierelement, ein Temperiersystem mit einer solchen Batteriezelleneinheit sowie ein Kraftfahrzeug mit einem solchen Temperiersystem sind Gegenstände der Patentansprüche 10, 12 und 14. Vorteilhafte Ausgestaltungsformen des erfindungsgemäßen Temperierelements, der erfindungsgemäßen Batteriezelleneinheit, des erfindungsgemäßen Temperiersystem und des erfindungsgemäßen Kraftfahrzeugs sind Gegenstände der weiteren Patentansprüche und/oder ergeben sich aus der nachfolgenden Beschreibung der Erfindung.
Erfindungsgemäß ist ein Temperierelement mit zwei zueinander beabstandet angeordneten Deckplatten vorgesehenen, die einen Zwischenraum begrenzen, innerhalb dessen eine
Stützstruktur angeordnet ist, die die Deckplatten beabstandet zueinander hält, wobei in dem Zwischenraum zudem ein Sorptionsmaterial aufgenommen ist, das die Deckplatten und die Stützstruktur zumindest abschnittsweise, vorzugsweise möglichst vollflächig kontaktiert. Ein solches erfindungsgemäßes Temperierelement ermöglicht eine besonders gute Übertragung von Wärmeenergie zwischen dem Sorptionsmaterial und den Deckplatten, indem die
Stützstruktur nicht nur der mechanischen Verbindung zwischen den Deckplatten (zumindest hinsichtlich einer (Druck-)Belastung der Deckplatten in Richtung aufeinander zu) und damit der strukturellen Festigkeit des Temperierelements dient, sondern auch einer Übertragung von Wärmeenergie zwischen dem Sorptionsmaterial und den Deckplatten. Dadurch ist ein erfindungsgemäßes Temperierelement in vorteilhafter Weise auch zur direkten Temperierung von beispielsweise einer oder mehreren Batteriezellen einer erfindungsgemäßen
Batteriezelleneinheit geeignet.
Eine solche erfindungsgemäße Batteriezelleneinheit umfasst mindestens eine Batteriezelle, d.h. ein Speicherelement für elektrische Energie, und mindestens ein mit zumindest einer der Deckplatten an der Batteriezelle direkt oder indirekt anliegendes, erfindungsgemäßes
Temperierelement. Das Temperierelement oder mehrere erfindungsgemäße
Temperierelemente können dabei insbesondere in ein Gehäuse, das die mindestens eine Batteriezelle umgibt, integriert sein und dabei vorzugsweise sogar einen Abschnitt davon ausbilden. Ergänzend oder alternativ kann (jeweils) ein erfindungsgemäßes Temperierelement zwischen zwei Batteriezellen der Batteriezelleneinheit angeordnet sein, wodurch bei noch kompakten Abmessungen der Batteriezelleneinheit eine besonders vorteilhafte, weil möglichst gleichmäßige Kühlung der einzelnen Batteriezelle(n) erreicht werden kann.
Um grundsätzlich einen vorteilhaften Wärmeübergang von einem erfindungsgemäßen
Temperierelement auf beispielsweise eine oder mehrere Batteriezellen einer
erfindungsgemäßen Batteriezelleneinheit zu ermöglichen und zudem, um eine vorteilhafte und insbesondere platzsparende Integration eines oder mehrerer solcher Temperierelemente in eine erfindungsgemäße Batteriezelleneinheit zu realisieren, sollte vorzugsweise vorgesehen sein, dass die vorzugsweise durch die Stärken der Deckplatten sowie durch den Abstand zwischen den Deckplatten definierte Höhe eines erfindungsgemäßen Temperierelements deutlich kleiner als die Länge und Breite ist. Insbesondere kann vorgesehen sein, dass die Länge und Breite jeweils mindestens das Zehnfache, vorzugsweise das Fünfzigfache, besonders bevorzugt das Hundertfache der Höhe beträgt.
Die Temperierung einer erfindungsgemäßen Batteriezelleneinheit beziehungsweise der einzelnen Batteriezelle(n) davon kann durch die Integration einer oder mehrerer
erfindungsgemäßer Batteriezelleneinheit(en) in ein erfindungsgemäßes Temperiersystem erfolgen, bei dem der Zwischenraum des/der Temperierelement(e) (jeweils) derart über ein Steuerventil mit einem Phasenwechsler verbunden ist, dass ein Prozessmedium bei geöffnetem Steuerventil in gasförmigem Zustand zwischen dem in dem Zwischenraum des zugeordneten Temperierelements angeordneten Sorptionsmaterial und dem Phasenwechsler überströmen kann. Strömt das gasförmige Prozessmedium, nachdem dieses in dem Phasenwechsler durch Zufuhr von Wärmeenergie verdampft wurde, zu dem Sorptionsmaterial des oder der
Temperierelemente einer erfindungsgemäßen Batteriezelleneinheit, wird dieses unter Abgabe von Wärmeenergie von dem Sorptionsmaterial ab- oder adsorbiert. Dadurch kann/können die Batteriezelleneinheit und insbesondere deren Batteriezelle(n) erwärmt werden, beispielsweise um nach einer oder für eine Inbetriebnahme bei relativ kalten Umgebungstemperaturen vorgewärmt zu werden. In einem anschließenden Betrieb der Batteriezelleneinheit produzieren deren Batteriezellen Abwärme, die dazu genutzt werden kann, das Sorptionsmaterial des oder der Temperierelemente einer erfindungsgemäßen Batteriezelleneinheit zu desorbieren, das dann bei geöffnetem Steuerventil zu dem Phasenwechsler strömt, wo dieses durch eine entsprechende Kühlung des Phasenwechslers und damit des gasförmigen Prozessmediums unter Abgabe von Wärmeenergie kondensiert. Die für die Desorption des Prozessmediums aus dem Sorptionsmaterial erforderliche Wärmeenergie wird dadurch aus der Batteriezelleneinheit abgeführt und diese dadurch gekühlt.
