EP3669417A1 - Verfahren und vorrichtung zur temperierung einer batterieanordnung - Google Patents

Verfahren und vorrichtung zur temperierung einer batterieanordnung

Info

Publication number
EP3669417A1
EP3669417A1 EP18759556.6A EP18759556A EP3669417A1 EP 3669417 A1 EP3669417 A1 EP 3669417A1 EP 18759556 A EP18759556 A EP 18759556A EP 3669417 A1 EP3669417 A1 EP 3669417A1
Authority
EP
European Patent Office
Prior art keywords
fluid
sorption
battery
heat
battery assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18759556.6A
Other languages
English (en)
French (fr)
Inventor
Walter Mittelbach
Ralph Herrmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fahrenheit GmbH
Original Assignee
Fahrenheit GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fahrenheit GmbH filed Critical Fahrenheit GmbH
Publication of EP3669417A1 publication Critical patent/EP3669417A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/659Means for temperature control structurally associated with the cells by heat storage or buffering, e.g. heat capacity or liquid-solid phase changes or transition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3201Cooling devices using absorption or adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3201Cooling devices using absorption or adsorption
    • B60H1/32014Cooling devices using absorption or adsorption using adsorption, e.g. using Zeolite and water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a method for tempering a battery assembly according to claim 1 and a device for temperature control of a battery assembly according to claim 6.
  • battery arrangements in particular for automobiles and other motor vehicles, are in the area of particular interest.
  • high-energy-density battery arrangements such as, for example, lithium-ion batteries, are used.
  • Such battery arrangements are intended as traction batteries in
  • Automotive applications allow vehicle operation in all seasonal conditions.
  • the common battery designs show a strong dependence of power output and energy capacity on the temperature of the system.
  • the optimum here lies in a temperature range between 10 and 40 ° C.
  • electronic management systems are used, against sub-temperatures of less than 10 ° C, which drastically reduce the performance by increasing the internal resistance, on the other hand, only a warming of the batteries helps.
  • the battery assembly is thermally coupled with an integrated sorption heat storage.
  • the sorption material is heated with expulsion of a fluid during heat emission of the battery arrangement during electrical discharge and / or electrical charging. It is caused by cooling the battery assembly. Subsequently, condensation of the fluid expelled from the sorbent material in a condenser with a heat sink occurs. The fluid is then available for a renewed heating of the battery assembly. This takes place via the absorption of the fluid in the sorption material. The resorprtion heat released in the process causes a self-sufficient heating of the battery arrangement.
  • the expulsion of the fluid takes place, the expelled fluid delivering the condensation heat released during the condensation to an existing air conditioning unit.
  • the fluid upon absorption of the fluid in the sorption material, the fluid is supplied from a fluid reservoir in gaseous form, wherein the heat of vaporization required for transferring to the gaseous form is taken from a condenser of the existing air conditioning system.
  • the sorption heat storage is operated with a first fluid and the existing air conditioning system with a second fluid, wherein the first fluid and the second fluid are different, wherein the capacitor of the
  • the sorption heat storage and the existing air conditioning system are operated with the same fluid, wherein the sorption heat storage is connected via a valve arrangement in the cycle of the existing air conditioning.
  • a device for controlling the temperature of a battery arrangement comprises a sorption heat store thermally coupled to the battery arrangement with a fluid and a sorption material, wherein the battery arrangement is designed as a heat source for a thermal heating of the sorption material contained in the Sorptionseben Eaton Searon Searon Searon Searon Searon Searon, a sorption heat store thermally coupled to the battery arrangement with a fluid and a sorption material, wherein the battery arrangement is designed as a heat source for a thermal heating of the sorption material contained in the Sorptionseben Eaton, etc.
  • a condenser coupled to a heat sink may be provided for liquefying the fluid.
  • cooling devices which are operated with the mains power available at the charging stations, so that the condensation of the fluid can be very effective at low temperatures, come into consideration as a heat sink.
  • the sorption heat accumulator is designed as a plurality of adsorber elements integrated in the battery arrangement, wherein the adsorber elements fill the interspaces between the battery cells, wherein the adsorber elements are connected to a common steam channel for fluid supply.
  • the sorption heat accumulator can also be arranged outside the battery arrangement, wherein the steam channel contains the adsorber elements.
  • the basic idea of the method and the device according to the invention thus consists in each case in a sorption heat storage and in such Memory running processes for temperature control of the battery to use and thus store the heat emitted by the battery assembly between heat.
  • the invention thus enables a controlled heating of the battery when starting the vehicle by an integrated sorption heat storage.
  • the performance and capacity of a particular lithium-ion battery can be retrieved even at low outdoor temperatures at the start of the journey, without spending the stored electric energy.
  • the battery temperature in the desorption step can be reduced.
  • the method is carried out, for example, as described below, wherein the exemplary device explained below is used.
  • FIG. 1 shows a possible embodiment of the device in the desorption step in a liquid fluid supply
  • FIG. 2 shows a possible embodiment of the device from FIG. 1 in the heating substep with liquid fluid supply
  • FIG. 3 shows a possible embodiment in the desorption sub-step with gaseous fluid supply
  • FIG. 4 shows the embodiment from FIG. 3 in the heating sub-step with gaseous fluid supply
  • Fig. 5 shows an arrangement of adsorber elements and battery cells
  • FIG. 6 shows a further view of the arrangement from FIG. 5, FIG.
  • FIG. 7 shows an adsorber part located outside the battery arrangement
  • thin, evacuated sorption units are installed, which communicate with one or more valves in conjunction with a closed vacuum sorption system. These sorption units act as a battery-integrated sorption heat storage.
  • the sorption heat storage device includes means for providing and condensing at least one fluid as the working medium of the sorption heat storage.
  • the fluid is taken in the heating step with the valves open by the sorption with heat release, whereby the temperature in the battery is then increased to the lower limit of the optimum temperature range. If the heating of the cells is not required, the sorption unit stores the heat energy when the valves are closed.
  • the heat source for desorption is thus the battery which, during discharging while driving or during charging of the battery on the electrical network, reaches temperatures at the upper limit of the optimum temperature range, i. heated in particular with a maximum of 60 ° C.
  • the desorption of the fluid from the sorption removes heat energy from the battery and thus additionally cools the battery. This allows a faster energy output while driving or faster charging at the charging station.
  • a simple conventional cooling device such as the cabin cooling of a vehicle can serve as a heat sink for the condenser and operated with energy from the electrical network, so that the condensation of fluids at very low temperatures, for example, less than 0 ° C can be made possible.
  • the method and the device thus enable a controlled temperature guide, in particular of traction batteries without an additional energy extraction from the traction batteries, which goes beyond a mere regulation of the overall operation.
  • the batteries can be autonomously heated at low outside temperatures without being connected to an external electrical network or another source of energy. This means that sufficient battery power and capacity is quickly available even at low outside temperatures.
  • the batteries can be discharged without risk of damage at temperatures of less than 10 ° C. Overheating of the battery assembly at temperatures in particular more than 60 ° C can be avoided.