Der Phasenwechsler kann vorzugsweise an einen Kältemittelkreislauf einer Kältemaschine des Temperiersystems anschließbar sein, wodurch ermöglicht wird, den Phasenwechsler mit relativ kaltem Kältemittel zu beaufschlagen, um eine sichere Kondensation des Prozessmediums an dem Phasenwechsler zu gewährleisten. Die Kältemaschine, die vorzugsweise zumindest einen Kondensator, einen Verdampfer sowie einen Kompressor umfassen kann, kann insbesondere als Klimaanlage für ein erfindungsgemäßes Kraftfahrzeug, das grundsätzlich zumindest ein erfindungsgemäßes Temperiersystem umfasst, vorgesehen sein. Die Kältemaschine kann dazu einen Klimawärmetauscher, der zur Temperierung und insbesondere Kühlung von einem Innenraum des Kraftfahrzeugs zuzuführender Luft vorgesehen ist, umfassen. Insbesondere kann dazu der Verdampfer der Kältemaschine als Klimawärmetauscher zusätzlich zu dem Kältemittel auch mittels Luft, die für eine Klimatisierung eines Innenraums des Kraftfahrzeugs vorgesehen ist, durchströmbar sein, wodurch dieser Luft Wärmeenergie entzogen werden kann, die in dem Verdampfer zum Verdampfen des durch diesen geführten Kältemittels genutzt wird.
Ergänzend oder alternativ besteht auch die Möglichkeit, den Phasenwechsler eines
erfindungsgemäßen Temperiersystems an ein Kühlsystem, insbesondere an ein Kühlsystem eines erfindungsgemäßen Kraftfahrzeugs anzuschließen. Ein solches Kühlsystem ist zumindest dadurch gekennzeichnet, dass mittels eines darin strömenden Kühlmittels Wärmeenergie über einen Kühlmittelkühler an Umgebungsluft abführbar ist. Anders als bei einer Kältemaschine (mit dem darin strömenden Kältemittel) erfolgt dabei kein Phasenwechsel des Kühlmittels. Um einen besonders vorteilhaften Übergang von Wärmeenergie zwischen den Deckplatten und dem Sorptionsmaterial zu realisieren, kann vorzugsweise vorgesehen sein, dass die
Deckplatten und die Stützstruktur zumindest abschnittsweise, vorzugsweise vollständig aus einem thermisch gut leitenden Material, insbesondere aus einem oder mehreren Metallen, beispielsweise Aluminium, ausgebildet sind. Eine Ausgestaltung aus Metall(en) weist weiterhin die Vorteile einer kostengünstigen Herstellbarkeit und einer guten strukturellen Belastbarkeit auf.
Gemäß einer bevorzugten Ausgestaltungsform eines erfindungsgemäßen Temperierelements kann vorgesehen sein, dass die oder zumindest eine der Deckplatten und/oder die Stützstruktur zumindest teilweise auf denjenigen Wandflächen, mit denen diese den Zwischenraum begrenzen oder innerhalb des Zwischenraums angeordnet sind, mit dem Sorptionsmaterial beschichtet sind. An den entsprechenden Wandflächen der Deckplatte(n) und/oder der
Stützstruktur haftet demnach eine in sich stabile Schicht, die zumindest teilweise, vorzugsweise vollständig aus dem Sorptionsmaterial besteht. Die entsprechenden Beschichtungen können dabei vorzugsweise relativ dünn (beispielsweise zwischen 0,01 mm und 0,2 mm bei einer direkten Beschichtung und bis zu mehreren Millimetern bei einem Aufbringen (insbesondere Aufkleben) von bereits formstabilen Beschichtungsschichten) ausgebildet sein, so dass zum einen erreicht werden kann, dass ein solches erfindungsgemäßes Temperierelement relativ kompakt ist, wodurch sich dieses besonders vorteilhaft zur Kühlung einer Batteriezelleneinheit eignet. Zum anderen kann durch die Kombination relativ dünner Schichten des
Sorptionsmaterials mit einem großflächigen Kontakt mit der wärmeleitenden Struktur des Temperierelements, d.h. mit zumindest den Deckplatten sowie der Stützstruktur und
gegebenenfalls auch mit einer um die Deckplatten umlaufenden, den Zwischenraum
umfangsseitig begrenzenden Seitenwandung, ein vorteilhafter Wärmeübergang zwischen dem Sorptionsmaterial und der wärmeleitenden Struktur des Temperierelements erreicht werden. Durch die relativ dünnen Schichten kann insbesondere auch erreicht werden, dass die häufig relativ schlechte Wärmeleitfähigkeit des Sorptionsmaterials selbst nur geringe negative
Auswirkung auf diesen Wärmeübergang hat.
Gegebenenfalls kann die Materialstruktur des Sorptionsmaterials, aus dem die Schichten ausgebildet sind, so kompakt sein, dass eine Durchströmung dieser Materialstruktur mittels des gasförmigen Prozessmediums nicht oder nur in einem geringen Umfang möglich ist. Um dennoch einen möglichst vollflächigen Kontakt zwischen dem Prozessmedium und dem
Sorptionsmaterial zu ermöglichen, sollte dann vorzugsweise vorgesehen sein, dass die durch die Beschichtung der Deckplatte(n) und/oder der Stützstruktur ausgebildeten Schichten konstruktiv einen oder mehrere Strömungskanäle ausbilden beziehungsweise begrenzen, der/die eine möglichst umfassende Durchströmung des gesamten Zwischenraums und damit einen möglichst großflächigen Kontakt zwischen Prozessmedium und Sorptionsmaterial gewährleistet/gewährleisten. Bei einer ausreichend großporigen Materialstruktur des
Sorptionsmaterials kann auf solche konstruktiv ausgebildeten Strömungskanäle gegebenenfalls aber auch verzichtet werden.
Alternativ oder ergänzend zu einer Beschichtung der Deckplatte(n) und/oder der Stützstruktur mit dem Sorptionsmaterial besteht auch die Möglichkeit, die innerhalb des Zwischenraums von der Stützstruktur freigelassenen Freiräume mit einer Schüttung des Sorptionsmaterials und/oder mit festen Formkörpern aus dem Sorptionsmaterial, die großporig und/oder Strömungskanäle aufweisend ausgebildet sind, vorzugsweise möglichst weitgehend zu füllen.
Um eine möglichst gute Wärmeübertragung und Energiespeicherkapazität zwischen den Deckplatten und dem Sorptionsmaterial zu gewährleisten, sollte die Stützstruktur möglichst großflächig ausgebildet sein, wodurch ein entsprechend großflächiger Kontakt mit dem
Sorptionsmaterial erreicht werden kann. Hierzu kann die Stützstruktur insbesondere eine gewellte Blechstruktur und/oder eine Schaumstruktur und/oder eine Vliesstruktur umfassen oder als eine solche Struktur ausgebildet sein. In diesen Fällen ist die Stützstruktur folglich durch ein oder mehrere sich von den Deckplatten unterscheidende Bauteile ausgebildet, wobei die Stützstruktur und die Deckplatten im Rahmen der Herstellung eines entsprechenden