  • the activated sorption units may also contribute to cabin air conditioning in the vehicle.
  • a part of the necessary energy can also be recovered by thermal recuperation from the discharge heat of the batteries, while another part can be recovered from the heating of the batteries when the traction batteries are charged.
  • the remaining energy is taken from the electrical network at the charging station.
  • the sorption units can also be designed as external insulation of the battery arrangement.
  • microporous or mesoporous materials such as zeolites and zeolitic materials, porous oxides and mixed oxides, porous materials based on organic linker molecules such as MOF, salt-impregnated porous solids, activated carbons, hydrophilic or aminophilic solutions.
  • zeolites and zeolitic materials such as zeolites and zeolitic materials, porous oxides and mixed oxides, porous materials based on organic linker molecules such as MOF, salt-impregnated porous solids, activated carbons, hydrophilic or aminophilic solutions.
  • organic linker molecules such as MOF
  • salt-impregnated porous solids such as activated carbons
  • activated carbons hydrophilic or aminophilic solutions.
  • Substance mixtures can also be used on the condenser side. Particularly possible here are the evaporation of the fluid at very low temperatures from solutions or mixtures with melting point-lowering additives, such as, for example, ionic liquids, salts or antifreezes, in particular ethylene glycol.
  • melting point-lowering additives such as, for example, ionic liquids, salts or antifreezes, in particular ethylene glycol.
  • the thermal sorption heat accumulator can structurally be embodied, for example, as a separator within a battery cell of the battery arrangement, as an outer casing around individual battery cells, as an outer casing around a battery block of the battery arrangement and / or also as an outer casing around the entire battery arrangement itself
  • a separator within a battery cell of the battery arrangement
  • an outer casing around individual battery cells as an outer casing around a battery block of the battery arrangement and / or also as an outer casing around the entire battery arrangement itself
  • it can also have a double benefit for insulation and segment separation between several cells in the battery arrangement.
  • Possible other applications of the method and the apparatus used therefor may also be heating and / or cooling of the battery while driving, as well as the support of heating and / or cooling of the cabin space of the vehicle itself.
  • FIG. 1 shows a possible embodiment of the device in the desorption step in a liquid fluid supply.
  • a battery assembly of battery cells (1) with a sorption heat storage This includes a sorption system (2) with sorption units (3), valves (4) and (5) and a condenser (6) with the condensed fluid and a cooling system (7).
  • the cooling (7) acts as a heat sink for the fluid expelled from the sorption units (3) by the heat supplied by the battery cells.
  • Valve (4) is opened here.
  • the return from the condenser via the valve (5) is closed.
  • the condenser also acts here as a reservoir and buffer for the liquefied fluid.
  • FIG. 2 shows a possible embodiment of the device in the heating substep with liquid fluid supply.
  • FIG. 3 shows a possible embodiment in the desorption sub-step with gaseous fluid supply.
  • the sorption heat storage includes the sorption system
  • the condenser (6) with the condensed fluid and the cooling (7) is provided as a heat sink.
  • the fluid is expelled from the sorption units by heat release from the battery lines and liquefied in the condenser at a low temperature.
  • the condenser serves here again as a buffer for the liquefied fluid.
  • the valve (4) is then closed. After completion of the condensation process, the fluid heats up in the interior of the condenser.
  • FIG. 4 shows the embodiment from FIG. 3 in the heating sub-step with gaseous fluid supply.
  • the fluid stored in the condenser (6) reverts to the gas phase at the latest when the valve (4) is opened. In gaseous form, it thus returns via the open valve (4) back into the sorption units
  • the aim is to achieve a good thermal coupling with the single cells with a low construction volume and good accessibility to steam.
  • Figures 5 and 6 show corresponding embodiments.
  • adsorber elements (AE) fill the free spaces between round battery cells (row) with a wall contact to the cells.
  • the steam access takes place here from above or below via a flat or linear common steam channel (DK) for a plurality of adsorber elements, as shown in FIG. 6.
  • the steam channel (DK) and the adsorber elements (AE) together form the adsorber part (AT) in the battery arrangement.
  • the steam channel is connected individually or with further steam channels via a valve (V) with an evaporator / condenser element, not shown here.
  • the adsorber parts can be integrated during the assembly of the individual cells to the battery arrangement.
  • the adsorber elements are suitably in contact with the adsorbent on the vacuum-carrying inner side.
  • the adsorber part is outside the battery assembly, ideally directly under or over the battery assembly in contact.
  • the Adsorbermaschine are in the present example in the steam channel (DK). Starting from the adsorber elements (AE) and in direct thermal contact with the adsorber elements, suitable heat-conducting elements (WE), such as metal structures or heat pipes, run out of the steam channel.
  • suitable heat-conducting elements such as metal structures or heat pipes
  • the steam channel is connected individually or with further steam channels via a valve with an evaporator / condenser element, not shown here.
  • the steam channel (DK) and the Adsorbereiement (AE) together with the heat-conducting element form the adsorber (AT) in the battery assembly.
  • the heat-conducting elements fill the spaces between the battery cells with wall contact to the cells.
  • the adsorber elements consist of a metallic structure arranged around the heat-transferring elements and suitably brought into contact with adsorbent.
  • the structure of the adsorber elements should provide a high surface area for contact with the adsorbent, ie with the fluid used.
  • the heat released in the adsorption unit is introduced via the heat-conducting elements into the battery arrangement.
  • these may be in different operating phases at different positions of the vacuum system inside or outside the battery assembly. This can also be done actively promoting the liquid sorbents.
  • adsorption heat accumulator into the thermal management of the motor vehicle.
  • the aim is a simple integration of the adsorption storage in the vehicle, in particular using an existing compressor-driven air conditioning, or a heat pump to support the charge and discharge the battery system.
  • Fig. 8 and FIG. 9 show corresponding examples.
  • the Batterietemperiervortechnisch BT consists of the battery assembly, in particular at least one battery cell Ba and a thermally contacted with this adsorber Ad.
  • the battery temperature control device BT and the air conditioning system KA are structurally separated from one another.
  • the fluids are different in particular in the battery temperature control device and in the air conditioning system, but are in thermal contact via a coolant reservoir Kb, so that heat can be transferred at this point.
  • the adsorptive charge is charged during battery charging:
  • Desorption heat is provided by the waste heat of the battery as it is being charged.
  • the condensation heat is dissipated by the existing air conditioner KA and discharged via heat exchangers Wl and W2, for example, in the direction of the driver's cab or the engine compartment.
  • a compressor C and a condensate pump P and a number of valves V are provided there.
  • the thereby released heat of adsorption heats the battery.
  • the required Ver Steam heat is supplied through the existing condenser within the existing air conditioning system, which in this case operates as an evaporator within the sorption heat storage.
  • the condenser is acted on by a refrigerant pump or by a capillary line according to the principle of the heat pipe with the refrigerant.
  • the adsorptive storage i. the battery temperature control device BT and the air conditioner KA are operated with the same refrigerant, preferably with carbon dioxide as the refrigerant, as shown in FIG.
  • the fluid from the Batterietemperiervorraum i. the battery temperature control device BT and the air conditioner KA are operated with the same refrigerant, preferably with carbon dioxide as the refrigerant, as shown in FIG.

Abstract

Die Erfindung betrifft ein Verfahren zur Temperierung einer Batterieanordnung wobei die Batterieanordnung mit einem integrierten Sorptionswärmespeicher thermisch gekoppelt wird. Bei einer Desorptionsphase des Sorptionswärmespeichers erfolgt ein Ausheizen des Sorptionsmaterials mit einem Austreiben eines Fluids während einer Wärmeabgabe der Batterieanordnung bei einer elektrischen Entladung und/oder elektrischen Aufladung. Es erfolgt eine Kondensation des aus dem Sorptionsmaterial ausgetriebenen Fluids in einem Kondensator mit einer Wärmesenke. Bei einer Resorption des Fluids im Sorptionsmaterial ist ein autarkes Erwärmen der Batterie ausführbar. Eine Vorrichtung zur Temperierung einer Batterieanordnung umfasst einen mit der Batterieanordnung thermisch gekoppelten Sorptionswärmespeicher mit einem Fluid und einem Sorptionsmaterial, wobei die Batterieanordnung als eine Wärmequelle für ein thermisches Ausheizen des in dem Sorptionswärmespeicher enthaltenden Sorptionsmaterials zum Austreiben des Fluids ausgebildet ist und wobei der Sorptionswärmespeicher als eine Wärmequelle für ein autarkes Erwärmen der Batterie durch eine Resorption des Fluids im Sorptionsmaterial ausgebildet ist.