erfindungsgemäßen Temperierelements fest (formschlüssig, kraftschlüssig oder stoffschlüssig, z.B. durch Verlöten) miteinander verbunden werden können. Ergänzend oder alternativ besteht jedoch auch die Möglichkeit, die Stützstruktur von Vorsprüngen mindestens einer der
Deckschichten auszubilden, die (jeweils) die andere Deckplatte, insbesondere entsprechende gegenüberliegende Vorsprünge der anderen Deckplatte, kontaktieren, wobei die Deckplatten an diesen Kontaktstellen miteinander fest verbunden sein können.
Sofern die Stützstruktur eines erfindungsgemäßen Temperierelements eine gewellte
Blechstruktur aufweist, kann weiterhin bevorzugt vorgesehen sein, dass diese eine Mehrzahl von sich entlang einer Längserstreckung der Blechstruktur erstreckende, zueinander parallel verlaufende Kanäle ausbildet. Die Kanäle können sich dabei weiterhin bevorzugt (vorzugsweise ununterbrochen) über die gesamte Längserstreckung der Blechstruktur erstrecken. Eine solche gewellte Blechstruktur ist einerseits relativ einfach und damit kostengünstig herstellbar und weist andererseits eine relativ gute Stützfunktion für die beiden Deckplatten auf. Gemäß einer bevorzugten Weiterbildung eines entsprechenden erfindungsgemäßen
Temperierelements kann auch vorgesehen sein, dass eine solche gewellte Blechstruktur entlang der Längserstreckung in eine Mehrzahl von sich in einer Querrichtung erstreckende, streifenförmige Abschnitte unterteilt ist, wobei die Kanäle aneinandergrenzender Abschnitte zueinander in Querrichtung versetzt sind. Eine solche Ausgestaltung der Stützstruktur eines erfindungsgemäßen Temperierelements kann sich durch eine besonders vorteilhafte
Stützfunktion für die beiden Deckplatten auszeichnen.
Für eine weitere Verbesserung eines Wärmeübergangs von dem Sorptionsmaterial und auf das Sorptionsmaterial kann vorgesehen sein, dass eine gewellte Blechstruktur auch eine Mehrzahl von sich von dieser gewellten Blechstruktur erstreckende Flügel aufweist, die auch in Form von durch mindestens zwei angrenzenden Seiten erzeugten Schnitten aus der Blechstruktur selbst ausgebildet sein können, so dass die gewellte Blechstruktur entsprechende
Durchgangsöffnungen mit sich jeweils von einer Seite der Durchgangsöffnungen erstreckenden Flügeln (sogenannte„Louvrierung“) ausbildet.
Vorzugsweise innerhalb des Zwischenraums eines erfindungsgemäßen Temperierelements kann weiterhin mindestens ein von dem Zwischenraum abgegrenzter Medienkanal verlaufen. Dieser Medienkanal kann dazu dienen, ein Kühlmedium zu führen, das keinen direkten Kontakt mit dem Sorptionsmaterial und den übrigen Komponenten des Temperierelements haben soll. Der Medienkanal kann dabei insbesondere an ein Kühlsystem, insbesondere an ein Kühlsystem eines erfindungsgemäßen Kraftfahrzeugs, anschließbar sein. Dies ermöglicht beispielsweise, eine erfindungsgemäße Batteriezelleneinheit nur temporär, insbesondere nur relativ kurzzeitig mittels eines erfindungsgemäßen Temperierelements als Teil einer Sorptionseinheit eines erfindungsgemäßen Temperiersystems zu kühlen, während eine länger andauernde Kühlung mittels des Temperierelements als Teil des Kühlsystems realisiert wird. Um dabei einen vorteilhaften Wärmeübergang von der oder den das Temperierelement kontaktierenden Batteriezellen über die Deckplatten und gegebenenfalls auch über die Stützstruktur auf das in dem Medienkanal strömende Kühlmittel zu realisieren, sollte vorzugsweise vorgesehen sein, dass der Medienkanal direkt angrenzend an die Deckplatte(n) und/oder die Stützstruktur angeordnet oder in diese integriert ist. Ein Übergang der Wärmeenergie auch über das häufig relativ schlecht wärmeleitende Sorptionsmaterial kann dadurch vermieden werden.
Ein erfindungsgemäßes Temperierelement kann weiterhin ein elektrisches Heizelement umfassen, wodurch ein Erwärmen von beispielsweise einer Batteriezelle einer
erfindungsgemäßen Batteriezelleneinheit auch dann bedarfsweise ermöglicht wird, wenn das Prozessmedium im Wesentlichen vollständig von dem Sorptionsmaterial ab- oder adsorbiert worden ist und daher zumindest temporär durch eine entsprechende Ab- oder Adsorption keine Wärmeenergie freigesetzt werden kann.
Bei einem erfindungsgemäßen Kraftfahrzeug kann es sich insbesondere um ein radbasiertes und nicht schienengebundenen Kraftfahrzeug (vorzugsweise ein PKW oder ein LKW) handeln.
Die unbestimmten Artikel („ein“,„eine“,„einer“ und„eines“), insbesondere in den
Patentansprüchen und in der die Patentansprüche allgemein erläuternden Beschreibung, sind als solche und nicht als Zahlwörter zu verstehen. Entsprechend damit konkretisierte
Komponenten sind somit so zu verstehen, dass diese mindestens einmal vorhanden sind und mehrfach vorhanden sein können.
Die Erfindung wird nachfolgend anhand von in den Zeichnungen dargestellten
Ausgestaltungsbeispielen näher erläutert. In den Zeichnungen zeigt, jeweils in vereinfachter Darstellung:
Fig. 1 : ein erfindungsgemäßes Kraftfahrzeug;
Fig. 2a: ein erfindungsgemäßes Temperiersystem in einem ersten Betriebszustand;
Fig. 2b: das Temperiersystem in einem zweiten und dritten Betriebszustand;
Fig. 3: ein Querschnitt durch ein erfindungsgemäßes Temperierelement gemäß einer
Ausgestaltungsform;
Fig. 4: in einer perspektivischen Darstellung eine alternative Stützstruktur für ein
Temperierelement gemäß der Fig. 3;
Fig. 5: ein Querschnitt durch einen Abschnitt eines erfindungsgemäßen Temperierelements gemäß einer weiteren Ausgestaltungsform; und
Fig. 6: eine Aufsicht auf das Temperierelement gemäß der Fig. 5.