Description

Verfahren und Vorrichtung zur Temperierung einer Batterieanordnung
Beschreibung
Die Erfindung betrifft ein Verfahren zur Temperierung einer Batterieanordnung nach Anspruch 1 und eine Vorrichtung zur Temperierung einer Batterieanordnung nach Anspruch 6.
Gegenwärtig rücken Batterieanordnung insbesondere für Automobile und andere Kraftfahrzeuge in den Bereich des besonderen Interesses. Dabei kommen vor allem hochenergiedichte Batterieanordnung, wie beispielweise Lithiumionen-Batterien zur Anwendung. Derartige Batterieanordnung sollen als Traktionsbatterien in
Automobilanwendungen einen Fahrzeugbetrieb unter allen jahreszeitlichen Bedingungen erlauben.
Jedoch zeigen die gebräuchlichen Batterie-Ausführungen eine starke Abhängigkeit der Leistungsabgabe und der Energiekapazität von der Temperatur des Systems. Das Optimum liegt hier in einem Temperaturbereich zwischen 10 bis 40°C. Gegen eine starke Überhitzung bei Temperaturen von mehr als 60°C, die zur Zerstörung der Li-Ionen-Zellen führen kann, werden elektronische Managementsysteme eingesetzt, gegen Untertemperaturen von weniger als 10°C, die durch eine Erhöhung des Innenwiderstandes die Leistung drastisch verringern, hilft dagegen nur eine Erwärmung der Batterien.
Es besteht daher die Aufgabe, den Betrieb derartiger Batterieanordnungen effizient zu gestalten und die Batterieanordnungen unter variablen Einsatzbedingungen mit effizienten Mitteln im optimalen Temperaturbereich zu halten. Die Aufgabe wird gelöst mit einem Verfahren zur Temperierung einer Batterieanordnung mit den Merkmaien des Anspruchs 1 und mit einer Vorrichtung zur Temperierung einer Batterieanordnung mit den Merkmalen des Anspruchs 2.
Bei dem Verfahren zur Temperierung einer Batterieanordnung wird die Batterieanordnung mit einem integrierten Sorptionswärmespeicher thermisch gekoppelt. Bei einer Desorptionsphase des Sorptionswärmespeichers erfolgt ein Ausheizen des Sorptionsmaterials mit einem Austreiben eines Fluids während einer Wärmeabgabe der Batterieanordnung bei einer elektrischen Entladung und/oder elektrischen Aufladung. Es wird dadurch ein Kühlen der Batterieanordnung bewirkt. Anschließend erfolgt eine Kondensation des aus dem Sorptionsmaterial ausgetriebenen Fluids in einem Kondensator mit einer Wärmesenke. Das Fluid steht anschließend für einen erneuten Aufheizvorgang der Batterieanordnung zur Verfügung. Dieser erfolgt über die Resorption des Fluids im Sorptionsmaterial. Die dabei frei- werdende Resoprtionswärme bewirkt ein autarkes Erwärmen der Batterieanordnung.
Bei einer weiteren Ausgestaltung erfolgt während der elektrischen Aufladung der Batterieanordnung das Austreiben des Fluids, wobei das ausgetriebene Fluid die bei der Kondensation abgegebene Kondensationswärme an eine bestehende Klimaanlageneinheit abgibt.
Bei einer weiteren Ausgestaltung wird bei Resorption des Fluids im Sorptionsmaterial das Fluid aus einem Fluidspeicher in gasförmiger Form zugeführt, wobei die für das Überführen in die gasförmige Form benötigte Verdampfungswärme aus einem Kondensator der bestehenden Klimaanlage entnommen wird.
Bei einer weiteren Ausführung wird der Sorptionswärmespeicher mit einem ersten Fluid und die bestehende Klimaanlage mit einem zweiten Fluid betrieben, wobei das erste Fluid und das zweite Fluid verschieden sind, wobei der Kondensator der
Klimaanlage mit dem Fluid des Sorptionswärmespeichers über einen Wärmeübertrager, insbesondere ein Wärmerohr, beaufschlagt wird. Bei einer weiteren Ausgestaltung werden der Sorptionswärmespeicher und die bestehende Klimaanlage mit dem gleichen Fluid betrieben, wobei der Sorptionswärmespeicher über eine Ventilanordnung in den Kreislauf der bestehenden Klimaanlage geschaltet ist.
Eine Vorrichtung zur Temperierung einer Batterieanordnung umfasst einen mit der Batterieanordnung thermisch gekoppelten Sorptionswärmespeicher mit einem Fluid und einem Sorptionsmaterial, wobei die Batterieanordnung als eine Wärmequelle für ein thermisches Ausheizen des in dem Sorptionswärmespeicher enthaltenden Sorptionsmaterials zum Austreiben des Fluids ausgebildet ist.
Zusätzlich kann ein mit einer Wärmesenke gekoppelter Kondensator zum Verflüssigen des Fluids vorgesehen sein. Als Wärmesenke kommen hier insbesondere Kühleinrichtungen in Betracht, die mit dem an den Ladestationen ohnehin verfügbaren Netzstrom betrieben werden, sodass die Kondensation des Fluids sehr effektiv bei niedrigen Temperaturen erfolgen kann.
Bei einer Ausführungsform ist der Sorptionswärmespeicher als eine Vielzahl von in die Batterieanordnung integrierten Adsorberelementen ausgebildet, wobei die Ad- sorberelemente die Zwischenräume zwischen den Batteriezellen ausfüllen, wobei die Adsorberelemente an einen gemeinsamen Dampfkanal zur Fluidzuleitung angeschlossen sind.
Der Sorptionswärmespeicher kann auch außerhalb um die Batterieanordnung herum angeordnet sein, wobei der Dampfkanal die Adsorberelemente enthält.
Im letzteren Fall sind wärmeleitende Elemente ausgehend von den Adsorberelementen aus dem Dampfkanal herausgeführt.
Der Grundgedanken des Verfahrens und der Vorrichtung besteht erfindungsgemäß jeweils somit darin, einen Sorptionswärmespeicher und die in einem solchen Speicher ablaufenden Vorgänge zur Temperierung der Batterie zu nutzen und somit die von der Batterieanordnung abgegebene Wärme zwischen zu speichern.
Die Erfindung ermöglicht somit eine kontrollierte Erwärmung der Batterie beim Fahrzeugstart durch einen integrierten Sorptionswärmespeicher. Damit kann die Leistung und Kapazität insbesondere einer Lithiumionen-Batterie auch bei niedrigen Außentemperaturen zu Fahrtbeginn abgerufen werden, ohne dafür gespeicherte Elektroenergie aufzuwenden.
Außerdem kann während der Entladung und während der Ladung der Batterie die Batterietemperatur im Desorptionsschritt reduziert werden.
Das Verfahren wird beispielsweise wie nachfolgend beschrieben ausgeführt, wobei die im Folgenden erläuterte beispielhafte Vorrichtung zur Anwendung kommt.
Figur 1 zeigt eine mögliche Ausführungsform der Vorrichtung im Desorptionsteil- schritt bei einer flüssigen Fluidzuführung,
Figur 2 zeigt eine mögliche Ausführungsform der Vorrichtung aus Fig. 1 im Heizteilschritt bei flüssiger Fluidzuführung,
Figur 3 zeigt eine mögliche Ausführungsform im Desorptionsteilschritt bei gasförmiger Fluidzuführung,
Figur 4 zeigt die Ausführungsform aus Fig. 3 im Heizteilschritt bei gasförmiger Fluidzuführung,
Fig. 5 zeigt eine Anordnung von Adsorberelementen und Batteriezellen
Fig. 6 zeigt eine weitere Ansicht der Anordnung aus Fig, 5,
Fig. 7 zeigt ein außerhalb der Batterieanordnung gelegenes Adsorberteil,
Fig. 8 zeigt eine erste Kopplung der Batterietemperiervorrichtung mit einer Klimaanlage, Fig. 9 zeigt eine zweite Kopplung der Batterietemperiervorrichtung mit einer Klimaanlage.
In der Batterieanordnung sind, beispielsweise um oder an jeder Einzelzelle oder um oder an jeder einzelnen Batterie mit einem direkten thermischen Kontakt dünne, evakuierte Sorptionseinheiten installiert, die über ein oder mehrere Ventile in Verbindung zu einem geschlossenen Vakuum-Sorptionssystem stehen. Diese Sorptionseinheiten agieren als ein batterieintegrierter Sorptionswärmespeicher.
Außerhalb der Batterie enthält der Sorptionswärmespeicher Einrichtungen zur Bereitstellung und zur Kondensation mindestens eines Fluides als Arbeitsmedium des Sorptionswärmespeichers. Das Fluid wird im Heizteilschritt bei geöffneten Ventilen von den Sorptionseinheiten unter Wärmeabgabe aufgenommen, wodurch dann die Temperatur in der Batterie auf die Untergrenze des optimalen Temperaturbereiches erhöht wird. Wird die Heizung der Zellen nicht benötigt, speichern die Sorptionseinheit bei geschlossenen Ventilen die Wärmeenergie.
Dieser Prozess wird reversibel ausgeführt. Zur Regeneration der Sorptionseinheiten werden diese durch einen Wärmeeintrag aus der Batterie auf bis zu 60°C erwärmt. Es tritt hierdurch eine Desorption des Fluides ein und das Fluid wird gasförmig wieder ausgetrieben, im Sorptionssystem am Kondensator kondensiert und bis zum nächsten Heizteilschritt zwischengespeichert.
Die Wärmequelle für die Desorption ist somit die Batterie, die sich während der Entladung im Fahrbetrieb oder während der Aufladung der Batterie am elektrischen Netz auf Temperaturen an der Obergrenze des optimalen Temperaturbereiches, d.h. insbesondere mit maximal 60°C erwärmt. Die Desorption des Fluids aus den Sorptionseinheiten entzieht der Batterie Wärmeenergie und kühlt damit zusätzlich die Batterie. Das ermöglicht eine schnellere Energieabgabe im Fahrbetrieb oder schnellere Ladevorgänge an der Ladestation.
An der Ladestation kann eine einfache konventionelle Kühleinrichtung wie z.B. die Kabinenkühlung eines Fahrzeugs als Wärmesenke für den Kondensator dienen und mit Energie aus dem elektrischen Netz betrieben werden, sodass die Kondensation der Fluide bei sehr niedrigen Temperaturen von beispielsweise weniger als 0°C ermöglicht werden kann.
Das Verfahren und die Vorrichtung ermöglichen somit eine kontrollierte Tempera- turführung insbesondere von Traktionsbatterien ohne eine zusätzliche Energieentnahme aus den Traktionsbatterien, die über eine bloße Regelung des Gesamtbetriebs hinausgeht. Die Batterien können insbesondere ohne den Anschluss an ein äußeres elektrisches Netz oder eine andere Energiequelle bei niedrigen Außentemperaturen autark erwärmt werden. Damit steht auch bei niedrigen Außentemperaturen schnell eine ausreichende Batterieleistung und -kapazität zur Verfügung.
Die Batterien können ohne Gefahr einer Schädigung bei Temperaturen von weniger als 10°C entladen werden. Überhitzungen der Batterieanordnung bei Temperaturen von insbesondere mehr als 60°C können vermieden werden.
Bei höheren Außentemperaturen können die aktivierten Sorptionseinheiten außerdem zur Kabinenklimatisierung im Fahrzeug beitragen.
Ein Teil der notwendigen Energie kann außerdem durch eine thermische Rekupe- ration aus der Entladewärme der Batterien, ein weiterer Teil kann bei der Ladung der Traktionsbatterien aus deren Erwärmung zurückgewonnen werden. Die restliche Energie wird an der Ladestation aus dem elektrischen Netz entnommen.
Die Sorptionseinheiten können auch als äußere Isolierung der Batterieanordnung ausgeführt werden.
Für das Sorptionsmaterial können folgende mögliche Sorbenzien eingesetzt werden: mikroporöse oder mesoporöse Materialien wie Zeolithe und zeolithische Materialien, poröse Oxide und Mischoxide, poröse Materialien auf Basis organischer Linkermoleküle wie MOF, salzimprägnierte poröse Festkörper, Aktivkohlen, hydrophile oder aminophile Lösungen. Als Fluid und Arbeitsmedium und somit als ein mögliches Adsorptiv oder Absorptiv kommen z.B. Wasser, Methanol oder Ammoniak entweder rein oder auch als Mischungen in Betracht.
Auf der Kondensatorseite können auch Stoffmischungen eingesetzt werden. Möglich sind hier insbesondere das Verdampfen des Fluids bei sehr niedrigen Temperaturen aus Lösungen oder Mischungen mit schmelzpunktsenkenden Zusätzen wie z.B. ionischen Flüssigkeiten, Salzen oder Frostschutzmitteln wie insbesondere Ethylengiycol.
Der thermische Sorptionswärmespeicher kann baulich beispielsweise als ein Separator innerhalb einer Batteriezelle der Batterieanordnung, als ein äußerer Mantel um jeweils einzelne Batteriezellen, als ein äußerer Mantel um einen Batterieblock der Batterieanordnung und/oder auch als ein äußerer Mantel um die gesamte Batterieanordnung selbst ausgeführt sein, Er kann damit auch neben der Wärmespei- cherung einen Doppelnutzen zur Dämmung und Segmenttrennung zwischen mehreren Zellen in der Batterieanordnung haben.
Mögliche andere Anwendungen des Verfahrens und der dafür genutzten Vorrichtung können auch ein Heizen und/oder Kühlen der Batterie während der Fahrt sowie auch das Unterstützung eines Heizens und/oder Kühlens des Kabinenraums des Fahrzeuges selbst sein.
Figur 1 zeigt eine mögliche Ausführungsform der Vorrichtung im Desorptionsteil- schritt bei einer flüssigen Fluidzuführung. Vorgesehen ist hier eine Batterieanordnung aus Batteriezellen (1) mit einem Sorptionswärmespeicher. Dieser beinhaltet ein Sorptionssystem (2) mit Sorptionseinheiten (3), Ventilen (4) und (5) sowie einem Kondensator (6) mit dem kondensierten Fluid und einer Kühlung (7). Die Kühlung (7) wirkt als Wärmesenke für das aus den Sorptionseinheiten (3) durch die von den Batteriezellen zugeführte Wärme ausgetriebene Fluid. Ventil (4) ist hierbei geöffnet. Die Rückführung aus dem Kondensator über das Ventil (5) ist geschlossen. Der Kondensator wirkt hier außerdem als Reservoir und Zwischenspeicher für das verflüssigte Fluid. Figur 2 zeigt eine mögliche Ausführungsform der Vorrichtung im Heizteilschritt bei flüssiger Fluidzuführung. Gezeigt sind hier wieder die Batteriezellen (1) mit dem- Sorptionssystem (2), die die Sorptionseinheiten (3) beinhalten. Das Ventil (4) ist hier geschlossen. Über das geöffnete Ventil (5) wird das flüssige Fluid aus dem- Kondensator (6) in die Sorptionseinheiten (3) zurückgeführt. Bei der Resorption des Fluids in den Sorptionseinheiten wird Wärme freigesetzt. Diese dient zum autarken Erwärmen der Batteriezellen auf den optimalen Temperaturbereich.
Figur 3 zeigt eine mögliche Ausführungsform im Desorptionsteilschritt bei gasförmiger Fluidzuführung. Es sind hier ebenfalls eine Batterieanordnung aus Batteriezellen (1) vorgesehen. Der Sorptionswärmespeicher umfasst das Sorptionssystem