Die Fig. 1 zeigt in vereinfachter Darstellung ein erfindungsgemäßes Kraftfahrzeug. Das Kraftfahrzeug ist elektrifiziert ausgebildet und umfasst demnach mindestens einen elektrischen Traktionsmotor 1 , dessen Antriebsleistung auf angetriebene Räder 2 des Kraftfahrzeugs übertragbar ist. Das Kraftfahrzeug kann dabei beispielsweise als batterieelektrisches
Kraftfahrzeug (BEV) ausgebildet sein. In diesem Fall umfasst dieses zur Erzeugung der Fahrantriebsleistung ausschließlich den einen oder mehrere elektrische Traktionsmotoren 1 sowie eine Traktionsbatterie 3, die u.a. dafür vorgesehen ist, die für den Antrieb des oder der Traktionsmotoren 1 erforderliche elektrische Leistung bereitzustellen. Alternativ kann es sich bei dem Kraftfahrzeug auch um ein Hybridfahrzeug handeln. In diesem Fall umfasst das
Kraftfahrzeug zudem eine Brennkraftmaschine (nicht dargestellt), die ebenfalls zumindest temporär dazu vorgesehen ist, Antriebsleistung zu erzeugen, die auf die angetriebenen Räder des Kraftfahrzeugs übertragen wird. Das Hybridfahrzeug kann dabei sowohl in einer
Ausgestaltung als„einfaches“ Hybridfahrzeug (HEV), bei dem die üblicherweise relativ klein dimensionierte Traktionsbatterie 3 ausschließlich durch eine generatorische Nutzung des Traktionsmotors 1 oder eines anderen Generators ladbar ist, als auch in einer Ausgestaltung als sogenanntes Plug-in-Hybridfahrzeug (PHEV) ausgeführt sein, bei dem die Traktionsbatterie 3 auch durch ein Anschließen an eine externe elektrische Energiequelle ladbar ist.
Sowohl bei einem Laden der Traktionsbatterie 3 als auch bei der Entnahme hoher elektrischer Leistung aus der Traktionsbatterie 3 kann diese in erheblichem Maße Abwärme produzieren, die abgeführt werden muss, um eine Überhitzung der Traktionsbatterie 3 zu vermeiden.
Gleichzeitig sollte sichergestellt werden, dass die Temperaturen der Traktionsbatterie 3 einen definierten unteren Grenzwert nicht unterschreitet, um eine mit solchen relativ niedrigen
Temperaturen einhergehende Verringerung der elektrischen Speicherfähigkeit zu verhindern. Um dies zu erreichen ist die Traktionsbatterie 3 in ein erfindungsgemäßes Temperiersystem integriert. Ein solches Temperiersystem ist in einer möglichen Ausgestaltungsform in der Fig. 2 dargestellt.
Die als erfindungsgemäße Batteriezelleneinheit ausgebildete Traktionsbatterie 3 bei dem Temperiersystem gemäß der Fig. 2 umfasst eine Mehrzahl von Batteriezellen 6, die,
miteinander elektrisch verschaltet, innerhalb eines Gehäuses 4 angeordnet sind. Einer
Gehäusewand dieses Gehäuses 4 ist ein erfindungsgemäßes Temperierelement 5 zugeordnet, wobei vorzugsweise das Temperierelement 5 selbst diese Gehäusewand ausbildet.
Gegebenenfalls kann vorgesehen sein, sämtliche oder zumindest eine Mehrzahl der
Gehäusewände der Batteriezelleneinheit 3 in Form von einem oder mehreren
erfindungsgemäßen Temperierelementen 4 auszubilden. Weiterhin können auch ein oder mehrere erfindungsgemäße Temperierelemente 4 zwischen jeweils zwei Batteriezellen 6 angeordnet sein, um insgesamt eine möglichst gleichmäßige Temperierung der Batteriezellen 6 mittels des oder der Temperierelemente 5 zu realisieren.
Ein erfindungsgemäßes Temperierelement 5 umfasst ein Gehäuse, innerhalb dessen ein Sorptionsmaterial 7, beispielsweise Zeolith oder Silikagel, angeordnet ist. Das Gehäuse des Temperierelements 5 wird von zwei Deckplatten 8 (vgl. Fig. 3 und 5) sowie Seitenwänden (nicht dargestellt) ausgebildet. Der das Sorptionsmaterial 7 aufnehmende Innenraum des Gehäuses steht über eine Verbindungsleitung 9 mit einem als Wärmetauscher ausgebildeten
Phasenwechsler 10 in fluidleitender Verbindung. In die Verbindungsleitung 9 ist dabei ein Steuerventil 11 integriert, das über eine Steuerungsvorrichtung (nicht dargestellt) ansteuerbar ist. Mittels des Steuerventils 11 kann die fluidleitende Verbindung über die Verbindungsleitung 9 freigegeben oder abgesperrt werden. Das Temperierelement 5 bildet in Verbindung mit dem Phasenwechsler 10 und der Verbindungsleitung 9 mit darin integriertem Steuerventil 1 1 eine Sorptionseinheit aus, mittels der prinzipiell Wärmeenergie steuerbar zwischen dem
Sorptionsmaterial 7 beziehungsweise dem Temperierelement 5 (das eine Sorptionsvorrichtung der Sorptionseinheit darstellt) und dem Phasenwechsler 10 abwechselnd in beide Richtungen transferiert werden kann. Mittels der Sorptionseinheit können die Batteriezellen 6 der
Batteriezelleneinheit 3 demnach temperiert und dabei bedarfsweise gekühlt oder erwärmt werden.
Für eine Kühlung der Batteriezellen 6 wird beispielsweise während eines Ladevorgangs für die Traktionsbatterie 3 im Nichtbetrieb des Kraftfahrzeugs, d.h. wenn die Traktionsbatterie 3 an eine externe elektrische Energieversorgung angeschlossen ist, die Sorptionseinheit in einem
Regenerationsbetrieb betrieben, wobei Abwärme, die beim Laden der Batteriezellen entstanden ist, zur Desorption von zuvor durch das Sorptionsmaterial 7 des oder der Temperierelemente 5 ab- oder adsorbiertem Prozessmedium (beispielsweise Wasser) genutzt wird. Hierfür ist beispielsweise bereits ein Temperieren des Sorptionsmaterials auf eine Temperatur von ca. 25°C ausreichend. Die Batteriezellen 6 werden durch diesen Wärmeübergang auf das
Sorptionsmaterial 7 und die daraus resultierende Desorption des Prozessmediums gekühlt. Der infolge der Desorption freigesetzte Wasserdampf strömt bei geöffnetem Steuerventil 1 1 über die Verbindungsleitung 9 zu dem Phasenwechsler 10. In dem Phasenwechsler 10 kondensiert der Wasserdampf infolge einer Kühlung durch Kältemittel einer Kältemaschine 12 des