(2) mit den Sorptionseinheiten (3) und dem Ventil (4). Ebenfalls ist hier der Kondensator (6) mit dem kondensierten Fluid und der Kühlung (7) als Wärmesenke vorgesehen. Das Fluid wird durch Wärmeabgabe aus den Batteriezeilen aus den Sorptionseinheiten ausgetrieben und im Kondensator auf einer niedrigen Temperatur verflüssigt. Der Kondensator dient hier wieder als Zwischenspeicher für das verflüssigte Fluid. Das Ventil (4) wird danach verschlossen. Nach dem Abschluss des Kondensationsvorganges erwärmt sich das Fluid im Innenraum des Kondensators.
Figur 4 zeigt die Ausführungsform aus Fig. 3 im Heizteilschritt bei gasförmiger Fluidzuführung. Das im Kondensator (6) zwischengespeicherte Fluid geht spätestens bei Öffnen des Ventils (4) wieder in die Gasphase über. In gasförmiger Form gelangt es somit über das geöffnete Ventil (4) zurück in die Sorptionseinheiten
(3) des Sorptionssystems (2) und wird dort resorbiert. Hierdurch wird Wärme frei, die an die Batteriezellen (1) abgegeben wird und diese auf einen optimalen Temperaturbereich autark erwärmt.
Ziel ist es in jedem Fall, eine eine gute thermische Kopplung mit den Einzelzellen bei geringem Bauvolumen und guter Dampfzugänglichkeit zu erreichen. Die Figuren 5 und 6 zeigen entsprechende Ausführungsbeispiele.
Bei der in Fig. 5 gezeigten Ausführungsform füllen Adsorberelemente (AE) die Freiräume zwischen runden Batteriezellen (Zeile) mit einem Wandkontakt zu den Zellen aus. Der Dampfzugang erfolgt hier von oben oder unten über einen flächigen oder linearen gemeinsamen Dampfkanal (DK) für mehrere Adsorberelemente, wie die Darstellung in Fig. 6 zeigt. Der Dampfkanal (DK) und die Adsorberelemente (AE) bilden zusammen das Adsorberteil (AT) in der Batterieanordnung.
Der Dampfkanal ist einzeln oder mit weiteren Dampfkanälen über ein Ventil (V) mit einem hier nicht dargestellten Verdampfer/Kondensatorelement verbunden.
Die Adsorberteile können während der Zusammenstellung der Einzelzellen zur Batterieanordnung integriert werden. Die Adsorberelemente sind auf der vakuumführenden Innenseite in geeigneter Weise mit dem Adsorbens im Kontakt.
Bei einer weiteren in Fig. 7 gezeigten Ausgestaltung steht das Adsorberteil außerhalb der Batterieanordnung, idealerweise direkt unter oder über der Batterieanordnung in Kontakt.
Die Adsorberteile befinden sich in dem hier vorliegenden Beispiel im Dampfkanal (DK). Ausgehend von den Adsorberelementen (AE) und in direktem thermischen Kontakt zu den Adsorberelementen verlaufen geeignete wärmeleitende Elemente (WE) wie Metallstrukturen oder heat pipes aus dem Dampfkanal.
Der Dampfkanal ist einzeln oder mit weiteren Dampfkanälen über ein Ventil mit einem hier nicht gezeigten Verdampfer/Kondensatorelement verbunden. Der Dampfkanal (DK) und das Adsorbereiement (AE) zusammen mit dem wärmeleitenden Element bilden das Adsorberteil (AT) in der Batterieanordnung . Die wärmeleitenden Elemente füllen die Freiräume zwischen den Batteriezellen mit Wandkontakt zu den Zellen aus.
Die Adsorberelemente bestehen aus einer um die wärmeübertragenden Elemente herum angeordneten, metallischen und in geeigneter Weise mit Adsorbens in Kontakt gebrachten Struktur. Die Struktur der Adsorberelemente sollte eine hohe Oberfläche für den Kontakt mit dem Adsorbens, d.h. mit dem verwendeten Fluid, bieten. Im Adsorptionsfall wird die im Adsorbereiement freigesetzte Wärme über die wärmeleitenden Elemente in die Batterieanordung eingebracht. Im Fall von flüssigen Fluiden können sich diese in verschiedenen Betriebsphasen an verschiedenen Positionen des Vakuum Systems innerhalb oder außerhalb der Batterieanordnung befinden. Dafür kann auch eine aktive Förderung der flüssigen Sorbentien erfolgen.
Möglich ist insbesondere auch eine Integration des Adsorptionswärmespeichers in das Thermomanagement des Kraftfahrzeuges. Ziel ist eine einfache Integration des Adsorptionsspeichers in das Fahrzeug, insbesondere unter Verwendung einer existierenden kompressorbetriebenen Klimaanlage, bzw. einer Wärmepumpe zur Unterstützung der Ladung und Endladung des Batteriesystems. Fig . 8 und Fig . 9 zeigen entsprechende Beispiele.
Die Betriebsweise und der entsprechende Aufbau stellen sich wie folgt dar:
Die Batterietemperiervorrichtung BT besteht aus der Batterieanordnung, insbesondere mindestens einer Batteriezelle Ba und einem mit dieser thermisch kontaktierten Adsorber Ad.
Bei der Ausführungsform in Fig. 8 sind die Batterietemperiervorrichtung BT und die Klimaanlage KA baulich voneinander getrennt. Dabei sind die Fluide in der Batterietemperiervorrichtung und in der Klimaanlage insbesondere verschieden, stehen aber über einen Kältemittelbehälter Kb im thermischen Kontakt, sodass in dieser Stelle Wärme übertragen werden kann.
Zuerst erfolgt eine Ladung des Adsorptionsspeichers während der Batterieaufladung: Desorptionswärme wird durch die Abwärme der Batterie bei deren Aufladung bereitgestellt. Die Kondensationswärme wird durch die bestehende Klimaanlage KA abgeführt und über Wärmetauscher Wl und W2 beispielsweise in Richtung der Fahrerkabine oder des Motorraums abgegeben. Für den in der Klimaanlage erfolgenden Umlauf des Kältemittels sind dort ein Kompressor C und eine Kondensatpumpe P sowie eine Reihe von Ventilen V vorgesehen.
Es erfolgt eine Entladung des Speichers für das Fluid zur Batterievorwärmung : die dabei freigesetzte Adsorptionswärme heizt die Batterie auf. Die benötigte Ver dampfungswärme wird durch den bestehenden Kondensator innerhalb der bestehenden Klimaanlage zugeführt, welcher in diesem Fall innerhalb des Sorptionswärmespeichers als Verdampfer betrieben wird.
Werden zwei verschiedene Kältemittel für den Adsorptionsspeicher, d. im Bereich der Batterietemperiervorrichtung BT und die Klimaanlage KA wie in Fig. 8 eingesetzt, so wird der Kondensator durch eine Kältemittelpumpe oder durch eine Kapillarleitung nach dem Prinzip der Heat-Pipe mit dem Kältemittel beaufschlagt.
Zur Vereinfachung der Integration können der Adsorptionsspeicher, d.h. die Batterietemperiervorrichtung BT und die Klimaanlage KA mit demselben Kältemittel betrieben werden, bevorzugt mit Kohlendioxid als Kältemittel, wie in Fig. 9 gezeigt. Das Fluid aus der Batterietemperiervorrichtung .
Bezugszeichenliste
1 Batteriezelle
2 Sorptionssystem
3 Sorptionseinheit
4 erstens Ventil
5 zweites Ventil
6 Kondensator und Fluidzwischenspeicher
7 Kühlung als Wärmesenke
AE Adsorberelement
AT Adsorberteil
Zelle Batteriezelle
DK Dampfkanal
AT Adsorberteil
V Ventil
WE wärmeleitendes Element
BT Batterietemperiervorrichtung
Ba Batteriezelle
Ad Adsorber KA Klimaanlage
Kb Käitemittelbehälter Wl, W2 Wärmetauscher C Kompressor
P Konsensatpumpe

Claims

Patentansprüche
1. Verfahren zur Temperierung einer Batterieanordnung
wobei
die Batterieanordnung mit einem integrierten Sorptionswärmespeicher thermisch gekoppelt wird und
- bei einer Desorptionsphase des Sorptionswärmespeichers ein
Ausheizen des Sorptionsmateriais mit einem Austreiben eines Fluids während einer Wärmeabgabe der Batterieanordnung bei einer elektrischen Entladung und/oder elektrischen Aufladung erfolgt,
- eine Kondensation des aus dem Sorptionsmaterial ausgetriebenen Fluids in einem Kondensator mit einer Wärmesenke erfolgt, wobei
- bei einer bedarfsweisen Resorption des Fluids im Sorptionsmateria! über die freigesetzte Resorptionswärme ein autarkes Erwärmen der Batterie ausführbar ist.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
während der elektrischen Aufladung der Batterieanordnung das Austreiben des Fluids erfolgt, wobei das ausgetriebene Fluid die bei der Kondensation abgegebene Kondensationswärme an eine bestehende Klimaaniageneinheit abgibt.
3. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
bei Resorption des Fluids im Sorptionsmaterial das Fluid aus einem
Fluidspeicher in gasförmiger Form zugeführt wird, wobei die für das Überführen in die gasförmige Form benötigte Verdampfungswärme aus einem Kondensator der bestehenden Klimaanlage entnommen wird.
4. Verfahren nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, dass
der Sorptionswärmespeicher mit einem ersten Fluid und die bestehende Klimaanlage mit einem zweiten Fluid betrieben werden, wobei das erste Fluid und das zweite Fluid verschieden sind, wobei der Kondensator der Klimaanlage mit dem Fluid des Sorptionswärmespeichers über einen Wärmeübertrager, insbesondere ein Wärmerohr, beaufschlagt wird,
5. Verfahren nach einem der Ansprüche i bis 3,
dadurch gekennzeichnet, dass
der Sorptionswärmespeicher und die bestehende Klimaanlage mit dem gleichen Fluid betrieben werden, wobei der Sorptionswärmespeicher über eine Ventilanordnung in den Kreislauf der bestehenden Klimaanlage geschaltet ist.
6. Vorrichtung zur Temperierung einer Batterieanordnung,
umfassend
einen mit der Batterieanordnung thermisch gekoppelten
Sorptionswärmespeicher mit einem Fluid und einem Sorptionsmaterial, wobei die Batterieanordnung als eine Wärmequelle für ein thermisches Ausheizen des in dem Sorptionswärmespeicher enthaltenden
Sorptionsmaterials zum Austreiben des Fluids ausgebildet ist und wobei der Sorptionswärmespeicher als eine Wärmequelle für ein autarkes Erwärmen der Batterie durch eine Resorption des Fluids im Sorptionsmaterial freigesetzte Resorptionswärme ausgebildet ist,
7. Vorrichtung nach Anspruch 2,
dadurch gekennzeichnet, dass
ein mit einer Wärmesenke gekoppelter Kondensator zum Verflüssigen des Fluids vorgesehen ist.
8. Vorrichtung nach Anspruch 6,
dadurch gekennzeichnet, dass
der Sorptionswärmespeicher als eine Vielzahl von in die Batterieanordnung integrierten Adsorberelementen ausgebildet ist, wobei die
Adsorberelemente die Zwischenräume zwischen den Batteriezellen ausfüllen, wobei die Adsorberelemente an einen gemeinsamen Dampfkanal zur Fluidzuleitung angeschlossen sind.
9. Vorrichtung nach Anspruch 6,
dadurch gekennzeichnet, dass
der Sorptionswärmespeicher außerhalb um die Batterieanordnung herum angeordnet ist, wobei der Dampfkanal die Adsorberelemente enthält.
10. Vorrichtung nach Anspruch 6 und 9,
dadurch gekennzeichnet, dass
wärmeleitende Elemente ausgehend von den Adsorberelementen aus dem Dampfkanal herausgeführt sind
EP18759556.6A 2017-08-18 2018-08-06 Verfahren und vorrichtung zur temperierung einer batterieanordnung Withdrawn EP3669417A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102017118949 2017-08-18
DE102017122724.5A DE102017122724A1 (de) 2017-08-18 2017-09-29 Verfahren und Vorrichtung zur Temperierung einer Battrieanordnung
PCT/EP2018/071247 WO2019034462A1 (de) 2017-08-18 2018-08-06 Verfahren und vorrichtung zur temperierung einer batterieanordnung

Publications (1)

Publication Number Publication Date
EP3669417A1 true EP3669417A1 (de) 2020-06-24

Family

ID=65234839

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18759556.6A Withdrawn EP3669417A1 (de) 2017-08-18 2018-08-06 Verfahren und vorrichtung zur temperierung einer batterieanordnung