Temperiersystems, das den Phasenwechsler 10 ebenfalls durchströmt. Das Kältemittel kann bei der Durchströmung des Phasenwechslers 10 eine Temperatur von beispielsweise - 5°C aufweisen. Die Kältemaschine 12 umfasst einen Kältemittelkreislauf 13 an, in den ein Kondensator 14, ein Verdichter 15, ein als Klimawärmetauscher eines erfindungsgemäßen Kraftfahrzeugs vorgesehener Verdampfer 16 sowie eine Mehrzahl von Steuerventilen 17 integriert sind. Mittels der Kältemaschine 12 kann in bekannter Art und Weise bedarfsweise Luft 19, die zur
Temperierung einem (Fahrgast-)lnnenraum des Kraftfahrzeugs zugeführt werden soll, gekühlt werden, wozu das in dem Kältemittelkreislauf 13 zirkulierende Kältemittel in gasförmigem Zustand mittels des Verdichters 15 komprimiert wird. Das komprimierte, gasförmige Kältemittel kondensiert anschließend in dem Kondensator 14, wobei die dabei freigesetzte Wärmeenergie an Umgebungsluft 18 abgegeben wird. Das auf diese Weise verflüssigte Kältemittel wird dann mittels beispielsweise einer nicht dargestellten Pumpe zu dem Klimawärmetauscher 16 gefördert, in dem sich dieses entspannen kann, wodurch das Kältemittel wieder verdampft beziehungsweise in die Gasform überführt wird. Die bei dem Verdampfen aufgenommene Wärmeenergie entzieht das Kältemittel dabei der für die Klimatisierung des Innenraums des Kraftfahrzeugs vorgesehenen Luft 19, die den Klimawärmetauscher 16 ebenfalls durchströmt.
Der Phasenwechsler 10 ist über separate Anschlussleitungen 20 und drei der insgesamt vier Steuerventile 17 mit dem Kältemittelkreislauf 13 verbunden. Die in dem Phasenwechsler 10 infolge der Kondensation des Prozessmediums während eines Regenerationsbetriebs der Sorptionseinheit freigesetzte Wärmeenergie wird über das Kältemittel abgeführt. Dabei kann vorgesehen sein, dass das Kältemittel mittels einer Pumpe 21 , die in eine der
Anschlussleitungen 20 des Phasenwechslers 10 integriert ist, in einem Kreislauf gefördert wird, der ansonsten ausschließlich den Phasenwechsler 10 sowie den Kondensator 14 umfasst (vgl. Fig. 2a), wobei der Kondensator 14 in diesem Fall lediglich der Rückkühlung des Kältemittels dient. Ein Phasenwechsel des Kältemittels erfolgt in diesem Kreislauf nicht. Dieser
Kältemittelkreislauf entspricht demnach funktional einem Kühlmittelkreislauf.
Alternativ kann während eines Regenerationsbetrieb der Sorptionseinheit die in dem
Phasenwechsler 10 freigesetzte Wärmeenergie auch über Kältemittel abgeführt werden, das in einem Kreislauf geführt wird, der zusätzlich den Verdichter 15 umfasst. Dabei wird der
Klimawärmetauscher 16 mittels eines Bypasses 22, der mittels des dritten Steuerventils 17 der Kältemaschine 12 freigegeben werden kann, umgangen. In diesem Fall ersetzt der
Phasenwechsler 10 der Sorptionseinheit den Klimawärmetauscher 16 als Verdampfer der Kältemaschine 12. Mittels des Verdichters 15 wird dann folglich Kältemittel im gasförmigen Zustand verdichtet und dem Kondensator 14 zugeführt, in dem dieses kondensiert und damit verflüssigt wird. Das flüssige Kältemittel wird dann unter Verwendung der Pumpe 21 dem Phasenwechsler 10 zugeführt, in dem dieses verdampft. Die für dieses Verdampfen des Kältemittels erforderliche Wärmeenergie wird dabei dem Prozessmedium der Sorptionseinheit entzogen, wodurch dieses kondensiert. Der entsprechende Kreislauf des Kältemittels ist in der Fig. 2b hervorgehoben (mit Pfeilen ohne Flächenfüllung) dargestellt.
Während eines Betriebs des das Temperiersystem umfassenden Kraftfahrzeugs kann vorgesehen sein, dass die Sorptionseinheit ungenutzt bleibt, wozu dann das Steuerventil 1 1 der Sorptionseinheit verschlossen gehalten wird. Dadurch ist ein Überströmen von Prozessmedium zwischen dem Temperierelement 5 und dem Phasenwechsler 10 verhindert. Eine
gegebenenfalls notwendige Kühlung der Traktionsbatterie 3 kann dann vorzugsweise durch ein zusätzliches Kühlsystem des Kraftfahrzeugs (nicht dargestellt) realisiert werden, in dem ein Kühlmittel durch in die Traktionsbatterie 3 integrierte Kühlmittelkanäle (nicht dargestellt) geführt wird. Wärmeenergie, die dabei von den Batteriezellen 6 auf das Kühlmittel übertragen wurde, wird anschließend in einem Kühlmittelkühler des Kühlsystems auf Umgebungsluft übertragen. Dabei können die Kühlmittelkanäle vorzugsweise auch in das oder die Temperierelemente 5 der Batteriezelleneinheit 3 integriert sein.
Wurde das Kraftfahrzeug für einen längeren Zeitraum nicht genutzt und war dieses dabei relativ kalten Umgebungstemperaturen ausgesetzt, weist die Traktionsbatterie 3 bei einer erneuten Inbetriebnahme des Kraftfahrzeugs (Kaltstart) eine entsprechend niedrige Temperatur auf, was zu einer erheblichen Einschränkung der Speicherfähigkeiten der Batteriezellen 6 führt. Um nach einem solchen Kaltstart des Kraftfahrzeugs die Traktionsbatterie 3 möglichst schnell auf hinsichtlich der Speicherfähigkeit optimale Temperaturen zu bringen, wird die Sorptionseinheit dann in einem Sorptionsbetrieb betrieben, wozu das Steuerventil 11 der Sorptionseinheit geöffnet und zudem Kältemittel in einem Kältemittelkreislauf gemäß beispielsweise der Fig. 2a oder 2b (mit im Vergleich zum Regenerationsbetrieb umgekehrter Strömungsrichtung (vgl.
Pfeile mit Flächenfüllung); in diesem Fall würde der Kondensator 14 der Kältemaschine 12 als Verdampfer betrieben werden) gefördert wird. Dabei reicht infolge einer geeigneten
Ausgestaltung der Sorptionseinheit (insbesondere auch, weil in der Sorptionseinheit
ausschließlich das Prozessmedium als Fluid vorhanden ist und diese zudem mit einem
Unterdrück betrieben wird) die Wärmeenergie, die bei der Durchströmung des
Phasenwechslers 10 von dem ebenfalls Umgebungstemperatur (beispielsweise 0°C) aufweisenden Kältemittel auf das darin enthaltene flüssige Prozessmedium übergeht, aus, um dieses Prozessmedium zu verdampfen, das dann über die Verbindungsleitung 9 zu dem Temperierelement 5 strömt. Das in dem Temperierelement 5 enthaltene Sorptionsmaterial 7 ab- oder adsorbiert das gasförmige Prozessmedium dann unter Wärmeabgabe. Die dabei freigesetzte Wärmeenergie wird zur Temperierung beziehungsweise Erwärmung der Batteriezellen 6 der Batteriezelleneinheit/T raktionsbatterie 3 auf Temperaturen von beispielsweise ca. 25°C genutzt.
Um einen möglichst vorteilhaften Übergang vom Wärmeenergie zwischen den Batteriezellen 6 der Batteriezelleneinheit 3 und dem Sorptionsmaterial des oder der Temperierelemente 5 zu realisieren, umfasst ein solches Temperierelement 5 zwei zueinander beabstandet angeordnete Deckplatten 8, die einen Zwischenraum ausbilden, innerhalb dessen eine Stützstruktur 23 angeordnet ist. Umfangseitig wird der Zwischenraum von Seitenwänden (nicht dargestellt) verschlossen. Die Seitenwände können dabei Teil eines separaten Rahmens sein, der abdichtend mit den Deckplatten 8 verbunden (beispielsweise stoffschlüssig, insbesondere verlötet) ist. Alternativ können die Seitenwände jedoch auch durch abgewinkelte Abschnitte von einem oder beiden Deckplatten ausgebildet sein. Durch die Stützstruktur 23 werden die
Deckplatten 8 zueinander beabstandet gehalten. In dem Zwischenraum zwischen den
Deckplatten 8 ist zudem das Sorptionsmaterial 7 aufgenommen, das sowohl die Deckplatten 8 als auch die Stützstruktur 23 kontaktiert. Die Stützstruktur 23 dient einerseits der strukturellen Festigkeit des Temperierelements 5 und andererseits dazu, die Teilmengen des
Sorptionsmaterials 7, die nur die Stützstruktur 23 kontaktieren, wärmeleitend mit den
Deckplatten 8 zu verbinden. Um eine möglichst gute Wärmeleitung zu gewährleisten, sind sowohl die Deckplatten 8 als auch die Stützstruktur 23 aus gut wärmeleitenden Materialien, beispielsweise Aluminium, ausgebildet.
Die Stützstruktur 23 bei dem in der Fig. 3 dargestellten Temperierelement 5 ist in Form einer gewellten (d.h. hin- und hergehenden) Blechstruktur ausgebildet, die eine Mehrzahl von sich entlang einer Längserstreckung (senkrecht zur Zeichenebene) der Blechstruktur erstreckenden, zueinander parallel verlaufenden Kanälen 24 ausbilden, wobei die Kanäle 24 sich
ununterbrochen über die gesamte Längserstreckung der Blechstruktur erstrecken. Die Kanäle stellen demnach voneinander separierte Freiräume innerhalb des Zwischenraums dar, innerhalb dessen das Sorptionsmaterial 7 aufgenommen ist.
Bei dem Ausgestaltungsbeispiel gemäß der Fig. 3 ist das Sorptionsmaterial 7 in Form von Beschichtungen, die auf den jeweils den Zwischenraum begrenzenden Wandflächen der Deckplatten 8 und der Stützstruktur 23 aufgebracht sind, vorgesehen. Dabei sind die
Schichtdicken der Beschichtungen des Sorptionsmaterials derart gewählt, dass
Strömungskanäle 25 freigehalten werden. Das gasförmige Prozessmedium der Sorptionseinheit kann durch diese Strömungskanäle 25 möglichst großflächig mit dem Sorptionsmaterial 7 in Kontakt kommen. Um eine Verteilung des Prozessmediums auf die einzelnen Strömungskanäle 25 zu realisieren, kann innerhalb des von den Deckplatten 8 begrenzten Zwischenraums ein Verteilraum (nicht dargestellt) vorgesehen sein, in den sämtliche der Strömungskanäle 25 münden und der zudem mit der Verbindungsleitung 9 der Sorptionseinheit verbunden ist.
Die Stützstruktur 23 eines Temperierelements 5 gemäß der Fig. 3 kann alternativ auch in Form eines Turbulenzblechs ausgebildet sein, wie dies in der Fig. 4 dargestellt ist. Auch bei einem solchen Turbulenzblech handelt es sich um eine gewellte Blechstruktur, die eine Mehrzahl von sich entlang einer Längserstreckung der Blechstruktur erstreckenden, zueinander parallel verlaufenden Kanälen 24 ausbildet. Dabei ist die Blechstruktur entlang der Längserstreckung jedoch zusätzlich in eine Mehrzahl von sich in einer Querrichtung erstreckende, streifenförmige Abschnitte 26 unterteilt, wobei die Kanäle 24 aneinandergrenzender Abschnitte 26 zueinander in Querrichtung versetzt sind.
Die Fig. 5 und 6 zeigen eine alternative Ausgestaltungsform für ein erfindungsgemäßes Temperierelement 5, bei dem die Stützstruktur 23 von den beiden Deckplatten 8 selbst ausgebildet wird, indem diese jeweils eine Vielzahl von Vorsprüngen 27 ausbilden, wobei die Vorsprünge 27 der beiden Deckplatten 8 einander gegenüber liegen und sich kontaktieren. Dabei sind die Deckplatten 8 vorzugsweise an diesen Kontaktstellen fest miteinander verbunden, beispielsweise durch entsprechende Lötstellen. Innerhalb des von den Deckplatten 8 begrenzten Zwischenraums ist wiederum Sorptionsmaterial 7 aufgenommen. Dieses ist in der Fig. 5 beispielhaft als Schüttung dargestellt. Alternativ kann jedoch auch bei dem
Temperierelement 5 gemäß den Fig. 5 und 6 ein Beschichten der den Zwischenraum begrenzenden Wandflächen (einschließlich der Vorsprünge) der Deckplatten 8 mit dem
Sorptionsmaterial 7 vorgesehen sein.
BEZUGSZEICHENLISTE
Traktionsmotor
Rad
Traktionsbatterie / Batteriezelleneinheit
Gehäuse der Batteriezelleneinheit
Temperierelement
Batteriezelle
Sorptionsmaterial
Deckplatte des Temperierelements
Verbindungsleitung
Phasenwechsler
Steuerventil der Sorptionseinheit
Kältemaschine
Kältemittelkreislauf
Kondensator der Kältemaschine
Verdichter der Kältemaschine
Klimawärmetauscher / Verdampfer der Kältemaschine
Steuerventil der Kältemaschine
Umgebungsluft
Luft
Anschlussleitung
Pumpe
Bypass des Kältemittelkreislaufs
Stützstruktur des Temperierelements
Kanal der Stützstruktur
Strömungskanal
Abschnitt der gewellten Blechstruktur der Stützstruktur Vorsprung einer Deckplatte