Country Status (7)

Country Link
US (1) US20210167440A1 (de)
EP (1) EP3669417A1 (de)
JP (1) JP2020532060A (de)
KR (1) KR20200040847A (de)
CN (1) CN111149251A (de)
DE (1) DE102017122724A1 (de)
WO (1) WO2019034462A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111740056B (zh) * 2020-06-28 2021-10-26 上海交通大学 一种基于金属有机骨架材料的吸附式电池热管理系统
CN111769341B (zh) * 2020-07-07 2022-03-25 中国矿业大学 基于热化学储能的动力电池低温启动应急加热装置及其控制方法
US20230030003A1 (en) * 2021-07-28 2023-02-02 GM Global Technology Operations LLC Battery module with thermal energy storage member
WO2023149108A1 (ja) * 2022-02-03 2023-08-10 株式会社村田製作所 電池パック

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3616005B2 (ja) * 2000-12-20 2005-02-02 本田技研工業株式会社 ハイブリッド車両の冷却装置
JP5182546B2 (ja) * 2007-06-05 2013-04-17 株式会社デンソー 電池温度調節装置
KR100949334B1 (ko) * 2007-11-12 2010-03-26 삼성에스디아이 주식회사 전지 모듈
EP2305496B1 (de) * 2007-11-13 2012-06-20 Behr GmbH & Co. KG Vorrichtung zur Kühlung einer Wärmequelle eines Kraftfahrzeugs
JP5147373B2 (ja) * 2007-11-29 2013-02-20 三洋電機株式会社 バッテリシステム
JP2009227121A (ja) * 2008-03-24 2009-10-08 Sanyo Electric Co Ltd バッテリユニット
CN101978549A (zh) * 2008-03-24 2011-02-16 三洋电机株式会社 电池装置和电池单元
DE102009043316A1 (de) * 2009-09-28 2011-03-31 Valeo Klimasysteme Gmbh Verfahren zur Steuerung der Innenraumtemperatur eines elektrisch betriebenen Fahrzeugs und Klimaanlagensystem
DE102012012820B4 (de) * 2012-06-28 2021-01-14 Audi Ag Batterieanordnung und Verfahren zum Betreiben einer Batterieanordnung für ein Kraftfahrzeug mit einer elektrischen Speichereinheit
JP2014103005A (ja) * 2012-11-20 2014-06-05 Toshiba Corp 電池パック及び車両用暖房装置
EP2925550A4 (de) * 2012-11-30 2016-07-06 Basf Se Speichereinheit für ein antriebssystem in einem fahrzeug und verfahren zum betrieb davon
DE102013002847B4 (de) * 2013-02-20 2018-06-21 Audi Ag Batterieanordnung für ein Fahrzeug und Verfahren zum Betreiben einer Batterieanordnung
DE102015204678A1 (de) * 2015-03-16 2016-09-22 Robert Bosch Gmbh Batteriekonditionierung mit Sorptionsmittelregeneration
CN105206895B (zh) * 2015-10-20 2017-08-22 方乐同 电池组的冷却方法及带有冷却装置的电池组

Also Published As

Publication number Publication date
DE102017122724A1 (de) 2019-02-21
WO2019034462A1 (de) 2019-02-21
CN111149251A (zh) 2020-05-12
US20210167440A1 (en) 2021-06-03
KR20200040847A (ko) 2020-04-20
JP2020532060A (ja) 2020-11-05

Similar Documents

Publication Publication Date Title
EP3669417A1 (de) Verfahren und vorrichtung zur temperierung einer batterieanordnung
DE102013216009B4 (de) Kraftfahrzeug-Klimasteuerungssystem
DE4019669C2 (de) Adsorptionsthermischer Speicher
DE10330104A1 (de) Kühlsystem mit Adsorptions-Kühlgerät
EP1809499B1 (de) Pkw-klimaanlagen mit adsorptionswärmepumpen
WO2019105909A1 (de) Verfahren zur temperierung einer batterieanordnung und temperierte batterieanordnung
DE3532093C1 (de) Diskontinuierlich arbeitende Sorptions-Speichervorrichtung mit Feststoffabsorber
EP3444135A1 (de) Kreislaufsystem für ein brennstoffzellen-fahrzeug
DE102012012820B4 (de) Batterieanordnung und Verfahren zum Betreiben einer Batterieanordnung für ein Kraftfahrzeug mit einer elektrischen Speichereinheit
DE102020131554A1 (de) Wärmepumpensystem für ein fahrzeug
WO2012152535A1 (de) Batteriemodul einen batteriezellenstapel aus mindestens zwei batteriezellen aufweisend mit einer passiven klimatisierung sowie kraftfahrzeug
DE102010019187B4 (de) Batterie und Verfahren zum Temperaturmanagement
DE102020117471A1 (de) Wärmepumpenanordnung mit indirekter Batterieerwärmung für batteriebetriebene Kraftfahrzeuge und Verfahren zum Betreiben einer Wärmepumpenanordnung
DE102018002708A1 (de) Temperiervorrichtung für ein Fahrzeug
DE102017005593A1 (de) Hochvoltbatterievorrichtung für einen Kraftwagen
DE102009057163A1 (de) Vorrichtung und Verfahren zur Kühlung
EP3830892A1 (de) Temperierelement mit sorptionsmaterial, insbesondere zur temperierung einer batteriezelleneinheit eines kraftfahrzeugs
DE102009005852A1 (de) Temperiertes Batteriesystem
WO2012016654A1 (de) Kühlvorrichtung für einen elektrischen energiespeicher
DE102018108713B4 (de) Wärmemanagementsystem für eine Batterie
DE102010040014A1 (de) Vorrichtung zur Veränderung einer Umgebungstemperatur für mobile Anwendungen sowie entsprechendes Verfahren
DE102014215891A1 (de) Wärmemanagement-System und Verfahren zum Betrieb eines solchen
DE102018125952A1 (de) Wärmeenergiespeichersystem und Kraftfahrzeug mit Wärmeenergiespeichersystem
DE102019216052A1 (de) Kühlvorrichtung für eine Traktionsbatterie eines Fahrzeugs
DE102018204333A1 (de) Temperierungseinrichtung und Verfahren zum Temperieren wenigstens einer Fahrzeugkomponente eines elektrisch betreibbaren Kraftfahrzeugs sowie Kraftfahrzeug

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230301