Claims

P AT E N TA N S P R Ü C H E
1. Temperierelement (5) mit zwei zueinander beabstandet angeordneten Deckplatten (8), die einen Zwischenraum ausbilden, innerhalb dessen eine Stützstruktur (23) angeordnet ist, die die Deckplatten (8) beabstandet zueinander hält, wobei in dem Zwischenraum zudem ein Sorptionsmaterial (7) aufgenommen ist, das die Deckplatten (8) und die Stützstruktur
(23) kontaktiert.
2. Temperierelement (5) gemäß Anspruch 1 , dadurch gekennzeichnet, dass die
Deckplatten (8) und/oder die Stützstruktur (23) aus einem oder mehreren Metallen ausgebildet sind.
3. Temperierelement (5) gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die oder zumindest eine der Deckplatten (8) und/oder die Stützstruktur (23) zumindest teilweise auf den an den Zwischenraum angrenzenden Wandflächen mit dem
Sorptionsmaterial (7) beschichtet ist/sind.
4. Temperierelement (5) gemäß Anspruch 3, dadurch gekennzeichnet, dass die
Beschichtungen einen oder mehrere Strömungskanäle (25) begrenzen.
5. Temperierelement (5) gemäß einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass die Stützstruktur (23) eine gewellte Blechstruktur und/oder eine Schaumstruktur und/oder eine Vliesstruktur und/oder von mindestens einer der
Deckschichten (8) ausgebildete Vorsprünge (27) umfasst.
6. Temperierelement (5) gemäß einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass die Stützstruktur (23) eine gewellte Blechstruktur umfasst, die eine Mehrzahl von sich entlang einer Längserstreckung der Blechstruktur erstreckenden, zueinander parallel verlaufenden Kanälen (24) ausbildet.
7. Temperierelement (5) gemäß Anspruch 6, dadurch gekennzeichnet, dass die Kanäle
(24) sich über die gesamte Längserstreckung der Blechstruktur erstrecken.
8. Temperierelement (5) gemäß Anspruch 6, dadurch gekennzeichnet, dass die
Blechstruktur entlang der Längserstreckung in eine Mehrzahl von sich in einer Querrichtung erstreckenden, streifenförmigen Abschnitten (26) unterteilt ist, wobei die Kanäle (24) aneinander grenzender Abschnitte in Querrichtung versetzt sind.
9. Temperierelement (5) gemäß einem der vorhergehenden Ansprüche, gekennzeichnet durch einen von dem Zwischenraum abgegrenzten Medienkanal.
10. Batteriezelleneinheit (3) mit mindestens einer Batteriezelle (6) und mindestens einem mit einer Deckplatte (8) an der Batteriezelle (6) anliegenden Temperierelement (5) gemäß einem der vorhergehenden Ansprüche.
11. Batteriezelleneinheit (3) gemäß Anspruch 10, dadurch gekennzeichnet, dass das
mindestens eine Temperierelement (5) in ein Gehäuse (4), das die mindestens eine Batteriezelle (6) umgibt, integriert ist und/oder zwischen zwei Batteriezellen (6)
angeordnet ist.
12. Temperiersystem mit einer Batteriezelleneinheit (3) gemäß Anspruch 10 oder 1 1 , wobei der Zwischenraum des Temperierelements (5) derart über ein Steuerventil (1 1 ) mit einem Phasenwechsler (10) verbunden ist, dass ein Prozessmedium bei geöffnetem Steuerventil
(1 1 ) in gasförmigem Zustand zwischen dem in dem Zwischenraum des
Temperierelements (5) angeordneten Sorptionsmaterial (7) und dem Phasenwechsler (10) überströmen kann.
13. Temperiersystem gemäß Anspruch 12, dadurch gekennzeichnet, dass der
Phasenwechsler (10) an einen Kältemittelkreislauf (13) einer Kältemaschine (12) anschließbar ist.
14. Kraftfahrzeug mit einem Temperiersystem gemäß einem der Ansprüche 12 oder 13.
15. Kraftfahrzeug gemäß Anspruch 14, dadurch gekennzeichnet, dass die Kältemaschine
(12) einen Klimawärmetauscher (16), der zur Temperierung von einem Innenraum des Kraftfahrzeugs zuzuführender Luft (19) vorgesehen ist, umfasst.
PCT/EP2019/070010 2018-07-27 2019-07-25 Temperierelement mit sorptionsmaterial, insbesondere zur temperierung einer batteriezelleneinheit eines kraftfahrzeugs WO2020020995A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/263,214 US20210206292A1 (en) 2018-07-27 2019-07-25 Temperature-control element with sorption material, in particular for controlling the temperature of a battery cell unit of a motor vehicle
KR1020217006178A KR20210070267A (ko) 2018-07-27 2019-07-25 특히 모터 차량의 배터리 셀 유닛의 온도를 제어하기 위한, 흡착 재료를 갖는 온도 제어 요소
EP19750077.0A EP3830892A1 (de) 2018-07-27 2019-07-25 Temperierelement mit sorptionsmaterial, insbesondere zur temperierung einer batteriezelleneinheit eines kraftfahrzeugs
CN201980058720.4A CN112673510A (zh) 2018-07-27 2019-07-25 尤其是用于对机动车的蓄电池单池单元进行调温的、包括吸附材料的调温元件
JP2021504417A JP2021531632A (ja) 2018-07-27 2019-07-25 とくには自動車の電池セルユニットの温度を制御するための収着材料を備えた温度制御要素

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018118177.9A DE102018118177A1 (de) 2018-07-27 2018-07-27 Temperierelement mit Sorptionsmaterial, insbesondere zur Temperierung einer Batteriezelleneinheit eines Kraftfahrzeugs
DE102018118177.9 2018-07-27

Publications (1)

Publication Number Publication Date
WO2020020995A1 true WO2020020995A1 (de) 2020-01-30

Family

ID=67551345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/070010 WO2020020995A1 (de) 2018-07-27 2019-07-25 Temperierelement mit sorptionsmaterial, insbesondere zur temperierung einer batteriezelleneinheit eines kraftfahrzeugs

Country Status (7)

Country Link
US (1) US20210206292A1 (de)
EP (1) EP3830892A1 (de)
JP (1) JP2021531632A (de)
KR (1) KR20210070267A (de)
CN (2) CN112673510A (de)
DE (1) DE102018118177A1 (de)
WO (1) WO2020020995A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3919262A1 (de) * 2020-06-03 2021-12-08 TI Automotive Technology Center GmbH Verfahren zur herstellung einer rohranordnung für den transport von temperiermedium
EP4187678A1 (de) * 2021-11-30 2023-05-31 MANN+HUMMEL GmbH Klimamodul, batteriegehäuse und hochspannungsbatteriegehäuse

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3347700A1 (de) * 1983-12-31 1985-07-11 Fritz Dipl.-Ing. Kaubek Zeolithformlinge mit hoher waermeleitung und verfahren zur herstellung
EP2549206A2 (de) * 2011-07-11 2013-01-23 Palo Alto Research Center Incorporated Plattenbasierte Adsorptions-Kühler-Unterbaugruppe
DE102012012820A1 (de) 2012-06-28 2014-01-02 Audi Ag Batterieanordnung und Verfahren zum Betreiben einer Batterieanordnung für ein Kraftfahrzeug mit einer elektrischen Speichereinheit
DE102015204678A1 (de) 2015-03-16 2016-09-22 Robert Bosch Gmbh Batteriekonditionierung mit Sorptionsmittelregeneration
DE102015204667A1 (de) 2015-03-16 2016-09-22 Robert Bosch Gmbh Batterietemperierung mit Sorptionsmittel-Verdampfer-Elementen
WO2017159478A1 (ja) * 2016-03-16 2017-09-21 株式会社オートネットワーク技術研究所 冷却部材、及び蓄電モジュール
EP3273195A1 (de) * 2015-03-19 2018-01-24 AutoNetworks Technologies, Ltd. Kühlelement und stromspeichermodul

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT410716B (de) * 2001-02-23 2003-07-25 Vaillant Gmbh Adsorber/desorber für ein zeolith-heizgerät
CN2521556Y (zh) * 2001-12-26 2002-11-20 财团法人工业技术研究院 固体吸附式制冷装置
US9586497B2 (en) * 2013-08-22 2017-03-07 Lightening Energy Electric vehicle recharging station including a battery bank
US9627724B2 (en) * 2014-12-04 2017-04-18 Lg Chem, Ltd. Battery pack having a cooling plate assembly
DE102014225411A1 (de) * 2014-12-10 2016-06-16 Mahle International Gmbh Sorptionsmodul
DE102015010983A1 (de) * 2015-08-21 2017-02-23 Daimler Ag Batterie
CN108215923B (zh) * 2018-02-08 2023-11-24 中国科学院电工研究所 一种电动汽车热管理系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3347700A1 (de) * 1983-12-31 1985-07-11 Fritz Dipl.-Ing. Kaubek Zeolithformlinge mit hoher waermeleitung und verfahren zur herstellung
EP2549206A2 (de) * 2011-07-11 2013-01-23 Palo Alto Research Center Incorporated Plattenbasierte Adsorptions-Kühler-Unterbaugruppe
DE102012012820A1 (de) 2012-06-28 2014-01-02 Audi Ag Batterieanordnung und Verfahren zum Betreiben einer Batterieanordnung für ein Kraftfahrzeug mit einer elektrischen Speichereinheit
DE102015204678A1 (de) 2015-03-16 2016-09-22 Robert Bosch Gmbh Batteriekonditionierung mit Sorptionsmittelregeneration
DE102015204667A1 (de) 2015-03-16 2016-09-22 Robert Bosch Gmbh Batterietemperierung mit Sorptionsmittel-Verdampfer-Elementen
EP3273195A1 (de) * 2015-03-19 2018-01-24 AutoNetworks Technologies, Ltd. Kühlelement und stromspeichermodul
WO2017159478A1 (ja) * 2016-03-16 2017-09-21 株式会社オートネットワーク技術研究所 冷却部材、及び蓄電モジュール

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus

Also Published As

Publication number Publication date
DE102018118177A1 (de) 2020-01-30
CN110783663B (zh) 2024-04-19
CN110783663A (zh) 2020-02-11
EP3830892A1 (de) 2021-06-09
JP2021531632A (ja) 2021-11-18
CN112673510A (zh) 2021-04-16
US20210206292A1 (en) 2021-07-08
KR20210070267A (ko) 2021-06-14

Similar Documents

Publication Publication Date Title
EP1809499B1 (de) Pkw-klimaanlagen mit adsorptionswärmepumpen
WO2020020995A1 (de) Temperierelement mit sorptionsmaterial, insbesondere zur temperierung einer batteriezelleneinheit eines kraftfahrzeugs
DE102009047695A1 (de) Steuerbar wärmeisolierendes Gehäuse und Verfahren zur Steuerung hierfür
DE102012012820B4 (de) Batterieanordnung und Verfahren zum Betreiben einer Batterieanordnung für ein Kraftfahrzeug mit einer elektrischen Speichereinheit
DE102012222635A1 (de) Wärmeübertrager, insbesondere für ein Kraftfahrzeug
EP3718163A1 (de) Verfahren zur temperierung einer batterieanordnung und temperierte batterieanordnung
DE102014210556A1 (de) Batteriewärmemanagementsystem für elektrifiziertes fahrzeug
WO2012152535A1 (de) Batteriemodul einen batteriezellenstapel aus mindestens zwei batteriezellen aufweisend mit einer passiven klimatisierung sowie kraftfahrzeug
DE102011082565A1 (de) Elektrisches Ladesystem für batteriegetriebene Kraftfahrzeuge
EP3669417A1 (de) Verfahren und vorrichtung zur temperierung einer batterieanordnung
EP2956985A1 (de) Kühlanlage zur kühlung eines energiespeichers und eines ladereglers für ein fahrzeug mit elektrischem antrieb
DE102020117471A1 (de) Wärmepumpenanordnung mit indirekter Batterieerwärmung für batteriebetriebene Kraftfahrzeuge und Verfahren zum Betreiben einer Wärmepumpenanordnung
DE102009057163A1 (de) Vorrichtung und Verfahren zur Kühlung
DE102010055613A1 (de) Wärmetauscheranordnung zur thermischen Kopplung eines Kühlmittelkreislaufs mit einem Kältemittelkreislauf in einem Fahrzeug
DE102012212227A1 (de) Kälteanlage und Kraftfahrzeug mit einer Kälteanlage
DE102015014781A1 (de) Elektrisch angetriebenes Fahrzeug
WO2020079182A1 (de) Wärmeenergiespeichersystem und kraftfahrzeug mit wärmeenergiespeichersystem
DE102010040014A1 (de) Vorrichtung zur Veränderung einer Umgebungstemperatur für mobile Anwendungen sowie entsprechendes Verfahren
DE102014000571A1 (de) Brennstoffzellensystem
DE102007056473A1 (de) Vorrichtung und Verfahren zur Klimatisierung eines Kraftfahrzeugs
DE102015208582B4 (de) Kraftfahrzeug und Verfahren zum Betrieb eines entsprechenden Kraftfahrzeugs
DE102010041698A1 (de) Batteriezelle, Batteriezellenmodul, Verfahren zur Beeinflussung der Temperatur von Batteriezellen und Kraftfahrzeug
WO2021074264A1 (de) Kondensierungsvorrichtung, kühlvorrichtung für eine traktionsbatterie, elektrisch antreibbares fahrzeug mit einer traktionsbatterie sowie einer kühlvorrichtung und verfahren zur kühlung einer traktionsbatterie
DE102018204333A1 (de) Temperierungseinrichtung und Verfahren zum Temperieren wenigstens einer Fahrzeugkomponente eines elektrisch betreibbaren Kraftfahrzeugs sowie Kraftfahrzeug
DE102013018474A1 (de) Batterie

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750077

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504417

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019750077

Country of ref document: EP

Effective date: 20210301